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Abstract 

Increasing demand for marine resources is a significant concern in today's world due to the 

limited availability of resources and the rapid population growth. The multi-use of offshore 

platforms has been introduced as a sustainable solution for resource utilization by many 

countries worldwide. However, the concept of multi-use is relatively new. Therefore, 

researches are still being carried out to check the feasibility of these offshore platforms in 

aquaculture activities, renewable energy generation, tourism, and many other sectors. Before 

designing these infrastructures, it is essential to identify the suitable marine environments for 

each activity based on the required conditions and characteristics of the marine environments. 

Thus, numerical models play a vital role in simulating these marine environments and 

consequently will be used as a decision-making tool in feasibility studies and operational 

activities. The calibration of these numerical models is essential to have more reliable model 

outputs. However, these numerical models have many inputs parameters and physical variables 

on which the outputs depend. Sensitivity analysis can reduce the effort to calibrate complex 

numerical models with many input parameters by identifying the most influential inputs to an 

output variable. The main objective of the current research was to select the most significant 

input parameters to two selected outputs of a hydrodynamic model.  

DCSM is a hydrodynamic model developed for the North Sea by Deltares using the D-Flow 

FM model suite of Delft3D. Two selected local and global sensitivity analysis methods were 

applied to the above hydrodynamic model to test the sensitivities of temperature and current 

velocities to a selected subset of input parameters. The Morris method is used as a screening 

method to identify the order of the significance of input parameters. The variance-based Sobol’ 

method was used in global sensitivity analysis for the input parameters screened by the Morris 

method. Finally, a comparison was made for the sensitivity indices obtained from the Morris 

method and variance-based Sobol’ method by calculating the correlations between indices. 

Temperature and current velocities were identified as critical output variables of the 

hydrodynamic model that will be beneficial in designing offshore Blue mussel and Seaweed 

farms. A subset of input parameters was selected for the analysis as the D-Flow FM model is 

associated with a considerable number of input parameters. The sensitivities of the temperature 

and current velocities to the selected set of inputs were analyzed using the two analysis 

techniques for few selected locations in the area of interest. Results of the Morris method show 

that the temperature is most sensitive to the Dalton coefficient used for calculating the 

evaporative heat flux, the Smagorinsky factor that is used in calculating the horizontal 

turbulence, and the Stanton coefficient, which is used in calculating convective heat flux. 

Therefore, these three factors were further analyzed by the variance-based Sobol’ method. 

Variance-based analysis shows that, from the three inputs, the Dalton coefficient is the most 

sensitive parameter to the temperature. The effect of the Stanton coefficient is much smaller 

compared to the other two factors.  

Current velocities in the three directions were separately considered in the sensitivity analyses 

and found out that the most significant input parameters from the selected sub-set are the air 

density (Rhoair), Smagorinsky factor, uniform vertical eddy viscosity (Vicoww), and uniform 

vertical eddy diffusivity (Dicoww). Thus, the variance-based analysis was performed for these 
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four factors. Out of these four parameters,  air density (Rhoair) was identified as the parameter 

with the highest contribution and Smagorinsky factor as the second most significant parameter 

to x-velocity from the results of the Sobol’ method, while the Vicoww, and Dicoww has a less 

contributions. The sensitivity of y-velocity and z-velocity also show a similar pattern of 

ranking, although the percentage of contributions to output variances are different. The 

interaction effects of input parameters on outputs were also identified using the Sobol’ indices. 

The rankings obtained for both temperature and currents velocities from the two methods are 

comparable, whereas the order of ranking is observed to be similar in both methods.    

The spatial variation of the sensitivities of temperature and current velocities were observed as 

minimal, where the ranking order of the significant parameters remained the same for the 

selected six locations in the project area. 

 

Keywords: Hydrodynamic model, sensitivity analysis, North Sea, Dutch Continental Shelf 

Model, One-At-a-Time method, Morris method, Sobol’ variance-based method  
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Chapter 1: Introduction 

1.1. Background 

Numerical models are being used in many fields to efficiently calculate physical systems, while 

these are too complicated to solve manually. These numerical models have many input 

parameters and physical variables on which the outputs are dependent. In many cases, these 

input parameters might be unknown or characterized with high uncertainties hence less precise. 

These unknown or partially known input parameters and physical variables will subsequently 

create uncertainties in the model output. The exploration of how these uncertainties of model 

output can be apportioned to the various sources of uncertainties in model input is the primary 

purpose of the sensitivity analysis (Saltelli et al., 2008). Having a measure of the importance 

of each input parameter on the output uncertainty will give a deep understanding of the modeled 

system. Also, this allows reducing the possible uncertainties in model outputs. Further, 

sensitivity analysis provides the idea on which inputs need a more significant concern and need 

to be more precise to yield a more accurate response.   

Generally, these numerical models have a tremendous amount of input parameters, where some 

of these are correlated with each other and make it challenging to perform calibration and 

validation. The high amount of calculation time of these numerical models is another constraint 

for calibrating the models with many input parameters. As a solution, several researchers have 

executed many experiments to investigate the possible methods for selecting the most 

important and influential input parameters and screening out the less influential ones. 

Sensitivity analysis is one such method used to determine the significant input parameters that 

have the highest impact on the output of a computational model. Identifying the dependency 

of the output of a hydrodynamic model on its input variables is vital in simulating a model. 

Since these models are associated with a large number of unknowns, lots of assumptions are 

made in the calculation process. Moreover, if the models concern a larger area and are 

developed with high resolutions, they can consume a high computation time. Besides, the other 

characteristics of these hydrodynamic models, such as having many input parameters, 

including complex differential equations that take considerable time and effort for solving, 

need to be considered in selecting the sensitivity analysis techniques.  

This research concerns the hydrodynamic model of the North Sea, which is a part of the 

Atlantic Ocean and borders England, Denmark, Norway, Germany, Belgium, Netherlands, and 

France. The North Sea is known as a site for many important shipping lines for more than 200 

years. Moreover, this marine environment has been identified as a rich renewable energy source 

in recent times, where opportunities are considered for large-scale wind energy production, 

hydrogen production, and underground carbon storage. Therefore, the sea area is gaining the 

attention of the bounding countries and the scientific community for new developments.  

For efficient and sustainable use of existing marine resources, the concept of multi-use has 

been introduced. The multi-use concept is defined in two aspects, including multi-use platform 

(MUP) and multi-use space (MUS) (Legorburu et al., 2018). This multi-use concept can be 

understood as the international joint use of marine resources by two or more users. In other 

words, it is a compatible use of infrastructure or space for combined multiple activities by 

different users. In the context of the design, they are introduced in two different approaches. 

These are Co-location and integration. Co-location is the design of separate platforms without 

connecting them physically but sharing the same logistic and marine space. 

On the other hand, in integration, the idea is to use the same offshore platform for multiple 
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purposes such as renewable energy, aquaculture, and ecological restoration. Multi-use of 

maritime space, platforms, or synergies can create a lot more benefits than the traditional 

exclusive resource utilization. First, it will save the environment in space, establishing the 

sustainable use of the marine resource, where more space will be left for protection and future 

generations. Further, these will add value to the economic benefits for marine users by creating 

opportunities for sharing the developments, operation, and maintenance costs and risks. 

Besides, this will create social benefits for the users such as skill transfer, creating job 

opportunities, and reducing impacts. In designing these kinds of infrastructure and multi-use 

platforms, the designers and decision-makers need to consider the sea area's hydrodynamic 

conditions (water levels, velocities, waves, and currents). Therefore, simulating the 

hydrodynamic conditions of marine environments is of greater importance.  

Sensitivity analysis can support the efficient use of hydrodynamic modeling by identifying the 

critical regions of input parameter space and the insignificant input parameters. Therefore, the 

sensitivity analysis results can help eliminate insignificant input parameters that have less 

influence on outputs in the modeling process. Hence it reduces the computational effort, time, 

and cost associated with calibration and validation processes. Therefore, sensitivity analysis 

has greater importance in numerical modeling, as it supports efficient calibration of models to 

achieve higher accuracy in model results. 

1.1. Problem Statement 

The motivation for the thesis was raised primarily by looking at the difficulties, such as 

spending a considerable time in calibration efforts when performing mathematical models, 

because they have a large number of input factors to be calibrated therefore require a substantial 

number of model runs. According to Shin et al. (2013), only a few studies (Schmid et al., 2003, 

Shen et al., 2008, Plecha et al., 2010, Francos et al., 2003, Kurniawan et al., 2011) have been 

carried out with the application of sensitivity analysis methods in ranking the parameters and 

identifying redundancies.  

The primary users of the research will be the modelers, who perform complex numerical 

modeling. The results of this research will discuss the applicability of possible sensitivity 

analysis methods that can be used for complex numerical models with a high number of input 

parameters and variables. In addition to that, the researchers and students, who experiment with 

different sensitivity analysis techniques for numerical models, will benefit from these results 

for future studies of similar complex numerical models. In addition, research will benefit the 

UNITED project (which is further described in section 1.4) as a preliminary step for numerical 

modeling studies, which will be used as decision-making tools in designing and operating. 

Therefore, even though there is no direct impact on the public, the stakeholders of the said 

project will benefit indirectly from the research. 

 

1.2. Objectives  

The main objective of the research is to highlight the significant input parameters of a 

hydrodynamic model, which will be most influential for some selected output of the model. 

Furthermore, the methodology was applied to a hydrodynamic model of the North Sea. For 

achieving this primary objective, the following sub-objectives are defined. 
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• Selecting the most suitable methods of sensitivity analysis to apply to the 

hydrodynamic model 

• Identifying the input parameters for the sensitivity analysis based on the literature, 

referring to the manuals and technical references of D-Flow FM, and with the 

support of experts from Deltares. The model typically contains a large number of 

parameters that would be too large for any technique. The idea here is to reduce the 

number of input parameters for the analysis following the literature and expert 

knowledge on the model parameters before applying the sensitivity analysis 

techniques. 

• Performing sensitivity analysis for the input parameters of the hydrodynamic model 

using D-Flow Flexible Mesh model, which is a part of Delft 3D Flexible Mesh 

model suite.  

• Identify the order of significance of relevant parameters according to the rating and 

the results of the sensitivity analysis techniques. 

• Comparing the results obtained from the selected sensitivity analysis techniques. 

1.3. Research questions 

The main problem identified through the literature is the difficulties of calibrating complex 

numerical models with many input parameters. SA techniques are being used to identify 

important parameters of a particular model to overcome the aforementioned problems. The 

following research questions are specified to cover through this research, considering these 

facts and objectives of the study.  

• What are the different techniques or methods for performing sensitivity analysis?  

• Which output parameter sensitivities are going to be analyzed in the study? 

• What input parameters need to be considered for the sensitivity analysis of selected 

output parameters of the hydrodynamic model? 

• What are the possible methods that can be used and the suitability of these methods in 

application to the hydrodynamic model? 

• What are the non-influential parameters that can be ignored or given the least priority 

in future calibrations?  

• What are the most significant parameters that determine the accuracy of model output? 

1.4. Practical Value  

The research is integrated into an innovation project called UNITED (multi-Use platforms and 

co-locatioN pilots boostIng cost-effecTive, and Eco-friendly and sustainable proDuction in 

marine environments), which is one of the current European Union Horizon 2020 projects. The 

UNITED project investigates the viability of the multi-use of offshore platforms in five 

demonstration pilots spanning the North Sea, Baltic Sea, and the Mediterranean Sea with 

combinations of multiple sectors such as mixed energy production, aquaculture, ecological 

restoration, and tourism. The project concept is defined under five pillars: environmental, 

technological, economic, societal, legal-policy, and safety pillars. One of the technological 

pillar's intentions is to support management and planning decisions for new development and 

improve the current design, safety, and infrastructure setups for multi-use extensions. As 

decision support tools, numerical models are being used for simulating these marine 

environments. Therefore, the numerical models for decision support systems will be developed 

covering these five pilot sites. The study area of research was selected considering the location 
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of the German pilot, which is about 80km off from the North German coast and identified as a 

high-energy environment.   

As a part of this research, the hydrodynamic model will be used to determine the most 

significant input parameters that need to be highlighted in the calibration and validation and 

identify the non-influential parameters that can be given less attention and thereby reduce the 

complexity of the model to ease the calibration. Therefore, in the context of the UNITED 

project, this research will be beneficial, especially for the German pilot, as a preliminary study 

for hydrodynamic modeling. Other than that, the research outcomes can be used to calibrate 

hydrodynamic models for similar cases (for example, results can be used in Belgium pilot, 

Dutch pilot, etc.) and compare results, discuss, and find solutions to common challenges.  

Hence the research will explore performing sensitivity analysis for a hydrodynamic model to 

determine the most significant input parameters. The knowledge of these significant input 

parameters will then be used to calibrate and validate the model to reduce the computational 

time associated with the modeling. This knowledge on critical parameters helps to save 

computational time and costs spent for the complex hydrodynamic models by making it easier 

for the modeler to concentrate on the most critical parameters and calibrate the model 

efficiently. Besides, the methods proposed for this application will be used not only in the field 

of engineering but also in other numerical model simulations.  

1.5. Innovation  

The admissible innovation of the study will develop a generic framework for applying 

sensitivity analysis methods for calibrating the hydrodynamic models, primarily focusing on a 

hydrodynamic model of the North Sea for the area of German pilot of UNITED project 

mentioned in the previous section. According to the literature, there are studies (Y. Li et al., 

2015; Palermo Stefania Anna and Zischg, 2019) that have already been carried out to analyze 

the sensitivity of hydrodynamic models. Y. Li et al. (2015) conducted sampling-based 

uncertainty assessment and sensitivity analysis of a hydrodynamic model of a large shallow 

freshwater lake. However, the authors (Y. Li et al., 2015) have highlighted that the research 

only addresses the parametric uncertainty estimation, and future studies should consider 

sensitivities and uncertainty of boundary conditions to hydrodynamic models. A global 

sensitivity analysis has been applied by Palermo and Zischg (2019) to a microscale 

hydrodynamic model to select the most influential parameters of a stormwater management 

model (SWMM). However, there is still a need for methods to combine sensitivity analysis in 

hydrodynamic model calibration. Therefore, these research gaps have been considered in this 

study. 

• The main contribution of this research to the scientific world will be developing a 

generic framework for the application of sensitivity analysis of hydrodynamic models 

before the calibration. 

• As a tool for calculating the sensitivities of input parameters of the hydrodynamic 

model, an algorithm will be developed which can be used for similar model studies.  

• The sensitivity analysis of a hydrodynamic model of the selected case study will support 

in determining the most critical regions of the input parameter space for a 

hydrodynamic model in calibrating to specific output variables.  
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1.6. Thesis Outline 

Chapter 1 – Introduction.  

This Chapter includes the general introduction about the research, problem statement, thesis 

objectives, research questions, practical value, and finally, the innovation introduced through 

the research. 

 

Chapter 2 – Literature review 

This chapter includes the literature research to identify the thesis problem, define the thesis 

objectives, develop the methodology, and interpret the results.  

 

Chapter 3 – Case study. 

The Chapter contains the details about the selected case study and physical characteristics of 

the study area, and software and tools used.  

 

Chapter 4 – Research methodology 

The research methodology chapter includes information on the general overview of the 

methodology as a flow chart, selection of sensitivity analysis techniques for the analysis, and 

details on selected methods and procedures of application. Further, this includes the selected 

analysis locations. 

 

Chapter 5 – Selection of parameters for the analysis  

Details about the selected input and output parameters and reasoning for the selection includes 

in this chapter.  

 

Chapter 6 – Application of Python in the sensitivity analysis  

The steps followed in applying Python programming for the sensitivity analysis are described 

in this chapter in detail. However, the developed scripts are not included in this chapter. 

 

Chapter 7 – Results & discussion 

Sensitivity results for the selected output parameters are included in Chapter 7, with the 

analysis of the results obtained from two selected analysis methods. 

 

Chapter 8 – Conclusions and Recommendations 

This chapter includes the conclusions of the research, limitations faced in the study, and finally, 

the recommendations for future research based on the analysis. 

 

Annex I, Annex II – Python scripts 

Python scripts developed throughout the analysis are included as Annex I and AnnexII. Annex 

I contain the scripts used in applying the Morris method, and Annex II contains the scripts used 

for analysis using the Variance-based Sobol’ method.  

Annex III– Sensitivity analysis results 

Results plots and tables of sensitivity analysis 
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Chapter 2: Literature Review  

Uncertainty and sensitivity analysis are used to assess the reliability and the uncertainty of 

particular model output. Therefore, it is essential to distinguish between uncertainty analysis 

and sensitivity analysis before exploring the sensitivities of input parameters. Although both 

uncertainty assessment and sensitivity analysis closely resemble, the former is focused on 

quantifying the uncertainty in model predictions without considering the source of uncertainty. 

According to (A Saltelli et al., 2008), sensitivity analysis can be defined as the “study of how 

the uncertainty in the output of a model can be apportioned to different sources of uncertainty 

in the model inputs.”   

Sensitivity analysis can be used for different purposes. One of these will be factor prioritization, 

identifying which inputs contribute the most to creating model uncertainties. Secondly, it will 

also help quantify the fractions of contributions of the input parameters to the model 

uncertainty (Andrea Saltelli et al., 2019). Further, sensitivity analysis is used to fix or identify 

which factors have a negligible contribution to the uncertainty of model output and can be fixed 

in the model (Andrea Saltelli & Tarantola, 2002). Therefore, the importance of performing 

sensitivity analysis for numerical models is extensively acknowledged.  

Different techniques have been proposed in several publications for the previously mentioned 

concept of sensitivity analysis. Based on the formulation and application, two different 

categories of methods can be identified for performing sensitivity analysis, namely local and 

global. The local techniques consider the partial derivatives at a single point of the input 

parameter space. Therefore, these local methods give only limited information about the 

sensitivity of input parameters on output. Typically, these methods consider the changes in 

model outputs when the input parameters vary about a reference value or an optimal input 

parameter set (Pianosi et al., 2016). Because of that, these methods will not yield an exploration 

of the rest of the input parameter space. The local techniques are often referred to as single 

point One-At-a-Time (OAT) methods. One-at-a-time sensitivity analysis is the most 

fundamental method with partial differentiation. Here the input parameter values are varied 

one at a time while keeping the other parameter values constant. However, (Andrea Saltelli & 

Annoni, 2010) pointed out that these single-point OAT methods are inadequate for a complete 

analysis of models unless the model is linear. 

In contrast to the local methods, global methods do not consider an initial set of input parameter 

values and contemplate the entire parameter space. Instead, global methods focus on the effects 

on output when the inputs are varied globally. Variance-based methods are one such global 

technique focusing on the variance of model output and how the input variability influences 

the output variability. In global sensitivity analysis, the global effect of the parameters on 

outputs is analyzed where the parameter interactions are also considered. Therefore, global 

sensitivity analysis is used for a comprehensive study of sensitivity and the interactions among 

input parameters of a particular model, rather than concentrating on a single input at a time. 

Since the local methods estimate the sensitivities by directly calculating the partial derivatives, 

these methods are simple to calculate. Therefore, these are best suited for the preliminary 

screening of complex models with high computation times. However, the local techniques only 

consider small perturbations around a nominal value (for example, the mean of the variables) 

at one reference point from the possible input parameter space. Hence the sensitivity measure 

will depend on the position, where the derivatives are calculated and will not represent the 

whole parameter space. This acts as a limitation for using local methods in sensitivity analysis 

in complex numerical models, which are generally non-linear. 
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2.1. Sensitivity Analysis techniques 

As discussed in the introduction, several methods are used to perform the sensitivity analysis 

for a particular numerical model. Generally, sensitivity analysis techniques can be classified as 

local and global. The local techniques assume that all the input factors are equally important 

and do not consider the outputs' variance (Saltelli A et al., 2008). According to (Hall et al., 

2009), the global methods have the ability to reflect the nonlinear effects and the effects due to 

interactions among input parameters. However, global methods require high computation 

demand compared to the local sensitivity analysis techniques as the required number of model 

evaluations increases with the number of input factors. The sensitivity analysis techniques 

which are used frequently are further described below.  

2.1.1. Morris screening method 

The Morris method named the Elementary Effects method is a ‘one at a time’(OAT) design, 

where all the input parameters are evaluated, exploring the possible parameter range. This 

method aims to rank the inputs according to their significance by evaluating their average effect 

on output. The elementary effect method can be suggested as a feasible method for analyzing 

input factor sensitivities, considering the hydrodynamic models' complexity and non-linearity.  

In many publications (Saltelli et al., 2008; Campolongo and Saltelli, 1997; Ruano et al., 2011, 

Morio, 2011), the vast applicability of the Elementary Effects method has been highlighted. 

The method is recommended as a preliminary screening method to eliminate non-significant 

parameters and rank the parameters according to the significance. The Elementary Effect 

method has gained attention due to its computational efficiency and adaptability. The method 

is a one-at-a-time method designed by (Morris, 1991) to identify the non-influential parameters 

and rank the parameters according to significance. Morris method is sometimes mentioned as 

a global method in some literature (A Saltelli et al., 2000; Shin et al., 2013), as it considers the 

whole input parameter space. Although it takes the elementary effects (dj) like the partial 

derivatives, as in local methods, the method averages the local effects computed at different 

input locations. The final sensitivity measure is considered to be these averages of elementary 

effects. 

For a given input vector with N number of input parameters, X = (x1, x2, ..xj,.. xN); the 

elementary effect of jth input parameter on the output y can be expressed as; 

𝑑𝑗 =
𝑦(𝑥1, 𝑥2, … , 𝑥𝑗+𝛥, 𝑥𝑗+1, … , 𝑥𝑁) − 𝑦(𝑥1, 𝑥2, … , 𝑥𝑗 , 𝑥𝑗+1, … , 𝑥𝑁)

𝛥
 2. 1 

 

where  𝑥𝑗 is scaled to [0,1] and discretized to p number of levels. Δ is the Morris step and 

defined by 

 

𝛥 =  
𝑠

(𝑝−1)
;      𝑠 ∈ {1,2, … ,1 − 𝑝} 

 

Here, Δ is a predetermined multiple of 1/(p-1).  

 

Sensitivities of the input parameters can be identify using the following measures. The mean, 

absolute mean, and the standard deviation of elementary effects for jth input parameter can be 

defined as: 
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µ𝑗 𝑗
=

1

𝑟
∑𝑑𝑗

(𝑖)

𝑟

𝑖=1

, µ𝑗
∗

𝑗

=
1

𝑟
∑|𝑑𝑗

(𝑖)|

𝑟

𝑖=1

,         𝜎𝑗 = √
1

𝑟 − 1
∗ ∑(𝑑𝑗

𝑖 − 𝜇𝑗)
2

𝑟

𝑖=1

  2. 2 

 

Where r is the optimum number of repetitions. 

Morris method is recommended as a reasonable approximation to variance-based sensitivity 

measures (Andrea Saltelli & Saisana, 2007). This method can be used to:  

• Calculate the optimum repetition number for the elementary effect (EEi) calculations  

The optimum number for repetition of elementary effect calculations (r) needs to be 

determined correctly; otherwise, it may cause Type I (i.e., identifying non-influential 

parameter as an influential parameter) as well as Type II (i.e., failing to identify a significant 

parameter as influential) errors (Ruano et al., 2011). The optimum repetition number will 

be determined by calculating the absolute mean (µ*) and standard deviation (σ) for the 

elementary effects of each input factor, with different repletion numbers (r), until those 

measures for the influential parameters become stable. Considering the absolute mean 

values rather than mean values is essential because the elementary effects can compensate 

each other and yield a wrong idea. One disadvantage of this method is that many repetitions 

will be needed if the model is highly complex and non-linear. The computation cost of the 

Morris method for a model with k number of input parameters that requires an optimum 

repetition number of r will be r*(k+1).  

• Identify the non-influential input factors 

The importance of the input parameters can be evaluated considering the sensitivity 

measures, mean (µ), absolute mean (µ*), and the standard deviation (σ) of elementary 

effects. Campolongo et al. (2007) highlighted the drawbacks of using µ and σ only for 

deciding the significance of inputs when the model has several outputs, and the model 

is non-monotonic. Therefore, the authors proposed to use the absolute mean (µ*) instead 

of the mean (µ), which can solve the issue of falsification of the results due to canceling 

out of the elementary effects with opposing signs. However, one limitation of using 

absolute mean values of elementary effects is losing the information about the direction 

or the sign of the effects.  

The values of µ* and σ will imply the significance and linearity effects of the input 

parameters. Input parameters with smaller values of µ* indicate less impact of the input 

parameter on the output. Therefore, parameters with lesser absolute mean values can 

be eliminated as unimportant (Morio, 2011).  

The criterion suggested by the study of Sarrazin et al. (2016) for choosing a threshold 

for identifying insignificant factors from a set of inputs can be applied here when 

deciding the unimportant input factors.  

• Rank the input parameters  

Parameter ranking will be based on the magnitudes of the elementary effects of each 

input parameter. Parameters can be interpreted into three categories (Morio, 2011), 

considering the above sensitivity measures, 

1. Weaker values of µ* - insignificant input parameters  

2. Stronger values of µ* and weaker values of σ - important inputs with linear 

effects and without interactions with other input parameters 

3. Stronger values of µ* and stronger values of σ - important inputs with non-linear 

effects with or without interactions with other input parameters   
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However, one primary assumption of the classic Morris method is the independence of the 

input parameters, which acts as a limitation of applying for complex numerical models.  

2.1.2. Variance-based method of Sobol’ 

Sobol’ method is a variance-based sensitivity analysis technique that can determine input 

variances' contributions in creating output variances and the input parameter interactions. It 

does not rely on the assumptions about the smoothness of input and output parameter mapping 

(Andrea Saltelli & Saisana, 2007). The Sobol’ method is expensive for models with a high 

number of inputs. The number of Sobol’ indices that need to be calculated will exponentially 

increase with the input dimensions (Morio, 2011). The Sobol’ sensitivity measures are defined 

assuming that the total output variance can be decomposed into main effects due to individual 

inputs and residual effects.   

The first-order sensitivity measures are used to capture the direct impact of the input factors. 

Then, the total effect sensitivity measures are used to capture both direct impacts and the 

impacts due to interactions of the input factors. Total order effects are helpful for the purpose 

of factor fixing. For an input factor Xi to be noninfluential for an output Y, the total order 

sensitivity of Xi needs to be nearly zero; 𝑆𝑇𝑖 ≅ 0 (Saltelli A et al., 2008). Thus, the factor can 

be fixed without affecting the output Y.  

Before applying the variance-based analysis method, it is essential to look at its definition. We 

can assume a function ϕ with p number of input parameters defined in the range of [0, 1]p. The 

input variables are also needed to be defined in the range [0,1]. Thus, the output Y can be 

decomposed to elementary functions of inputs, as shown in 2.3. 

𝑌 = 𝜙(𝑋) = 𝜙0 + ∑𝜙𝑖(𝑋
𝑖)

𝑝

𝑖=1

+ ∑ 𝜙𝑖𝑗

1≤𝑖≤𝑗≤𝑝

(𝑋𝑖 , 𝑋𝑗) + ⋯+ 𝜙1…𝑝(𝑋1, … , 𝑋𝑝) 2.3 

 

Where; 𝜙0 is a constant, and 𝜙 is an integrable function of X. The inputs are random and 

independent, and therefore, applying the variance operator to the equation 2.3 to obtain 

ANOVA decomposition yields; 

𝑉𝑎𝑟(𝑌) = 𝑉𝑎𝑟 = ∑𝑉𝑖

𝑝

𝑖=1

+ ∑ 𝑉𝑖𝑗

1≤𝑖≤𝑗≤𝑝

+ ⋯+ 𝑉1…𝑝 2.4 

Applying the Var operator, first, second and kth order partial variances can be defined as; 

First-order  𝑉𝑖 = 𝑉𝑎𝑟(𝐸(𝑌|𝑋𝑖)) 

Second-order  𝑉𝑖𝑗 = 𝑉𝑎𝑟 (𝐸(𝑌|𝑋𝑖, 𝑋𝑗)) − 𝑉𝑖 − 𝑉𝑗 

kth order  𝑉𝑖𝑗..𝑘 = 𝑉𝑎𝑟 (𝐸(𝑌|𝑋𝑖 , 𝑋𝑗, … , 𝑋𝑘)) − 𝑉𝑖 − 𝑉𝑗 …− 𝑉𝑘 

 

The first-order sensitivity index is defined as the partial contribution of each input parameter 

to the output variance, and the first-order sensitivity index (FSI) for an input variable Xi can be 

calculated by; 
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𝑆𝑖 =
𝑉𝑥𝑖

(𝐸𝑥~𝑖
(𝑌|𝑋𝑖))

𝑉(𝑌)
 2.5 

 

Where Xi is the ith parameter, and X~I indicates the input vector with all parameters except Xi. 

The inner expectation operator denotes the mean of Y, the scalar objective function values 

considered over all possible values of X~i. where Xi is fixed. The 𝑉𝑥𝑖
 Indicates the variance over 

all possible Xi. 

Total order sensitivity index (TSI) is defined as; 

𝑆𝑇𝑖 =
𝐸𝑥~𝑖

(𝑉𝑥𝑖
(𝑌|𝑋~𝑖))

𝑉(𝑌)
= 1 − 

𝑉𝑥~𝑖
(𝐸𝑥𝑖

(𝑌|𝑋~𝑖))

𝑉(𝑌)
 2.6 

The Sobol’ index is always in the range [0 1], and the sum of all Sobol’ indices should equal 

to 1. 

∑𝑆𝑖 

𝑘

𝑖=1

+ ∑𝑆𝑖𝑗

𝑘

𝑖<𝑗

+ ⋯+ 𝑆12…𝑘 = 1 𝟐. 7 

 

In a review of settings and methods for global sensitivity analysis, (Andrea Saltelli & Saisana, 

2007) have pointed out that the variance-based techniques give the most complete and general 

pattern of sensitivity analysis for the models which have a modest amount of running time (for 

example up to the order of one minute per run) and do not exceed about 20 input parameters.  

2.1.3. Linear regression coefficients  

Linear regression coefficients (r) are an adequate and straightforward method to estimate input 

parameter sensitivities to the output, especially for linear models. The main advantages of this 

method are its simplicity and having a low computational cost with respect to the previously 

mentioned OAT and variance-based methods. The method is applied by fitting the data and 

model result into a linear regression model in the form  

𝑦𝑖 = 𝑏𝑜 + ∑𝑏𝑧𝑗𝑧𝑗
𝑖

𝑟

𝑗=1

 2.8 

The coefficients 𝑏𝑜 and 𝑏𝑧𝑗 are determined using a least-square error of the differences of 

outputs calculated by the regression model and the actual output. These regression coefficients 

will give an indication of the sensitivities of output with respect to each input parameter. 

Having a larger 𝑏𝑧  implies that the particular input factor is more sensitive to the output 

parameter. Nevertheless, the method can be used only for linear models. Further, linear 

regression coefficients cannot be used if the inputs have dependencies on each other.   

2.1.4. Standardized regression coefficients  

Standardized regression coefficients (βz,j ) are identified as a cheaper alternative for the 

variance-based methods. However, the method is effective only for linear or quasi-linear 

models, with higher regression coefficients (i.e., for example, R2 > 0.7) (Saltelli and Saisana, 

(2007).  

The standardized regression coefficients are defined as; 
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β̂xi = b̂xi

σxi

σy
 ;  (i = 1,2,3…r) 2.8 

Where bxi is the regression coefficient for the ith parameter. Using the standardized regression 

coefficient method is more popular than just using the regression coefficients. 

2.1.5. Random balance designs (RBD) method  

The method is suitable for calculating only the first-order sensitivity indices. The advantage of 

the RBD method is that it has a low computational cost as it is a dimension-independent 

method, and the computation cost is equal to the sample size. The input points will be selected 

covering a sub-set of input parameter space, taking random permutations of the points' 

coordinate and generating a set of scrambled points over the input space. The outputs are 

calculated for each design point (S. Tarantola et al., 2006). Since the sensitivity analysis is 

based on the setting, if the purpose is to prioritize the factors, this method will be helpful in 

such cases (Andrea Saltelli & Saisana, 2007). 

Hence, the global sensitivity analysis methods enable more details about the importance of 

input parameters, linearities, and interactions among input parameters than the local analysis 

methods. However, local methods are preferred over global methods if the model consumes a 

considerable computation time and has many input factors (Morio, 2011). The information 

about the methods discussed above is summarized in Table 2.1.1. 

Table 2.1.1 Summary of advantages and disadvantages of different sensitivity analysis 

techniques 

SA technique Advantages Disadvantages 

Morris method 

Efficient screening method 

Better approximation to global 

sensitivity analysis methods 

Does not consider the 

parameter dependencies 

 

Sobol’ method 

A quantitative analysis method 

for variance decomposition 

Input parameter interactions are 

considered. 

Model independence – method 

can be applied to any model 

(Stefano Tarantola et al., 2012) 

High computational demand 

due to the requirement of a 

high number of models 

Random balance design 

method 

Dimension independent method 

& low computational demand 

Parameter dependencies are 

not considered 

Standardized regression 

coefficients 

Cheap alternative for variance-

based methods 

Only suitable for linear or 

quasi-linear models 

Linear regression 

coefficient  

Dimension independent method 

& low computational demand 

Only suitable for linear 

models with high regression 

coefficients 
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2.2. Sampling methods for sensitivity analysis  

The first step of applying sensitivity analysis techniques is generating the input samples 

according to the selected analysis method. Therefore, the possible sampling techniques will be 

briefly discussed in this section.  

There are several sampling techniques defined in the literature (Andres, 1997; Kucherenko et 

al., 2012b; Morris, 1991; Saltelli A et al., 2008; Andrea Saltelli et al., 2010; Sobol’, 2001) for 

generating the input samples to apply the sensitivity analysis into the numerical models. Here 

we have focused on few sampling techniques commonly used in SA.  

2.2.1. One-Factor-At-a-Time (O-A-T) sampling 

The basic idea of this sampling method is to create samples where the input parameter values 

of each sample are generated by changing the value of only one parameter at a time (Saltelli A 

et al., 2008). This sampling scheme can be represented in the matrix form as follows. 

[
 
 
 
 
1 0 0 . . 0
1 1 0 . . 0
1 1 1 . . 0
. . . . . . . . . .
1 1 1 . . 1]

 
 
 
 

(

 
 

𝑏0

𝑏1

. .

. .
𝑏𝑘)

 
 

 = 

(

 
 

𝑦1

𝑦2

. .

. .
𝑦𝑘)

 
 

 

Each parameter will have either 0 or 1 as the values, and only one parameter has changed 

between consecutive samples. When the above equation is simplified by applying a row 

operation to subtract the values from each row from the row below, it will yield   

[
 
 
 
 
1 0 0 . . 0
0 1 0 . . 0
0 0 1 . . 0
. . . . . . . . . .
0 0 0 . . 1]

 
 
 
 

(

 
 

𝑏0

𝑏1

. .

. .
𝑏𝑘)

 
 

 = 

(

 
 

𝑦1

𝑦2−  𝑦1

. .

. .
𝑦𝑘 − 𝑦𝑘−1)

 
 

 

Therefore, each value of the output matric (𝑦𝑖+1−  𝑦𝑖) corresponds to a change in one input 

parameter. The above example shows parameters only with two distinct values (0 and 1) where 

the parameter can change in smaller values to create more samples. The change of input 

parameters from one sample to the next can be done in any order. However, the order of change 

needs to be recorded for analyzing the effect of each perturbation on the output. If the parameter 

changing order is randomly chosen, the parameter change corresponds to a random walk along 

the surface of a hypercube from one corner to another. This concept is gematrically represented 

by (Ţene et al., 2018), as shown in Figure 2.2.1. 
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(a) (b) 

Figure 2.2.1 Geometric representation of elementary paths for samples (k = 3, p = 3 and s= 1) 

(a) whole grid (b) One cell of the grid (Source: (Ţene et al., 2018)) 

2.2.2. Fractional factorial designs 

Factorial designs are defined as sampling designs with two or more factors, which take only 

two distinct values (0 and 1). A full factorial design is where all the possible samplings are 

considered in the experimental design. If the experiment has k input parameters to be sampled, 

there should be 2k number of samples to generate all the possible combinations. Thus, one 

major disadvantage of this factorial design method is the requirement of a vast number of 

simulations (Saltelli A et al., 2008).  

However, to overcome this issue with the requirement of a large number of simulations, a 

fraction of the full factorial designs can be selected. This selection of a smaller fraction of the 

full factorial design is called the fractional factorial design.   

2.2.3. Latin Hypercube sampling  

In the Latin Hypercube sampling, a fraction of s-level full factorial designs is selected so that 

the sample represents valuable properties. The main objective of the Latin Hypercube Sampling 

is that each parameter is discretized into s>2 levels, and each level has the same number of 

points. The generation of these samples is done by generating values from 0 to s-1 and 

randomizing the columns separately. For example, Table 2.2.1 shows a Latin Hypercube 

Sample with three input parameters, with three levels and each parameter having two samples 

at each level. These randomized designs are generated by storing the values from 0 to 2 (i.e., 

s-1) in each column and randomizing them separately.  

 Table 2.2.1 Example of Latin Hypercube design for three parameters, with three levels and 

six simulations  

X1 X2 X3 

0 1 2 

1 2 0 

2 0 1 
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1 2 0 

2 0 1 

0 1 2 

  

In this sampling method, it assumes the model has k number of input parameters, and the input 

vector is defined as Xr = {X1, X2, …, Xk}. Further, it assumes that the Xr is uniformly distributed 

over its domain, and all the parameters in Xr are statistically independent, where any 

combination of input parameters Xr is equally likely. Therefore, k sample points are defined in 

the k dimensional parameter space, uniformly distributed over the k-dimensional space (Saltelli 

A et al., 2008). The parameter space would be a k-dimensional hypercube. Suppose the number 

of samples (N) is much larger than the number of input parameters (k). In that case, the 

randomized Latin Hypercube sampling (LHS) designs will be more effective in determining 

the effect of each input parameter on the output (Saltelli A et al., 2008). Nonetheless, if the size 

of N is smaller than k, there will not be enough sampling points to compute the individual 

effects of the input parameter changes on the output.  

2.2.4. Multivariate stratified sampling 

In multivariate stratified sampling, the parameter space is divided into non-overlapping 

regions, and sampling points are selected from each region. The primary purpose of this 

sampling method is to guarantee that the sampling points represent the whole parameter space.  

 

Figure 2.2.2 Geometric representation of stratified sampling from bisected domains of one 

parameter (top), 2 parameters (left), and 3 parameters (right) (Source: Saltelli A et al. (2008)). 

Therefore, the sampling space for k number of parameters will be a k-dimensional hypercube.  

2.2.5. Monte Carlo and quasi-Monte Carlo sampling 

The Monte Carlo sampling is used to generate random samples from a probability distribution 

in such a way that the samples will approximate the actual distribution. This Monte Carlo 

method uses a pseudo-random sequence (Saltelli A et al., 2008). The limitation of pseudo-

random sequences is the clumping of points and having spaces with no sampling points. In 

simple terms: the uniformity of the distribution of sample points is less in the pseudo-random 
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sampling method. This clumping happens due to the independence of the generation of 

sampling points, as all the points are randomly generated without considering the other points. 

In the quasi-Monte Carlo approach, the sampling is done with quasi-random sequences where 

the correlations between the points are considered to eliminate the clumping of the generated 

random points (Caflisch, 1998). The method is designed considering the uniformity of the 

sample points. Therefore, it estimates the uniformity measure for the sample in terms of the 

discrepancy of the sequence of points. The difference in the samples generated by these two 

approaches are shown in Figure 2.2.3 (a) and (b).   

 

(a) (b) 

Figure 2.2.3 Two-dimensional projection of (a) pseudo-random sequence and a (b) quasi-

random sequence (Source:(Caflisch, 1998)). 

 

2.3. Applications of different SA techniques 

These sensitivity analysis techniques are being used for evaluating the input-output interactions 

in models in many fields such as engineering, economic and environmental. (Ruano et al., 

2011) experimented on the application of Morris method, which is mentioned in section 2.1.1, 

for screening the influential parameters of fuzzy controllers applied to a wastewater treatment 

plant. Although the technique has some drawbacks, such as high computational cost and 

inability to measure input parameters' dependencies, Morris method is considered a good 

approximation of a global sensitivity measure. It has overcome local methods whose results 

are valid only locally.  

To overcome the limitation of the inability to measure the dependency information in Morris 

method, (Ţene et al., 2018) introduced a copula-based sensitivity analysis method to 

incorporate the dependency information among input parameters into the sampling strategy. 

The number of model runs was then decided using the algorithm Latin Hypercube Samples 

with Dependence (LHSD), proposed by Packham and Schmidt (2008). Finally, Tene et al. 

(2018) performed a sensitivity analysis for a computationally expensive Delft3D WAQ 

sediment transport model to test the applicability of the proposed copula-based Morris method. 

A copula cab is understood as a joint distribution defined on the n-dimensional unit hypercube, 

with uniform marginal distribution (Nelson, 2007). Thus, this extended method can separate 

the influence of marginal distributions and parameter dependencies (Ţene et al., 2018). 
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To identify the sensitive parameters in surface water quality models, Huang & Liu (2008) 

introduced a hybrid approach that integrates the parameter perturbation method and Morris 

method. A total of 96 input parameters were considered for the analysis. Initially, the parameter 

perturbation method, a local sensitivity analysis technique, was applied to eliminate the 

insignificant parameters from the total parameter pool. The required number of model 

evaluations in the parameter perturbation method is lesser than those needed in the Morris 

method. Hence, the method is simple to implement and computationally more economical than 

the Morris method (Huang & Liu, 2008).  Then the Morris method was used in ranking the 

remaining 51 sensitive parameters, which were screened using the parameter perturbation 

method according to their sensitivities and relative importance. Although the introduced 

method can determine the order of significance of the input parameters, it lacks the quantitative 

measure of input parameter interactions.  

The variance-based sensitivity analysis method briefly discussed in section 2.1.2 (will be 

discussed in more detail in Chapter 4) is a global sensitivity analysis technique where the 

sensitivities of input parameters are considered over the whole parameter range rather than 

considering the local effect of one parameter. These variance-based methods are being used 

(Archer et al., 1997; Chen et al., 2018; da Veiga, 2015; G. Li et al., 2010) for obtaining a more 

detailed analysis of the sensitivities of the model outputs. These methods are designed to 

decompose the variance of a particular model's outputs and attribute those to the input 

variances. (Chen et al., 2018) applied variance decomposition method for sensitivity analysis 

of 1D and 2D hydraulic models developed to simulate branched urban flood flows. The authors 

have quantified the sensitivities of two selected outputs, including simulated water height and 

the discharge repartition in a branched network, to some selected input parameters of the 1D 

and 2D shallow-water models. 

Further, the study illustrates the pattern of spatial variation of the input parameter sensitivities. 

The research has presented a quantification of non-linearities of the complex flow patterns and 

dependencies of the input parameters using Sobol’ indices. They have recommended using the 

results and findings of this study in future work related to the uncertainty propagation of 

hydrological models.     

Although the variance-based sensitivity analysis methods can determine the effect of input 

parameters on output variance, it has limitations in providing a complete picture of the output 

distributions. Veiga (2015) introduced a new class of sensitivity indices that considers the 

dependence measures and extended those indices using the other dependence measures such as 

distance correlation and Hilbert-Schmidt independence criterion. Further, da Veiga, (2015) 

pointed out that those dependence measures will be an alternative to the screening methods, 

especially for models with high dimensions, as the indices are robust to dimensionality and 

have low computational costs. Therefore, the method is a powerful tool for global sensitivity 

analysis.  Cosenza et al. (2013) applied three global sensitivity analysis methods to select 

significant input factors and eliminate non-influential factors of a complex integrated 

membrane bioreactor (MBR) model in a wastewater treatment system. The performance of 

three methods (standard regression coefficients, Morris screening, and extended-Fourier 

analysis Sensitivity Test (FAST) method) was analyzed by taking the most reliable method 

(extended-FAST) as a reference. The comparison of methods was carried out by considering 

the similarity of sensitivity indices compared to a reference method, the similarity of ranking, 

identification of the non-influential inputs, the ability of the method to determine the interaction 

among input factors, and the method’s ability to provide the result within a reasonable time 

(Cosenza et al., 2013). 

Glen & Isaacs (2012) discussed a new notation for Sobol’ indices regarding Pearson correlation 
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of outputs and introduced a simple correlation-based numerical approach to include a 

correction term for removing spurious correlations. Additionally, different estimation 

techniques were compared for accuracy and precision. The advantages of this method are 

providing a reasonable estimate for first-order and total effect indices, easiness of 

implementation, and suitability for complicated stochastic models (Glen & Isaacs, 2012). 

Kucherenko et al. (2012) suggested a novel approach for estimating variance-based sensitivity 

indices for models with dependent variables. In the study, a copula-based sampling technique 

was used for sampling probability distributions. Subsequently, the formulas and Monte Carlo 

estimates were derived for analyzing the relative importance and correlations of inputs. For 

comparison and testing of the derived formulas, three test functions were used. Analytical 

solutions were obtained for two of them and observed a good agreement with the numerical 

results. Furthermore, the authors Kucherenko et al. (2012) concluded that the convergence rate 

of the proposed approach is much higher than the brute force method. They concluded that the 

technique is efficient and general to use in numerical models to estimate variance-based 

sensitivities  

Considering the lack of guidance to assist the users of sensitivity analysis in choosing the 

sample size and threshold for identifying insignificant factors from a set of inputs, Sarrazin et 

al. (2016) proposed a criterion to select the sample size and screening threshold based on a 

bootstrap approach. The methodology was applied to three hydrological models with different 

complexities, utilizing three global sensitivity analysis methods (Regional Sensitivity Analysis, 

Morris method, and Sobol’ method). Moreover, the screening thresholds were validated using 

a quantitative validation procedure. As a result, the method is highlighted as a suitable approach 

for a wide range of Global Sensitivity Analysis methods and cases (Sarrazin et al., 2016).  

Bellos et al. (2020) applied SA using the Morris method to determine the significant parameters 

of a 2D hydrodynamic model to reconstruct a flash flood event. Sensitivity analysis was used 

before analyzing the uncertainties of model output created due to uncertainties of two estimated 

input parameters identified through the SA. To reduce the calibration efforts of hydrodynamic 

models, Y. Li et al. (2015) studied the parametric uncertainties of hydrodynamic processes of 

shallow lakes and recommended that the uncertainties of boundary conditions (wind fields, 

flow boundaries) should be considered in future studies.  

Campolongo & Saltelli (1997) have compared sensitivity tests on an environmental model 

(GMSK) using different analysis techniques, including the Morris method, variance-based 

Sobol’ method, and standardized regression coefficients. Further, in this study, authors have 

highlighted the importance of using bootstrapping to estimate the empirical confidence bounds 

of the sensitivity indices calculated in the Morris method. Considering the physical meaning 

of these indices calculated by the Morris and Sobol’ methods, Campolongo & Saltelli (1997) 

have suggested possible correlations between Morris mean (µ*) and the total-order index (STi) 

calculated by the Sobol’ method.  
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Chapter 3: Case Study – German Pilot 
UNITED is one of the current Horizon 2020 projects of the European Union, designed to 

demonstrate the feasibility of the multi-use of offshore platforms and marine space. The project 

concerns different sectors, including renewable energy, aquaculture, ecology, and tourism. 

UNITED project is designed under five pillars to check the viability of these multi-use 

solutions. These five pillars are technological, environmental, economic, societal, and legal-

policy-safety pillars. The German pilot of the UNITED project was selected as the study area 

in this research. This pilot project is designed to check the viability of offshore cultivation of 

Seaweed and Blue mussels, combined with existing offshore wind farms. In this pilot project, 

the design conditions and challenges in the operations are going to be studied, simulating the 

marine environment of the North Sea. Therefore, a North Sea hydrodynamic model will be 

used as a tool for decision-making in the design and operation of these aquaculture activities.  

The pilot project will be installed in the FINO 3 research platform, which is located 80km west 

of Sylt island near the North German coast. The location is shown in Figure 3.1.1.  

 

Figure 3.1. 1 Location of German pilot - FINO3 Research platform (Source: (Research 

Project: Multi-Use Offshore Platforms, 2021) 
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3.1. Key aspects of the German pilot 

The key aspect of the German pilot is to demonstrate the technological, environmental, and 

financial feasibility of offshore cultivation of Seaweed and Blue mussel longlines. Currently, 

in most cases, these Blue mussel and Seaweed farms are established nearshore or inshore 

environments due to the technological requirements for offshore sites. Nevertheless, there are 

several drawbacks and problems faced by the marine environment because of these nearshore 

farms. The main problem is the navigation difficulties for the marine vessels. The nutrient 

depletion on account of the Blue mussel and Seaweed farms can harm the other marine species 

in those areas. Other than that, the psuedofaeces and the marine litter generated by the mussels 

will alter the benthic environment under these mussel farms. As a consequence of these factors, 

mussel farming and Seaweed cultivation strive for offshore cultivation (Landmann et al., 2019).  

Therefore, it is crucial to identify the favorable conditions for those aspects and the significant 

environmental variables that will affect Seaweed and Blue mussel cultivation effectiveness. 

For example, in the offshore environments, these Blue mussel and Seaweeds have to bear the 

high energy acting on them as high currents and waves. Therefore, after identifying the 

parameters which affect the Blue mussel and Seaweed farming, the sensitivity analysis was 

focused on the identified output parameters. The purpose here was to calibrate the 

hydrodynamic model for these parameters to predict those outputs from the model with 

minimum uncertainties. Thus, this specific project will benefit as a decision-making tool for 

planning and operating the Blue mussel and Seaweed cultivation.    

Output parameters were selected by considering which parameters will mainly affect the 

offshore cultivation of 

• Blue mussel (Mytilus edulis) using longlines and 

• Seaweed (Saccharina Latissima) using longlines 

 

3.1.1. Blue mussel longlines 

The longline technique will be used in the cultivation of Blue mussel and Seaweeds in the 

offshore platform. In offshore Blue mussel farming, these lines are submerged to a few meters 

depth and moored to the sea bed. The purpose of submerging the longlines to a certain depth 

from the sea surface is to avoid the disturbances caused by the waves, rough weather conditions 

of the sea surface. The mooring system supports the submergence of these longlines. As shown 

in figure 3.1.2, these mussels are attached to the ropes until harvest time. However, in the early 

growth stages of the mussels, these ropes are housed in ‘protection socks,’ which will 

disintegrate within a short period of growth (Mizuta & Wikfors, 2019).  

 



 

20 | P a g e  

 

 

Figure 3.1.2 Schematic of an offshore mussel longline (Source: Mizuta & Wikfors, 2019) 

 

Figure 3.1.3 A design of an offshore longline structure (Source: Forschungs- und 

Entwicklungszentrum Kiel. (2021)) 

In deciding the suitability of an offshore mussel farm, different factors in the marine 

environment need to be considered. According to the literature (Lachance-Bernard et al., 2010; 

Mizuta & Wikfors, 2019; Waldeck & Larsson, 2013; Westerbom et al., 2002), the most 

important factors are temperature, chlorophyll concentration, salinity, and current speed. The 
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selected factors for the analysis and the reasons for choosing each one will be described in 

Chapter 5. 

3.1.2. Seaweed farming  

The considered Seaweed species Saccharina Latissima, commonly known as sugar kelp, 

belongs to the brown microalgae. This species prefers low light intensities and cold 

temperatures (Bikker et al., 2016). Further, in designing the Seaweed farms, it needs to pay 

attention to the flow conditions of the area, primarily to provide sufficient nutrients to the algae. 

In this project, the cultivation of Seaweed will be done using longlines. Figure 3.1.4 shows an 

example of longline structures used to cultivate sugar kelp (Saccharina Latissima) in an 

offshore environment.   

 

 

Figure 3.1.4 Longline rope culture for open sea cultivation of Saccharina Latissima (Source: 

Peteiro et al., 2014) 

3.2. Physical characteristics of the North Sea 

The North Sea can be identified as one of the most utilized and investigated seas globally with 

long records in maritime history. Densely populated and developed industrial countries 

surround it. The North Sea is connected to the North Atlantic Ocean from North and through 

the English Channel and to the Baltic Sea from East.  

3.2.1. Bathymetry 

The North Sea is considered a shallow shelf sea where the average depth is about 80m. The 

maximum depth of the North Sea is observed in the Norwegian trench with a depth of around 

800m (Sündermann & Pohlmann, 2011).  
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Figure 3.2.1 North Sea bathymetry (Data source: (Pätsch et al., 2017)) 

 

When looking at the North Sea bathymetry, it is observable that water depth increases from 

South to the North and from East to West.  

3.2.2. Impact of atmospheric forcing 

The atmospheric forces play an essential role in the general circulation patterns of the North 

Sea. The wind forcing drives the sea waves, and the storms can create the storm surge with 

dangerous effects. Other than that, the atmosphere affects the heat budget of the North Sea. 

Generally, the thermal stratification is primarily observed in the Northern and Central parts of 

the North Sea from early summer until the early autumn (Sündermann & Pohlmann, 2011). 

However, the Southern North Sea experiences strong tidal mixing, which avoids the thermal 

stratification in the Southern coastal areas. 

Further, the salinity levels of the North Sea are affected by the continental discharges, which 

brings the precipitation received by the Northwest European shelf. The North Sea has a total 

catchment area of around 840,000 km2, contributing about 300 – 350 km³ of discharge annually 

(Ducrotoy et al., 2000). The primary freshwater discharge to the North Sea is from the Rhine 

river and meltwater from the Scandinavian countries. These freshwater inflows mainly drive 

the salinity variations. 

Consequently, these salinity variations cause density differences in seawater. Therefore, the 

vertical density distributions are observed near these river mouths with very high outflows and 

with shallow water depths. The annual discharges experienced by the North Sea are shown in 

Table 3.2.1. 
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Table 3.2.1 Freshwater discharges to the North Sea (Source: (Ducrotoy et al., 2000)) 

  

3.2.3. Interaction with the Atlantic Ocean 

The North Sea has a broad opening to the Atlantic Ocean from the North and a narrow opening 

through the English Channel. Therefore, the mass, energy, and momentum exchange between 

the two oceans are observed. The waves generated by the atmospheric and tidal forces enter 

the North Sea from these boundaries and support the mass and momentum transport from the 

Atlantic Ocean.  

3.2.4. Impact of astronomical tides 

Astronomical tides have a significant effect on the dynamics of the North Sea. However, 

according to the literature (Sündermann & Pohlmann, 2011), the North Sea is not large enough 

to experience the direct tidal impact and is influenced by the co-oscillations with the tidal waves 

of the Atlantic Ocean. The tidal currents can reach up to a few dm/s, and it is mentioned that 

the tidal currents are dominant than the other flows in this region. The spring and neap tides 

are caused due to the superposition of semi-diurnal lunar and solar tides.   

 

3.3. Hydrodynamic model of North Sea 

Delft 3D flexible mesh model suite was used for modeling the North Sea. Dutch Continental 

shelf model (DCSM) is a 3D hydrodynamic model developed for the Northwest European 

continental shelf and was used in this research to simulate North Sea hydrodynamics. The 

details of this model given in the following sections are mainly obtained referring to the model 

setup of DCSM and the technical report of Development of 3D DCSM-FM by (Zijl et al., 

2021). 

The extent of the Dutch Continental Shelf Model is from 15°W to 13°E in the West-East 

direction and 43°N to 64°N in the North-South direction. The DCSM model has been validated 

against measured sea surface temperature, sea surface salinity, and seasonal temperature 

stratification in the central North Sea. Further, simulated residual transport through the English 

Channel has also been validated and confirmed to be in the realistic range (Zijl et al., 2021). 

However, the purpose of this study is to identify the significant input parameters for calibrating 

this model for the area of interest (i.e., the FINO3 research platform).  
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• Grid size 

The horizontal grid size of the model used in this study has a resolution of 4 Nautical miles 

(4nm). The DCSM model has been developed with two grid resolutions where the coarser 

grid is with 4nm resolution, and a 0.5nm resolution has been used in the finer grid. The 

intention of using a coarser grid is to reduce the computation time of the model by reducing 

the restrictions on the computation time step, where coarser grids will allow a larger time 

step and subsequently reduce the computation time.  

Vertical grid schematization is done by dividing the total water depth into several layers 

with the same height. This method is called the z-layer approach. Although the layer 

thickness is independent of the water depth at a specific location, the number of z-layers 

depends on the bathymetry. Altogether, 20 z-layers have been used for vertical 

schematization in the model. Using z-layers will allow the opportunity to extract the model 

results at the same depth by selecting a specific z-layer at any location.  

An image of the grid used in DCSM is shown in Annex IV of this report.   

 

• Numerical time step 

The maximum time step is 120s, and the minimum computation time step is limited based 

on Courant criteria. The initial time step has been set to 60s. A maximum Courant number 

is given as 0.7. The model automatically adjusts the time step concerning the Courant 

criteria, depending on the grid size and velocity. Therefore, when the network has small 

flow links and high velocities, the model changes the computation time step to a smaller 

value to satisfy the Courant criteria.     
 

• Bathymetry 

Model bathymetry has been generated using the gridded bathymetric data set (October 2016 

version) of the European Marine Observation and Data Network (EMODnet). The gridded 

data of EMODnet has a resolution of 1/8’×1/8’which is approximately 160m×230m. The 

reference level for the EMODnet bathymetric data is the Lowest Astronomical Tide (LAT). 

Therefore, the data has been converted to the Mean Sea Level (MSL) reference plane before 

inputting into the model. The bathymetry data are provided on the nodes of the grid 

network, and the interpolation options are specified in the model setup. The bathymetry for 

the model domain is shown in Figure 3.1.2.   
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Figure 3.3.1 Model bathymetry of Dutch Continental Shelf Model (DCSM) in a logarithmic 

scale (water depths relative to MSL) (Source: (Zijl et al., 2021)) 

 

• Boundary conditions 

Water level  

Northern, western, eastern, and southern open boundaries of the model were given as water 

level boundaries. The Eastern boundary is connected to the Baltic Sea, an essential source 

of fresh water supply to the North Sea through the Norwegian trench. These water levels 

have been imposed using astronomical tides.  

 

Temperature and Salinity 

For the lateral boundaries, temperature and salinity boundaries have been given in the 

DCSM. The data for temperature and salinity were obtained from the World Ocean Atlas 

2013 (WOA 2013). This data has a resolution of 0.25° and 107 depth levels. These have 

been interpolated to obtain the temperature and salinities at the required boundary locations 

and the depth levels.  
 

• Meteorological Forcing 

Meteorological forcing is given to the DCSM by coupling to the ECWMF’s ERA5 

reanalysis data set. These data are with a 0.25° spatial resolution and hourly temporal 

resolution.  
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Momentum flux 

Wind speed and air pressure are applied to the model to introduce the momentum flux 

between air and sea surfaces. The wind speed is given at 10m height, and the air pressure 

at the surface (at the mean sea level).     

 

Heat flux 

Temperature variations in the seawater can create density differences that can generate the 

horizontal flow of the water mass. This will eventually affect the thermal stratification and 

reduce the vertical mixing.  

The transport of temperature is modeled in the DCSM by introducing a heat flux model. 

Here the main components of the heat budget are included as  

▪ Solar (shortwave) radiation,  

▪ atmospheric (longwave) radiation  

▪ heat loss – due to back radiation, evaporation, and convection 

The heat exchange between the air-water interface due to the evaporation and convection 

is calculated using dew point temperature, the local temperature at 2m height, and the wind 

speed from ERA5 data. Net shortwave radiation and longwave radiation have been imposed 

into the model, and the back radiation is being calculated based on the sea surface 

temperature from the model. The solar radiation received to this is distributed over the 

whole domain based on the transparency of the water column. To introduce this into the 

model, a Secchi depth is applied as a constant value of 4m, except at the Wadden Sea, 

where the Secchi depth has been given as 1m.      

 

Mass flux 

Exchange of mass flux between atmosphere and sea is introduced by including the inflows 

due to precipitation and the losses due to evaporation processes.  

 

• Bed roughness 

Sea bed roughness was specified in the model as a spatially varying Manning roughness 

coefficient. These values have been adjusted by calibrating the model to obtain optimal 

water levels. The calibration has been performed using measured data from more than 200 

tide gauge stations.  
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Figure 3.3.2 Variation of Mannings roughness field in DCSM-FM (Source: (Zijl et al., 2021)) 

 

• Observation points 

The selected locations can be specified in the model setup by giving the coordinates of 

those locations as a .xyn file. In this research, six locations were given to the model as 

observation points.  
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Chapter 4: Research Methodology  

The methodology is developed to attain the research objectives by reviewing the literature to 

explore the work already completed for the identified problem associated with the complex 

numerical models. Before selecting the SA method for the hydrodynamic model, the different 

approaches for sensitivity analysis, their applicability for the complex numerical models will 

be discussed. The overview of the research methodology is presented below as a flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. 1 Flowchart of the research methodology 
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4.1. Selection of Sensitivity Analysis Methods 

Considering the required number of model evaluations and the complexity of the models, 

(Iooss et al., n.d.) distinguished between the screening methods and the more precise variance-

based quantitative methods. The screening methods are used to coarsely sort the influential 

input parameters from a more significant number of inputs. The variance decomposition 

methods are used for a more precise quantitative exploration which measures the effect of input 

variations on the output variance over the whole range of input variation (Iooss et al., n.d.). 

Since the required number of model runs for most methods depends on the dimensions or 

number of input factors, an additional class of methods is defined as dimension-independent 

methods. The classification of different sensitivity analysis techniques to their complexities 

and the required number of model runs are shown in Figure 4.1.1  

 

Figure 4.1.2 Coarse classification of main global SA methods in terms of the required number 

of model evaluations and model complexity (Iooss et al., n.d.) 

 

Selection of a method for performing the sensitivity analysis for the developed model is carried 

out considering the applicability of each method's hydrodynamic model and limitations. The 

method of analysis can be selected mainly based on the (a) computational cost of running the 

models in each method, (b) the number of input parameters, (c) features of the hydrodynamic 

model, (d) input parameter dependency and the interactions of the inputs among each other and 

(e) setting for the analysis (Andrea Saltelli & Saisana, 2007). Following methods can be 

proposed for calculating the sensitivities of the hydrodynamic model, considering the literature 

and the above factors. In this methodology section, possible methods have been put forward, 

first to screen the influential parameters and then determine the ranking of significant input 

parameters and check the correlations of these parameters.  

As described by (Andres, 1997) input parameters often have comparatively very little influence 

from most of the parameters. Apart from that, since the complex hydrodynamic models demand 

significant computation resources, the screening process has high importance for minimizing 

the required number of model executions. Therefore, as a preliminary step, a subset of input 

parameters that govern the hydrodynamic processes was selected with the help of expert 

knowledge.   
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4.2. Methods for analysis 

This section describes the selected two methods and the process of application of each method.  

4.2.1. Morris method of Elementary Effects 

 

Steps followed in implementing the classic Morris method for calculating the sensitivities in 

the North Sea hydrodynamic model are listed below. 

1. Selection of the output and input parameters for analysis & plausible ranges for input 

parameters  

The selection was carried out considering the project objectives, referring to the 

literature and expert judgment. The procedure will be discussed in more detail in 

Chapter 5. 

2. Choosing the discretization levels (p), Morris step (𝛥)  and optimum number of 

trajectories (r)  

3. Generating the samples for r number of trajectories 

4. Generate outputs using DCSM model developed with Delft3D FM  

5. Extracting the outputs from the results files, which are in the netCDF4 format 

6. Calculating the elementary effects (EE) for each sample 

7. Calculating sensitivity measures (absolute mean of EE and standard deviation of EE) 

8. Ranking of input parameters based on sensitivity measures 

9. Analysis of sensitivities for the two variables (Temperature and current speed)  

 

In Morris method (Morris, 1991) sampling strategy is selected considering r number of 

trajectories over the input space. As the Morris method is an OAT method, each sample is 

generated by changing one input parameter at a time. The distribution of parameters is assumed 

to be uniform over the parameter space. All the input parameters are first considered in the 

range [0,1] and then transformed to the actual ranges (Campolongo et al., 2007).   

 

• Selection of number of trajectories, discretization levels, and Morris step 

According to the literature (Ţene et al., 2018), increasing the number of discretization levels 

(p) alone does not subsequently increase the accuracy of sensitivity indices unless it is done 

together with an increase in the trajectories (r). Further, having a higher number of 

discretization levels can yield more paths to remain undiscovered. (Campolongo et al., 2007) 

has recommended that using r = 10 and p = 4 levels produces good results in many experiments. 

Further, they demonstrated a convenient choice for the discretization levels (p) and 𝛥 is such 

that p is even and 𝛥 = 𝑝/[2. (𝑝 − 1)]. Therefore, as the initial values for discretization levels, 

Morris step and the number of trajectories were selected as; 

▪ p = 4, 

▪ 𝛥 = 3/2 and  

▪ r = 10  

 

Further, the optimum number of trajectories was found by increasing the r-value and checking 

the stability of sensitivity measures (mean, absolute mean, and standard deviation) of each 

parameter.   

 

• Sampling strategy  

In one-factor-at-a-time (OAT) designs, there should be two sample points to calculate one 

Elementary Effect (EE). If the sensitivities are computed for k input factors, and this will be 
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done for r times, it needs to have 2rk samples in the simplest form. However, Morris (1991) 

suggested an efficient method for sampling designs with fewer samples. In this sampling 

strategy, for a model with k number of selected input parameters, (k+1) model evaluations are 

needed for calculating one elementary effect for each input. To calculate r number of 

elementary effects for each parameter, this must be repeated r times. This will yield a total 

computation cost of r*(k+1) model evaluations. Therefore, r*(k+1) input samples need to be 

generated, each consisting of k input parameters.  

The method considers a hypercube with k dimensions where k equals the number of input 

factors selected for the analysis. Each dimension represents one input factor where the 

parameters are normalized to lie between 0 and 1. This hypercube is then discretized to p 

number of levels with equal intervals. For example, Figure 4.2.1 represents a unit hypercube 

with three dimensions and with four discretization levels.  

 

 
Figure 4.2.1  Representation of a trajectory in the input space with three dimensions and five 

discretization levels (Source:(Saltelli A et al., 2008)) 

 

A total number of possible trajectories for the unit hypercube can be calculated as follows.  

𝑁𝑝𝑎𝑡ℎ𝑠 = 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 ∗ 𝑁𝑜𝑟𝑑𝑒𝑟𝑠/2 4.1 

 

Where; 

𝑁𝑐𝑒𝑙𝑙𝑠 = (𝑝 − 𝑠)𝑘, 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 = 2𝑛, 𝑁𝑜𝑟𝑑𝑒𝑟𝑠 = 2! 
 

Here; k = number of input factors 

      p = discretization levels 

      s = number of grid cells chosen for variation (𝑠 ∈ {1,2, … , (𝑝 − 1)) 

The first step of generating the samples is to generate the trajectories as described below. 

▪ A trajectory will be a matrix(B*) with dimensions (k+1) × k where the rows of the 

matrix are the vectors X1, X2, .. X(k+1) 

▪ To define B*, a lower triangular matrix (B) of 1’s should be defined first, such that; 
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B =  

[
 
 
 
 
0 0 0 … 0
1 0 0 … 0
1 1 0 … 0
1 1 1 … …
1 1 1 … 1]

 
 
 
 

 

▪ The matrix B′ is defined by  

B′ = J(k+1),kx* + ΔB 4.2 

where; J(k+1),k is a (k+1) × k dimension matrix with 1s and x* is a randomly chosen 

base value vector of X. Δ is equal to the Morris step size 

▪ The orientation matrix B* is given by the equation, 

B* = (J(k+1),kx* + (Δ/2)[(2B - J(k+1),k)D* + J(k+1),k ] P* 4.3 

Here, D* is a k dimensional diagonal matrix where each element in the diagonal is 

either +1 or -1 and has equal probability. P* is called the random permutation 

matrix, which means the matrix is obtained by randomly permutating the columns 

of a k×k identity matrix.     

▪ Since r number of trajectories is selected, there should be r number of orientation 

matrices, B*.  

▪ Therefore, the final sampling matrix is derived by repeating this r times 

These parameter samples explained above are generated in the range [0,1]. To convert them to 

the original interval, upper and lower boundaries of the parameter ranges as to be specified. 

Therefore, samples were scaled to their actual ranges before inserting into the hydrodynamic 

model. Input samples generation and inserting those samples into the model were performed 

using Python programming language. This application has been further explained in Chapter 

6.  

 

Simulating the outputs 

The hydrodynamic model outputs for the North Sea were simulated with Dutch Continental 

Shelf Model (DCSM) using the Delft3D Flexible Mesh model suite. The Models were run 

using the Linux cluster utilizing 2 nodes and 4 cores each (model takes 3.07 hours run time on 

a coarser grid). Parallel running was performed to reduce the running time. 

 

 

Extraction of model results 

Two types of output files, spatial outputs, and the time series outputs are created in the D-Flow 

FM model, both in the netCDF format. As the purpose of the research is to investigate mainly 

the variation of values of the outputs from one model run to another, the time series output files 

(his.nc) were selected to extract the output values of each model at few selected locations. 

Extracting the model results was done with the use of Python programing language.   

 

Calculating EE and sensitivity measures 

Elementary effects for each parameter were calculated using equation 2.1 for each trajectory 

separately. This yields a k×r number of elementary effects (EE). As described in Chapter 2, the 

sensitivity measures were defined as the mean, absolute mean, and standard deviation of 

elementary effects. 

   

Ranking of the input parameters based on the significance 

The input parameters were ranked according to their contribution to the output parameter 

sensitivity based on the calculated sensitivity measure. The absolute mean of EE was used as 

the sensitivity measure in ranking. Finally, the most influential inputs were screened by this 
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method.    

This analysis was performed for both temperature and current velocities. Finally, to check the 

spatial variation of the sensitivities, these rakings were obtained for all the selected six 

locations. 

 

4.2.2. Variance based Sobol’ method 

As explained earlier, the purpose of using the variance-based method in this research is to 

prioritize the factors by identifying the input factors which cause the highest fractions of the 

variance in output. Therefore, the Sobol’ method was used to determine the ranks of 

significance and the fraction of total variance causes by each parameter individually or as a 

combination of input parameters.   

As mentioned earlier, one key concern of this Sobol’ method is its high computational cost. 

The computation time for one month of simulation of DCSM with 4nm resolution is 

approximately 3.5 hours using 4cores of computation facilities. The variance-based method 

requires input samples (N) for one parameter in the range of 100 – 10,000. Hence, it is 

challenging to analyze all the selected parameters due to the high computation demand. 

Therefore, it was decided to test the sensitivities of temperature and current velocities for a 

limited number of input factors, screened by the Morris method.   

The variance-based analysis was performed for the two outputs separately after selecting three 

input parameters for temperature and another three parameters for current velocities, 

contributing the most in changing temperature and current velocities in the hydrodynamic 

model. Thus, Sobol’ indices were calculated mainly to determine input variances on the output 

variance and analyze input parameter interactions. 

The steps followed in implementing the variance-based Sobol’ method are listed below.  

1. Selecting the input parameters and their ranges for sensitivity analysis.  

Three input parameters were chosen for temperature, and three inputs were selected for 

current velocities, considering the results of the Morris screening. Input parameter 

ranges were the same as the ones used for Morris method  

 

2. Choosing a distribution for each of the parameters. In this case, parameter distributions 

are assumed as uniform distributions for all three parameters.  

 

3. Create the input samples 

According to (Saltelli A et al., 2008), the best way to compute a complete set of 

sensitivity indices using only the model evaluations is to follow Monte Carlo-based 

simulations. Therefore, the method suggested by (Saltelli A et al., 2008) is adopted in 

this research. The process of sample generation is listed below 

▪ The first step of creating the samples is to define two matrices containing the 

random values within the parameter range of each input parameter, with dimensions 

(N, k). Here k is the number of input parameters, and N is the selected sample size.  
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A =  

[
 
 
 
 
 
𝑥1

1 𝑥2
1 … 𝑥𝑖

1 . . . 𝑥𝑘
1

𝑥1
2 𝑥2

2 … 𝑥𝑖
2 … 𝑥𝑘

1

𝑥1
3 𝑥2

3 … 𝑥𝑖
3 … 𝑥𝑘

3

… … … … … …
𝑥1

𝑁 𝑥2
𝑁 … 𝑥𝑖

𝑁 … 𝑥𝑘
𝑁]
 
 
 
 
 

 

B =  

[
 
 
 
 
 
𝑥(𝑘+1)

1 𝑥(𝑘+2)
1 … 𝑥(𝑘+𝑖)

1 . . . 𝑥2𝑘
1

𝑥(𝑘+1)
2 𝑥(𝑘+2)

2 … 𝑥(𝑘+𝑖)
2 … 𝑥2𝑘

1

𝑥(𝑘+1)
3 𝑥(𝑘+2)

3 … 𝑥(𝑘+𝑖)
3 … 𝑥2𝑘

3

… … … … … …
𝑥(𝑘+1)

𝑁 𝑥(𝑘+2)
𝑁 … 𝑥(𝑘+𝑖)

𝑁 … 𝑥2𝑘
𝑁

]
 
 
 
 
 

 

▪ Then a 3rd matrix C is defined using the same columns from B except for the ith 

column where the ith column of matrix A replaces this. 

Ci =  

[
 
 
 
 
 
𝑥(𝑘+1)

1 𝑥(𝑘+2)
1 … 𝑥𝑖

1 . . . 𝑥2𝑘
1

𝑥(𝑘+1)
2 𝑥(𝑘+2)

2 … 𝑥𝑖
2 … 𝑥2𝑘

1

𝑥(𝑘+1)
3 𝑥(𝑘+2)

3 … 𝑥𝑖
3 … 𝑥2𝑘

3

… … … … … …
𝑥(𝑘+1)

𝑁 𝑥(𝑘+2)
𝑁 … 𝑥𝑖

𝑁 … 𝑥2𝑘
𝑁

]
 
 
 
 
 

 

 

▪ Then the model outputs were computed for all the samples. Since we considered k 

input parameters, the C matrix should be created k times to account for all the input 

factors. Thus, the numbers of model runs required are; 

Corresponding to A – N model runs 

Corresponding to B – N model runs 

Corresponding to C – N×k model runs 

Therefore, N*(k+2) model runs are required for estimating the first order and total 

order sensitivity indices for the model. 

▪  Considering the computation demand, sample size N was chosen as 100 and input 

parameters as k=3. Therefore, 100*(3+2)= 500 input samples were generated using 

the above method.  

▪ As in the previous method, these inputs were generated and inserted into the 

hydrodynamic model using Python programming language. 

     

4. Calculate the outputs for input samples 

The hydrodynamic model outputs for the North Sea were simulated with Dutch 

Continental Shelf Model (DCSM) using the Delft3D Flexible Mesh model suite. 

Models were run using the Linux cluster utilizing 2nodes and 4cores. Parallel running 

was performed to reduce the running time. 

The outputs for each sampling matrix can be denoted as; 
𝑌(𝐴)  =  𝑓(𝐴), 𝑌(𝐵)  =  𝑓(𝐴), 𝑌(𝐶𝑖)  =  𝑓(𝐶𝑖) 

 

5. Calculate the first-order sensitivity indices for each parameter  

According to the definition of first-order sensitivity explained in Chapter 2, for ith input 

parameter, 
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𝑆𝑖 =  
𝑉𝑥𝑖

[𝐸~𝑥𝑖
(𝑌|𝑋𝑖)]

𝑉(𝑌)
=

𝑌(𝐴). 𝑌(𝐶𝑖) − 𝑓0
2

𝑌(𝐴). 𝑌(𝐴) − 𝑓0
2 =

(
1
𝑁

)∑ 𝑌(𝐴)𝑗𝑌(𝐶𝑖)
𝑗 −  𝑓0

2𝑁
𝑗=1

(
1
𝑁

)∑ (𝑌(𝐴)𝑗)2 −  𝑓0
2𝑁

𝑗=1

 4.4 

Where fo is the mean which is calculated by   𝑓0
2 = (

1

𝑁
∑ 𝑌(𝐴)𝑗𝑁

𝑗=1 )2 

 

This calculation will be repeated for i = [1,3] for obtaining the indices for three 

parameters. 

A high value of first-order sensitivity indicates that the input factor is a significant 

factor in changing the output.  

 

6. Compute total sensitivity effects for the three parameters  

The total order sensitivity index for ith input parameter can be estimated as described 

below; 

𝑆𝑇𝑖 = 1 − 
𝑉~𝑥𝑖

[𝐸𝑥𝑖
(𝑌|𝑋~𝑖)]

𝑉(𝑌)
= 1 −

𝑌(𝐵). 𝑌(𝐶𝑖) − 𝑓0
2

𝑌(𝐴). 𝑌(𝐴) − 𝑓0
2 = 1 −

(
1
𝑁

)∑ 𝑌(𝐵)𝑗𝑌(𝐶𝑖)
𝑗 −  𝑓0

2𝑁
𝑗=1

(
1
𝑁

)∑ (𝑌(𝐴)𝑗)2 −  𝑓0
2𝑁

𝑗=1

 4.5 

 

Similarly, this calculation will also be repeated for i=[1,3] for obtaining the indices for 

three parameters. 

 

7. Analysis of the sensitivities 

Rank the input parameter based on the sensitivity indices. As the variance-based 

method gives a quantitative measure on the importance of the input factors, it can be 

used to determine how much interactions an input Xi has with other input factors. For 

estimating this, the difference of the two sensitivity indices (𝑆𝑇𝑖 − 𝑆𝑖) was used in the 

analysis.  

 

4.3. Comparison of the sensitivity results obtained from two 
methods 

Ultimately the results obtained using the two analysis techniques were compared to distinguish 

between the resulting ranks of significance calculated by two methods and to determine the 

correlations between sensitivity indices given by Morris and Sobol’ methods.   

 

4.4. Training on example model 

Before applying the sensitivity analysis methods into the hydrodynamic model (DCSM), an 

example model was used to practice the Delft 3D software and understand the methods for 

application of selected analysis techniques to a hydrodynamic model. Further, this example 

model was used to develop the Python scripts for the sample generation, input the sample to 

the model, and analysis.   
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The ‘Western Scheldt’ model is one of the tutorial examples included with the D-Flow FM 

model suite, and this was used to practice the software and to start developing the Python 

scripts. 

4.5. Selection of locations for the analysis  

Analysis locations were selected in the FINO3 research platform and surrounding area to have 

a complete analysis of the spatial variation of sensitivities of temperature and currents. These 

locations were chosen after considering the existing wind farm locations and the current 

direction in the FINO3 to cover the possible effects due to the waves and currents. The 

measured currents for the FINO3 research platform are available through The Federal Maritime 

and Hydrographic Agency in Germany. Therefore, the current data were plotted for the period 

from 2010 to 2015. The direction of currents in the FINO 3 research platform area was observed 

mainly from the North to East direction at 2m depth and Northwest and Southeast directions at 

higher depths. Therefore, it was decided to choose the points for analysis considering the 

existing wind farm locations and covering the possible current directions to study the spatial 

variations of the output parameters and the variation of sensitivities based on the location.  

 

 

(a) (b) 

Figure 4.5.1 Measured data for currents at FINO3 research platform from 2010 to 2015 

(Source of data: BSH (2021)) 
 

Six points were chosen such that one point is located in the FINO3 platform, and the 

remaining points surround the FINO3 to capture all possible effects of waves and currents 

coming from different directions.   
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Figure 4.5.2 selected locations for the analysis (green color; existing wind farms of the area), 

(Source:(Research Project: Multi-Use Offshore Platforms, 2021)) 

 

The coordinates of selected locations are listed in Table 4.4.1. These locations were input to 

the model set up by inserting them in the observation points file (.obs).  

Table 4.5.1 Selected locations for the analysis 

Observation point Latitude Longitude 

FINO3 54.193037 N 7.162783 E 

P1 53.980188 N 7.255316 E 

P2 54.243168 N 6.824124 E 

P3 54.060740 N 6.890461 E 

P4 54.383571 N 6.917645 E 

P5 54.374132 N 7.372081 E 
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Chapter 5: Selection of Parameters for the Analysis 
As explained in previous chapters, before applying the analysis techniques, a sub-set of input 

parameters was identified referring to the literature and guidance from experts at Deltares. Prior 

to the selection of input parameters, output parameters to focus on were identified considering 

the requirements of the selected case study.   

5.1. Selection of Output parameters for analysis  

Table 5.1.1 includes the critical parameters that need to be considered in designing the offshore 

Blue mussel and Seaweed farms using longline structures. 

Table 5.1.1 Important parameters for Blue mussel longlines and Seaweed farming 

Purpose 
Important 

Parameters 
Description Reference  

Blue 

mussel 

Temperature 

In a study done on offshore mussel aquaculture 

in North East United States (Mizuta & Wikfors, 

2019) stated that temperature is the most 

affecting factor in filtration and clearance rates 

of mussels. 

Also, in longline mussel farming, the ability of 

the byssus to adhere to the rope depends on the 

temperature.  

Temperature affects the body mass loss of Blue 

mussel (for example, the body mass of the Baltic 

Blue mussels was smaller in mild winters than 

the cold winters).  

(Mizuta & 

Wikfors, 2019) 

(Waldeck & 

Larsson, 2013) 

 

Salinity 

Salinity gradient affects the size and biomass of 

Blue mussels. A decline in mean size, biomass, 

and growth rate was observed from the saline 

areas to the less saline regions in a study done in 

the Northern Baltic sea.  

(Westerbom et 

al., 2002) 

Chlorophyll 

concentration  

An important factor as it provides an estimation 

of food availability for the mussels growing.  

(Mizuta & 

Wikfors, 2019) 

Current 

velocity 

In the offshore cultivation of mussels, the 

mussels will be exposed to more motion than in 

the nearshore sites. Therefore, the current speed 

is another significant factor to be considered. 

(Mizuta & 

Wikfors, 2019) 

Seaweed 
Temperature 

Water temperature is one of the factors that 

determines the success of Seaweed farming. 

Biomass of Saccharina Latissima was found to 

be positively correlated with elevated sea 

temperatures. 

Specific growth of the Seaweeds is negatively 

correlated to the temperature. 

(Matsson et al., 

2019) 
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Salinity 

Biomass of Saccharina Latissima was found to 

be positively correlated with the high salinity 

levels. 

(Matsson et al., 

2019) 

Nitrate and 

Phosphate 

concentration 

Specific growth of Seaweed is found to be 

positively correlated to the nitrate concentration 

and the current velocities. 

(Nursidi et al., 

2017) 
Current 

velocity 

Light 

intensity 

Light intensity is considered one of the most 

important abiotic factors for kelp growth, as it is 

a significant factor that decides the 

photosynthesis rates. 

(Bikker et al., 

2016) 

 

Salinity levels of the sea are mainly controlled by the freshwater budget received by the sea. 

The freshwater budget in the North Sea depends on the exchanges between the Atlantic Ocean, 

Baltic Sea, and the freshwater discharges from rivers. However, in an article on the analysis of 

North Sea physics, (Sündermann & Pohlmann, 2011) mentioned that the inflows from the 

Atlantic Ocean exceed the total inflows of freshwaters to the North Sea. Therefore, 

comparatively high salinity levels are observed in the North Sea. Significant variations in the 

salinity are mainly observed near the coastal areas where there are freshwater inflows to the 

North Sea. According to the literature ((Sündermann & Pohlmann, 2011); (Zijl et al., 2021)), 

it has been demonstrated that the average salinity levels of the North Sea are in the range of 

32-35 ppb, which is optimum for Blue mussel and Seaweed farming. Therefore, the salinity 

does not affect as a critical parameter in this specific area.  

Further, to understand the average salinity levels and seasonal variations of the salinity at the 

interested area, measured salinity data at FINO3 were obtained from the Federal Maritime and 

Hydrographic Agency website in Germany (BSH). 

 

Figure 5.1.1 Variation of measured salinity at FINO3 for the year 2016 (Source of data: 

(BSH, 2021)) 
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Available measured salinity data at FINO3 illustrates that the maximum salinity variation over 

one year is about 3 – 4 mg/l in the selected area, which will not significantly affect the 

cultivation of Blue mussel and Seaweed. Although salinity is an essential factor in Seaweed 

and Blue mussel farming, salinity in the study area (FINO 3 research platform) does not show 

a significant spatial variation over the considered region. Therefore, salinity was not selected 

as a critical parameter for the sensitivity analysis in this research.   

 

Several factors affect the cultivation of Blue mussels and Seaweed. However, since the focus 

of our study is only on the hydrodynamic model, the temperature and environmental variables 

can be selected, referring to the literature as the critical outputs for the sensitivity analysis.  

 

• Temperature 

The seawater temperature was simulated using the 3D hydrodynamic model developed for 

Northwest European Shelf, using the D-Flow Flexible Mesh model suite. The temperature 

computation method is given to the model by the ‘temperaturemodel’ parameter in the .mdu 

file. In this study, the ‘temperaturemodel’ was given as the ‘composite ocean model,’ which is 

the most complex heat flux model according to the D-Flow FM User Manual. The model 

calculates the heat budget by accounting for the incoming solar radiation from atmospheric 

radiation and heat losses due to the back radiation, evaporative heat flux, and convective heat 

flux.   

 

• Current velocity 

Different current types are considered in the hydrodynamic model, including tidal, wind-driven 

currents, stratified currents, and residual currents. The definition of residual currents can be 

found in literature from different points of view. Mathematically, the residual currents are 

defined as the steady flow patterns, where there is no change with time. These currents are 

obtained with the fundamental equations and assuming independence in time. According to the 

hydrodynamicists, the residual currents are the resulting mean velocity over a sufficiently large 

period to cancel the transitory wind and tidal currents (Nihoul & Ronday, 1975). The definition 

which is given to the residual currents by the experimentalists is “the residuary flow after 

subtracting the tidal current contribution from the actual flow computed.” (Otto, 1983).  

The wind-driven currents are generated due to the turbulence effects that occur with the 

interactions between the air-water surface. Stratified currents are observed where the 

stratification exists due to the density differences of seawater. This stratification process is 

commonly observed in places where there are freshwater discharges into the sea and where 

there are thermal discharges. Hence, the stratified currents are expected to be minimal in this 

offshore region as there are no such discharges near this selected location.  
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5.2. Selection of Input parameters for analysis  

Sensitivities of the two selected outputs were assessed to a selected set of input parameters. As 

explained in the previous chapters, the Delft 3D Flow model requires many input factors to set 

up a simulation. However, each of these input factors will not significantly affect the sensitivity 

of the output parameters. On the other hand, applying sensitivity analysis for many input factors 

will be difficult due to the extremely high computation demand of the Delft 3D hydrodynamic 

model. Therefore, selecting a subset of the input parameters which could affect the output 

variation is an essential preliminary step for the study. Selection of this subset of input 

parameters was carried out referring to the literature ((Maulik & San, 2016) (Otto, 1983; 

Sündermann & Pohlmann, 2011)), the manuals of Delft3D Flow and with the help of experts 

at Deltares. The spatially uniform input factors were considered for analysis, considering the 

complexity of the model and the analysis time required to apply selected sensitivity analysis 

methods.    

The input factors were tested in plausible ranges around their baseline values of the DCSM 

model. The baseline values of DCSM have been obtained after validating the model against 

measured sea surface temperature, sea surface salinity, and measurements of seasonal 

temperature stratification in the central North Sea. Further, simulated residual transport through 

the English Channel has also been validated and confirmed to be in the realistic range (Zijl et 

al., 2021).  

Therefore, the following input parameters were selected as the possible influential factors to 

seawater temperature and current velocity.  

• Smagorinsky coefficient 

In large-eddy simulations, the eddies can be larger than one grid cell, hence too large to break 

down with the molecular viscosity. Therefore, an additional stress term is introduced to the 

Navier-Stokes equation which can filter those large eddies from the grid. This stress is called 

sub-grid stress and modeled using the eddy viscosity approach, where the sub-grid kinematic 

viscosity of the model is calculated using Elder’s formula or the Smagorinsky model (Deltares, 

2021). In the DCSM, Smagorinsky sub-grid model is used in calculating the sub-grid scale 

eddy viscosity, which is given by the equation  

𝑣𝑗 = (𝐶𝑠√∆𝑥𝑗𝑤𝑢𝑗)
2√2

𝜕𝑢𝑛

𝜕𝑛

2

+ (
𝜕𝑢𝑛

𝜕𝑛
+

𝜕𝑢𝑡

𝜕𝑛
)2 + 2

𝜕𝑢𝑡

𝜕𝑛

2

 

 

Where Cs is a user-defined coefficient for describing the average size of the eddies within a 

grid cell. The length scale l0 is defined as  

𝑙0 = 𝐶𝑠𝛥  

Where Δ is the size of grid cells. For l0 to be always less than the grid size, the Smagorinsky 

coefficient should be between 0 and 1.  

Since the Smagorinsky coefficient is used to calculate horizontal turbulence of the model, this 

factor was used as a possible important input parameter for the sensitivity analyses of 

temperature and current velocity. The coefficient has been set to 0.2 in the original DCSM. 
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Based on the literature, technical reference manual of D-Flow FM, and the comments from the 

experts of Deltares, initially it was decided to use the range from 0 to 0.3 as summarized in 

Table 5.2.1.     

• Dalton 

In calculating seawater temperature in the model, heat losses due to processes like evaporation 

and convection are considered. Dalton is the coefficient given to the model to calculate the heat 

loss due to evaporation. Therefore, the temperature is supposed to decrease with the increase 

of the coefficient as the heat loss is increased. 

 

• Stanton 

Stanton coefficient is used to calculate the convective heat loss of the model and was selected 

as an essential input for analyzing the temperature sensitivity. The temperature is supposed to 

decrease with the increase of the coefficient as the heat loss due to the convection is increased. 

Therefore, Dalton and Stanton coefficients were selected as another two critical factors 

possibly affecting the temperature calculation of the model.  

Possible values for the Dalton and Stanton coefficients were found in some literature, and an 

overview of these values is listed in the below Figure 5.2.1. The values given in the first six 

sources are related to the researches done in the Northern hemisphere (the North Sea and North 

American region), while the last one is related to the temperature modeling carried out for Lake 

Malawi in the Southern African region.   

Table 5.2.1 Overview of values used for Dalton and Stanton coefficients in literature (Source: 

(Twigt, 2006)) 

Source Stanton number Dalton number 

Gill, 1982 
0.83 × 10-3(stable), 1.1×10-

3 (unstable) 
1.5 × 10-3 

Millar et al., 1999 0.79 × 10-3 1.5 × 10-3 

Smith et al., 1996 1.1 × 10-3 1.32 × 10-3 

Simon et al., 1999 1.0 × 10-3 1.2 × 10-3 

Emery et al., 2006 1.0 × 10-3 1.2 × 10-3 

Lane, 1989 N.A 1.33 × 10-3 

De Goede et al., 2000 1.45 × 10-3 1.2 × 10-3 

Kernkamp & Smits, 2000 2.255 × 10-3 1.885 × 10-3 

Besides, (Twigt, 2006) obtained optimum coefficient values for Dalton and Stanton coefficient 

for the South China Sea using two methods, optimizing the coefficients using a comparison of 

heat exchange and optimizing the two coefficients using a test basin.  
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Table 5.2.2 Dalton and Stanton coefficient values obtained for the South China Sea (Source: 

(Twigt, 2006)) 

Source Stanton number Dalton number 

 [-] [-] 

Literature 0.9 × 10-3 1.5 × 10-3 
𝜕𝑇

𝜕𝑡
 comparison 0.9 × 10-3 2.4 × 10-3 

Test basin 2.1 × 10-3 2.1 × 10-3 

 

• Vicouv and Vicoww 

The Reynold stresses in the momentum equation, which can affect the modeled current 

velocities and temperature in the D-Flow FM model, are calculated using the eddy viscosity 

concept.   

According to the technical reference manual of D-Flow FM, the horizontal viscosity is 

calculated as the combination of three parts. 

𝑣𝐻 = 𝑣𝑆𝐺𝑆 + 𝑣𝑉 + 𝑣𝐻
𝑏𝑎𝑐𝑘   

Where 𝑣𝑆𝐺𝑆  is termed as the sub-grid-scale horizontal eddy viscosity, 𝑣𝐻
𝑏𝑎𝑐𝑘  is the 

background horizontal eddy viscosity which is a user-defined background value and 𝑣𝑉  is 

termed as the three-dimensional turbulence computed by a 3D turbulence closure model.  

In the turbulence closure model, the vertical eddy viscosity coefficient is defined as, 

𝑣𝑉 = 𝑣𝑚𝑜𝑙 +  max ( 𝑣𝑉
𝑏𝑎𝑐𝑘 , 𝑣𝑉) 

Here 𝑣𝑚𝑜𝑙  is the kinematic viscosity of water and 𝑣𝑉
𝑏𝑎𝑐𝑘  is the user-defined background 

vertical eddy viscosity.   

Besides, according to the user manual (Deltares, 2021), both the coefficients are considered as 

calibration parameters and need to be optimized through the calibration process. Thus, these 

two background values for horizontal and vertical eddy viscosities were selected as two other 

possible input factors to simulate the current velocities and temperatures.     

 

• Dicouv and Dicoww 

The eddy diffusivities are derived from the eddy viscosities in the k-ε turbulence model. 

Therefore, the uniform eddy diffusivities were also selected for the sensitivity analysis. The 

value ranges were selected based on the manual of D-Flow FM, Dutch continental Self Model 

(DCSM) settings, and experts' help.  

 

• Rhoair 

The current velocities depend on the wind force acting on the sea surface. Wind velocities are 

affected by the air densities, and therefore consequently, the currents are indirectly affected by 

the air density. To analyze the effect of Rhoair on current velocities, the Rhoair parameter given 

in the .mdu file is select for the analysis.  

Possible values for the air density were decided after considering the average temperature and 

air pressure variations at the FINO3 location with the help of measured data for the area 

available through the Federal Maritime and Hydrographic Agency website in Germany (BSH). 
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According to the measured temperatures, the temperature values vary from -15°C to 30°C over 

one year. The range of air pressure variation is observed as 970 – 1030 hPa. Therefore, 

maximum and minimum possible air densities were calculated using an average pressure of 

1000hPa and two extreme temperatures. These calculations were done using an online 

calculator for air density and specific weight calculations.    

 

Figure 5.2.1 Measured air pressure data at 23m height from sea level at FINO3 for January 

2015 (Data source: BSH, 2021)  

 

  

 

Figure 5.2.2 Air density calculations for minimum and maximum temperatures 

(Source:(Engineers Edge, n.d.)) 
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At first, the parameter values were selected, including the minimum values as zero for the 

factors, Smagorinsky, uniform viscosities in horizontal and vertical directions (i.e., Vicouv, 

Vicoww), and uniform diffusivities in horizontal and vertical directions (i.e., Dicouv, 

Dicoww). These possible ranges are shown in Table 5.2.1. 

Table 5.2.3 Initially selected input parameters value ranges of each parameter 

Parameter Description 

Parameter range 

Unit 

Influence on 

Baseline Min Max Temperature 
Current 

velocity 

Smagorinsky 

Smagorinsky 

factor in 

horizontal 

turbulence 

0.2 0 0.3 - ✓  ✓  

Dalton 

Coefficient for 

evaporative 

heat flux 

0.0013 0.001 0.0016 - ✓   - 

Stanton 

Coefficient for 

convective 

heat flux 

0.0013 0.001 0.0016 - ✓  - 

Vicouv 

Uniform 

horizontal 

eddy viscosity 

0.1 0 2 m2/s ✓  ✓  

Vicoww 

Uniform 

vertical eddy 

viscosity 

0.00005 0 0.0001 m2/s ✓  ✓  

Dicouv 

Uniform 

horizontal 

eddy 

diffusivity  

0.1 0 2 m2/s ✓  ✓  

Dicoww 

Uniform 

vertical eddy 

diffusivity 

0.00002 0 0.0001 m2/s ✓  ✓  

Rhoair Air density 1.2265 1.1639 1.3669 Kg/m3      - ✓  

       

 

However, model runs performed using some of these input samples crashed due to 

instabilities. As explained in the previous Chapter, three trials were carried out for Morris 

method, with r = 10, 12, and 20. For the 1st trial with 10 trajectories, 80 models were run for 

checking temperature sensitivity. In this trial, 10 out of the 80 models gave errors and crashed 

due to the instabilities. The input sample values for these crashed models are shown in Figure 

5.2.5.  
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Table 5.2.2 Input samples of the crashed models 

Smagorinsky Dalton Stanton 
Vicouv 

(m2/s) 

Vicoww 

(m2/s) 

 Dicouv 

(m2/s) 

Dicoww 

(m2/s) 

0 0.001 0.001 1.333333 0 1.333333 0 

0 0.0014 0.001 1.333333 0 1.333333 0 

0 0.0014 0.001 1.333333 0 0 0 

0 0.0012 0.0016 2 0 0.666667 3.33E-05 

0 0.0016 0.001 2 0 2 3.33E-05 

0.2 0.0014 0.0014 0 0 1.333333 3.33E-05 

0 0.0014 0.0014 0 0 1.333333 3.33E-05 

0 0.001 0.0014 0 0 1.333333 3.33E-05 

0 0.001 0.0014 0 0 0 3.33E-05 

0 0.001 0.0014 0 0 0 0.0001 

 

Therefore, it can be assumed that these instabilities in the model are due to single parameter 

values of these samples or combinations of input parameter values given to the model, which 

cannot exist practically. One significant observation was, all these model runs have the input 

parameters Vicoww and Smagorinsky factor as zero. Therefore, it was decided to change the 

minimum boundary for the parameters Smagorinsky, uniform viscosities, and diffusivities in 

the horizontal and vertical directions. Thus, the minimum values for these parameters were 

changed to small non-zero values.  

Table 5.2.3 Selected input parameter value ranges of each parameter after adjustments 

Parameter Description 

Parameter range 

Unit 

Influence on 

Baseline Min Max Temperature 
Current 

velocity 

Smagorinsky 

Smagorinsky 

factor in 

horizontal 

turbulence 

0.2 0.05 0.3 - ✓  ✓  

Dalton 

Coefficient 

for 

evaporative 

heat flux 

0.0013 0.001 0.0016 - ✓   - 

Stanton 

Coefficient 

for 

convective 

heat flux 

0.0013 0.001 0.0016 - ✓  - 

Vicouv 

Uniform 

horizontal 

eddy 

viscosity 

0.1 0. 1 2 m2/s ✓  ✓  
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Vicoww 

Uniform 

vertical eddy 

viscosity 

0.00005 0.000001 0.0001 m2/s ✓  ✓  

Dicouv 

Uniform 

horizontal 

eddy 

diffusivity  

0.1 0. 1 2 m2/s ✓  ✓  

Dicoww 

Uniform 

vertical eddy 

diffusivity 

0.00002 0.000001 0.0001 m2/s ✓  ✓  

Rhoair Air density 1.2265 1.1639 1.3669 Kg/m3 - ✓  
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Chapter 6: Application of Python for Analysis 

Python programming language was applied to efficiently carry out the sensitivity test on the 

North Sea Hydrodynamic model. All the scripts developed for the analysis are attached to this 

report as Annex I and Annex II. The steps followed in the application of Python in the analysis 

are shown below as a flowchart.   

 

Figure 6. 1.1 Flow chart for application of Python in the sensitivity analysis 

 

6.1. Scripts for sampling & inserting samples to model 

6.1.1. Morris method 

As described in the previous chapter, an individually randomized one-at-a-time (OAT) 

sampling method was adopted in generating the input samples for the Morris method. Hoey S. 

(2012) developed a python script to create the Morris samples, and this code was adjusted 

accordingly for this case study. 

The script contains a function defined for returning a sampling matrix with input parameter 

values and a code to create model setup files with the generated new samples. Therefore, the 

script returns a csv file with all the generated samples and subfolders containing three files 

required for running the model. These three files will be, 

1. Master definition Unstructured file (.mdu) for the model 

Writing scripts for generating 
input samples for analysis   

Write script for inserting the 
generated samples to the model 

Writing script for extracting the 
outputs (Temperature and current 

velocity) from the output file  

Writing the script for calculating 
the sensitivity indices according 

to the two methods

Plotting the results for 
sensitivities
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2. dimr.xml file 

3. A shell script (run_dimr-h6-c7.sh) needs to run the model in the cluster   

The script is written for the two selected output variables. Therefore, six input variables need 

to be given by the user for running the script to generate the Morris sample for a specific 

sensitivity test on an output of the model. These are;  

• p - number of discretization levels 

• r - number of trajectories 

• varName - the name of the output variable  

• k - number of input parameters  

• LB - lower boundary for the input parameters  

• UB - upper boundaries for the input parameters  

These generated parameter values were then inserted into the model by replacing the original 

values in the Master Definition Unstructured file (.mdu file). The source code for generating 

the samples and the code developed to create the new .mdu files are attached to this report as 

Annex I. All these setup files were saved inside separate folders.   

As mentioned in Chapter 4, three trials were performed for sensitivity analysis using the Morris 

method for different r values. Therefore, the script for Morris sampling and creating .mdu files 

was executed three times separately to create the model setups for Morris samples for each 

trial.   

6.1.2. Variance-based Sobol’ method 

An open-source Python package called SALib, developed by (Herman & Usher, 2017) was 

applied to generate the samples for the variance-based method. This Python package has the 

module SALib.sample.saltelli, which generates a Monte Carlo sampling matrix. The total 

number of samples depends on which sensitivity indices are going to be calculated. The total 

cost for calculating first and total order sensitivity indices is (k+1)*N. The second-order 

sensitivity indices are calculated with an extra cost of N, where N represents the selected sample 

size. In this study, the sample size was taken as 100 samples, and the most significant input 

parameters screened by the Morris method were used for variance-based sensitivity analysis.    

Here, it was decided to calculate only the First-order and Total-order sensitivities for the 

selected input factors. Therefore, the sampling matrix has (k+1)*N rows and k number of 

columns, where k is the number of input parameters and N is the resample size. Similar to the 

Morris method, these generated samples were then inserted to the model by replacing the 

default values in the .mdu file. This part of the code is similar to the one written for Morris 

method. 

The script requires few inputs to be specified as fixed variables before executing the script.  

• N - sample size 

• varName - the name of the output variable 

• num_vars - number of input parameters  

• names - names of the selected input parameters for the analysis  

• bounds - parameter range for each input  
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The source code used in the sample generation and the script wrote for inserting the generated 

samples into the model setup is attached to this report as Annex II.    

6.2. Scripts for extracting model outputs 

The outputs of the D-Flow-FM model are in the format of netCDF4 (.nc), and they are either 

map outputs(_map.nc) or time series outputs (_his.nc). Here the time series output (_his.nc) 

file was used for extracting results for temperature and current velocities in three dimensions; 

for x, y, and z components. The ‘netCDF4’python library was imported to the script for reading 

the netCDF4 files as the first step. As the model results contained 50 vertical layers (z-layers) 

in total, the layer number for extracting the results needs to be given as an input, additional to 

the observation location and the output parameter name. Then, the scripts were created to 

extract the output values from all ensembles at a specific time and calculated the sensitivities 

of outputs to each input parameter for a timestep. 

6.3.    Scripts for calculating sensitivity indices 

6.3.1. Morris Method 

Using the basic concept of the Morris method, the Python script was developed first to calculate 

the elementary effects for each trajectory for each input factor. Elementary effects were defined 

as the ratio between the change of output values (either temperature or current velocity) 

between two adjacent model runs and the input change scaled to [0,1]. These scaled values of 

input parameter changes were taken to avoid the effect of the parameter range on the calculation 

of elementary effects. Therefore, it enables the comparison of sensitivities between parameters 

independent of their parameter ranges. 

The sensitivity measures were calculated for each input by averaging the Elementary Effects 

of all the trajectories. Mean (µ), absolute mean (µ*), and standard deviations (σ) of Elementary 

Effects were calculated for each time step for the whole time series covering one month. These 

sensitivity measures of each time step were then averaged over the entire month to have the 

overall results for sensitivity measures over the entire month. These average results are shown 

in Chapter 7.  

The script needs the following variables to be assigned and files to be given for the calculations.   

• p - number of discretization levels 

• r - number of trajectories 

• varName - the name of the output variable  

• k - number of input parameters  

• timesteps – number of time steps in the model results 

• a set of  "DCSM-FM_4nm_0000_his.mdu" – model results files (time series output of 

the model) 

• "input_samples.csv" – a csv file contains the input samples created at the sampling step. 
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6.3.2. Variance-based Sobol’ Method 

First-order and total order Sobol’ indices were calculated referring to an existing Python 

library, SALib.analyze.saltelli developed by (Herman & Usher, 2017) for variance-based 

sensitivity analysis. The sensitivities of temperature and current velocities to the input factors 

were calculated based on the selected period, based on the equations (4.4 and 4.5) mentioned 

in Chapter 4 for calculating First-order and Total-order Sobol’ indices. These sensitivity indices 

for the selected time steps were then averaged to get the results for sensitivity indices for the 

month. 

The following input variables need to be assigned before running the script for calculating the 

Sobol’ indices 

• N - sample size 

• varName - the name of the output variable 

• timesteps – number of time steps in the model 

• k - number of input parameters  

• names - names of the selected input parameters for the analysis  

The script returns a csv file with the averages of first-order sensitivities (S1) and total-order 

sensitivities (ST) for the selected time period, for each input parameter. 

6.4.    Plotting the results 

The existing Python library, ‘matplotlib’ was used in creating the plots for the analysis.   

6.4.1. Time series plots 

The time series plots containing all the model runs were generated for both Morris and Sobol’ 

methods for temperature and current velocities in x, y, and z directions at the selected six 

locations. These were generated to estimate the general pattern of variation of temperature and 

current velocities at each location. 

6.4.2. Plots for sensitivity measures 

The sensitivity of the two outputs was represented based on the absolute mean and standard 

deviation of elementary effects in the application of Morris method. Therefore, three types of 

plots were created for the first method, using the average results for the whole month.  

1. Scatterplots representing the sensitivity measures (absolute mean (µ*) and standard 

deviation (σ) of EE) for the three trails with different r. 

2. A scatterplot representing the variation of standard deviation (σ) vs. absolute mean 

(µ*) of EE for selected input parameters 

3. Bar plot representing the sensitivity results of all six locations  

In the Sobol’ method, sensitivities of the parameters were represented using the first and total 

order Sobol’ indices. Therefore, the two types of plots were created for the output variables 

(temperature and current velocities) to visualize the results obtained from the variance-based 

method.  
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1. Scatterplots representing the two sensitivity indices at each location for selected input 

parameters 

2. Scatterplots representing the variation of sensitivity measures (first-order sensitivity 

index (Si) and total-order sensitivity index (STi)) for the selected input parameters at 

selected six locations. 

6.4.3. Plots for comparing the sensitivity measures of two methods 

To compare the indices obtained by the Morris and Sobol’ methods, the correlation between 

the sensitivity measures were analyzed by plotting the variations of,  

1. Absolute mean (µ*) of EE obtained from Morris analysis with total-order Sobol’ index 

(STi) from Sobol’ method 

2. Standard deviation (σ) of EE obtained from Morris analysis with the difference of 

total-order Sobol’ index and first-order Sobol’ index (STi - Si) from Sobol’ method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

53 | P a g e  

 

Chapter 7: Results and Discussion 

Analyses were carried out for the Morris method and the variance-based Sobol’ method 

separately. The number of simulations was selected based on the technique and selected sample 

sizes/ number of trajectories. 

7.1. Variation of Output parameters over time 

This sub-section contains results of the hydrodynamic model runs performed for calculating 

the sensitivities of temperature and current velocities in 3 dimensions. The DCSM model takes 

1.67 days for simulating one year using a coarse grid. Therefore, it was challenging to perform 

a vast number of model runs for a very long period. Moreover, the analysis can take a 

considerable time for the whole year. Besides, since the study's primary goal was to analyze 

the sensitivities of selected output parameters to the input parameters, a specific period of the 

year was selected for analyzing the sensitivities. Therefore, the simulation period was taken as 

one month of the year, starting from 25-12-2004 up to 26-01-2005. The output temperature and 

current velocities were extracted at the selected six locations, including the FINO3 research 

platform. The average water depth of this area was observed as 23m. The output values for 

both variables were extracted from the surface layer of the 3D hydrodynamic model.   

7.1.1. Temperature 

 

Figure 7.1.1 Temperature variation at FINO3 over one-month period simulated with 12 

trajectories (r=12) and using 96 samples 

 

The temperature variation of the FINO3 shows a decreasing trend over the whole month. The 

minor periodic variations can be explained by the temperature change in the daytime and 

nighttime. These modeled temperatures were compared with the available temperature data at 

FINO3. However, measured data at FINO 3 was not available for the selected year. Therefore, 
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data for January 2010 was used to compare the model results with measured temperature data 

at the FINO3 research platform, which is illustrated in Figure 7.2.1.  

 

Figure 7.1.2 Measured data from buoy for surface water temperature at FINO3 for January 

2010 (Data Source: BSH, 2021)   

The temperature variations are similar in the simulated temperature and measured data, 

although the averages are not the same in two years, which can be expected.   

7.1.2. Current velocity 

The simulated current velocities at FINO3 for the three directions (x, y, and z directions) are 

shown below for the generated samples using 12 trajectories (84 model runs). Similar to the 

temperature result extraction, current velocities were also extracted from the surface layer at a 

depth of 0.5m from the mean sea level at FINO3.   
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Figure 7.1.2 Variation of x velocity at FINO3 over one-month period simulated using 12 

trajectories (r=12) 

 

 

Figure 7.1.3 Variation of y velocity at FINO3 over one-month period simulated using 12 

trajectories (r=12) 
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Figure 7.1.4 Variation of z velocity at FINO3 over one-month period simulated using 12 

trajectories (r=12) 

When compared the three components of the current velocities, the highest variation was 

observed in the x-direction. The magnitude of current velocity values is in the range of 0 – 

0.8m/s for x-direction and 0 – 0.4m/s for the y-direction. However, the velocities in the vertical 

direction show minimal values compared to the other two. These small velocities can be 

explained as the stratified currents generated by the stratification occur due to temperature and 

density variations expected over the depth. However, it shows that the selected location 

experiences negligible currents in the vertical direction, which agrees with the initial 

assumptions on stratified currents.      

As mentioned in Chapter 3, according to the literature (Sündermann & Pohlmann, 2011), the 

tidal currents are observed to be the dominant current type in the North Sea. The simulated 

current patterns in x-direction show a periodic variation. However, the current variation in the 

y-direction does not show a regular pattern as in the x-velocity. As the current results are 

extracted from the surface layer of the model vertical schematization, the reason might be the 

effect of wind and waves.   
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7.2. Application of Morris method 

The Morris method was applied, selecting different numbers of trajectories or repetition 

numbers. As a starting point, 10 trajectories (r = 10) were used to calculate the sensitivity 

measures using the simulated results. Afterward, the number of trajectories was increased to 

12 and 20, respectively, and analyses were done for the three cases. This repetition was done 

mainly to investigate the effect of the number of selected trajectories on the order of ranking.  

Since the simulations were performed for one month, the results for sensitivity measures (mean, 

absolute mean, and standard deviation of Elementary Effects) were averaged in time after 

removing the spin-up time of 2 days for the model to be stable. The analyses were performed 

separately for each location. The following subsections include the sensitivity measures 

calculated at the FINO3 location for three trials with r = 10, 12, and 20. The results for the 

other locations are attached to the Annex III of this report. Moreover, a summary of the 

sensitivity raking of each input parameter at selected six locations is presented at the end of 

each subsection.    

7.2.1. Temperature Sensitivity  

The Morris method results for sensitivity measures calculated for the location FINO3, using 

three different numbers of trajectories (r), are shown in Table 7.2.1 and Figure 7.2.1. 

Table 7.2.1 Sensitivity of temperature to the input parameters calculated using Morris method 

(for r = 10, 12, and 20) at location FINO3 

Parameter 

Trial 1 (r = 10) Trial 2 (r = 12) Trial 3 (r = 20) 

µ(°C) µ*(°C) σ(°C) 
Ra

nk 
µ (°C) µ*(°C) σ(°C) 

Ra

nk 
µ(°C) µ*(°C) σ(°C) 

Ra

nk 

Smagorin

sky 

-

0.0215 
0.0628 0.0617 2 

-

0.0406 
0.0560 0.0433 2 

-

0.0209 
0.0627 0.0626 2 

Dalton 
-

0.0392 
0.2156 0.2082 1 

-

0.0697 
0.2039 0.2003 1 

-

0.0610 
0.1991 0.2032 1 

Stanton 
-

0.0007 
0.0303 0.0278 3 0.0015 0.0271 0.0288 3 

-

0.0018 
0.0286 0.0270 3 

Vicouv 0.0000 0.0000 0.0000 7 0.0000 0.0000 0.0000 7 0.0000 0.0000 0.0000 7 

Vicoww 0.0002 0.0027 0.0021 4 0.0000 0.0016 0.0021 4 
-

0.0001 
0.0023 0.0018 4 

Dicouv 0.0000 0.0000 0.0000 6 0.0000 0.0000 0.0000 6 0.0000 0.0000 0.0000 6 

Dicoww 0.0002 0.0008 0.0007 5 0.0000 0.0006 0.0008 5 0.0002 0.0008 0.0007 5 

 

The two Morris sensitivity measures, absolute mean (µ*) and standard deviation (σ) of EE for 

the three trials, are shown in Figure 7.2.1  



 

58 | P a g e  

 

 

(a) (b) 

Figure 7.2.1 Sensitivity of temperature to each input parameter at FINO3 (a) Absolute 

mean(µ*) of EE for input parameters for the three trials ( r= 10, 12 and 20), (b) Standard 

deviation (σ) of EE for input parameters for the three trials (r = 10, 12 and 20) 
 

• The results for the three trials corroborate that although the numerical values for mean, 

absolute mean, and standard deviation are slightly changed with the selected number of 

trajectories, the order of significance has not changed with the increased r.  

• When considering the sensitivity measures µ and µ* for some parameters, there is 

smaller mean (µ) values and higher absolute mean (µ*) values. This indicates that the 

parameters have effects with opposing signs.  

• Therefore, to capture both positive and negative values of the Elementary Effects, the 

absolute mean (µ*) of EE was used in deciding the importance of input factors to the 

model.   

Figure 7.2.2 shows the relation between the absolute mean and the standard deviation of EE 

for each input parameter. Since it is proven that there is no significant difference in the values 

obtained by the three trials (r =10, 12, 20), the results of trial 2 with 12 trajectories has been 

used here for the analysis. One primary observation of the Figure 7.2.2 is that all the points lie 

in the diagonal. This indicates that all the parameters that affect the simulated temperature have 

non-linear effects on the temperature.    
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Figure 7.2.2 Morris results of temperature sensitivity at FINO3; (r=12) Scatterplot for 

temperature sensitivity - Variation of standard deviation with absolute mean  

The Morris analysis can only be used as a qualitative method to screen the significant input 

factors, as discussed in Chapter 2. The absolute mean of EE values indicates the importance of 

each input parameter. The standard deviation is a qualitative measure of the non-linearities of 

the input-output relationship. Further, this is an indication of the possible interactions with 

other parameters. According to the tabulated values of these sensitivity measures, the most 

influential parameter is the Dalton coefficient, which is the coefficient of evaporative heat flux. 

Therefore, it can be claimed that the process of evaporative heat loss contributes the most in 

defining the modeled temperature values out of these selected input parameters.  

When considering the physical meaning of these two coefficients used in the D-Flow FM 

model, as described in sections 5.1 and 5.2, the temperature is modeled considering the net 

radiation and heat losses due to convective and evaporative heat fluxes. Evaporative heat loss 

is dependent on meteorological factors (i.e., wind-driven convection) and vapour pressures. 

According to the technical reference manual of  D-Flow FM (Deltares, 2021), there are two 

processes considered to calculate the latent heat flux, free and forced convection .The equation 

below gives the latent heat flux of forced convection  

𝑄𝑒𝑣,𝑓𝑜𝑟𝑐𝑒𝑑 = 𝐿𝑣𝜌𝑎𝑓(𝑈10){𝑞𝑠(𝑇𝑠) − 𝑞𝑎(𝑇𝑎)} 7.1 

The wind function in this equation (f(U10)) is calculated as a function of wind velocity (U10) 

and Dalton coefficient (ce) using the equation  

𝑓(𝑈10) =  𝑐𝑒𝑈10 7.2 

The Stanton coefficient was identified as the third most important factor from the above results. 

Like in the Dalton coefficient, the Stanton coefficient is also used in the calculation of the heat 

budget of the model. The sensible heat flux or the convective heat flux is calculated with two 
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processes, free convection and forced convection. The forced convective heat flux is calculated 

with the equation  

𝑄𝐶𝑂,𝑓𝑜𝑟𝑐𝑒𝑑 = 𝑐𝑝𝜌𝑎𝑔(𝑈10){𝑇𝑠 − 𝑇𝑎} 7.3 

The wind function in the above equation is calculated as a function of wind speed and the 

Stanton coefficient (𝑐𝐻). 

𝑔(𝑈10) =  𝑐𝐻𝑈10 7.4 

The above equations indicate that both, Dalton and Stanton coefficients, affect the simulated 

temperature in the model. Therefore, the results substantiate these physical definitions.   

The second most important parameter was identified to be the Smagorinsky factor in horizontal 

turbulence. As discussed in section 5.2, the Smagorinsky factor is used in calculating the 

horizontal eddy viscosity of the model as an input to calculate the sub-grid scale eddy viscosity. 

Thus, it can be assumed that the Smagorinsky factor affects the horizontal turbulence of the 

water mass and indirectly contributes to calculating the temperature in the model to a 

considerable extent.  

One significant observation from the above results is that the Elementary Effects for uniform 

eddy viscosity and eddy diffusivity (Vicouv, Dicouv) show no effect on temperature 

sensitivity. This means that these values are not considered when calculating the temperature 

in the model for this period. It is essential to look at the physical meaning of these results with 

respect to applying these inputs to the model. As mentioned in section 5.2, uniform viscosities 

and diffusivities are applied to the model as uniform background values, where the final values 

of viscosities and diffusivities are calculated as a combined function of the applied uniform 

values and those from the sub-grid model, vertical eddy viscosities, and kinematic viscosity of 

water. However, the horizontal eddy viscosity and horizontal eddy diffusivity are specified in 

the external forcing file (.ext file) in the model as well. Thus, the final values are taken as the 

maximum of these uniform background values and the spatially varying values given in the 

external forcing file. 

Therefore, it can be assumed that for the selected period, the Vicouv and Dicouv values given 

in the .mdu file have always been less than the values given in the external forcing (.ext) file. 

Thus, the model always considers the viscosities from the external forcing file for the 

calculations. Therefore, the sensitivity analysis shows that these inputs are insignificant for 

temperature calculation in the model. Nonetheless, there is still a possibility that these two 

parameters affect the temperature sensitivity if the models were run for a different period of 

the year or considered different locations.    

The tables and graphs for sensitivity measures of the temperature for the other five locations 

are attached to Annex III. The summary of the sensitivity measures at each location is presented 

in Figure 7.2.4. The results for the other five locations are comparable with the results obtained 

for FINO3 although the numerical values change slightly from one location to another .  
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Figure 7.2.3 Variation of sensitivity of temperature to input parameters based on the selected 

location, calculated by Morris method using 12 trajectories (r = 12)  

 

A summary of the ranking obtained through the Morris analysis for selected six locations is 

given in Table 7.2.2.  
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Table 7.2.2 Ranking of Significance of input parameters on temperature (r=12) based on 

location 

Parameter 
Ranking of input parameter at Location 

FINO 3 P1 P2 P3 P4 P5 

Smagorinsky 2 3 2 2 2 2 

Dalton 1 1 1 1 1 1 

Stanton 3 2 3 3 3 3 

Vicouv 7 7 7 7 7 7 

Vicoww 4 4 4 4 4 4 

Dicouv 6 6 6 6 6 6 

Dicoww 5 5 5 5 5 5 

The resulting ranks for all the selected locations except point 1 (P1) show the same order. Out 

of the selected set of inputs, the temperature was most sensitive to the input Dalton coefficient. 

The second most important factor is identified as the Smagorinsky factor and, thirdly, the 

Stanton coefficient.  

7.2.2. Sensitivity of Current velocity 

The D-Flow FM model calculates the currents in all three directions x, y, and z. These were 

analyzed separately as three components of the currents. Similar to the temperature analysis, 

three trials were done to check the effect of the selected number of repetitions (r) on the 

calculated sensitivity measures.    

7.2.2.1. Current velocity - x component 

The following table contains the sensitivity measures calculated (mean, absolute mean, and 

standard deviation of Elementary Effects (EE)) for the x-velocity component of currents.  

Table 7.2.3: Sensitivity measures of current velocity (x-component) to the input parameters 

calculated using Morris method (for r = 10, 12 and 20) at location FINO3 

Parameter 

r = 10 r = 12 r = 20 

µ (m/s) 
µ* 

(m/s) 

σ 

(m/s) 

Ra

nk 

µ 

(m/s) 

µ* 

(m/s) 
σ (m/s) 

Ra

nk 

µ 

(m/s) 

µ* 

(m/s) 

σ 

(m/s) 

Ra

nk 

Vicouv 
0.00E+

00 

0.00E

+00 

0.00

E+00 
6 

0.00E+

00 

0.00E

+00 

0.00E+

00 
6 

0.00E

+00 

0.00E+

00 

0.00

E+00 
6 

Vicoww 
-6.88E-

06 

1.74E

-03 

1.44

E-03 
3 

-

6.61E-

05 

1.30E

-03 

1.12E-

03 
3 

-

4.44E-

06 

1.23E-

03 

1.48

E-03 
3 

Dicouv 
0.00E+

00 

0.00E

+00 

0.00

E+00 
5 

0.00E+

00 

0.00E

+00 

0.00E+

00 
5 

0.00E

+00 

0.00E+

00 

0.00

E+00 
5 

Dicoww 
1.24E-

04 

6.10E

-04 

5.17

E-04 
4 

4.98E-

06 

5.92E

-04 

4.58E-

04 
4 

8.65E-

05 

5.14E-

04 

6.47

E-04 
4 

Rhoair 
2.95E-

03 

1.13E

-02 

1.31

E-02 
1 

2.87E-

04 

1.40E

-02 

1.34E-

02 
1 

2.07E-

04 

1.33E-

02 

1.38

E-02 
1 

Smagorinsk

y  

-8.72E-

04 

4.42E

-03 

4.30

E-03 
2 

-

1.01E-

03 

3.62E

-03 

4.18E-

03 
2 

-

6.66E-

04 

4.33E-

03 

4.51

E-03 
2 
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Out of the selected input parameters, the most significant inputs for defining the x-velocity 

component in the model were air density (Rhoair) and the Smagorinsky coefficient. Other than 

that, uniform viscosity and uniform diffusivity in the vertical direction affect the sensitivity of 

the x-velocity component on a minor scale.  

Air density is used in calculating wind stress in the model. However, a spatially varying air 

density is provided (as a parameter in ERA5 data) to the model. The constant air density value 

used here (Rhoair) is generally used to adjust the wind speed in the model such that the right 

wind stress is achieved. The wind stress acting on the sea surface affects the computation of 

current velocities. Thus, Rhoair can be expected to affect the current velocity calculation 

indirectly.  

Smagorinsky coefficient is used in the Smagorinsky sub-grid model to calculate horizontal 

viscosity, which defines horizontal turbulence. Therefore, the coefficient is expected to 

contribute to calculating eddy viscosities and indirectly affect the current velocity calculation. 

 

 

(a) (b) 

Figure 7.2.4 Sensitivity of x-velocity to each input parameter at FINO3 (a) Absolute 

mean(µ*) of EE for input parameters for the three trials ( r= 10, 12 and 20), (b) Standard 

deviation (σ) of EE for input parameters for the three trials (r = 10, 12 and 20) 

The results for three trials with different numbers of trajectories show that the ranking order 

has not changed with the number of trajectories. Therefore, we can conclude that using r=10 

with four discretization levels (p = 4) is sufficient in deciding the order of sensitivities.  
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Figure 7.2.5 Morris results for the sensitivity of x-velocity at FINO3; (r=12) Scatterplot for x-

velocity sensitivity - Variation of standard deviation with absolute mean  

According to the above figure, all the input factors lie in the diagonal, indicating that the input 

factors which are influential to the simulated current velocity in x-direction have non-linear 

effects on the output.  

The tabulated values of sensitivity measures for the x-velocity component of currents for the 

other locations are attached to Annex III. The sensitivity measures for the x-velocity 

component at each location are given in Figure 7.2.6. 
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Figure 7.2.6 Variation of sensitivity of current velocity (x-velocity component) to input 

parameters based on the selected location, calculated by Morris method using 12 trajectories 

(r = 12)  

 

The above results show that the spatial variation of the sensitivity of x-velocity to input factors 

is negligible for these six locations.  
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Table 7.2.4 Ranking of Significance of input parameters on current velocity_(x-component) 

based on location 

Parameter 
Ranking of input parameter at Location 

FINO 3 P1 P2 P3 P4 P5 

Vicouv 6 6 6 6 6 6 

Vicoww 3 3 3 3 3 3 

Dicouv 5 5 5 5 5 5 

Dicoww 4 4 4 4 4 4 

Rhoair 1 1 1 1 1 1 

Smagorinsky  2 2 2 2 2 2 

 

Similar to the sensitivity of the x-velocity component, the sensitivity of the y-velocity 

component to the selected input parameters also has not changed based on the location for the 

selected area of FINO3.  

7.2.2.2. Current velocity - y component 

The sensitivity measures obtained from the Morris analysis are shown in Table 7.2.5 for the 

location FINO3. 

Table 7.2.5 Sensitivity measures of current velocity (y-component) to the input parameters 

calculated using Morris method (for r = 10, 12 and 20) at location FINO3 

Paramet

er 

r = 10 r = 12 r = 20 

µ 

(m/s) 

µ* 

(m/s) 

σ 

(m/s) 
Rank 

µ 

(m/s) 

µ* 

(m/s) 

σ 

(m/s) 
Rank 

µ 

(m/s) 

µ* 

(m/s) 

σ 

(m/s) 
Rank 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 8.85E-

05 

8.81E

-04 

1.12E

-03 3 

1.52E

-05 

6.28E

-04 

7.67E

-04 3 

-

5.27E

-05 

7.06E

-04 

8.99E

-04 3 

Dicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicoww 

-

3.41E-

05 

3.31E

-04 

4.16E

-04 4 

4.85E

-06 

2.82E

-04 

3.68E

-04 4 

-

3.75E

-05 

3.39E

-04 

4.53E

-04 4 

Rhoair 
4.08E-

03 

1.12E

-02 

9.53E

-03 1 

1.11E

-03 

1.15E

-02 

1.20E

-02 1 

1.17E

-06 

1.15E

-02 

1.19E

-02 1 

Smagori

nsky 

-

4.42E-

04 

3.65E

-03 

3.78E

-03 2 

-

6.67E

-04 

3.31E

-03 

2.75E

-03 2 

-

3.39E

-04 

3.40E

-03 

3.50E

-03 2 

The tables and graphs for sensitivity measures of the y-velocity component of currents for the 

other locations are attached to Annex III. 
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(a) (b) 

Figure 7.2.7 Sensitivity of y-velocity to each input parameter at FINO3 (a) Absolute 

mean(µ*) of EE for input parameters for the three trials ( r= 10, 12 and 20), (b) Standard 

deviation (σ) of EE for input parameters for the three trials (r = 10, 12 and 20) 

 

Figure 7.2.8 Morris results for the sensitivity of y-velocity at FINO3; (r=12) Scatterplot for y-

velocity sensitivity - Variation of standard deviation with absolute mean  

 

The sensitivity measures for the y-velocity component at each location are given in Figure 

7.2.9. 
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Figure 7.2.9 Variation of sensitivity of current velocity (y-velocity component) to input 

parameters based on the selected location, calculated by Morris method using 12 trajectories 

(r = 12)  

 

Similar to the sensitivity measures of the x-velocity component, current velocities in y-

direction do not exhibit a significant change based on the analysis location.    
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Table 7.2.6 Ranking of Significance of input parameters on current velocity (y-component) 

based on location 

Parameter 
Ranking of input parameter at Location 

FINO 3 P1 P2 P3 P4 P5 

Vicouv 6 6 6 6 6 6 

Vicoww 3 3 3 3 3 3 

Dicouv 5 5 5 5 5 5 

Dicoww 4 4 4 4 4 4 

Rhoair 1 1 1 1 1 1 

Smagorinsky  2 2 2 2 2 2 

 

7.2.2.3. Current velocity - z component 

Table 7.2.7: Sensitivity measures of current velocity (z-component) to the input parameters 

calculated using Morris method (for r = 10, 12 and 20) at location FINO3 

Parameter 

r = 10 r = 12 r = 20 

µ 

(m/s) 

µ* 

(m/s) 

σ 

(m/s) 

Ra

nk 

µ 

(m/s) 

µ* 

(m/s) 
σ (m/s) 

Ra

nk 

µ 

(m/s) 

µ* 

(m/s) 

σ 

(m/s) 

Ra

nk 

Vicouv 
0.00

E+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E+

00 

0.00E+

00 
6 

0.00E

+00 

0.00E+

00 

0.00E

+00 
6 

Vicoww 
2.60

E-10 

1.65E

-06 

1.97E

-06 
2 

-

2.51E

-09 

1.33E-

06 

1.68E-

06 
2 

2.15E

-09 

1.49E-

06 

1.86E

-06 
2 

Dicouv 
0.00

E+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E+

00 

0.00E+

00 
5 

0.00E

+00 

0.00E+

00 

0.00E

+00 
5 

Dicoww 
3.09

E-09 

4.31E

-07 

6.33E

-07 
4 

1.96E

-09 

3.88E-

07 

5.74E-

07 
4 

-

1.72E

-09 

4.34E-

07 

6.51E

-07 
4 

Rhoair 
1.27

E-07 

3.99E

-06 

3.67E

-06 
1 

5.27E

-08 

4.04E-

06 

4.41E-

06 
1 

-

1.89E

-08 

4.03E-

06 

4.39E

-06 
1 

Smagorins

ky 

-

6.62

E-09 

1.29E

-06 

1.52E

-06 
3 

-

5.83E

-08 

1.17E-

06 

1.28E-

06 
3 

-

1.13E

-08 

1.22E-

06 

1.45E

-06 
3 

 

The observed values for all the sensitivity measures (mean, absolute mean, and standard 

deviation of EE) were comparably lower than the sensitivity measures of the other two velocity 

components. These nominal values can be expected because of the minimal range of the 

original current velocities in the z-direction, which were in the range of 10E-4.  
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(a) (b) 

 Figure 7.2.10 Sensitivity of z_velocity to each input parameter at FINO3 (a) Absolute 

mean(µ*) of EE for input parameters for the three trials ( r= 10, 12 and 20), (b) Standard 

deviation (σ) of EE for input parameters for the three trials (r = 10, 12 and 20) 

Similar to the previous analyses of x and y velocities, the selected number of trajectories has 

not significantly changed the calculated sensitivity measures for z-velocity. Therefore, it can 

be confirmed that using r = 10 would be sufficient in the analyses.   

 

Figure 7.2.11 Morris results for the sensitivity of y-velocity at FINO3; (r=12) Scatterplot for 

y-velocity sensitivity - Variation of standard deviation with absolute mean  

 

All the selected inputs for the analysis of z-velocities lie in the diagonal, indicating that the 

parameters with higher absolute mean values have higher standard deviations. This denotes 
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that the parameters, which are identified as significant inputs, have non-linear effects on the 

output.  

The sensitivity measures for the z-velocity component at each location are given in Figure 

7.2.12. 

 

Figure 7.2.12 Variation of sensitivity of current velocity (z-velocity component) to input 

parameters based on the selected location, calculated by Morris method using 12 trajectories 

(r = 12) 
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The graphs for Sensitivity measures of the z-velocity component of currents for the other 

locations are attached to Annex III. The summary of the ranking obtained by the above results 

is shown in Table 7.2.8. 

Table 7.2.8 Ranking of Significance of input parameters on current velocity_(z-component) 

based on location 

Parameter 
Ranking of input parameter at Location 

FINO 3 P1 P2 P3 P4 P5 

Vicouv 6 6 6 6 6 6 

Vicoww 2 2 2 2 1 2 

Dicouv 5 5 5 5 2 5 

Dicoww 4 4 4 4 5 4 

Rhoair 1 1 1 1 3 1 

Smagorinsky  3 3 3 3 4 3 

 

Similar to the sensitivity of the x- and y-velocity components, the z-velocity component also 

does not change much based on the selected analysis location except for the location P4, where 

the most significant input parameter was identified as uniform vertical eddy viscosity. Uniform 

vertical eddy diffusivity stands as the second most significant factor to the z-velocity 

component at this location. Air density (Rhoair), which was identified as the most significant 

parameter at the other five locations, was identified to be the third important factor for 

calculating the z-velocity of the model at P4. Through all these results for the six locations, the 

four most important input factors, which will be affecting the modeled current velocity in the 

z-direction, were selected as air density (Rhoair), Smagorinsky factor, Vicoww, and Dicoww.   
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7.3. Application of Variance-based Sobol’ method 

As mentioned before, the Sobol’ method can calculate the individual and combined effects of 

each input variances on the output variance. The high computation cost of the variance-based 

method hinders applying this method to the complex numerical model. Therefore, to reduce 

the computation effort, it was decided to apply this method for the most significant input 

parameters screened by the Morris method.  

The following input parameters were selected, which were screened from the Morris method, 

to have a more comprehensive analysis of the sensitivities of output variables to the input 

parameters. Table 7.3.1 includes these selected input parameters for each output variable.  

Table 7.3.1 Input parameters selected by the Morris screening method for the variance-based 

analysis  

Output variable Selected input parameters 

Temperature Dalton, Smagorinsky, Stanton 

Current velocity (x-velocity component) Rhoair, Smagorinsky, Vicoww, Dicoww 

Current velocity (y-velocity component) Rhoair, Smagorinsky, Vicoww, Dicoww 

Current velocity (z-velocity component) Rhoair, Smagorinsky, Vicoww, Dicoww 

 

7.3.1. Temperature Sensitivity 

The Variance decomposition for the temperature with respect to the selected input parameters 

is given in this section. Here, Si represents the first order indices, and STi represents the total 

order indices. The spin-up time for the model to be stable was considered as two days, 

considering the stability of the results. Similar to the previous method, the Sobol’ indices were 

also calculated for different timesteps to have a complete picture of sensitivity measures. 

However, considering the time taken for the analysis for a considerable number of timesteps 

(1489 for one month), selecting a range of timesteps for calculations was decided. The average 

of the indices was taken for the period of 20 timesteps from 13-01-2005: 13:00 to 13-01-2005: 

23:00 (t = 890 to t = 910).  

The sensitivity indices obtained for the extracted results for temperature is given in Table 7.3.2. 

Table 7.3.2 Sensitivity indices for the temperature to the input parameters calculated using 

the Sobol’ method at FINO 3 

Parameter Si STi STi - Si 
Rank (based 

on Si) 

Rank 

(based on 

STi) 

Smagorinsky 0.1511 0.1639 0.0128 2 2 

Dalton 0.8338 0.8469 0.0132 1 1 

Stanton 0.0040 0.0048 0.0007 3 3 
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Figure 7.3.1 First-order and total-order Sobol’ indices for the location FINO3 

 

The first-order sensitivity index is a quantitative measure of the individual impact of a 

particular input on the output. According to the resulting values for Si for the selected three 

parameters, it was observed that the ranking of the inputs shows a similar order as in the Morris 

results. 83.4% of the output temperature variability is caused due to the variability of the Dalton 

coefficient alone. The second most sensitive parameter was observed as the Smagorinsky 

factor, which accounted for 15.1% of the output variability. The Stanton coefficient contributes 

to 0.4% of the variance of calculated temperature. All the first-order indices add up to about 

0.98. This indicates that the model output variability is caused mainly by the first-order effects, 

and the second and third-order sensitivities are relatively small. Thus, when considered these 

three input parameters, the Dalton coefficient, and the Smagorinsky factor account for about 

98% of the sensitivity of output temperature of the model.  

Total order Sobol’ indices are a measure for determining the different types of effects, 

including the linear, non-linear, additive, and interactions of any order, including first, second, 

and higher orders (Campolongo & Saltelli, 1997). According to (Saltelli A et al., 2008), inputs 

are called interacting when the output is associated with two or more input combinations. The 

first-order index gives information on how one single input parameter's variability creates the 

output variability. The difference between the total order index and the first-order index (STi – 

Si) indicates the output variabilities generated as a combined effect of a particular input with 

other input parameters.  

According to the above results, the Dalton coefficient has a (STi – Si) value of 0.0132, indicating 

that the factor interacts with the other two parameters and contributes 1.3% of the output 

temperature variability due to these interactions. Therefore, a high portion of the output 

variance is created due to two input parameters, including the coefficient of evaporative heat 

flux (Dalton) and the Smagorinsky coefficient used in calculating the sub-grid scale horizontal 
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viscosity. Consequently, these observations are comparable with the results obtained through 

Morris analysis when looking at the ranking order.         

Sobol’ indices calculated for temperature sensitivity for the other five locations are attached to 

Annex III. Further, Figure 7.3.3 represents the variation of the first-order and total-order Sobol’ 

indices for the temperature sensitivity depending on the analysis location. 

 

Figure 7.3.3 First-order and total-order Sobol’ indices for the temperature at the selected six 

locations 

From the above figure, it is evident that the sensitivity indices of each input parameter show 

only a slight variation depending on the analysis location. Therefore, using the results for 

FINO3 is sufficient to conclude the significance of the input parameters selected in the Sobol’ 

analysis of temperature.  

7.3.2. Sensitivity of Current velocity  

Similar to the analysis done in the Morris method, the spin-up period was considered two days 

for the model results. As explained in the previous section, considering the analysis time, 

selecting 20-time steps to calculate the Sobol’ indices were decided. After observing the 

temporal variation of the results for the velocity components of currents, a period between 

timesteps from 13-01-2005: 13:00 to 13-01-2005: 23:00 (t = 890 to t = 910) was selected for 

taking the average indices of the input factors for current velocities.   

7.3.3. Sensitivity of Current velocity (x-component) 

The variance decomposition for the current velocity in the x-direction concerning the selected 

input parameters is given in this section. The calculated indices for each input parameter are 

tabulated in Table 7.3.3 and plotted in Figure 7.3.3 for the location FINO3.  
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Table 7.3.3 Sensitivity indices for x-velocity to the input parameters using the Sobol’ method 

at FINO 3 

Parameter Si STi STi - Si 
Rank (based 

on Si) 

Rank (based 

on STi) 

Dicoww 0.0011 0.0153 0.0142 4 4 

Vicoww 0.0680 0.0962 0.0282 3 3 

Smagorinsky 0.1160 0.1572 0.0411 2 2 

Rhoair 0.7709 0.7790 0.0081 1 1 

According to the results of the variance-based analysis on x-velocity, it is observable that the 

most significant parameter for x-velocity calculation out of the selected four parameters is air 

density (Rhoair) which contributes to 77% of the total variability of the output x-velocity. 

Smagorinsky factor accounts for 11.6%, and uniform vertical eddy viscosity contributes to 

6.8% of the total variance of the output. However, the parameter Rhoair has a smaller value for 

the difference between the total-order and first-order index (STi - Si). This little value indicates 

that the air density does not have considerable interaction effects on the output x-velocity. 

Despite that, the other three factors, Smagorinsky and Vicoww, have considerable interaction 

effects (Smagorinsky factor contributes to 4.1% , Vicoww to 2.8% , and Dicoww to 1.4% of 

output variance) that create the output variabilities. Thus, we can assume that the three factors, 

Smagorinsky, Dicoww, and Vicoww interact with each other and contribute to the output 

variability.   

 

Figure 7.3.2 First-order and total-order Sobol’ indices for x-velocity for location FINO3 

The calculated values of Sobol’ indices for the other five locations are available in Annex III 

of this report. Figure 7.3.5 represents the variation of the first-order and total-order Sobol’ 

indices for the sensitivity of x-velocity depending on the analysis location.  
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Figure 7.3.5 First-order and total-order Sobol’ indices for x-velocity at the selected six 

locations 

According to the results shown in Figure 7.3.5, it is apparent that there is no significant 

difference in the importance of input parameters depending on the spatial location. However, 

at location P5, both the first order and total-order index have values more than 0.95, indicating 

that the x-velocity depends mainly on air density (Rhoair) and the less affected by the other 

four parameters.  

 

7.3.4. Sensitivity of Current velocity (y-velocity) 

The variance decomposition for the current velocity in the y-direction with respect to the 

selected input parameters is given in this section.  

Table 7.3.4 Sensitivity indices for y-velocity to the input parameters calculated using the 

Sobol’ method at FINO 3 

Parameter Si STi STi - Si 
Rank (based 

on Si) 

Rank (based 

on STi) 

Dicoww 0.0014 0.0056 0.0042 4 4 

Vicoww 0.0029 0.0149 0.0120 3 3 

Smagorinsky 0.1793 0.1434 -0.0360 2 2 

Rhoair 0.8472 0.7939 -0.0533 1 1 

Like the x-velocity, the most significant parameter for the y-velocity component was also 

identified as the air density (Rhoair). The Smagorinsky factor stands as the second most 

important input parameter. The contributions from uniform vertical eddy viscosity and eddy 

diffusivity to the variability of y-velocity are insignificant according to the results given by the 

above results.  



 

78 | P a g e  

 

In contrast to the results of the x-velocity of currents, here, the interaction effects can be 

observed for the input parameter Rhoair. For the simulated y-velocity, the interaction effects 

are mainly observed from Rhoair, Smagorinsky, and Vicoww.  

 

Figure 7.3.6 First-order and total-order Sobol’ indices for y-velocity for location FINO3 

The first order and total order Sobol’ indices calculated for the sensitivity of y-velocity for the 

selected six locations are presented in Figure 7.3.7. According to the two plots, it is visible that 

there is no significant difference in the importance of input parameters depending on the spatial 

location. However, at P1 and P4, the y-velocity depends mainly on the parameter, Rhoair, and 

the less affected by the other three parameters.  

 

Figure 7.3.7 First-order and total-order Sobol’ indices for y-velocity at the selected six 

locations 
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7.3.5. Sensitivity of Current velocity (z-velocity) 

The variance decomposition for the current velocity in the z-direction for the selected input 

parameters is shown below.  

Table 7.3.5 Sensitivity indices for z-velocity to the input parameters calculated using the 

Sobol’ method at FINO 3 

Parameter Si STi STi - Si 
Rank (based 

on Si) 

Rank (based 

on STi) 

Dicoww 0.0040 0.1238 0.1199 4 4 

Smagorinsky 0.0376 0.2729 0.2353 3 3 

Vicoww 0.1463 0.3751 0.2288 2 2 

Rhoair 0.5795 0.8155 0.2360 1 1 

The results obtained for the z-velocity of currents shows a different pattern oof sensitivty than 

the other two velocity components. Although the most significant factor was still identified to 

be the Rhoair, the 2nd most important factor was uniform viscosity in verticl direction 

(Vicoww). According to the above results, the Smagorinsky factor is less significant in 

modeling the vertical velocity. As described in section 5.2, Smagorinsky factor is used for 

calculating the horizontal turbulance of the model. Therefore we can assume that the vetical 

velocity is not much affected by the model’s horizontal turbulance.  

 

 

Figure 7.3.8 First-order and total-order Sobol’ indices for z-velocity for location FINO3 

The first order and total order Sobol’ indices calculated for the sensitivity of the z-velocity 

component for the selected six locations are presented in Figure 7.3.9. According to the two 

plots, it is visible that there is no significant difference in the importance of input parameters 

depending on the spatial location. However, the results obtained here for the location P4 are in 

contrast to the raking given by the Morris method.   
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Figure 7.3.9 First-order and total-order Sobol’ indices for z-velocity at the selected six 

locations 
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7.4. Comparison of the results of Morris and Sobol’ methods 

In this section, the sensitivity results obtained through the two methods are compared based on 

the values and definitions of each sensitivity indices. This comparison given here was made 

for the results of the analysis done at the FINO3 location. 

7.4.1. Temperature 

Table 7.4.1 shows the results obtained from the two methods for temperature sensitivity to the 

input factors at the location of FINO3. The correlation between sensitivity measures was 

estimated by calculating correlation coefficients for indices of the two methods.  

Table 7.4.1 Comparison of sensitivity indices for the temperature to the input parameters 

calculated using the Morris and Sobol’ methods at FINO3 

Parameter 

Morris method 

results (r=12) 

Sobol’ method results 

(N=100) 
Rank 

(based on 

Morris 

method) 

Rank 

(based 

on 

Sobol’ 

method) 

µ*  σ  Si STi STi - Si 

Smagorinsky 0.0560 0.0433 0.1511 0.1639 0.0128 2 2 

Dalton 0.2039 0.2003 0.8338 0.8469 0.0132 1 1 

Stanton 0.0271 0.0288 0.0040 0.0048 0.0007 3 3 

Vicouv 0.0000 0.0000 - - - 7 - 

Vicoww 0.0016 0.0021 - - - 4 - 

Dicouv 0.0000 0.0000 - - - 6 - 

Dicoww 0.0006 0.0008 - - - 5 - 

 

As discussed in Chapter 2, (Campolongo & Saltelli, 1997) have compared the correlation of 

the sensitivity indices of Morris and Sobol’ methods in a study carried out for analyzing the 

sensitivities of an environmental model. The above research suggested that the Morris absolute 

mean (µ*) is correlated with the total order index (STi) calculated by the Sobol’ method, and 

the Morris standard deviation (σ) is correlated with the measure (STi – Si). However, according 

to the definitions of these sensitivity measures, it is apparent that the absolute mean of EE can 

be used as an estimate of how a single input affects the output. The standard deviation of EE 

catches interactions as well as the non-linear and additive effects. Therefore, a perfect 

correlation cannot be expected between σ and STi – Si. This is evident from the values obtained 

through our results for σ and (STi – Si) for the three parameters shown in Figure 7.4.1, where 

the parameters with larger µ* values have higher STi , and higher values for (STi – Si) have 

comparatively higher σ values. Nevertheless, in the 2nd case, correlation is less between 

standard deviation σ and (STi – Si) for three input factors.  
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(a) (b) 

Figure 7.4.1 Correlation of sensitivity measures of Morris method and Sobol’ indices (a) 

Variation of Morris mean with Sobol’ STi (b) Variation of Morris standard deviation with 

(STi – Si) 

The correlation coefficients for the two measures are shown in Table 7.4.3. 

Table 7.4.2 Correlation between the sensitivity measures calculated by Morris and Sobol’ 

methods 

Sensitivity measures Correlation coefficient 

µ* and STi 0.9997 

σ and (STi – Si) 0.5866 

 

7.4.2. Current velocity (x-velocity component) 

The following table includes the results obtained from the two methods for the sensitivity of x-

velocity of currents to the input factors.  

Table 7.4.3 Comparison of sensitivity indices for the current velocity (x-velocity component) 

to the input parameters calculated using the Morris and Sobol’ methods at FINO 3 

Parameter 

Morris method 

results (r=12) 

Sobol’ method results 

(N=100) 
Rank 

(based on 

Morris 

method) 

Rank 

(based 

on 

Sobol’ 

method) 

µ*  σ  Si STi STi - Si 

Vicouv 0.00 0.00 - - - 6 - 

Vicoww 8.81E-04 1.12E-03 0.0680 0.0962 0.0282 3 3 

Dicouv 0.00 0.00 - - - 5 - 

Dicoww 3.31E-04 4.16E-04 0.0011 0.0153 0.0142 4 4 

Rhoair 1.12E-02 9.53E-03 0.7709 0.7790 0.0081 1 1 

Smagorinsky  3.65E-03 3.78E-03 0.1160 0.1572 0.0411 2 2 
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The input parameter rankings calculated by the two methods were similar for the x-velocity 

component of currents. Correlation coefficients were calculated between the above sensitivity 

measures to check the correlation between the sensitivity measures of the two methods. These 

values of correlation coefficients are given in Table 7.4.3. 

Table 7.4.4 Correlation between the sensitivity measures calculated by Morris and Sobol’ 

methods 

Sensitivity measures Correlation coefficient 

µ* and STi 0.9871 

σ and (STi – Si) -0.3813 

Like in the temperature analysis, the µ* shows a strong positive correlation with STi. However, 

the σ and the difference between two Sobol’ indices (STi – Si) do not show a good correlation, 

as observed in the temperature analysis. The reason might be the differences of the two 

sensitivity measures ((STi – Si) and σ) in capturing the non-linear effects and the interactions. 

For instance, in Figure 7.4.2. (b), the input factor Rhoair has a higher σ value and comparatively 

lower value for (STi – Si). Therefore, the factor can have fewer interaction effects while having 

more non-linear and additive effects, which results in a more significant standard deviation of 

EE and a small (STi – Si).  

 

(a) (b) 

Figure 7.4.2 Correlation of sensitivity measures of Morris method and Sobol’ indices (a) 

Variation of Morris mean (µ*) with Sobol’ STi (b) Variation of Morris standard deviation(σ) 

with (STi – Si) 
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7.4.3. Current velocity (y-velocity component) 

The table below summarizes the sensitivity measures calculated for output currents in the y-

direction by Morris and Sobol’ analysis methods for each input parameters considered in the 

analysis. Correlation coefficients between measures were calculated to assess the relationship 

between the sensitivity measures given by two analysis techniques.  

Table 7.4.5 Comparison of sensitivity indices for the current velocity (y-velocity component) 

to the input parameters calculated using the Morris and Sobol’ methods at FINO3 

Paramet

er 

Morris method 

results (r=12) 
Sobol’ method results (N=100) 

Rank 

(based 

on 

Morris 

method) 

Rank 

(based 

on 

Sobol’ 

method) 

µ*  σ  Si STi STi - Si 

Vicouv 
0.00E+0

0 

0.00E+0

0 
- - - 6 - 

Vicoww 6.28E-04 7.67E-04 0.0680 0.0962 0.0282 3 3 

Dicouv 
0.00E+0

0 

0.00E+0

0 
- - - 5 - 

Dicoww 2.82E-04 3.68E-04 0.0011 0.0153 0.0142 4 4 

Rhoair 1.15E-02 1.20E-02 0.7709 0.7790 0.0081 1 1 

Smagori

nsky  
3.31E-03 2.75E-03 0.1160 0.1572 0.0411 2 2 

The correlation coefficients calculated for the four measures from two methods are shown in 

Table 7.4.3. 

Table 7.4.6 Correlation between the sensitivity measures calculated by Morris and Sobol’ 

methods 

Sensitivity measures Correlation coefficient 

µ* and STi 0.9902 

σ and (STi – Si) -0.5245 

 

Same as the relationship observed in the results for x-velocity, a clear positive correlation was 

observed between the absolute mean (µ*) of EE and the total-order Sobol’ index (STi). The 

standard deviation (σ ) of EE and the (STi - Si) do not clearly correlate. The input factor air 

density (Rhoair) is highly significant on the y-velocity and comparatively less interaction with 

the other three input parameters. Smagorinsky factor shows a higher level of interactions that 

cause the variability of output y-velocity of currents.  
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(a) (b) 

Figure 7.4.3 Correlation of sensitivity measures of Morris method and Sobol’ indices (a) 

Variation of Morris mean with Sobol’ STi (b) Variation of Morris standard deviation with (STi 

– Si) 

7.4.4. Current velocity (Z-velocity component) 

This section compares sensitivity measures calculated using the two analysis techniques for 

output current velocity in the z-direction. Correlation between sensitivity measures has been 

calculated to estimate the relation between the measures from two methods.  

Table 7.4.7 Comparison of sensitivity indices for the current velocity (z-velocity component) 

to the input parameters calculated using the Morris and Sobol’ methods at FINO 3 

Paramet

er 

Morris method 

results (r=12) 
Sobol’ method results (N=100) 

Rank 

(based 

on 

Morris 

method) 

Rank 

(based 

on 

Sobol’ 

method) 

µ*  σ  Si STi STi - Si 

Vicouv 
0.00E+0

0 

0.00E+0

0 
- - - 6 - 

Vicoww 1.33E-06 1.68E-06 0.1463 0.3751 0.2288 2 2 

Dicouv 
0.00E+0

0 

0.00E+0

0 
- - - 5 - 

Dicoww 3.88E-07 5.74E-07 0.0040 0.1238 0.1199 4 4 

Rhoair 4.04E-06 4.41E-06 0.5795 0.8155 0.2360 1 1 

Smagori

nsky  
1.17E-06 1.28E-06 0.0376 0.2729 0.2353 3 3 

 

The correlation coefficients calculated for the two measures are shown in Table 7.4.3.  
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Table 7.4.8 Correlation between the sensitivity measures calculated by Morris and Sobol’ 

methods 

Sensitivity measures Correlation coefficient 

µ* and STi 0.9928 

σ and (STi – Si) 0.5820 

Similar to the relationships observed in x-velocity and y-velocity, the sensitivity measures the 

absolute mean (µ*) of EE and the total-order Sobol’ index (STi) are positively correlated. In 

contrast to the x and y velocity components, the standard deviation (σ ) of EE and the (STi - Si) 

depict a positive correlation with each other. The input factor air density (Rhoair) is highly 

significant on the y-velocity and comparatively more minor interaction with the other three 

input parameters.   

 

 

(a) (b) 

Figure 7.4.4 Correlation of Morris method and Sobol’ indices (a) Variation of Morris mean 

with Sobol’ STi (b) Variation of Morris standard deviation with (STi – Si) 
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Chapter 8: Summary, Conclusions and 
Recommendations 

8.1. Summary and Conclusions 

The main goal of this research was to apply different sensitivity analysis techniques for a 

hydrodynamic model to determine the most influential parameters and their significance for 

two selected output variables of the model, which were temperature and current velocity. After 

considering the model characteristics, complexity, and computational cost, the selection of 

analysis techniques for achieving this objective was carried out. Morris method, a frequently 

used local sensitivity analysis technique, was adopted first to screen the input parameters before 

applying the global sensitivity analysis technique, the variance-based Sobol’ method. The 

Dutch Continental Shelf Model (DCSM) is a hydrodynamic model developed using the D-

Flow-FM model suite of the Delft 3D software. The DCSM was used for testing the 

sensitivities of the above two variables to a selected set of input parameters. In the Morris 

method, the selected inputs were sampled using the One-At-a-Time sampling, where the 

samples are generated by changing one parameter at a time for each consecutive sample. In the 

variance-based method, the quasi-Monte Carlo sampling scheme, defined in section 2.2, was 

used to generate the input samples for the model.  

• Based on the observations, the simulated temperature was most sensitive to the Dalton 

coefficient for evaporative heat flux from the selected set of the input parameters. The 

second and third most influential input factors were the Smagorinsky coefficient and the 

Stanton coefficient for convective heat flux. The results agree with the previous studies 

((Twigt, 2006) ; (Baracchini et al., 2020)) on the temperature sensitivity of the 2D and 3D 

hydrodynamic models. (Twigt, 2006) developed a 3D hydrodynamic model for the South 

China Sea using the Delft-3D Flow model suite. The above study results demonstrated that 

these two coefficients (Dalton and Stanton number) significantly affect temperature 

modeling in the heat flux model. Further, the results obtained in our analysis correspond 

with the sensitivity results obtained by Baracchini et al. (2020) to apply an automated 

calibration to a 3D lake hydrodynamic model. The authors have estimated that the Dalton 

number is more sensitive to the temperature calibration in the model where the Stanton 

number does not have the same impact as the Dalton coefficient on modeled temperature.  

 

• According to the Morris sensitivity analysis results on current velocities, the most 

significant factors were the air density (Rhoair), the Smagorinsky factor in horizontal 

turbulence, and the uniform vertical eddy diffusivity and uniform vertical eddy viscosity 

coefficients. The two factors, uniform horizontal eddy viscosity (Vicouv) and uniform 

horizontal eddy diffusivity (Dicouv) were identified as less influential to the modeled 

current velocities. However, this contrasts with the previous findings of the sensitivity of 

currents to uniform background horizontal eddy viscosity (vh, back) (Deltares, 2009). In a 

study done based on Delft3D hydrodynamic model validation for a nearshore zone, it has 

been found that the longshore currents are strongly affected by the uniform background 

eddy viscosity parameter.  
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• The global sensitivity analysis gives more comprehensive details on the sensitivities of 

model outputs. It provides a quantitative measure of sensitivities to determine the 

significance of the selected input parameters on the output calculations in the 

hydrodynamic model. The variance-based method is a global SA technique that can be 

applied to any model irrespective of the model complexity. The results of the variance-

based Sobol’ method highlights that the variability of the Dalton coefficient contributes to 

nearly 84% of the simulated temperature variance out of these three most significant input 

parameters used in this study. The variance of the Smagorinsky factor accounts for around 

16% of the output temperature variance, and the Stanton coefficient does not impact much 

on the temperature compared to the other two factors. The input Rhoair contributes to 78% 

of the variance of output current velocity in x-direction, while the Smagorinsky factor 

affects 16%, and Vicoww contributes 9.6%. The sensitivity of y-velocity also shows a 

similar pattern, where the Rhoair parameter causes 79% of the variability and Smagorinsky 

causes 14%, while Vicoww contributes 1.5%. When considered the variance of z-velocity, 

Rhoair has a contribution of 81%, Smagorinsky factor has 37%, and Vicoww has 27%. The 

interaction effects on outputs were also identified using the Sobol’ indices. The rankings 

obtained for both temperature and currents velocities from the two methods are comparable, 

where the order of ranking is similar in both methods.   

 

• When comparing the sensitivity measures obtained from the two methods, it was observed 

that there is a strong correlation between the sensitivity measure, the absolute mean of the 

EE (µ*) calculated in the Morris method, and the total-order index (STi) calculated in the 

Sobol’ method. The above relationships confirm the results obtained by the previous studies 

(Campolongo & Saltelli, 1997) on the correlations between the sensitivity measures of 

these two methods. However, the correlation between the other two indices, (the standard 

deviation (σ) of the EE and difference of total order and first-order Sobol’ indices (STi - Si)) 

does not conform with the experimental results of (Campolongo & Saltelli, 1997), where a 

perfect correlation could not be observed between the two measures (σ) and (STi - Si). 

However, this can be due to the differences of the two indices in their abilities to capture 

the effects due to interactions, non-linearities, and additive effects.   

 

• As mentioned in Chapter 1, these sensitivity analysis results will be used to calibrate the 

Dutch Continental Shelf Model (DCSM) to the project area. Moreover, these model results 

will be coupled to a water quality model to identify the suitable areas for Blue mussel and 

Seaweed cultivation in the FINO3 and identify the new sites with favorable conditions for 

the above aquaculture activities.  

 

• The Python scripts developed for this analysis have the flexibility to use in sensitivity 

analyses of any other output parameters of the DCSM model and also for any D-Flow FM 

model. This has to be done by correctly assigning the output variable name and the selected 

input parameters that are going to be analyzed. Further, these analysis scripts are written in 

a generic form and can be adjusted easily to be used in the sensitivity analyses for the other 

numerical models developed using Delft3D, such as water quality models (D-WAQ). 

Therefore, these Python scripts can be used in the SA of water quality models, which will 
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be coupled to the existing hydrodynamic model of the North Sea (DCSM) as the next step 

of the project. 

An overview of the results obtained for sensitivity measures at FINO3 location using the 

Morris method [left] and Sobol’ methods [right] are given below. The x-axis of plots 

created for the Morris method changes the scale as the measures depend on the resulting 

temperature and current velocity values.   

 
Figure 8.1.1 Overview of results for the sensitivity analysis of Temperature and current 

velocity  
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8.2. Limitations and Assumptions of the study 

• The high computational demand of the North Sea hydrodynamic model used in this 

research is one major hindrance to test for a significant number of input parameters. This 

limitation was addressed by a preliminary screening process based on the literature and 

expert judgment, assuming the other parameters do not significantly impact the output 

variables. 

 

• Because of the above limitation of computation demand and the complexity of generating 

spatially varying inputs using Morris and Sobol’ methods, it was decided to focus only on 

spatially uniform input factors. Selecting only the spatially uniform input parameters is 

another major limitation of this study. This assumption can result in omitting some of the 

input parameters that are sensitive to the two outputs.  

 

• The DCSM model is developed with two different grid resolutions (4nm and 0.5nm). The 

coarse grid is a uniform grid with 4nm, and the 0.5nm grid is a more refined grid where the 

grid cell size varies based on the distance to the coast. In the 0.5nm grid, coarser cell size 

is used in open boundaries and deep water, where the resolution is increased up to 0.5nm 

in shallow waters in nearshore areas. The DCSM is computationally expensive (18 hours 

of runtime for simulating one year with 4nm grid resolution and 3.5 days for a one-year 

simulation with 0.5nm resolution). If the 0.5nm grid had been used, the model would have 

taken an even higher computation time. Therefore, it was decided to use the coarser grid 

resolution (4nm uniform grid) in this research, assuming the sensitivity results would not 

change in the model with the finer grid.  

 

• The sensitivity tests were carried out based on results of the hydrodynamic model simulated 

for one month, which can affect the ability of these results to predict the effect of seasonal 

variations on the sensitivity of output parameters.  

 

• At the sampling stage, we initially assume possible ranges of parameters. These ranges can 

affect the sensitivity analysis results. Therefore, these results obtained in this study from 

Morris and Sobol’ methods may change when tested for a different parameter range. 

8.3. Recommendation for Future work 

 

• This study on sensitivity analyses for the temperature and current velocities reduces the 

need to explore parameter space for future calibration and modeling work. As discovered 

by the results of the two methods, the Dalton coefficient, Smagorinsky factor, and the 

Stanton coefficient will be significant in simulating the temperature. However, these results 

are specific to a location and a specific period of the year. Therefore, subsequent work can 

investigate the spatial and temporal variations of sensitivity of temperature.  

 

• The spatial variation of the two output sensitivities was analyzed only for few selected 

locations inside and surrounding the FINO3 research platform. However, it is suggested to 
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analyze the sensitivities to a broader area of the North Sea by selecting different locations 

covering the whole domain of the grid.  

 

• Our study considers the sensitivity of physical parameters to the simulated temperature and 

currents. However, the numerical parameters (computation grid size, computation time 

step, maximum Courant number, smallest allowed timestep, and the other numerical 

parameters assigned to the model) could also be essential input factors in modeling the 

outputs in the D-Flow FM model. Therefore, it is recommended to study the sensitivities 

of these numerical input factors as well. 

 

• On account of the high computation demand, the analysis was carried out only for one 

month of the year. Thus, it is recommended to analyze the sensitivities of temperature and 

current velocities for different periods of the year to capture the seasonality of the 

sensitivity measures.  

o The temperature's highest variability of the measured data is observed in the 

summer months (June, July, and August). Therefore, the sensitivity of 

temperature needs to be studied for these periods. 

 

Figure 8.3.1 Measured data for the temperature at FINO3 for the year 2017 (Data source: 

(BSH, 2021)) 

• The study uses only two analysis methods, the Elementary Effect method (Morris method) 

and the Variance-based Sobol’ method, because of the high computation demand for the 

D-Flow FM model for the North Sea. However, in the Variance-based Sobol’ analysis, the 

sample size was selected as 100, which is the minimum recommended sample size 

mentioned in the literature. Therefore, the method can be used for increased sample sizes 

in future work to verify the results obtained in this research.  
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• According to the Sobol’ method results, there are differences in the degree of contribution 

of input parameter variances to the output variance based on the location. Therefore, 

studying these spatial variations of global sensitivity should be another important aspect 

for future research on sensitivity analysis. 

 

• Even though the global sensitivity analysis techniques provide extensive details of the 

sensitivity of input parameters to a specific output, these methods demand a substantial 

computational cost in terms of the number of model runs. Therefore, research on extensions 

to the local methods or search for new techniques with lower computation demand is a 

critical aspect of sensitivity analysis.  
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Annex I, Annex II 
Refer to the digital annexes, Annex I and Annex II 

Annex I - Python Scripts for Morris Method  

• Script for Creating model setup files with Morris samples 

• Script for Sensitivity Analysis using Morris method 

Annex II - Python Scripts for Variance-based Sobol’ Method  

• Script for Creating model setup files with Sobol’ samples 

• Script for Sensitivity Analysis using Sobol’ method 
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Annex III 
Sensitivity Results for Morris method 

• Sensitivity of Temperature  

Table 8.3.1 Sensitivity of temperature to the input parameters calculated using Morris method 

(for r = 10, 12, and 20) at locations P1 to P5 

Locat

ion 

Parame

ter 

Trial 1 (r = 10) Trial 2 (r = 12) Trial 3 (r = 20) 

µ(°C) 
µ*(°C

) 
σ(°C) 

Ra

nk 
µ (°C) 

µ*(°C

) 
σ(°C) 

Ra

nk 
µ(°C) 

µ*(°C

) 
σ(°C) 

Ra

nk 

P1 

Smagor

insky 

-

0.002

6 

0.016

3 

0.014

8 
3 -0.004 0.015 0.015 3 

-

0.002

3 

0.017

3 

0.015

4 
3 

Dalton 

-

0.039

4 

0.214

9 

0.207

5 
1 -0.069 0.200 0.203 1 

-

0.060

4 

0.198

6 

0.202

6 
1 

Stanton 

-

0.000

4 

0.028

7 

0.026

0 
2 0.002 0.027 0.025 2 

-

0.001

6 

0.026

6 

0.025

0 
2 

Vicouv 
0.000

0 

0.000

0 

0.000

0 
7 0.000 0.000 0.000 7 

0.000

0 

0.000

0 

0.000

0 
7 

Vicoww 

-

0.000

2 

0.001

5 

0.001

2 
4 0.000 0.001 0.001 4 

0.000

1 

0.001

5 

0.001

0 
4 

Dicouv 
0.000

0 

0.000

0 

0.000

0 
6 0.000 0.000 0.000 6 

0.000

0 

0.000

0 

0.000

0 
6 

Dicoww 
0.000

1 

0.000

9 

0.000

7 
5 0.000 0.001 0.001 5 

0.000

3 

0.001

0 

0.000

8 
5 

P2 

Smagor

insky 

-

0.044

2 

0.104

7 

0.107

9 
2 -0.071 0.084 0.106 2 

-

0.034

8 

0.106

1 

0.108

1 
2 

Dalton 

-

0.041

5 

0.233

7 

0.225

4 
1 -0.076 0.217 0.221 1 

-

0.067

3 

0.215

7 

0.220

6 
1 

Stanton 

-

0.001

2 

0.035

9 

0.032

9 
3 -0.002 0.035 0.033 3 

-

0.001

8 

0.034

9 

0.032

7 
3 

Vicouv 
0.000

0 

0.000

0 

0.000

0 
7 0.000 0.000 0.000 7 

0.000

0 

0.000

0 

0.000

0 
7 

Vicoww 
0.000

2 

0.005

1 

0.004

4 
4 0.000 0.005 0.004 4 

0.000

0 

0.004

7 

0.003

9 
4 

Dicouv 
0.000

0 

0.000

0 

0.000

0 
6 0.000 0.000 0.000 6 

0.000

0 

0.000

0 

0.000

0 
6 

Dicoww 
0.000

4 

0.001

4 

0.001

1 
5 0.000 0.001 0.001 5 

0.000

2 

0.001

1 

0.000

8 
5 

P3 

Smagor

insky 

-

0.005

2 

0.016

6 

0.015

7 
3 -0.071 0.084 0.106 2 

-

0.005

9 

0.017

6 

0.016

9 
3 

Dalton 

-

0.041

0 

0.224

2 

0.216

5 
1 -0.076 0.217 0.221 1 

-

0.063

1 

0.207

1 

0.211

4 
1 

Stanton 

-

0.000

4 

0.031

4 

0.028

7 
2 -0.002 0.035 0.033 3 

-

0.001

4 

0.029

5 

0.028

0 
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Vicouv 
0.000

0 

0.000

0 

0.000

0 
7 0.000 0.000 0.000 7 

0.000

0 

0.000

0 

0.000

0 
7 

Vicoww 
0.000
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0.001
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0.001

0 
4 0.000 0.005 0.004 4 

0.000

0 

0.001

1 

0.000

8 
4 

Dicouv 
0.000
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0.000
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0.000

0 
6 0.000 0.000 0.000 6 

0.000

0 

0.000

0 

0.000

0 
6 

Dicoww 
0.000

1 

0.000

6 

0.000

5 
5 0.000 0.001 0.001 5 

0.000

1 

0.000

5 

0.000

5 
5 

P4 

Smagor

insky 

-

0.010

4 

0.031

9 

0.030

7 
2 

-

0.019

7 

0.021

4 

0.026

8 
2 

-

0.010

7 

0.031

8 

0.031

0 
2 

Dalton 

-

0.037

5 

0.207

1 

0.199

9 
1 

-

0.066

9 

0.192

4 

0.195

8 
1 

-

0.058

6 

0.191

4 

0.195

4 
1 

Stanton 

-

0.000

7 

0.025

3 

0.023

0 
3 

0.002

0 

0.024

2 

0.022

5 
3 

-

0.001

8 

0.023

6 

0.022

1 
3 

Vicouv 
0.000

0 

0.000

0 

0.000

0 
7 

0.000

0 

0.000

0 

0.000

0 
7 

0.000

0 

0.000

0 

0.000

0 
7 

Vicoww 
0.000

1 

0.001

5 

0.001

3 
4 

0.000

1 

0.001

2 

0.001

0 
4 

-

0.000

1 

0.001

3 

0.001

1 
4 

Dicouv 
0.000

0 

0.000

0 

0.000

0 
6 

0.000

0 

0.000

0 

0.000

0 
6 

0.000

0 

0.000

0 

0.000

0 
6 

Dicoww 
0.000

1 

0.000

4 

0.000

4 
5 

0.000

0 

0.000

5 

0.000

4 
5 

0.000

1 

0.000

4 

0.000

4 
5 

P5 

Smagor

insky 

-

0.020

6 

0.055

1 

0.055

6 
2 

-

0.035

6 

0.038

7 

0.050

7 
2 

-

0.017

5 

0.053

8 

0.054

4 
2 

Dalton 

-

0.032

5 

0.184

0 

0.177

5 
1 

-

0.059

7 

0.170

0 

0.173

3 
1 

-

0.052

2 

0.169

5 

0.173

1 
1 

Stanton 

-

0.000

8 

0.021

9 

0.019

9 
3 

0.000

5 

0.021

5 

0.020

0 
3 

-

0.001

3 

0.021

1 

0.019

7 
3 

Vicouv 
0.000

0 

0.000

0 

0.000

0 
7 

0.000

0 

0.000

0 

0.000

0 
7 

0.000

0 

0.000

0 

0.000

0 
7 

Vicoww 
0.000

1 

0.001

8 

0.001

5 
4 

0.000

0 

0.001

5 

0.001

3 
4 

-

0.000

2 

0.001

6 

0.001

3 
4 

Dicouv 
0.000

0 

0.000

0 

0.000

0 
6 

0.000

0 

0.000

0 

0.000

0 
6 

0.000

0 

0.000

0 

0.000

0 
6 

Dicoww 
0.000

3 

0.000

8 

0.000

7 
5 

0.000

0 

0.000

9 

0.000

7 
5 

0.000

3 

0.000

8 

0.000

7 
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• Sensitivity of Temperature at each location 

 

Figure 1. Temperature sensitivity to inputs parameters - Variation of standard deviation with 

absolute mean of EE 
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• Sensitivity of Current velocity (x-component) 

Table 8.3.6 Sensitivity of x-velocity to the input parameters calculated using Morris method 

(for r = 10, 12, and 20) at locations P1 to P5 

Locat

ion 

Parame

ter 

Trial 1 (r = 10) Trial 2 (r = 12) Trial 3 (r = 20) 

µ(°C) 
µ*(°C

) 
σ(°C) 

Ra

nk 
µ (°C) 

µ*(°C

) 
σ(°C) 

Ra

nk 
µ(°C) 

µ*(°C

) 
σ(°C) 

Ra

nk 

P1 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

Vicoww 

-

1.08E

-04 

1.54E

-03 

1.97E

-03 
3 

-

4.06E

-04 

1.98E

-03 

1.48E

-03 
3 

-

3.99E

-06 

1.95E

-03 

1.35E

-03 
3 

Dicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

Dicoww 
3.72E

-05 

6.00E

-04 

8.05E

-04 
4 

-

1.16E

-04 

9.25E

-04 

6.49E

-04 
4 

1.03E

-04 

8.14E

-04 

5.46E

-04 
4 

Rhoair 
3.14E

-03 

1.39E

-02 

1.19E

-02 
1 

1.17E

-03 

1.52E

-02 

1.45E

-02 
1 

-

1.24E

-04 

1.49E

-02 

1.43E

-02 
1 

Smagor

insky  

5.04E

-04 

3.74E

-03 

4.02E

-03 
2 

8.87E

-04 

3.92E

-03 

4.02E

-03 
2 

7.70E

-04 

4.17E

-03 

3.79E

-03 
2 

P2 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

Vicoww 

-

1.21E

-06 

1.55E

-03 

1.74E

-03 
3 

-

6.60E

-05 

1.32E

-03 

1.54E

-03 
3 

-

2.30E

-05 

1.43E

-03 

1.66E

-03 
3 

Dicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

Dicoww 
1.47E

-05 

2.88E

-04 

3.72E

-04 
4 

1.61E

-05 

2.91E

-04 

4.01E

-04 
4 

8.90E

-06 

2.75E

-04 

3.86E

-04 
4 

Rhoair 
9.34E

-03 

1.90E

-02 

1.60E

-02 
1 

2.58E

-03 

1.91E

-02 

1.97E

-02 
1 

-

1.37E

-05 

1.91E

-02 

1.97E

-02 
1 

Smagor

insky  

5.50E

-04 

4.20E

-03 

4.25E

-03 
2 

9.12E

-04 

3.93E

-03 

3.20E

-03 
2 

4.32E

-04 

4.08E

-03 

4.12E

-03 
2 

P3 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

Vicoww 

-

1.32E

-04 

1.18E

-03 

1.34E

-03 
3 

-

1.78E

-04 

9.95E

-04 

1.17E

-03 
3 

5.34E

-05 

1.09E

-03 

1.28E

-03 
3 

Dicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

Dicoww 
5.13E

-05 

2.64E

-04 

3.50E

-04 
4 

2.98E

-05 

2.87E

-04 

4.03E

-04 
4 

4.70E

-05 

2.64E

-04 

3.77E

-04 
4 

Rhoair 
8.95E

-03 

1.86E

-02 

1.57E

-02 
1 

2.62E

-03 

1.89E

-02 

1.95E

-02 
1 

-

6.20E

-05 

1.89E

-02 

1.95E

-02 
1 

Smagor

insky  

-

3.46E

-05 

3.25E

-03 

3.39E

-03 
2 

2.17E

-04 

2.94E

-03 

2.47E

-03 
2 

1.83E

-04 

3.02E

-03 

3.14E

-03 
2 

P4 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

Vicoww 

-

4.77E

-05 

1.02E

-03 

1.19E

-03 
3 

-

7.29E

-05 

8.57E

-04 

1.01E

-03 
3 

1.65E

-05 

9.07E

-04 

1.07E

-03 
3 
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Dicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

Dicoww 
5.16E

-06 

2.67E

-04 

3.48E

-04 
4 

-

1.83E

-06 

2.78E

-04 

3.88E

-04 
4 

-

1.85E

-05 

2.60E

-04 

3.50E

-04 
4 

Rhoair 
1.98E

-03 

1.18E

-02 

1.00E

-02 
1 

4.73E

-04 

1.20E

-02 

1.24E

-02 
1 

-

7.33E

-06 

1.20E

-02 

1.23E

-02 
1 

Smagor

insky  

6.85E

-05 

2.60E

-03 

2.77E

-03 
2 

5.96E

-05 

2.23E

-03 

1.87E

-03 
2 

-

2.45E

-05 

2.45E

-03 

2.57E

-03 
2 

P5 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

0.00E

+00 

0.00E

+00 

0.00E

+00 
6 

Vicoww 

-

3.82E

-05 

1.04E

-03 

1.16E

-03 
3 

-

7.35E

-05 

8.73E

-04 

1.01E

-03 
3 

2.47E

-05 

9.60E

-04 

1.10E

-03 
3 

Dicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

0.00E

+00 

0.00E

+00 

0.00E

+00 
5 

Dicoww 

-

2.96E

-06 

2.97E

-04 

3.52E

-04 
4 

-

1.24E

-05 

2.84E

-04 

3.54E

-04 
4 

6.12E

-06 

2.98E

-04 

3.63E

-04 
4 

Rhoair 
3.01E

-03 

1.16E

-02 

9.77E

-03 
1 

1.01E

-03 

1.18E

-02 

1.21E

-02 
1 

-

8.64E

-05 

1.17E

-02 

1.21E

-02 
1 

Smagor

insky  

2.39E

-04 

2.25E

-03 

2.32E

-03 
2 

2.86E

-04 

2.13E

-03 

1.77E

-03 
2 

1.67E

-04 

2.27E

-03 

2.33E

-03 
2 
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• Sensitivity of Current velocity (x-component) at each location 

 

 

Figure 2. Sensitivity of x-velocity to inputs parameters - Variation of standard deviation with 

absolute mean of EE 
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• Sensitivity of Current velocity (y-component) 

Table 8.3.6 Sensitivity of y-velocity to the input parameters calculated using Morris method 

(for r = 10, 12, and 20) at locations P1 to P5 

Locat

ion 

Parame

ter 

Trial 1 (r = 10) Trial 2 (r = 12) Trial 3 (r = 20) 

µ(°C) 
µ*(°C

) 
σ(°C) 

Ra

nk 
µ (°C) 

µ*(°C

) 
σ(°C) 

Ra

nk 
µ(°C) 

µ*(°C

) 
σ(°C) 

Ra

nk 

P1 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicouv 

-

2.13E

-05 

4.13E

-04 

5.34E

-04 4 

5.88E

-05 

4.59E

-04 

6.30E

-04 4 

-

5.82E

-05 

4.24E

-04 

6.01E

-04 4 

Dicoww 7.42E

-05 

9.40E

-04 

1.15E

-03 3 

2.13E

-04 

8.64E

-04 

1.09E

-03 3 

-

3.63E

-05 

8.53E

-04 

1.11E

-03 3 

Rhoair 

-

3.55E

-04 

3.56E

-03 

3.81E

-03 2 

-

1.02E

-03 

3.27E

-03 

2.86E

-03 2 

-

6.37E

-04 

3.50E

-03 

3.64E

-03 2 

Smagor

insky  
3.76E

-03 

1.16E

-02 

9.97E

-03 1 

9.58E

-04 

1.19E

-02 

1.24E

-02 1 

-

3.07E

-05 

1.17E

-02 

1.22E

-02 1 

P2 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicouv 
9.12E

-06 

3.17E

-04 

4.43E

-04 4 

5.93E

-06 

3.00E

-04 

4.49E

-04 4 

3.90E

-05 

2.95E

-04 

4.32E

-04 4 

Dicoww 1.21E

-04 

1.07E

-03 

1.26E

-03 3 

1.10E

-04 

8.96E

-04 

1.10E

-03 3 

-

7.32E

-05 

9.71E

-04 

1.18E

-03 3 

Rhoair 

-

8.20E

-04 

3.15E

-03 

3.33E

-03 2 

-

1.66E

-03 

2.82E

-03 

2.41E

-03 2 

-

7.68E

-04 

3.01E

-03 

3.16E

-03 2 

Smagor

insky  
3.03E

-03 

8.17E

-03 

7.01E

-03 1 

8.66E

-04 

8.11E

-03 

8.46E

-03 1 

-

2.51E

-05 

8.13E

-03 

8.44E

-03 1 

P3 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicouv 

-

5.37E

-06 

2.48E

-04 

3.43E

-04 4 

1.72E

-05 

2.64E

-04 

3.72E

-04 4 

-

6.10E

-06 

2.61E

-04 

3.79E

-04 4 

Dicoww 5.52E

-05 

8.30E

-04 

9.71E

-04 3 

4.34E

-05 

7.15E

-04 

8.71E

-04 3 

-

3.32E

-05 

7.64E

-04 

9.31E

-04 3 

Rhoair 

-

1.01E

-03 

5.84E

-03 

5.90E

-03 2 

-

1.58E

-03 

5.49E

-03 

4.36E

-03 2 

-

7.73E

-04 

5.81E

-03 

5.84E

-03 2 

Smagor

insky  

3.30E

-03 

9.85E

-03 

8.36E

-03 1 

8.92E

-04 

1.01E

-02 

1.05E

-02 1 

2.56E

-05 

1.01E

-02 

1.05E

-02 1 

P4 Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 
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Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicouv 

-

1.79E

-05 

2.79E

-04 

3.51E

-04 4 

-

7.50E

-06 

2.81E

-04 

3.82E

-04 4 

-

8.07E

-06 

2.87E

-04 

3.80E

-04 4 

Dicoww 3.62E

-05 

8.18E

-04 

9.61E

-04 3 

1.64E

-05 

7.13E

-04 

8.70E

-04 3 

-

1.99E

-05 

7.33E

-04 

8.92E

-04 3 

Rhoair 
1.53E

-04 

1.78E

-03 

1.93E

-03 2 

2.75E

-04 

1.59E

-03 

1.43E

-03 2 

1.57E

-04 

1.65E

-03 

1.76E

-03 2 

Smagor

insky  
5.05E

-03 

1.29E

-02 

1.09E

-02 1 

1.51E

-03 

1.32E

-02 

1.37E

-02 1 

-

4.55E

-05 

1.32E

-02 

1.36E

-02 1 

P5 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicouv 6.31E

-06 

2.89E

-04 

3.57E

-04 4 

-

6.77E

-06 

2.66E

-04 

3.38E

-04 4 

4.34E

-06 

2.90E

-04 

3.65E

-04 4 

Dicoww 
8.61E

-06 

8.42E

-04 

9.65E

-04 3 

8.26E

-07 

7.04E

-04 

8.38E

-04 3 

1.42E

-06 

7.73E

-04 

9.14E

-04 3 

Rhoair 

-

6.05E

-05 

1.76E

-03 

1.86E

-03 2 

-

1.13E

-04 

1.55E

-03 

1.30E

-03 2 

-

1.99E

-05 

1.64E

-03 

1.72E

-03 2 

Smagor

insky  
5.41E

-03 

1.31E

-02 

1.11E

-02 1 

1.54E

-03 

1.34E

-02 

1.38E

-02 1 

-

2.70E

-05 

1.33E

-02 

1.37E

-02 1 
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• Sensitivity of Current velocity (y-component) at each location 

 

 

Figure 3. Sensitivity of y-velocity to inputs parameters - Variation of standard deviation with 

absolute mean of EE 
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• Sensitivity of Current velocity (z-component) 

Table 8.3.6 Sensitivity of z-velocity to the input parameters calculated using Morris method 

(for r = 10, 12, and 20) at locations P1 to P5 

Locat

ion 

Parame

ter 

Trial 1 (r = 10) Trial 2 (r = 12) Trial 3 (r = 20) 

µ(°C) 
µ*(°C

) 
σ(°C) 

Ra

nk 
µ (°C) 

µ*(°C

) 
σ(°C) 

Ra

nk 
µ(°C) 

µ*(°C

) 
σ(°C) 

Ra

nk 

P1 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicouv 

-

4.51E

-09 

4.93E

-07 

7.17E

-07 4 

-

9.18E

-09 

4.58E

-07 

6.80E

-07 4 

1.33E

-08 

4.90E

-07 

7.30E

-07 4 

Dicoww 

-

4.59E

-08 

1.33E

-06 

1.60E

-06 3 

1.17E

-07 

1.19E

-06 

1.37E

-06 3 

2.98E

-08 

1.23E

-06 

1.50E

-06 3 

Rhoair 

-

7.34E

-09 

1.80E

-06 

2.15E

-06 2 

1.29E

-08 

1.49E

-06 

1.87E

-06 2 

8.48E

-09 

1.63E

-06 

2.02E

-06 2 

Smagor

insky  

-

3.75E

-08 

3.62E

-06 

3.41E

-06 1 

-

1.78E

-08 

3.71E

-06 

4.11E

-06 1 

3.24E

-08 

3.66E

-06 

4.03E

-06 1 

P2 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicouv 
2.68E

-09 

4.64E

-07 

7.06E

-07 4 

2.55E

-09 

4.16E

-07 

6.34E

-07 4 

1.93E

-09 

4.77E

-07 

7.39E

-07 4 

Dicoww 
1.23E

-07 

1.31E

-06 

1.57E

-06 3 

2.12E

-07 

1.17E

-06 

1.30E

-06 3 

9.41E

-08 

1.23E

-06 

1.50E

-06 3 

Rhoair 

-

2.30E

-09 

2.00E

-06 

2.38E

-06 2 

1.21E

-09 

1.60E

-06 

2.02E

-06 2 

-

4.09E

-10 

1.79E

-06 

2.23E

-06 2 

Smagor

insky  

-

2.22E

-08 

4.70E

-06 

4.31E

-06 1 

-

8.72E

-09 

4.77E

-06 

5.20E

-06 1 

5.92E

-10 

4.74E

-06 

5.14E

-06 1 

P3 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

Dicouv 
7.19E

-09 

4.74E

-07 

7.06E

-07 4 

1.58E

-11 

4.32E

-07 

6.49E

-07 4 

3.30E

-09 

4.85E

-07 

7.35E

-07 4 

Dicoww 
1.31E

-07 

1.52E

-06 

1.77E

-06 3 

2.54E

-07 

1.40E

-06 

1.48E

-06 3 

1.05E

-07 

1.45E

-06 

1.69E

-06 3 

Rhoair 

-

8.72E

-10 

1.99E

-06 

2.37E

-06 2 

2.24E

-09 

1.60E

-06 

2.02E

-06 2 

2.09E

-10 

1.78E

-06 

2.22E

-06 2 

Smagor

insky  

-

3.46E

-08 

4.08E

-06 

3.79E

-06 1 

-

2.97E

-08 

4.18E

-06 

4.58E

-06 1 

1.17E

-08 

4.15E

-06 

4.54E

-06 1 

P4 

Vicouv 
0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

0.00E

+00 

0.00E

+00 

0.00E

+00 6 

Vicoww 
0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 

0.00E

+00 

0.00E

+00 

0.00E

+00 5 
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Dicouv 

-

3.98E

-09 

4.42E

-07 

6.43E

-07 4 

-

3.97E

-10 

4.05E

-07 

6.06E

-07 4 

-

2.02E

-09 

4.50E

-07 

6.71E

-07 4 

Dicoww 

-

2.69E

-08 

1.11E

-06 

1.36E

-06 3 

-

3.41E

-08 

9.72E

-07 

1.13E

-06 3 

-

1.15E

-08 

1.00E

-06 

1.23E

-06 3 

Rhoair 

-

6.23E

-09 

1.63E

-06 

1.95E

-06 2 

3.55E

-09 

1.33E

-06 

1.68E

-06 2 

1.48E

-09 

1.48E

-06 

1.84E

-06 2 

Smagor

insky  
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• Sensitivity of Current velocity (z-component) at each location 

 

 

Figure 4. Sensitivity of z-velocity to inputs parameters - Variation of standard deviation with 

absolute mean of EE 
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Sensitivity Results for Sobol’ method 

• Sensitivity of Temperature  

Table 7.1: Sensitivity indices for the input parameters using the Sobol’ method at P1 

Locatio

n 
Parameter Si STi STi - Si 

Rank 

(based on 

Si) 

Rank 

(based on 

STi) 

P1 

Smagorinsky 0.0065 0.0111 0.0046 2 2 

Dalton 0.9930 0.9969 0.0039 1 1 

Stanton 0.0080 0.0077 -0.0002 3 3 

P2 

Smagorinsky 0.2843 0.2928 0.0085 2 2 

Dalton 0.6798 0.6935 0.0137 1 1 

Stanton 0.0095 0.0112 0.0017 3 3 

P3 

Smagorinsky 0.0166 0.0197 0.0030 2 2 

Dalton 0.9746 0.9831 0.0085 1 1 

Stanton 0.0107 0.0141 0.0034 3 3 

P4 

Smagorinsky 0.0250 0.0303 0.0053 2 2 

Dalton 0.9722 0.9805 0.0083 1 1 

Stanton 0.0004 0.0020 0.0016 3 3 

P5 

Smagorinsky 0.1325 0.1400 0.0075 2 2 

Dalton 0.8513 0.8625 0.0112 1 1 

Stanton 0.0008 0.0017 0.0009 3 3 
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Figure 5. First-order and total-order Sobol’ indices for temperature sensitivity for the 

locations P1 -  P5 
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• Sensitivity of Current velocity (x-velocity)  

Table 8.3.5 Sensitivity indices for the input parameters using the Sobol’ method at P1 

Location Parameter Si STi STi - Si 

Rank 

(based 

on Si) 

Rank 

(based 

on STi) 

P1 

Vicoww 0.070311 0.110262 0.039951 3 3 

Dicoww 0.001257 0.018852 0.017595 4 4 

Smagorinsky 0.089342 0.126808 0.037466 2 2 

Rhoair 0.783627 0.809291 0.025664 1 1 

P2 

Vicoww 0.004653 0.027509 0.022856 3 3 

Dicoww 0.004419 0.006785 0.002366 4 4 

Smagorinsky 0.07744 0.098212 0.020772 2 2 

Rhoair 0.845391 0.883469 0.038078 1 1 

P3 

Vicoww 0.020822 0.026074 0.005252 3 3 

Dicoww 0.000987 0.003844 0.002857 4 4 

Smagorinsky 0.078166 0.065255 -0.01291 2 2 

Rhoair 0.89563 0.86999 -0.02564 1 1 

P4 

Vicoww 0.063245 0.09936 0.036116 3 3 

Dicoww 0.002845 0.015908 0.013063 4 4 

Smagorinsky 0.089329 0.113482 0.024154 2 2 

Rhoair 0.815189 0.826005 0.010816 1 1 

P5 

Vicoww 0.003649 0.005416 0.001767 3 3 

Dicoww 0.001591 0.001874 0.000283 4 4 

Smagorinsky 0.008724 0.013893 0.00517 2 2 

Rhoair 0.952876 0.965265 0.012389 1 1 
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Figure 6. First-order and total-order Sobol’ indices for sensitivity of x-velocity for the 

locations P1 -  P5 
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• Sensitivity of Current velocity (y-velocity)  

Table 8.3.5 Sensitivity indices for the input parameters using the Sobol’ method  

Location Parameter Si STi STi - Si 

Rank 

(based on 

Si) 

Rank 

(based on 

STi) 

P1 

Vicoww 0.004146 0.014732 0.010586 3 3 

Dicoww 0.001693 0.005891 0.004198 4 4 

Smagorinsky 0.037669 0.027215 -0.01045 2 2 

Rhoair 0.957388 0.943714 -0.01367 1 1 

P2 

Vicoww 0.012119 0.061433 0.049313 3 3 

Dicoww 0.003469 0.036086 0.032617 4 4 

Smagorinsky 0.024599 0.083941 0.059342 2 2 

Rhoair 0.8642 0.923199 0.058999 1 1 

P3 

Vicoww 0.003899 0.010477 0.006577 3 3 

Dicoww 0.00441 0.003643 -0.00077 4 4 

Smagorinsky 0.295872 0.249905 -0.04597 2 2 

Rhoair 0.775831 0.699632 -0.0762 1 1 

P4 

Vicoww 0.004155 0.009951 0.005796 3 3 

Dicoww 0.001195 0.004476 0.003281 4 4 

Smagorinsky 0.008544 0.015432 0.006889 2 2 

Rhoair 0.952195 0.968154 0.015958 1 1 

P5 

Vicoww 0.039546 0.077271 0.037725 3 3 

Dicoww 0.005532 0.022576 0.017044 4 4 

Smagorinsky 0.06352 0.082215 0.018695 2 2 

Rhoair 0.838076 0.889717 0.051641 1 1 
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Figure 6. First-order and total-order Sobol’ indices for sensitivity of y-velocity for the 

locations P1 -  P5 
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• Sensitivity of Current velocity (z-velocity)  

Table 8.3.5 Sensitivity indices for the input parameters using the Sobol’ method  

Location Parameter Si STi STi - Si 

Rank 

(based on 

Si) 

Rank 

(based on 

STi) 

P1 

Vicoww 0.1756 0.4423 0.2667 2 2 

Dicoww 0.0019 0.1338 0.1320 3 3 

Smagorinsky 0.0012 0.3072 0.3060 4 4 

Rhoair 0.4574 0.7776 0.3202 1 1 

P2 

Vicoww 0.1850 0.3963 0.2113 2 2 

Dicoww 0.0099 0.1436 0.1336 4 4 

Smagorinsky 0.0297 0.2868 0.2572 3 3 

Rhoair 0.5472 0.8279 0.2807 1 1 

P3 

Vicoww 0.1652 0.3940 0.2288 2 2 

Dicoww 0.0004 0.1344 0.1341 4 4 

Smagorinsky 0.0191 0.3134 0.2943 3 3 

Rhoair 0.5186 0.8104 0.2918 1 1 

P4 

Vicoww 0.1666 0.4548 0.2882 2 2 

Dicoww 0.0027 0.1589 0.1563 4 4 

Smagorinsky 0.0228 0.2898 0.2670 3 3 

Rhoair 0.4684 0.7844 0.3160 1 1 

P5 

Vicoww 0.1033 0.3871 0.2838 2 2 

Dicoww 0.0079 0.1598 0.1519 4 4 

Smagorinsky 0.0232 0.3020 0.2787 3 3 

Rhoair 0.5461 0.8480 0.3018 1 1 
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Figure 6. First-order and total-order Sobol’ indices for sensitivity of z-velocity for the 

locations P1 -  P5 
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Annex IV 
 

The computation grid of the DCSM  

 

 

 Figure 7. Computation grid of the DCSM 
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