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Abstract

Increasing demand for marine resources is a significant concern in today's world due to the
limited availability of resources and the rapid population growth. The multi-use of offshore
platforms has been introduced as a sustainable solution for resource utilization by many
countries worldwide. However, the concept of multi-use is relatively new. Therefore,
researches are still being carried out to check the feasibility of these offshore platforms in
aquaculture activities, renewable energy generation, tourism, and many other sectors. Before
designing these infrastructures, it is essential to identify the suitable marine environments for
each activity based on the required conditions and characteristics of the marine environments.
Thus, numerical models play a vital role in simulating these marine environments and
consequently will be used as a decision-making tool in feasibility studies and operational
activities. The calibration of these numerical models is essential to have more reliable model
outputs. However, these numerical models have many inputs parameters and physical variables
on which the outputs depend. Sensitivity analysis can reduce the effort to calibrate complex
numerical models with many input parameters by identifying the most influential inputs to an
output variable. The main objective of the current research was to select the most significant
input parameters to two selected outputs of a hydrodynamic model.

DCSM is a hydrodynamic model developed for the North Sea by Deltares using the D-Flow
FM model suite of Delft3D. Two selected local and global sensitivity analysis methods were
applied to the above hydrodynamic model to test the sensitivities of temperature and current
velocities to a selected subset of input parameters. The Morris method is used as a screening
method to identify the order of the significance of input parameters. The variance-based Sobol’
method was used in global sensitivity analysis for the input parameters screened by the Morris
method. Finally, a comparison was made for the sensitivity indices obtained from the Morris
method and variance-based Sobol” method by calculating the correlations between indices.

Temperature and current velocities were identified as critical output variables of the
hydrodynamic model that will be beneficial in designing offshore Blue mussel and Seaweed
farms. A subset of input parameters was selected for the analysis as the D-Flow FM model is
associated with a considerable number of input parameters. The sensitivities of the temperature
and current velocities to the selected set of inputs were analyzed using the two analysis
techniques for few selected locations in the area of interest. Results of the Morris method show
that the temperature is most sensitive to the Dalton coefficient used for calculating the
evaporative heat flux, the Smagorinsky factor that is used in calculating the horizontal
turbulence, and the Stanton coefficient, which is used in calculating convective heat flux.
Therefore, these three factors were further analyzed by the variance-based Sobol’ method.
Variance-based analysis shows that, from the three inputs, the Dalton coefficient is the most
sensitive parameter to the temperature. The effect of the Stanton coefficient is much smaller
compared to the other two factors.

Current velocities in the three directions were separately considered in the sensitivity analyses
and found out that the most significant input parameters from the selected sub-set are the air
density (Rhoair), Smagorinsky factor, uniform vertical eddy viscosity (Vicoww), and uniform
vertical eddy diffusivity (Dicoww). Thus, the variance-based analysis was performed for these
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four factors. Out of these four parameters, air density (Rhoair) was identified as the parameter
with the highest contribution and Smagorinsky factor as the second most significant parameter
to x-velocity from the results of the Sobol’ method, while the Vicoww, and Dicoww has a less
contributions. The sensitivity of y-velocity and z-velocity also show a similar pattern of
ranking, although the percentage of contributions to output variances are different. The
interaction effects of input parameters on outputs were also identified using the Sobol” indices.
The rankings obtained for both temperature and currents velocities from the two methods are
comparable, whereas the order of ranking is observed to be similar in both methods.

The spatial variation of the sensitivities of temperature and current velocities were observed as
minimal, where the ranking order of the significant parameters remained the same for the
selected six locations in the project area.

Keywords: Hydrodynamic model, sensitivity analysis, North Sea, Dutch Continental Shelf
Model, One-At-a-Time method, Morris method, Sobol’ variance-based method
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Chapter 1: Introduction

1.1. Background

Numerical models are being used in many fields to efficiently calculate physical systems, while
these are too complicated to solve manually. These numerical models have many input
parameters and physical variables on which the outputs are dependent. In many cases, these
input parameters might be unknown or characterized with high uncertainties hence less precise.
These unknown or partially known input parameters and physical variables will subsequently
create uncertainties in the model output. The exploration of how these uncertainties of model
output can be apportioned to the various sources of uncertainties in model input is the primary
purpose of the sensitivity analysis (Saltelli et al., 2008). Having a measure of the importance
of each input parameter on the output uncertainty will give a deep understanding of the modeled
system. Also, this allows reducing the possible uncertainties in model outputs. Further,
sensitivity analysis provides the idea on which inputs need a more significant concern and need
to be more precise to yield a more accurate response.

Generally, these numerical models have a tremendous amount of input parameters, where some
of these are correlated with each other and make it challenging to perform calibration and
validation. The high amount of calculation time of these numerical models is another constraint
for calibrating the models with many input parameters. As a solution, several researchers have
executed many experiments to investigate the possible methods for selecting the most
important and influential input parameters and screening out the less influential ones.
Sensitivity analysis is one such method used to determine the significant input parameters that
have the highest impact on the output of a computational model. Identifying the dependency
of the output of a hydrodynamic model on its input variables is vital in simulating a model.
Since these models are associated with a large number of unknowns, lots of assumptions are
made in the calculation process. Moreover, if the models concern a larger area and are
developed with high resolutions, they can consume a high computation time. Besides, the other
characteristics of these hydrodynamic models, such as having many input parameters,
including complex differential equations that take considerable time and effort for solving,
need to be considered in selecting the sensitivity analysis techniques.

This research concerns the hydrodynamic model of the North Sea, which is a part of the
Atlantic Ocean and borders England, Denmark, Norway, Germany, Belgium, Netherlands, and
France. The North Sea is known as a site for many important shipping lines for more than 200
years. Moreover, this marine environment has been identified as a rich renewable energy source
in recent times, where opportunities are considered for large-scale wind energy production,
hydrogen production, and underground carbon storage. Therefore, the sea area is gaining the
attention of the bounding countries and the scientific community for new developments.

For efficient and sustainable use of existing marine resources, the concept of multi-use has
been introduced. The multi-use concept is defined in two aspects, including multi-use platform
(MUP) and multi-use space (MUS) (Legorburu et al., 2018). This multi-use concept can be
understood as the international joint use of marine resources by two or more users. In other
words, it is a compatible use of infrastructure or space for combined multiple activities by
different users. In the context of the design, they are introduced in two different approaches.
These are Co-location and integration. Co-location is the design of separate platforms without
connecting them physically but sharing the same logistic and marine space.

On the other hand, in integration, the idea is to use the same offshore platform for multiple



purposes such as renewable energy, aquaculture, and ecological restoration. Multi-use of
maritime space, platforms, or synergies can create a lot more benefits than the traditional
exclusive resource utilization. First, it will save the environment in space, establishing the
sustainable use of the marine resource, where more space will be left for protection and future
generations. Further, these will add value to the economic benefits for marine users by creating
opportunities for sharing the developments, operation, and maintenance costs and risks.
Besides, this will create social benefits for the users such as skill transfer, creating job
opportunities, and reducing impacts. In designing these kinds of infrastructure and multi-use
platforms, the designers and decision-makers need to consider the sea area's hydrodynamic
conditions (water levels, velocities, waves, and currents). Therefore, simulating the
hydrodynamic conditions of marine environments is of greater importance.

Sensitivity analysis can support the efficient use of hydrodynamic modeling by identifying the
critical regions of input parameter space and the insignificant input parameters. Therefore, the
sensitivity analysis results can help eliminate insignificant input parameters that have less
influence on outputs in the modeling process. Hence it reduces the computational effort, time,
and cost associated with calibration and validation processes. Therefore, sensitivity analysis
has greater importance in numerical modeling, as it supports efficient calibration of models to
achieve higher accuracy in model results.

1.1. Problem Statement

The motivation for the thesis was raised primarily by looking at the difficulties, such as
spending a considerable time in calibration efforts when performing mathematical models,
because they have a large number of input factors to be calibrated therefore require a substantial
number of model runs. According to Shin et al. (2013), only a few studies (Schmid et al., 2003,
Shen et al., 2008, Plecha et al., 2010, Francos et al., 2003, Kurniawan et al., 2011) have been
carried out with the application of sensitivity analysis methods in ranking the parameters and
identifying redundancies.

The primary users of the research will be the modelers, who perform complex numerical
modeling. The results of this research will discuss the applicability of possible sensitivity
analysis methods that can be used for complex numerical models with a high number of input
parameters and variables. In addition to that, the researchers and students, who experiment with
different sensitivity analysis techniques for numerical models, will benefit from these results
for future studies of similar complex numerical models. In addition, research will benefit the
UNITED project (which is further described in section 1.4) as a preliminary step for numerical
modeling studies, which will be used as decision-making tools in designing and operating.
Therefore, even though there is no direct impact on the public, the stakeholders of the said
project will benefit indirectly from the research.

1.2. Objectives

The main objective of the research is to highlight the significant input parameters of a
hydrodynamic model, which will be most influential for some selected output of the model.
Furthermore, the methodology was applied to a hydrodynamic model of the North Sea. For
achieving this primary objective, the following sub-objectives are defined.
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e Selecting the most suitable methods of sensitivity analysis to apply to the
hydrodynamic model

e Identifying the input parameters for the sensitivity analysis based on the literature,
referring to the manuals and technical references of D-Flow FM, and with the
support of experts from Deltares. The model typically contains a large number of
parameters that would be too large for any technique. The idea here is to reduce the
number of input parameters for the analysis following the literature and expert
knowledge on the model parameters before applying the sensitivity analysis
techniques.

e Performing sensitivity analysis for the input parameters of the hydrodynamic model
using D-Flow Flexible Mesh model, which is a part of Delft 3D Flexible Mesh
model suite.

e Identify the order of significance of relevant parameters according to the rating and
the results of the sensitivity analysis techniques.

e Comparing the results obtained from the selected sensitivity analysis techniques.

1.3. Research questions

The main problem identified through the literature is the difficulties of calibrating complex
numerical models with many input parameters. SA techniques are being used to identify
important parameters of a particular model to overcome the aforementioned problems. The
following research questions are specified to cover through this research, considering these
facts and objectives of the study.

e What are the different techniques or methods for performing sensitivity analysis?

e Which output parameter sensitivities are going to be analyzed in the study?

e What input parameters need to be considered for the sensitivity analysis of selected
output parameters of the hydrodynamic model?

e What are the possible methods that can be used and the suitability of these methods in
application to the hydrodynamic model?

e What are the non-influential parameters that can be ignored or given the least priority
in future calibrations?

e What are the most significant parameters that determine the accuracy of model output?

1.4. Practical Value

The research is integrated into an innovation project called UNITED (multi-Use platforms and
co-locatioN pilots boosting cost-effecTive, and Eco-friendly and sustainable proDuction in
marine environments), which is one of the current European Union Horizon 2020 projects. The
UNITED project investigates the viability of the multi-use of offshore platforms in five
demonstration pilots spanning the North Sea, Baltic Sea, and the Mediterranean Sea with
combinations of multiple sectors such as mixed energy production, aquaculture, ecological
restoration, and tourism. The project concept is defined under five pillars: environmental,
technological, economic, societal, legal-policy, and safety pillars. One of the technological
pillar's intentions is to support management and planning decisions for new development and
improve the current design, safety, and infrastructure setups for multi-use extensions. As
decision support tools, numerical models are being used for simulating these marine
environments. Therefore, the numerical models for decision support systems will be developed
covering these five pilot sites. The study area of research was selected considering the location
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of the German pilot, which is about 80km off from the North German coast and identified as a
high-energy environment.

As a part of this research, the hydrodynamic model will be used to determine the most
significant input parameters that need to be highlighted in the calibration and validation and
identify the non-influential parameters that can be given less attention and thereby reduce the
complexity of the model to ease the calibration. Therefore, in the context of the UNITED
project, this research will be beneficial, especially for the German pilot, as a preliminary study
for hydrodynamic modeling. Other than that, the research outcomes can be used to calibrate
hydrodynamic models for similar cases (for example, results can be used in Belgium pilot,
Dutch pilot, etc.) and compare results, discuss, and find solutions to common challenges.

Hence the research will explore performing sensitivity analysis for a hydrodynamic model to
determine the most significant input parameters. The knowledge of these significant input
parameters will then be used to calibrate and validate the model to reduce the computational
time associated with the modeling. This knowledge on critical parameters helps to save
computational time and costs spent for the complex hydrodynamic models by making it easier
for the modeler to concentrate on the most critical parameters and calibrate the model
efficiently. Besides, the methods proposed for this application will be used not only in the field
of engineering but also in other numerical model simulations.

1.5. Innovation

The admissible innovation of the study will develop a generic framework for applying
sensitivity analysis methods for calibrating the hydrodynamic models, primarily focusing on a
hydrodynamic model of the North Sea for the area of German pilot of UNITED project
mentioned in the previous section. According to the literature, there are studies (Y. Li et al.,
2015; Palermo Stefania Anna and Zischg, 2019) that have already been carried out to analyze
the sensitivity of hydrodynamic models. Y. Li et al. (2015) conducted sampling-based
uncertainty assessment and sensitivity analysis of a hydrodynamic model of a large shallow
freshwater lake. However, the authors (Y. Li et al., 2015) have highlighted that the research
only addresses the parametric uncertainty estimation, and future studies should consider
sensitivities and uncertainty of boundary conditions to hydrodynamic models. A global
sensitivity analysis has been applied by Palermo and Zischg (2019) to a microscale
hydrodynamic model to select the most influential parameters of a stormwater management
model (SWMM). However, there is still a need for methods to combine sensitivity analysis in
hydrodynamic model calibration. Therefore, these research gaps have been considered in this
study.

e The main contribution of this research to the scientific world will be developing a
generic framework for the application of sensitivity analysis of hydrodynamic models
before the calibration.

e As a tool for calculating the sensitivities of input parameters of the hydrodynamic
model, an algorithm will be developed which can be used for similar model studies.

e The sensitivity analysis of a hydrodynamic model of the selected case study will support
in determining the most critical regions of the input parameter space for a
hydrodynamic model in calibrating to specific output variables.
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1.6. Thesis Outline

Chapter 1 — Introduction.

This Chapter includes the general introduction about the research, problem statement, thesis
objectives, research questions, practical value, and finally, the innovation introduced through
the research.

Chapter 2 — Literature review
This chapter includes the literature research to identify the thesis problem, define the thesis
objectives, develop the methodology, and interpret the results.

Chapter 3 — Case study.
The Chapter contains the details about the selected case study and physical characteristics of
the study area, and software and tools used.

Chapter 4 — Research methodology

The research methodology chapter includes information on the general overview of the
methodology as a flow chart, selection of sensitivity analysis techniques for the analysis, and
details on selected methods and procedures of application. Further, this includes the selected
analysis locations.

Chapter 5 — Selection of parameters for the analysis
Details about the selected input and output parameters and reasoning for the selection includes
in this chapter.

Chapter 6 — Application of Python in the sensitivity analysis
The steps followed in applying Python programming for the sensitivity analysis are described
in this chapter in detail. However, the developed scripts are not included in this chapter.

Chapter 7 — Results & discussion
Sensitivity results for the selected output parameters are included in Chapter 7, with the
analysis of the results obtained from two selected analysis methods.

Chapter 8 — Conclusions and Recommendations
This chapter includes the conclusions of the research, limitations faced in the study, and finally,
the recommendations for future research based on the analysis.

Annex |, Annex Il — Python scripts

Python scripts developed throughout the analysis are included as Annex | and AnnexIl. Annex
| contain the scripts used in applying the Morris method, and Annex Il contains the scripts used
for analysis using the Variance-based Sobol’ method.

Annex I11- Sensitivity analysis results
Results plots and tables of sensitivity analysis
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Chapter 2: Literature Review

Uncertainty and sensitivity analysis are used to assess the reliability and the uncertainty of
particular model output. Therefore, it is essential to distinguish between uncertainty analysis
and sensitivity analysis before exploring the sensitivities of input parameters. Although both
uncertainty assessment and sensitivity analysis closely resemble, the former is focused on
quantifying the uncertainty in model predictions without considering the source of uncertainty.
According to (A Saltelli et al., 2008), sensitivity analysis can be defined as the “study of how
the uncertainty in the output of a model can be apportioned to different sources of uncertainty
in the model inputs.”

Sensitivity analysis can be used for different purposes. One of these will be factor prioritization,
identifying which inputs contribute the most to creating model uncertainties. Secondly, it will
also help quantify the fractions of contributions of the input parameters to the model
uncertainty (Andrea Saltelli et al., 2019). Further, sensitivity analysis is used to fix or identify
which factors have a negligible contribution to the uncertainty of model output and can be fixed
in the model (Andrea Saltelli & Tarantola, 2002). Therefore, the importance of performing
sensitivity analysis for numerical models is extensively acknowledged.

Different techniques have been proposed in several publications for the previously mentioned
concept of sensitivity analysis. Based on the formulation and application, two different
categories of methods can be identified for performing sensitivity analysis, namely local and
global. The local techniques consider the partial derivatives at a single point of the input
parameter space. Therefore, these local methods give only limited information about the
sensitivity of input parameters on output. Typically, these methods consider the changes in
model outputs when the input parameters vary about a reference value or an optimal input
parameter set (Pianosi et al., 2016). Because of that, these methods will not yield an exploration
of the rest of the input parameter space. The local techniques are often referred to as single
point One-At-a-Time (OAT) methods. One-at-a-time sensitivity analysis is the most
fundamental method with partial differentiation. Here the input parameter values are varied
one at a time while keeping the other parameter values constant. However, (Andrea Saltelli &
Annoni, 2010) pointed out that these single-point OAT methods are inadequate for a complete
analysis of models unless the model is linear.

In contrast to the local methods, global methods do not consider an initial set of input parameter
values and contemplate the entire parameter space. Instead, global methods focus on the effects
on output when the inputs are varied globally. Variance-based methods are one such global
technique focusing on the variance of model output and how the input variability influences
the output variability. In global sensitivity analysis, the global effect of the parameters on
outputs is analyzed where the parameter interactions are also considered. Therefore, global
sensitivity analysis is used for a comprehensive study of sensitivity and the interactions among
input parameters of a particular model, rather than concentrating on a single input at a time.

Since the local methods estimate the sensitivities by directly calculating the partial derivatives,
these methods are simple to calculate. Therefore, these are best suited for the preliminary
screening of complex models with high computation times. However, the local techniques only
consider small perturbations around a nominal value (for example, the mean of the variables)
at one reference point from the possible input parameter space. Hence the sensitivity measure
will depend on the position, where the derivatives are calculated and will not represent the
whole parameter space. This acts as a limitation for using local methods in sensitivity analysis
in complex numerical models, which are generally non-linear.
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2.1. Sensitivity Analysis techniques

As discussed in the introduction, several methods are used to perform the sensitivity analysis
for a particular numerical model. Generally, sensitivity analysis techniques can be classified as
local and global. The local techniques assume that all the input factors are equally important
and do not consider the outputs' variance (Saltelli A et al., 2008). According to (Hall et al.,
2009), the global methods have the ability to reflect the nonlinear effects and the effects due to
interactions among input parameters. However, global methods require high computation
demand compared to the local sensitivity analysis techniques as the required number of model
evaluations increases with the number of input factors. The sensitivity analysis techniques
which are used frequently are further described below.

2.1.1. Morris screening method

The Morris method named the Elementary Effects method is a ‘one at a time’(OAT) design,
where all the input parameters are evaluated, exploring the possible parameter range. This
method aims to rank the inputs according to their significance by evaluating their average effect
on output. The elementary effect method can be suggested as a feasible method for analyzing
input factor sensitivities, considering the hydrodynamic models' complexity and non-linearity.

In many publications (Saltelli et al., 2008; Campolongo and Saltelli, 1997; Ruano et al., 2011,
Morio, 2011), the vast applicability of the Elementary Effects method has been highlighted.
The method is recommended as a preliminary screening method to eliminate non-significant
parameters and rank the parameters according to the significance. The Elementary Effect
method has gained attention due to its computational efficiency and adaptability. The method
IS a one-at-a-time method designed by (Morris, 1991) to identify the non-influential parameters
and rank the parameters according to significance. Morris method is sometimes mentioned as
a global method in some literature (A Saltelli et al., 2000; Shin et al., 2013), as it considers the
whole input parameter space. Although it takes the elementary effects (d;) like the partial
derivatives, as in local methods, the method averages the local effects computed at different
input locations. The final sensitivity measure is considered to be these averages of elementary
effects.

For a given input vector with N number of input parameters, X = (X1, X2, ..Xj,.. Xn); the
elementary effect of j™ input parameter on the output y can be expressed as;

g = y(xl,xz, s Xjgpr Xjr1s ...,xN) = Y(X1, X2, s Xjy Xjq, e s Xny) 21
A A )

where x; is scaled to [0,1] and discretized to p number of levels. A is the Morris step and
defined by
S

A= ; €{12,..,1—
o1 s€{l2,..1-p}

Here, A is a predetermined multiple of 1/(p-1).

Sensitivities of the input parameters can be identify using the following measures. The mean,
absolute mean, and the standard deviation of elementary effects for j" input parameter can be
defined as:
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Where r is the optimum number of repetitions.

Morris method is recommended as a reasonable approximation to variance-based sensitivity
measures (Andrea Saltelli & Saisana, 2007). This method can be used to:

e Calculate the optimum repetition number for the elementary effect (EEi) calculations
The optimum number for repetition of elementary effect calculations (r) needs to be
determined correctly; otherwise, it may cause Type | (i.e., identifying non-influential
parameter as an influential parameter) as well as Type 11 (i.e., failing to identify a significant
parameter as influential) errors (Ruano et al., 2011). The optimum repetition number will
be determined by calculating the absolute mean (1) and standard deviation (o) for the
elementary effects of each input factor, with different repletion numbers (r), until those
measures for the influential parameters become stable. Considering the absolute mean
values rather than mean values is essential because the elementary effects can compensate
each other and yield a wrong idea. One disadvantage of this method is that many repetitions
will be needed if the model is highly complex and non-linear. The computation cost of the
Morris method for a model with k number of input parameters that requires an optimum
repetition number of r will be r*(k+1).
e Identify the non-influential input factors
The importance of the input parameters can be evaluated considering the sensitivity
measures, mean (L), absolute mean (u”), and the standard deviation (o) of elementary
effects. Campolongo et al. (2007) highlighted the drawbacks of using p and o only for
deciding the significance of inputs when the model has several outputs, and the model
is non-monotonic. Therefore, the authors proposed to use the absolute mean (") instead
of the mean (), which can solve the issue of falsification of the results due to canceling
out of the elementary effects with opposing signs. However, one limitation of using
absolute mean values of elementary effects is losing the information about the direction
or the sign of the effects.
The values of u* and o will imply the significance and linearity effects of the input
parameters. Input parameters with smaller values of p” indicate less impact of the input
parameter on the output. Therefore, parameters with lesser absolute mean values can
be eliminated as unimportant (Morio, 2011).
The criterion suggested by the study of Sarrazin et al. (2016) for choosing a threshold
for identifying insignificant factors from a set of inputs can be applied here when
deciding the unimportant input factors.
e Rank the input parameters
Parameter ranking will be based on the magnitudes of the elementary effects of each
input parameter. Parameters can be interpreted into three categories (Morio, 2011),
considering the above sensitivity measures,
1. Weaker values of - insignificant input parameters
2. Stronger values of p” and weaker values of ¢ - important inputs with linear
effects and without interactions with other input parameters
3. Stronger values of " and stronger values of - important inputs with non-linear
effects with or without interactions with other input parameters
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However, one primary assumption of the classic Morris method is the independence of the
input parameters, which acts as a limitation of applying for complex numerical models.

2.1.2. Variance-based method of Sobol’

Sobol’ method is a variance-based sensitivity analysis technique that can determine input
variances' contributions in creating output variances and the input parameter interactions. It
does not rely on the assumptions about the smoothness of input and output parameter mapping
(Andrea Saltelli & Saisana, 2007). The Sobol” method is expensive for models with a high
number of inputs. The number of Sobol” indices that need to be calculated will exponentially
increase with the input dimensions (Morio, 2011). The Sobol’ sensitivity measures are defined
assuming that the total output variance can be decomposed into main effects due to individual
inputs and residual effects.

The first-order sensitivity measures are used to capture the direct impact of the input factors.
Then, the total effect sensitivity measures are used to capture both direct impacts and the
impacts due to interactions of the input factors. Total order effects are helpful for the purpose
of factor fixing. For an input factor Xi to be noninfluential for an output Y, the total order
sensitivity of Xi needs to be nearly zero; S;; = 0 (Saltelli A et al., 2008). Thus, the factor can
be fixed without affecting the output Y.

Before applying the variance-based analysis method, it is essential to look at its definition. We
can assume a function ¢ with p number of input parameters defined in the range of [0, 1]°. The
input variables are also needed to be defined in the range [0,1]. Thus, the output Y can be
decomposed to elementary functions of inputs, as shown in 2.3.

p
Y = p(X) = by + z di(X1) + z b (XLX) 4+ dy (XY, ., XP) 23
i=1

1<i<js<p

Where; ¢, is a constant, and ¢ is an integrable function of X. The inputs are random and
independent, and therefore, applying the variance operator to the equation 2.3 to obtain
ANOVA decomposition yields;

p
Var(Y) =Var = Z Vi + Z Vij++ Vip 24
i=1 1<i<j<p
Applying the Var operator, first, second and k™ order partial variances can be defined as;
First-order Vi = Var(E(Y|X))
Second-order Vij =Var (E(YIXi,Xj)) -Vi—=V
k' order Virae = Var (E(YVIXu X oo Xi) ) = Vi = V= Vi

The first-order sensitivity index is defined as the partial contribution of each input parameter
to the output variance, and the first-order sensitivity index (FSI) for an input variable X; can be
calculated by;
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Where Xi is the i parameter, and X~ indicates the input vector with all parameters except Xi.
The inner expectation operator denotes the mean of Y, the scalar objective function values
considered over all possible values of X-i.where X is fixed. The V,, Indicates the variance over

all possible Xi.
Total order sensitivity index (TSI) is defined as;

A (mx0) e (Eq(V1X2D)) »

vy 7%

The Sobol’ index is always in the range [0 1], and the sum of all Sobol’ indices should equal

to 1.
k k
i=1

i<j

In a review of settings and methods for global sensitivity analysis, (Andrea Saltelli & Saisana,
2007) have pointed out that the variance-based techniques give the most complete and general
pattern of sensitivity analysis for the models which have a modest amount of running time (for
example up to the order of one minute per run) and do not exceed about 20 input parameters.

2.1.3. Linear regression coefficients

Linear regression coefficients (r) are an adequate and straightforward method to estimate input
parameter sensitivities to the output, especially for linear models. The main advantages of this
method are its simplicity and having a low computational cost with respect to the previously
mentioned OAT and variance-based methods. The method is applied by fitting the data and
model result into a linear regression model in the form

Vi =bo+ ) byl 28
j=1

The coefficients b, and b,; are determined using a least-square error of the differences of
outputs calculated by the regression model and the actual output. These regression coefficients
will give an indication of the sensitivities of output with respect to each input parameter.
Having a larger b, implies that the particular input factor is more sensitive to the output
parameter. Nevertheless, the method can be used only for linear models. Further, linear
regression coefficients cannot be used if the inputs have dependencies on each other.

2.1.4. Standardized regression coefficients

Standardized regression coefficients (B.; ) are identified as a cheaper alternative for the
variance-based methods. However, the method is effective only for linear or quasi-linear
models, with higher regression coefficients (i.e., for example, R? > 0.7) (Saltelli and Saisana,
(2007).

The standardized regression coefficients are defined as;
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Where by is the regression coefficient for the i parameter. Using the standardized regression
coefficient method is more popular than just using the regression coefficients.

2.1.5. Random balance designs (RBD) method

The method is suitable for calculating only the first-order sensitivity indices. The advantage of
the RBD method is that it has a low computational cost as it is a dimension-independent
method, and the computation cost is equal to the sample size. The input points will be selected
covering a sub-set of input parameter space, taking random permutations of the points'
coordinate and generating a set of scrambled points over the input space. The outputs are
calculated for each design point (S. Tarantola et al., 2006). Since the sensitivity analysis is
based on the setting, if the purpose is to prioritize the factors, this method will be helpful in
such cases (Andrea Saltelli & Saisana, 2007).

Hence, the global sensitivity analysis methods enable more details about the importance of
input parameters, linearities, and interactions among input parameters than the local analysis
methods. However, local methods are preferred over global methods if the model consumes a
considerable computation time and has many input factors (Morio, 2011). The information
about the methods discussed above is summarized in Table 2.1.1.

Table 2.1.1 Summary of advantages and disadvantages of different sensitivity analysis
techniques

SA technique Advantages Disadvantages

Does not consider the

parameter dependencies

Efficient screening method
Better approximation to global
sensitivity analysis methods

A quantitative analysis method
for variance decomposition

Morris method

Sobol’ method

Input parameter interactions are
considered.

Model independence — method
can be applied to any model
(Stefano Tarantola et al., 2012)

High computational demand
due to the requirement of a
high number of models

Random balance design

Dimension independent method

Parameter dependencies are

method & low computational demand not considered

Standardized regression Cheap alternative for variance- Only suitable for linear or

coefficients based methods quasi-linear models

Linear regression Dimension independent method Only sw_tablg for I|n_ear
. ; models with high regression

coefficient & low computational demand

coefficients
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2.2, Sampling methods for sensitivity analysis

The first step of applying sensitivity analysis techniques is generating the input samples
according to the selected analysis method. Therefore, the possible sampling techniques will be
briefly discussed in this section.

There are several sampling techniques defined in the literature (Andres, 1997; Kucherenko et
al., 2012b; Morris, 1991; Saltelli A et al., 2008; Andrea Saltelli et al., 2010; Sobol’, 2001) for
generating the input samples to apply the sensitivity analysis into the numerical models. Here
we have focused on few sampling techniques commonly used in SA.

2.2.1. One-Factor-At-a-Time (O-A-T) sampling

The basic idea of this sampling method is to create samples where the input parameter values
of each sample are generated by changing the value of only one parameter at a time (Saltelli A
et al., 2008). This sampling scheme can be represented in the matrix form as follows.

{128::01”°\/\

11 1 .. 0I|
PRI \bk/ \yk/

Each parameter will have either 0 or 1 as the values, and only one parameter has changed
between consecutive samples. When the above equation is simplified by applying a row
operation to subtract the values from each row from the row below, it will yield

|[(1) 2 g O] bO\ /3’2—3’1\

I[Z z : 1kak) kyk_yk—l)

Therefore, each value of the output matric (y;.,— y;) corresponds to a change in one input
parameter. The above example shows parameters only with two distinct values (0 and 1) where
the parameter can change in smaller values to create more samples. The change of input
parameters from one sample to the next can be done in any order. However, the order of change
needs to be recorded for analyzing the effect of each perturbation on the output. If the parameter
changing order is randomly chosen, the parameter change corresponds to a random walk along
the surface of a hypercube from one corner to another. This concept is gematrically represented
by (Tene et al., 2018), as shown in Figure 2.2.1.
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Figure 2.2.1 Geometric representation of elementary paths for samples (k =3, p =3 and s= 1)
(a) whole grid (b) One cell of the grid (Source: (Tene et al., 2018))

2.2.2. Fractional factorial designs

Factorial designs are defined as sampling designs with two or more factors, which take only
two distinct values (0 and 1). A full factorial design is where all the possible samplings are
considered in the experimental design. If the experiment has k input parameters to be sampled,
there should be 2X number of samples to generate all the possible combinations. Thus, one
major disadvantage of this factorial design method is the requirement of a vast number of
simulations (Saltelli A et al., 2008).

However, to overcome this issue with the requirement of a large number of simulations, a
fraction of the full factorial designs can be selected. This selection of a smaller fraction of the
full factorial design is called the fractional factorial design.

2.2.3. Latin Hypercube sampling

In the Latin Hypercube sampling, a fraction of s-level full factorial designs is selected so that
the sample represents valuable properties. The main objective of the Latin Hypercube Sampling
is that each parameter is discretized into s>2 levels, and each level has the same number of
points. The generation of these samples is done by generating values from 0 to s-1 and
randomizing the columns separately. For example, Table 2.2.1 shows a Latin Hypercube
Sample with three input parameters, with three levels and each parameter having two samples
at each level. These randomized designs are generated by storing the values from 0 to 2 (i.e.,
s-1) in each column and randomizing them separately.

Table 2.2.1 Example of Latin Hypercube design for three parameters, with three levels and
six simulations

X1 X2 X3
0 1 2
1 2 0
2 0 1
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1 2 0
2 0 1
0 1 2

In this sampling method, it assumes the model has k number of input parameters, and the input
vector is defined as Xr= {X1, Xa, ..., Xk}. Further, it assumes that the X; is uniformly distributed
over its domain, and all the parameters in X are statistically independent, where any
combination of input parameters X; is equally likely. Therefore, k sample points are defined in
the k dimensional parameter space, uniformly distributed over the k-dimensional space (Saltelli
Acetal., 2008). The parameter space would be a k-dimensional hypercube. Suppose the number
of samples (N) is much larger than the number of input parameters (k). In that case, the
randomized Latin Hypercube sampling (LHS) designs will be more effective in determining
the effect of each input parameter on the output (Saltelli A et al., 2008). Nonetheless, if the size
of N is smaller than k, there will not be enough sampling points to compute the individual
effects of the input parameter changes on the output.

2.2.4. Multivariate stratified sampling

In multivariate stratified sampling, the parameter space is divided into non-overlapping
regions, and sampling points are selected from each region. The primary purpose of this
sampling method is to guarantee that the sampling points represent the whole parameter space.

Figure 2.2.2 Geometric representation of stratified sampling from bisected domains of one
parameter (top), 2 parameters (left), and 3 parameters (right) (Source: Saltelli A et al. (2008)).

Therefore, the sampling space for k number of parameters will be a k-dimensional hypercube.

2.2.5. Monte Carlo and quasi-Monte Carlo sampling

The Monte Carlo sampling is used to generate random samples from a probability distribution
in such a way that the samples will approximate the actual distribution. This Monte Carlo
method uses a pseudo-random sequence (Saltelli A et al., 2008). The limitation of pseudo-
random sequences is the clumping of points and having spaces with no sampling points. In
simple terms: the uniformity of the distribution of sample points is less in the pseudo-random
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sampling method. This clumping happens due to the independence of the generation of
sampling points, as all the points are randomly generated without considering the other points.

In the quasi-Monte Carlo approach, the sampling is done with quasi-random sequences where
the correlations between the points are considered to eliminate the clumping of the generated
random points (Caflisch, 1998). The method is designed considering the uniformity of the
sample points. Therefore, it estimates the uniformity measure for the sample in terms of the
discrepancy of the sequence of points. The difference in the samples generated by these two
approaches are shown in Figure 2.2.3 (a) and (b).

Figure 2.2.3 Two-dimensional projection of (a) pseudo-random sequence and a (b) quasi-
random sequence (Source:(Caflisch, 1998)).

2.3. Applications of different SA techniques

These sensitivity analysis techniques are being used for evaluating the input-output interactions
in models in many fields such as engineering, economic and environmental. (Ruano et al.,
2011) experimented on the application of Morris method, which is mentioned in section 2.1.1,
for screening the influential parameters of fuzzy controllers applied to a wastewater treatment
plant. Although the technique has some drawbacks, such as high computational cost and
inability to measure input parameters' dependencies, Morris method is considered a good
approximation of a global sensitivity measure. It has overcome local methods whose results
are valid only locally.

To overcome the limitation of the inability to measure the dependency information in Morris
method, (Tene et al., 2018) introduced a copula-based sensitivity analysis method to
incorporate the dependency information among input parameters into the sampling strategy.
The number of model runs was then decided using the algorithm Latin Hypercube Samples
with Dependence (LHSD), proposed by Packham and Schmidt (2008). Finally, Tene et al.
(2018) performed a sensitivity analysis for a computationally expensive Delft3D WAQ
sediment transport model to test the applicability of the proposed copula-based Morris method.
A copula cab is understood as a joint distribution defined on the n-dimensional unit hypercube,
with uniform marginal distribution (Nelson, 2007). Thus, this extended method can separate
the influence of marginal distributions and parameter dependencies (Tene et al., 2018).
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To identify the sensitive parameters in surface water quality models, Huang & Liu (2008)
introduced a hybrid approach that integrates the parameter perturbation method and Morris
method. A total of 96 input parameters were considered for the analysis. Initially, the parameter
perturbation method, a local sensitivity analysis technique, was applied to eliminate the
insignificant parameters from the total parameter pool. The required number of model
evaluations in the parameter perturbation method is lesser than those needed in the Morris
method. Hence, the method is simple to implement and computationally more economical than
the Morris method (Huang & Liu, 2008). Then the Morris method was used in ranking the
remaining 51 sensitive parameters, which were screened using the parameter perturbation
method according to their sensitivities and relative importance. Although the introduced
method can determine the order of significance of the input parameters, it lacks the quantitative
measure of input parameter interactions.

The variance-based sensitivity analysis method briefly discussed in section 2.1.2 (will be
discussed in more detail in Chapter 4) is a global sensitivity analysis technique where the
sensitivities of input parameters are considered over the whole parameter range rather than
considering the local effect of one parameter. These variance-based methods are being used
(Archer et al., 1997; Chen et al., 2018; da Veiga, 2015; G. Li et al., 2010) for obtaining a more
detailed analysis of the sensitivities of the model outputs. These methods are designed to
decompose the variance of a particular model's outputs and attribute those to the input
variances. (Chen et al., 2018) applied variance decomposition method for sensitivity analysis
of 1D and 2D hydraulic models developed to simulate branched urban flood flows. The authors
have quantified the sensitivities of two selected outputs, including simulated water height and
the discharge repartition in a branched network, to some selected input parameters of the 1D
and 2D shallow-water models.

Further, the study illustrates the pattern of spatial variation of the input parameter sensitivities.
The research has presented a quantification of non-linearities of the complex flow patterns and
dependencies of the input parameters using Sobol’ indices. They have recommended using the
results and findings of this study in future work related to the uncertainty propagation of
hydrological models.

Although the variance-based sensitivity analysis methods can determine the effect of input
parameters on output variance, it has limitations in providing a complete picture of the output
distributions. Veiga (2015) introduced a new class of sensitivity indices that considers the
dependence measures and extended those indices using the other dependence measures such as
distance correlation and Hilbert-Schmidt independence criterion. Further, da Veiga, (2015)
pointed out that those dependence measures will be an alternative to the screening methods,
especially for models with high dimensions, as the indices are robust to dimensionality and
have low computational costs. Therefore, the method is a powerful tool for global sensitivity
analysis. Cosenza et al. (2013) applied three global sensitivity analysis methods to select
significant input factors and eliminate non-influential factors of a complex integrated
membrane bioreactor (MBR) model in a wastewater treatment system. The performance of
three methods (standard regression coefficients, Morris screening, and extended-Fourier
analysis Sensitivity Test (FAST) method) was analyzed by taking the most reliable method
(extended-FAST) as a reference. The comparison of methods was carried out by considering
the similarity of sensitivity indices compared to a reference method, the similarity of ranking,
identification of the non-influential inputs, the ability of the method to determine the interaction
among input factors, and the method’s ability to provide the result within a reasonable time
(Cosenza et al., 2013).

Glen & Isaacs (2012) discussed a new notation for Sobol” indices regarding Pearson correlation
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of outputs and introduced a simple correlation-based numerical approach to include a
correction term for removing spurious correlations. Additionally, different estimation
techniques were compared for accuracy and precision. The advantages of this method are
providing a reasonable estimate for first-order and total effect indices, easiness of
implementation, and suitability for complicated stochastic models (Glen & Isaacs, 2012).

Kucherenko et al. (2012) suggested a novel approach for estimating variance-based sensitivity
indices for models with dependent variables. In the study, a copula-based sampling technique
was used for sampling probability distributions. Subsequently, the formulas and Monte Carlo
estimates were derived for analyzing the relative importance and correlations of inputs. For
comparison and testing of the derived formulas, three test functions were used. Analytical
solutions were obtained for two of them and observed a good agreement with the numerical
results. Furthermore, the authors Kucherenko et al. (2012) concluded that the convergence rate
of the proposed approach is much higher than the brute force method. They concluded that the
technique is efficient and general to use in numerical models to estimate variance-based
sensitivities

Considering the lack of guidance to assist the users of sensitivity analysis in choosing the
sample size and threshold for identifying insignificant factors from a set of inputs, Sarrazin et
al. (2016) proposed a criterion to select the sample size and screening threshold based on a
bootstrap approach. The methodology was applied to three hydrological models with different
complexities, utilizing three global sensitivity analysis methods (Regional Sensitivity Analysis,
Morris method, and Sobol” method). Moreover, the screening thresholds were validated using
a quantitative validation procedure. As a result, the method is highlighted as a suitable approach
for a wide range of Global Sensitivity Analysis methods and cases (Sarrazin et al., 2016).

Bellos et al. (2020) applied SA using the Morris method to determine the significant parameters
of a 2D hydrodynamic model to reconstruct a flash flood event. Sensitivity analysis was used
before analyzing the uncertainties of model output created due to uncertainties of two estimated
input parameters identified through the SA. To reduce the calibration efforts of hydrodynamic
models, Y. Li et al. (2015) studied the parametric uncertainties of hydrodynamic processes of
shallow lakes and recommended that the uncertainties of boundary conditions (wind fields,
flow boundaries) should be considered in future studies.

Campolongo & Saltelli (1997) have compared sensitivity tests on an environmental model
(GMSK) using different analysis techniques, including the Morris method, variance-based
Sobol” method, and standardized regression coefficients. Further, in this study, authors have
highlighted the importance of using bootstrapping to estimate the empirical confidence bounds
of the sensitivity indices calculated in the Morris method. Considering the physical meaning
of these indices calculated by the Morris and Sobol” methods, Campolongo & Saltelli (1997)
have suggested possible correlations between Morris mean (u*) and the total-order index (Sri)
calculated by the Sobol’ method.
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Chapter 3: Case Study — German Pilot

UNITED is one of the current Horizon 2020 projects of the European Union, designed to
demonstrate the feasibility of the multi-use of offshore platforms and marine space. The project
concerns different sectors, including renewable energy, aquaculture, ecology, and tourism.
UNITED project is designed under five pillars to check the viability of these multi-use
solutions. These five pillars are technological, environmental, economic, societal, and legal-
policy-safety pillars. The German pilot of the UNITED project was selected as the study area
in this research. This pilot project is designed to check the viability of offshore cultivation of
Seaweed and Blue mussels, combined with existing offshore wind farms. In this pilot project,
the design conditions and challenges in the operations are going to be studied, simulating the
marine environment of the North Sea. Therefore, a North Sea hydrodynamic model will be
used as a tool for decision-making in the design and operation of these aquaculture activities.

The pilot project will be installed in the FINO 3 research platform, which is located 80km west
of Sylt island near the North German coast. The location is shown in Figure 3.1.1.
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Figure 3.1. 1 Location of German pilot - FINO3 Research platform (Source: (Research
Project: Multi-Use Offshore Platforms, 2021)
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3.1. Key aspects of the German pilot

The key aspect of the German pilot is to demonstrate the technological, environmental, and
financial feasibility of offshore cultivation of Seaweed and Blue mussel longlines. Currently,
in most cases, these Blue mussel and Seaweed farms are established nearshore or inshore
environments due to the technological requirements for offshore sites. Nevertheless, there are
several drawbacks and problems faced by the marine environment because of these nearshore
farms. The main problem is the navigation difficulties for the marine vessels. The nutrient
depletion on account of the Blue mussel and Seaweed farms can harm the other marine species
in those areas. Other than that, the psuedofaeces and the marine litter generated by the mussels
will alter the benthic environment under these mussel farms. As a consequence of these factors,
mussel farming and Seaweed cultivation strive for offshore cultivation (Landmann et al., 2019).

Therefore, it is crucial to identify the favorable conditions for those aspects and the significant
environmental variables that will affect Seaweed and Blue mussel cultivation effectiveness.
For example, in the offshore environments, these Blue mussel and Seaweeds have to bear the
high energy acting on them as high currents and waves. Therefore, after identifying the
parameters which affect the Blue mussel and Seaweed farming, the sensitivity analysis was
focused on the identified output parameters. The purpose here was to calibrate the
hydrodynamic model for these parameters to predict those outputs from the model with
minimum uncertainties. Thus, this specific project will benefit as a decision-making tool for
planning and operating the Blue mussel and Seaweed cultivation.

Output parameters were selected by considering which parameters will mainly affect the
offshore cultivation of

e Blue mussel (Mytilus edulis) using longlines and
e Seaweed (Saccharina Latissima) using longlines

3.1.1. Blue mussel longlines

The longline technique will be used in the cultivation of Blue mussel and Seaweeds in the
offshore platform. In offshore Blue mussel farming, these lines are submerged to a few meters
depth and moored to the sea bed. The purpose of submerging the longlines to a certain depth
from the sea surface is to avoid the disturbances caused by the waves, rough weather conditions
of the sea surface. The mooring system supports the submergence of these longlines. As shown
in figure 3.1.2, these mussels are attached to the ropes until harvest time. However, in the early
growth stages of the mussels, these ropes are housed in ‘protection socks,” which will
disintegrate within a short period of growth (Mizuta & Wikfors, 2019).
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Figure 3.1.3 A design of an offshore longline structure (Source: Forschungs- und

Entwicklungszentrum Kiel. (2021))

In deciding the suitability of an offshore mussel farm, different factors in the marine
environment need to be considered. According to the literature (Lachance-Bernard et al., 2010;

Mizuta & Wikfors, 2019; Waldeck & Larsson, 2013; Westerbom et al.,

2002), the most

important factors are temperature, chlorophyll concentration, salinity, and current speed. The
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selected factors for the analysis and the reasons for choosing each one will be described in
Chapter 5.

3.1.2. Seaweed farming

The considered Seaweed species Saccharina Latissima, commonly known as sugar kelp,
belongs to the brown microalgae. This species prefers low light intensities and cold
temperatures (Bikker et al., 2016). Further, in designing the Seaweed farms, it needs to pay
attention to the flow conditions of the area, primarily to provide sufficient nutrients to the algae.
In this project, the cultivation of Seaweed will be done using longlines. Figure 3.1.4 shows an
example of longline structures used to cultivate sugar kelp (Saccharina Latissima) in an
offshore environment.
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Figure 3.1.4 Longline rope culture for open sea cultivation of Saccharina Latissima (Source:
Peteiro et al., 2014)

3.2. Physical characteristics of the North Sea

The North Sea can be identified as one of the most utilized and investigated seas globally with
long records in maritime history. Densely populated and developed industrial countries
surround it. The North Sea is connected to the North Atlantic Ocean from North and through
the English Channel and to the Baltic Sea from East.

3.2.1. Bathymetry

The North Sea is considered a shallow shelf sea where the average depth is about 80m. The
maximum depth of the North Sea is observed in the Norwegian trench with a depth of around
800m (Sundermann & Pohlmann, 2011).
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Figure 3.2.1 North Sea bathymetry (Data source: (Patsch et al., 2017))

When looking at the North Sea bathymetry, it is observable that water depth increases from
South to the North and from East to West.

3.2.2. Impact of atmospheric forcing

The atmospheric forces play an essential role in the general circulation patterns of the North
Sea. The wind forcing drives the sea waves, and the storms can create the storm surge with
dangerous effects. Other than that, the atmosphere affects the heat budget of the North Sea.
Generally, the thermal stratification is primarily observed in the Northern and Central parts of
the North Sea from early summer until the early autumn (Stindermann & Pohlmann, 2011).
However, the Southern North Sea experiences strong tidal mixing, which avoids the thermal
stratification in the Southern coastal areas.

Further, the salinity levels of the North Sea are affected by the continental discharges, which
brings the precipitation received by the Northwest European shelf. The North Sea has a total
catchment area of around 840,000 km?, contributing about 300 — 350 km3 of discharge annually
(Ducrotoy et al., 2000). The primary freshwater discharge to the North Sea is from the Rhine
river and meltwater from the Scandinavian countries. These freshwater inflows mainly drive
the salinity variations.

Consequently, these salinity variations cause density differences in seawater. Therefore, the
vertical density distributions are observed near these river mouths with very high outflows and
with shallow water depths. The annual discharges experienced by the North Sea are shown in
Table 3.2.1.
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Table 3.2.1 Freshwater discharges to the North Sea (Source: (Ducrotoy et al., 2000))

Freshwater inputs to the North Sea (modified from OSPAR, in press).

Coastal areas Run-off (km® yr1) Catchment area (km?)
Scotland (including Forth) 16 41000
Norway 58-70 45500
Skagerrak and Kattegat 58-70 102200
East coast of England (including Tyne, Tees, Humber and Thames) 32 74 500
Denmark and Germany (including Wadden Sea) 32 219900
The Netherlands and Belgium (including Wadden Sea, Rhine, Meuse and Scheldt) 91-97 221400
English Channel (including Seine) 0-37 137000
Total North Sea 296-354 841500

3.2.3. Interaction with the Atlantic Ocean

The North Sea has a broad opening to the Atlantic Ocean from the North and a narrow opening
through the English Channel. Therefore, the mass, energy, and momentum exchange between
the two oceans are observed. The waves generated by the atmospheric and tidal forces enter
the North Sea from these boundaries and support the mass and momentum transport from the
Atlantic Ocean.

3.2.4. Impact of astronomical tides

Astronomical tides have a significant effect on the dynamics of the North Sea. However,
according to the literature (Stindermann & Pohlmann, 2011), the North Sea is not large enough
to experience the direct tidal impact and is influenced by the co-oscillations with the tidal waves
of the Atlantic Ocean. The tidal currents can reach up to a few dm/s, and it is mentioned that
the tidal currents are dominant than the other flows in this region. The spring and neap tides
are caused due to the superposition of semi-diurnal lunar and solar tides.

3.3. Hydrodynamic model of North Sea

Delft 3D flexible mesh model suite was used for modeling the North Sea. Dutch Continental
shelf model (DCSM) is a 3D hydrodynamic model developed for the Northwest European
continental shelf and was used in this research to simulate North Sea hydrodynamics. The
details of this model given in the following sections are mainly obtained referring to the model
setup of DCSM and the technical report of Development of 3D DCSM-FM by (Zijl et al.,
2021).

The extent of the Dutch Continental Shelf Model is from 15°W to 13°E in the West-East
direction and 43°N to 64°N in the North-South direction. The DCSM model has been validated
against measured sea surface temperature, sea surface salinity, and seasonal temperature
stratification in the central North Sea. Further, simulated residual transport through the English
Channel has also been validated and confirmed to be in the realistic range (Zijl et al., 2021).
However, the purpose of this study is to identify the significant input parameters for calibrating
this model for the area of interest (i.e., the FINO3 research platform).
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Grid size

The horizontal grid size of the model used in this study has a resolution of 4 Nautical miles
(4nm). The DCSM model has been developed with two grid resolutions where the coarser
grid is with 4nm resolution, and a 0.5nm resolution has been used in the finer grid. The
intention of using a coarser grid is to reduce the computation time of the model by reducing
the restrictions on the computation time step, where coarser grids will allow a larger time
step and subsequently reduce the computation time.

Vertical grid schematization is done by dividing the total water depth into several layers
with the same height. This method is called the z-layer approach. Although the layer
thickness is independent of the water depth at a specific location, the number of z-layers
depends on the bathymetry. Altogether, 20 z-layers have been used for vertical
schematization in the model. Using z-layers will allow the opportunity to extract the model
results at the same depth by selecting a specific z-layer at any location.

An image of the grid used in DCSM is shown in Annex IV of this report.

Numerical time step

The maximum time step is 120s, and the minimum computation time step is limited based
on Courant criteria. The initial time step has been set to 60s. A maximum Courant number
is given as 0.7. The model automatically adjusts the time step concerning the Courant
criteria, depending on the grid size and velocity. Therefore, when the network has small
flow links and high velocities, the model changes the computation time step to a smaller
value to satisfy the Courant criteria.

Bathymetry

Model bathymetry has been generated using the gridded bathymetric data set (October 2016
version) of the European Marine Observation and Data Network (EMODnet). The gridded
data of EMODnet has a resolution of 1/8’%1/8’which is approximately 160mx230m. The
reference level for the EMODnet bathymetric data is the Lowest Astronomical Tide (LAT).
Therefore, the data has been converted to the Mean Sea Level (MSL) reference plane before
inputting into the model. The bathymetry data are provided on the nodes of the grid
network, and the interpolation options are specified in the model setup. The bathymetry for
the model domain is shown in Figure 3.1.2.
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Figure 3.3.1 Model bathymetry of Dutch Continental Shelf Model (DCSM) in a logarithmic

scale (water depths relative to MSL) (Source: (Zijl et al., 2021))

Boundary conditions

Water level

Northern, western, eastern, and southern open boundaries of the model were given as water
level boundaries. The Eastern boundary is connected to the Baltic Sea, an essential source
of fresh water supply to the North Sea through the Norwegian trench. These water levels
have been imposed using astronomical tides.

Temperature and Salinity

For the lateral boundaries, temperature and salinity boundaries have been given in the
DCSM. The data for temperature and salinity were obtained from the World Ocean Atlas
2013 (WOA 2013). This data has a resolution of 0.25° and 107 depth levels. These have
been interpolated to obtain the temperature and salinities at the required boundary locations
and the depth levels.

Meteorological Forcing

Meteorological forcing is given to the DCSM by coupling to the ECWMEF’s ERAS
reanalysis data set. These data are with a 0.25° spatial resolution and hourly temporal
resolution.
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Momentum flux

Wind speed and air pressure are applied to the model to introduce the momentum flux
between air and sea surfaces. The wind speed is given at 10m height, and the air pressure
at the surface (at the mean sea level).

Heat flux
Temperature variations in the seawater can create density differences that can generate the
horizontal flow of the water mass. This will eventually affect the thermal stratification and
reduce the vertical mixing.
The transport of temperature is modeled in the DCSM by introducing a heat flux model.
Here the main components of the heat budget are included as

= Solar (shortwave) radiation,

= atmospheric (longwave) radiation

= heat loss — due to back radiation, evaporation, and convection
The heat exchange between the air-water interface due to the evaporation and convection
is calculated using dew point temperature, the local temperature at 2m height, and the wind
speed from ERADS data. Net shortwave radiation and longwave radiation have been imposed
into the model, and the back radiation is being calculated based on the sea surface
temperature from the model. The solar radiation received to this is distributed over the
whole domain based on the transparency of the water column. To introduce this into the
model, a Secchi depth is applied as a constant value of 4m, except at the Wadden Sea,
where the Secchi depth has been given as 1m.

Mass flux
Exchange of mass flux between atmosphere and sea is introduced by including the inflows
due to precipitation and the losses due to evaporation processes.

Bed roughness

Sea bed roughness was specified in the model as a spatially varying Manning roughness
coefficient. These values have been adjusted by calibrating the model to obtain optimal
water levels. The calibration has been performed using measured data from more than 200
tide gauge stations.
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Figure 3.3.2 Variation of Mannings roughness field in DCSM-FM (Source: (Zijl et al., 2021))

e Observation points
The selected locations can be specified in the model setup by giving the coordinates of
those locations as a .xyn file. In this research, six locations were given to the model as
observation points.
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Chapter 4: Research Methodology

The methodology is developed to attain the research objectives by reviewing the literature to
explore the work already completed for the identified problem associated with the complex
numerical models. Before selecting the SA method for the hydrodynamic model, the different
approaches for sensitivity analysis, their applicability for the complex numerical models will
be discussed. The overview of the research methodology is presented below as a flowchart.

Selection of analysis method

Literature review

v Y
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Figure 4.1. 1 Flowchart of the research methodology
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4.1. Selection of Sensitivity Analysis Methods

Considering the required number of model evaluations and the complexity of the models,
(looss et al., n.d.) distinguished between the screening methods and the more precise variance-
based quantitative methods. The screening methods are used to coarsely sort the influential
input parameters from a more significant number of inputs. The variance decomposition
methods are used for a more precise quantitative exploration which measures the effect of input
variations on the output variance over the whole range of input variation (looss et al., n.d.).
Since the required number of model runs for most methods depends on the dimensions or
number of input factors, an additional class of methods is defined as dimension-independent
methods. The classification of different sensitivity analysis techniques to their complexities
and the required number of model runs are shown in Figure 4.1.1
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Figure 4.1.2 Coarse classification of main global SA methods in terms of the required number
of model evaluations and model complexity (looss et al., n.d.)

Selection of a method for performing the sensitivity analysis for the developed model is carried
out considering the applicability of each method's hydrodynamic model and limitations. The
method of analysis can be selected mainly based on the (a) computational cost of running the
models in each method, (b) the number of input parameters, (c) features of the hydrodynamic
model, (d) input parameter dependency and the interactions of the inputs among each other and
(e) setting for the analysis (Andrea Saltelli & Saisana, 2007). Following methods can be
proposed for calculating the sensitivities of the hydrodynamic model, considering the literature
and the above factors. In this methodology section, possible methods have been put forward,
first to screen the influential parameters and then determine the ranking of significant input
parameters and check the correlations of these parameters.

As described by (Andres, 1997) input parameters often have comparatively very little influence
from most of the parameters. Apart from that, since the complex hydrodynamic models demand
significant computation resources, the screening process has high importance for minimizing
the required number of model executions. Therefore, as a preliminary step, a subset of input
parameters that govern the hydrodynamic processes was selected with the help of expert
knowledge.
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4.2. Methods for analysis

This section describes the selected two methods and the process of application of each method.

4.2.1. Morris method of Elementary Effects

Steps followed in implementing the classic Morris method for calculating the sensitivities in
the North Sea hydrodynamic model are listed below.
1. Selection of the output and input parameters for analysis & plausible ranges for input
parameters
The selection was carried out considering the project objectives, referring to the
literature and expert judgment. The procedure will be discussed in more detail in
Chapter 5.
2. Choosing the discretization levels (p), Morris step (4) and optimum number of
trajectories (r)
Generating the samples for r number of trajectories
Generate outputs using DCSM model developed with Delft3D FM
Extracting the outputs from the results files, which are in the netCDF4 format
Calculating the elementary effects (EE) for each sample
Calculating sensitivity measures (absolute mean of EE and standard deviation of EE)
Ranking of input parameters based on sensitivity measures
Analysis of sensitivities for the two variables (Temperature and current speed)

©CoOoNO O AW

In Morris method (Morris, 1991) sampling strategy is selected considering r number of
trajectories over the input space. As the Morris method is an OAT method, each sample is
generated by changing one input parameter at a time. The distribution of parameters is assumed
to be uniform over the parameter space. All the input parameters are first considered in the
range [0,1] and then transformed to the actual ranges (Campolongo et al., 2007).

e Selection of number of trajectories, discretization levels, and Morris step

According to the literature (Tene et al., 2018), increasing the number of discretization levels
(p) alone does not subsequently increase the accuracy of sensitivity indices unless it is done
together with an increase in the trajectories (r). Further, having a higher number of
discretization levels can yield more paths to remain undiscovered. (Campolongo et al., 2007)
has recommended that using r = 10 and p = 4 levels produces good results in many experiments.
Further, they demonstrated a convenient choice for the discretization levels (p) and 4 is such
that pisevenand A = p/[2.(p — 1)]. Therefore, as the initial values for discretization levels,
Morris step and the number of trajectories were selected as;

n p:41
= A=3/2 and
= r=10

Further, the optimum number of trajectories was found by increasing the r-value and checking
the stability of sensitivity measures (mean, absolute mean, and standard deviation) of each
parameter.

e Sampling strategy
In one-factor-at-a-time (OAT) designs, there should be two sample points to calculate one
Elementary Effect (EE). If the sensitivities are computed for k input factors, and this will be
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done for r times, it needs to have 2rk samples in the simplest form. However, Morris (1991)
suggested an efficient method for sampling designs with fewer samples. In this sampling
strategy, for a model with k number of selected input parameters, (k+1) model evaluations are
needed for calculating one elementary effect for each input. To calculate r number of
elementary effects for each parameter, this must be repeated r times. This will yield a total
computation cost of r*(k+1) model evaluations. Therefore, r*(k+1) input samples need to be
generated, each consisting of k input parameters.

The method considers a hypercube with k dimensions where k equals the number of input
factors selected for the analysis. Each dimension represents one input factor where the
parameters are normalized to lie between 0 and 1. This hypercube is then discretized to p
number of levels with equal intervals. For example, Figure 4.2.1 represents a unit hypercube
with three dimensions and with four discretization levels.

X3

>X2

X

Figure 4.2.1 Representation of a trajectory in the input space with three dimensions and five
discretization levels (Source:(Saltelli A et al., 2008))

A total number of possible trajectories for the unit hypercube can be calculated as follows.

Npaths = cells * Ncorners * orders/2 4.1

Where;
Neeus = (p — S)k’ Neorners = 2", Norders = 2!

Here; k = number of input factors
p = discretization levels
s = number of grid cells chosen for variation (s € {1,2,...,(p — 1))
The first step of generating the samples is to generate the trajectories as described below.

= Atrajectory will be a matrix(B*) with dimensions (k+1) x k where the rows of the
matrix are the vectors X*, X2, .. Xk*1)
= To define B*, a lower triangular matrix (B) of 1’s should be defined first, such that;
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= The matrix B’ is defined by
B’ =Jk+kx* + AB 4.2

where; Ju+1)k 1S a (k+1) x k dimension matrix with 1s and x* is a randomly chosen
base value vector of X. A is equal to the Morris step size
= The orientation matrix B* is given by the equation,

B* = (Ju+pkx* + (A2)[(2B - Jk+1)k)D* + Jk+1)k ] P* 4.3

Here, D* is a k dimensional diagonal matrix where each element in the diagonal is
either +1 or -1 and has equal probability. P* is called the random permutation
matrix, which means the matrix is obtained by randomly permutating the columns
of a kxk identity matrix.

= Since r number of trajectories is selected, there should be r number of orientation
matrices, B*.

= Therefore, the final sampling matrix is derived by repeating this r times

These parameter samples explained above are generated in the range [0,1]. To convert them to
the original interval, upper and lower boundaries of the parameter ranges as to be specified.
Therefore, samples were scaled to their actual ranges before inserting into the hydrodynamic
model. Input samples generation and inserting those samples into the model were performed
using Python programming language. This application has been further explained in Chapter
6.

Simulating the outputs

The hydrodynamic model outputs for the North Sea were simulated with Dutch Continental
Shelf Model (DCSM) using the Delft3D Flexible Mesh model suite. The Models were run
using the Linux cluster utilizing 2 nodes and 4 cores each (model takes 3.07 hours run time on
a coarser grid). Parallel running was performed to reduce the running time.

Extraction of model results

Two types of output files, spatial outputs, and the time series outputs are created in the D-Flow
FM model, both in the netCDF format. As the purpose of the research is to investigate mainly
the variation of values of the outputs from one model run to another, the time series output files
(his.nc) were selected to extract the output values of each model at few selected locations.
Extracting the model results was done with the use of Python programing language.

Calculating EE and sensitivity measures

Elementary effects for each parameter were calculated using equation 2.1 for each trajectory
separately. This yields a kxr number of elementary effects (EE). As described in Chapter 2, the
sensitivity measures were defined as the mean, absolute mean, and standard deviation of
elementary effects.

Ranking of the input parameters based on the significance

The input parameters were ranked according to their contribution to the output parameter
sensitivity based on the calculated sensitivity measure. The absolute mean of EE was used as
the sensitivity measure in ranking. Finally, the most influential inputs were screened by this
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method.

This analysis was performed for both temperature and current velocities. Finally, to check the
spatial variation of the sensitivities, these rakings were obtained for all the selected six
locations.

4.2.2. Variance based Sobol’ method

As explained earlier, the purpose of using the variance-based method in this research is to
prioritize the factors by identifying the input factors which cause the highest fractions of the
variance in output. Therefore, the Sobol’ method was used to determine the ranks of
significance and the fraction of total variance causes by each parameter individually or as a
combination of input parameters.

As mentioned earlier, one key concern of this Sobol” method is its high computational cost.
The computation time for one month of simulation of DCSM with 4nm resolution is
approximately 3.5 hours using 4cores of computation facilities. The variance-based method
requires input samples (N) for one parameter in the range of 100 — 10,000. Hence, it is
challenging to analyze all the selected parameters due to the high computation demand.
Therefore, it was decided to test the sensitivities of temperature and current velocities for a
limited number of input factors, screened by the Morris method.

The variance-based analysis was performed for the two outputs separately after selecting three
input parameters for temperature and another three parameters for current velocities,
contributing the most in changing temperature and current velocities in the hydrodynamic
model. Thus, Sobol’ indices were calculated mainly to determine input variances on the output
variance and analyze input parameter interactions.

The steps followed in implementing the variance-based Sobol’ method are listed below.

1. Selecting the input parameters and their ranges for sensitivity analysis.
Three input parameters were chosen for temperature, and three inputs were selected for
current velocities, considering the results of the Morris screening. Input parameter
ranges were the same as the ones used for Morris method

2. Choosing a distribution for each of the parameters. In this case, parameter distributions
are assumed as uniform distributions for all three parameters.

3. Create the input samples

According to (Saltelli A et al., 2008), the best way to compute a complete set of

sensitivity indices using only the model evaluations is to follow Monte Carlo-based

simulations. Therefore, the method suggested by (Saltelli A et al., 2008) is adopted in

this research. The process of sample generation is listed below

= The first step of creating the samples is to define two matrices containing the
random values within the parameter range of each input parameter, with dimensions
(N, k). Here k is the number of input parameters, and N is the selected sample size.
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= Then a 3" matrix C is defined using the same columns from B except for the i*"
column where the ith column of matrix A replaces this.

.1 1 1 1 7
x(k+1) x(k+2) e X e Xog
2 2 2 1
x(k+1) x(k+2) s xi e x2k
Ci= 3 3 3 3
: Xk+1) Xk+2) - Xi - Xk
N N N N
_x(k+1) x(k+2) N e Xok

= Then the model outputs were computed for all the samples. Since we considered k
input parameters, the C matrix should be created k times to account for all the input
factors. Thus, the numbers of model runs required are;

Corresponding to A — N model runs

Corresponding to B — N model runs

Corresponding to C — Nxk model runs

Therefore, N*(k+2) model runs are required for estimating the first order and total
order sensitivity indices for the model.

= Considering the computation demand, sample size N was chosen as 100 and input
parameters as k=3. Therefore, 100*(3+2)= 500 input samples were generated using
the above method.

= As in the previous method, these inputs were generated and inserted into the
hydrodynamic model using Python programming language.

4. Calculate the outputs for input samples
The hydrodynamic model outputs for the North Sea were simulated with Dutch
Continental Shelf Model (DCSM) using the Delft3D Flexible Mesh model suite.
Models were run using the Linux cluster utilizing 2nodes and 4cores. Parallel running
was performed to reduce the running time.
The outputs for each sampling matrix can be denoted as;
Y(4) = f(A),Y(B) = f(A),Y(Ci) = f(Ci)

5. Calculate the first-order sensitivity indices for each parameter

According to the definition of first-order sensitivity explained in Chapter 2, for i" input
parameter,
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This calculation will be repeated for i = [1,3] for obtaining the indices for three

parameters.
A high value of first-order sensitivity indicates that the input factor is a significant
factor in changing the output.

Compute total sensitivity effects for the three parameters
The total order sensitivity index for i input parameter can be estimated as described
below;
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4.5

Similarly, this calculation will also be repeated for i=[1,3] for obtaining the indices for
three parameters.

Analysis of the sensitivities

Rank the input parameter based on the sensitivity indices. As the variance-based
method gives a quantitative measure on the importance of the input factors, it can be
used to determine how much interactions an input X; has with other input factors. For
estimating this, the difference of the two sensitivity indices (Sy; — S;) was used in the
analysis.

4.3. Comparison of the sensitivity results obtained from two

methods

Ultimately the results obtained using the two analysis techniques were compared to distinguish
between the resulting ranks of significance calculated by two methods and to determine the
correlations between sensitivity indices given by Morris and Sobol” methods.

4.4. Training on example model

Before applying the sensitivity analysis methods into the hydrodynamic model (DCSM), an
example model was used to practice the Delft 3D software and understand the methods for
application of selected analysis techniques to a hydrodynamic model. Further, this example
model was used to develop the Python scripts for the sample generation, input the sample to
the model, and analysis.
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The ‘Western Scheldt’ model is one of the tutorial examples included with the D-Flow FM
model suite, and this was used to practice the software and to start developing the Python
scripts.

4.5. Selection of locations for the analysis

Analysis locations were selected in the FINOS3 research platform and surrounding area to have
a complete analysis of the spatial variation of sensitivities of temperature and currents. These
locations were chosen after considering the existing wind farm locations and the current
direction in the FINO3 to cover the possible effects due to the waves and currents. The
measured currents for the FINO3 research platform are available through The Federal Maritime
and Hydrographic Agency in Germany. Therefore, the current data were plotted for the period
from 2010 to 2015. The direction of currents in the FINO 3 research platform area was observed
mainly from the North to East direction at 2m depth and Northwest and Southeast directions at
higher depths. Therefore, it was decided to choose the points for analysis considering the
existing wind farm locations and covering the possible current directions to study the spatial
variations of the output parameters and the variation of sensitivities based on the location.

Currents at 2m depth Currents at 4m depth

Current Speed (m/s)
. [00:03)
N [03:05)
== [0.5:0.8)
3 0s8:11)
BN (11:1.4)
E [14:inf)

Current Speed (m/s)
W (00:03)
I [03:0.6)
== [0.6:0.9)
3 [09:1.2)
E 1.2:15)
(15 inf)

(@) (b)

Figure 4.5.1 Measured data for currents at FINO3 research platform from 2010 to 2015
(Source of data: BSH (2021))

Six points were chosen such that one point is located in the FINO3 platform, and the
remaining points surround the FINOS3 to capture all possible effects of waves and currents
coming from different directions.
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Figure 4.5.2 selected locations for the analysis (green color; existing wind farms of the area),
(Source:(Research Project: Multi-Use Offshore Platforms, 2021))

The coordinates of selected locations are listed in Table 4.4.1. These locations were input to
the model set up by inserting them in the observation points file (.obs).

Table 4.5.1 Selected locations for the analysis

Observation point Latitude Longitude
FINO3 54.193037 N 7.162783 E

P1 53.980188 N 7.255316 E

P2 54.243168 N 6.824124 E

P3 54.060740 N 6.890461 E

P4 54.383571 N 6.917645 E

P5 54.374132 N 7.372081 E
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Chapter 5: Selection of Parameters for the Analysis

As explained in previous chapters, before applying the analysis techniques, a sub-set of input
parameters was identified referring to the literature and guidance from experts at Deltares. Prior
to the selection of input parameters, output parameters to focus on were identified considering
the requirements of the selected case study.

5.1.

Selection of Output parameters for analysis

Table 5.1.1 includes the critical parameters that need to be considered in designing the offshore
Blue mussel and Seaweed farms using longline structures.

Table 5.1.1 Important parameters for Blue mussel longlines and Seaweed farming

Purpose

Important
Parameters

Description

Reference

Blue
mussel

Temperature

In a study done on offshore mussel aquaculture
in North East United States (Mizuta & Wikfors,
2019) stated that temperature is the most
affecting factor in filtration and clearance rates
of mussels.

Also, in longline mussel farming, the ability of
the byssus to adhere to the rope depends on the
temperature.

Temperature affects the body mass loss of Blue
mussel (for example, the body mass of the Baltic
Blue mussels was smaller in mild winters than
the cold winters).

(Mizuta &
Wikfors, 2019)
(Waldeck &
Larsson, 2013)

Salinity

Salinity gradient affects the size and biomass of
Blue mussels. A decline in mean size, biomass,
and growth rate was observed from the saline
areas to the less saline regions in a study done in
the Northern Baltic sea.

(Westerbom et
al., 2002)

Chlorophyll
concentration

An important factor as it provides an estimation
of food availability for the mussels growing.

(Mizuta &
Wikfors, 2019)

Current
velocity

In the offshore cultivation of mussels, the
mussels will be exposed to more motion than in
the nearshore sites. Therefore, the current speed
is another significant factor to be considered.

(Mizuta &
Wikfors, 2019)

Seaweed

Temperature

Water temperature is one of the factors that
determines the success of Seaweed farming.
Biomass of Saccharina Latissima was found to
be positively correlated with elevated sea
temperatures.

Specific growth of the Seaweeds is negatively
correlated to the temperature.

(Matsson et al.,
2019)
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Biomass of Saccharina Latissima was found to

be positively correlated with the high salinity (Matsson et al,

Salinit

y levels. 2019)

Nitrate and - .

Phosphate Specific growth of Seaweed is found to be (Nursidi et al
concentration positively correlated to the nitrate concentration 2017)

Current and the current velocities.

velocity

Light intensity is considered one of the most
Light important abiotic factors for kelp growth, as it is | (Bikker et al.,
a significant factor that decides the | 2016)

intensit .
y photosynthesis rates.

Salinity levels of the sea are mainly controlled by the freshwater budget received by the sea.
The freshwater budget in the North Sea depends on the exchanges between the Atlantic Ocean,
Baltic Sea, and the freshwater discharges from rivers. However, in an article on the analysis of
North Sea physics, (Sundermann & Pohlmann, 2011) mentioned that the inflows from the
Atlantic Ocean exceed the total inflows of freshwaters to the North Sea. Therefore,
comparatively high salinity levels are observed in the North Sea. Significant variations in the
salinity are mainly observed near the coastal areas where there are freshwater inflows to the
North Sea. According to the literature ((Stindermann & Pohlmann, 2011); (Zijl et al., 2021)),
it has been demonstrated that the average salinity levels of the North Sea are in the range of
32-35 ppb, which is optimum for Blue mussel and Seaweed farming. Therefore, the salinity
does not affect as a critical parameter in this specific area.

Further, to understand the average salinity levels and seasonal variations of the salinity at the
interested area, measured salinity data at FINO3 were obtained from the Federal Maritime and
Hydrographic Agency website in Germany (BSH).

FINO 3: Salzgehalt / Salinity

n 2016 Mar 2016 May 2016 Jul 2016 Sep 2016 Nov 2016 Jan 2017

TIEFE/ DEPTH (Meter)
M s 12 M-8

Figure 5.1.1 Variation of measured salinity at FINO3 for the year 2016 (Source of data:
(BSH, 2021))
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Available measured salinity data at FINO3 illustrates that the maximum salinity variation over
one year is about 3 — 4 mg/l in the selected area, which will not significantly affect the
cultivation of Blue mussel and Seaweed. Although salinity is an essential factor in Seaweed
and Blue mussel farming, salinity in the study area (FINO 3 research platform) does not show
a significant spatial variation over the considered region. Therefore, salinity was not selected
as a critical parameter for the sensitivity analysis in this research.

Several factors affect the cultivation of Blue mussels and Seaweed. However, since the focus
of our study is only on the hydrodynamic model, the temperature and environmental variables
can be selected, referring to the literature as the critical outputs for the sensitivity analysis.

e Temperature

The seawater temperature was simulated using the 3D hydrodynamic model developed for
Northwest European Shelf, using the D-Flow Flexible Mesh model suite. The temperature
computation method is given to the model by the ‘temperaturemodel’ parameter in the .mdu
file. In this study, the ‘temperaturemodel’ was given as the ‘composite ocean model,” which is
the most complex heat flux model according to the D-Flow FM User Manual. The model
calculates the heat budget by accounting for the incoming solar radiation from atmospheric
radiation and heat losses due to the back radiation, evaporative heat flux, and convective heat
flux.

e Current velocity

Different current types are considered in the hydrodynamic model, including tidal, wind-driven
currents, stratified currents, and residual currents. The definition of residual currents can be
found in literature from different points of view. Mathematically, the residual currents are
defined as the steady flow patterns, where there is no change with time. These currents are
obtained with the fundamental equations and assuming independence in time. According to the
hydrodynamicists, the residual currents are the resulting mean velocity over a sufficiently large
period to cancel the transitory wind and tidal currents (Nihoul & Ronday, 1975). The definition
which is given to the residual currents by the experimentalists is “the residuary flow after
subtracting the tidal current contribution from the actual flow computed.” (Otto, 1983).

The wind-driven currents are generated due to the turbulence effects that occur with the
interactions between the air-water surface. Stratified currents are observed where the
stratification exists due to the density differences of seawater. This stratification process is
commonly observed in places where there are freshwater discharges into the sea and where
there are thermal discharges. Hence, the stratified currents are expected to be minimal in this
offshore region as there are no such discharges near this selected location.
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5.2. Selection of Input parameters for analysis

Sensitivities of the two selected outputs were assessed to a selected set of input parameters. As
explained in the previous chapters, the Delft 3D Flow model requires many input factors to set
up a simulation. However, each of these input factors will not significantly affect the sensitivity
of the output parameters. On the other hand, applying sensitivity analysis for many input factors
will be difficult due to the extremely high computation demand of the Delft 3D hydrodynamic
model. Therefore, selecting a subset of the input parameters which could affect the output
variation is an essential preliminary step for the study. Selection of this subset of input
parameters was carried out referring to the literature ((Maulik & San, 2016) (Otto, 1983;
Stindermann & Pohlmann, 2011)), the manuals of Delft3D Flow and with the help of experts
at Deltares. The spatially uniform input factors were considered for analysis, considering the
complexity of the model and the analysis time required to apply selected sensitivity analysis
methods.

The input factors were tested in plausible ranges around their baseline values of the DCSM
model. The baseline values of DCSM have been obtained after validating the model against
measured sea surface temperature, sea surface salinity, and measurements of seasonal
temperature stratification in the central North Sea. Further, simulated residual transport through
the English Channel has also been validated and confirmed to be in the realistic range (Zijl et
al., 2021).

Therefore, the following input parameters were selected as the possible influential factors to
seawater temperature and current velocity.

e Smagorinsky coefficient

In large-eddy simulations, the eddies can be larger than one grid cell, hence too large to break
down with the molecular viscosity. Therefore, an additional stress term is introduced to the
Navier-Stokes equation which can filter those large eddies from the grid. This stress is called
sub-grid stress and modeled using the eddy viscosity approach, where the sub-grid kinematic
viscosity of the model is calculated using Elder’s formula or the Smagorinsky model (Deltares,
2021). In the DCSM, Smagorinsky sub-grid model is used in calculating the sub-grid scale
eddy viscosity, which is given by the equation

ou,®  ou, O0u, ou;

Uj =(CS AXquj)Z\/Z (’)r? +(an + an)2+2%

Where Csis a user-defined coefficient for describing the average size of the eddies within a
grid cell. The length scale o is defined as

lO = CSA

Where A is the size of grid cells. For lo to be always less than the grid size, the Smagorinsky
coefficient should be between 0 and 1.

Since the Smagorinsky coefficient is used to calculate horizontal turbulence of the model, this
factor was used as a possible important input parameter for the sensitivity analyses of
temperature and current velocity. The coefficient has been set to 0.2 in the original DCSM.
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Based on the literature, technical reference manual of D-Flow FM, and the comments from the
experts of Deltares, initially it was decided to use the range from 0 to 0.3 as summarized in
Table 5.2.1.

e Dalton

In calculating seawater temperature in the model, heat losses due to processes like evaporation
and convection are considered. Dalton is the coefficient given to the model to calculate the heat
loss due to evaporation. Therefore, the temperature is supposed to decrease with the increase
of the coefficient as the heat loss is increased.

e Stanton

Stanton coefficient is used to calculate the convective heat loss of the model and was selected
as an essential input for analyzing the temperature sensitivity. The temperature is supposed to
decrease with the increase of the coefficient as the heat loss due to the convection is increased.
Therefore, Dalton and Stanton coefficients were selected as another two critical factors
possibly affecting the temperature calculation of the model.

Possible values for the Dalton and Stanton coefficients were found in some literature, and an
overview of these values is listed in the below Figure 5.2.1. The values given in the first six
sources are related to the researches done in the Northern hemisphere (the North Sea and North
American region), while the last one is related to the temperature modeling carried out for Lake
Malawi in the Southern African region.

Table 5.2.1 Overview of values used for Dalton and Stanton coefficients in literature (Source:
(Twigt, 2006))

Source Stanton number Dalton number
Gill, 1982 0.83 x 1;) (Slfflﬁg'k)?e’)l'lxlo' 15 x 10°
Millar et al., 1999 0.79 x 1073 1.5x 107
Smith et al., 1996 1.1x10% 1.32x 103
Simon et al., 1999 1.0x 103 1.2 %103
Emery et al., 2006 1.0 x 1073 1.2 x 1073
Lane, 1989 N.A 1.33x 10
De Goede et al., 2000 1.45 % 10’3 1.2 x 107
Kernkamp & Smits, 2000 2.255 x 107 1.885 x 103

Besides, (Twigt, 2006) obtained optimum coefficient values for Dalton and Stanton coefficient
for the South China Sea using two methods, optimizing the coefficients using a comparison of
heat exchange and optimizing the two coefficients using a test basin.
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Table 5.2.2 Dalton and Stanton coefficient values obtained for the South China Sea (Source:
(Twigt, 2006))

Source Stanton number Dalton number
[-] [-]
Literature 0.9x 103 1.5x 1073
g—: comparison 0.9 %103 2.4 %103
Test basin 2.1x10° 2.1x10°%

e Vicouv and Vicoww

The Reynold stresses in the momentum equation, which can affect the modeled current
velocities and temperature in the D-Flow FM model, are calculated using the eddy viscosity
concept.

According to the technical reference manual of D-Flow FM, the horizontal viscosity is
calculated as the combination of three parts.

UH == vSGS + vV + v]l_?IaCk
Where vggs is termed as the sub-grid-scale horizontal eddy viscosity, v5%¥ is the
background horizontal eddy viscosity which is a user-defined background value and vy is

termed as the three-dimensional turbulence computed by a 3D turbulence closure model.
In the turbulence closure model, the vertical eddy viscosity coefficient is defined as,

Vy = Vo + max( vk v))
Here v,,,; is the kinematic viscosity of water and v‘l}a‘:k is the user-defined background

vertical eddy viscosity.

Besides, according to the user manual (Deltares, 2021), both the coefficients are considered as
calibration parameters and need to be optimized through the calibration process. Thus, these
two background values for horizontal and vertical eddy viscosities were selected as two other
possible input factors to simulate the current velocities and temperatures.

e Dicouv and Dicoww

The eddy diffusivities are derived from the eddy viscosities in the k-¢ turbulence model.
Therefore, the uniform eddy diffusivities were also selected for the sensitivity analysis. The
value ranges were selected based on the manual of D-Flow FM, Dutch continental Self Model
(DCSM) settings, and experts' help.

e Rhoair

The current velocities depend on the wind force acting on the sea surface. Wind velocities are
affected by the air densities, and therefore consequently, the currents are indirectly affected by
the air density. To analyze the effect of Rhoair on current velocities, the Rhoair parameter given
in the .mdu file is select for the analysis.

Possible values for the air density were decided after considering the average temperature and
air pressure variations at the FINO3 location with the help of measured data for the area
available through the Federal Maritime and Hydrographic Agency website in Germany (BSH).
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According to the measured temperatures, the temperature values vary from -15°C to 30°C over
one year. The range of air pressure variation is observed as 970 — 1030 hPa. Therefore,
maximum and minimum possible air densities were calculated using an average pressure of
1000hPa and two extreme temperatures. These calculations were done using an online

calculator for air density and specific weight calculations.
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Figure 5.2.1 Measured air pressure data at 23m height from sea level at FINO3 for January
2015 (Data source: BSH, 2021)
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Figure 5.2.2 Air density calculations for minimum and maximum temperatures
(Source:(Engineers Edge, n.d.))
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At first, the parameter values were selected, including the minimum values as zero for the
factors, Smagorinsky, uniform viscosities in horizontal and vertical directions (i.e., Vicouv,
Vicoww), and uniform diffusivities in horizontal and vertical directions (i.e., Dicouv,
Dicoww). These possible ranges are shown in Table 5.2.1.

Table 5.2.3 Initially selected input parameters value ranges of each parameter

Parameter range Influence on

Unit Current

Parameter  Description  goceline  Min - Max Temperature :
velocity

Smagorinsky
factor in
horizontal
turbulence
Coefficient for
Dalton evaporative 0.0013 0.001 0.0016 - v -
heat flux
Coefficient for
Stanton convective 0.0013 0.001 0.0016 - 4 -
heat flux
Uniform
Vicouv horizontal 0.1 0 2 m?/s v v
eddy viscosity
Uniform
Vicoww vertical eddy  0.00005 0 0.0001 m?/s 4 v
viscosity
Uniform
Dicouv harizontsl 0.1 0 2 mZs v v
eddy
diffusivity
Uniform
Dicoww vertical eddy  0.00002 0 0.0001 m?s v v
diffusivity
Rhoair Air density 1.2265 1.1639 1.3669 Kg/m?® - v

Smagorinsky 0.2 0 0.3 - 4 v

However, model runs performed using some of these input samples crashed due to
instabilities. As explained in the previous Chapter, three trials were carried out for Morris
method, with r = 10, 12, and 20. For the 1st trial with 10 trajectories, 80 models were run for
checking temperature sensitivity. In this trial, 10 out of the 80 models gave errors and crashed
due to the instabilities. The input sample values for these crashed models are shown in Figure
5.2.5.
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Table 5.2.2 Input samples of the crashed models

Smagorinsky Dalton  Stanton Vigou" V“;OWW Dzicouv D‘EOWW
(m=/s) (m</s) (m*/s) (m?/s)
0 0.001 0.001 1.333333 0 1.333333 0
0 0.0014 0.001 1.333333 0 1.333333 0
0 0.0014 0.001 1.333333 0 0 0
0 0.0012  0.0016 2 0 0.666667  3.33E-05
0 0.0016 0.001 2 0 2 3.33E-05
0.2 0.0014  0.0014 0 0 1.333333  3.33E-05
0 0.0014  0.0014 0 0 1.333333  3.33E-05
0 0.001 0.0014 0 0 1.333333  3.33E-05
0 0.001 0.0014 0 0 0 3.33E-05
0 0.001 0.0014 0 0 0 0.0001

Therefore, it can be assumed that these instabilities in the model are due to single parameter
values of these samples or combinations of input parameter values given to the model, which
cannot exist practically. One significant observation was, all these model runs have the input
parameters Vicoww and Smagorinsky factor as zero. Therefore, it was decided to change the
minimum boundary for the parameters Smagorinsky, uniform viscosities, and diffusivities in
the horizontal and vertical directions. Thus, the minimum values for these parameters were

changed to small non-zero values.

Table 5.2.3 Selected input parameter value ranges of each parameter after adjustments

Parameter range

Parameter ~ Description ...~ \.o .

Influence on

Unit Current
Temperature .
velocity

Smagorinsky
. factor in
Smagorinsky horizontal 0.2 0.05 0.3
turbulence
Coefficient
Dalton for 0.0013  0.001  0.0016
evaporative
heat flux
Coefficient
Stanton for 0.0013  0.001  0.0016
convective
heat flux
Uniform
Vicouv horizontal 0.1 0.1 2
eddy

viscosity

- v v

m2/s v v
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Vicoww

Dicouv

Dicoww

Rhoair

Uniform
vertical eddy 0.00005 0.000001 0.0001
viscosity
Uniform
horizontal
eddy
diffusivity
Uniform
vertical eddy 0.00002 0.000001 0.0001
diffusivity
Air density  1.2265 1.1639 1.3669

0.1 0.1 2

m?/s

m?/s

m?/s

Kg/m?®
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Chapter 6: Application of Python for Analysis

Python programming language was applied to efficiently carry out the sensitivity test on the
North Sea Hydrodynamic model. All the scripts developed for the analysis are attached to this
report as Annex | and Annex Il. The steps followed in the application of Python in the analysis
are shown below as a flowchart.

Writing scripts for generating
input samples for analysis

Write script for inserting the
generated samples to the model

Writing script for extracting the
outputs (Temperature and current
velocity) from the output file

Writing the script for calculating
the sensitivity indices according
to the two methods

Plotting the results for
sensitivities

Figure 6. 1.1 Flow chart for application of Python in the sensitivity analysis

6.1. Scripts for sampling & inserting samples to model

6.1.1. Morris method

As described in the previous chapter, an individually randomized one-at-a-time (OAT)
sampling method was adopted in generating the input samples for the Morris method. Hoey S.
(2012) developed a python script to create the Morris samples, and this code was adjusted
accordingly for this case study.

The script contains a function defined for returning a sampling matrix with input parameter
values and a code to create model setup files with the generated new samples. Therefore, the
script returns a csv file with all the generated samples and subfolders containing three files
required for running the model. These three files will be,

1. Master definition Unstructured file (.mdu) for the model
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2. dimr.xml file
3. Asshell script (run_dimr-h6-c7.sh) needs to run the model in the cluster

The script is written for the two selected output variables. Therefore, six input variables need
to be given by the user for running the script to generate the Morris sample for a specific
sensitivity test on an output of the model. These are;

e p - number of discretization levels

e - number of trajectories

e varName - the name of the output variable

e Kk - number of input parameters

e LB - lower boundary for the input parameters

e UB - upper boundaries for the input parameters

These generated parameter values were then inserted into the model by replacing the original
values in the Master Definition Unstructured file (.mdu file). The source code for generating
the samples and the code developed to create the new .mdu files are attached to this report as
Annex I. All these setup files were saved inside separate folders.

As mentioned in Chapter 4, three trials were performed for sensitivity analysis using the Morris
method for different r values. Therefore, the script for Morris sampling and creating .mdu files
was executed three times separately to create the model setups for Morris samples for each
trial.

6.1.2. Variance-based Sobol’ method

An open-source Python package called SALib, developed by (Herman & Usher, 2017) was
applied to generate the samples for the variance-based method. This Python package has the
module SALib.sample.saltelli, which generates a Monte Carlo sampling matrix. The total
number of samples depends on which sensitivity indices are going to be calculated. The total
cost for calculating first and total order sensitivity indices is (k+1)*N. The second-order
sensitivity indices are calculated with an extra cost of N, where N represents the selected sample
size. In this study, the sample size was taken as 100 samples, and the most significant input
parameters screened by the Morris method were used for variance-based sensitivity analysis.

Here, it was decided to calculate only the First-order and Total-order sensitivities for the
selected input factors. Therefore, the sampling matrix has (k+1)*N rows and k number of
columns, where Kk is the number of input parameters and N is the resample size. Similar to the
Morris method, these generated samples were then inserted to the model by replacing the
default values in the .mdu file. This part of the code is similar to the one written for Morris
method.

The script requires few inputs to be specified as fixed variables before executing the script.

e N -sample size

e varName - the name of the output variable

e num_vars - number of input parameters

e names - names of the selected input parameters for the analysis
e bounds - parameter range for each input
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The source code used in the sample generation and the script wrote for inserting the generated
samples into the model setup is attached to this report as Annex 1.

6.2. Scripts for extracting model outputs

The outputs of the D-Flow-FM model are in the format of netCDF4 (.nc), and they are either
map outputs(_map.nc) or time series outputs (_his.nc). Here the time series output (_his.nc)
file was used for extracting results for temperature and current velocities in three dimensions;
for X, y, and z components. The ‘netCDF4’python library was imported to the script for reading
the netCDF4 files as the first step. As the model results contained 50 vertical layers (z-layers)
in total, the layer number for extracting the results needs to be given as an input, additional to
the observation location and the output parameter name. Then, the scripts were created to
extract the output values from all ensembles at a specific time and calculated the sensitivities
of outputs to each input parameter for a timestep.

6.3. Scripts for calculating sensitivity indices

6.3.1. Morris Method

Using the basic concept of the Morris method, the Python script was developed first to calculate
the elementary effects for each trajectory for each input factor. Elementary effects were defined
as the ratio between the change of output values (either temperature or current velocity)
between two adjacent model runs and the input change scaled to [0,1]. These scaled values of
input parameter changes were taken to avoid the effect of the parameter range on the calculation
of elementary effects. Therefore, it enables the comparison of sensitivities between parameters
independent of their parameter ranges.

The sensitivity measures were calculated for each input by averaging the Elementary Effects
of all the trajectories. Mean (l1), absolute mean (u*), and standard deviations (c) of Elementary
Effects were calculated for each time step for the whole time series covering one month. These
sensitivity measures of each time step were then averaged over the entire month to have the
overall results for sensitivity measures over the entire month. These average results are shown
in Chapter 7.

The script needs the following variables to be assigned and files to be given for the calculations.

e p - number of discretization levels

e - number of trajectories

e varName - the name of the output variable

e k- number of input parameters

e timesteps — number of time steps in the model results

e asetof "DCSM-FM_4nm_0000_his.mdu" — model results files (time series output of
the model)

e "input_samples.csv" —acsv file contains the input samples created at the sampling step.
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6.3.2. Variance-based Sobol’ Method

First-order and total order Sobol’ indices were calculated referring to an existing Python
library, SALib.analyze.saltelli developed by (Herman & Usher, 2017) for variance-based
sensitivity analysis. The sensitivities of temperature and current velocities to the input factors
were calculated based on the selected period, based on the equations (4.4 and 4.5) mentioned
in Chapter 4 for calculating First-order and Total-order Sobol” indices. These sensitivity indices
for the selected time steps were then averaged to get the results for sensitivity indices for the
month.

The following input variables need to be assigned before running the script for calculating the
Sobol” indices

e N -sample size

e varName - the name of the output variable

e timesteps — number of time steps in the model

e k- number of input parameters

e names - names of the selected input parameters for the analysis

The script returns a csv file with the averages of first-order sensitivities (S1) and total-order
sensitivities (ST) for the selected time period, for each input parameter.

6.4. Plotting the results

The existing Python library, ‘matplotlib’ was used in creating the plots for the analysis.

6.4.1. Time series plots

The time series plots containing all the model runs were generated for both Morris and Sobol’
methods for temperature and current velocities in X, y, and z directions at the selected six
locations. These were generated to estimate the general pattern of variation of temperature and
current velocities at each location.

6.4.2. Plots for sensitivity measures

The sensitivity of the two outputs was represented based on the absolute mean and standard
deviation of elementary effects in the application of Morris method. Therefore, three types of
plots were created for the first method, using the average results for the whole month.

1. Scatterplots representing the sensitivity measures (absolute mean (u*) and standard
deviation (o) of EE) for the three trails with different r.

2. A scatterplot representing the variation of standard deviation (o) vs. absolute mean
(u*) of EE for selected input parameters

3. Bar plot representing the sensitivity results of all six locations

In the Sobol” method, sensitivities of the parameters were represented using the first and total
order Sobol’ indices. Therefore, the two types of plots were created for the output variables
(temperature and current velocities) to visualize the results obtained from the variance-based
method.
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1. Scatterplots representing the two sensitivity indices at each location for selected input
parameters

2. Scatterplots representing the variation of sensitivity measures (first-order sensitivity
index (Si) and total-order sensitivity index (Sti)) for the selected input parameters at
selected six locations.

6.4.3. Plots for comparing the sensitivity measures of two methods

To compare the indices obtained by the Morris and Sobol’ methods, the correlation between
the sensitivity measures were analyzed by plotting the variations of,

1. Absolute mean (u*) of EE obtained from Morris analysis with total-order Sobol” index
(Sti) from Sobol” method

2. Standard deviation (o) of EE obtained from Morris analysis with the difference of
total-order Sobol’ index and first-order Sobol” index (Sti - Si) from Sobol” method
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Chapter 7: Results and Discussion

Analyses were carried out for the Morris method and the variance-based Sobol’ method
separately. The number of simulations was selected based on the technique and selected sample
sizes/ number of trajectories.

7.1. Variation of Output parameters over time

This sub-section contains results of the hydrodynamic model runs performed for calculating
the sensitivities of temperature and current velocities in 3 dimensions. The DCSM model takes
1.67 days for simulating one year using a coarse grid. Therefore, it was challenging to perform
a vast number of model runs for a very long period. Moreover, the analysis can take a
considerable time for the whole year. Besides, since the study's primary goal was to analyze
the sensitivities of selected output parameters to the input parameters, a specific period of the
year was selected for analyzing the sensitivities. Therefore, the simulation period was taken as
one month of the year, starting from 25-12-2004 up to 26-01-2005. The output temperature and
current velocities were extracted at the selected six locations, including the FINO3 research
platform. The average water depth of this area was observed as 23m. The output values for
both variables were extracted from the surface layer of the 3D hydrodynamic model.

7.1.1. Temperature

temperature (FINO3)

8.0

725

=
o

temperature (degC)
o o
o wv

5:5

5.0

2004-12-25  2004-12-29 2005-01-01  2005-01-05  2005-01-09  2005-01-13  2005-01-17  2005-01-21  2005-01-25

Figure 7.1.1 Temperature variation at FINO3 over one-month period simulated with 12
trajectories (r=12) and using 96 samples

The temperature variation of the FINO3 shows a decreasing trend over the whole month. The
minor periodic variations can be explained by the temperature change in the daytime and
nighttime. These modeled temperatures were compared with the available temperature data at
FINO3. However, measured data at FINO 3 was not available for the selected year. Therefore,
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data for January 2010 was used to compare the model results with measured temperature data
at the FINOS3 research platform, which is illustrated in Figure 7.2.1.

Variation of measured temperature at FINO3

LAY

Water Temperature (*C)
o o &n &n o o
] (%] (=] ©n = n

[
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2010-01-01 2010-01-05 2010-01-09 2010-01-13 2010-01-17 2010-01-21 2010-01-25 2010-01-22010-02-01
Time

Figure 7.1.2 Measured data from buoy for surface water temperature at FINO3 for January
2010 (Data Source: BSH, 2021)

The temperature variations are similar in the simulated temperature and measured data,
although the averages are not the same in two years, which can be expected.

7.1.2. Current velocity

The simulated current velocities at FINO3 for the three directions (X, y, and z directions) are
shown below for the generated samples using 12 trajectories (84 model runs). Similar to the
temperature result extraction, current velocities were also extracted from the surface layer at a
depth of 0.5m from the mean sea level at FINO3.
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Figure 7.1.2 Variation of x velocity at FINO3 over one-month period simulated using 12
trajectories (r=12)
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Figure 7.1.3 Variation of y velocity at FINO3 over one-month period simulated using 12
trajectories (r=12)
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Figure 7.1.4 Variation of z velocity at FINO3 over one-month period simulated using 12
trajectories (r=12)

When compared the three components of the current velocities, the highest variation was
observed in the x-direction. The magnitude of current velocity values is in the range of 0 —
0.8m/s for x-direction and 0 — 0.4m/s for the y-direction. However, the velocities in the vertical
direction show minimal values compared to the other two. These small velocities can be
explained as the stratified currents generated by the stratification occur due to temperature and
density variations expected over the depth. However, it shows that the selected location
experiences negligible currents in the vertical direction, which agrees with the initial
assumptions on stratified currents.

As mentioned in Chapter 3, according to the literature (Stindermann & Pohlmann, 2011), the
tidal currents are observed to be the dominant current type in the North Sea. The simulated
current patterns in x-direction show a periodic variation. However, the current variation in the
y-direction does not show a regular pattern as in the x-velocity. As the current results are
extracted from the surface layer of the model vertical schematization, the reason might be the
effect of wind and waves.
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7.2. Application of Morris method

The Morris method was applied, selecting different numbers of trajectories or repetition
numbers. As a starting point, 10 trajectories (r = 10) were used to calculate the sensitivity
measures using the simulated results. Afterward, the number of trajectories was increased to
12 and 20, respectively, and analyses were done for the three cases. This repetition was done
mainly to investigate the effect of the number of selected trajectories on the order of ranking.

Since the simulations were performed for one month, the results for sensitivity measures (mean,
absolute mean, and standard deviation of Elementary Effects) were averaged in time after
removing the spin-up time of 2 days for the model to be stable. The analyses were performed
separately for each location. The following subsections include the sensitivity measures
calculated at the FINO3 location for three trials with r = 10, 12, and 20. The results for the
other locations are attached to the Annex Ill of this report. Moreover, a summary of the
sensitivity raking of each input parameter at selected six locations is presented at the end of
each subsection.

7.2.1. Temperature Sensitivity

The Morris method results for sensitivity measures calculated for the location FINO3, using
three different numbers of trajectories (r), are shown in Table 7.2.1 and Figure 7.2.1.

Table 7.2.1 Sensitivity of temperature to the input parameters calculated using Morris method
(for r =10, 12, and 20) at location FINO3

Trial 1 (r = 10) Trial 2 (r =12) Trial 3 (r = 20)
T o weo w0 R weo w0 Touee weo) oo R
Ssgagori” 00p15 00628 00617 2 oo 00560 00433 2 oo 00627 00626 2
Dalton oosgp 02156 02082 1 . 02089 02008 1 oo 01991 02082 1
Stanton oo, 00308 00278 3 00015 00271 00288 3 ... 00286 00270 3
Vicouw 00000 00000 0.0000 7 00000 00000 00000 7  0.0000 0.0000 0.0000 7
Vicoww 00002 00027 00021 4 00000 00016 00021 4 ... 00023 00018 4
Dicouv  0.0000 0.0000 00000 6 0.0000 0.0000 0.0000 6  0.0000 00000 0.0000 6
Dicomw ~ 0.0002 00008 00007 5 0.0000 00006 00008 5 00002 00008 0.0007 5

The two Morris sensitivity measures, absolute mean (u*) and standard deviation (o) of EE for
the three trials, are shown in Figure 7.2.1
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Morris results for sensitivity of Temperature at FINO3
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Figure 7.2.1 Sensitivity of temperature to each input parameter at FINO3 (a) Absolute
mean(u*) of EE for input parameters for the three trials ( r= 10, 12 and 20), (b) Standard
deviation (o) of EE for input parameters for the three trials (r = 10, 12 and 20)

e The results for the three trials corroborate that although the numerical values for mean,
absolute mean, and standard deviation are slightly changed with the selected number of
trajectories, the order of significance has not changed with the increased r.

e When considering the sensitivity measures p and pu* for some parameters, there is
smaller mean (u) values and higher absolute mean (u*) values. This indicates that the
parameters have effects with opposing signs.

e Therefore, to capture both positive and negative values of the Elementary Effects, the
absolute mean (u*) of EE was used in deciding the importance of input factors to the
model.

Figure 7.2.2 shows the relation between the absolute mean and the standard deviation of EE
for each input parameter. Since it is proven that there is no significant difference in the values
obtained by the three trials (r =10, 12, 20), the results of trial 2 with 12 trajectories has been
used here for the analysis. One primary observation of the Figure 7.2.2 is that all the points lie
in the diagonal. This indicates that all the parameters that affect the simulated temperature have
non-linear effects on the temperature.
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Sensitivity of temperature to input factors
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Figure 7.2.2 Morris results of temperature sensitivity at FINO3; (r=12) Scatterplot for
temperature sensitivity - Variation of standard deviation with absolute mean

The Morris analysis can only be used as a qualitative method to screen the significant input
factors, as discussed in Chapter 2. The absolute mean of EE values indicates the importance of
each input parameter. The standard deviation is a qualitative measure of the non-linearities of
the input-output relationship. Further, this is an indication of the possible interactions with
other parameters. According to the tabulated values of these sensitivity measures, the most
influential parameter is the Dalton coefficient, which is the coefficient of evaporative heat flux.
Therefore, it can be claimed that the process of evaporative heat loss contributes the most in
defining the modeled temperature values out of these selected input parameters.

When considering the physical meaning of these two coefficients used in the D-Flow FM
model, as described in sections 5.1 and 5.2, the temperature is modeled considering the net
radiation and heat losses due to convective and evaporative heat fluxes. Evaporative heat loss
is dependent on meteorological factors (i.e., wind-driven convection) and vapour pressures.
According to the technical reference manual of D-Flow FM (Deltares, 2021), there are two
processes considered to calculate the latent heat flux, free and forced convection .The equation
below gives the latent heat flux of forced convection

Qev,forced = vaaf(UIO){QS(Ts) - qa(Ta)} 7.1

The wind function in this equation (f(U10)) is calculated as a function of wind velocity (U1o)
and Dalton coefficient (ce) using the equation

f(U1) = ceUsp 1.2

The Stanton coefficient was identified as the third most important factor from the above results.
Like in the Dalton coefficient, the Stanton coefficient is also used in the calculation of the heat
budget of the model. The sensible heat flux or the convective heat flux is calculated with two
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processes, free convection and forced convection. The forced convective heat flux is calculated
with the equation

QCO,forced = Cppag(Ulo){Ts - Ta} 7.3

The wind function in the above equation is calculated as a function of wind speed and the
Stanton coefficient (cy).

gUy0) = cyUsp 7.4

The above equations indicate that both, Dalton and Stanton coefficients, affect the simulated
temperature in the model. Therefore, the results substantiate these physical definitions.

The second most important parameter was identified to be the Smagorinsky factor in horizontal
turbulence. As discussed in section 5.2, the Smagorinsky factor is used in calculating the
horizontal eddy viscosity of the model as an input to calculate the sub-grid scale eddy viscosity.
Thus, it can be assumed that the Smagorinsky factor affects the horizontal turbulence of the
water mass and indirectly contributes to calculating the temperature in the model to a
considerable extent.

One significant observation from the above results is that the Elementary Effects for uniform
eddy viscosity and eddy diffusivity (Vicouv, Dicouv) show no effect on temperature
sensitivity. This means that these values are not considered when calculating the temperature
in the model for this period. It is essential to look at the physical meaning of these results with
respect to applying these inputs to the model. As mentioned in section 5.2, uniform viscosities
and diffusivities are applied to the model as uniform background values, where the final values
of viscosities and diffusivities are calculated as a combined function of the applied uniform
values and those from the sub-grid model, vertical eddy viscosities, and kinematic viscosity of
water. However, the horizontal eddy viscosity and horizontal eddy diffusivity are specified in
the external forcing file (.ext file) in the model as well. Thus, the final values are taken as the
maximum of these uniform background values and the spatially varying values given in the
external forcing file.

Therefore, it can be assumed that for the selected period, the Vicouv and Dicouv values given
in the .mdu file have always been less than the values given in the external forcing (.ext) file.
Thus, the model always considers the viscosities from the external forcing file for the
calculations. Therefore, the sensitivity analysis shows that these inputs are insignificant for
temperature calculation in the model. Nonetheless, there is still a possibility that these two
parameters affect the temperature sensitivity if the models were run for a different period of
the year or considered different locations.

The tables and graphs for sensitivity measures of the temperature for the other five locations
are attached to Annex I1l. The summary of the sensitivity measures at each location is presented
in Figure 7.2.4. The results for the other five locations are comparable with the results obtained
for FINO3 although the numerical values change slightly from one location to another .
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Figure 7.2.3 Variation of sensitivity of temperature to input parameters based on the selected
location, calculated by Morris method using 12 trajectories (r = 12)

A summary of the ranking obtained through the Morris analysis for selected six locations is
given in Table 7.2.2.
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Table 7.2.2 Ranking of Significance of input parameters on temperature (r=12) based on

location
Ranking of input parameter at Location
Parameter

FINO 3 P1 P2 P3 P4 P5
Smagorinsky 2 3 2 2 2 2
Dalton 1 1 1 1 1 1
Stanton 3 2 3 3 3 3
Vicouv 7 7 7 7 7 7
Vicoww 4 4 4 4 4 4
Dicouv 6 6 6 6 6 6
Dicoww 5 5 5 5 5 5

The resulting ranks for all the selected locations except point 1 (P1) show the same order. Out
of the selected set of inputs, the temperature was most sensitive to the input Dalton coefficient.
The second most important factor is identified as the Smagorinsky factor and, thirdly, the
Stanton coefficient.

7.2.2. Sensitivity of Current velocity

The D-Flow FM model calculates the currents in all three directions X, y, and z. These were
analyzed separately as three components of the currents. Similar to the temperature analysis,
three trials were done to check the effect of the selected number of repetitions (r) on the
calculated sensitivity measures.

7.2.2.1. Current velocity - x component

The following table contains the sensitivity measures calculated (mean, absolute mean, and
standard deviation of Elementary Effects (EE)) for the x-velocity component of currents.

Table 7.2.3: Sensitivity measures of current velocity (x-component) to the input parameters
calculated using Morris method (for r = 10, 12 and 20) at location FINO3

r=10 r=12 r=20
Parameter Vil c Ra 11 P> Ra 11 Vil c Ra
WIS) i) (mis) ko (mis) (mis) SO ik (mis) (mis) (mis)  nk
Vicous 000E+ 000E 000 , O0OOE+ O0O0E O0OOE+ . O0O00E O000E+ 000
00  +00 E+00 00  +00 00 +00 00  E+00
. -6.88E- 174E 144 T 130E  1.12E- ©_ 123E- 148
Vicoww 06 03 E03 ° 6'%%)5 -03 03 3 4"(‘)2'5' 03 E03 °
Dicou 000E+ 0Q0E 000 . 0OOE+ O0O0E O0OOE+ . O000E O0O00E+ 000 .
00 +00 E+00 00 +00 00 +00 00 E+00
Dicouw 124E- 610E 517 , A498E- 592E 458E- , 865E- G5.I4E- 647
04 04 E-04 06 -04 04 05 04  E-04
Rhoair 295E- 113 131 , 287E- 140E 134E- , 207E- 133 138
03 02 E02 04 02 02 04 02  E-02
Smagorinsk -8.72E- 4.42E  4.30 " 362E  4.18E- " 433E- 451
y 04 03 E03 2 1'%%'5' -03 03 2 6'%3'5' 03 E-03 2
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Out of the selected input parameters, the most significant inputs for defining the x-velocity
component in the model were air density (Rhoair) and the Smagorinsky coefficient. Other than
that, uniform viscosity and uniform diffusivity in the vertical direction affect the sensitivity of
the x-velocity component on a minor scale.

Air density is used in calculating wind stress in the model. However, a spatially varying air
density is provided (as a parameter in ERA5 data) to the model. The constant air density value
used here (Rhoair) is generally used to adjust the wind speed in the model such that the right
wind stress is achieved. The wind stress acting on the sea surface affects the computation of
current velocities. Thus, Rhoair can be expected to affect the current velocity calculation
indirectly.

Smagorinsky coefficient is used in the Smagorinsky sub-grid model to calculate horizontal
viscosity, which defines horizontal turbulence. Therefore, the coefficient is expected to
contribute to calculating eddy viscosities and indirectly affect the current velocity calculation.

Morris results for sensitivity of x_velocity at FINO3
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Figure 7.2.4 Sensitivity of x-velocity to each input parameter at FINO3 (a) Absolute
mean(u*) of EE for input parameters for the three trials ( r= 10, 12 and 20), (b) Standard
deviation (o) of EE for input parameters for the three trials (r = 10, 12 and 20)

The results for three trials with different numbers of trajectories show that the ranking order
has not changed with the number of trajectories. Therefore, we can conclude that using r=10
with four discretization levels (p = 4) is sufficient in deciding the order of sensitivities.
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Sensitivity of x_velocity to input factors

0014 A dhogir
0012 A
0010 -
0008 -
0006
0.004 gmagorinsky

0002 -

Standard deviation(o) of EE

_dicoww

W
0.000 { #*

0000 0002 0004 0006 0008 0010 0012 0014
Absolute mean (p*) of EE

Figure 7.2.5 Morris results for the sensitivity of x-velocity at FINO3; (r=12) Scatterplot for x-
velocity sensitivity - Variation of standard deviation with absolute mean

According to the above figure, all the input factors lie in the diagonal, indicating that the input
factors which are influential to the simulated current velocity in x-direction have non-linear
effects on the output.

The tabulated values of sensitivity measures for the x-velocity component of currents for the
other locations are attached to Annex Ill. The sensitivity measures for the x-velocity
component at each location are given in Figure 7.2.6.

64 |Page



FIN

mm p* of EE

Smagorinsky o of EE

Rhoair
Dicoww
Dicouv -

Vicoww -l

Vicouv

Input factors

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Sensitivity measures (u*and o of EE)

P2
*
Smagorinsky W+ of EE
s o of EE
Rhoair
2
9 .
o Dicoww
o
5 Dicouv
Q
=
Vicoww
Vicouv
0.000 0.005 0.010 0.015 0.020

Sensitivity measures (u*and o of EE)

P4

mm p* of EE

Smagorinsky o of EE

Rhoair
Dicoww
Dicouv A

Vicoww -'

Vicouv

Input factors

0.000 0.002 0.004 0.006 0.008 0010 0.012
Sensitivity measures (u*and o of EE)

éBensitivity of x_velocity to input factors -

mm p*of EE
mm o of EE

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Sensitivity measures (p*and o of EE)

P3
| of EE
o of EE
0.000 0.005 0.010 0.015 0.020

Sensitivity measures (p*and o of EE)

P5

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Sensitivity measures (u*and o of EE)

Figure 7.2.6 Variation of sensitivity of current velocity (x-velocity component) to input
parameters based on the selected location, calculated by Morris method using 12 trajectories

(r=12)

The above results show that the spatial variation of the sensitivity of x-velocity to input factors

is negligible for these six locations.
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Table 7.2.4 Ranking of Significance of input parameters on current velocity (Xx-component)
based on location

Ranking of input parameter at Location
Parameter g putp

FINO 3 P1 P2 P3 P4 P5
Vicouv 6 6 6 6 6 6
Vicoww 3 3 3 3 3 3
Dicouv 5 5 5 5 5 5
Dicoww 4 4 4 4 4 4
Rhoair 1 1 1 1 1 1
Smagorinsky 2 2 2 2 2 2

Similar to the sensitivity of the x-velocity component, the sensitivity of the y-velocity
component to the selected input parameters also has not changed based on the location for the
selected area of FINO3.

7.2.2.2. Current velocity - y component

The sensitivity measures obtained from the Morris analysis are shown in Table 7.2.5 for the

location FINOS3.

Table 7.2.5 Sensitivity measures of current velocity (y-component) to the input parameters
calculated using Morris method (for r = 10, 12 and 20) at location FINO3

r=10 r=12 r=20
Paramet u T o u e o u e o
i) (i) () K sy sy (mis) RAK sy (mis)  (mis) @K

Vicony  O.00E 000 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E

+00 400 +00 6 400  +00 400 6  +00 400  +00 6
Vicoww B885E- 881E 1.12E 1526 628E 7.67E 527E 7.06E 8.99E

05 .04 03 3  -05 -04 -04 3 05 -04 -04 3
Sicoyy O00E  0.00E  0.00E 0.00E 000E 0.00E 0.00E 000E 0.00E

100 400 +00 5 400 400 400 5  +00 400 400 5
Dicoww 341E- 331E 4.16E 485E  2.82E 3.68E 375E 339E 4.53E

05 04 -04 4 06 -04 -04 4 05 04 04 4
mhoaiy  408E- 112E 953 111E 1156 1.20E 1176 1158 1.19E

03 02 03 1 -3 -02 -2 1  -06 -02 02 1
ST?E;” 4.42E- 3.65E 3.78E 6.67E 3.31E 2.75E 3.39E 3.40E 3.50E

4 03 03 2 -04 -03 -3 2 -4 03 03 2

The tables and graphs for sensitivity measures of the y-velocity component of currents for the
other locations are attached to Annex Il1.
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Morris results for sensitivity of y_velocity at FINO3
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Figure 7.2.7 Sensitivity of y-velocity to each input parameter at FINO3 (a) Absolute
mean(pu*) of EE for input parameters for the three trials ( r= 10, 12 and 20), (b) Standard
deviation (o) of EE for input parameters for the three trials (r = 10, 12 and 20)
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Figure 7.2.8 Morris results for the sensitivity of y-velocity at FINO3; (r=12) Scatterplot for y-
velocity sensitivity - Variation of standard deviation with absolute mean

The sensitivity measures for the y-velocity component at each location are given in Figure
7.2.9.
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Figure 7.2.9 Variation of sensitivity of current velocity (y-velocity component) to input
parameters based on the selected location, calculated by Morris method using 12 trajectories

(r=12)

Similar to the sensitivity measures of the x-velocity component, current velocities in y-
direction do not exhibit a significant change based on the analysis location.
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Table 7.2.6 Ranking of Significance of input parameters on current velocity (y-component)
based on location

Ranking of input parameter at Location
Parameter g putp

FINO 3 P1 P2 P3 P4 P5
Vicouv 6 6 6 6 6 6
Vicoww 3 3 3 3 3 3
Dicouv 5 5 5 5 5 5
Dicoww 4 4 4 4 4 4
Rhoair 1 1 1 1 1 1
Smagorinsky 2 2 2 2 2 2

7.2.2.3. Current velocity - z component

Table 7.2.7: Sensitivity measures of current velocity (z-component) to the input parameters
calculated using Morris method (for r = 10, 12 and 20) at location FINO3

r=10 r=12 r=20
Parameter 11 Vil c Ra 11 Vel o (m/s) Ra K Vil c Ra
(m/s) (m/s) (m/s) nk (m/s) (m/s) nk  (m/s) (m/s) (m/s) nk
Vicouv 0.00 0.00E 0.00E 6 0.00E 0.00E+ 0.00E+ 6 0.00E 0.00E+ 0.00E 6
E+00 +00 +00 +00 00 00 +00 00 +00
. 260 1.65E 197E i 1.33E- 1.68E- 2.15E 1.49E- 1.86E
Vieww  eq0 06 06 2 ZL%EE 06 % 2 09 06 06 °
Dicouv 0.00 0.00E 0.00E 5 0.00E 0.00E+ 0.00E+ 5 0.00E 0.00E+ 0.00E 5
E+00 +00 +00 +00 00 00 +00 00 +00
. 3.09 431E 6.33E 196E 3.88E- 5.74E- _ 4.34E- 6.51E
Dicoww  eqo9 07 07 4 09 07 ov  * MEE or ot
. 127 3.99E 3.67E 527E 4.04E- 4.41E- § 4.03E- 4.39E
Rhoair - £07 06 06 1 08 06 o6 1 ME s s f
Smagorins 6.62 129 1.52E 3 5 83E 1.17E-  1.28E- 3 113E 1.22E- 1.45E 3
ky Eog 06 06 08 06 06 08 06 -06

The observed values for all the sensitivity measures (mean, absolute mean, and standard
deviation of EE) were comparably lower than the sensitivity measures of the other two velocity
components. These nominal values can be expected because of the minimal range of the
original current velocities in the z-direction, which were in the range of 10E-4.
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Figure 7.2.10 Sensitivity of z_velocity to each input parameter at FINO3 (a) Absolute
mean(u*) of EE for input parameters for the three trials ( r= 10, 12 and 20), (b) Standard

deviation (o) of EE for input parameters for the three trials (r = 10, 12 and 20)

Similar to the previous analyses of x and y velocities, the selected number of trajectories has
not significantly changed the calculated sensitivity measures for z-velocity. Therefore, it can
be confirmed that using r = 10 would be sufficient in the analyses.
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Figure 7.2.11 Morris results for the sensitivity of y-velocity at FINO3; (r=12) Scatterplot for
y-velocity sensitivity - Variation of standard deviation with absolute mean

All the selected inputs for the analysis of z-velocities lie in the diagonal, indicating that the
parameters with higher absolute mean values have higher standard deviations. This denotes
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that the parameters, which are identified as significant inputs, have non-linear effects on the
output.

The sensitivity measures for the z-velocity component at each location are given in Figure
7.2.12.
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Figure 7.2.12 Variation of sensitivity of current velocity (z-velocity component) to input
parameters based on the selected location, calculated by Morris method using 12 trajectories
(r=12)
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The graphs for Sensitivity measures of the z-velocity component of currents for the other
locations are attached to Annex I1l. The summary of the ranking obtained by the above results
is shown in Table 7.2.8.

Table 7.2.8 Ranking of Significance of input parameters on current velocity (z-component)
based on location

Ranking of input parameter at Location

Parameter FINO 3 P1 P2 P3 P4 P5
Vicouv 6 6 6 6 6 6
Vicoww 2 2 2 2 1 2
Dicouv 5 5 5 5 2 5
Dicoww 4 4 4 4 5 4
Rhoair 1 1 1 1 3 1
Smagorinsky 3 3 3 3 4 3

Similar to the sensitivity of the x- and y-velocity components, the z-velocity component also
does not change much based on the selected analysis location except for the location P4, where
the most significant input parameter was identified as uniform vertical eddy viscosity. Uniform
vertical eddy diffusivity stands as the second most significant factor to the z-velocity
component at this location. Air density (Rhoair), which was identified as the most significant
parameter at the other five locations, was identified to be the third important factor for
calculating the z-velocity of the model at P4. Through all these results for the six locations, the
four most important input factors, which will be affecting the modeled current velocity in the
z-direction, were selected as air density (Rhoair), Smagorinsky factor, Vicoww, and Dicoww.
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7.3. Application of Variance-based Sobol’ method

As mentioned before, the Sobol” method can calculate the individual and combined effects of
each input variances on the output variance. The high computation cost of the variance-based
method hinders applying this method to the complex numerical model. Therefore, to reduce
the computation effort, it was decided to apply this method for the most significant input
parameters screened by the Morris method.

The following input parameters were selected, which were screened from the Morris method,
to have a more comprehensive analysis of the sensitivities of output variables to the input
parameters. Table 7.3.1 includes these selected input parameters for each output variable.

Table 7.3.1 Input parameters selected by the Morris screening method for the variance-based

analysis
Output variable Selected input parameters
Temperature Dalton, Smagorinsky, Stanton

Current velocity (x-velocity component)  Rhoair, Smagorinsky, Vicoww, Dicoww
Current velocity (y-velocity component)  Rhoair, Smagorinsky, Vicoww, Dicoww
Current velocity (z-velocity component)  Rhoair, Smagorinsky, Vicoww, Dicoww

7.3.1. Temperature Sensitivity

The Variance decomposition for the temperature with respect to the selected input parameters
is given in this section. Here, Si represents the first order indices, and S+i represents the total
order indices. The spin-up time for the model to be stable was considered as two days,
considering the stability of the results. Similar to the previous method, the Sobol’ indices were
also calculated for different timesteps to have a complete picture of sensitivity measures.
However, considering the time taken for the analysis for a considerable number of timesteps
(1489 for one month), selecting a range of timesteps for calculations was decided. The average
of the indices was taken for the period of 20 timesteps from 13-01-2005: 13:00 to 13-01-2005:
23:00 (t =890 to t = 910).

The sensitivity indices obtained for the extracted results for temperature is given in Table 7.3.2.

Table 7.3.2 Sensitivity indices for the temperature to the input parameters calculated using
the Sobol’ method at FINO 3

Rank
Parameter Si Sti Sti-Si Rank (pased (based on
on Si) Sti)
1
Smagorinsky  0.1511 0.1639 0.0128 2 2
Dalton 0.8338 0.8469 0.0132 1 1
Stanton 0.0040 0.0048 0.0007 3 3
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Sobol indices for sensitivity of temperature at FINO3
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Figure 7.3.1 First-order and total-order Sobol’ indices for the location FINO3

The first-order sensitivity index is a quantitative measure of the individual impact of a
particular input on the output. According to the resulting values for S; for the selected three
parameters, it was observed that the ranking of the inputs shows a similar order as in the Morris
results. 83.4% of the output temperature variability is caused due to the variability of the Dalton
coefficient alone. The second most sensitive parameter was observed as the Smagorinsky
factor, which accounted for 15.1% of the output variability. The Stanton coefficient contributes
to 0.4% of the variance of calculated temperature. All the first-order indices add up to about
0.98. This indicates that the model output variability is caused mainly by the first-order effects,
and the second and third-order sensitivities are relatively small. Thus, when considered these
three input parameters, the Dalton coefficient, and the Smagorinsky factor account for about
98% of the sensitivity of output temperature of the model.

Total order Sobol’ indices are a measure for determining the different types of effects,
including the linear, non-linear, additive, and interactions of any order, including first, second,
and higher orders (Campolongo & Saltelli, 1997). According to (Saltelli A et al., 2008), inputs
are called interacting when the output is associated with two or more input combinations. The
first-order index gives information on how one single input parameter's variability creates the
output variability. The difference between the total order index and the first-order index (Sti—
Si) indicates the output variabilities generated as a combined effect of a particular input with
other input parameters.

According to the above results, the Dalton coefficient has a (Sti— Si) value of 0.0132, indicating
that the factor interacts with the other two parameters and contributes 1.3% of the output
temperature variability due to these interactions. Therefore, a high portion of the output
variance is created due to two input parameters, including the coefficient of evaporative heat
flux (Dalton) and the Smagorinsky coefficient used in calculating the sub-grid scale horizontal
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viscosity. Consequently, these observations are comparable with the results obtained through
Morris analysis when looking at the ranking order.

Sobol’ indices calculated for temperature sensitivity for the other five locations are attached to
Annex I11. Further, Figure 7.3.3 represents the variation of the first-order and total-order Sobol’
indices for the temperature sensitivity depending on the analysis location.

Sobol indices for sensitivity of temperature
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Figure 7.3.3 First-order and total-order Sobol’ indices for the temperature at the selected six
locations

From the above figure, it is evident that the sensitivity indices of each input parameter show
only a slight variation depending on the analysis location. Therefore, using the results for
FINO3 is sufficient to conclude the significance of the input parameters selected in the Sobol’
analysis of temperature.

7.3.2. Sensitivity of Current velocity

Similar to the analysis done in the Morris method, the spin-up period was considered two days
for the model results. As explained in the previous section, considering the analysis time,
selecting 20-time steps to calculate the Sobol’ indices were decided. After observing the
temporal variation of the results for the velocity components of currents, a period between
timesteps from 13-01-2005: 13:00 to 13-01-2005: 23:00 (t = 890 to t = 910) was selected for
taking the average indices of the input factors for current velocities.

7.3.3. Sensitivity of Current velocity (x-component)

The variance decomposition for the current velocity in the x-direction concerning the selected
input parameters is given in this section. The calculated indices for each input parameter are
tabulated in Table 7.3.3 and plotted in Figure 7.3.3 for the location FINO3.
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Table 7.3.3 Sensitivity indices for x-velocity to the input parameters using the Sobol” method

at FINO 3
_ _ o Rank (based Rank (based
Parameter Si STi S1i-Si on S) on Sti)
Dicoww 0.0011 0.0153 0.0142 4 4
Vicoww 0.0680 0.0962 0.0282 3 3
Smagorinsky 0.1160 0.1572 0.0411 2 2
Rhoair 0.7709 0.7790 0.0081 1 1

According to the results of the variance-based analysis on x-velocity, it is observable that the
most significant parameter for x-velocity calculation out of the selected four parameters is air
density (Rhoair) which contributes to 77% of the total variability of the output x-velocity.
Smagorinsky factor accounts for 11.6%, and uniform vertical eddy viscosity contributes to
6.8% of the total variance of the output. However, the parameter Rhoair has a smaller value for
the difference between the total-order and first-order index (Sti-Si). This little value indicates
that the air density does not have considerable interaction effects on the output x-velocity.
Despite that, the other three factors, Smagorinsky and Vicoww, have considerable interaction
effects (Smagorinsky factor contributes to 4.1% , Vicoww to 2.8% , and Dicoww to 1.4% of
output variance) that create the output variabilities. Thus, we can assume that the three factors,
Smagorinsky, Dicoww, and Vicoww interact with each other and contribute to the output
variability.

Sobol indices for x_velocity at FINO3
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Figure 7.3.2 First-order and total-order Sobol” indices for x-velocity for location FINO3

The calculated values of Sobol’ indices for the other five locations are available in Annex |11
of this report. Figure 7.3.5 represents the variation of the first-order and total-order Sobol’
indices for the sensitivity of x-velocity depending on the analysis location.
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Figure 7.3.5 First-order and total-order Sobol’ indices for x-velocity at the selected six
locations

According to the results shown in Figure 7.3.5, it is apparent that there is no significant
difference in the importance of input parameters depending on the spatial location. However,
at location P5, both the first order and total-order index have values more than 0.95, indicating
that the x-velocity depends mainly on air density (Rhoair) and the less affected by the other
four parameters.

7.3.4. Sensitivity of Current velocity (y-velocity)

The variance decomposition for the current velocity in the y-direction with respect to the
selected input parameters is given in this section.

Table 7.3.4 Sensitivity indices for y-velocity to the input parameters calculated using the

Sobol’ method at FINO 3

Rank (based Rank (based

Parameter Si Si S1i-Si on Si) on Sri)
Dicoww 0.0014 0.0056 0.0042 4 4
Vicoww 0.0029 0.0149 0.0120 3 3

Smagorinsky 0.1793 0.1434 -0.0360 2 2
Rhoair 0.8472 0.7939 -0.0533 1 1

Like the x-velocity, the most significant parameter for the y-velocity component was also
identified as the air density (Rhoair). The Smagorinsky factor stands as the second most
important input parameter. The contributions from uniform vertical eddy viscosity and eddy
diffusivity to the variability of y-velocity are insignificant according to the results given by the
above results.
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In contrast to the results of the x-velocity of currents, here, the interaction effects can be
observed for the input parameter Rhoair. For the simulated y-velocity, the interaction effects
are mainly observed from Rhoair, Smagorinsky, and Vicoww.
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Figure 7.3.6 First-order and total-order Sobol’ indices for y-velocity for location FINO3

The first order and total order Sobol” indices calculated for the sensitivity of y-velocity for the
selected six locations are presented in Figure 7.3.7. According to the two plots, it is visible that
there is no significant difference in the importance of input parameters depending on the spatial
location. However, at P1 and P4, the y-velocity depends mainly on the parameter, Rhoair, and
the less affected by the other three parameters.
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Figure 7.3.7 First-order and total-order Sobol’ indices for y-velocity at the selected six
locations
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7.3.5. Sensitivity of Current velocity (z-velocity)

The variance decomposition for the current velocity in the z-direction for the selected input
parameters is shown below.

Table 7.3.5 Sensitivity indices for z-velocity to the input parameters calculated using the
Sobol” method at FINO 3

Parameter Si Si S1i-Si Rank (based Rank (based

on Si) on Sti)
Dicoww 0.0040 0.1238 0.1199 4 4
Smagorinsky 0.0376 0.2729 0.2353 3 3
Vicoww 0.1463 0.3751 0.2288 2 2
Rhoair 0.5795 0.8155 0.2360 1 1

The results obtained for the z-velocity of currents shows a different pattern oof sensitivty than
the other two velocity components. Although the most significant factor was still identified to
be the Rhoair, the 2" most important factor was uniform viscosity in verticl direction
(Vicoww). According to the above results, the Smagorinsky factor is less significant in
modeling the vertical velocity. As described in section 5.2, Smagorinsky factor is used for
calculating the horizontal turbulance of the model. Therefore we can assume that the vetical
velocity is not much affected by the model’s horizontal turbulance.
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Figure 7.3.8 First-order and total-order Sobol’ indices for z-velocity for location FINO3

The first order and total order Sobol’ indices calculated for the sensitivity of the z-velocity
component for the selected six locations are presented in Figure 7.3.9. According to the two
plots, it is visible that there is no significant difference in the importance of input parameters
depending on the spatial location. However, the results obtained here for the location P4 are in
contrast to the raking given by the Morris method.
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Figure 7.3.9 First-order and total-order Sobol’ indices for z-velocity at the selected six

locations
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7.4. Comparison of the results of Morris and Sobol’ methods

In this section, the sensitivity results obtained through the two methods are compared based on
the values and definitions of each sensitivity indices. This comparison given here was made
for the results of the analysis done at the FINO3 location.

7.4.1. Temperature

Table 7.4.1 shows the results obtained from the two methods for temperature sensitivity to the
input factors at the location of FINO3. The correlation between sensitivity measures was
estimated by calculating correlation coefficients for indices of the two methods.

Table 7.4.1 Comparison of sensitivity indices for the temperature to the input parameters
calculated using the Morris and Sobol” methods at FINO3

Morris method Sobol’ method results Rank Rank

results (r=12) (N=100) (based on (based
Parameter Morris on

> c Si Si Sti-Si method) Sobol’

method)

Smagorinsky  0.0560 0.0433 0.1511 0.1639 0.0128 2 2
Dalton 0.2039 0.2003 0.8338 0.8469 0.0132 1 1
Stanton 0.0271 0.0288 0.0040 0.0048 0.0007 3 3
Vicouv 0.0000 0.0000 - - - 7 -
Vicoww 0.0016 0.0021 - - - 4 -
Dicouv 0.0000 0.0000 - - - 6 -
Dicoww 0.0006 0.0008 - - - 5 -

As discussed in Chapter 2, (Campolongo & Saltelli, 1997) have compared the correlation of
the sensitivity indices of Morris and Sobol’ methods in a study carried out for analyzing the
sensitivities of an environmental model. The above research suggested that the Morris absolute
mean (u*) is correlated with the total order index (Sti) calculated by the Sobol” method, and
the Morris standard deviation (o) is correlated with the measure (Sti — Si). However, according
to the definitions of these sensitivity measures, it is apparent that the absolute mean of EE can
be used as an estimate of how a single input affects the output. The standard deviation of EE
catches interactions as well as the non-linear and additive effects. Therefore, a perfect
correlation cannot be expected between o and Sti — Si. This is evident from the values obtained
through our results for o and (Sti — Si) for the three parameters shown in Figure 7.4.1, where
the parameters with larger p* values have higher Sri , and higher values for (Sti — Si) have
comparatively higher o values. Nevertheless, in the 2" case, correlation is less between
standard deviation ¢ and (Sti — Si) for three input factors.
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Variation of Morris mean with Sobol” Sti (b) Variation of Morris standard deviation with
(STi - Si)

The correlation coefficients for the two measures are shown in Table 7.4.3.

Table 7.4.2 Correlation between the sensitivity measures calculated by Morris and Sobol’
methods

Correlation coefficient
0.9997
0.5866

Sensitivity measures
p* and Sri
o and (STi— Si)

7.4.2. Current velocity (x-velocity component)

The following table includes the results obtained from the two methods for the sensitivity of x-
velocity of currents to the input factors.

Table 7.4.3 Comparison of sensitivity indices for the current velocity (x-velocity component)
to the input parameters calculated using the Morris and Sobol’ methods at FINO 3

Morris method Sobol’ method results Rank Rank
results (r=12) (N=100) (based
(based on
Parameter Morris on
p* c Si Si Sti-Si Sobol’
method) method)
Vicouv 0.00 0.00 - ) ) 6 -
Vicoww 8.81E-04 1.12E-03 0.0680 0.0962 0.0282 3 3
Dicouv 0.00 0.00 - i i 5 -
Dicoww 3.31E-04 4.16E-04 0.0011 0.0153 0.0142 4 4
Rhoair 1.12E-02 9.53E-03 0.7709 0.7790 0.0081 1 1
Smagorinsky  365E-03 3.78E-03 0.1160 0.1572  0.0411 2 2
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The input parameter rankings calculated by the two methods were similar for the x-velocity
component of currents. Correlation coefficients were calculated between the above sensitivity
measures to check the correlation between the sensitivity measures of the two methods. These
values of correlation coefficients are given in Table 7.4.3.

Table 7.4.4 Correlation between the sensitivity measures calculated by Morris and Sobol’
methods

Correlation coefficient
0.9871
-0.3813

Sensitivity measures
p* and Sri
o and (STi - Si)

Like in the temperature analysis, the pu* shows a strong positive correlation with Sti. However,
the o and the difference between two Sobol’ indices (STi — Si) do not show a good correlation,
as observed in the temperature analysis. The reason might be the differences of the two
sensitivity measures ((STi — Si) and o) in capturing the non-linear effects and the interactions.
For instance, in Figure 7.4.2. (b), the input factor Rhoair has a higher o value and comparatively
lower value for (STi— Si). Therefore, the factor can have fewer interaction effects while having
more non-linear and additive effects, which results in a more significant standard deviation of
EE and a small (STi — Si).
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Figure 7.4.2 Correlation of sensitivity measures of Morris method and Sobol’ indices (a)
Variation of Morris mean (u*) with Sobol’ Sti (b) Variation of Morris standard deviation(o)
with (Sti — Si)
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7.4.3. Current velocity (y-velocity component)

The table below summarizes the sensitivity measures calculated for output currents in the y-
direction by Morris and Sobol” analysis methods for each input parameters considered in the
analysis. Correlation coefficients between measures were calculated to assess the relationship
between the sensitivity measures given by two analysis techniques.

Table 7.4.5 Comparison of sensitivity indices for the current velocity (y-velocity component)
to the input parameters calculated using the Morris and Sobol’ methods at FINO3

Morris method , _ Rank Rank
results (r=12) Sobol’ method results (N=100) (based (based

Paramet
or on on
p* c Si STi STi-Si Morris Sobol’
method) method)
] 0.00E+0 0.00E+O0
Vicouv - - - 6 -
0 0
Vicoww 6.28E-04 7.67E-04  0.0680 0.0962 0.0282 3 3
Dicoyy 0000 0.00E+0 ] ] ) . ]
0 0
Dicoww 2.82E-04 3.68E-04 0.0011 0.0153 0.0142 4 4
Rhoair 1.15E-02 1.20E-02 0.7709 0.7790 0.0081 1
Srﬂ?g}‘j“ 3.31E-03 2.75E-03 0.1160  0.1572  0.0411 2 2

The correlation coefficients calculated for the four measures from two methods are shown in
Table 7.4.3.

Table 7.4.6 Correlation between the sensitivity measures calculated by Morris and Sobol’
methods

Sensitivity measures Correlation coefficient
p* and Sri 0.9902
o and (STi — Si) -0.5245

Same as the relationship observed in the results for x-velocity, a clear positive correlation was
observed between the absolute mean (u*) of EE and the total-order Sobol’ index (Sti). The
standard deviation (¢ ) of EE and the (Sti- Si) do not clearly correlate. The input factor air
density (Rhoair) is highly significant on the y-velocity and comparatively less interaction with
the other three input parameters. Smagorinsky factor shows a higher level of interactions that
cause the variability of output y-velocity of currents.
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7.4.4. Current velocity (Z-velocity component)

This section compares sensitivity measures calculated using the two analysis techniques for
output current velocity in the z-direction. Correlation between sensitivity measures has been
calculated to estimate the relation between the measures from two methods.

Table 7.4.7 Comparison of sensitivity indices for the current velocity (z-velocity component)
to the input parameters calculated using the Morris and Sobol’ methods at FINO 3

Morris method , _ Rank Rank
o results (r=12) Sobol’ method results (N=100) (based (based
aramet
or on on
p* c Si Si Sti-Si Morris Sobol’
method) method)
. 0.00E+0  0.00E+0
Vicouv - - - 6 -
0 0
Vicoww 1.33E-06 1.68E-06 0.1463 0.3751 0.2288 2 2
Dicouv 0.00E+0  0.00E+0 ) i i 5 )
0 0
Dicoww 3.88E-07 5.74E-07  0.0040 0.1238 0.1199 4 4
Rhoair 4.04E-06 4.41E-06 0.5795 0.8155 0.2360 1
Srﬂ:‘g;” 117E-06 128E-06 00376 02729  0.2353 3 3

The correlation coefficients calculated for the two measures are shown in Table 7.4.3.
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Table 7.4.8 Correlation between the sensitivity measures calculated by Morris and Sobol’
methods

Correlation coefficient
0.9928
0.5820

Sensitivity measures
p* and Sri
o and (STi— Si)

Similar to the relationships observed in x-velocity and y-velocity, the sensitivity measures the
absolute mean (u*) of EE and the total-order Sobol’ index (Sti) are positively correlated. In
contrast to the x and y velocity components, the standard deviation (¢ ) of EE and the (Sri- Si)
depict a positive correlation with each other. The input factor air density (Rhoair) is highly
significant on the y-velocity and comparatively more minor interaction with the other three

input parameters.
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with Sobol’ Sti (b) Variation of Morris standard deviation with (STi — Si)
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Chapter 8: Summary, Conclusions and
Recommendations

8.1. Summary and Conclusions

The main goal of this research was to apply different sensitivity analysis techniques for a
hydrodynamic model to determine the most influential parameters and their significance for
two selected output variables of the model, which were temperature and current velocity. After
considering the model characteristics, complexity, and computational cost, the selection of
analysis techniques for achieving this objective was carried out. Morris method, a frequently
used local sensitivity analysis technique, was adopted first to screen the input parameters before
applying the global sensitivity analysis technique, the variance-based Sobol’ method. The
Dutch Continental Shelf Model (DCSM) is a hydrodynamic model developed using the D-
Flow-FM model suite of the Delft 3D software. The DCSM was used for testing the
sensitivities of the above two variables to a selected set of input parameters. In the Morris
method, the selected inputs were sampled using the One-At-a-Time sampling, where the
samples are generated by changing one parameter at a time for each consecutive sample. In the
variance-based method, the quasi-Monte Carlo sampling scheme, defined in section 2.2, was
used to generate the input samples for the model.

e Based on the observations, the simulated temperature was most sensitive to the Dalton
coefficient for evaporative heat flux from the selected set of the input parameters. The
second and third most influential input factors were the Smagorinsky coefficient and the
Stanton coefficient for convective heat flux. The results agree with the previous studies
((Twigt, 2006) ; (Baracchini et al., 2020)) on the temperature sensitivity of the 2D and 3D
hydrodynamic models. (Twigt, 2006) developed a 3D hydrodynamic model for the South
China Sea using the Delft-3D Flow model suite. The above study results demonstrated that
these two coefficients (Dalton and Stanton number) significantly affect temperature
modeling in the heat flux model. Further, the results obtained in our analysis correspond
with the sensitivity results obtained by Baracchini et al. (2020) to apply an automated
calibration to a 3D lake hydrodynamic model. The authors have estimated that the Dalton
number is more sensitive to the temperature calibration in the model where the Stanton
number does not have the same impact as the Dalton coefficient on modeled temperature.

e According to the Morris sensitivity analysis results on current velocities, the most
significant factors were the air density (Rhoair), the Smagorinsky factor in horizontal
turbulence, and the uniform vertical eddy diffusivity and uniform vertical eddy viscosity
coefficients. The two factors, uniform horizontal eddy viscosity (Vicouv) and uniform
horizontal eddy diffusivity (Dicouv) were identified as less influential to the modeled
current velocities. However, this contrasts with the previous findings of the sensitivity of
currents to uniform background horizontal eddy viscosity (v, back) (Deltares, 2009). In a
study done based on Delft3D hydrodynamic model validation for a nearshore zone, it has
been found that the longshore currents are strongly affected by the uniform background
eddy viscosity parameter.
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The global sensitivity analysis gives more comprehensive details on the sensitivities of
model outputs. It provides a quantitative measure of sensitivities to determine the
significance of the selected input parameters on the output calculations in the
hydrodynamic model. The variance-based method is a global SA technique that can be
applied to any model irrespective of the model complexity. The results of the variance-
based Sobol’ method highlights that the variability of the Dalton coefficient contributes to
nearly 84% of the simulated temperature variance out of these three most significant input
parameters used in this study. The variance of the Smagorinsky factor accounts for around
16% of the output temperature variance, and the Stanton coefficient does not impact much
on the temperature compared to the other two factors. The input Rhoair contributes to 78%
of the variance of output current velocity in x-direction, while the Smagorinsky factor
affects 16%, and Vicoww contributes 9.6%. The sensitivity of y-velocity also shows a
similar pattern, where the Rhoair parameter causes 79% of the variability and Smagorinsky
causes 14%, while Vicoww contributes 1.5%. When considered the variance of z-velocity,
Rhoair has a contribution of 81%, Smagorinsky factor has 37%, and Vicoww has 27%. The
interaction effects on outputs were also identified using the Sobol’ indices. The rankings
obtained for both temperature and currents velocities from the two methods are comparable,
where the order of ranking is similar in both methods.

When comparing the sensitivity measures obtained from the two methods, it was observed
that there is a strong correlation between the sensitivity measure, the absolute mean of the
EE (u*) calculated in the Morris method, and the total-order index (Sti) calculated in the
Sobol’ method. The above relationships confirm the results obtained by the previous studies
(Campolongo & Saltelli, 1997) on the correlations between the sensitivity measures of
these two methods. However, the correlation between the other two indices, (the standard
deviation (o) of the EE and difference of total order and first-order Sobol’ indices (Sti- Si))
does not conform with the experimental results of (Campolongo & Saltelli, 1997), where a
perfect correlation could not be observed between the two measures (o) and (Sti - Si).
However, this can be due to the differences of the two indices in their abilities to capture
the effects due to interactions, non-linearities, and additive effects.

As mentioned in Chapter 1, these sensitivity analysis results will be used to calibrate the
Dutch Continental Shelf Model (DCSM) to the project area. Moreover, these model results
will be coupled to a water quality model to identify the suitable areas for Blue mussel and
Seaweed cultivation in the FINO3 and identify the new sites with favorable conditions for
the above aquaculture activities.

The Python scripts developed for this analysis have the flexibility to use in sensitivity
analyses of any other output parameters of the DCSM model and also for any D-Flow FM
model. This has to be done by correctly assigning the output variable name and the selected
input parameters that are going to be analyzed. Further, these analysis scripts are written in
a generic form and can be adjusted easily to be used in the sensitivity analyses for the other
numerical models developed using Delft3D, such as water quality models (D-WAQ).
Therefore, these Python scripts can be used in the SA of water quality models, which will
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be coupled to the existing hydrodynamic model of the North Sea (DCSM) as the next step
of the project.
An overview of the results obtained for sensitivity measures at FINO3 location using the
Morris method [left] and Sobol’ methods [right] are given below. The x-axis of plots
created for the Morris method changes the scale as the measures depend on the resulting
temperature and current velocity values.
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8.2. Limitations and Assumptions of the study

The high computational demand of the North Sea hydrodynamic model used in this
research is one major hindrance to test for a significant number of input parameters. This
limitation was addressed by a preliminary screening process based on the literature and
expert judgment, assuming the other parameters do not significantly impact the output
variables.

Because of the above limitation of computation demand and the complexity of generating
spatially varying inputs using Morris and Sobol” methods, it was decided to focus only on
spatially uniform input factors. Selecting only the spatially uniform input parameters is
another major limitation of this study. This assumption can result in omitting some of the
input parameters that are sensitive to the two outputs.

The DCSM model is developed with two different grid resolutions (4nm and 0.5nm). The
coarse grid is a uniform grid with 4nm, and the 0.5nm grid is a more refined grid where the
grid cell size varies based on the distance to the coast. In the 0.5nm grid, coarser cell size
is used in open boundaries and deep water, where the resolution is increased up to 0.5nm
in shallow waters in nearshore areas. The DCSM is computationally expensive (18 hours
of runtime for simulating one year with 4nm grid resolution and 3.5 days for a one-year
simulation with 0.5nm resolution). If the 0.5nm grid had been used, the model would have
taken an even higher computation time. Therefore, it was decided to use the coarser grid
resolution (4nm uniform grid) in this research, assuming the sensitivity results would not
change in the model with the finer grid.

The sensitivity tests were carried out based on results of the hydrodynamic model simulated
for one month, which can affect the ability of these results to predict the effect of seasonal
variations on the sensitivity of output parameters.

At the sampling stage, we initially assume possible ranges of parameters. These ranges can
affect the sensitivity analysis results. Therefore, these results obtained in this study from
Morris and Sobol” methods may change when tested for a different parameter range.

8.3. Recommendation for Future work

This study on sensitivity analyses for the temperature and current velocities reduces the
need to explore parameter space for future calibration and modeling work. As discovered
by the results of the two methods, the Dalton coefficient, Smagorinsky factor, and the
Stanton coefficient will be significant in simulating the temperature. However, these results
are specific to a location and a specific period of the year. Therefore, subsequent work can
investigate the spatial and temporal variations of sensitivity of temperature.

The spatial variation of the two output sensitivities was analyzed only for few selected
locations inside and surrounding the FINOS3 research platform. However, it is suggested to
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analyze the sensitivities to a broader area of the North Sea by selecting different locations
covering the whole domain of the grid.

Our study considers the sensitivity of physical parameters to the simulated temperature and
currents. However, the numerical parameters (computation grid size, computation time
step, maximum Courant number, smallest allowed timestep, and the other numerical
parameters assigned to the model) could also be essential input factors in modeling the
outputs in the D-Flow FM model. Therefore, it is recommended to study the sensitivities
of these numerical input factors as well.

On account of the high computation demand, the analysis was carried out only for one
month of the year. Thus, it is recommended to analyze the sensitivities of temperature and
current velocities for different periods of the year to capture the seasonality of the
sensitivity measures.
o The temperature's highest variability of the measured data is observed in the
summer months (June, July, and August). Therefore, the sensitivity of
temperature needs to be studied for these periods.

o
rature

FINO 3: Wassertemperatur / Water temp

®

TIEFE / DEPTH (Meter)
Bos Be i Al
Figure 8.3.1 Measured data for the temperature at FINO3 for the year 2017 (Data source:
(BSH, 2021))

The study uses only two analysis methods, the Elementary Effect method (Morris method)
and the Variance-based Sobol’ method, because of the high computation demand for the
D-Flow FM model for the North Sea. However, in the Variance-based Sobol’ analysis, the
sample size was selected as 100, which is the minimum recommended sample size
mentioned in the literature. Therefore, the method can be used for increased sample sizes
in future work to verify the results obtained in this research.
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According to the Sobol’ method results, there are differences in the degree of contribution
of input parameter variances to the output variance based on the location. Therefore,
studying these spatial variations of global sensitivity should be another important aspect
for future research on sensitivity analysis.

Even though the global sensitivity analysis techniques provide extensive details of the
sensitivity of input parameters to a specific output, these methods demand a substantial
computational cost in terms of the number of model runs. Therefore, research on extensions
to the local methods or search for new techniques with lower computation demand is a
critical aspect of sensitivity analysis.
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Annex |, Annex Il
Refer to the digital annexes, Annex | and Annex Il
Annex | - Python Scripts for Morris Method

e Script for Creating model setup files with Morris samples
e Script for Sensitivity Analysis using Morris method

Annex Il - Python Scripts for Variance-based Sobol” Method

e Script for Creating model setup files with Sobol” samples
e Script for Sensitivity Analysis using Sobol” method
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Annex lll

Sensitivity Results for Morris method

e Sensitivity of Temperature

Table 8.3.1 Sensitivity of temperature to the input parameters calculated using Morris method
(for r =10, 12, and 20) at locations P1 to P5

Trial 1 (r = 10) Trial 2 (r = 12) Trial 3 (r = 20)
Locat | Parame e = e - e
ion ter o H*C o a ocy | W€ o a | o we(® °
H(°C) ) ¢(°C) nk 1 (°C) ) ¢(°C) nk H(°C) ) ¢(°C)
SMagor | g gop | 0016 | 004} 31 5004 | 0.015 | 0015 | 3 | 0002 | %017 | 001
insky 6 3 8 3 3 4
Dalton | 0039 | %21 | 9297 | 4 | 5069 | 0.200 | 0203 | 1 | 0.060 | O-198 | 0202
9 5 6 6
4 4
stanton | 0.000 | %98 | 9920 12 | 0,002 | 0027 | 0025 | 2 | 001 | 9% | 09
4 6
P1
Vicouy | 0000 | 000010000 1 7} 4400 | 0000 | 0.000 | 7 | 0000 | 0:000 | 0.000
0 0 0 0 0 0
vicoww | 0.000 | %001 | 0001 14T 5000 | 0.001 | 0.001 | 4 | 0000 | 0:001 1 0.001
) 5 2 1 5 0
. 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
Dicouv | 0 : 27| 6 | 0000 | 0.000 | 0000 | 6 |79 ) .
Dicoww | %000 | 0:000 10000\ 51 5500 | 0001 | 0001 | 5 | 000 | 0-001 | 0.000
1 9 7 3 0 8
SMagor | g ggq | 01041010705 1 9071 | 0.084 | 0206 | 2 | 0034 | 0106 | 0108
insky 2 7 9 8 1 1
Dalton | 0041 | %233 | 0225 | 4 | 5076 | 0217 | 0221 | 1 | 0.067 | 0210 | 0220
! 4 7 6
> 3
stanton | 0.001 | %93° | 0032} 3 | 5002 | 0.035 | 0033 | 3 | 0001 | 0034 | 0032
? S 9 7
P2 2 .
Vicouy | 0000 | 000010000 | 7} 4400 | 0000 | 0.000 | 7 | 0000 | 0:000 | 0.000
0 0 0 0 0 0
Vicoww | 900 1 0005 1 0904 14| 0,000 | 0.005 | 0004 | 4 | 000 | 00041 0003
Dicouy | 0-000 | 0000 110000\ 51 4000 | 0,000 | 0.000 | 6 | 000 | 0-000 | 0.000
0 0 0 0 0 0
Dicoww | 0000 | 000110001451 6400 | 0001 | 0.001 | 5 | 0000 | 0001 ] 0.000
4 4 L 2 1 8
SMagor | g go5 | 0016 | 0015} 3 | 5071 | 0.084 | 0206 | 2 | 0005 | %017 | 0018
insky 2 6 7 9 6 9
P3 | Dalton | 0.041 | 9224 | 0218 | 4 | 5076 | 0217 | 0221 | 1 | 0.0e3 | O-207 | 0211
0 1
stanton | 0.000 | 2031 | 0028 | 5 | 4002 | 0.035 | 0.033 | 3 | 0001 | 0029 | 0028
4 4 7 1 5 0

99 |Page




) 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
Vicouv 0 0 0 0.000 | 0.000 | 0.000 0 0 0
Vicoww | 0000 | 0.001 | 0.001 0.000 | 0.005 | 0.004 0.000 | 0.001 | 0.000

0 2 0 0 1 8
. 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
Dicouv 0 0 0 0.000 | 0.000 | 0.000 0 0 0
. 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
Dicoww 1 6 s 0.000 | 0.001 | 0.001 1 c c
Smagor § 0.031 | 0.030 . 0.021 | 0.026 . 0.031 | 0.031
insky 0.010 9 7 0.019 A 8 0.010 8 0
4 7 7
Dalton | 0.037 | 0207 | 0.199 0.066 | 0-192 | 0.195 0.0sg | 0191 | 0.195
1 9 4 8 4 4
5 9 6
stanton | 0.000 | 0025 | 0.023 0.002 | 0.024 | 0.022 0001 | 0023 | 0.022
7 3 0 0 2 5 g 6 1
P4 Vicoyy | 0-000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
0 0 0 0 0 0 0 0 0
Vicoww | 0000 | 0.001 | 0.001 0.000 | 0.001 | 0.001 0 600 0.001 | 0.001
1 5 3 1 2 0 1 3 1
Dicouy | 0-000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
0 0 0 0 0 0 0 0 0
Dicowy | 0-000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
1 4 4 0 5 4 1 4 4
Smagor § 0.055 | 0.055 X 0.038 | 0.050 X 0.053 | 0.054
insky 0.020 1 6 0.035 7 7 0.017 8 4
6 6 5
Dalton | 0.032 | 0-184 | 0.177 0.059 | 0170 | 0.173 0.052 | 0169 | 0.173
0 5 0 3 5 1
5 7 2
stanton | 0.000 | 0021 | 0.018 0.000 | 0.021 | 0.020 0001 | 0021 | 0.019
3 9 9 5 5 0 3 1 7
PS Vicouy | 0-000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
0 0 0 0 0 0 0 0 0
Vicoww | 0000 | 0.001 | 0.001 0.000 | 0.001 | 0.001 0 600 0.001 | 0.001
1 8 5 0 5 3 B 6 3
Dicouy | 0-000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
0 0 0 0 0 0 0 0 0
Dicowy | 0-000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
3 8 7 0 9 7 3 8 7
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Sensitivity of Temperature at each location
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e Sensitivity of Current velocity (x-component)

Table 8.3.6 Sensitivity of x-velocity to the input parameters calculated using Morris method
(for r =10, 12, and 20) at locations P1 to P5

Trial 1 (r = 10) Trial 2 (r =12) Trial 3 (r = 20)
Locat | Parame “°C R “°C R “°C
i o ° o a o ° o a ° ° °
on | ter | yee) | M eeo) | ey [T Feco) | ol uee) | FT | e
Vicouy | O-00E | 0.00E | 0.00E | | 0.00E | 0.00E [ 0.00E | . | 0.00E [ 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00
vicoww | 108 | 185 | 078 |3 | a0ee | P05 | LOE | 3 | gooe | LOOF | BE
-04 04 -06
Dicouy | 0-00E | 0.00E [ 0.00E | | 0.00E | 0.00E | 0.00E | , | 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00
P1 .
. 3.72E | 6.00E | 8.05E 9.25E | 6.49E 1.03E | 8.14E | 5.46E
Dicoww | “o5 | 04 | -04 | 4 1'_%)2E 04 | 04 | 4| 04 | 04 | -04
| 3.14E | 1.39E | 1.19E 117E | 1.52E | 1.45E = | 1.49E | 1.436
Rhoair | "3 | o2 | 02 | 1| 03 | 02 | 02 | ! 1'_%jE 02 | -02
Smagor | 5.04E | 3.74E | 402E | , | 8.87E | 3.92E | 402E | , | 7.70E | 417E | 3.79E
insky | -04 | 03 | -03 04 | 03 | -03 04 | 03 | -03
Vicouy | O-00E | 0.00E | 0.00E | | 0.00E | 0.00E [ 000E | . | 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00
vicoww | 1218 | 18 | M| g | eeoe | T325 | 1ME | 3 | a30e | HSF | TOE
-06 05 05
Dicouy | 000E | 0.00E [ 0.00E | | 0.00E | 0.00E | 0.00E | , | 0.00E | 0.00E | 0.00E
- +00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00
Dicoww | LATE | 288E | 3.72E | , | 161E | 291E | 401E | , | 890E | 2.75E | 3.86E
05 | -04 | -04 05 | 04 | -04 06 | -04 | -04
| 9.34E | 1.90E | 1.60E 258E | 191E | 1.97E | 191 | 1.97€
Rhoalr | "3 | o2 | 02 |t | w3 | 02 | o2 | |ME] o | 02
Smagor | 550E | 4.20E | 4.25E | , | 9.12E | 3.93E | 320E | , | 432E | 408E | 4.12E
insky | -04 | 03 | -03 04 | 03 | -03 04 | 03 | -03
Vicouy | O-00E | 0.00E | 0.00E | | 0.00E | 0.00E [ 000E | . | 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00
. e | 1.18E | 1.34E o | 9.95E | 1.17E 5.34E | 1.09E | 1.28E
Vicoww 1'_%2'5 03 | 03 | 1'_giE o4 | 03 | 3| 05 | 03 | -03
Dicouy | 000E | 0.00E [ 0.00E | | 0.00E | 0.00E | 0.00E | . | 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00
P3| Sicomy | 5AE | 264E | 350E | , | 298E | 287E | 403E | , | 470E | 264E | 3.77E
05 | -04 | -04 05 | -04 | -04 05 | -04 | -04
| 8.95E | 1.86E | 1.57E 262E | 1.89E | 1.95E = | 189E | 1.95€
Rhoalr | "oz | 02 | o2 | M| w03 | o2 | 02 | '|%2E ] 02 | 02
Smagor | , <o | 3.25E | 3.39E | , | 217E | 294E | 247E | , | 183E | 3.02E | 3.14E
insky | 02" | 03 | -03 04 | 03 | -03 04 | 03 | -03
Vicouy | 0-00E | 0.00E | 0.00E | . | 0.00E | 0.00E | 0.00E | , | 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00
P4 : :
. 1.02E | 1.19E 8.57E | 1.01E 1.65€ | 9.07E | 1.07E
Vicoww 4'_62'5 03 | 03 |3 7'_%%'5 04 | 03 | 3| 05 | 04 | -03
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Dicouy | 000E | 0.00E [ 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00

: 5.16E | 2.67E | 3.48E e | 2.78E | 3.88E - | 2.60E | 3.50E
Dicoww | “o6 | 04 | -04 LB3E 1 04 | 04 LBSE | "4 | 04

-06 05

| 1.98E | 1.18E | 1.00E 473E | 1.20E | 1.24E e | 1.20E | 1.23E
Rhoair | “o3™ | 02 | 02 04 | 02 | -02 7'_"(3)36E 02 | -02

Smagor | 6.85E | 2.60E | 2.77E 5.96E | 2.23E | 1.87E o 45E | 245E | 257E
insky | -05 | -03 | -03 05 | 03 | -03 ‘o | 03 | 03

Vicouy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00

: o | 1.04E | 1.16E - | 8.73E | 1.01E 2.47E | 9.60E | 1.10E
Vieoww | 38251 "3 | 03 TF | oa | 03 05 | -04 | -03

Dicouy | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00

P5 . .

: 2.97E | 3.52E 2.84E | 3.54E 6.12E | 2.98E | 3.63E

Dicoww | 2.96E -04 .04 1.24E -04 04 206 -04 .04
-06 05

| 301E | 1.16E | 9.77E 1.01E | 1.18E | 1.21E C | 117E | 1.21E
Rhoair | “o3" | 02 | -03 03 | 02 | -02 8'_%‘;_’E 02 | -02

Smagor | 2.39E | 2.25E | 2.32E 2.86E | 2.13E | L.77E 167E | 2.27E | 2.33E
insky | -04 | 03 | -03 04 | 03 | -03 04 | 03 | -03
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Standard deviation(o)

Standard deviation(a)

Sensitivity of Current velocity (x-component) at each location
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Figure 2. Sensitivity of x-velocity to inputs parameters - Variation of standard deviation with
absolute mean of EE
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e Sensitivity of Current velocity (y-component)

Table 8.3.6 Sensitivity of y-velocity to the input parameters calculated using Morris method
(for r =10, 12, and 20) at locations P1 to P5

Trial 1 (r =10) Trial 2 (r=12) Trial 3 (r =20)

Locat | Parame “°C R “°C R *°C
i o ° o a o ° o a ° ° °
on | ter | yee) | M eeo) | ey [T Feco) | ol uee) | FT | e
Vicouy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 6 | +00 | +00 | +00 | 6 | +00 | +00 | +00
Vicowu | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 5 | +00 | +00 | +00 | 5 | +00 | +00 | +00
Dicouv | 2.13E | 4.13E | 5.34E 5.88E | 4.59E | 6.30E 582E | 4.24E | 6.01E
05 | 04 | -04 | 4| 05 | -04 | 04 | 4| 05 | -04 | -04
PL | Dicoww | 7.42E | 9.40E | 1.15€ 2.13E | 8.64E | 1.09E 3.63E | 8.53E | 1.11E
05 | 04 | 03 |3 | -04 | -04 | 03 |3 | 05 | -04 | -03
Rhoair | 3.55E | 3.56E | 3.81E 1.02E | 3.27E | 2.86E 6.37E | 3.50E | 3.64E
04 | 03 | 03 | 2| 03 | -03 | 03 |2 | 04 | -03 | -03
S;’E?E"r 3.76E | 1.16E | 9.97E 9.58E | 1.19E | 1.24E 3.07E | 1.17E | 1.22E
Y | 03 | 02 | 03 | 1| 04 | 02 | 02 | 1] -05 | -02 | -02
Vicouy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 6 | +00 | +00 | +00 | 6 | +00 | +00 | +00
Vicomu | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 5 | +00 | +00 | +00 | 5 | +00 | +00 | +00
Dicouy | 912E | 317E | 4.43E 5.03E | 3.00E | 4.49E 3.90E | 2.95E | 4.32E
06 | -04 | -04 | 4| -06 | -04 | -04 | 4| -05 | -04 | -04
P2 | Dicoww | 1.21E | 1.07E | 1.26E 1.10E | 8.96E | 1.10E 732E | 9.71E | 1.18E
04 | 03 | 03 | 3| 04 | -04 | 03 | 3| 05 | -04 | -03
Rhoair | 8.20E | 3.15E | 3.33E 1.66E | 2.82E | 2.41E 7.68E | 3.01E | 3.16E
04 | 03 | 03 | 2| 03 | -03 | 03 |2 | -04 | -03 | -03
Sm:&)‘jr 3.03E | 8.17E | 7.01E 8.66E | 8.11E | 8.46E 251E | 8.13E | 8.44E
03 | 03 | 03 | 1| 04 | -03 | 03 | 1| 05 | -03 | -03
Vicouy | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 6 | +00 | +00 | +00 | 6 | +00 | +00 | +00
Vicowy | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 5 | +00 | +00 | +00 | 5 | +00 | +00 | +00
Dicouv | 5.37E | 2.48E | 3.43E 1.72E | 2.64E | 3.72E 6.10E | 2.61E | 3.79E
06 | -04 | -04 | 4| -05 | -04 | -04 | 4| -06 | -04 | -04

P3 ;

Dicoww | 5.52E | 8.30E | 9.71E 434E | 7.15E | 8.71E 332E | 7.64E | 9.31F
05 | -04 | -04 | 3| -05 | -04 | -04 | 3| -05 | -04 | -04
Rhoair | 1.01E | 5.84E | 5.90E 1.58E | 5.49E | 4.36E 7.73E | 5.81E | 5.84E
03 | 03 | 03 |2 | 03 | -03 | 03 | 21| 04| -03 | -03
Smagor | 3.30E | 9.85E | 8.36E 8.92E | 1.01E | 1.05E 256E | 1.01E | 1.05E
insky | -03 | -03 | -03 | 1| 04 | 02 | 02 | 1| 05 | 02 | -02
o2 | Vieouy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 6 | +00 | +00 | +00 | 6 | +00 | +00 | +00
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Vicomuy | 0-00E [ 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00

Dicouv | 1.79E | 2.79E | 3.51E 750E | 2.81E | 3.82E 8.07E | 2.87E | 3.80E
05 | -04 | -04 06 | -04 | -04 06 | -04 | -04

Dicoww | 3.62E | 8.18E | 9.61E 1.64E | 7.13E | 8.70E 1.99E | 7.33E | 8.92E
05 | -04 | -04 05 | -04 | -04 05 | -04 | -04

Rhoair | L93E | L78E | 1.93E 275E | 1.59E | 1.43E 157E | 1.65E | 1.76E
04 | -03 | -03 04 | -03 | -03 04 | -03 | -03

Smg&"r 5.05E | 1.29E | 1.09E 151E | 1.32E | 1.37E 455E | 1.32E | 1.36E
Y | 03 | -02 | -02 03 | -02 | -02 05 | -02 | -02

Vicouy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00

Vicomu | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00

Dicouv | 6.31F | 2.89E | 3.57E 6.77E | 2.66E | 3.38E 434E | 2.90E | 3.65E
06 | -04 | -04 06 | -04 | -04 06 | -04 | -04

P5 | Dicowyy | S-OLE | 842E | 9.65E 8.26E | 7.04E | 8.38E 1.42E | 7.73E | 9.14E
06 | -04 | -04 07 | -04 | -04 06 | -04 | -04

Rhoair | 6.05E | 1.76E | 1.86E 1.13E | 1.55E | 1.30E 1.99E | 1.64E | 1.72E
05 | -03 | -03 04 | -03 | -03 05 | -03 | -03

S;’E?E"r 541E | 1.31E | 1.11E 154E | 1.34E | 1.38E 2.70E | 1.33E | 1.37E
Y I 03 | -02 | -02 03 | -02 | -02 05 | -02 | -02
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Sensitivity of Current velocity (y-component) at each location
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Figure 3. Sensitivity of y-velocity to inputs parameters - Variation of standard deviation with
absolute mean of EE
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e Sensitivity of Current velocity (z-component)

Table 8.3.6 Sensitivity of z-velocity to the input parameters calculated using Morris method
(for r =10, 12, and 20) at locations P1 to P5

Trial 1 (r = 10) Trial 2 (r = 12) Trial 3 (r = 20)
Locat | Parame oC = e - e
. o o o a o [} o a . ° .
on | Juee) | MY eco | e nee) | M eeo) | GRueo) [MTE | eco)
Vicouv 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 +00 +00 6 +00 +00 +00 6 +00 +00 +00
Vicoww 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E

+00 +00 +00 5 +00 +00 +00 5 +00 +00 +00

Dicouv | 4.51E | 4.93E | 7.17E 9.18E | 4.58E | 6.80E 1.33E | 4.90E | 7.30E
-09 -07 -07 4 -09 -07 -07 4 -08 -07 -07

P1 Dicoww | 4.59E | 1.33E | 1.60E 1.17E | 1.19E | 1.37E 2.98E | 1.23E | 1.50E

-08 -06 -06 3 -07 -06 -06 3 -08 -06 -06

Rhoair | 7.34E | 1.80E | 2.15E 1.29E | 1.49E | 1.87E 8.48E | 1.63E | 2.02E

09 | 06 | -06 | 2| -08 | 06 | -06 | 2| 09 | -06 | -06
Sms&)‘?r 3.75E | 3.62E | 3.41E 1.78E | 3.71E | 4.11E 3.24E | 3.66E | 4.03E
08 | 06 | -06 | 1| 08 | 06 | -06 | 1| 08 | -06 | -06
Vicouy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 6 | +00 | +00 | +00 | 6 | +00 | +00 | +00
Vicomu | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 5 | +00 | +00 | +00 | 5 | +00 | +00 | +00
Dicouy | 2-68E | 464E | 7.06E 255E | 4.16E | 6.34E 1.93E | 4.77E | 7.39E
09 | 07 | 07 | 4| 09 | 07 | 07 | 4| 09 | 07 | -07
1.23E | 1.31E | 157E 212E | 1.17E | 1.30E 9.41F | 1.23E | 1.50E

P2 Dicoww 07 06 06 3 07 -06 -06 3 -08 -06 -06

Rhoair | 2.30E | 2.00E | 2.38E 1.21E | 1.60E | 2.02E 4.09E | 1.79E | 2.23E

09 | 06 | -06 | 2| 09 | 06 | -06 | 2| -10 | -06 | -06
Sm:&)‘jr 2.20E | 470E | 431E 8.72E | 4.77E | 5.20E 5.92E | 4.74E | 5.14E
08 | 06 | -06 | 1| -09 | 06 | -06 | 1| -10 | -06 | -06
Vicouy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 6 | +00 | +00 | +00 | 6 | +00 | +00 | +00
Vicowu | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 | 5 | +00 | +00 | +00 | 5 | +00 | +00 | +00
Dicouy | 7-19E | 474E | 7.06E 1.58E | 4.32E | 6.49E 3.30E | 4.85E | 7.35E
09 | 07 | -07 | 4| 11 | o7 | 07 | 4| 09 | 07 | 07
131E | 152E | 1.77E 254E | 1.40E | 1.48E 1.05E | 1.45E | 1.69E

P3 | Dicoww 07 06 06 3 07 -06 -06 3 -07 -06 -06

Rhoair | 8.72E | 1.99E | 2.37E 2.24E | 1.60E | 2.02E 2.09E | 1.78E | 2.22E

10 | -06 | -06 | 2| -09 | -06 | -06 | 2| -10 | -06 | -06
sm;g;r 3.46E | 4.08E | 3.79E 2.97E | 4.18E | 4.58E 1.17E | 4.15E | 4.54E

08 | -06 | -06 | 1| -08 | -06 | -06 |1 | -08 | -06 | -06
Vicowy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E

o4 +00 | +00 | +00 | 6 | +00 | +00 | +00 | 6 | +00 | +00 | +00
Vicowy | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E

+00 +00 +00 5 +00 +00 +00 5 +00 +00 +00
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3.98E

3.97E

2.02E

Dicouv 4.42E | 6.43E 4.05E | 6.06E 450E | 6.71E
09 | -07 | -07 10 | 07 | -07 09 | -07 | -07

Dicoww | 2.69E | 1.11E | 1.36E 3.41E | 9.72E | 1.13E 1.15E | 1.00E | 1.23E
08 | -06 | -06 08 | -07 | -06 08 | -06 | -06

Rhoair | 6.23E | 1.63E | 1.95E 3.55E | 1.33E | 1.68E 1.48E | 1.48E | 1.84E
09 | -06 | -06 09 | -06 | -06 09 | -06 | -06

Smg&"r 1.05E | 3.37E | 3.15E 2.73E | 3.43E | 3.80E 752E | 3.42E | 3.77E
Y | o7 | -06 | -06 08 | -06 | -06 09 | -06 | -06

Vicouy | O-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00

Vicomu | 0-00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E 0.00E | 0.00E | 0.00E
+00 | +00 | +00 +00 | +00 | +00 +00 | +00 | +00

Dicouv | 6.36E | 4.34E | 6.33E 2.70E | 3.80E | 5.62E 5.14E | 4.32E | 6.40E
09 | -07 | -07 09 | -07 | -07 09 | -07 | -07

PS5 | Dicoww | L71E | 100E | 122E 449E | 8.92E | 1.03E 1.95E | 9.34E | 1.15E
08 | -06 | -06 08 | -07 | -06 08 | -07 | -06

Rhoair | 5.08E | 1.52E | 1.82E 5.30E | 1.23E | 1.56E 429E | 1.37E | 1.71E
09 | -06 | -06 09 | -06 | -06 09 | -06 | -06

S;’E?E"r 2.74E | 3.86E | 3.54E 221E | 3.92E | 4.26E 5.02E | 3.89E | 4.23E
Y | 08 | -06 | -06 09 | -06 | -06 09 | -06 | -06
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e Sensitivity of Current velocity (z-component) at each location
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Figure 4. Sensitivity of z-velocity to inputs parameters - Variation of standard deviation with
absolute mean of EE
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Sensitivity Results for Sobol’ method

e Sensitivity of Temperature

Table 7.1: Sensitivity indices for the input parameters using the Sobol’ method at P1

Locatio _ _ o Rank Rank
n Parameter Si STi STi-Si (base_d on (baseql on
Si) STi)
Smagorinsky 0.0065 0.0111 0.0046 2 2
P1 Dalton 0.9930 0.9969 0.0039 1 1
Stanton 0.0080 0.0077 -0.0002 3 3
Smagorinsky 0.2843 0.2928 0.0085 2 2
P2 Dalton 0.6798 0.6935 0.0137 1 1
Stanton 0.0095 0.0112 0.0017 3 3
Smagorinsky 0.0166 0.0197 0.0030 2 2
P3 Dalton 0.9746 0.9831 0.0085 1 1
Stanton 0.0107 0.0141 0.0034 3 3
Smagorinsky 0.0250 0.0303 0.0053 2 2
P4 Dalton 0.9722 0.9805 0.0083 1 1
Stanton 0.0004 0.0020 0.0016 3 3
Smagorinsky 0.1325 0.1400 0.0075 2 2
P5 Dalton 0.8513 0.8625 0.0112 1 1
Stanton 0.0008 0.0017 0.0009 3 3
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First-order Sobol indices (Si)

First-order Sobol indices (Si)

Sobol indices for sensitivity of temperature
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Figure 5. First-order and total-order Sobol’ indices for temperature sensitivity for the

locations

P1 -

P5
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Sensitivity of Current velocity (x-velocity)

Table 8.3.5 Sensitivity indices for the input parameters using the Sobol” method at P1

Rank Rank
Location Parameter Si Si STi-Si (based  (based
on Si) on Sti)
Vicoww 0.070311  0.110262  0.039951 3 3
p1 Dicoww 0.001257  0.018852  0.017595 4 4
Smagorinsky 0.089342  0.126808  0.037466 2 2
Rhoair 0.783627  0.809291  0.025664 1 1
Vicoww 0.004653  0.027509  0.022856 3 3
P2 Dicoww 0.004419  0.006785  0.002366 4 4
Smagorinsky 0.07744 0.098212  0.020772 2 2
Rhoair 0.845391  0.883469  0.038078 1 1
Vicoww 0.020822  0.026074  0.005252 3 3
P3 Dicoww 0.000987  0.003844  0.002857 4 4
Smagorinsky 0.078166  0.065255  -0.01291 2 2
Rhoair 0.89563 0.86999 -0.02564 1 1
Vicoww 0.063245 0.09936 0.036116 3 3
P4 Dicoww 0.002845  0.015908  0.013063 4 4
Smagorinsky 0.089329  0.113482  0.024154 2 2
Rhoair 0.815189  0.826005  0.010816 1 1
Vicoww 0.003649  0.005416  0.001767 3 3
PS5 Dicoww 0.001591  0.001874  0.000283 4 4
Smagorinsky 0.008724  0.013893 0.00517 2 2
Rhoair 0.952876  0.965265  0.012389 1 1

113 |Page



First-order Sobol indices (Si)

First-order Sobol indices (Si)

Sobol indices for sensitivity of x_velocity

0.8 | First-order B = m First-order l
B Total-order !|_l 0.84 m Total-order
0
0.6 Y
T 0.6 1
£
©
041 S 0.4 1
N
g
0.2 1 5 0.2
n g g
0.0 - | F 0.0 ] |
Vicoww Dicoww Smagorinsky  Rhoair Vicoww Dicoww Smagorinsky  Rhoair
Input Parameters Input Parameters
P3 P4
First-order B | =0g! m Firstorder |
0.84 m Total-order g'_)’ W Total-order
(0]
]
Y 0.6 -
0.6 - 'g
E 0.4
0.4 1 ‘%
@
0.2 1 5027
© ] [ |
[ | 5 [
0.0 - [ ] - 0.0 - .
Vicoww Dicoww Smagorinsky  Rhoair Vicoww Dicoww Smagorinsky  Rhoair
Input Parameters Input Parameters
P5
:1'0_ m First-order [ |
'J; m Total-order
& 0.8 1
4]
=
o
£ 0.6
o
2
n 0.4 4
]
T
S 0.2 1
ke
(e]
Foo{®m o [}
Vicoww Dicoww  Smagorinsky Rhoair

Input Parameters

Figure 6. First-order and total-order Sobol’ indices for sensitivity of x-velocity for the

locations P1 -

P5
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Sensitivity of Current velocity (y-velocity)

Table 8.3.5 Sensitivity indices for the input parameters using the Sobol” method

Rank Rank
Location Parameter Si Si STi-Si (based on  (based on
Si) STi)
Vicoww 0.004146 0.014732 0.010586 3 3
p1 Dicoww 0.001693 0.005891  0.004198 4 4
Smagorinsky 0.037669 0.027215 -0.01045 2 2
Rhoair 0.957388 0.943714  -0.01367 1 1
Vicoww 0.012119 0.061433 0.049313 3 3
P2 Dicoww 0.003469 0.036086 0.032617 4 4
Smagorinsky 0.024599 0.083941  0.059342 2 2
Rhoair 0.8642  0.923199 0.058999 1 1
Vicoww 0.003899 0.010477  0.006577 3 3
P3 Dicoww 0.00441 0.003643 -0.00077 4 4
Smagorinsky 0.295872 0.249905  -0.04597 2 2
Rhoair 0.775831 0.699632  -0.0762 1 1
Vicoww 0.004155 0.009951 0.005796 3 3
P4 Dicoww 0.001195 0.004476 0.003281 4 4
Smagorinsky 0.008544 0.015432  0.006889 2 2
Rhoair 0.952195 0.968154  0.015958 1 1
Vicoww 0.039546 0.077271 0.037725 3 3
PS5 Dicoww 0.005532 0.022576  0.017044 4 4
Smagorinsky  0.06352  0.082215 0.018695 2 2
Rhoair 0.838076 0.889717 0.051641 1 1
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First-order Sobol indices (Si)

First-order Sobol indices (Si)
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Figure 6. First-order and total-order Sobol’ indices for sensitivity of y-velocity for the

locations P1 - P5
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Sensitivity of Current velocity (z-velocity)

Table 8.3.5 Sensitivity indices for the input parameters using the Sobol” method

Rank Rank
Location Parameter Si STi Sti-Si (based on  (based on
Si) Sti)
Vicoww 0.1756 0.4423 0.2667 2 2
p1 Dicoww 0.0019 0.1338 0.1320 3 3
Smagorinsky  0.0012 0.3072 0.3060 4 4
Rhoair 0.4574 0.7776 0.3202 1 1
Vicoww 0.1850 0.3963 0.2113 2 2
P2 Dicoww 0.0099 0.1436 0.1336 4 4
Smagorinsky  0.0297 0.2868 0.2572 3 3
Rhoair 0.5472 0.8279 0.2807 1 1
Vicoww 0.1652 0.3940 0.2288 2 2
P3 Dicoww 0.0004 0.1344 0.1341 4 4
Smagorinsky  0.0191 0.3134 0.2943 3 3
Rhoair 0.5186 0.8104 0.2918 1 1
Vicoww 0.1666 0.4548 0.2882 2 2
P4 Dicoww 0.0027 0.1589 0.1563 4 4
Smagorinsky  0.0228 0.2898 0.2670 3 3
Rhoair 0.4684 0.7844 0.3160 1 1
Vicoww 0.1033 0.3871 0.2838 2 2
PS5 Dicoww 0.0079 0.1598 0.1519 4 4
Smagorinsky  0.0232 0.3020 0.2787 3 3
Rhoair 0.5461 0.8480 0.3018 1 1
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First-order Sobol indices (Si)

First-order Sobol indices (Si)

1Sobol indices for sensitivity of z_velocity
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Figure 6. First-order and total-order Sobol’ indices for sensitivity of z-velocity for the

locations P1 - P5
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Annex IV

The computation grid of the DCSM

Figure 7. Computation grid of the DCSM
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