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Abstract

The following project is undertaken within PLATHON (PLATform of Optical communications in
Nanosatellites) project in DISEN and TIEG Research Group lead by Dr. David González and Dr.
Javier Gago in the ESEIAAT (Escola Superior d’Enginyeries Industrial, Audiovisual i Aeronàutica de
Terrassa) School of the Technical School of Catalonia - BarcelonaTech.

PLATHON’s main mission is to simulate a Networks System of CubeSats that collect information and
communicate with other different orbital group satellites using IoT sensors to retrieve the information
towards a ground station minimizing delay and maximizing global coverage. Final year degree and
master students from several departments are the main contributors to the project and most of the
system components are designed and built by students.

The project’s overview encompasses an analytical estimation of the worst-case disturbance torques calcu-
lations for the mission. Moreover, a detailed control algorithm is developed for fine pointing and coarse
pointing modes in the orbit as well as a 3D real-time monitoring interface. Finally, the design of the
Reaction Wheel (RW) is also made following the technical requirements set by the project specifications.

The final stage of the project focuses on the testing and simulation of the implemented control algorithms.
To perform the simulation, the CubeSat is introduced in an Air bearing in the centre of a magnetic
simulator, which will generate a magnetic field similar to the conditions that the satellite will be subjected
in a Low Earth Orbit (LEO). The Onboard Computer (OBC) of the nanosatellite communicates via
Bluetooth with the ground computer waiting for commands. The ground station has full access to the
satellite’s attitude and full control over the distinct modes of the satellite (i.e. Detumbling mode, Pointing
mode, Normal mode, among others). Once the magnetic field and other sources of disturbances are set,
the reaction wheels and magnetorquers will activate to control the CubeSat’s attitude. Analogously, this
attitude data measured by the Inertial Measurement Unit (IMU) of the Attitude Determination and
Control Subsystem (ADCS) is sent back to the ground station’s computer and further displayed with
a computer-generated 3D model in real-time. The CubeSat is intended to be powered with both solar
panels or a LiPo battery. Running a software-in-the-loop and a hardware-in-the-loop test has shown that
the system requires some modifications to achieve more precise results.



Resumen

El siguiente proyecto se realiza dentro de PLATHON (Plataforma de comunicaciones ópticas en nanosatélites)
del proyecto DISEN y del Grupo de Investigación TIEG liderado por el Dr. David González y el Dr.
Javier Gago en la ESEIAAT (Escola Superior d’Enginyeries Industrial, Audiovisual i Aeronàutica de
Terrassa) de la Escuela Politécnica de Cataluña - BarcelonaTech.

La misión principal de PLATHON es simular un Sistema de redes de CubeSats que recoja información
y se comunique con otros satélites de diferentes grupos orbitales utilizando sensores IoT para recuperar
la información hacia una estación terrestre minimizando el retraso y maximizando la cobertura global.
Estudiantes de último curso de grado y máster de varios departamentos son los principales colaboradores
del proyecto y la mayoŕıa de los componentes del sistema están diseñados y construidos por los estudiantes.

La siguiente tesis comprende una estimación anaĺıtica de los cálculos de los pares de perturbación en el
peor de los casos para la misión. Además, se desarrolla un algoritmo de control detallado para los modos
de apuntamiento fino y grueso en la órbita, aśı como una interfaz de monitorización 3D en tiempo real.
Por último, el diseño de la Rueda de Reacción (RW) también se realiza siguiendo los requisitos técnicos
establecidos por las especificaciones del proyecto.

La etapa final del proyecto se centra en la realización de pruebas y la simulaciones de los algoritmos de
control implementados. Para realizar la simulación, se introduce el CubeSat en un cojinete de aire en
el centro de un simulador magnético, que generará un campo magnético similar a las condiciones a las
que estará sometido el satélite en una órbita baja terrestre (LEO). El ordenador de a bordo (OBC) del
nanosatélite se comunica v́ıa Bluetooth con el ordenador de tierra a la espera de órdenes (en este caso,
el ordenador central del laboratorio). La estación de tierra tiene acceso total a la actitud del satélite y
control total sobre los distintos modos del satélite (es decir, modo de Detumbling, modo de apuntamiento,
modo normal, entre otros). Una vez fijado el campo magnético y otras fuentes de perturbación, las ruedas
de reacción y los magnetorquers se activarán para controlar la actitud del CubeSat. Análogamente, estos
datos de actitud medidos por la Unidad de Medición Inercial (IMU) del Subsistema de Determinación y
Control de Actitud (ADCS) se env́ıan de vuelta al ordenador de la estación de tierra y se visualizan además
con un modelo 3D generado por ordenador en tiempo real. El CubeSat está pensado para ser alimentado
tanto con paneles solares como con una bateŕıa LiPo. La realización de una prueba de software-in-the-
loop y de hardware-in-the-loop ha demostrado que el sistema requiere algunas modificaciones para lograr
resultados más precisos.



摘摘摘要要要

以下项目是在 DISEN和TIEG研究组领导的PLATHON（PLATform of Optical communications in
Nanosatellites）项目中进行的。项目中进行的，该项目由David González博士和Javier Gago博士领导的
加泰罗尼亚技术学校的ESEIAAT（Escola Superior d’Enginyeries Industrial, Audiovisual i Aeronàutica
de Terrassa）学院的研究小组负责。

PLATHON的主要任务是模拟一个立方体卫星的网络系统，该系统使用IoT传感器收集信息并与其他不
同的轨道组卫星进行通信，将信息检索到地面站，最大限度地减少延迟并最大化全球覆盖。来自几个系

的毕业班学生和硕士生是这个项目的主要贡献者，大部分的系统部件都是由学生设计和建造的。

该项目的概述包括对任务中最坏情况下的干扰扭矩计算的分析估计。此外，还为轨道上的精细指向和粗

略指向模式开发了一个详细的控制算法，以及一个三维实时监控界面。最后，反应轮（RW）的设计也
是按照项目规范所规定的技术要求进行的。

项目的最后阶段主要是对已实现的控制算法进行测试和仿真。为了进行模拟，CubeSat被引入到一个磁
性模拟器中心的空气轴承中，这将产生一个类似于卫星在低地球轨道（LEO）上所受条件的磁场。纳米
卫星的机载计算机（OBC）通过蓝牙与地面计算机进行通信，等待指令。地面站可以完全了解卫星的姿
态，并完全控制卫星的不同模式（即脱离模式、指向模式、正常模式等）。一旦磁场和其他干扰源被设

定，反应轮和磁轮就会启动，以控制CubeSat的姿态。类似地，由姿态确定和控制子系统（IMU）的惯
性测量单元（ADCS）测量的这些姿态数据被送回地面站的计算机，并进一步用计算机生成的三维模型
实时显示。CubeSat打算用太阳能电池板或LiPo电池供电。运行软件在环和硬件在环的测试表明，该系
统需要进行一些修改，以获得更精确的结果。
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Chapter 1

Introduction

The present Bachelor Thesis covers the study of the attitude determination and control system (ADCS)
of a future Cubesat, which is the main goal of TIEG, the Electronics Aerospace Research Group of the
Polytechnical University of Catalonia.

Cubesats are tiny satellites made up of one or more 10 × 10 × 10 cm cubes. Although reaching Earth
orbit may seem like an unattainable achievement, numerous universities and related organizations and
institutions have already designed, constructed and launched a CubeSat into orbit.

The CubeSat that is being developed consists of a 1-Unit Cubesat printed using additive manufacturing
method with 2 electromagnetic coils (magnetorquers) embedded as actuators that will interact with
Earth’s geomagnetic field reaction wheel. The symbiotic relation between the two actuators will be
responsible for controlling the satellite’s attitude and orientation in space. This Cubesat also carries a
set of communication modules to interact with the ground station. The main matter is the study of
rigid solid mechanics, which will provide the mathematical equations that control the satellite’s motion
and the interaction with Earth’s magnetic field and other disturbances. The CubeSat is intended to be
powered using either solar panels or a LiPo battery.

Ultimately, the control algorithm and several simulations are performed for the different pointing modes.
The thesis embraces classical Newtonian mechanics, programming several control algorithms, sizing and
calibrating sensors and actuators, PCB and CAD designs and assembling all the work done within the
rest of the department members. The result of the work is a fully operative automatic controlled CubeSat
with the ability to send and receive telemetry data.

1.1 Aim of the project

The following thesis aims to study and design both the hardware and the control software of the Attitude
Determination and Control Subsystem of a 1DOF 1U Cubesat using reaction wheels. This project is part
of PLATHON (PLATform of Optical communications in Nanosatellites) Research Group the goal of
which is to establish and simulate communications in a constellation of satellites.
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A 1 degree of freedom (1DOF) control of a Cubesat means there is only one system variable that
is unbound (free). Degrees of freedom are used instead of variables to clarify the freedom of a system
instead of a specific number of variables.

For instance, suppose a 2D grid plane. To get the exact location of any particle at any location of the
plane there always must be 2 coordinates. For instance, using Cartesian coordinates the position of the
particle is specified by (x, y), or analogously, using polar coordinates the position of the particle is also
determined using two variables (r, β), where r is the radius and β is the angle. Thus, there are x, y, r, β
multiple variables that can define the position but only using two of them the system’s position is fully
defined.

The final goal is to send a telecommand with the desired rotation to the CubeSat and the CubeSat’s
response shall turn into the desired angle and the correct direction. To do so, two main pointing modes
were developed, a coarse pointing mode which will trigger the motor driver to make an impulse and then,
when the CubeSat is approaching the desired set-point, fine pointing mode comes in with a PD controller
(see Section 7).

1.2 Justification

1.2.1 PLATHON Project

The successful development of missions with nanosatellite clusters requires tools that integrate orbital
propagation, command and telemetry transmission between the nanosatellite and the ground station and
the operational status of the satellites. For missions where nanosatellites are communication nodes, it is
also necessary to integrate the communication network model.

The applications that constitute the mission object of the satellite can be validated by simulating the
behaviour of all the hardware that surrounds it and emulating the flight conditions (position, inclination,
velocity, etc.). This form of software validation is called Software-in-the-Loop (SiTL).

A more advanced step to ensure mission success is to include testing of the vehicle hardware and its
correct use by the applications developing the mission. This is covered when the actual hardware can
be incorporated into the application development and validation environment. This is known as HiTL
(Hardware-in-the-Loop).

The PLATHON (PLATform of Optical communications in Nanosatellites) Research Group system aims
to meet these needs by developing a HiTL (Hardware-in-the-Loop) platform integrated with a network
and orbital simulator that allows the verification of the communication network of a nanosatellite cluster
considering the operational constraints of the nodes that form it. Specifically, the aim is to address the
current needs for the design of low orbit missions that could establish a communications network between
satellites in the cluster itself and links with ground stations and with other satellites in other orbits.

All development will be based on the OpenSatKit software developed in open-source by NASA for the
simulation of satellite missions. The software will be adapted to the inclusion of SiTL for simulations
in the first instance, and subsequently to emulations with HiTL. For this purpose, several real CubeSat
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prototypes (equipped with power, communications and ADCS subsystems) will be placed on air-bearing
platforms. In this way, the operation of the ADCS system is emulated in conditions as close as possible
to an actual flight. These satellite models will communicate with each other via a real UHF link and an
optical communication link.

CubeSats appeared as a teaching tool in universities during the ’90s but immediately shifted from uni-
versity labs to commercial applications and business. At present, they have become a mature standard
in the aerospace industry. Recently the first CubeSat based constellations intended to offer global com-
munication coverage have appeared. However, we consider that there are some lacks in two areas related
to such constellations based missions:

• Simulation tools. Current communication networks simulators used by the scientific community
(NS2, SNS3 and Opensand) do not have the features required to design communications among
nodes in placed LEO, between LEO and GEO and all above mentioned and ground stations as well.
Neither the power availability of nodes to establish proper communications are considered.

• Reliability: CubeSat missions still have a large fail rate (55% in CubeSat from Universities and
33% from Companies). Most of these failures (40%) are attributed to a malfunction of the Electric
Power Systems (EPS).

Figure 1.1 PLATHON real architecture. Source: PLATHON [1].

PLATHON project proposes to develop an integrated simulation platform intended as a test bench for
validation of engineering models before flight and network communication architectures. This platform
considers the following aspects:

1. Integration of an orbital propagator and the restrictions imposed by the visibility among network
nodes placed in different orbits (LEO, GEO) and the power availability on each node to establish
a reliable optical communication.

2. Design and manufacturing of an emulator (HiL) to test engineering models of CubeSat. This
emulator is a CubeSat with EPS, ADCS and COMS, which will be connected to the integrated
simulator above mentioned.
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Figure 1.2 PLATHON diagram. Source: PLATHON [1].

This new tests facility will be a helpful assessment tool in the design of more reliable constellation
missions.
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Figure 1.3 PLATHON hardware diagram. Source: PLATHON [1].
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Hitherto, the common communication with satellites was using a Ground Station with a specific radio-
frequency band to communicate with the satellite. Nevertheless, there are some limitations as the satellite
is only visible to the Ground Station in a certain period (4− 6 min) in general). The major problem that
arises was that a huge amount of information needed to be transmitted in an acutely reduced amount
of time. Thus, PLATHON project is to use communication between satellites to broaden the effective
communication area. At the same time, the operative state of the satellite can be increased as part of
the constellation of satellites will always be in the sunlight region.
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Figure 1.4 PLATHON Open Sat Kit diagram. Source: PLATHON [1].

Step by Step Operation of the PLATHON system

We can synthesise a PLATHON emulation with the following steps:

1. Creating the orbits of the satellites in 42 from TLE data or manually.

2. Designing the mission and translating it into communication links to be carried out at each instant
or point of the orbit to bring the data from the original point (e.g. the IoT in our example) to the
end (the corresponding GS).

3. Apply NS3 to establish the optimal routes at each instant or point of the orbit.

4. Design the Command and Telemetry messages to be sent between GS and satellite each time they
have visibility. Only one GS is selected as a tracking station.

5. There is one satellite simulated as SiTL in Computer 1, and N hardware satellites as HiTL.

6. The communication of 42 and COSMOS with the CFS of the SiTL satellite in Computer 1 is via
sockets or software communication ports, as all the software is on the same machine.
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7. If 42 manages the satellite attitude control, the attitude and position data is passed from 42 to CFS
through the TCP socket to the I42 application.

8. If it is the CFS that performs the attitude control, this data is provided by the F42 application.

9. The NS3 provides it, synchronised with the 42, with the information on the attitude setpoint to
be followed at any given moment. Given that we have previously planned the mission, we know at
each instant how we have to rotate the antenna or the optical link to focus on another satellite that
will be the next node of the communication following the optimal route. This information is sent
through the UDP socket to the NS3 App of the CFS.

10. The NS3, once it has estimated that it has already made the turn, tells it which message to send via
the antenna or the optical link. It is assumed that the same previous operation has been performed
on the receiving satellite, and therefore, they are oriented, and when sending the message, it must
be received correctly on the receiving satellite.

11. Each time the tracking station is passed, COSMOS activates the Command Ingest application, to
send command messages, and Telemetry Output, to receive the status of the satellite’s sensors.
This is managed through the scheduler table.

12. The communication of the 42 and COSMOS with the CFS of the HiTL satellite of each satellite is
by means of sockets or communication ports through the IP Network with Wi-Fi access points.

13. The 42 sends the position data (GPS) via Wi-Fi to the satellite’s Wi-Fi through the IP network.
And the Wi-Fi injects it through the I2C bus to the GPS application that transforms it into the
CFS format for the satellite’s CFS bus software.

14. The NS3 provides it, synchronised with the 42, with the information on the attitude setpoint to
be followed at each instant and the message (MSG) to be sent, via Wi-Fi and IP network. The
satellite’s Wi-Fi will inject the attitude setpoint data through the I2C bus to the ADCS application,
and the message (MSG) through the SPI or UART bus to the NS3 application. These applications
transform the data format and inject it into the software bus.

15. The ADCS board detects and changes the attitude of the satellite according to the data received,
orienting it to the satellite, IoT or GS that corresponds to it at that moment according to the design
of the mission.

16. The corresponding data is sent by the COMS board, either in RF or by optical link and is received
by the receiving satellite, which will also have carried out the attitude setpoint operations to be
oriented to the transmitter. Or they are received by the GS. Or they are transmitted from the IoT,
whose hardware is also an SDR.

17. Communication with COSMOS to send the information to or from the tracking station is also done
through CFS applications, the Command Ingest or Telemetry Output of the satellite that sends
the data by UART or SPI bus to the Wi-Fi or COMS boards.

18. The Command Ingest or Telemetry Output data is sent to Wi-Fi when there is no SDR hardware
connected to Computer 1. In this case, the data is sent via IP Network to the Wi-Fi board of
Computer 1.

19. If the SDR is connected via USB to Computer 1, the Command Ingest or Telemetry Output data
is sent via the COMS RF antenna to the SDR RF antenna.
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20. The Command Ingest or Telemetry Output data arriving either by Wi-Fi or by SDR are injected
into COSMOS through the corresponding Targets.

21. Finally, the position data of the 42 (GPS) and satellite attitude (ADCS) are sent via IP network
to Computer 2 to be displayed on the Render 42 in real-time.

1.3 Scope of the project

The scope of the project encompasses the design and integration of the full assembly inside the 1U
Cubesat. All hardware used must be Open Source.

The reaction wheel model must consider all different constraints as the satellite will be subjected to
many perturbations and the goal is to obtain the most realistic approach to its attitude control while
performing its mission in orbit.

1.4 Project Requirements

• The reaction wheel must not exceed the size of a 1U CubeSat 10× 10× 10 cm.

• Every electronic component must fit into the ADCS PCB which carries the microcontroller, motor
drivers, a motor and two motor drivers, a Bluetooth module and two magnetorquers.

• The microcontroller must have enough pins to work with several peripherals at the same time and
numerous communication interfaces.

• The reaction wheels design must meet the weight constraints set by 1U CubeSat California Univer-
sity requirements [2].

• The code must be a Commercial-Off-The-Shelf (COTS) cod, meaning it shall be used without any
customization.
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Chapter 2

State of the art

2.1 What is a Cubesat?

Cubesats are small-sized satellites based on a standardized unit of mass and volume. The most basic
Cubesat unit has 10×10×10 cm, conforming to specific interfaces for allowing a standardized containerized
launch and had a maximum mass of 1 kg (the mass was later on increased to 1.33 kg) [3].

The purpose of the Cubesats is to provide a standard for the design of nanosatellites to reduce cost and
development time, increase accessibility to space, and sustain frequent launches. Additionally, thanks to
their size and weight, basic Cubesats units could be combined for supplying larger objectives for major
missions while adhering to the same constraints and requirements. Therefore, a 3-Unit Cubesat consists
of 3 different standard 1-Unit Cubesat stacked together [4].

(a) Basic 1U Cubesat structure. Source:
Cubesatworld [5].

(b) CELESTA Cubesat. Source: CERN [6].

Figure 2.1 Cubesat examples. Source: Cubesatworld [5] and [6].

Cal Poly and Stanford University developed the Poly-Picosatellite Orbital Deployer (P-POD) launch
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dispenser standard to provide a low-cost solution to develop and safely launch CubeSats. Since Cubesats
are vastly light-weighted satellites, the overall mission costs are reduced exponentially as the amount of
fuel needed is significantly minor. Besides, Cubesats have a handful of useful applications such as remote
sensing or communications, but as engineers are beginning to get used to the technology, CubeSats are
beginning to venture farther afield.

The CubeSat is planned to be modular, with each module or unit measuring 100×100×100 mm, weighing
approximately 1 kg for a 1U CubeSat, and having a functional capacity of 1 L. Its modularity enables
relatively flexible scaling, allowing it to accommodate the required components for a specific application
in several connected units with little effort or additional cost [2].

Meteorological research, atmospheric analysis, high-energy particle research, disaster monitoring, space-
craft damage research, and spacecraft attitude control systems are among the current experiments con-
ducted in low-earth orbit. In point of fact, because these smaller satellites have the same essential
components as their bigger counterparts (communication systems, processing units, and solar panels),
the only limitations imposed on t are related to experiments that have lower power requirements.

At the same time, in 1998, at a joint meeting of students between the United States and Japan, Dr, Jordi
Puig proposed the idea of launching a spaceship the size of soda water (Coca-Cola) into space. This
original concept would subsequently evolve into other nanosatellite projects and influence the CubeSat
concept. At the time, the plan was to take a Coke can, add some electronics in it, mount it in a high-
powered amateur rocket, launch it, and eject it on a parachute. Professor Shinici Nakazuka and his
students at the University of Tokyo began to develop CanSat [7].

Figure 2.2 Cubesat sizes. Source: Alen Space [8].
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Figure 2.3 Cubesat components. Source: Alen Space [8].

Nanosatellites are typically launched into low circular or elliptical orbits (altitudes ranging from 400 to
650 km) and travels at around 8 km/s. At this altitude and height, it takes them around 90 minutes to
orbit the Earth, with 14 to 16 orbits completed every day. These are great configurations for nanosatellites.
They are better shielded from solar and cosmic radiation by circling closer to the Earth [8].

Satellites move in circular or elliptical orbits around the Earth because of the balance of gravitational and
escape pull at launch. Because air friction is very small, they can stay in orbit for a long operating time.
When a nanosatellite’s operational life comes to an end, it re-enters the atmosphere and disintegrates.

2.1.1 Satellite Constellations

Usually, nanosatellites work in constellations in which they give support, redundancy, and granularity to
the services they deliver. Each satellite in a constellation is replaced every 4-5 years, ensuring that the
operator always has an optimized, low-risk service that gets continual technical advances. As a result,
nanosatellite constellations are systems in which the ideas of obsolescence and useful life are no longer
relevant [8].
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Figure 2.4 Concept of a satellite constellation. Source: Space News [9].

2.1.2 CubeSat Applications

The key driving factors behind the worldwide adoption and growth of CubeSats can be approximately
abbreviated as follows [7]:

1. Affordability: The intention is to create an instructional tool for a research group and university
students. With these platforms, students can develop, design, launch, operate satellites to further
research. As simplicity and profitability is key, cost-effectiveness factors are achieved by creating a
simplified design, using recommended affordable COTS (Off-The-Shelf Components) and accepted
specifications and requirements that streamlined various stages of the development cycle such as
deployment, structural design, and some verification requirements.

2. Standardization: As the technology becomes more popular design configurations arrived over
time. Several engineering solutions and industry standards, such as the PPOD mechanism of
common development of electronic devices, were table alternatives and industry standards under
the limitations of the design specification restrictions. COTS products for Cubesats enable mass
manufacture, and mass production components of whole parts and subsystems, as well as lowering
development costs for developers.

3. High-Return value: Over time, CubeSats become high-return investments for space applications.
This is what allows the CubeSat to perform such a wide range of functions in such a wide range of
mission circumstances, thanks to a diverse set of developers and customers.

4. Technology: New technologies are implemented day after day in a range of missions such as
advancements in material research, manufacture, energy, software algorithms, mission architectures
(both segments of space and terrestrial segments) and communications.
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2.2 Satellite Subsystems

Alike any other satellite, CubeSats incorporates numerous subsystems such as Structures, Attitude De-
termination and Control Subsystem, Power Subsystem, among others. For instance, the On-Board Com-
puter (OBC) belongs to the communication subsystem. NASA provides a multi-facet platform Core
Flight System (CFS) that can serve as a command and control platform using 42 Simulator.

The principal subsystems are listed below:

Table 2.1 Principal subsystems. Source: [10]

Subsystem Principal Function Other denominations

Propulsion
Provides thrust to adjust orbit

and attitude,
and to manage angular momentum

Reaction Control System
(RCS)

Attitude Determination &
Control System (ADCS)

Provides determination and control of
attitude and orbit position,

plus pointing of
spacecraft and appendages

Guidance, Navigation &
Control (GNC)

Attitude and Orbit
Control Systems (AOCS)

Communication
Communicates with ground and other

spacecraft
Spacecraft tracking

Tracking, Telemetry &
Command (TTC)

Command &
Data Handling (CDH)

Processes and distributes commands
Processes, stores and formats data

Spacecraft Computer
System

Spacecraft Processor

Thermal
Maintains equipment and

structure within
environmental allowed temperature ranges

Environmental Control
System

Structures
and

Mechanisms

Provides support structure, booster
adapter, and moving parts

Structure Subsystem

Regarding dry-mass allocation [10],

• Payload = 28% of total satellite mass.

• Power = 23% of total satellite mass.

• Structure = 18% of total satellite mass.

• Propulsion = 12% of total satellite mass.

2.2.1 Attitude Determination and Control Subsystem

Attitude determination is the process of combining available sensor inputs with spacecraft dynamics
information to offer an accurate and unique answer for the attitude state as a function of time, either

13
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on-board for immediate use or after the fact (i.e. post-processing). Most attitude algorithms that were
previously conducted as post-processing may now be implemented as on-board computations, due to the
powerful microprocessors available for spaceflight. As a result, while there are still compelling engineering
reasons for certain procedures to be carried out only by ground-based attitude systems [11].

To sum up, the ADCS initials yields for [12]:

• Attitude

– The orientation of a spacecraft in space.
– The angular orientation of the spacecraft body frame with respect to an external frame.
– Describes the rotational motion of the body of the spacecraft about its center of mass.

• Determination

– The process of computing the orientation of the spacecraft relative to either an inertial reference
or some object of interest, involving:

∗ Several types of sensors on each spacecraft
∗ Sophisticated data processing procedures

• Control

– Attitude stabilization: the process of maintaining an existing orientation.
– Attitude maneuver control: the process of controlling the reorientation of the spacecraft from

one attitude to another.

2.2.2 Attitude determination

Reviewing Wertz’s documentation [12], there are different instruments that aids in the process of attitude
determination.

2.2.2.1 Sun Sensors

Sun sensors are visible-light or infrared detectors that measure one or two angles between their mounting
base and incident sunlight. These devices have a thin entry slit at the top surface which is sensitive
to light. When the Sun’s light rays enter the thin cabin on the base of the chamber, it illuminates a
sequence of photo-cell detectors. Eventually, the digital output can be mapped onto a unique entry angle,
allowing the plane in which the Sun lies to be determined. Sun sensor systems are designed to give two
fundamental output signal types, analogue and digital, even though hardware designs vary greatly. The
output of an analogue system is a continuous function of the angle of incidence, whereas the output of a
digital system is discrete [13]. Sun sensors can be quite accurate (< 0.01deg), but it is not always possible
to take advantage of that feature [11] since most low earth orbits include eclipse periods.
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Figure 2.5 Analog and digital sun sensors. Source: NASA [13].

2.2.2.2 Magnetometers

Magnetometers are simple, reliable, lightweight sensors that detect the amount and direction of the
Earth’s magnetic field. The magnetometer output assists in determining the spacecraft’s attitude relative
to the local magnetic field. A flux-gate magnetometer measures the strength of the magnetic field in one
direction. Thereby, adding a 3-axis magnetometer, which consists of three orthogonal magnetometers
will permit measurements of the three components of the magnetic field in the spacecraft body frame.
Subsequently, the attitude is determined by comparing the measured field to an inertial magnetic model
held in the onboard processor [14] [11].

2.2.2.3 Earth Horizon Sensors

Earth Horizon sensors are infrared devices that measure the difference in temperature between deep space
and the Earth’s atmosphere (approximately 40 km above the surface in the detected range). Pippers
(simple narrow field-of-view fixed-head) are used to detect the Earth phase. These devices are static
sensors that can provide only roll and pitch information. Their operating principle consists in detecting
Infra-Red (IR) radiation in a given range, for instance 14 to 16 µm (the emission band of the CO2 CO2

molecule) [15] [11].

A mirror (or prism) focuses a narrow pencil of light onto a sensing element. Afterwards, the mirror
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spins as a result of spinning the spacecraft. As the mirror or prism rotates its field of view sweeps out a
cone. Then, electronics in the sensor detect when the infrared signal from the Earth is first received or
finally lost during each sweep of the scan cone. Finally, the time between the arrival and loss of signal
determines the Earth width.

Figure 2.6 Earth horizon sensor. Source: NASA [15].

2.2.2.4 Star sensors/trackers

Star sensors are the most accurate reference sensors for measuring attitude. The light from a star strikes a
light-sensitive surface. The point of impact on the surface is determined using Charged Coupled Devices
(CCDs), similar to the optical element in a video camera. Then, using a star catalogue, internal processing
calculates a three-axis attitude. Many systems can calculate an extremely precise attitude within seconds
of turning on [11].

Figure 2.7 Star sensor. Source: ESA [16].
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2.2.2.5 Gyroscopes

Gyroscopes are any instrument that uses a rapidly spinning mass to sense and responds to changes in the
inertial orientation of its spin axis. These inertial sensors measure the speed or angle of rotation from an
initial reference but lack knowledge of an external, absolute reference [11].

2.2.2.6 Inertial Measurement Unit

Inertial Measurement Units are devices that measure a spacecraft’s accelerations within a stable frame
of reference provided by key ingredients: gyroscopes and accelerometers.

The gyroscope’s role is to detect instantaneous motions that might disrupt the spacecraft’s stability
and respond with compensating drive signals to spin the gimbals properly. The accelerometers’ duty
is to monitor acceleration forces operating on the spacecraft – and so changes in spacecraft direction
and position – within a gyro-stabilized frame of reference. Because gyroscopes and accelerometers are
mechanical instruments, the gyros may drift a tad over lengthy missions [17].

Figure 2.8 Apollo Inertial Measurement Unit. Source: We Hack the Moon
[17].

2.2.3 Attitude Control

Once the attitude is determined by the aforementioned instruments and databases, the next step is to
properly adjust the orientation of the spacecraft to stabilize or point towards the desired direction. Here
is where attitude control comes into play. The following set of instruments helps the Cubesat to perform
orbit manoeuvres and each of them has different torques as the goal may be a fine or coarse pointing.
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2.2.3.1 Magnetorquers

Magnetorquers are often used as actuation actuators in spacecraft. These torques are magnetic coils
(electromagnets) that produce magnetic dipole moments of a specified magnitude. The magnetic field
generated by the spacecraft interacts with the local field from a Planet, producing an external torque
on the vehicle. Then electromagnets may be used to provide a controllable external torque. Their
strength can be controlled by employing current. When three orthogonal magnetorquers are attached to a
spacecraft, they may generate a magnetic dipole in any direction and magnitude up to the magnetorquers’
strength. Magnetic torquers can adjust for residual magnetic fields or attitude drift caused by modest
disturbance torques on a spacecraft. Besides, they can also be used to desaturate momentum-exchange
systems. However, they require much more run time than other actuators since their torque is quite small
and requires longer run-times [11].

2.2.3.2 Reaction Wheels

Reaction wheels are essentially devices that provide attitude control and stability on a spacecraft. They
allow the spacecraft to rotate quickly towards the desired location, in other words, they are torque motors
with high inertia rotors. By adding or removing energy from the flywheel, torque is applied to a single
axis of the spacecraft, causing it to react by rotating. These wheels can spin at different speeds using
electric motors. If the wheel turns clockwise direction, according to Newton’s Third Law, the CubeSat
will rotate in the opposite direction (counterclockwise). By maintaining flywheel rotation, known as
momentum, a single axis of the spacecraft is stabilized. Several reaction/momentum wheels can be used
to provide full three-axis attitude control and stability [11].

One major problem appears when slowing down the wheels, reaction wheels cannot spin indefinitely and
if they slow down, the spacecraft will turn in the opposite direction.

Let’s define the differences between reaction wheels and momentum wheels to avoid future confusion
with the terminology. Both reaction and momentum wheels are flywheels that spin and creates torque
by changing their momentum. However, there is a major dissimilarity between the two actuators:

• Reaction wheels are spun to create the torque and hence, force the spacecraft to rotate.

• Momentum wheels, on the other hand, are constantly rotating at very high speed to provide a
nearly constant angular momentum which creates a stabilization of the spacecraft, thus, generating
an angular momentum by creating a resistance in the change of the spacecraft’s attitude.

2.2.3.3 Thrusters

Because of its dual utility in altering orbital parameters, thrusters (i.e. rocket engines) are arguably the
most commonly flown attitude actuator. Almost every spacecraft that has to conduct orbital manoeuvres
will utilize thrusters to do so, and in many cases, part of the thrusters utilized will be for attitude control.
Thrusters exert force on the spaceship by ejecting a high-velocity material known as propellant from its
exit nozzles [11].
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Thrusters produce torque in proportion to their moment torque, which is the distance by which the
direction of the force is offset from the vehicle’s centre of mass. So, while a thruster may generate a lot
of force, the torque it can produce is limited by the actual size of the vehicle and how the thrusters are
placed on it. Thrusters have the advantage of being able to provide large instantaneous manoeuvres at
any time in orbit. Notwithstanding, the other issue with thrusters is that the amount of stored gas is not
unlimited.
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Chapter 3

Mathematical description of the
physical system

The following section intends to summarize the mathematical model expressions of the basic astrody-
namics equations and the development of it.

3.1 Orbit Classification

The preceding section’s characterization of orbital elements allows for the establishment of an orbital
taxonomy. As a matter of fact, orbits are classified based on their altitude (relative to the semi-major
axis a), eccentricity e, and inclination i. Low Earth orbits (LEO) are those with a maximum distance
from the Earth’s centre of mass of less than 2000 km; medium Earth orbits (MEO) are those between 2000
and 20, 000 km; and high Earth orbits (HEO) are those with a maximum distance more than 20, 000 km
[7].

Closed and open orbits are differentiated by eccentricity (see Table 3.1): circular (e = 0) and elliptical
(e > 1) orbits are closed trajectories, whereas parabolic (e = 1) and hyperbolic (e > 1) orbits are open
paths that can escape the gravitational attraction of the celestial body. Finally, orbits can be classified
as equatorial (i = 0 degrees) or polar (i = 90 degrees) based on their inclination.

Table 3.1 Conic sections of an orbit. Source: Own.

Eccentricity Conic section Open/closed trajectory

e = 0 Circle Closed
0 < e < 1 Ellipse Closed
e = 1 Parabola Open
e > 1 Hyperbola Closed

Some of the most important orbits are produced by combining some of the properties mentioned be-
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forehand. For instance, geosynchronous orbits have a duration equal to one sidereal day. Geostationary
orbits are zero-inclination geosynchronous circular orbits. Taking the point of view of an observer on
Earth, a geostationary satellite seems fixed in the sky, which is why these orbits are utilized for com-
munications missions, since they are always in the same position and communication can be performed
without problems. CubeSats are unlikely to be launched into geostationary orbits, but the majority of
them have been launched into a different type of synchronous orbit known as the Sun-synchronous orbit,
which is nearly a polar orbit.

Notice how in a Sun-synchronous orbit, the orbital plane rotates to maintain a consistent orientation
concerning the Sun throughout the year (Ω̇ = 360 degrees per year. The spaceship will travel over the
Earth at the same local solar time at all times of the year (points 1, 2, and 3). This orbit is extremely
useful for remote sensing missions since Earth’s surface are hugely susceptible to variations in lighting
conditions.

Figure 3.1 Orientation of the orbital plane in a Sun-Synchronous orbit.
Source: Cubesat Handbook [7].

For low orbits, orbits with inclinations around 90 degrees are the most accessible for CubeSats. As a
result, a satellite in a low Sun-synchronous orbit traverses the whole Earth’s surface multiple times per
day, providing several possibilities for interaction with ground stations. This is critical, especially if the
spacecraft can only be operated by a single station, as is the situation with many academic missions.
The Earth is always in the same local solar time zone and, as mentioned before, this is critical for distant
sensing missions since the Earth’s surface is incomparable lighting conditions at each passing.

3.2 Attitude description

First of all, before beginning to work on the actual equations a reference frame must be defined. This
is crucial since the actual parameters depend on the reference frames. In both reference systems and
attitude representation methods and rotation matrices are to be well defined to present accurately the
satellite’s dynamic equations.
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3.2.1 Reference frames

Flight mechanics use a series of specific reference systems with the aim of projecting the positions,
rotations linear and angular velocities, linear and angular accelerations, forces and torques in them. These
systems can be represented in a generic way as F (O, x, y, z) with its origin in (O) and 3 perpendicular
axis (x, y, z) [18] [19] [20].

3.2.1.1 Earth-Centered Inertial (ECI) Reference Frame

The ECI F (Oeci , xeci , yeci , zeci) is a fixed in the spatial reference frame, this means that there is not any
kind of acceleration so Newton’s second is applicable 1.

• The origin of this reference frame is located at the centre of the Earth (the geo-centre of Earth)

• The z-axis points towards the North Pole, specifically, towards Epoch J2000 which is near the Pole
Star.

• The x-axis points towards the Vernal Equinox at J2000 (where equatorial and ecliptic planes inter-
sect).

• The y-axis is orthogonal to both of the prior axis following the right-hand rule.

Note the Equatorial plane and Ecliptic plane are inclined at 23º 27’ to each other.

yECI

zECI

Mean Equinox
xECI

Figure 3.2 ECI reference frame with xECEF pointing towards the mean
Equinox. Source: Own.

1Newton’s laws apply only in “inertial” non-rotating systems that are not rotating or non-accelerating concerning the
distant galaxies or accelerating. All inertial reference frames can be seen as being in a state of constant velocity or rectilinear
(straight-line) motion concerning one another. Consequently, an accelerometer moving with any inertial frame of reference
should always detect zero acceleration.
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3.2.1.2 Earth-Centered Earth Fixed (ECEF) Reference Frame

The ECEF reference frame (F (Oecef , xecef , yecef , zecef)) is linked to Earth itself in a sense that, in a generic
instant, the inertial system rotates with the same angular velocity as the rotation of the Earth around
its axis with an angular velocity of ω = 7.27 · 10−5 rad/s [21].

• Just as the ECI, the ECEF’s origin is also located at the center of the Earth.

• The z-axis points towards the North Pole, specifically, towards Epoch J2000 which is near the Pole
Star.

• The x-axis is contained in the intersection between the Greenwich Meridian and the Equator plane.

• The y-axis is orthogonal to both of the prior axis following the right hand rule.

yECEF

zECEF

xECEF

Prime Meridian

Figure 3.3 ECEF reference frame with the x-axis pointing to the fixed point
on the Prime Meridian. Source: Own.

3.2.1.3 Orbit Reference Frame

This reference frame is also known as the satellite’s reference frame. This coordinate system is very useful
for satellites that have to perform terrestrial imaging manoeuvres.

• The origin of coordinates corresponds to the Centre of Mass (COM) of the satellite itself.

• The z-axis points towards the centre of Earth.

• The x-axis follows the satellite’s velocity vector in the same direction.

• The y-axis is orthogonal to both of the prior axis following the right-hand rule.

At any given time, the Satellite Reference Frame and Satellite Body Frame will be at the same location,
i.e., the origin of the Satellite Body Frame will always coincide with that of the Satellite Reference Frame,
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however, the Satellite Reference Frame may not be aligned with Satellite Body Frame. The ADCS of
a satellite works to align the Satellite Body Frame with the Satellite Reference Frame. To simplify our
test cases and to understand ADCS easily, we will be considering a satellite whose reference frame is the
Orbit Reference Frame.

xECI

yECI

zECI

xORBIT

yORBIT

zORBIT

Figure 3.4 Orbit Reference Frame. Source: Own.

3.2.1.4 Body Reference Frame

Unlike the Orbit reference frame, the Body reference frame is fixed to the satellite. The orientation
in space is defined with respect to the Orbit frame using Euler angles thus representing the satellite’s
attitude.

• The origin of coordinates correspond to the Centre of Mass (COM) of the satellite itself.

• The x y z axis points along the principal directions of the spacecraft, normal to the satellites surfaces
forming an orthogonal Cartesian coordinate system.

Though, depending on the mission, these axis can be set according to each mission’s specifications. Each
mission shall bear in mind to adapt the dynamics equations in consonant of the selected reference frame.
Eventually, by doing this will only affect the representation of the motion but the entire dynamics of the
system remain the same no matter which reference frame it is used.

This reference frame will be used for acquiring data for the CubeSat with the incorporated IMU. Ans
the orientation angles will be referenced to this particular frame.

24



CHAPTER 3. MATHEMATICAL DESCRIPTION OF THE PHYSICAL SYSTEM

xBODY

yBODY

zBODY

Figure 3.5 Body Reference Frame. Source: Own.

3.2.2 Euler Angles

So far, in the latter section was explained how the orientation of the Body frame with respect to the
satellite’s Orbit frame describes its attitude. This is expressed in Euler angles. According to Euler’s
rotation theorem, any rotation may be described using three angles. If the rotations are written in terms
of rotation matrices D,C, and B, then a general rotation A can be written as

A = ROB = Rx,ψRx′,θRz′,φ = BCD (3.2.1)

These three rotations matrices provides three different angles called Euler angles. The convention used
to define the Euler angles is illustrated below. Let A be

A = ROB =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (3.2.2)

The rotation given by Euler angles (φ, θ, ψ) is as follows, where

1. The first rotation is by an angle ψ about the z-axis using D.

2. The second rotation is by an angle θ ∈ [0, π] about the former x-axis (now x′) using C.

3. The third rotation is by an angle φ about the former z-axis (now z′) using B.

Here, the notation (ψ, θ, φ) is used. In the x -convention, the component rotations are then given by the
following rotations:

Rz′,φ =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 Rx′,θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 Rx,ψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1


(3.2.3)
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Finally, by developing the expressions (3.2.3) the rotation matrix is described as a rotation across all the
axis. The final matrix can be expressed as

ROB = Rz(ψ)Ry(θ)Rx(φ) =

=

 cosψ cos θ − sinψ cosφ+ cosψ sin θsφ sinψ sinφ+ cosψ cosφ sin θ
sinψ cos θ cosψ cosφ+ sinψ sin θ cosφ − cosψ cosφ+ cosψ cosφ cos θ
− sin θ cos θ sinφ cos θ cosφ

 (3.2.4)

ex,I
ey,I

ez,I

(a) Euler for I. Source: Stack-exchange [22].

ex,I
ex,1

ey,1
ey,I

ez,I = ez,1

1. φ

(b) Euler for I, for 1. Source: Stack-exchange [22].

ey,1
ey,2

ez,2

ex,I
ey,I

ez,I = ez,1

ex,1 = ex,2

2. ϑ

(c) Euler for I, for 1, for 2. Source:
Stack-exchange [22].

ey,1
ey,2

ey,B

ez,2 = ez,B

ex,I
ey,I

ez,I = ez,1

ex,1 = ex,2 ex,B

3. ψ

(d) Euler for I, for 1 for 2, for B. Source:
Stack-exchange [22].

ex,B

ey,B

ez,B

ex,I
ey,I

ez,I

ex,B

(e) Euler for I for B. Source: Stack-exchange
[22].

Figure 3.6 Euler angles rotations. Source: Stack-exchange [22].

Eventually, the angular velocities ω can be determined by the Euler angles derivatives [20].

Since the position is uniquely defined by Euler’s angles, angular velocity is expressible in terms of these
angles and their derivatives. The angular velocity vector ΩOB = [Ω1Ω2Ω3]T , which components are the
rates is determined by the Euler angles and the derivative of φ, θ, ψ. The angle rates are respectively are
known as precession rate φ̇, nutation rate θ̇, and spin ψ̇ [20].
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To do so, the strategy is is to find the angular velocity components along the body axes x1,x2,x3 of φ̇ θ̇
ψ̇ in turn. θ̇ is along the line ON , and hence, in the x1, x2 plane. Next, φ̇ is about the Z axis.

Thus, the Euler angle angular velocities (components along the body’s principal axes) are:

~θ = (θ̇ cosψ,−θ̇ sinψ, 0)
~φ = (φ̇ sin θ sinψ, φ̇ sin θ cosψ, φ̇ cos θ)
~ψ = (0, 0, ψ̇)

(3.2.5)

and the angular velocity components velocity components along those in-body axes x1, x2, x3 are:

ΩOB =


Ω1 = φ̇ sin θ sinψ + θ̇ cosψ

Ω2 = φ̇ sin θ cosψ − θ̇ sinψ

Ω3 = φ̇ cos θ + ψ̇

(3.2.6)

The above expressions (3.2.6) can be solved in terms of precession, nutation and spin rates:

φ̇ = 1
sin θ (Ω1 sinψ + Ω2 cosψ)

θ̇ = Ω1 cosψ + Ω2 sinψ
ψ̇ = − 1

tan θ (Ω1 sinψ + Ω2 cosψ) + Ω3

(3.2.7)

It is crucial to avoid nutation angle through 90 ◦ so as to avoid the singularity that exists in the precession
angle [23].

Euler angles are astoundingly useful to get an idea of a satellite´s attitude. Notwithstanding, a particular
scenario can cause Euler angles to provide erroneous attitude due to singularities for some angles, e.g.
cosπ/2 when calculating the resulting rotation matrix. As attitude exists in SO3, no three-parameter
representation, such as Euler angles or the Gibbs Vector is singularity free. For this reason Euler param-
eters, also called quaternions are used in the numerical computations in this project. However, for ease
of interpretation, Euler angles are often used to represent the results.

3.2.2.1 Euler Gimbal Lock

Euler gimbal lock occurs when the orientation of the sensor cannot be uniquely described using Euler
Angles. The exact orientation at which the gimbal lock occurs is determined by the rotational sequence
used. When the pitch angle α is 90 degrees, the sequencing of actions on the IMU sensor results in a
gimbal lock. This results in a loss of a degree of freedom since two axes are coupled and there is no third
axis to turn on.

To avoid Euler Gimbal Lock singularities, the correct way to approach this problem is using quaternions
(see Section 3.2.3) by taking the Euler parameters (quaternions) and performing a transformation, the
rotation matrix expressed in terms of quaternions is obtained as

ROB =

 q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)
2 (q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2 (q2q3 + q0q1)

2 (q1q3 + q0q2) 2 (q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (3.2.8)
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O

x

y

z

~̇φ

φ ψ
x′

y′z′

~̇ψ

θ

~̇θ

Figure 3.7 Euler Angles. Source: Own.

3.2.3 Quaternions

A quaternion q (a.k.a Euler parameters) is a singularity free attitude representation hyper complex
number. To avoid confusion, the term quaternion will be used from now on. Quaternions are used
in computation to overcome the singularity problem in the attitude representation and is defined as a
complex number composed of a scalar real part q0 and an imaginary three component vector q1:3, with
components spanning R3 defined by [24] [25]:

q =
[

q0

q1:3

]
=



q0 = cosφ/2

q1 = e1 sinφ/2

q2 = e2 sinφ/2

q3 = e3 sinφ/2

(3.2.9)

they represent a rotation about a unit vector through and angle φ, where

e2
1 + e2

2 + e2
3 = 1 (3.2.10)

and q satisfies the holonomic constraint qT q = 1 which also means

q2
0 + q2

1 + q2
2 + q2

3 = 1 (3.2.11)

Note that this constraint geometrically describes a four-dimensional unit sphere.

Quaternions can also be written (q0, q1, q2, q3). It is an element of R4 and mathematically not defined in

28



CHAPTER 3. MATHEMATICAL DESCRIPTION OF THE PHYSICAL SYSTEM

ordinary linear algebra. The hyper imaginary numbers i, j and k must satisfy the following conditions

i2 = j2 = k2 = ijk = −1
ij = k = −ji
jk = i = −kj
ki = j = −ik

(3.2.12)

Subsequently, the transformation from Euler angles to quaternions can be calculated as

q =


q0

q1

q2

q3

 =


(cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)
(sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2)
(cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)
(cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2)

 (3.2.13)

The inverse relation, to transform from quaternions to Euler angles is expressed as 2 φ

θ

ψ

 =

 atan 2
(
2 (q0q1 + q2q3) , 1− 2

(
q2
1 + q2

2
))

arcsin (2 (q0q2 − q1q3))
atan 2

(
2 (q0q3 + q1q2) , 1− 2

(
q2
2 + q2

3
))
 (3.2.14)

3.2.3.1 Time derivation of a quaternion

The calculation of the time derivative of a quaternion q in terms of the quaternion itself and the corre-
sponding angular rate is defined by Kuipers [24] as

q̇ = 1
2~ω
′ ⊗ q = 1

2Ω′(~ω)q (3.2.15)

q̇ = 1
2q
∗ ⊗ ~ω′ = 1

2Ξ(q)~ω′, (3.2.16)

where

Ω′(~ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 ,Ξ(q) =


q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4

 and ~ω′ =
[
~ω

0

]
=


ωx

ωy

ωz

0


(3.2.17)

Based on prior results, the equation for calculating angular rates in terms of a rotation quaternion and
its derivative is as follows:

~ω′ = 2q̇ ⊗ q∗ (3.2.18)

Similarly, Kuipers c[24] proposes the second derivative of a quaternion with respect to time.

q̈ = 1
2
(
~̇ω′ ⊗ q + ~ω′ ⊗ q̇

)
(3.2.19)

2Four-quadrant inverse tangent which is also known as arc tangent of two numbers. atan 2(y, x) returns the arctangent
of the two numbers x and y. It is similar to calculating the arctangent of y/x, except that the signs of both arguments are
used to determine the quadrant of the result. The result is an angle expressed in radians rad. Notice how arctan and arcsin
functions implemented in computer languages only produces values from −π/2 to π/2, for all the possible rotation between
those values one does not obtain all possible orientations. This is why it is needed to replace arctan to atan 2 [26].
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3.3 Disturbance analysis

Any spacecraft orbiting Earth is subject to some perturbations and disturbance forces and torques. These
perturbations come from various sources and their magnitude and direction depend on different physical
properties of the satellite such as its weight, shape, material, etc. Whenever a force is not acting through
the COM of the satellite it will result in a net torque.

Four major sources of disturbance torques shall be taken into account when designing the ADCS hardware
and software:

• Aerodynamic drag (atmospheric density)

• Geomagnetic field disturbances

• Gravity gradient

• Solar radiation pressure

For LEO orbits, the ones that have a larger impact are the aerodynamic drag and the geomagnetic field
disturbances in terms of torque disturbances [12]. Nonetheless, the following sections will present an
overview of all these four sources of disturbances as well as analytical estimation models of them as a
function of the position and orbital velocity. In all the sources, the worst-case scenario will be taken into
account.

3.3.1 Aerodynamic drag

The aerodynamic drag is one of the major contributors to the disturbance torque. This is due to the
number of air particles present at the altitude at which the CubeSat will be operating.

NASA’s Space Vehicle Design Criteria SP-8058 [27] is used to formulate the aerodynamic drag. To
compute the torque, the aerodynamic pressure acting on the surface of the CubeSat is to be integrated
over the exposed forward-facing (“wetted”) area of the spacecraft.

To assay how the atmosphere interacts with the spacecraft, the interaction between a body and an
atmosphere through which it is moving is to be analyzed in the subsequent section. At low orbit altitudes,
the interaction of the vehicle and the atmosphere can be characterized by the free-molecular flow regime
of gas dynamics, i.e., when the molecular mean free path is much greater than a characteristic spacecraft
dimension.

The incident flow is considered to be undisturbed by the presence of the spacecraft. The net aerodynamic
torque can be calculated by summing up all the contributions of each spacecraft element surface. The
gross value of the aerodynamic force may be obtained using the following expression:

D = 1
2ρV

2CdAinc (3.3.1)

ρ [kg/m3]: is the atmospheric density at given altitude.
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V [m/s]: is the spacecraft velocity also depending on the orbit altitude.

Cd [adim]: is the drag coefficient. A reference value between 2− 2.5 is taken for CubeSat.

Ainc [m2]: is the incident satellite surface area.

The atmospheric drag is predominant for Earth orbits up to 600 km, which are the most common for
CubeSat missions. In general, for spacecraft in Earth orbit, the radiation force on a given surface becomes
more significant than the aerodynamic force at orbital altitudes above 1000 km. As seen previously,
nanosatellites missions are launched in low circular or elliptical orbits LEO (altitudes of between 400
and 650 km) and travel at around 8 km/s. [8] [7]. Between 600 and 1000 km, torques resulting from
solar radiation and aerodynamic forces are likely to be of the same order of magnitude. Nevertheless,
aerodynamic torques have a direct impact on the attitude control of a spacecraft orbital lifetime.

The major drag induced by the friction with the upper atmosphere’s particles will be produced in the
lowest layer of the orbit’s altitude. Hence, the main hypothesis used in this part is to consider the
nanosatellite’s orbit with a constant altitude of h = 400 km above the surface of Earth. Furthermore,
the ISA model cannot be applied at altitudes above 100 km, however, Bowman suggests a more accurate
empirical thermospheric density model of the atmosphere for altitudes ranging between 175 to 1000 km
[28].

According to [27], using a simplified particle/surface interaction models, based on free-molecular flow
theory. The aerodynamic force on an elemental area dA is:

dD = ρ
[
(2− σn − σt)

(
vTndA

)
ndA + σtv

]
vTndAdA (3.3.2)

where

σn [adim]: is the normal exchange coefficient.

σt [adim]: is the tangential momentum exchange coefficient.

vT [m/s2]: is the spacecraft tangential velocity.

ρ [kg/m3]: is the atmospheric density.

ndA : is the normal vector of a surface dA (outwards the CubeSat).

As regards the momentum exchange coefficients, a good empirical values is around σn = σt = 0.8.
The linear relationship between the dD and the density ρ in the equation above calls for an accurate
atmospheric model density.

The elemental torque dτD generated from a force dD by an elemental area dA is given by equation (3.3.3),
where rdA is the location of the centroid of the elemental area and rcg is the location of the centre of
mass:

dτD = (rdA − rcg)× dD (3.3.3)

Total torque can be computed by integrating the above expression over the whole wetted surface that is
affected by the aerodynamic drag using

D =
∫

Awetted

dD (3.3.4)
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Particularly, PLATHON’s 1U CubeSat dimensions are equal on all sides, as it is a square CubeSat, thus,
the six faces of the satellite can be considered as an elemental area with the net force acting through the
centroid of each surface. Hence, the net aerodynamic torque is the result of summing all elemental forces
on all surfaces where vT ·ndA > 0. However, if the Cubesat is not square, the wetted area is not the same
for all orientations. Combining this explanation to equations (3.3.2) and (3.3.4),

Dj = ρ
[
(2− σn − σt)

(
vTnj

)
nj + σtv

]
vTmax(0, vTnj)njAj j = ±x,±y,±z (3.3.5)

τD,j =
∑

j=±x,±y,±z

(
rAj
− rcg

)
×Dj (3.3.6)

In the above expression, nj indicates the normal vector of the surface in j direction, Aj is the surface
facing nj direction and rA,j represents the centroid of surface j.

Now, the maximum wetted area of a 1U CubeSat is 0.01 m2. The density of the spacecraft around 400 km
is ρ = and the satellite’s orbital velocity ranges from 7.6738 km/s and 7.5629 km/s at an orbital altitude
of 600 km (see expression (3.3.7))

v =
√

GME

RE + h
=

√
6.67408 · 10−11 · 5.9742 · 1024

6371 · 103 + 400 · 103 = 7673.7770 m/s (3.3.7)

Jacchia-Bowman Atmosphere Model [28] provides density values from the last decade (see Figures 3.8),
which shows how difficult is to model Earth’s atmospheric density. There is are no tabular values of
density. Instead, the barometric equation and diffusion equation are integrated numerically using the
Newton-Coates method to produce the density profile up to the input position. (check Appendix K for
the MATLAB code):

(a) Density from 1999 to 2015. Source: Own K.2. (b) Temperature from 1999 to 2015. Source: Own K.2.

Figure 3.8 Density and temperature fluctuation from 1999 to 2015 using
JB2008. Source: Own K.2.

Besides, the density fluctuates according to solar activity (solar cycles) and JB2008 takes into account
those events. Higher values of density means that there are more particles in the atmosphere colliding
with the satellite. Thus, according to Figure 3.8, a value of

ρh400 ≈ 4.58268 · 10−12 kg/m3 (3.3.8)
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will be used for the calculations, which is the maximum density at an altitude of h = 400 km. The
maximum wetted area for a 1U CubeSat is Amax = 0.01 m2 with the largest offset on the centroid is
approximately 0.03 m.

With these assumptions, one can estimate the aerodynamic drag using expression (3.3.5) and (3.3.6):

Dmax = 4.58268 · 10−12 [(2− 0.8 · 0.8) · 7673.7770 + 0.8 · 7673.7770] · 7673.7770 · 0.01

= 1.0978 · 10−7 N (3.3.9)

τD = (0.05− 0) · 1.0978 · 10−7 = 3.9939 · 10−7 Nm (3.3.10)

Figure 3.9 Solar activity over the past 50 years. Source: SILSO [29].

Since the value of atmospheric density is affected by altitude and solar activity, the following plot 3.10
simulates atmospheric torque as a function of height h and CD drag coefficient in terms of solar activity.
The value of the atmospheric density is presented in this model for various levels of solar activity (low,
moderate, and high).

In this case, equations (3.3.1) (3.3.4) may be used to obtain the following expression:

τ
D

= 1
2CDρAv

2 (rdAF − rcg) 3√
2

(3.3.11)

Since the value of CD has yet to be determined, Wertz and Larson [30] offers a table with typical drag
coefficients for various missions flown in past years, where it is seen that CD typically fluctuates between
1 and 4 (see Appendix K for the code and JB2008 algorithm).
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(a) Low Solar activity: F10.7 = 65 s.f.u.. Source: Own.
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(b) Moderate Solar activity: F10.7 = 150 s.f.u..
Source: Own.
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(c) High Solar activity: F10.7 = 250 s.f.u.. Source:
Own.
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(d) High Solar activity: F10.7 = 300 s.f.u.. Source:
Own.

Figure 3.10 Evolution of the atmospheric torque in terms of h, CD and the
solar activity using JB2008. Source: Own.

Closer examination of the simulations in Figure 3.10 shows clearly how the aerodynamic torque increases
as drag coefficient grows. Besides when solar activity F10.7 index increases it also influences the induced
torque.

3.3.2 Gravity gradient torque

Any non-symmetrical object with finite dimensions in orbit is subject to a force known as gravitational
torque because of the variance in the Earth’s gravitational pull over the object. The inverse square
gravitational force field causes this gravity-gradient torque; in a homogeneous gravitational field, there
would be no gravitational torque [12].

Equation (3.3.12) may be used to calculate the torque caused by a gravity gradient. The question to be
asked here is how the gravitational force affects the satellite itself since the lower part of the satellite is
closer to Earth while the upper side of the satellite is further from Earth.
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Newton’s law shows how gravitational force decreases with the square root of the distance 1/r2. Although
at first, this height difference may be inappreciable, a constant torque acting on a body in space where
friction is considerably smaller can end up rotating the whole CubeSat upside down if not taken into
consideration.

NASA [31] and Wertz [12] approach shows that gravity gradient torque can be defined as

~τgg =
(

3Gm⊕
‖~r‖3

)
[r̂ × (Isat · r̂)] =

(
3µEarth

‖r‖52

)
[~r × (Isat~r)] (3.3.12)

where

µEarth [m3/s2] = 3.9860 · 1014 m3/s2: is Earth’s gravitational constant.

~r [m]: is the position of the satellite’s COM with respect to Earth’s COM.

Isat [kgm2]: is the satellite’s moment of inertia matrix.

All torques that tend to upset a spacecraft’s attitude must be addressed in the design of spacecraft
attitude control systems. Gravity gradient is one of these torques and it derives from variations in the
gravitational force over the distributed mass of the spacecraft.

Considering the worst case scenario, expression (3.3.12) can be simplified as:

τgg,max = 3µEarth

2R3
Orbit

(Isat,max − Isat,min) · sin(2θdev) (3.3.13)

in which Isat,max and Isat,max are the maximum and minimum moment of the inertia; θdev is the maximum
deviation of the Z axis and therefore is maximum at θdev = 45◦ in body frame from its local vertical
(refer to section 3.2.1) and ROrbit represents the orbital altitude, in which ROrbit = REarth + h.

The inertia of the satellite can be deduced using expression (3.4.5), since it is not a massive cube the
following subtraction must be made (considering solely the frame with the total components’ mass):

Isat,min = msat
d2

out − d2
int

6 = 1.3 · 0.012 − 0.0082

6 = 6 · 10−6 kg ·m2 (3.3.14)

For the maximum inertia, let’s suppose the satellite is has some mass shifted outside the center of mass
(where mshift can be some electric component such as the battery):

Isat,max = msat
d2

out − d2
int

6 +mshift ·d2
shift = 1.3 · 0.012 − 0.0082

6 +0.3 ·0.022 = 1.278 ·10−4 kg ·m2 (3.3.15)

where msat is the satellite’s mass and d represents the side length of the CubeSat. Since it is a 1U CubeSat,
the Inertia is the same for all principal axis. Considering the worst scenario case, the CubeSat’s maximum
weight shall be around 1.3 kg

Accounting for the following parameters:

Isat,max = 2.957 kgm2

Isat,min = 2.899 kgm2

REarth = 6371.000 km

h = 400 km

ROrbit = 6771.0000 km

θdev = 45
◦

(3.3.16)
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which results in a maximum gravitational torque of

τgg,max = 3 · 3.9860 · 1014

2 · (6771 · 103)3

(
1.274 · 10−4 − 6 · 10−6

)
· sin(2 · 45◦) = 2.3594 · 10−10 Nm (3.3.17)

Since the CubeSat is symmetric, it’s gravity gradient contribution shall shall not affect too much.

3.3.3 Geomagnetic Field

The magnetic torque results from the interaction between the magnetic properties of the spacecraft and
the ambient magnetic field (the Earth’s magnetic field, in the case that applies to this project), is the
subject of section [32].

Sources of magnetic disturbance torques to be considered should include but should not be limited to:

• Spacecraft magnetic moments: permanent magnetism in the spacecraft.

• Eddy currents: spacecraft generated current loop.

• Hysteresis: Magnetism induced by external fields or currents induced by external fields, i.e., when
magnetic induction lags behind the magnetizing force.

For missions conducted within the Earth’s magnetosphere (which is approximately 10 times Earth’s radius
from the geocenter), the magnetic field can be described by:

1. A steady-state nominal analytical model that defines magnitude and direction as a function of
location with corrections distortions.

2. Distortions in the field caused by influences from outside the magnetosphere (effects of solar
plasma) not accounted for by the nominal model.

3. Time dependent disturbances that alter and are superimposed on the model.

For missions that go beyond the Earth’s magnetosphere, a value of 40 nT in an arbitrary direction is an
appropriate upper-bound characterisation of the interplanetary magnetic field at about 1 AU for missions
performed beyond the Earth’s magnetosphere. With increasing distance from the Sun, the influence of
Earth’s magnetic field weakens.

The mathematical model of Earth’s geomagnetic field is given by Wertz [12]:

BEarth = R3
EarthH0

~r3 [3 (m̂north · r̂) r̂ − m̂north] (3.3.18)

where

R3
EarthH0 [Tm3] represents the strength of the geomagnetic moment.

~r3 [m]: is the position of the satellite in ECEF reference frame.
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m̂north: is the normal vector representing the position of the north geomagnetic pole (which is
updated by IAGA (International Association of Geomagnetism and Aeronomy) every 5 years [33]).

REarth [m]: denotes the mean Radius of Earth.

H0 =
√

(g0
1)2 + (g1

2)2 + (h1
1)2 (3.3.19)

where gmn and hmn are called Gauss coefficients which are functions of time and are conventionally given
in units of nano-Tesla [nT]. and the most recent values found in [33] are:

g0
1 = −29442 · 10−9 T
g1

1 = −1501 · 10−9 T
h1

1 = 4797.1 · 10−9 T
(3.3.20)

Subsequently, the average geomagnetic moment is calculated using the preceding values in equation

R3
EarthH0 = 7.7238 · 1015 T ·m3 (3.3.21)

The interaction between the Earth’s magnetic field and any other magnetic field created inside the
satellite produces the magnetic disturbance torque. Eddy currents, hysteresis, and the magnetic dipole
of the satellite’s structure are the three fundamental processes that lead to the formation of magnetic
torques. However, the torque generated by Eddy currents is insignificant in magnitude when compared
to the torque generated by the CubeSat’s internal structure [32].

The instantaneous magnetic disturbance torque ~τm is the vector cross-product of the spacecraft effective
dipole moment ~M and the local magnetic induction or flux density ~B:

~τm = ~Msat × ~BEarth (3.3.22)

where

MEarth [Am2]: satellite’s local magnetic induction.
~BEarth [Wb/m2] or [T]: Earth’s magnetic field.

The maximum magnetic torque occurs in a polar orbit (when the inclination is 90 ◦). Therefore, expression
(3.3.18) can be simplified as,

BEarth,max = 2 ·R3
EarthH0
~R3

Orbit
(3.3.23)

For values of
R3

EarthH0 = 7.7238 · 1015 T ·m3

REarth = 6371.0000 km

h = 400 km

ROrbit = 6771.0000 km

(3.3.24)

and (3.3.22) can be reduced to
τm,max = Msat ·BEarth (3.3.25)

This way, replacing the above values into equation (3.3.23) As for the moment there is no data available
for PLATHON’s CubeSat, the magnetic moment shall be as:

~Msat =
[

1√
3

1√
3

1√
3

]T
Am2 =⇒ Msat = 1 Am2 (3.3.26)
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Thus, the maximum torque due to the geomagnetic field is

τm,max = Msat ·
2 ·R3

EarthH0
~R3

Orbit
= 1 · 2 · 7.7238 · 1015

(6771 · 103)3 = 4.9763 · 10−5 Nm (3.3.27)

3.3.4 Solar radiation pressure

Radiation incident on a spacecraft’s surface generates forces that may cause a torque about the space-
craft’s mass centre. Surface characteristics are dominant among the factors causing both the radiation
and aerodynamic torques that act on a spacecraft [34].

The direct solar illumination is the primary source of radiation force. Earth-reflected sunlight and infrared
emission from the Earth and its atmosphere are additional sources for spacecraft in Earth orbit. Asym-
metrical emission of electromagnetic energy (typically heat or radio signals) from onboard the spacecraft
should also be considered as a radiation source.

Major factors in the determination of radiation torques are

• The intensity, spectrum, and direction of the incident or emitted radiation.

• The shape of the surface and the location of the Sun face with respect to the mass centre of the
spacecraft.

• The optical properties of the surface upon which the radiation is incident or from which it is emitted.

Since solar irradiation varies as the inverse square of the distance between the spacecraft and the Sun,
for a spacecraft in near-Earth orbit, this contribution to the radiation force is essentially independent
of altitude. Because most other disturbance torques tend to diminish with increasing altitude, radiation
torque is most likely to be a significant factor in the design of spacecraft with a large surface area that
operate at orbital altitudes above about 1000 km.

NASA’s Space Vehicle Design Criteria on Radiation torques provides a good approximation of the force
from solar radiation pressure acting on an illuminated elemental area dA. The assumption is made that
all the incident radiation is partly absorbed, partly reflected diffusely, partly reflected specularly and
negligible scattering occurs.

dFSRP = ISRP

c

{
−
[
(1 + crs) cosα+ 2

3crd
]
n̂+ (1− crs) sinα ŝ

}
cosα dAinc (3.3.28)

where

ISRP [W/m2] = 1396 W/m2: is the energy per unit of time through a cross sectional unit area [34].

c [m/s] = 299792458 m/s: is the speed of light in vacuum.

crd: is the coefficient of specular diffusion.

crs: is the coefficient of diffuse reflection.

n̂: is the unit vector normal to the incident surface dAinc.

ŝ: is the unit vector perpendicular to n̂ co-planar to the incident ray.
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α [rad]: is the angle between the incident ray and n̂.

Ainc [m2]: is the incident satellite surface area.

with
0 ≤ ca + crd + crs ≤ 13 (3.3.29)

According to [35], for a solar panel the coefficient of specular diffusion and diffuse reflection are crd = 0.042
and crs = 0.168, and it is assumed for the whole spacecraft.

Analogously, the elemental torque dTSRP generated from a force dFSRP on elemental area dA is given by

dτSRP = (rdA − rcg)× dFSRP (3.3.30)

The total torque acting on the spacecraft can be computed by integrating Equation (3.3.30) over the
entire spacecraft.

τSRP =
∫
Ainc

dτSRP (3.3.31)

It is important to mention that the disturbance force generated by the albedo effect (the radiation reflected
by Earth) is not taken into account since its contribution is way more reduced.

Thus, the worst case scenario can be computed as

FSRP,j = ISRP

c

{
−
[
(1 + crs) cosα+ 2

3crd
]
n̂j + (1− crs) sinα ŝ

}
cosα dAinc,j j = ±x,±y,±z

(3.3.32)

τSRP,j =
∑

j=±x,±y,±z

(
rAj − rcg

)
× FSPR,j (3.3.33)

The incident area of a 1U CubeSat is 0.01 m2. The six faces can be accounted as one elemental area
and hence, the integral in can be replaced by the summation over the centroid of each face. With the
following assumptions,

Isr = 1396 W/m2

c = 299792458 m/s

crd = 0.042

crs = 0.168

α = 0
◦

Ainc = 0.01 m2

(3.3.34)

the solar radiation torque yields to a maximum radiation torque of

FSRP,max = 1396
299792458

{
−
[
(1 + 0.168) cos 0 + 2

30.168
]
n̂j + (1− 0.168) sin 0 ŝ

}
cos 0·0.01 = 4.3958·10−8

(3.3.35)
TSRP,max = (0.05− 0) · = 2.1979 · 10−9 Nm2 (3.3.36)

3ca is the absorption coefficient
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(a) Absorption. Source: Own. (b) Reflection. Source: Own.

(c) Diffusion. Source: Own.

Figure 3.11 Absorption, Reflection and Diffusion over a surface. Source Own.

3.3.5 Total Disturbance

The total disturbance is the sum of all disturbances in their worst-case scenario. This comprises the
worst-case scenario for all disturbance torques. As claimed by Dr. Brown [36], the satellite would be able
to produce twice as much torque as the sum of all the external torques analyzed hitherto.

Table 3.2 summarizes the calculations obtained in previous sections. These results shall be taken into
account when choosing the right motor and the design of the reaction wheel.

Table 3.2 Summary of external disturbance torques and their contribution. Source: Own.

Disturbance Torque Magnitude [Nm]

τD Aerodynamic 3.9939 · 10−7

τgg Gravity Gradient 2.3594 · 10−10

τm Geomagnetic Field 4.9763 · 10−5

τSRP Solar Radiation Pressure 2.1979 · 10−9

τ TOTAL 5.0165 · 10−5

This contribution of external torque shall be added to the control algorithm. However, the algorithm
implemented in section 7 is not considered this contribution since the CubeSat will be tested in an Air
bearing. Notwithstanding, for a future mission, these disturbance torques are highly important and
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should not be disregarded.

3.4 Rotational Dynamics

3.4.1 Moment of Inertia

In a rigid body rotating with an angular velocity ω, the angular momentum HG computed from its center
of mass [20] yields:

HG =
∫
ρ× ṙ dm =

∫
ρ× (ω × ρ) dm (3.4.1)

where

ρ: is the density of the spacecraft.

dm: is a differential of mass.

ṙ: is the velocity of the spacecraft.

The angular momentum HG can also be expressed with respect to the moment of inertia as

~H = [I]~ω →

 Hx

Hy

Hz

 =

 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 ωx

ωy

ωz

 (3.4.2)

Eventually, the components of the Inertia tensor about the center of mass are:

Ix =
∫ (
y2 + z2) dm Ixy = −

∫
xydm Ixz = −

∫
xzdm

Iyx = −
∫
yxdm Iy =

∫ (
x2 + z2)dm Iyz = −

∫
yzdm

Izx = −
∫
zxdm Izy = −

∫
zydm Iz =

∫ (
x2 + y2)dm

(3.4.3)

If ij plane is a plane of symmetry of the body, then Iij = Iji = 0. The inertia of a mass expresses:

• How the mass of a rigid body is distributed

• How the body responds to applied torques

1
12m


(
a2 + l2

)
0 0

0
(
b2 + l2

)
0

0 0
(
a2 + b2

)
 (3.4.4)

However, in the case of a uniform density cube, the above expression can be simplified as:
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Figure 3.12 Moments of inertia for ta rectangular parallelepiped. Source [20].

with d side and mass msat, the inertial matrix for a cube results as:

I = msat
d2

6

 1 0 0
0 1 0
0 0 1

 (3.4.5)

Notice that the diagonal terms are much higher than non-diagonal ones, then the homogeneous uniform
density assumption would not be correct.

3.4.2 Dynamics for Satellite Model

The subsequent section derives the dynamics and kinematics of the satellite. The description of the
dynamics will employ Newton-Euler formulation where the angular momentum changes as a function of
applied torque.

H = r × p (3.4.6)

where H is the angular momentum, r is the position and ~p = m~v is the impulse.

Thereby, developing the derivative of the angular momentum one can see that

d
dtH =

(
d
dtr × p

)
+
(
r × d

dtp
)

= (v ×mv) + (r ×ma) = r × F = τ (3.4.7)

where v × v = 0 and it is proved that
d
dtH = r × F = τ (3.4.8)

Recall that the angular momentum H can be expressed with respect to the moment of inertia tensor and
the angular velocity vector ω as

~H = [I]~ω (3.4.9)

Now, if the CubeSat is assumed to be a rigid solid that only has reaction wheels as control actuators, the
total angular momentum of the satellite in body reference Hb

sat yields,

Hb
sat = Iωbsat +HRW (3.4.10)
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where HRW is the angular momentum generated by the reaction wheels, and ωbsat is the vehicle’s angular
velocity in body reference frame.

The angular momentum generated by the reaction wheel is defined as

HRW = TRWIRWωRW (3.4.11)

where TRW is the reaction wheels distribution matrix, IRW expresses the inertia tensor of the reaction
wheel and ωRW is the angular velocity of the reaction wheel. By using Euler moment equations [20] [37].

d
dtH

b = −ωb(t)×Hb(t) + τext,dist(t) (3.4.12)

where τext,dist encompasses all the external disturbance torques calculated in the prior section.

Eventually, joining expressions (3.4.2) (3.4.11) and (3.4.12),

Ḣb =
[
dH

dt

]b
= I

dωb
dt +HRW (3.4.13)

I
dωb
dt = −ωb(t)×

(
Iωb +Hw

)
+ τext,dist(t)−HRW (3.4.14)

Since momentum exchange of the reaction wheel and the satellite is the same but in opposite direction
τsat, the above expression yields

ḢRW = −τsat (3.4.15)

Finally, the derivative of the angular velocity can be derived

dωb
dt = I−1 [−ωb(t)× (Iωb +HRW

)
+ τext,dist(t) + τsat

]
(3.4.16)

Furthermore, the calculation of the time derivative of a quaternion q in terms of the quaternion itself and
the corresponding angular rate is defined by Kuipers [24] as

q̇ = 1
2~ω
′ ⊗ q = 1

2Ω′(~ω)q (3.4.17)

q̇ = 1
2q
∗ ⊗ ~ω′ = 1

2Ξ(q)~ω′, (3.4.18)

where

Ω′(~ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 ,Ξ(q) =


q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4

 and ~ω′ =
[
~ω

0

]
=


ωx

ωy

ωz

0


(3.4.19)

Based on prior results, the equation for calculating angular rates in terms of a rotation quaternion and
its derivative is as follows:

~ω′ = 2q̇ ⊗ q∗ (3.4.20)

Similarly, Kuipers proposes the second derivative of a quaternion with respect to time [24].

q̈ = 1
2
(
~̇ω′ ⊗ q + ~ω′ ⊗ q̇

)
(3.4.21)
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Chapter 4

Reaction wheel design

The core of the thesis resides in the design of a reaction wheel that is able to be fit into the 1U Cubesat.
A major source of limitation is the size and mass specifications. A secondary aim of the design was to
broaden the current knowledge of inertia wheels integration in CubeSats and reduce its interference with
other components, as well as preserving a minimal weight and energy consumption.

Recapitulating, reaction wheels operate by accelerating an inertia wheel in one direction and thereby
forcing the satellite to rotate in the other direction by conservation of angular momentum. Three reaction
wheels can be mounted in an orthogonal system providing three-axis control of a spacecraft. However,
according to PLATHON research Group’s needs, the first approximation was to build a 1 DOF CubeSat,
thus using only 1 reaction wheel.

4.1 Theoretical basis

Oland’s [38] approach seem to be well-founded. The equations given are an accurate and comprehensive
methodology for designing a Reaction wheel. In sizing wheels, two performance quantities must always
be considered: angular momentum capacity, and torque authority.

The intended reaction wheel was designed to minimize the inertia when it begins to spin. In a few words,
the design comprises a ring along the periphery of the wheel where most of the mass is placed, which
reduces the total weight while maintaining a high level of momentum. Hence, as the size and mass are
the most limiting factors, the reaction wheel can be decomposed into

mRW,total = mRW,disk +mRW,ring (4.1.1)

The mass of the reaction wheel can be found by using the expressions for mass of a cylinder and a ring
as

mRW,total = ρπr2
RW,diskhRW,disk + ρπ

(
r2
RW,ring − r2

RW,diskhRW,ring
)

(4.1.2)

where ρ is the density of the material and r and h are the radius and height, respectively.

Since the radius and height are constrained by the dimensions of the CubeSat, the only parameter that
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seems to be left with freedom of choice is the material. However, just as the other parameters, the
material selection is also constrained by the maximum weight of the CubeSat.

The proposed design values for the reaction wheels are illustrated in the Table below (check Appendix H
for the drawing):

Table 4.1 Reaction Wheel design parameters

Part Parameter Value [mm]

Disk radius rdisk 60
Ring radius rring 80
Disk height hdisk 2.5
Ring height hRing 7.5

These values were chosen according to the restrictions made by PLATHON’s project requirements. To
start with, the ring’s maximum diameter shall not surpass 80 mm since the size of the PCB is a 9.10×
9.30 cm plate. In order to maximize inertia, the ring shall concentrate all the inertia in the reaction
wheel.

Figure 4.1 Reaction wheel CAD design. Source: Own.

Some particularities of this design are holes in the centre of the disk. These four hollow spaces were left
for operational purposes. When the ring is attached to the motor, and the motor is fixed in the PCB, if
the motor happens to be damaged during the testing phase. Then, it is very simple to replace the motor
for a new one unscrewing the fixation parts from the PCB (see Figures 6.6 and 6.8).

The weights of the other components can be added up to be 1 kg approximately (considering the worst-
case scenario).
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First, the hollow part of the reaction wheel shall be calculated. This can be approximated as the difference
between an outer circle and the inner circle.

rhollow = router,hollow − rinner,hollow = 20− 7.5 = 12.5 mm (4.1.3)

There are many materials that are suitable for the reaction wheel. The table below shows the main
properties and differences between each (see Table 4.2).

ABS [39] PLA [39] Aluminium [40] Iron [41]

Density [g/cm3] 1.04 1.24 2.70 7.87
Ultimate Strength [GPa] 0.04 0.065 68.3 212
Young’s Modulus [GPa] 1.1-2.9 3.5 70.3 204
Maximum Service
Temperature

[◦] 98 52 127 267

Melting point [◦] 105 88-128 450 1532
Coefficient of
Thermal Expansion

[K−1] 73.8 · 10−6 41 · 10−6 16 · 10−6 12 · 10−6

Thermal
Conductivity

[W/mK] 0.15 0.13 205 70

Other characteristics Impact and
heat resistant

High
durability

Light and
good conductor

High density and
good conductor

Table 4.2 Different materials properties. Source: Various [39] [40] [41] [42] [43] [44] [45].

The material selected must have high density values so the flywheel’s momentum can beat the whole
satellites’ momentum. The only material available in the laboratory was either to use PLA or ABS
with additive manufacturing. PLA was chosen as the material for the reaction wheel since it has higher
density ρ of 1.24 g/cm3. In the future, for a 3DOF control, the CubeSat won’t have enough space to fit
the designed reaction wheels. Hence, other materials such as aluminium or iron should be considered to
reduce volume.

The mass of the hollow is then,

mhollow = ρπr2
hollow · 0.0025 = 1240 · π · 0.0125 = 1.522 · 10−3 kg (4.1.4)

Thus, the mass of the disk then can be calculated as:

mRW,disk = ρπr2
RW,diskhRW,disk −mhollow = 1240 · π · 0.06 · 0.0025− 1.522 · 10−3 = 0.0335 kg (4.1.5)

Now, the ring’s mass yields,

mRW,ring = ρπ
(
r2
RW,ring − r2

RW,diskhRW,ring
)

= 1240 · π
(
0.082 − 0.062) · 0.0075 = 0.0818 kg (4.1.6)

Finally, recovering expression (4.1.1), maximum weight of a single reaction wheel is found,

mRW,total = mRW,disk +mRW,ring = 0.1153 kg (4.1.7)

The inertial momentum of the disk is given by the following equation:

IRW,disk = mRW,disk r
2
disk

2 = 0.0335 · 0.062

2 = 6.03 · 10−5 kg ·m2 (4.1.8)
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The inertial momentum of the ring is given by the following equation:

IRW,ring =
mRW,ring r

2
ring

2 = 0.0818 · (0.082 + 0.062)
2 = 4.09 · 10−4 kg ·m2 (4.1.9)

Finally, with the known design parameters, the inertial momentum of the reaction wheel can be deduced:

IRW = Idisk + Iring = 4.693 · 10−4 kg ·m2 (4.1.10)

Since the motor used is the RF-300EA-1D390 which achieves an angular velocity of 3250 rpm, the
maximum angular momentum this reaction wheel can achieve is deduced by the following expression (see
Chapter 3.4.2):

HRW = ωmotor · IRW = 3520 · 2π
60 · 4.693 · 10−4 = 0.173 N ·m (4.1.11)

Then, the maximum torque generated by the reaction wheel is found as (3.4.15) (without considering
external disturbance torques):

HRW = ωmotor · IRW (4.1.12)

which means that the torque (i.e. the time derivative of the angular momentum) is

τRW = dI
dt ω + IRW

dωRW

dt (4.1.13)

Because the moment of inertia of a cylinder is 1
2mr

2, it follows that

dHRW

dt = mRW · rring · vRW + IRW
dωRW

dt (4.1.14)

which reduces to

τRW = mRW · rring · vRW + IRW · α = 0.1153 · 0.08 · 29.49 + 0 = 0.2720 N ·m (4.1.15)

considering the Cubesat is in stationary phase (no angular acceleration α = 0) and vRW = ωRWrring =
29.49 m/s

The total angular rotation θrot produced by a reaction wheel within a given time

trotation = 2 · Imaxθrotation

hmax
(4.1.16)

This is,

Table 4.3 Angular rotation produced the reaction wheel. Source: Own.

Rotation angle θrotation [◦] Time of rotation trotation [s]

90 0.31
180 0.62
270 0.93
360 1.24

Later in Section 8, we’ll see the results differ from these times since the motor has a transient phase
before reaching the maximum rotation speed of 3520 rpm.
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Another remark shall be noticed in the design of the Reaction Wheel design. Take a look of Figure 4.2.
Notice there is a lateral hole. This lateral hole was added for a highly important issue. Whenever a
piece is manufactured using additive manufacturing techniques, the final result not always is perfect and
probably there might be some imperfections, i.e., leftover support material or leftover material inside drill
holes. These imperfections are undesired since they will make the reaction wheel’s axis to be shifted from
the principal z-axis of the CubeSat’s principal axis, hence, ending up with a motion lead by precession
phenomena.

Figure 4.2 Reaction Wheel lateral hole. Source: Own.

The final printed pieces are shown in Figure 4.3,

Figure 4.3 3D printed pieces (Reaction wheel and supports). Source: Own.
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Chapter 5

Attitude Determination and Control
Subsystem

This chapter will revise all the different components that the ADCS board will have as well as showing
the assembly process of each component.

5.1 Electrical Components

5.1.1 Microcontroller

Before diving into the different hardware available, the first thing one must choose is a MicroCon-
troller Unit. A MicroController Unit (or MCU) is a compact integrated circuit designed to govern a
specific operation in an embedded system. A typical microcontroller includes a processor, memory and
input/output (I/O) peripherals on a single chip [46].

In simple terms, a microcontroller is similar to a computer. The difference is that a computer can perform
several tasks at the same time, whereas a microcontroller, on the other hand, is typically dedicated to
a single task. However, taking a deeper look at the basic components that make both the PC and a
microcontroller it can be seen they share many similarities.

The fundamental components of a microcontroller are [47]:

• Central Processing Unit (or CPU): The CPU is the “brain” of the computer or microcontroller
and is in charge of controlling everything that the computer or the microcontroller does. In other
terms, the CPU is a microprocessor with a series of associated circuitry that controls the computer’s
software programs. The CPU extracts each program instruction from memory and executes that
instruction. After completing the next instruction, the CPU moves on to the next and in most
cases, it can operate on more than one instruction at the same time (depending on the number of
cores and threads). This extraction and execution are repeated until all instructions are carried

49



CHAPTER 5. ATTITUDE DETERMINATION AND CONTROL SUBSYSTEM

out.

• System Clock Speed: An essential component of any computer is its clock, this system controls
the speed of the different operations the CPU handles. A microcontroller also has a system clock
based on an oscillator. This is one of the essential features to consider when building projects.
The oscillator’s speed will determine how fast the microcontroller will run which can impact the
resolution of the response or power consumption. Clock speed is measured in Hz.

• Memory: A microcontroller also has a memory, just like a PC has a hard drive (ROM) or RAM.
The memory allows the microcontroller to store information so it can be used at a later time.
Besides, just like a PC, a microcontroller’s memory allows it to store programs to perform specific
tasks. Memory capacity is measured in bytes (i.e. MB).

• Peripherals: These items are used to have bidirectional communication with the microcontroller.
A mouse, keyboard or any sensor module are used to input information. For instance, a monitor ca
the output of the system. Peripherals on a microcontroller are usually associated with a particular
pin on a package.

The most common peripheral interfaces for microprocessors are USB, High-Speed Internet or UART.
However, a microcontroller uses interfaces such as I2C, SPI or UART.

Apart from the above, there are other supporting elements a microcontroller usually includes [46] [47]
such as:

• Analog to Digital Converter (ADC): An ADC is a circuit that converts analogue signals to
digital signals. This device allows the processor at the centre of the microcontroller to interface
with external analogue devices, such as sensors. In other words, an ADC performs a conversion
from analogue (continuous, infinitely variable) signals to digital (discrete-time, discrete-amplitude)
signals. It does this by mapping the continuous set of values to a smaller (countable) set of values
by rounding or interpolating. Thus, this conversion will always involve some noise.

• Digital to Analog Converter (DAC): A DAC performs the inverse function of an ADC and
allows the processor at the centre of the microcontroller to communicate its outgoing signals to
external analogue components.

• System bus: The system bus is the connective wire that links all components of the microcontroller
together where data is sent and received.

• Serial port: The serial port is one example of an I/O port that allows the microcontroller to
connect to external components. Data travels through the serial port.

There is a common misconception between microprocessors and microcontrollers. Briefly, microcontrollers
can be said to function on their own, with a direct connection to sensors and actuators and incorporating
RAM and ROM memories as well as the CPU in a single place. Whereas microprocessors are designed
to maximise the compute power on the chip with internal bus connections to support hardware such as
RAM and serial ports (rather than direct I/O) [46].
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Parameters Microprocessors Microcontrollers

Storage Hard Disk
(128 GB to up to 2 TB)

Flash memory
(32 kB up to 2 MB)

Internal
Structure

Memory and I/O devices
connected externally

CPU, memory and IO devices
connected internally

Clock
Speed

High clock speed
(1 GHz to 4 GHz)

Lower clock speed
(1 MHz up to 300 MHz)

Memory
(RAM)

512 MB to 32 GB 2 kB up to 256 kB

Power
Consumption

High Low

Cost High Low
Bit
Size

It is available in 32-Bit
and 64-bit.

It is available in 8-bit,
16-bit, and 36-bit.

Peripheral
Interfaces

USB, High Speed Internet,
UART, etc.

I2C, SPI, UART, etc.

Applications Gaming, web browsing,
document writing, etc.

Specific tasks
(i.e. camera, washing machine, etc.)

Table 5.1 Comparison between Microprocessors and Microcontrollers.
Source: Components101 [48].

There are different microcontrollers and microprocessors in the market. The most famous ones are the
Raspberry Pi microprocessor, Arduino microcontroller and STM32 microcontroller. These devices are
widely used for different purposes.

(a) Arduino Nano. Source: [49]. (b) Raspberry Pi. Source: [50]. (c) STM32 Bluepill. Source: [51].

Figure 5.1 Microcontrollers and Microprocessors. Source: Arduino [49],
Raspberry Pi [50], STM32 [51].

When selecting the microcontroller for the project, several aspects were taken into account. First and
foremost, the microprocessor must fit into a PCB and leave room for other components. Even though
the Raspberry Pi is by far the most powerful option, the size and weight of both the Arduino Nano and
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Bluepill are most suitable for the CubeSat. Therefore, the comparison was restricted to these two boards.

The Arduino Nano is one of the most popular microcontrollers on the market. It offers a large amount
of flexibility and purposes. Since this is from Arduino’s family, it uses the Arduino IDE, one of the
comprehensive open-source interfaces for microcontroller programming. The built-in microprocessor is
the ATmega328, which is highly powerful for the initial phase of the project (see Appendix B for more
detailed information).

Conversely, on the other hand, the Bluepill microcontroller shares a similar dimension to the Arduino
Nano board. This microcontroller, though, has a slightly bigger dimension than the Arduino Nano
board but offers faster clock speed numbers, RAM and flash memory. Since ST-Microelectronics is the
manufacturer of this board it uses its own interface. Nevertheless, this board can be programmed to work
with the Arduino IDE using an ST-Link device and a custom library (see Appendix B).

While the Arduino is powered via 5 V, thus, it will need a logic level converter to convert the 3.3 V to
5 V and vice-versa to work with the motor driver as this latter one functions with 3.3 V.

Besides, it is important to highlight the usage of the pins. Since the board will be connected to multiple
devices at the same time it must ensure to have a sufficient amount of pins to manage the communication
with the On-Board Computer and also the actuators. Later, in section 5.1.3 it is shown how the drivers
use I2C protocols and also the communication with the OBC. To avoid disturbances and perturbations,
it is highly recommended to use different channels for communication and actuators. As seen in Figure
B.2, there are multiple I2C pins with different channels. In the case of the Inertial Measurement Unit,
while the MPU9250 can make use of the SPI protocol and I2C, the BNO055 is limited to work only with
I2C.

Finally, balancing the advantages and disadvantages of both boards, the STM32 Bluepill (see Figure 5.1
(c)). microcontroller suits best for the needs of the project. It has more communication pins as well as
faster clock speed, namely, faster computing speeds. This microcontroller has been programmed using
Arduino IDE with ST-Link device (check Appendix B to see how it has been programmed.)

Table 5.2 Comparison between Arduino and Bluepill. Source: Arduino and Bluepill [49] [51]

.

Arduino Nano Bluepill

Manufacturer Arduino ST-Microelectronics
Microcontroller ATmega328 STM32F103C8T6

Clock Speed 16 MHz 32 MHz(72MHzmax)
Flash Memory 32 kB 64 kB

SRAM 2 kB 20kB
Operating Voltage 5V 3.3 V

Analog IN Pins 8 10
Digital I/O Pins 22 (6 have pwm 29 (10 have pwm)

I2C buses 1 2 + 1 (I2C2)
SPI buses 1 3

Size 18× 45 mm 23× 53mm
Weight 7g 20 g
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5.1.2 Inertial Measurement Unit

An Inertial Measurement Unit is a device in charge of obtaining the attitude data for the ADCS. As
shown in section 2.2.2, several devices are used to retrieve the attitude data. Moreover, these devices
are selected depending on the needs in each situation and missions usually holds more than one attitude
determination instrument for precision purposes.

The IMU is perhaps the core of the ADCS subsystem. It contains sensors such as accelerometers,
magnetometers, gyroscopes and even thermometers. To increase the reliable output movement, IMUs
collects data from numerous distinct sensor:

• Accelerometer: A device that monitors velocity and acceleration.

• Gyroscope: determines rotation and rotational rate.

• Magnetometer: identifies cardinal directions (directional heading).

However, despite the corrections and all the sensors, IMU’s have a majors disadvantage that has to be
taken into account. The main downside of an IMU is that it is prone to error accumulation over time,
which is also known as often known as “drift” (check tests in Section 8). This happens because the
IMU is continually monitoring changes relative to itself (rather than triangulating against an absolute or
known outside device), it continuously rounds off tiny fractions in its computations, which add up over
time. If left unaddressed, these minor inaccuracies might compound up to large mistakes. To address
this problem, one way of solving it is to use other attitude instruments as a complement to constantly
correct the tiny errors that may appear.

Two different IMUs were studied for PLATHON’s project, these two IMUs are: the BNO055 and the GY-
9250 module which incorporates the sensor MPU9250. To analyze them, magnetorquer’s team studied
MPU9250 while the reaction wheels team performed an analysis with BNO05.

(a) GY-9250 module with MPU-9250 sensor.
Source: Components101 [52].

(b) BNO055 module sensor. Source: Adafruit
[53].

Figure 5.2 Inertial Measurement Units. Source: [52] [53].

The first IMU, BNO055 from Adafruit was selected for the capabilities it provided. This sensor has
9-DOF and offers a fusion technique that combines accelerometer, magnetometer, and gyroscope data
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to provide consistent three-axis orientation output. By combining a Micro Electrical-Mechanical System
(MEMS) accelerometer, magnetometer, and gyroscope on a single built-in die with a high-speed ARM
Cortex-M0 processor to process all sensor data, the abstraction of the information in quaternions, Euler
angles or vectors are just extremely fast and accurate. One small downside of the BNO055 relies upon
the fact it only operates with I2C communication protocols, which later in the project will the reason to
shift to an alternative IMU that has SPI interface.

As the project moved on, the team found that there was a crucial problem with respect to the drivers
and microcontroller. To summarize, the problem was due to the coupling of channels on the I2C address
of the IMU and the drivers. Several tests were done to find out where the problem resided. In the end,
the team opted for another IMU with SPI interface.

The second tested IMU was the GY-9250 module. Similar to the prior one, the MPU9250 sensor has
9-DOF and both SPI and I2C protocols. Just as the BNO055, this IMU has a built-in Digital Motion
Processor (DMP) which makes the IMU able to make calculations and corrections and the measurements
instantaneously (check Appendix C for details).

5.1.3 Motor Driver

The Cubesats need to generate rotational inertial to orientate in space. As seen before, one way of doing
such control is using reaction wheels. Nevertheless, reactions wheels alone are just a mass with a certain
amount of inertia and thus, it does not have the capacity of generating a moment of inertia. To do so, it
is needed a motor driver.

A motor driver is a device that is used to control the power and therefore, the velocity of a motor.
The principle behind a motor driver can be simplified as a device that turns a low current signal into
a high signal for driving the motor. The main reason why is that motors cannot be connected directly
to a microcontroller pin is that they do not provide sufficient power from those pins. For instance, an
Arduino nano standard 3.3 V or 5, 5 V pin can output only a maximum of 50 mA of current [54] which is
insufficient for most of the motors that are used in different applications, especially, on startup and stall
currents. Hence, the main goal is to drive that larger load from the small signal of the microcontroller
and amplify that to be able to control a much larger load. The motor driver acts like a gateway where it
accepts this small input and can control larger loads using a special type of transistors called MOSFET
(Metal–Oxide Silicon Transistor). The MOSFET transistor acts as a switch, when a current is applied
onto the base connector, the transistor lets the current flow through it. In fact, MOSFETs are usually
integrated within the motor driver.

It’s important to remark that when referring to motor drivers, the motor itself must be taken into account.
A brushed DC motor does not require any control or timing whereas servo motors require a specific type
of signal to operate correctly [55].

The correct way of controlling a motor is to connect the motor driver to the motor first and then supply
power to the motors using an external battery through the motor driver. Besides, the most common form
of speed control systems is the H-bridge.

As a brushed motor always rotates in one direction, it is mandatory to provide the motor with the ability
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to rotate both in a clockwise direction and counterclockwise direction. Precisely, an H-bridge system
configuration permits the motor to rotate in either direction. The motor driver selected for this project
uses this configuration (see Figure 5.3).

Figure 5.3 H-bridge configuration schematic. Source: Core Electronics [55]

The electrical schematic (Figure 5.3) shows an H-bridge with two pairs of MOSFETs to control the flow
of the electrical current through the motors. Consequently, switching on and off a specific combination
of MOSFETs will permit the rotor to rotate in the desired direction. Notice how two pairs of diodes are
added as well, these diodes restricts the flow in a certain direction and are commonly added for safety
issues to protect against transient current and voltages produced by the motor as it turns. Depending
on the application, the H-bridge can have another set of variants with more components. In the Figure
above, the additional resistors were left out to make it easier to understand.

(a) H-bridge configuration schematic in
clockwise direction. Source: Core Electronics [55]

(b) H-bridge configuration schematic for counterclock-
wise direction. Source: Core Electronics [55]

Figure 5.4 H-bridge clockwise and counter clockwise rotation direction.
Source: Core Electronics [55]

Let’s look at Figures 5.4a and 5.4b, the motor is placed in the middle and the flows of the current through
the motor takes one way or other depending on the MOSFETs. In the first state, the motor’s positive
potential is located on his right side and the lower potential is located on the left side. On the other hand,
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the second scenario depicts the same flow but has interchanged the positive and negative connectors.

There is another configuration that is useful if the user desires the motor to stop rotating. Despite
turning off the motor from the power, there is a remaining momentum of the rotor that prevents it to
stop immediately. so it will gradually come to a complete stop. Thus, to perform a complete stop and
set the rotor in a static position it is needed to brake the rotor. By applying an equal voltage to both
sides of the rotor it will make sure the rotor stops its motion instantly.

(a) Real-time Python visualization. Source:
Core Electronics [55].

(b) Real-time Python visualization. Source:
Core Electronics [55].

Figure 5.5 Braking configuration (left) and incorrect use-case configuration
(right). Source: Core Electronics [55]

One important use-case that should be avoided at all times is shown in Figure 5.5b which will generate a
direct path from voltage supply to ground. Not only this will shortcircuit out the circuit but also damage
other peripherals connected to it. The same reasoning applies to the other side.

The driver that was chosen for the project was the SparkFun Qwiic Rob-15451 motor driver [56] which
has an H-bridge configuration and suits the requirements of the project with its dimensions, weights and
the communication protocol it has which can be either I2C or SPI.
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Figure 5.6 SparkFun Qwiic Motor driver ROB 15451. Source: SparkFun
[57].

The Sparkfun Qwiic motor driver will use I2C communication protocol which translates to a fast, simple,
high speed and cost-effective protocol for communication [58]. Furthermore, taking into account the PCB
that must be less than 10 × 10 cm, its size (2.5 × 2.5 cm) and weight fits perfectly in the PCB with all
the other components. It allows using two I2C connections via two ports at the sides simultaneously,
meaning that various drivers can be connected one to another in the same I2C buses. Each driver can
connect 2 devices, which translates that for a full 3-axis control of a CubeSat, it would be needed 4 drivers
(3 magnetorquers and 3 reaction wheels). The driver’s address can be changed by changing a pin (see
Appendix G). The output voltage ranges from 3 to 11 V, and powered at 3.3 V. The size of these drivers
is relatively small, measuring 1× 1 in (25.4× 24.5 mm) which gives more versatility, reduces weight and
space.

As regards the connection of the motor to the driver, the motor will be connected directly to the two
outputs it has. On the other hand, the control signal will be connected to a Qwiic connector located on
the side, so no soldering is required to connect it to the rest of the system. The Qwiic connector part
of the Sparkfun ecosystem and gathers the needed pins for both I2C and SPI protocols. As shown later,
this reduces the amount of required PCB space.

Among other properties it has, it is notable that this motor driver supports 1.2 A of steady-state drive
per channel with 1.5 A peak. Since the driver is a 3.3 V logic device, is compulsory to use a logic level
converter to interface to 5 V. Also, the I2C address of the Qwiic Motor Driver is default to 0x5D, however,
the address can effortlessly be changed with its jumper to another address (please refer to Appendix G
for more information about the documentation of the motor and the connections).

5.1.4 Motor

The motor is the fundamental piece for the project. The motor has to be able to generate a sufficient
amount of torque to rotate the entire CubeSat and also offset the external disturbance torques.
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The motor selection must agree with the type of driver it has to function with. There are two types of
motors in the market: Brushed DC motors (BDC) and Brushless DC motor (BLDC):

• Brushed DC motor: The armature of a brushed DC motor is a structure of coiled wire coils
that acts as a two-pole electromagnet. The commutator, a mechanical rotary switch, reverses the
directionality of the current twice every cycle. As a result, the electromagnet’s poles pull and push
against the permanent magnets along the exterior of the motor, allowing current to flow through
the armature. The commutator then switches the polarity of the electromagnet in the armature as
its poles cross the poles of the permanent magnets.

• Brushless DC motor: This type of motors, by contrast, has a permanent magnet as its exterior
rotor. Furthermore, it employs three stages of driving coils as well as a specific sensor that measures
rotor position. The sensor delivers reference signals to the controller as it tracks the rotor position.
In turn, the controller systematically activates the coils - one phase after the other.

Overall, both types of motors have their advantages and disadvantages. The advantages of the brushed
motors are that they are more economic, simple and uses inexpensive controllers whereas the major
downside is that they are usually less efficient than brushless motors as constant switching action with
the commutators creates electromagnetic noise and they wear out due to the perpetual physical contact
with the shaft. However, in accordance with the requirements set for this project, a BDC motor is
sufficient. In the next generation of the project, a BLDC will be used.

Considerations and priority on the motor research:

• Cost. The primary goal of the CubeSat is to be as economic as possible, so the cost motor shall
be reduced.

• Efficiency / Low consumption: Low consumption is essential in space missions. When in standby
mode, the motor’s consumption must be as reduced as possible. This translates into better perfor-
mance and saves energy in case of occlusion.

• Dimensions. The sizing of the motor is a key factor. Although the vast types of CubeSats, the
motor has to be as flat as possible and compact. The motor must leave enough space for other
components in the PCB.

• Great torque. The torque this motor must supply shall be enough to rotate the entire CubeSat
when loaded with all the components.

• Lifespan. For space missions, the lifespan of a CubeSat is rather small. However, the motor needs
to be fully operative during the time of the mission and even more than the missions lifespan.
Thereby, it shall not require any maintenance.

• Great range of velocities. This one has to be fulfilled otherwise it would limit CubeSat’s rotation.
The faster it spins, the less time it spends on manoeuvres, but it will more energy consumption in
a shorter period of time. It shall have notorious responses and the intention is to reduce the control
time. A greater range of velocities leaves more margin of manoeuvrability.

Two motors were analysed for the project, the first one is the Mabuchi RF-500TB-14415 and the second
motor is the Mabuchi RF-300EA-1D390. The RF-500TB-14415 was studied during the initial state of
the project.
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The Mabuchi RF-500TB-14415 [59] was bigger in size with a diameter of ∅ 32 × 19.5 mm and a mass
of 45 g. Its maximum efficiency is around 55% depending on the torque, which is expected for brushed
motors. In terms of speed, it is able to rotate at incredibly high revolutions per minute, achieving a
maximum of 3100 rpm without loads. Although this motor had a great amount of torque, its size was
far larger than the limits of the PCB, which restricted the amount of maximum diameter available for
the motor.

Figure 5.7 Mabuchi RF-500TB-14415 (left) vs Mabuchi RF-300EA-1D390
(right). Source: Own.

Next motor analysed was the Mabuchi RF-300EA-1D390 [60]. This second motor solves the size problem
of the prior motor and possesses high speeds up to 4400 rpm with lower nominal voltage consumption of
3.9 V rather than 5 V. However, due to the smaller size restriction, the amount of torque it can generate
also is affected and reduced to 0.47 mN ·m. The size of this motor is ∅ 24× 12.8 mm and only 22 g of
mass, half the mass of the prior one. As regards the performance, the efficiency remains practically the
same at around 52%. Eventually, as the bench tests demonstrated great results, this motor was selected
to work with the driver.
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Table 5.3 Characteristics of the two motors analyzed for the project. Source: Mabuchi [59] [60].

RF-500TB-14415 RF-300EA-1D390

Voltage Range 1.5− 9.0 V 2.8− 7.0 V
Nominal Voltage 5 V 3.9V
No Load Speed 3100 rpm 4400 rpm

No Load Current 26 mA 21 mA
Maximum Efficiency 55.0% 52.5%
Max Efficiency Speed 2540rpm 3100rpm

Max Efficiency Current 120 mA 84 mA
Max Efficiency Torque 1.23 mN ·m 0.47 mN ·m

Stall Torque 6.86 mN ·m 2.35 mN ·m
Stall Current 54 mA 34 mA

Size ∅ 32× 19.5mm ∅ 24.4× 12.8 mm
Weight 45 g 22 g

Hence, the Mabuchi RF-300EA-1D390 was selected for driving up the reaction wheel. In section 5.2.3 is
explained how to connect the motor to the microcontrollers.

5.1.5 Logic Level Converter

Most devices are designed to be powered at 5 V. Albeit, the newest components use the newest standards
(5 V). The main advantage of it is that as the voltage is higher, noise susceptibility will be significantly
lower since higher noise levels are needed to disturb the 5 V. The major downside is power consumption.
See Appendix D).

The bi-directional logic level converter is a small device that securely levels down 5V signals to 3.3 V
while simultaneously stepping up 3.3 V to 5 V which allows you to adapt the SPI, I2C, UART or any
digital signal. The board needs to be powered by the two voltages to be converted and only works with
digital signals (high and low levels). This model does NOT work with analogue signals.

Figure 5.8 Logic level converter. Source: Naylamp Mechatronics SAC [61].
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Figure 5.9 Logic level converter schematic. Source: Naylamp Mechatronics
SAC [61].

Despite Arduino Nano operates with 5 V supply, the Bluepill still operates with a 3.3 V supply. When
connecting the STM32 Bluepill via USB, the USB outputs 5 V voltage. One could ask how is it possible
for the STM32 Bluepill to output a 5 V supply, this is due to the fact that it has an internal logic level
converter that controls the entire microcontroller.

5.1.6 Bluetooth Module

The next step is to establish wireless communication. Thus, this will be extremely useful for sending
data without the need of a physical wire connection to the OBC as the final step is to test it on an air
bearing and send it to outer space.

The fundamental advantage of satellite communication is that it gives communication services to any
location on the planet. Besides, satellites are not affected by distance. Nonetheless, the following issues
are related to satellites.

There are several methods for accomplishing wireless communication for testing purposes in the ground
station, such as WiFi (Wireless Fidelity), IR (Infrared), microwave or mobile communications such as
4G or 5G. However, the design of the communication using high band antennas is out of the scope of
this project. Furthermore, there are many problems related to satellite communication, including high
propagation delays, poor bandwidths compared to terrestrial media, and noise due to the effect of rain
and atmospheric disturbances.

Instead, to get wireless communication working, the team has decided to take advantage of Bluetooth
communication, since wireless communication was a requirement of the project. The Bluetooth module
HC-06 from DSD Tech will be used for telemetry and telecommunication.

The HC-06 module allows any Bluetooth device, such as a computer or a smartphone, to connect wirelessly
to the Arduino Nano or the STM32 Bluepill. It has a 3.3 V supply voltage, though it is usually equipped
with a regulator that allows for a supply voltage of 3.6 to 6 V.
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The Bluetooth module HC-06 has 4 pins, 2 for power and 2 to establish a connection. Project PLATHON’s
PCB is designed to work with either the HC-06 or an HC-05. The only difference between both modules
is that the HC-05 can be used as a slave module (equivalent to HC-06) and as a master module which
means that it can pair itself to another device on its own. Due to this fact, the HC-05 have 2 more pins,
one that enters to configuration mode and the other one to connection state (check Appendix E for a
detailed data-sheet and configuration).

The communication protocol of the HC-06 is UART (Universal Asynchronous Receiver/Transmitter)
which uses an asynchronous serial transmission at a variable speed. This means that unlike I2C for SPI,
there is no clock signal to synchronize the transmitting device’s output bits to the receiving end.

In Bluetooth communications, there are two types of roles: host and slave. This module is a slave, which
means it waits for the host to issue the two execute command. The host, on the other hand, selects the
slave with whom it wishes to communicate. Finally, the host/slave, which can play both roles depending
on its configuration in the code, combines these two roles.

The module is factory setup as a “Slave” device. However, using an HC-05 which the same as the HC-06
but with the added ability to act as a master as well. Since the laboratory have both of them, the PCB
was designed to support both devices as they share the same pins.

5.2 ADCS board assembly

Once reviewed all the electrical components, the following section intends to show how to connect every
component to the microcontroller and prepare it for testing both the hardware and control software before
assembling all the pieces into a custom PCB as well as the code for its correct setup and configuration.

As explained in prior sections, the microcontroller used for this part is the Bluepill, however, several
tests were performed using the Arduino board. A lot of component and code testing was done during
the initial stage of the project. There are two ADCS teams (Reaction wheels team and Magnetorquer
team) within the ADCS Subsystem. Both teams analysed different components and once the component
testing phase was settled, the global team decided which component to use. Figure 5.10 presents the
diagram of all the components the ADCS board must have and the communication protocols.
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Motor DriverMotor Driver
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Figure 5.10 ADCS Board diagram. Source: Own.

5.2.1 The Inertial Measurement Unit

BNO055 IMU assembly

At the initial stage, the IMU tested was the BNO055 from Adafruit. This IMU was first considered
since the characteristics of the Arduino board and the rest of the components have not been dealt with
in-depth yet. Figure J.1 and L.1 shows the Arduino board and the BNO055 IMU.
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Figure 5.11 Schematic of the BNO055 and the Arduino Nano connections.
Source: Own.

As for the connections, the BNO055 uses I2C communication protocol and A4 and A5 pins of the Arduino
board supports this communication. The synchronization and data transmission are in separate pins,
where SDA is the line for the master and slave to send and receive data and SCL refers to the serial clock
port that carries the clock signal.

Table 5.4 Arduino Nano and BNO055 IMU connections. Source: Own.

Arduino Nano BNO055 IMU

5 V Vin
GND GND
A4 SDA
A5 SCL

I2C, like SPI, is synchronous, which means that the output of bits is synced to the sampling of bits by a
clock signal shared by the master and slave. The master is always in charge of the clock signal.

Firstly, the IMU must be calibrated and configured (see Appendix L). Once the IMU is configured and
calibrated, the next step is to get all the raw data from all the sensors, namely, accelerations in all three
axes (accelerometer), magnetic field measurements in all three axes (magnetometer) and angular velocity
(gyroscope). Note that these measurements are in the satellites body reference frame (see 3.2.1).
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After this, one can proceed to calculate the Euler angles from the raw data of the sensors. Nevertheless,
the IMU itself has also a built-in Digital Motion Processor (DMP) which can provide the Euler angles
and even quaternions directly without any computation. The complete code for this test is detailed later
in Section 8.

MPU9250 IMU assembly

The connections for the MPU9250 follows the same procedure, however, this time, an SPI communication
protocol has been chosen since it is able to transfer data at faster rates. However, it is also possible to use
the I2C protocol. In this case, the MPU is connected via the 3.3 V. The data transfer and synchronization
are done by SPI serial data ports where MOSI and MISO are the pins for sending and receiving data,
SS enables the transmission data transmission circuit, SCK serves as the serial clock and finally, FSYNC
is the pin for digital input frame synchronization. Below is shown the schematic and connections of the
Arduino board and the MPU9250.

Figure 5.12 Schematic of the MPU9250 and the Arduino Nano connections.
Source: Own.

The connections are summarized in the table below 5.5:
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Table 5.5 Arduino Nano and MPU9250 connections. Source: Own.

Arduino Nano BNO055 IMU

3.3 V VCC
GND GND

D10 (SS) NCS
D11 (MOSI) SDA
D12 (MISO) AD0
D13 (SCK) SCL

FSYNC (SS) GND

Analogously, the microcontroller used at the end of the project was the STM32 Bluepill. The connections
remain the same but the pins for the data transmission protocol are different.

Figure 5.13 Schematic of the MPU9250 and the STM32 Bluepill
connections. Source: Own.

Eventually, the pin connections is outlined in the table below 5.6:
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Table 5.6 Arduino Nano and MPU9250 connections. Source: Own.

STM32 Bluepill BNO055 IMU

3.3 V VCC
GND GND

A4 (SS) NCS
A5 (SCK) SCL
A6 (MISO) ADO
A7 (MOSI) SDA

FSYNC GND

5.2.2 Bluetooth module assembly

Bluetooth communication technology is designed as a short-range connectivity solution for personal,
portable and handheld electronic devices such as smartphones, laptops and smartwatches [62]. This
technology supports both synchronous and asynchronous data flow transmission over links with speeds
of 1 Mb/s. It operates in the Industrial, Scientific and Medical (ISM) radio band spectrum of 2.4 GHz
utilizing low transmit power radios and Frequency-Hopping Spread-Spectrum technique (FHSS). The
FHSS is a signal modulation technique that involves that a signal generated with a particular bandwidth
is deliberately spread within the frequency band thus reducing interference and jamming and most im-
portantly, preventing detection or interception. This communication protocol functioning is illustrated
in Figure 5.14,

Figure 5.14 Frequency-Hopping Spread-Spectrum diagram. Source: Sharda
University [63].
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The HC06 Bluetooth module uses UART communication protocol, thus, the setup of this module is done
by sending AT commands (Attention Commands). AT commands mode is used to modify the Bluetooth
module’s default settings. To alter the BT device name, device role such as master or slave, the password
of the device BT module must be established in AT Command mode, and the default settings can be
changed. This configuration code can be found on E.1.

Figure 5.15 Bluetooth setup schematic with STM32 Bluepill. Source: Own.

It is important to mention that the HC06 is connected to a 5 V output pin from the Bluepill. Depending
on the manufacturer, they mention using a 3.3 V pin to supply power to the module. Hence, as regards
the Bluepill microcontroller is as simple as switching to a 3.3 V output pin. Nevertheless, when using
an Arduino Nano microcontroller, one has to implement a voltage divider since there is no 3.3 V output
pin. Even so, the one used for the project is capable of working at 5 V.

Figure J.4, schematic 5.15 and the Table 5.7 illustrate how to connect the pins with the Bluepill micro-
controller:
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Table 5.7 STM32 Bluepill and HC06 Bluetooth module connections. Source: Own.

STM32 Blue Pill HC06 Bluetooth module

3.3 V VCC
GND GND
A9 RXD
A10 TXD

To connect with the STM32, UART1 interface has been used where pins A9 (TXD) and A10 (RXD) is
connected to the Bluetooth module’s RXD and TXD pins, respectively. Once everything is set up, the
next step is to send the data from the Bluepill to any device that supports Bluetooth.

5.2.3 Motor and Motor Driver assembly

To assembly both the motor and motor driver, the diagram and schematic below present the connections
to the STM32 Bluepill (see Figures J.5 and 5.16).

The motor driver, as seen previously, has the role of powering the motor since the output pins of the
microcontroller do not have enough range of voltage to use the motor at its full operational range potential.
The testing control code can be found in G.8. For both IMU configurations (SPI and I2C) the code is
very similar as the only parameters changed are from the IMU readings.

The driver is connected to the Bluepill microcontroller via I2C port. However, Sparkfun has developed
its own pin for this type of connection, the Qwiic cable provides the needed functionalities of I2C but
reduces the space needed for a PCB assembly (check Appendix G for more details).

Diagram J.5 corresponds to 5.16 in which the IMU is connected via SPI protocol.
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Figure 5.16 Schematic of the motor driver and motor and the STM32
Bluepill connections with SPI. Source: Own.

The connections are (check Appendix G for Qwiic cable pinout):

Table 5.8 STM32 Bluepill and Qwiic motor driver. Source: Own.

STM32 Blue Pill Qwiic motor driver

3.3 V VCC
GND GND
3.3 3.3 V
B6 SDA
B7 SCL
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Other connections left of this driver is the motor, which can be connected to either A1 and A2 pins or B1
and B2 pins of the driver. This means that more than one motor can be used at the same time as well as
two possible configurations can be used depending on the distribution of the PCB. In order to change the
configurations is as simple as setting either a 0 or a 1 in the setDrive() function. The first parameter
of this function represents the peripheral, the second one is also a Boolean which represents the direction
of the rotation and the last parameter is an integer that ranges from [0, 255] which is the amount of
power given to the motor. Finally, an external battery connected to VIN and GND will provide sufficient
energy to move the respective motor. In contrast to the Arduino Nano microcontroller, where a DC-DC
converter is necessary, for the Bluepill there is no DC-DC converter since the output voltage pin 3.3 V is
the same as the necessary voltage of the driver.

To use the driver, a set of libraries must be installed which are provided by Sparkfun itself. These
libraries are SCMD.h and SCMD config.h. Next, the driver object is created. Following this step, the
I2C address is set for the communication to finally enable the driver.

Analogously, if the user wants to connect the IMU using I2C, the following schematic shall be considered
5.17:
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Figure 5.17 Schematic of the motor driver and motor and the STM32
Bluepill connections with I2C. Source: Own.
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5.2.4 Full assembly

The following diagram shows the final assembly of the components into a breadboard. This information
will be used to design the custom PCB that holds all the following components:

• 1× STM32 Bluepill controller

• 1× HC06 Bluetooth module

• 1× Mabuchi motor RF-300EA-1D390

• 1× Sparkfun Qwiic motor driver

• 1× External battery
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Figure 5.18 Final assembly schematic. Source: Own.
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Figure 5.19 Final assembly physical assembly. Source: Own.

Next chapter 6 shows the design of the PCB. This PCB will not only take into account the components
for the reaction wheel but also the pair of magnetorquers designed by the magnetorquer team.
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Chapter 6

PCB Design

In the following chapter, it is shown the design of the Printed Circuit Board (PCB) and the circuits that
will allow the communication.

A printed circuit board, or PCB, is a type of circuit board that is used to physically support and
electrically link electronic components by connecting conductive paths, tracks, or signal traces from
copper sheets bonded onto a non-conductive substrate. The PCB is specifically designed by PLATHON’s
project electronics requirements. For a more in-depth overview of the schematics see Appendix I.

6.1 Schematic

Prior to designing the schematic, several CubeSat prototypes were already available within PLATHON’s
project (see Figures 8.3). The particularity of the 8.3 Cubesat prototype resides in its ability to access the
PCB with ease, namely, this CubeSat can be classified as a modular 1U Cubesat. For instance, whenever
the user is willing to change the PCB or make some rearrangements the process is seamless.

This Cubesat complies with the structural restrictions listed in A. Its dimensions is 9.1× 9.3 cm and the
components chosen for the project has already been thought to fit inside the PCB.
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Figure 6.1 PCB layout top view (left) and bottom view (right). Source:
Own.

Notice how the PCB is not fully squared and a slight material is missing in its sides. The reason behind
this design was to enable the power cables to connect from the solar panel cells to the main board and
supply power to the system.

The PCB is designed following the corresponding technical specifications. Each pin is connected via
copper paths with a separation width of 0.3 mm and a path width of 0.6 mm. This model was chosen
because it is the most feasible and practical ways to avoid potential errors, i.e. when paths are too close
there might be some interactions between pins that can cause short circuits.

Additionally, as regards the PCB, it consists of 4 layers in which all connections are settled on side of the
board. This design facilitates the welding process of the different components such as the motor and the
IMU.
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(a) PCB Gerber file. Source: Own. (b) PCB Excellon file. Source: Own.

Figure 6.2 PCB Gerber and Excellon files. Source: Own.

Gerber files are ASCII vector files that provide information about each physical board layer of the PCB
design. This include, for instance, copper paths, solder mask and silkscreen graphics and they are all
represented by a drawing code and specified by a sequence of vector coordinates. Excellon drill format is a
file format used for drilling and routing equipment and it is an industry standard. Both files are necessary
for manufacturing the PCB. These files were sent to JLC PCB, a company specialized in manufacturing
all kind of PCBs for different needs and applications.

(a) Physical PCB (front). Source: Own. (b) Physical PCB (back). Source: Own.

Figure 6.3 Physical PCB. Source: Own.

The PCB is made out of an FR-4 sandwich layer between two thin layers of copper lamination. FR-4 is
by far the most used material when it comes to manufacturing PCBs. The letter “FR’ denotes that the
substance is Flame Retardant, and the number “4” indicates that it is woven glass-reinforced epoxy resin.
Additional prepreg layers are sandwiched between the central core and the top and bottom copper layers
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in this board. FR-4 boards offer good strength and water resistance characteristics that allow them to be
used as an insulator in many electrical applications. It insulates neighbour planes and provides bending
strength to the structure.

Before engaging in welding the components, several tests were performed to ensure the paths are correctly
connected and there are no short circuits.

Two design errors were found during this phase. The first one is that all the system is connected to a
5 V input from an external battery and despite there is a 9.6 V input pin (see Figure 6.1) that pin is
connected as well in the 5 V paths and not to the VIN input for the drivers. However, after performing
some tests with 5 V. The results shows it is enough to rotate the entire satellite even when using 20% of
the supplied voltage (i.e. 20% of 5 V (see 8)).

The second design error resides in the VIN and GND pins of the drivers. These pins are switched.
However, a practical solution proposed was to connect the pins with a short cable that connects the pins
instead of placing the drivers on the other side of the board as there might be some friction with the
reaction wheel.
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6.2 Final Design

Eventually, KiCad software enables to render the pieces in a 3D view and the final assembly of the
components shall look like as Figure 6.4:

Figure 6.4 Final PCB assembly render. Source: Own.

In Figure 6.4 there is the Reaction wheel on the backside of the board and it carries two magnetorquers
at the side of the board. The vertical module in front of the reaction wheel is the Bluetooth module.
Also, the two red pieces in the lower right side of the figure are the two set of drivers that controls both
the magnetorquers and the reaction wheels.

Finally, Figures 6.5 and 6.6 shows the top and bottom sides of the assembled PCB. Figures 6.7 6.8 shows
the physical assembly of the board with all the components.
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Figure 6.5 Final PCB assembly render (top view). Source: Own.

Figure 6.6 Final PCB assembly render (bottom view). Source: Own.
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Figure 6.7 PCB layout top view (left) and bottom view (right). Source:
Own.

Figure 6.8 PCB layout top view (left) and bottom view (right). Source:
Own.
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Figure 6.9 Reaction wheel mounted on PCB. Source: Own.
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Chapter 7

ADCS software

The following chapter intends to explain the control algorithm developed for the ADCS subsystem of the
CubeSat. This control is developed for a 1DOF Cubesat which means it only controls the heading of
the CubeSat. However, the code is implemented so it can be easily extrapolated to a 3DOF control in
the future. This part of the project is done in collaboration with [64] and [65] which forms the ADCS
reaction wheels team. To download the entire control algorithm visit Github.

7.1 Control Algorithm

Firstly, as seen in Section 3.2.1, the reference frame used for the CubeSat is the Orbit reference frame.
However, more local references shall be noted. Figure 7.1 illustrates the set of reference systems used for
the development of the control software.

Xa

Ya

Za

Xc

Yc

Zc

Xm

Ym
motor
axisZm

Xi

Yi

Zi

Figure 7.1 CubeSat reference frames. Source: Own.
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Four axis systems are shown in Figure 7.1,

• Xa, Ya, Za are the absolute local system of reference which corresponds to orbit reference frame
but with z-axis pointing outwards Earth center.

• Xa, Ya, Za are the CubeSat’s system of reference which are aligned with the IMU’s reference
frames due to symmetry.

• Xi, Yi, Zi are the IMU’s system of reference which are set by the own Inertial Measurement
Unit.

• Xm, Ym, Zm are the motor’s reference frame. This reference frame is coupled with the motor’s
orientation.

The reference systems are extremely important to bear in mind since depending on the orientation or
the setup of the board will change the code and some signs will be needed to be changed. Again, the
developed code is only valid for a 1U CubeSat in the same orientation as Figure 8.5, 8.6.

Once the assembly is done, the next step is to calibrate the IMU. This calibration process is located
within the main code and calibrations are needed for both the accelerometers and gyroscopes (see Code
in O).

7.1.1 ADCS Structure

The control software of the ADCS is shown in flowchart 7.2. The system is organized in 4 different
modes of operation. Magnetorquer’s team is in charge of detumbling mode, nadir pointing whereas
Reaction wheels team is in charge of positioning modes since the reaction wheels torque is stronger than
magnetorquers.

Take a look at the flowchart in Figure 7.2, each mode is coloured in orange (except emergency mode
which is in green).

7.1.2 Control algorithm

Then after all configuration is done, the general control algorithm flowchart is shown in Figure 7.2:
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Figure 7.2 ADCS control flowchart. Source: Own.

The control is briefly explained here-under (see Appendix O for the code and O for the Table with all
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variables and O for the Table with all functions and their explanation).

First, the program sets up different definitions and parameters. All the variables used in the code are
global variables as the program does not make use of functions, instead, Timers were employed for every
mode. The reason why the code uses only Timers is that microcontrollers such as Arduino Nano and
Bluepill cannot do multitasking. Thus, using Timers can emulate multitasking and perform several
actions at the same time (see Section 7.1.3 for a detailed explanation on Timers).

After Timers functions are defined, the microcontroller enters to mode OBC Input Wait, which is the
default mode for receiving a mode from the On-Board Computer (OBC). This mode constantly checks the
Serial1 port from UART to see if the user has sent any command and then execute the corresponding
mode.

Once the microcontroller receives the data from the OBC, depending on the input from the user, it
enters to either Positioning mode mode Positioning RW(), IMU reading mode mode IMU reading

or mode motor on off().

• mode OBC Input Wait(): Default mode for OBC reading.

• mode Positioning RW(): This mode allows the user to turn the CubeSat into the desired po-
sition using reaction wheels. The inputs are the direction of turn (whether clockwise or counter-
clockwise) and the desired angle to turn. Then inside this mode. Depending on the tolerance, the
microcontroller will enter to either Fine or Coarse pointing mode. Once set-point is reached and
the CubeSat remains still. The process goes back to Waiting mode.

• mode IMU reading(): This mode displays the IMU’s values to let the user check the orientation
values (roll, pitch and yaw).

• mode motor on off(): THis mode triggers an impulse to the motor and after a time it turns off.

7.1.3 Timers

First, the program sets up different definitions and parameters. All the variables used in the code are
global variables as the program does not make use of functions. Instead, Timers were employed for
every mode. The reason why Timers are used is that they can provide virtual “multitasking” to the
microcontroller.

Neither the Arduino Nano nor the Bluepill microcontrollers have the ability to real multitasking as
they only have 1 core and no operative system. When we talk about timers, in reality, we are taking
advantage of the fact that they offer the possibility to temporize sub-tasks without blocking the main
task. Thus, microprocessors usually have a set of timers which is a mechanism that permits the execution
of an interruption, known as Interrupt Service Routine (ISR). When the program executes this callback
function, it goes off the normal flux of the program and executes the associated ISR ignoring all other
functions.

There are hardware interruptions that are triggered by a physical change in an event on a physical pin
and software interruptions that are in sync with the microcontrollers internal clock.
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Interruption functions (ISR) must take as short amount of time as possible as the main program is
stopped. Nevertheless, in the code implemented, it is only featured to use interruptions and the main
void() function is left blank. Eventually, building a program like this takes full advantage of the
microprocessor and emulates a “multitasking”.

To configure the timers, two concepts must be defined. Dividing the STM32 Bluepill’s internal clock’s
frequency to the Prescale Factor (PF) determines the frequency of the Timer.

dt = 1
STM32CLOCK

PF
·Ov (7.1.1)

Multiplying the frequency of the Timer by the Overflow (Ov) one gets the period. In the project, the
internal clock is set to 72 MHz, so a PF of 7200 and an Overflow of Ov of 1000 are used to obtain a
period of 100 ms. See Figure 7.3 example:

Figure 7.3 Timer and Prescale Factor diagram. Source: Adrià Pérez [64].

The first wave represents the original STM32 clock without any PF nor Ov. The second wave introduces
a prescale factor and the third wave introduces the Ov to see the effect on the Timer and the ISR calls.

On important notice is that a Timer can have multiple channels. Timer1 was used for the program and
channels CH3 and CH4 were used for OBC readings and IMU readings, respectively.

7.1.4 Coarse Pointing

Coarse pointing mode is the manoeuvre that allows the CubeSat to turn into the desired angle in a fast
way. The principle behind it is to give a big impulse to rotate the CubeSat very quickly which produces
an acceleration phase. Then to stop the motor when it is approaching the desired angle, the same impulse
is injected in the opposite direction of rotation provoking a deceleration.
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θ

Figure 7.4 Coarse pointing mode manoeuvre. Source: Own.

Hence, the coarse pointing mode is divided into three phases:

1. Acceleration phase: An impulse is generated to arrive at the angle set-point.

2. Waiting phase: In this phase, the acceleration is zero and the motor rotates at a constant velocity.
If the current yaw angle is higher than half of the desired angle it goes to the deceleration phase.

3. Deceleration phase: This phase is analogous to the acceleration phase but with an acceleration
in the opposite direction.

There are many possible cases in the acceleration phase whether the turn is clockwise (CW) or counter-
clockwise (CCW). Let’s illustrate an example in Figure 7.5. The ∆ψ is the final yaw angle minus the
initial yaw angle ψfinal − ψinitial.

• If the CubeSat goes from 30◦ to 330◦ in the CubeSat CW direction, the difference in angle is
330− 30 = −300◦.

• If the CubeSat goes from 30◦ to 330◦ in the CubeSat CCW direction, the difference in angle is
−(330− 30) = −300◦, or 60◦.

• If the CubeSat goes from 330◦ to 30◦ in the CubeSat CW direction, the difference in angle is
30− 330 = −300◦, or 60◦.

• If the CubeSat goes from 330◦ to 30◦ in the CubeSat CCW direction, the difference in angle is
−(30− 330) = 300◦.
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30◦

330◦

60◦60◦

300◦
300◦

60◦

Figure 7.5 Turn diagram. Source: Own.

If the CubeSat orientation passes through the zero angle, the Yaw angle would decrease its value drasti-
cally from 360 to 0 (see Figure 7.6).

Time

Yaw angle
Corrected yaw
Unstrafed yaw

(a) Yaw angle diagram when the CubeSat passes
through 0◦ angle (Sketch). Source: Own.

Time

Yaw angle
Theoretical yaw
Real yaw

(b) Yaw angle diagram
(Sketch). Source: Own.

Figure 7.6 Yaw angle diagrams (Sketch). Source: Own.

Figure 7.7 shows the angular speed of the system associated with the three phases clearly visible which
are acceleration, waiting and deceleration phase.
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Time

Angular speed
Theoretical speed
Real speed

Figure 7.7 Angular speed diagram (Sketch). Source: Own.

As regards the angular acceleration, Figure 7.8 shows the diagram impulse and theoretical and real
acceleration values. In Section 8 we’ll see if the results coincide with the theoretical diagram.

Time

Angular acceleration
Impulse
Theoretical acceleration
Real acceleration

Figure 7.8 Angular acceleration diagram (Sketch). Source: Own.

At the end of the Coarse manoeuvre, if the CubeSat is not correctly oriented the next manoeuvre that
it will enter is the Fine pointing mode. If the CubeSat happens to get to the desired angle within a
tolerance set in the Huge impulses will rarely meet the results and consequently, thus, fine control will
try to minimize the error with a PD control.
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Figure 7.9 Coarse pointing mode flowchart. Source: Own.
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7.1.5 Fine Pointing

Fine pointing mode activates when the desired angle and the actual CubeSats angle are < 5◦. Fine
pointing mode’s goal is to increase the accuracy of the orientation that an impulse might not achieve.

Yb

Xb

Y ′b

X ′b

Stabilization
of setpoint

Figure 7.10 Rotation cubesat fine full. Source: Own.

7.1.6 PID controller

A PID algorithm consists of the three components before, a proportional constant, integral and a deriva-
tive constant which are tuned to get the optimal response.

The basic principle of this algorithm is to calculate the proportional, integral and derivative responses to
sum all of them to the output response [66]. A close loop system control is a system that is constantly
reading sensors to provide constant feedback and calculates the desired output continuously at a fixed
loop rate. The process variable is the parameter that the system must control, in this case, the process
variable is the yaw angle ψ. And the user inputs the desired set-point.

The formula of a PID controller is defined as follows:

u(t) = Kpe(t)︸ ︷︷ ︸
Proportional

+Ki

∫
e(t)dt︸ ︷︷ ︸

Integral

+ Kd
de
dt︸ ︷︷ ︸

Derivative

(7.1.2)

where

u(t): PID control variable.

e(t): Error value.

Kp: Proportional gain.

Ki: Integral gain.

de: Change in error value.

dt: Change in time.
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Proportional contribution depends only on the difference between the actual measurement and the
setpoint. The proportional gain is multiplied by the error term so, for instance, if the error has a value
of 10 and the proportional constant has a value of 5 it means the system will produce a response of 50.
The higher the response the faster the systems responds. However, this value cannot be too high since
the system can enter an oscillatory phase with no control.

Integral contribution fixes the steady-state error left in the system since it sums the error over time.
Steady-state error can be defined as the final difference between the set-point and the actual measurement.
In the case of the CubeSat, the integral contribution is not applied since this force usually tends to
destabilize the spacecraft instead of correcting it.

Derivative contribution considers the rate of approximation of the process variable and the set-point.
If the process variable is increasing rapidly, the derivative component will decrease the rate of change
of the process variable. A small step size dt provides more accurate and fast responses. For bigger step
sizes, the process variable will certainly go faster to the set-point and hence increase the overall speed of
the system. An important issue to note is that for very slow control rates or a noisy signal, the derivative
response will make the control unstable.

The process of choosing the best constants to match the desired performance is called controller tuning.
Ziegler and Nichols proposed criteria for tuning PID controllers as one of the most used ways to tune
the variables. The basic idea relies on trial and error technique. First, both integral Ki and derivative
Kd are set to 0. Subsequently, the proportional gain is tuned so it oscillates a bit to a point where the
response overshoots but not for too much. Then, the critical constant Kp,cr and period Tp,cr are noted
to calculate the other two controller’s gains using Table 7.1.

Table 7.1 Ziegler–Nichols Tuning Rule Based on Critical Gain Kp,cr and Critical Period. Source: Ogata
[66].

Control P Ti Td

P 0.5Kp,cr - -
PI 0.45Kp,cr Tp,cr/1.2 -

PID 0.60Kp,cr 0.5Tp,cr Tp,cr/8

The response of the controller can be shown in Figure 7.11:
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Figure 7.11 System’s possible response outcomes [yaw angle] (Sketch).
Source: Own.

The CubeSat enters the Fine mode when the angle difference between the set-point and the process
variable is < 5◦. The final position of the coarse phase shall be set to the initial fine position. Two
considerations are made for the final position:

1. The angles of the local reference frame are limited from [0◦, 360◦]. This is done to avoid huge values
and has a visual representation of the number of laps.

2. The second aspect to take into consideration is whether the CubeSat passes through the 0◦ angle.
In this case, if not accounted for, the CubeSat’s PD controller can set a huge impulse when the
error is actually small. For instance, if the set-point of the CubeSat is small:

• If the current Yaw angle is 1◦ which is inside the tolerance set for the Fine control. PID
is triggered instead of the coarse pointing mode and the PD response will be small, hence,
stabilizing the CubeSat.

• If the current Yaw angle is 359◦, the difference between the angles is very large so the PD
will trigger a huge impulse to control it. However, in reality, 359◦ and 0◦ are below < 1◦ of
difference so the PD shall set a small impulse. To solve this problem, the angles are shifted
180◦. Consequently, the setpoint now becomes 180◦ and the actual yaw angle is 179◦ which
will produce a difference of 1◦.
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Figure 7.12 Fine Pointing diagram. Source: Own.
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Figure 7.13 Fine pointing mode flowchart. Source: Own.
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Chapter 8

Performance and Tests

This last chapter’s objective is to perform tests emulating an orbit environment. The CubeSat is placed
on an air bearing that will emulate outer space conditions. However, limitations on the compressor’s
capacity restricted the duration time of the simulations.

8.1 3D visualization

STM32 or Arduino output data from the Serial port can be pass into a Python script for real-time 3D
visualization. Also, real-time orientation angles can be extracted to plot the evolution over time of those
variables. However, limitations on Bluetooth communication restricted the number of bits of information
sent.

The program can extract the data using the following code (this code works with the IMU data acquisition orientation all axis.ino
Arduino file from Serial port).

Projecting the yaw and pitch angles onto vPython’s reference frame,

x

z

y

ψ

θ

r

Figure 8.1 vPython reference frame. Source: Own.

96



CHAPTER 8. PERFORMANCE AND TESTS

The x, y and z position of any point can be expressed as:

x = r cosφ cos θ (8.1.1)

y = r sinφ cos θ (8.1.2)

z = r sin θ (8.1.3)

To get the Euler angles from quaternions, Euler-Rodriguez formulas were used.

Figure 8.2 Real-time Python visualization. Source: Own.

This python code can be modified to use Euler angles directly with the complementary filter implemented
in the code M. However, in the future, it is highly recommended to use quaternions as they provide more
accurate results.

8.2 Setup

Figures 8.3 shows the Air Bearing used in the project. This testbed includes a pivoting platform that
allows the free movement of a nanosatellite and the design of a CubeSat 1U fully equipped to control its
spatial orientation [67].
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(a) Air bearing structure. Source: Own. (b) Air bearing with CubeSat mount. Source:
Own.

Figure 8.3 Air bearing. Source: Own.

A compressor is located below the air bearing, the compressor blows air into the air bearing structure
so when the CubeSat placed on the Air bearing a near-zero friction environment system is created. This
system will allow reproducing the CubeSat condition in space. Take a look at Figures 8.4 where the fully
modular CubeSat is shown with its solar panels deployed and closed. The final assembly of the CubeSat
is represented in Figures 8.5 and 8.6.

(a) Cubesat solar panels. Source: Own. (b) CubeSat structure. Source: Own.

Figure 8.4 Modular CubeSat. Source: Own.
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Figure 8.5 PCB inside the CubeSat. Source: Own.
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Figure 8.6 PCB inside the CubeSat (opened). Source: Own.

The final mounted CubeSat on in the air bearing is shown in 8.7. This will permit 3DOF control.
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However, the project focuses on a 1DOF control. Consequently, the testing phase was done using 8.8.

(a) Cubesat mounted on Air Bearing. Source:
Own.

(b) Full CubeSat structure mounted on Air
Bearing. Source: Own.

Figure 8.7 Cubesat on Air Bearing. Source: Own.

Figure 8.8 Reaction Wheel control test with CubeSat configuration. Source:
Own.
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8.3 Testing phase

First, before engaging in the testing phase, the user must calibrate the magnetometer and acceleration
sensors. In order to calibrate the magnetometer, one must follow O guidelines inside the code.

Magnetorquers are calibrated by drawing an “eight” in the air. The calibration usually takes 1-2 minutes
and if succeeded the values of calibration are returned to the user so the user must annotate the newest
values to the code.

Xb, Yb

Zb

IMU

Xb, Yb

Zb

Figure 8.9 GY-9250 IMU magnetometer calibration. Source: Own.

It is important to mention that sending very large messages at a high transfer speed rate may cause the
Bluetooth module to freeze, thus, some tests were done twice so in the first one we obtain the orientation
angles and in the second one, we obtain accelerometer and gyroscopes measurements as well.

8.3.1 IMU Reading mode test

The first test performed was a IMU reading mode mode IMU reading(). This test aims to examine
the Air bearing’s stability and how is the data from the different sensors.

Figure 8.10 shows how the CubeSat begins to rotate after 12 seconds when the air bearing was engaged.
The conclusions are that if the user does not inject air to the air bearing smoothly, there might be an
initial perturbation due to the asymmetry of weight distribution that causes the CubeSat to rotate. Thus,
the air injection must be performed gradually and smoothly.
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Figure 8.10 Attitude orientation. Source: Own.

(a) Pitch angle. Source: Own. (b) Roll angle. Source: Own.

Figure 8.11 Pitch and roll angles. Source: Own.

Notice how pitch and roll angles are oscillating back and forth between a set of angles. These results
thus need to be interpreted with attention. This phenomenon is due to the vibrations of the CubeSat.
As the motor is spinning, the vibrations are not damped by any means so the whole PCB vibrates and,
indeed, the IMU attached to it. However, these angles are nearly 0, showing that the CubeSat is certainly
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horizontal.

8.3.2 Motor ON OFF mode test

The following test aims to turn on the motor until it reaches some velocity and then stops the motor.
Notice Figure 8.12, at time t = 0 s the user sets the motor to rotate at it’s maximum speed and it is clearly
seen how the yaw ψ angle goes from the initial angle ψ0 = 140◦ approximately to ψ = 360◦ completing a
lap. When the emergency stops kicks in at t = 12s approximately, the CubeSat’s angular rotation slows
down, which can be interpreted as the slope of the yaw angle. Contrary to our expectations, in which the
team thought the CubeSat to maintain a constant angular velocity once the emergency stop is activated,
Results show the CubeSat not only slows down but rotates in the opposite direction.
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Figure 8.12 Attitude orientation. Source: Own.
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(a) Pitch angle. Source: Own.
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(b) Roll angle. Source: Own.

Figure 8.13 Pitch and roll angle. Source: Own.

The physical interpretation of the occurrence can be understood in the following way. After the motor
is turned, the CubeSat eventually will arrive at an equilibrium phase where the entire CubeSat and
the reaction wheels inertia is countervailed. However, when the reaction wheel slows down its velocity
rotating it causes a disruption in the equilibrium of forces and after a while, the CubeSat’s rotation due
to leftover inertia is bigger than the reaction wheel’s leftover inertia. Thereby, the CubeSat rotates in
the opposite direction.

8.3.3 Motor ON OFF mode test

Beneath is presented the same motor ON and OFF mode as the prior test. However, this time, other
set pf data are recovered instead of the three orientation angles, accelerometer measurements on x and y
axis are shown as well as the angular velocity in z direction.

When the motor is on, one can clearly notice how the accelerometers are induced a lot of noise.
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Figure 8.14 Acceleration in x and y direction. Source: Own.
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Figure 8.15 Yaw angle. Source: Own.
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Figure 8.16 Angular velocity in z direction. Source: Own.

In Figure 8.16 we can observe clearly when the motors are stopped where the angular velocity drops
down. Taking a look at the yaw angle, one notice how the CubeSat turns makes 4 complete laps before
stopping at t ≈ 22 s to rotate in the opposite direction.
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8.3.4 Coarse pointing control mode test

The next test encompasses the ADCS control. For this test, the intention is to perform a full coarse and
fine control. The initial angle ψ0 = 150 approximately and the desired angle is to rotate 100 degrees in
the clockwise direction to achieve 250 degrees approximately.
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Figure 8.17 Acceleration in x and y direction. Source: Own.
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Figure 8.18 Yaw angle. Source: Own.
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Figure 8.19 Angular velocity in z direction. Source: Own.

An appreciable change in yaw and angular velocity happens after the deceleration ramp is started (DEC
Ramp start). The angular velocity rapidly decreases in t ≈ 2.5 s as it surpassed the set point. One
important remark is that the impulse gives to the motor is just an impulse. A simple impulse has
practical constraints as it sets the motor to its maximum speed. However, ramps will provide better
precision. Then when fine pointing mode is activated at t = 12− 15 s where PD control kicks in.

Nevertheless, the proportional, derivative constants are yet still to be corrected since the CubeSat oscil-
lates back and forth. One method to reduce the oscillation is by increasing the derivative contribution
so it reduces the speed if it is approaching the setpoint too fast.

8.3.5 Fine pointing control mode test

This time, only the Fine control was tested on the CubeSat. To do so, the initial turn angle input was
less < 5◦. This way, as the angle is less than the fine tolerance angle, it will perform a Fine control just
from the beginning. The initial angle is ψ ≈ 350 and the setpoint is 346◦ approximately.
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Figure 8.20 Acceleration in x and y direction. Source: Own.
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Figure 8.21 Yaw angle. Source: Own.
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Figure 8.22 Angular velocity in z direction. Source: Own.

Figure 8.22 shows how the CubeSat tries to stay still within the setpoint zone. As mentioned earlier, PD
constants need to be tuned accordingly since the proportional gain is yet very strong and overshoots the
setpoint.

8.3.6 Fine pointing control mode test (PCB with magnetorquer)

Finally, the last test intends to add the weight of the magnetorquers to the CubeSat configuration. As
the magnetorquers were placed in one corner of the PCB, it destabilizes the CubeSat. This design error
is not complex to solve. The solution is to place some counterweight on the other side of the CubeSat.

P
os

iti
oi

ni
ng

F
in

e

Figure 8.23 Bluetooth setup schematic. Source: Own.
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Figure 8.24 Bluetooth setup schematic. Source: Own.
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Figure 8.25 Bluetooth setup schematic. Source: Own.

Eventually, the CubeSat’s PD controller seems to work as expected. Again, the PD controller still needs
some tuning since more weight is added to ensure the CubeSat avoid overshooting and oscillatory motion.
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Chapter 9

Planning of the project

This chapter illustrates the whole planning for the project. A Work Breakdown Structure is developed
as well as a Gantt Chart to reproduce the schedule and deadlines for the project.

9.1 Work Breakdown Structure

The deliverable-based Work Breakdown Structure demonstrates the relationship between the project
deliverables (i.e., results, products) and the scope (i.e., work to be executed).

9.1.1 Tasks identification

Table 9.1 shows the tasks performed during the project:
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Table 9.1 Work Breakdown Structure task identification. Source: Own.

TASK CODE TASK IDENTIFICATION

1. Cubesats
1.1. State of the art
1.2. Applications
1.3. ADCS Instruments

2. Attitude Determination and Control Subsystem
2.1. Orbital Mechanics
2.2. Inertial Measurement Unit
2.3. Euler Angles and Quaternions
2.4. Disturbance torques
2.5. Control Algorithm

3. Communication and Telemetry
3.1. Tracking
3.2. Point-to-point Communication
3.3. Data acquisition and processing
3.4. Real-time Data plotting

4. Reaction wheels
4.1. Physics analysis
4.2. Motor Selection
4.3. Motor Driver
4.4. CAD Design

5. Assembly
5.1. PCB Design
5.2. Final Assembly

6. Optimization
6.1. Testing
6.2. Data Verification
6.3. Sensibility and precision

7 Report writing

The amount of hours spend in each task can is shown in Table 9.2.
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Table 9.2 Tasks and working hours. Source: Own.

TASK CODE Duration

1.1. 5
1.2. 5
1.3. 5

2.1. 5
2.2. 10
2.3. 5
2.4. 10
2.5. 20

3.1. 5
3.2. 5
3.3. 5
3.4. 5

4.1. 10
4.2. 5
4.3. 5
4.4. 5

5.1. 5
5.2. 10

6.1. 15
6.2. 10
6.3. 10

7. 222
TOTAL 382
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9.2 Gantt Diagram

The following Gantt diagram is used to plan the project management and schedule. This tool permits to
show the activities (i.e., tasks and events) displayed against time. On the left of the chart is a list of the
activities and along the top is a suitable and appropriate time scale. Each activity is presented with its
time allocation (see next page).

This allows to get an overview of the number of activities there are, when they begin and how long each
activity is scheduled to last and also keep in mind when the project is intended to end.
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Chapter 10

Environmental Impact

This chapter intends to analyse the environmental impact of the scope of the project. Despite the major
advances in the aerospace area, there are still secondary effects that need to be taken into account.

Sustainability is defined as the capacity of preserving an activity within a long period of time without
harming the environment. However, the most accepted definition of sustainability is provided by the
World Commission on Environment and Development Definition.

The major dilemma of putting satellites into orbit resides in the space debris it produces. At the same
time, one of the major concern among scientists around the world is not only the impact it might have
on other exploration missions but also the light pollution it has in the celestial vault.

Any project that implies a satellite shall analyse the effect among other outer space activities. for
instance, the accumulation of space debris can lead to a chain reaction that can cause severe damage to
other missions. Besides, the carbon footprint of the project is nearly zero as it has solar panels and most
of the operational time it will not rely on any other source.

Since this project is undertaken entirely in the laboratory there are no more environmental issues than
the CO2 emitted during the analysis and development of it. See Table K

mCO2 = Impact factor
[

kg CO2
kW · h

]
× Energy [kW · h] (10.0.1)

Table 10.1 Power consumption and kg CO2 emission

Activity Time [h] Power kW Impact factor [kg CO2/kg · h] kg CO2

Laptop 382 0.30 0.2 22.92
3D manufacturing 32 0.35 0.2 2.24

Thus, an approximate value of 25.16 kg of CO2 was emitted during the development of this project.
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Chapter 11

Budget

This section intends to analyze the budget of the personnel time invested in working in this investigation
performed and the overall budget to conduct the present project.

11.1 Materials budget

To undertake the project, several instruments were used and many components were utilized. Table 11.1
shows the electrical components bought to assembly the ADCS Subsystem.

The price of the components are subject to vary depending on the shopping site. The corresponding
values are taken from amazon.es.
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Table 11.1 Materials budget. Source: Own.

Electrical components
Concept Quantity Unitary price (€) Total price (€)

Breadboard 2 4.99 € 9.98 €
Cables 1 6.99 € 6.99 €

Arduino Nano 1 21.78 € 21.78 €
STM32 Blue Pill 1 13.49 € 13.49 €
USB ST-Link V2 1 10.27 € 10.27 €

BNO055 IMU 1 34.95 € 34.95 €
GY-9250 IMU 1 8.23 € 8.23 €

SparkFun Qwiic Motor Driver 1 12.52 € 12.52 €
Qwiic cable 1 1.50 € 1.50 €

Motor Mabuchi RF-300EA-1D390 1 6.91 € 6.91 €
Logic Level converter 1 9.88 € 9.88 €

Bluetooth module HC-06 1 10.99 € 10.99 €
Air storage tank Kunshan Abama 1 200 € 200 €

TOTAL 347.49 €

As regards the additive manufactured pieces the associated costs depend on the manufacturing tech-
niques. The air bearing system was manufactured using Hewlett-Packard Multi-Jet Fusion 3D printing
technologies with PA12CB as the material. However, reaction wheels and supports were made using
PLA.

Table 11.2 3D printed pieces budget. Source: Own.

3D printed pieces
Concept Quantity Unitary price (€) Total price (€)

Reaction Wheel 2 1.00€ 2.00 €
Reaction wheel support ring top 2 0.10 € 0.20 €

Reaction wheel support ring bottom 2 0.08 € 0.16 €
Magnetorquer support 8 0.02 € 0.16 €

Air Bearing 1 800 € 800 €

TOTAL 802.52 €

The PCB was entirely designed by PLATHON’s team, however, the manufacturing was sent to JLCPCB
as the university could only make 1 layered PCBs.
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Table 11.3 PCB manufacturing budget. Source: Own.

PCB
Concept Quantity Unitary price (€) Total price (€)

PCB 5 1.312 € 6.56 €
Shipping cost (JLCPCB) 1 30.40 € 30.40 €

TOTAL 36.96 €

Regarding the software tools used to develop the control algorithm, the CAD design and the simulation
analysis are shown below 11.4. However, being a student of the Technical University of Catalonia -
BarcelonaTech these software tools were no charged since they were educational licensed, nevertheless,
for external investigators or companies these budgets must be accounted.

Solidworks was used to design the reaction wheel model and the support pieces. MATLAB was used
to develop the atmospheric model and the disturbance torques calculations. Arduino IDE was used to
develop the control algorithm for the CubeSat. VS Code was used to perform python 3D simulation.
Fritzing tool was used to develop the diagrams and finally, KiCad was used to develop the PCB.

Table 11.4 Software licences budget. Source: Own.

Software licenses
Concept Quantity Unitary price (€) Total price (€)

Solidworks 1 1295 €/year 1295 €/year
MATLAB 1 800 €/year 800 €/year

Arduino IDE 1 0 € 0 €
VS Code 1 0 € 0 €
Fritzing 1 8 € 8 €
KiCad 1 30.40 € 30.40 €

TOTAL 2133.40 €
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According to the Idescat (Statistics Institute of Catalonia), the mean hourly salary for an professional
investigator, scientist or engineer [68] is around 25.42 €/h. Thus, the time invested in this research
project was about 382 hours (see Table 9.2).

Table 11.5 Personnel salary budget. Source: Own.

Personnel salary budget
Concept Hours (h) Hourly salary (€/h) Total (€)

Aerospace Engineer 382 25.42 €/h 9710.44 €

TOTAL 9710.44 €

Finally, summing up all the budgets of this project, the total budget can be calculated:

Table 11.6 Total budget. Source: Own.

Total budget
Concept Budget (€)

Electrical components 347.49 €
3D printed pieces 802.52 €

PCB manufacturing 36.96 €
Software licenses 2133.40 €
Personnel salary 9710.44 €

TOTAL 13030.81 €
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Chapter 12

Conclusions

To sum up, the present thesis describes the attitude determination and control subsystem for PLATHON’s
project. According to the requirements set in the initial phase of the project, the reaction wheels were
designed.

The first phase of the project encompassed a review of astrodynamics in which it reviews some important
concepts such as reference frames and how to describe the attitude with information about Euler angles
and Quaternions. After that, the most important disturbance torques were studied. The spacecraft in
space is subjected to different disturbance torques which if not considered can cause undesired torques
or inaccurate measurements. The main contribution was due to

The second phase of the project provides an in-depth analysis of the Reaction wheels design that must
comply with the requirements of the project and develop the code for the control. All the components
studied were assembled into the PCB with no issues. Finally, as regards the control algorithm developed
has been divided into two principal modes, fine and coarse pointing mode. As for the coarse pointing
mode, an impulse is set to achieve the desired set-point. When the CubeSat orientation is near the
desired set-point, fine control steps into using a PD controller.

The main objective of the thesis is accomplished, which was to design a fully operational 1DOF attitude
control system for a CubeSat. All software is open-source and the different modes of operation work
perfectly with some tuning. The code is accessible for further development and can be extrapolated to a
3DOF system.

12.1 Future work and recommendations

The following section gives some suggestions based on the study during this thesis and recommendations
for future hardware and software improvements.

• Although GY-9250 IMU module provides accurate measurements, the code provided does not use
the internal DMP for extracting the orientation angles. These angles are calculated from raw in-
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struments so the error is slightly higher and it loads more code for the microprocessor to calculate.
This restriction is faced since there are no libraries that benefit the IMU’s DMP using SPI commu-
nication protocol but there is a library that uses I2C protocol which enables DMP. Nevertheless,
it is always better to use quaternions for attitude determination and then transforming them into
Euler angles.

• Calibration method for the IMU is a slow process and despite the measurements have small errors,
the drift on the gyroscope for long-term missions cannot be avoided. Alternative instruments can
be used to readjust the gyroscope’s error or a self-calibration mode in the control algorithm can be
added.

• Additional attitude determination sensors, such as a gyroscope or an Earth horizon sensor, are
required to improve angular estimation accuracy during an eclipse.

• Reaction wheel design performs as expected and has a lot of inertia. However, the implemented
wheel is for a 1DOF system. If a 3DOF system is added, the reaction wheel shall be smaller and
perhaps new motors with higher torques should be considered, for instance, brushless motors.

• If the attachment of the reaction wheel and motor is not perfectly aligned, the Cubesat can rotate
off-axis causing precession. This issue can be solved by designing a piece that ensures the alignment
of the axis in both objects.

• Results show that vibrations induce the accelerometers measurements to oscillate, thus, a damping
system may be useful to retrieve smoother and more accurate data.

• As the code now employs only impulses for activating coarse pointing mode, a ramp input will
reduce the overshooting and obtain more precise results.

• Extra functionalities such as a graphical interface should be developed to make a better

• Detumbling and nadir pointing modes were developed by magnetorquer team. A further step is
to merge both team’s software and develop control with both reaction wheels and magnetorquers
which will drastically increase the accuracy of the project.
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Appendix A

Requirements

A.1 Technical requirements

In this section, we aim to provide strict and measurable statements that will guide and limit the process,
to minimise weak spots and vague actions that could lead to misunderstandings:

One of the most important limitations comes from the maximum weight permitted for a 1U Cubesat.
The Cubesat standard specification [2] dictates the maximum dimensions and weights for a 1U Cubesat,
which cannot exceed a 10 × 10 cm side cube with a maximum weight of 1, 3 kg. Thereby, the current
Cubesat is categorized as a nanosatellite since its weight is higher than 1 kg and less than 10 kg.

According to Dr. Griffin and Dr. French [37], the ADCS subsystem weight is around 10 − 15% of the
total weight of the satellite. This means the upper boundary limitation is around 200 g out of the whole
satellite’s weight.

An additional requirement shall be to reduce the response time of the reaction wheel once a duty is
set. The final aim is to pursue the optimal response time and performance while preserving energy and
accuracy.

The Cubesat must meet The Belgian Law on the Activities of Launching, Flight Operation or Guidance
of Space Objects 2005 regulation Belgian Air and Space Policy [69].

The CubeSat must also comply with technical constraints as specified by FCC regulations Federal Com-
munications Commission [70].

The experimental-licensed Cubesat spacecraft that use frequency bands allocated to the Amateur-Satellite
Service must coordinate with the International Amateur Radio Union (IARU) [71].

If the Cubesat includes an imager or a camera, for non-Government owned Cubesat with an imager must
contact the National Oceanic and Atmospheric Administration (NOAA) for a remote sensing license if
needed [72].
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The Cubesat design must always be designed following the United States Government (USG) Orbital
Debris Mitigation Standard Practices (ODMSP) to address the increase in orbital debris in the near-Earth
space environment. The goal is to limit the generation of new, long-lived debris by the control of debris
released during normal operations, minimizing debris generated by accidental explosions, the selection
of safe flight profile and operational configuration to minimize accidental collisions, and post-mission
disposal of space structure from NASA [73].

Small satellites should also fall under the scope of national space legislation United Nations Office for
Outer Space Affairs (UNOOSA) [74].

Finally, all of the aforementioned standards have a lot in common because their purpose is the same: to
propose an organized system for getting things done correctly. If the project is space-related and takes
place in Europe, the ECSS standard should be followed. Nonetheless, if it is located in the United States,
it must adhere to the NASA standard. To consider which standard to use depends on many factors:
where is the mission located, what is its purpose and whether it is part of a larger project.

The following are some formal document-based and model-based systems engineering standards:

• European Cooperation for Space Standardization (ECSS): ECSS-E-ST-10C [75]

• The National Aeronautics and Space Administration (NASA): Systems Engineering Handbook [76].

• International Council on Systems Engineering (INCOSE): Guide to the Systems Engineering Body
of Knowledge (SEBoK) [77].

• ISO/IEC/IEEE 15288 : Systems and software engineering [78].

No exact requirements for attitude control or response time are set. Nonetheless, the aim will always be
to increase the performance and response time ensuring fast and reliable maneuvers while preserving the
Cubesat Standard constraints [3] [79] [80] [81].

A.2 Structure Subsystem

Cubesat specifications can be found in California’s University’s specification [2]. The CubeSat Design
Specification document presents a deep overview of all general, mechanical, electrical and operational
requirements.

Below, general and mechanical requirements are listed and explained:

A.2.1 General requirements of the Cubesat

1. CubeSats which incorporate any deviation from the CDS will submit a DAR and adhere to the
waiver process.

This means that any changes to the standardized specifications shall be notified, that is, the mission
shall fill out a form and send it to the launch provider.
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2. All parts shall remain attached to the CubeSats during launch, ejection and operation. No addi-
tional space debris will be created.

To ensure this requirement, the structure of the Cubesat must ensure to be able to support the
forces it is subjected.

3. No pyrotechnics shall be permitted.

4. Any propulsion systems shall be designed, integrated, and tested in accordance with AFSPCMAN
91-710 Volume 3 [82].

5. Propulsion systems shall have at least 3 inhibits to activation.

This translates that 3 different mechanisms or buttons must be engaged to inhibit activation.

6. Total stored chemical energy will not exceed 100 Watt-Hours.

6.1. Note: Higher capacities may be permitted, but could potentially limit launch opportunities.

7. CubeSat hazardous materials shall conform to AFSPCMAN 91-710, Volume 3 [82].

8. CubeSat materials shall satisfy the following low out-gassing criterion to prevent contamination of
other spacecraft during integration, testing, and launch. A list of NASA approved low out-gassing
materials can be found at: http://outgassing.nasa.gov.

8.1. Note: Higher capacities may be permitted, but could potentially limit launch opportunities.

Some materials, most common plastics, are designed to operate a certain level of atmospheric
pressure. When exposed to outer space conditions, i.e. vacuum and zero pressure levels, the material
can release a cloud of mist or condensate which can end up damaging other electronic components
including solar panels. For instance, outgassing can contribute to the degraded performance of
charge-coupled-device (CCD) sensors of some missions. NASA maintains a list of materials with
low-outgassing properties suitable for use in spacecraft [83].

9. The latest revision of the CubeSat Design Specification will be the official version to which all
CubeSat developers will adhere to. The latest revision is available at http://www.cubesat.org.

10. The CubeSat shall be designed to accommodate ascent venting per ventable volume/area < 2000
inches

A.2.2 Mechanical requirements of the Cubesat

CubeSats are cube-shaped nanosatellites with dimensions and features outlined in the CubeSat Specifi-
cation Drawing (see Figure A.1) for reference.
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Figure A.1 P-POD Cubesat coordinate system. Source: California
Polytechnic State University [2].

General features of all CubeSats include:

1. The CubeSat shall use the coordinate system as defined in Appendix B of [2] (see Figure A.2) for
the appropriate size. The CubeSat coordinate system will match the P-POD coordinate system
while integrated into the P-POD. The origin of the CubeSat coordinate system is located at the
geometric centre of the CubeSat.

1.1. The CubeSat configuration and physical dimensions shall be per the appropriate section of
Appendix B [2].

1.2. The extra volume available for 3U CubeSats is shown in Figure 6 of Appendix B [2].

2. The Z face of the CubeSat will be inserted first into the P-POD.

3. No components on the green and yellow shaded sides shall exceed 6.5 mm normal to the surface.

3.1. When completing a CubeSat Acceptance Checklist (CAC), protrusions will be measured from
the plane of the rails.

4. Deployables shall be constrained by the CubeSat, not the P-POD.

5. Rails shall have a minimum width of 8.5 mm.

6. Rails will have a surface roughness less than 1.6 µm.

7. The edges of the rails will be rounded to a radius of at least 1 mm.

8. The ends of the rails on the +/ − Z face shall have a minimum surface area of 6.5 mm × 6.5 mm
contact area for neighbouring CubeSat rails (as per Figure 6).

136



APPENDIX A. REQUIREMENTS

9. At least 75% of the rail will be in contact with the P-POD rails. 25% of the rails may be recessed
and no part of the rails will exceed the specification.

10. The maximum mass of a 1U CubeSat shall be 1.33 kg.

10.1. Note: Larger masses may be evaluated on a mission to mission basis.

11. The maximum mass of a 1.5U CubeSat shall be 2.00 kg.

11.1. Note: Larger masses may be evaluated on a mission to mission basis.

12. The maximum mass of a 2U CubeSat shall be 2.66 kg.

12.1. Note: Larger masses may be evaluated on a mission to mission basis.

13. The maximum mass of a 3U CubeSat shall be 4.00 kg.

13.1. Note: Larger masses may be evaluated on a mission to mission basis.

14. The CubeSat center of gravity shall be located within 2 cm from its geometric center in the X and
Y direction.

14.1. The 1U CubeSat center of gravity shall be located within 2 cm from its geometric center in
the Z direction.

14.2. The 1.5U CubeSat center of gravity shall be located within 3 cm from its geometric center in
the Z direction.

14.3. The 2U CubeSat center of gravity shall be located within 4.5 cm from its geometric center in
the Z direction.

14.4. 3U and 3U CubeSats’ center of gravity shall be located within 7 cm from its geometric center
in the Z direction.

15. Aluminum 7075, 6061, 5005, and/or 5052 will be used for both the main CubeSat structure and
the rails.

15.1. If other materials are used the developer will submit a DAR and adhere to the waiver process.

These materials were selected considering their weight and their ability to support structural loads.

16. The CubeSat rails and standoff, which contact the P-POD rails and adjacent CubeSat standoffs,
shall be hard anodized aluminium to prevent any cold welding within the P-POD.

17. The 1U, 1.5U and 2U CubeSats shall use separation springs to ensure adequate separation (see
Table A.1 and Figure A.3).

17.1. The 1U, 1.5U and 2U CubeSats shall use separation springs to ensure adequate separation.

17.2. The compressed separation springs shall be at or below the level of the standoff.

17.3. The 1U, 1.5U and 2U CubeSats separation spring will be centred on the end of the standoff
on the CubeSat’s −Z face as per Figure 7 [2].

17.4. Separation springs are not required for 3U CubeSats.
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Figure A.2 1U CubeSat Design Specification Drawing. Source: California
Polytechnic State University [2].

Characteristics Value

Plunger Material Stainless Steel
End Force Initial/Final 0.14 lbs / 0.9 lbs

Throw Length 0.16 in minimum above the standoff surface
Thread Pitch 8-36 UNF-2B

Table A.1 CubeSat Separation Spring Characteristics. Source: California
Polytechnic State University [2].
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Figure A.3 Deployment switches and separation spring locations. Source:
California Polytechnic State University [2].

A.2.3 Electrical Requirements

Electronic systems will be designed with the following safety features.

1. The CubeSat power system shall be at a power-off state to prevent CubeSat from activating any
powered functions while integrated with the P-POD from the time of delivery to the Launch Vehicle
(LV) through on-orbit deployment. CubeSat powered function includes a variety of subsystems such
as Command and Data Handling (C&DH), RF Communication, Attitude Determine and Control
(ADC), deployable mechanism actuation. CubeSat power systems include all battery assemblies,
solar cells, and coin cell batteries.

2. The CubeSat shall have, at a minimum, one deployment switch on a rail standoff, per Figure A.3.

3. In the actuated state, the CubeSat deployment switch shall electrically disconnect the power system
from the powered functions; this includes real-time clocks (RTC).

4. The deployment switch shall be in the actuated state at all times while integrated in the P-POD.

4.1. In the actuated state, the CubeSat deployment switch will be at or below the level of the
standoff.

5. If the CubeSat deployment switch toggles from the actuated state and back, the transmission and
deployable timers shall reset to t = 0.
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6. The Remove Before Flight (RBF) pin and all CubeSat umbilical connectors shall be within the
designated Access Port locations, green shaded areas shown in Appendix B [2].

6.1. Note: All diagnostics and battery charging within the P-POD will be done while the deploy-
ment switch is depressed.

7. The CubeSat shall include an RBF pin.

7.1. The RBF pin shall cut all power to the satellite once it is inserted into the satellite.

7.2. The RBF pin shall be removed from the CubeSat after integration into the P-POD.

7.3. The RBF pin shall protrude no more than 6.5 mm from the rails when it is fully inserted into
the satellite.

8. CubeSats shall incorporate battery circuit protection for charging/discharging to avoid unbalanced
cell conditions.

9. The CubeSat shall be designed to meet at least one of the following requirements to prohibit
inadvertent radio frequency (RF) transmission. The use of three independent inhibits is highly
recommended and can reduce required documentation and analysis. An inhibit is a physical device
between a power source and a hazard. A timer is not considered an independent inhibit.

9.1. The CubeSat will have one RF inhibit and RF power output of no greater than 1.5 W at the
transmitting antenna’s RF input.

9.2. The CubeSat will have two independent RF inhibits

A.3 Operational Requirements

CubeSats will meet certain requirements pertaining to integration and operation to meet legal obligations
and ensure the safety of other CubeSats [2].

1. Operators will obtain and provide documentation of proper licenses for use of radio frequencies.

1.1. For amateur frequency use, this requires proof of frequency coordination by the International
Amateur Radio Union (IARU). Applications can be found at www.iaru.org.

2. CubeSats will comply with their country’s radio license agreements and restrictions.

3. CubeSats mission design and hardware shall be in accordance with NPR 8715.6 to limit orbital
debris.

3.1. Any CubeSat component shall re-enter with energy less than 15 J.

3.2. Developers will obtain and provide documentation of approval of an orbital debris mitigation
plan from the Federal Communication Commission (FCC) (or NOAA if imager is present).

3.2.1. Note: To view FCC amateur radio regulations, go to http://www.arrl.org/part-

97-amateur-radio

3.2.2. Note: Analysis can be conducted to satisfy the above with NASA DAS, available at
http://orbitaldebris.jsc.nasa.gov/mitigate/das.html
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4. All deployable such as booms, antennas, and solar panels shall wait to deploy a minimum of 30
minutes after the CubeSat’s deployment switch(es) are activated from P-POD ejection.

5. No CubeSats shall generate or transmit any signal from the time of integration into the P-POD
through 45 minutes after on-orbit deployment from the P-POD. However, the CubeSat can be
powered on the following deployment from the P-POD.

6. Private entities (non-U.S. Government) under the jurisdiction or control of the United States who
propose to operate a remote sensing space system (satellite) may need to have a license as required
by U.S. law. For more information visit http://www.nesdis.noaa.gov/CRSRA/licenseH
ome.html. Click on the Application Process link under the Applying for a License drop-down
section to begin the process.

7. Cal Poly will conduct a minimum of one fit check-in in which developer hardware will be inspected
and integrated into the P-POD or TestPOD. A final fit check will be conducted before launch.
The CubeSat Acceptance Checklist (CAC) will be used to verify compliance with the specification
(Found in the appendix of this document or online at http://cubesat.org/index.php/do
cuments/developers).

A.4 Testing requirements

Testing will be performed to meet all launch provider requirements as well as any additional testing
requirements deemed necessary to ensure the safety of the CubeSats, P-POD, and the primary mission.
The General Environmental Verification Standard (GEVS, GSFC-STD-7000) and MIL-STD-1540 can be
used to derive testing requirements[2].

The general testings are listed below:

1. Random Vibration:

Random vibration testing shall be performed as defined by the launch provider

2. Thermal Vacuum Bakeout:

Thermal vacuum bakeout shall be performed to ensure proper outgassing of components. The test
specification will be outlined by the launch provider.

3. Shock testing:

Shock testing shall be performed as defined by the launch provider.

4. Visual inspection:

Visual inspection of the CubeSat and measurement of critical areas will be performed per the
appropriate CAC (Appendix C) [2].

5. Cubesat testing Philosophy:

The CubeSat shall be subjected to either a qualification or protoflight testing as defined in the
CubeSat Testing Flow Diagram, shown in Figure A.4. The test levels and durations will be supplied
by the launch provider or P-POD integrator.

141

http://www.nesdis.noaa.gov/CRSRA/licenseHome.html
http://www.nesdis.noaa.gov/CRSRA/licenseHome.html
http://cubesat.org/index.php/documents/developers
http://cubesat.org/index.php/documents/developers


APPENDIX A. REQUIREMENTS

5.1. Qualification:
Qualification testing is performed on an engineering unit hardware that is identical to the flight
model CubeSat. Qualification levels will be determined by the launch vehicle provider or P-
POD integrator. Both MIL-STD-1540 and LSP-REQ-317.01 are used as guides in determining
testing levels. The flight model will then be tested to Acceptance levels in a TestPOD then
integrated into the flight P-POD for a final acceptance/workmanship random vibration test.
Additional testing may be required if modifications or changes are made to the
CubeSats after qualification testing.

5.2. Protoflight:
Protoflight testing is performed on the flight model CubeSat. Protoflight levels will be de-
termined by the launch vehicle provider or P-POD integrator. Both MIL-STD-1540 and
LSPREQ-317.01 are used as guides in determining testing levels. The flight model will be
tested to Protoflight levels in a TestPOD then integrated into the flight P-POD for a final
acceptance/workmanship random vibration test. The flight CubeSat SHALL NOT be disas-
sembled or modified after protoflight testing. Disassembly of hardware after protoflight testing
will require the developer to submit a DAR and adhere to the waiver process prior to disas-
sembly. Additional testing will be required if modifications or changes are made to
the CubeSats after protoflight testing.

5.3. Acceptance:
After delivery and integration of the CubeSat into the P-POD, additional testing will be
performed with the integrated system. This test ensures proper integration of the CubeSat
into the P-POD. Additionally, any unknown, harmful interactions between CubeSats may be
discovered during acceptance testing. The P-POD Integrator will coordinate and perform
acceptance testing. Acceptance levels will be determined by the launch vehicle provider or P-
POD integrator. Both MIL-STD-1540 and LSP-REQ-317.01 are used as guides in determining
testing levels. The PPOD SHALL NOT be deintegrated at this point. If a CubeSat failure
is discovered, a decision to disintegrate the P-POD will be made by the developers, in that
P-POD, and the P-POD Integrator based on safety concerns. The developer is responsible for
any additional testing required due to corrective modifications to deintegrated P-PODs and
CubeSats.
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Figure A.4 CubeSat General Testing Flow Diagram. Source: California
Polytechnic State University [2].
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Appendix B

Microcontroller

The following section provides the pin-outs of the microcontrollers discussed in the project.

B.1 Arduino Nano

The Arduino board is built in such a manner that newcomers may easily get started with microcontrollers.
This board, in particular, is breadboard friendly, making it very simple to manage the connections. Let
us begin by energizing the Board.

To power the Arduino Nano, there are three ways:

• USB Jack: Connect the mini USB jack to a phone charger or computer through a cable and it will
draw the power required for the board to function

• Vin Pin: The Vin pin can be supplied with an unregulated 6-12V to power the board. The on-board
voltage regulator regulates it to +5V

• +5V Pin: If you have a regulated +5V supply then you can directly provide this with the +5V pin
of the Arduino.

For the input and outputs pins:

Arduino Nano board has 14 digital pins and 8 analog pins in total. The digital pins can be used to
interconnect sensors (as input pins) or to control loads (as output pins). To regulate their functionality,
basic functions such as pinMode() and digitalWrite() can be used. For digital pins, the operational
voltage is 0 V and 5 V. Analog voltages ranging from 0V to 5 V may be measured using any of the 8
Analog pins and a simple function called analogRead()

Also some pins have special purposes:

• Serial Pins 0 (Rx) and 1 (Tx): Rx and Tx pins are used to receive and transmit TTL serial
data. They are connected with the corresponding ATmega328P USB to TTL serial chip.
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• External Interrupt Pins 2 and 3: These pins can be configured to trigger an interrupt on a low
value, a rising or falling edge, or a change in value.

• PWM Pins 3, 5, 6, 9 and 11: These pins provide an 8-bit PWM output by using analogWrite()
function.

• SPI Pins 10 (SS), 11 (MOSI), 12 (MISO) and 13 (SCK): These pins are used for SPI
communication.

• In-built LED Pin 13: This pin is connected with an built-in LED, when pin 13 is HIGH – LED
is on and when pin 13 is LOW, its off.

• I2C A4 (SDA) and A5 (SCA): Used for I2C communication using Wire library.

• AREF: Used to provide reference voltage for analog inputs with analogReference() function.

• Reset Pin: Making this pin LOW, resets the microcontroller.

These special functions and their respective pins are illustrated in the Arduino Nano pin diagram shown
in Figure B.1.

Figure B.1 Arduino Nano Pinout. Source: Robu.in Arduino [84]
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B.2 STM32 Bluepill

STM- Microelectronics provides a diverse variety of general-purpose microcontrollers for both 8-bit MCU
(STM8) and 32-bit ARM Cortex-M-based microcontrollers (STM32). STM32 Blue Pill is based on
STM32F103C8T6, which contains a Cortex-M3 ARM CPU that operates at 72 MHz, 20 kB of RAM, and
64kB of flash memory. The microcontroller has one USB port (with no additional chip support), three
UART ports, 16-bit PWM pins, and other features. It is a 3.3V microcontroller with several 5V tolerant
pins [51].

To power the Bluepill, one can power it with several ways listed below:

• Using the built-in USB micro connector.

• Supplying 5 V to the 5 V pin as external supply.

• Supplying 3.3 V directly to the 3.3 V pin.

For the input and output pins: The Blue Pill features 37 GPIO pins distributed across four ports: A and
B (16 pins), C (3 pins), and D (no pins) (2 pins). Each pin has a 6 mA current sink/source capability.
On each of the pins, pull-up and pull-down resistors can be activated.

Most pins have extra functionality as well:

• Serial ports – receive and transmit data via the UART protocol

• I2C ports – two-wire communication via the I2C protocol

• SPI – serial communication

• PWM

• Pin 13 has a built-in LED

These special functions and their respective pins are illustrated in the Blue Pill pin diagram shown below:
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APPENDIX B. MICROCONTROLLER

B.2.1 ST-Link

To upload and download code from the PC to the STM32 Bluepill an external device is needed called
STLink.

Figure B.3 STLink v2 pinout diagram. Source: Freeelectron [85].

Table B.1 ST-Link and STM32 pin connections. Source: Own.

ST-Link STM32 Bluepill

GND GND
SWCL SCL

SWDIO SWDIO
3,3 V 3.3V

B.2.2 Arduino IDE setup configuration for STM32

Having seen the advantages of the STM32 microcontroller explained in the precedent section. The next
step encompasses the configuration of the Arduino IDE for developing on the STM32 microcontroller.
The STM32 microcontroller is compatible with the Arduino IDE. However, some configurations need to
be met in order to satisfy the compatibility.

The next paragraphs will summarize the STM32 configuration to meet the Arduino IDE requirements.
The whole process can be found in [86].

• First, the Arduino IDE must be opened.

• Go to File then Preferences.

• In “ Additional Boards Manager URL” field add: http://dan.drown.org/stm32duino/pac
kage STM32duino index.json

• Next click on Tools, Board, Board Manager and search for “STM32”.

• Install “STM32F1xx/GD32F1xx” by stm32duino.

• Then select the corresponding board in Tools and make sure upload method is “ST-LINK”‘.
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Appendix C

Inertial Measurement Unit

The following chapter shows the two IMU analyzed and tested within the project. It has everything to
check

C.1 MPU9025 module

This module is based on the MPU9250 sensor and includes several sensors to monitor 9-axis (9-DoF)
motion. It is composed of a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. Further-
more, it has a DMP (Digital Motion Processor) that can run complex 9-axis motion capture algorithms
[52].

Figure C.1 MPU9250 Pin diagram. Source: Components101 [52].

It communicates with the microcontrollers through an I2C interface and includes a widely used library
for simple usage. This sensor has 9 degrees of freedom and has a 3.3V voltage regulator as well as pull-up
resistors for direct I2C application.

The accelerometer sensibility can be adjusted to work in different ranges from ±2g, ±4g, ±8g, ±16g. I the
case of the magnetometer it has a sensibility of ±4800 µT and ±250◦/s, ±500◦/s, ±1000 ◦/s, ±2000◦/s
gyroscope.
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The technical specifications are summarized below:

• Operating voltage: 3 V, 3.3 V or 5 V

• Accelerometer Range: ±2g, ±4g, ±8g, ±16g

• Gyroscope Range: ±250◦/s, ±500◦/s, ±1000 ◦/s, ±2000◦/s

• Magnetometer range: ±4800 µT

• Interface: I2C and SPI

• AD converter: 16 Bits (digital output)

• Degrees of Freedom (DoF): 9

• Sensor: MPU9250

• Onboard voltage regulator

• Size: 2.0cm x 1.6cm x 0.3cm

Table C.1 MPU9250 Pin-outs. Source: Components101 [52].

Pin Number Pin Name Description

1 VCC Power Supply
2 GND Ground Reference
3 SCL I2C Serial Clock
4 SDA I2C Serial Data
5 EDA Auxiliary Serial Data
6 ECL Auxiliary Serial Clock
7 AD0 I2C/SPI Address Select
8 INT Interrupt
9 NCS SPI Chip Select
10 FSYNC Frame Synchronization

Figure C.2 MPU9250 Internal Circuit. Source: Components101 [52].
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C.2 BNO055 module

The BNO055 is a System in Package (SiP) that combines in a single package a triaxial 14-bit accelerom-
eter, a triaxial 16-bit gyroscope with a range of 2000 degrees per second, a triaxial geomagnetic sensor,
and a 32-bit cortex M0+ microprocessor running Bosch Sensortec sensor fusion software.

The chip-sets are housed in a single 28-pin LGA chassis measuring 3.8mm x 5.2mm x 1.1mm. The
BNO055 has digital bidirectional I2C and UART interfaces for optimal system integration. The BNO055
data output is versatile, it can provide both quaternions or Euler angles as well as providing directly the
use of the RAW output as well (see items below).

The BNO055 can output the following sensor data [87]:

• Absolute Orientation (Euler Vector, 100 Hz)

• Three axis orientation data based on a 360◦ sphere

• Absolute Orientation (Quaternion, 100 Hz)

• Four point quaternion output for more accurate data manipulation

• Angular Velocity Vector (100 Hz)

• Three axis of ’rotation speed’ in rad/s

• Acceleration Vector (100 Hz)

• Three axis of acceleration (gravity + linear motion) in m/s2

• Magnetic Field Strength Vector (20 m/s2)

• Three axis of magnetic field sensing in micro Tesla (µT)

• Linear Acceleration Vector (100 Hz)

• Three axis of linear acceleration data (acceleration minus gravity) in m/s2

• Gravity Vector (100 Hz)

• Three axis of gravitational acceleration (minus any movement) in m/s2

• Temperature (1 Hz)

• Ambient temperature in degrees Celsius

With respect to the pin-out of this sensor [88]:
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Table C.2 BNO055 Pin-out connections. Source: [87].

Pins Pin Name Description

Power pins
VIN 3.3-5.0V power supply input

3VO 3.3V output from the on-board linear voltage regulator,
up to about 50mA as necessary

GND The common/GND pin for power and logic

I2C
SCL

I2C clock pin, connect to your microcontrollers
I2C clock line.

This pin can be used with 3V or 5V logic,
and there’s a 10K pullup on this pin

SDA

I2C data pin, connect to your microcontrollers
I2C data line.

This pin can be used with 3V or 5V logic,
and there’s a 10K pullup on this pin.

Other pins

RST Hardware reset pin. Set this pin low the high to perform a rest.
This pin is 5V safe.

ADR

Set this pin high to change the default I2C
address for the BNO055 if you need to
connect two ICs on the same I2C bus.

The default address is 0x28.
If this pin is connected to 3V,

the address will be 0x29

INT

The HW interrupt output pin, which can be configured to
generate an interrupt signal when certain events

occur like movement detected by the accelerometer, etc.
(not currently supported in the Adafruit library,

but the chip and HW is capable of generating this signal).
The voltage level out is 3V

PS0 and PS1

These pins can be used to change the mode of the device
(it can also do HID-I2C and UART)

and also are provided in case Bosch provides a firmware update
at some point for the ARM Cortex M0 MCU inside the sensor.

They should normally be left unconnected.
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Appendix D

Logic Level Converter

The logic level converter is a fundamental piece when converting high voltage to low voltage and vice-
versa. Processors, run at several voltages, the most popular of which are 5 V, 3.3 V, and, to a lesser
extent, 2.8 and 1.8 V. 5 V. However, most current microcontrollers, though (Raspberry, Arduino, etc.),
run at 3.3 V.

Nevertheless, the majority of the electrical components (sensors, controllers, and displays) operate at
various nominal voltages, namely 5 V and 3.3 V. To link digital devices with various nominal voltages,
the voltage levels must be adjusted. Otherwise, the assembly is unlikely to function well, and we may
even damage a component.

Figure D.1 Logic Level converter. Source: Luis Llamas [89].

To connect to a logic level shifter is a simple process. There are two sides, one for the device with the
highest voltage (identified as HIGH) and one for the device with the lowest voltage (identified as LOW).

First, connect the GND of both devices to the GND of the board on the respective sides of the end
adapter. GND has to be common for both devices, so the GND of both sides of the board are linked
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internally. If not sure, check with a multimeter on both sides of the level adapter.

On the other hand, both devices to the level shifter must be connected to the two reference voltages of
both devices to the level shifter. For this, there is the HV pin, for the Vcc voltage of the higher voltage
device, and LV for Vcc of the lower voltage device.

Finally, GPIO pins (channels) can be used as many time as needed. The channels are bidirectional and
work for both digital and analogue signals, or communication systems (UART, I2C, SPI).
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Appendix E

Bluetooth Module

The Bluetooth module selected in the present project is the HC-06 model from DSD Tech. The following
section is a guide for setting up the Bluetooth module for both Arduino and STM32 microcontrollers.

As regards the pins on the HC-06 Bluetooth module [90],

• RXD: Serial Data Receive Pin. Used for serial input, 3.3V logic. Typically hooked up to transmis-
sion pin (TX) of the Arduino.

• TXD: Serial Data Transmit Pin. Used for serial output. 3.3V logic. Typically hooked up to
reception pin (RX) of the Arduino

• GND: Ground. Typically hooked up to GND pin of the Arduino

• VCC: +5V. Power supply. Typically hooked up to 5V pin of the Arduino.

The connections are [90]:

RXD −→ TX

TXD −→ RX

GND −→ GND

VCC −→ 5V

Figure E.1 HC-05 & HC-06 pin-out. Source: Components101 [90].
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The characteristics of the module are [90]

• HC-06 Features and Electrical characteristics

• Bluetooth protocol: Bluetooth V2.0 protocol standard

• Power Level: Class2(+6dBm)

• Band: 2.40GHz—2.48GHz, ISM Band

• Receiver sensitivity: -85 dBm

• USB protocol: USB v1.1/2.0

• Modulation mode: Gauss frequency Shift Keying

• Safety feature: Authentication and encryption

• Operating voltage range:+3.3V to +6V

• Operating temperature range: -20ºC to +55ºC

• Operating Current: 40mA

On the other hand, the HC-05 shares similar pins [91]

Table E.1 HC-05 pins and its purpose. Source: AranaCorp [91].

Pin Name Function

1 Key The pin state determines whether the module
works in AT command mode or normal mode*

2 Vcc +5V Positive supply needs to be given to this pin for powering the module
3 Gnd Connect to ground

4 TXD Serial data is transmitted by module through
this pin (at 9600bps by default), 3.3V logic

5 RXD Serial data is received by module through
this pin (at 9600bps by default),3.3V logic

6 State The pin is connected to the LED on the
board to represent the state of the module

*High=AT commands receiving mode(Commands response mode), Low or NC= Bluetooth module nor-
mally working

When setting up the Bluetooth, the process is detailed in [90],

1. The user must set the default baud rate of UART serial communication to 9600 in the IDE. The
value is the module’s default setting and can be changed in the application.

2. Because the module is a slave, a master is required to create a successful wireless link. Another
[arduino + module (with master feature)] setup is required for this, alternatively, the user may use
a mobile phone as a master and search for HC-06 slave. The HC-06 module comes with a default
password of ’1234,’ which may be altered.
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3. The user may also use libraries to facilitate communication. Just need to download them and add
them to the header. After it is set, then it is possible to command the Arduino to transmit or
receive data. This data is sent to the master over wireless Bluetooth by the module. If the module
gets data from the master, it will send it to the Arduino through UART serial connection.

4. To connect with the module, use the AT command on a serial terminal, which may be obtained
here.

This section aims to develop a code that uses HC06 Bluetooth module for telemetry and telecommand.

E.1 Initial Bluetooth module code

Make sure to configure the Bluetooth using a Arduino device.

1 /* HC06 bluetooth module setup

2 */

3

4 // Libraries

5 #include <SoftwareSerial.h> // This library enables bluetooth communcication

6

7 // HC06 parameters

8 const int Rx = 2; // Connect Arduino Digital Pin 2 to HC06 Pin Tx

9 const int Tx = 3; // Connect Arduino Digital Pin 3 to HC06 Pin Rx

10 SoftwareSerial hc06(Rx, Tx); // Set Receive and Transmission pins

11

12 // Configuration parameters

13 char BPS = '4'; // 1=1200 , 2=2400, 3=4800, 4=9600, 5=19200, ...

6=38400, 7=57600, 8=115200

14 char NAME_ID[20] = "HC06_Plathon"; // 30 characters maximum

15 char PASS[10] = "1234"; // 4 bit number

16

17 // Setup

18 void setup()

19 {

20 //Initialize Serial Monitor

21 Serial.begin(9600);

22

23 //Initialize Bluetooth Serial Port

24 hc06.begin(9600);

25

26 // AT commands for configuration

27 hc06.print("AT"); // Initiate sequence

28 delay(1000); // Wait 1 second

29

30 hc06.print("AT+NAME");

31 hc06.print(NAME_ID); // Configure bluetooth device name

32 delay(1000); // Wait 1 second

33

34 hc06.print("AT+BAUD");

35 hc06.print(BPS); // Transmission baud rate velocity

36 delay(1000); // Wait 1 second
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37

38 hc06.print("AT+PIN");

39 hc06.print(PASS); // Set Password

40 delay(1000); // Wait 1 second

41

42 // Print setup message

43 Serial.println("Module set up");

44 Serial.print("PIN:");

45 Serial.println(PASS);

46 Serial.print("Name: ");

47 Serial.println(NAME_ID);

48

49 // Wait 1000 ms to ensure the sensor starts correctly

50 delay(1000);

51 }

52

53 // Send and receive data

54 void loop()

55 {

56 //Write data from HC06 to Serial Monitor

57 if (hc06.available())

58 {

59 Serial.write(hc06.read());

60 }

61

62 //Write from Serial Monitor to HC06

63 if (Serial.available())

64 {

65 hc06.write(Serial.read());

66 }

67

68 }

Code E.1 HC06 Bluetooth Module configuration. Source: Own.

E.2 Send and Receive data from module (Arduino Nano) code

1 /* This code reads all sensors data from the BNO055 IMU Sensor

2 * and uses bluetooth communication

3 */

4

5 // Libraries

6 #include <Wire.h> // This library allows to communicate with I2C / TWI ...

devices.

7 #include <Adafruit_Sensor.h> // Library with drivers that are based on the ...

Adafruit Unified Sensor Driver

8 #include <Adafruit_BNO055.h> // This is a library for the BNO055 orientation sensor

9 #include <utility/imumaths.h> // Inertial Measurement Unit Maths Library (it ...

includes matrix.h, quaternions.h and vector.h)

10 #include <math.h> // Math functions

11 #include <SoftwareSerial.h> // This library enables bluetooth communcication

12

13 // Global parameters and objects
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14 #define BNO055_SAMPLERATE_DELAY_MS (100) // Define how fast the sensor sample rate ...

(sample every 100 ms)

15

16 Adafruit_BNO055 IMU = Adafruit_BNO055(); // Create IMU object and set what the ...

object is

17

18 const int Rx = 2; // Connect Arduino Digital Pin 2 to HC06 Pin Tx

19 const int Tx = 3; // Connect Arduino Digital Pin 3 to HC06 Pin Rx

20 SoftwareSerial hc06(Rx, Tx); // Set Receive and Transmission pins

21

22 /* Function Prototypes*/

23 // Calibration function

24 void displayCalStatusSerial(void);

25 void displayCalStatusBluetooth(void);

26 void printSerial(void);

27 void prinBluetooth(void);

28

29 void setup()

30 {

31 //Initialize Serial Monitor

32 Serial.begin(9600);

33

34 // Start the IMU sensor

35 IMU.begin();

36

37 //Initialize Bluetooth Serial Port

38 hc06.begin(9600);

39

40 // Wait 1000 ms to ensure the sensor starts correctly

41 delay(1000);

42

43 // Change the time clock on the chip to the time clock on board of the IMU

44 IMU.setExtCrystalUse(true);

45 }

46

47 void loop()

48 {

49

50 // Print calibration data through serial

51 // displayCalStatusSerial();

52 // Print calibration data

53 displayCalStatusBluetooth();

54

55 // Print data over Bluetooth port

56 printBluetooth();

57 // Print data over Serial Port

58 // printSerial();

59

60 //Write data from HC06 to Serial Monitor

61 if (hc06.available())

62 {

63 Serial.write(hc06.read());

64 }

65

66 //Write from Serial Monitor to HC06

67 if (Serial.available())

68 {

69 hc06.write(Serial.read());

161



APPENDIX E. BLUETOOTH MODULE

70 }

71

72 // Wait the specified delay before requesting next data

73 delay(BNO055_SAMPLERATE_DELAY_MS);

74 }

75

76 // Calibration function

77 void displayCalStatusSerial(void)

78 {

79 /* Get the four calibration values (0..3)

80 Any sensor data reporting 0 should be ignored,

81 3 means 'fully calibrated" */

82 uint8_t system, gyros, accel, mg = 0;

83 IMU.getCalibration(&system, &gyros, &accel, &mg);

84

85 // The data should be ignored until the system calibration is > 0

86 // Display the individual values

87 Serial.print(system, DEC);

88 Serial.print(",");

89 Serial.print(gyros, DEC);

90 Serial.print(",");

91 Serial.print(accel, DEC);

92 Serial.print(",");

93 Serial.print(mg, DEC);

94 }

95

96 // Calibration function for bluetooth

97 void displayCalStatusBluetooth(void)

98 {

99 /* Get the four calibration values (0..3)

100 Any sensor data reporting 0 should be ignored,

101 3 means 'fully calibrated" */

102 uint8_t system, gyros, accel, mg = 0;

103 IMU.getCalibration(&system, &gyros, &accel, &mg);

104

105 // The data should be ignored until the system calibration is > 0

106 // Display the individual values

107 hc06.print(system, DEC);

108 hc06.print(",");

109 hc06.print(gyros, DEC);

110 hc06.print(",");

111 hc06.print(accel, DEC);

112 hc06.print(",");

113 hc06.print(mg, DEC);

114 }

115

116 // Print serial

117 void printSerial(void)

118 {

119 // Work with the imu sensor from Adafruit library

120 // Go to BNO055's 'imu' and bring back a vector of 4 components into 'quat' ...

(quaternion) for the specific object IMU

121 imu::Quaternion quat = IMU.getQuat();

122 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'acc' ...

(accelerometer) for the specific object IMU

123 imu::Vector<3> acc = IMU.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);

124 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'gyro' ...

(gyroscope) for the specific object IMU

162



APPENDIX E. BLUETOOTH MODULE

125 imu::Vector<3> gyro = IMU.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);

126 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'magn' ...

(magnetometer ) for the specific object IMU

127 imu::Vector<3> magn = IMU.getVector(Adafruit_BNO055::VECTOR_MAGNETOMETER);

128

129 // Print Quaternion data

130 Serial.print(quat.w()); // Real part

131 Serial.print(",");

132 Serial.print(quat.x()); // 'i'

133 Serial.print(",");

134 Serial.print(quat.y()); // 'j'

135 Serial.print(",");

136 Serial.print(quat.z()); // 'k'

137 Serial.print(",");

138

139 // Print Acceleration data

140 Serial.print(acc.x());

141 Serial.print(",");

142 Serial.print(acc.y());

143 Serial.print(",");

144 Serial.print(acc.z());

145 Serial.print(",");

146

147 Serial.print(gyro.x());

148 Serial.print(",");

149 Serial.print(gyro.x());

150 Serial.print(",");

151 Serial.print(gyro.x());

152 Serial.print(",");

153

154 Serial.print(magn.x());

155 Serial.print(",");

156 Serial.print(magn.y());

157 Serial.print(",");

158 Serial.println(magn.z());

159 }

160

161 // Print Bluetooth

162 void printBluetooth(void)

163 {

164 // Work with the imu sensor from Adafruit library

165 // Go to BNO055's 'imu' and bring back a vector of 4 components into 'quat' ...

(quaternion) for the specific object IMU

166 imu::Quaternion quat = IMU.getQuat();

167 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'acc' ...

(accelerometer) for the specific object IMU

168 imu::Vector<3> acc = IMU.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);

169 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'gyro' ...

(gyroscope) for the specific object IMU

170 imu::Vector<3> gyro = IMU.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);

171 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'magn' ...

(magnetometer ) for the specific object IMU

172 imu::Vector<3> magn = IMU.getVector(Adafruit_BNO055::VECTOR_MAGNETOMETER);

173

174 // Print Quaternion data

175 hc06.print(quat.w()); // Real part

176 hc06.print(",");

177 hc06.print(quat.x()); // 'i'
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178 hc06.print(",");

179 hc06.print(quat.y()); // 'j'

180 hc06.print(",");

181 hc06.print(quat.z()); // 'k'

182 hc06.print(",");

183

184 // Print Acceleration data

185 hc06.print(acc.x());

186 hc06.print(",");

187 hc06.print(acc.y());

188 hc06.print(",");

189 hc06.print(acc.z());

190 hc06.print(",");

191

192 hc06.print(gyro.x());

193 hc06.print(",");

194 hc06.print(gyro.x());

195 hc06.print(",");

196 hc06.print(gyro.x());

197 hc06.print(",");

198

199 hc06.print(magn.x());

200 hc06.print(",");

201 hc06.print(magn.y());

202 hc06.print(",");

203 hc06.println(magn.z());

204 }

Code E.2 Send data through Bluetooth module with Arduino Nano. Source: Own.

E.3 Send and Receive data from module (STM32 Bluepill) code

1 /*
2 * UART Bluetooth Communication with STM32

3 */

4

5 // Libraries

6 #include <Arduino.h>

7 #include <time.h>

8

9 // Parameters

10 char inputData_serial1 = 0; // Initialize input data from Serial 1

11 char inputData_serial = 0; // Initialize input data from Serial

12

13 // Main setup

14 void setup()

15 {

16 Serial1.begin(9600); // Begin UART serial port

17 Serial.begin(9600); // Begin Serial port

18 Serial1.println("Bluetooth initialized"); // Print initilize message

19 }

20

21 // Main loop
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22 void loop()

23 {

24 // Check if serial is available

25 if (Serial1.available() > 0)

26 {

27 inputData_serial1 = Serial1.read();

28 Serial.write(inputData_serial1); // Display message throuhg Serial port

29 }

30 // If Serial

31 if (Serial.available() > 0)

32 {

33 inputData_serial = Serial.read();

34 Serial1.write(inputData_serial); // Display message throuhg Serial 1 port

35 }

36

37 // Delay 100 ms

38 delay(100);

39 }

Code E.3 Send and receive data through HC06 with STM32. Source: Own.

Let’s see an example of Bluetooth and the Arduino. First, it is needed to configure the Bluetooth
parameters, this can be done using the code provided in E.1

After that, it is possible to test data sending and receiving via the HC-06 module as shown in E.2.

In the code implementation, a baud rate of 9600 was set since otherwise the Bluetooth module does not
show up on the phone.

Figure E.2 Bluetooth setup schematic. Source: Own.
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(a) Bluetooth setup
schematic. Source: Own.

(b) Bluetooth setup
schematic. Source: Own.

Figure E.3 Bluetooth Serial COM. Source: Own.
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Appendix F

Motor

Here is presented the datasheet of each motor RF-300EA and RF-500TB from Mabuchi Motors [60] [59].

F.1 Motor Designations and their Meanings

Let’s revise first the nomenclature of the motor. Each motor has a designation that collects the most
important aspects of it.

• The types of motors are normally designated by a seven-digit code.

• The following 3 to 6 digits designate the armature winding specifications.

• The meaning of each character or figure is as shown in Figure F.1.

• However, since there are some exceptions, contact our sales office for further information.

Figure F.1 Motor designation. Source: Mabuchi Motors [92].
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Shape of motor-housing

Figure F.2 Motor shape. Source: Mabuchi Motors [92].

Brush construction

Figure F.3 Motor brush construction. Source: Mabuchi Motors [92].

Code number for armature diameter

Figure F.4 Motor armature diameter code. Source: Mabuchi Motors [92].

Code number for housing length (mainly)

Figure F.5 Motor housing length code. Source: Mabuchi Motors [92].
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Number of armature pole

Figure F.6 Motor number of armature pole. Source: Mabuchi Motors [92].

Type of magnet (mainly)

Figure F.7 Motor type of magnet. Source: Mabuchi Motors [92].

Diameter of magnet wire

Figure F.8 Motor diameter of magnet wire. Source: Mabuchi Motors [92].

Number of turns of armature winding per slot
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Figure F.9 Motor number of turns of armature winding per slot. Source:
Mabuchi Motors [92].

Hereafter is presented the datasheets for each motor:
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Headquarters  430 Matsuhidai, Matsudo City, Chiba, 270-2280 Japan.  Tel:81-47-710-1177  Fax:81-47-710-1132 (Sales Dept.)
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r/min A r/min A mN·m g·cm W mN·m g·cm A
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Headquarters  430 Matsuhidai, Matsudo City, Chiba, 270-2280 Japan.  Tel:81-47-710-1177  Fax:81-47-710-1132 (Sales Dept.)
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OPERATING
RANGE NOMINAL
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Appendix G

SparkFun Qwiic Motor Driver

A motor driver is used to convert a low strength signal to high strength current signal to adequately
control the power with a sufficient amount of power from an external source. This section aims to
describe all the features of the SparkFun Qwiic Rob-15451 motor driver [56].

G.1 SparkFun Qwiic Rob-15451

As mentioned earlier, the SparkFun Qwiic Rob-15451 motor driver was chosen to control the motor.

(a) SparkFun Qwiic Motor driver ROB 15451
top view. Source: Sparkfun [56].

(b) SparkFun Qwiic Motor driver ROB 15451
bottom view. Source: Sparkfun [56].

Figure G.1 Braking configuration (left) and incorrect use-case configuration
(right). Source: Core Electronics [56]

Table G.1 main shows the main characteristics and features of this motor.
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SparkFun’s Qwiic motor driver specifications and features

1.5 A peak drive per channel, 1.2 A steady state
Operates from 3 to 11 volts with 12 V absolute max

3.3 V default VCC and logic
127 levels of DC drive strength.

Controllable by I2C or TTL UART signals
Direction inversion on a per motor basis

Global Drive enable
Exposed small heat sink shape

Several I2C addresses, default UART bauds available

Table G.1 SparkFun’s Qwiic motor driver specifications and features.
Source: SparkFun [56].

G.2 Power

There are two separate power circuits on this board. The power for the motors is supplied through
the VIN Connectors and it supports voltage ranges from 3.3 V to 11 V with the MAX11V and GND
connections. On the other hand, power for the PSoC (Programmable System on Chip), i.e. the STM32,
and the logic circuits are provided by the 3.3 V input on the Qwiic connectors. All these two power
sources are needed for proper functioning.

Figure G.2 Qwiic motor driver power port. Source: SparkFun [56].

G.3 Qwiic connectors

SparkFun’s Qwiic Connect System uses 4-pin JST connectors to quickly interface development boards
with sensors, LCDs, relays and more. There are two Qwiic connectors on the board such that two motors
can be controlled by a single motor driver (see Figure G.3).
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Figure G.3 Qwiic motor driver port. Source: SparkFun [2].

Unlike traditional connectors, this type of connector is thinner and lighter. The 28 AWG wire’s length is
150 millim and its properties are shown in Tables G.2 and G.3.

AWG
gauge

Conductor
Diameter Inches

Conductor
Diameter mm

Conductor cross
section in mm2

Ohms
per 1000 ft

Ohms
per km

8 0.0126 0.32004 0.080 64.9 212.872

Table G.2 8 AWG gauge cable specifications. Source: Handbook of
Electronic Tables and Formulas for American Wire Gauge [93].

Maximum A
for

chassis wiring

Maximum A
for

power transmission

Maximum frequency for
100% skin depth for

solid conductor copper

Breaking force
Soft Annealed
Cu 37000 PSI

1.4 0.226 170 kHz 4.5 lbs

Table G.3 8 AWG gauge cable specifications. Source: Handbook of
Electronic Tables and Formulas for American Wire Gauge [93].

The Qwiic adapter’s wires have been colour coded to red, black, blue and yellow (see Table G.4).

Color scheme Arrangement

Black GND
Red 3.3V
Blue SDA

Yellow SCL

Table G.4 Color scheme. Source: SparkFun [94].
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(a) Qwiic Cable to Breadboard Jumper (4-pin).
Source: Sparkfun [95].

(b) Qwiic Cable connected to the board. Source:
Sparkfun [95].

Figure G.4 Qwiic cable. Source: SparkFun [95]

As shown in the specification by the AWG standard the maximum current on a Qwiic cable is 226 mA.
Despite it is possible to push it up to 1.4 A for chassis wiring in an isolated, unbundled wire in free air
conditions as per Handbook of Electronic Tables and Formulas for American Wire Gauge, though. It is
not recommended to stress the cable to that level but that cable can easily support a few hundreds of
mA.

G.4 Motor ports

There are screw pin terminals at the top of the board that allows two motor connections. They are
labelled on the backside of the board.

Figure G.5 Qwiic motor driver power port. Source: SparkFun [56].

Table G.5 summarizes the connection name and communication protocols.
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Group Name Direction Description UART I2C

Motor Port

A1 O Winding of first
addressable location

Motor A winding

A2 O Winding of first
addressable location

Motor A winding

B1 O Winding of second
addressable location

Motor B winding

B2 O Winding of second
addressable location

Motor B winding

Table G.5 Qwiic Motor driver motor ports. Source: Source: SparkFun [56]

G.5 Jumpers

There are 2 sets of jumpers to configure on this board. There are pull-up enables for I2C and 4 config
bits that select operational mode.

• I2C Jumpers: I2C pull-up enable. Opening these disables the I2C pull-up resistors used for I2C
communication. If multiple I2C devices are being used, these pull-ups should be disabled on all but
one device. If UART is being used, the pull-up resistors should be disabled.

• Address Jumpers: Serial and function selection. The configuration bits are 4 bits that form
a configuration nybble (half-byte). A closed jumper is a ’1’ and an open jumper is a ’0’. See
configuration Table G.6 for more information.

Figure G.6 Qwiic motor driver pull up jumpers. Source: SparkFun [56].

G.5.1 Address bits

The configuration is set by encoding a number into the 4 config bits on the bottom of the board. Close
a jumper to indicate a 1, or leave it open to indicate a 0.
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Figure G.7 Qwiic motor driver jumpers. Source: SparkFun [56].

Use this table as a reference to see what the user port, address, and expansion port will become in each
configuration (the default configuration is shown in bold):

Pattern Mode and User port User Address Expansion Port

0000 UART at 9600 N/A Master
0011 I2C 0x58 Master
0100 I2C 0x59 Master
0101 I2C 0x5A Master
0110 I2C 0x5B Master
0111 I2C 0x5C Master
1000 I2C 0x5D Master
1001 I2C 0x5E Master
1010 I2C 0x5F Master
1011 I2C 0x60 Master
1100 I2C 0x61 Master
1101 UART at 57600 N/A Master
1110 UART at 115200 N/A Master
1111 N/A N/A N/A

Table G.6 Motor driver configurations. Source: SparkFun [56].

G.6 Thermal Conduction Area

The Qwiic Motor Driver is designed to operate small robot drive motors without a heatsink; we were
able to run up to about 1.1 A continuous current without going above 100 ◦C. Nonetheless, if a heatsink
is needed, Theragrip Thermal Tape can be used to attach three Small Heat Sinks across the thermal
conduction area on the back of the board.

179



APPENDIX G. SPARKFUN QWIIC MOTOR DRIVER

(a) Qwiic motor driver thermal condunction
area. Source: Sparkfun [95].

(b) Qwiic motor driver heatsink. Source:
Sparkfun [95].

Figure G.8 Thermal system of the motor driver. Source: SparkFun [95]

G.7 Board dimensions

The following blueprint (Figure G.9) depicts the dimensions of the board (please note that all dimensions
are in inches).

Figure G.9 Qwiic motor driver dimensions. Source: SparkFun [56].
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G.8 Simple Impulse test code

1 /*
2 * This code sets an impulse to the motor at maximum speed.

3 *
4 * SCMD library by SparkFun used ...

(https://github.com/sparkfun/SparkFun_Serial_Controlled_Motor_Driver_Arduino_Library)

5 * STM32 package from http://dan.drown.org/stm32duino/package_STM32duino_index.json

6 *
7 */

8

9 #include "SCMD.h"

10 #include "SCMD_config.h" // Contains #defines for common SCMD register names and ...

values

11

12 SCMD DriverOne; // Driver object

13

14 void setup()

15 {

16 DriverOne.settings.commInterface = I2C_MODE; // Driver mode definition

17 DriverOne.settings.I2CAddress = 0x5D; // Driver adress definition (0x5D ...

by default)

18

19 while (DriverOne.begin() != 0xA9)

20 { // Wait for idle

21 Serial.println("ID Mismatch");

22 delay(200);

23 }

24 Serial.println("ID Match");

25

26 Serial.println("Waiting for enumeration"); // Wait for peripherals (enumeration)

27 while (DriverOne.ready() == false)

28 ;

29 Serial.println("Ready");

30

31 while (DriverOne.busy())

32 ; // Enables the driver

33 DriverOne.enable();

34 }

35

36 void loop()

37 {

38 DriverOne.setDrive(0, 0, 255); // Upload of values to motor

39 DriverOne.setDrive(1, 1, 0);

40 }

Code G.1 Motor driver Simple Impulse test. Source: Own.
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Appendix H

CAD drawings

H.1 DC Motor

183



 9
,0

4 

 6
,2

0 

 1,50 

 R1,0
0 

 R0,5
0 

 R0,10  1
,0

0 

A

A

 
1,00 

 10,00 

 
6,40 

 
5,

40
 

 
2,

25
 

 60° 

 60° 

 1
,5

0 

 
6,

04
 

 5,04 

 24,35 

 5
,0

0 

 10,00 

 1
,0

0 

 0
,5

0 
 4,40 

 2,25  R0,10 

 9,00 

 2
,0

0 

 2,00 

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DESIGNED BY

VERIF. Dr. David González

MANUF.

IF NOT INDICATED OTHERWISE:
THE DIMENSIONS ARE 
EXPRESSED IN mm

This design is TIEG Research Group's property.
It can't be reproduced or communicated 
without our written agreement.

Yi Qiang Ji
MODEL:

DATE:

ADDITIONAL COMMENTS:

DO NOT CHANGE THE SCALE

TITLE

N.º DRAWING

SCALE: 2:1 SHEET 1

A301 - DC Motor

DC Motor

Polytechical University of Catalonia

Dr. Manel Lamich

REVISION: Final

MABUCHI

RF-300CA

03/04/2021

Check manufacture's sheet for
electrical specification. (see Appendices)

Producto SOLIDWORKS Educational. Solo para uso en la enseñanza.



APPENDIX H. CAD DRAWINGS

H.2 Reaction Wheel
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H.3 Top support ring
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H.4 Bottom support ring
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Appendix I

PCB connections drawings

Below is presented the schematic of the ADCS PCB board used in PLATHON’s project.

I.1 ADCS PCB schematic

Designed by magnetorquer team [96].
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I.2 PCB drawing

Designed by magnetorquer team [97].

193



AD

BC AD

55

44

66

33

77

22

88

11

DESIGNED BY
Miguel Reurer

DATE

CHECKED BY
Jordan Morales

DATE

DRAWN BY
Miguel Reurer

DATE
25/05/2021

This drawing is our property.
It can't be reproduced
or communicated without
our written agreement.

Escala 2:1 SHEET

SIZE
A3

DRAWING NUMBER
1

DRAWING TITLE
PCB

PLACA ADCS

Taladros
8 agujeros R1 mm
14 agujeros R1.5 mm

31/05/2021

31/05/2021 1/2

12.2

R

3

9
1

1
6
.
2

8
.
7

6

2
.
68
4

1 3.9

3
8
.
2

1
0
.
9
7

1 1.21

37

86

1
2

28.75

3.55
.
8

6.4

6
.
3
3

2 0.31320.316.75

2
0
.
6

2
0
.
3

2
.
8

7 .4

1
8
.
8
7

9 .25

43.5

4
2
.
5

1R

17.5

1.5

R

2R
6

93

39 1
.
6



APPENDIX I. PCB CONNECTIONS DRAWINGS

I.3 Bottom support ring

Designed by magnetorquer team [97].
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APPENDIX J. ADCS ASSEMBLY DIAGRAMS

Appendix J

ADCS assembly diagrams

Diagram of the BNO055 and the Arduino Nano connections

Figure J.1 Diagram of the BNO055 and the Arduino Nano connections.
Source: Own.
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APPENDIX J. ADCS ASSEMBLY DIAGRAMS

Diagram of the MPU9250 and the Arduino Nano connections

Figure J.2 Diagram of the MPU9250 and the Arduino Nano connections.
Source: Own.

Diagram of the MPU9250 and the STM3 Bluepill connections

Figure J.3 Diagram of the MPU9250 and the STM3 Bluepill connections.
Source: Own.
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Bluetooth setup diagram with STM32 Bluepill

Figure J.4 Bluetooth setup diagram with STM32 Bluepill. Source: Own.

Diagram of the motor driver and motor and the STM32 Bluepill
connections

Figure J.5 Diagram of the motor driver and motor and the STM32 Bluepill
connections. Source: Own.
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Final assembly diagram

Figure J.6 Final assembly diagram. Source: Own.
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APPENDIX K. JACCHIA-BOWMAN JB2008 ATMOSPHERIC DENSITY MODEL

Appendix K

Jacchia-Bowman JB2008
Atmospheric Density Model

The following code uses [28] to compute the values for density ρ and temperature T for different heights
h. See Github Github

Jacchia-Bowman model uses several inputs such as EUV activity and geomagnetic indices, below is
presented all the indices:

• MJD: Date and Time in Modified Julian Days and fraction (MJD = JD− 2400000.5).

• Right Ascension of Sun [rad]

• Declination of Sun [rad]

• Right Ascension of Position [rad]

• Geocentric Latitude of Position [rad]

• Height of Position [km]

• F10: F10.7 in
[
10−22 W m−2 Hz−1] (Tabular time 1.0 day earlier)

• F10B: F10.7 solar flux average, 81 -day centered on the input time (Tabular time 1.0 day earlier)

• S10: EUV index (26− 34 nm) scaled to F10 (Tabular time 1.0 day earlier)

• S10B: EUV 81 -day ave. centered index (Tabular time 1.0 day earlier)

• XM10: MG2 index scaled to F10 (Tabular time 2.0 days earlier)

• XM10B: MG2 81 -day averaged centered index (Tabular time 2.0 days earlier)

• Y10: Solar X-Ray & Lya index scaled to F10 (Tabular time 5.0 days earlier)

• Y10B: Solar X-Ray & Lya 81-day average centered index (Tabular time 5.0 days earlier)

• dTc : Temperature change computed from Dst geomagnetic storm index

1 %***********************************************************************
2 % Jacchia-Bowman 2008 Model Atmosphere
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3 %

4 % This is the CIRA "Integration Form" of a Jacchia Model.

5 % There are no tabular values of density. Instead, the barometric

6 % equation and diffusion equation are integrated numerically using

7 % the Newton-Coates method to produce the density profile up to the

8 % input position.

9 %

10 % INPUT:

11 %

12 % MJD : Date and Time, in modified Julian Days

13 % and Fraction (MJD = JD-2400000.5)

14 % SUN(1) : Right Ascension of Sun (radians)

15 % SUN(2) : Declination of Sun (radians)

16 % SAT(1) : Right Ascension of Position (radians)

17 % SAT(2) : Geocentric Latitude of Position (radians)

18 % SAT(3) : Height of Position (km)

19 % F10 : 10.7-cm Solar Flux (1.0E-22*Watt/(M**2*Hertz))

20 % (Tabular time 1.0 day earlier)

21 % F10B : 10.7-cm Solar Flux, ave.

22 % 81-day centered on the input time

23 % (Tabular time 1.0 day earlier)

24 % S10 : EUV index (26-34 nm) scaled to F10

25 % (Tabular time 1.0 day earlier)

26 % S10B : EUV 81-day ave. centered index

27 % (Tabular time 1.0 day earlier)

28 % XM10 : MG2 index scaled to F10

29 % (Tabular time 2.0 days earlier)

30 % XM10B : MG2 81-day ave. centered index

31 % (Tabular time 2.0 days earlier)

32 % Y10 : Solar X-Ray & Lya index scaled to F10

33 % (Tabular time 5.0 days earlier)

34 % Y10B : Solar X-Ray & Lya 81-day ave. centered index

35 % (Tabular time 5.0 days earlier)

36 % DSTDTC : Temperature change computed from Dst index

37 %

38 % OUTPUT:

39 %

40 % TEMP(1): Exospheric Temperature above Input Position (deg K)

41 % TEMP(2): Temperature at Input Position (deg K)

42 % RHO : Total Mass-Desnity at Input Position (kg/m**3)

43 %

44 %

45 % JB2008 Model Development: (Ref. 7)

46 %

47 %

48 % A. Development of the JB2006 model:

49 %

50 % 1. Started with the CIRA72 model (Jacchia 71).

51 %

52 % 2. Converted to CIRA70 model replacing equations from Jacchia 70

53 % model (Ref. 5)

54 %

55 % 3. Replaced Tc equation using new solar indices (Ref. 1 and 2)

56 %

57 % 4. Replaced semiannual equation with new global model based

58 % on F10B (Ref. 1 and 3)

59 %

60 % 5. Added correction for local solar time and latitude errors
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61 % (Ref. 1)

62 % Added smooth transition between altitude bands

63 %

64 % 6. Added high altitude ( z > 1500 km ) correction

65 % (Ref. 1 and 4)

66 %

67 % 7. REV A of JB2006 - Oct 2006

68 % Smoothing of density corrections and scale height

69 % through different altitude bands in the latitude-

70 % local time correction subroutine DTSUB

71 % dTx correction replaced with dTc correction

72 %

73 % B. Modification to develop JB2008 model:

74 %

75 % 1. Replaced Tc equation in JB2006 using new solar indices

76 % (Ref. 7)

77 %

78 % 2. Replaced semiannual equation with new global model based

79 % on F10B and S10B (Ref. 6)

80 %

81 % 3. Use dTc value based on Dst geomagnetic storm index

82 % (This replaces ap use) (Ref. 7)

83 %

84 %

85 % All equation references below refer to the original

86 % Jacchia 1971 (CIRA 1972) model papers.

87 %

88 %

89 % References:

90 %

91 % 1. Bowman, Bruce R., etc. : "A New Empirical Thermospheric

92 % Density Model JB2006 Using New Solar Indices",

93 % AIAA/AAS Astrodynamics Specialists Conference, Keystone, CO,

94 % 21-24 Aug 2006, (Paper AIAA 2006-6166).

95 %

96 % 2. Bowman, Bruce R., etc. : "Improvements in Modeling

97 % Thermospheric Densities Using New EUV and FUV Solar Indices",

98 % AAS/AIAA Space Flight Mechanics Meeting, Tampa, FL,

99 % 23-26 Jan 2006, (Paper AAS 06-237).

100 %

101 % 3. Bowman, Bruce R.: "The Semiannual Thermospheric Density

102 % Variation From 1970 to 2002 Between 200-1100 km",

103 % AAS/AIAA Space Flight Mechanics Meeting, Maui, HI,

104 % 8-12 Feb 2004, (Paper AAS 04-174).

105 %

106 % 4. Bowman, Bruce R.; "Atmospheric Density Variations at

107 % 1500 km to 4000 km Height Determined from Long Term

108 % Orbit Perturbation Analysis", AAS/AIAA Space Flight

109 % Mechanics Meeting, Santa Barbara, CA, 11-14 Feb 2001,

110 % (Paper AAS 01-132).

111 %

112 % 5. Jacchia, Luigi G.; "New Static Models of the

113 % Thermosphere and Exosphere with Empirical Temperature

114 % Profiles", (Smithsonian Astrophysical Observatory

115 % Special Report 313), 6 May 1970.

116 %

117 % 6. Bowman, Bruce R., etc. : "The Thermospheric Semiannual Density

118 % Response to Solar EUV Heating," JASTP, 2008
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119 %

120 % 7. Bowman, Bruce R., etc. : "A New Empirical Thermospheric

121 % Density Model JB2008 Using New Solar and Geomagnetic Indices",

122 % AIAA/AAS 2008, COSPAR CIRA 2008 Model

123 %

124 % Last modified: 2018/01/27 M. Mahooti

125 %

126 %***********************************************************************
127 function [TEMP,RHO] = JB2008(MJD,SUN,SAT,F10,F10B,S10,S10B,XM10,XM10B,Y10,Y10B,DSTDTC)

128

129 % The alpha are the thermal diffusion coefficients in Eq. (6)

130 ALPHA = [0.,0.,0.,0.,-0.38];

131

132 % AL10 is log(10.0)

133 AL10 = 2.3025851;

134

135 % The AMW are the molecular weights in order: N2, O2, O, Ar, He & H

136 AMW = [28.0134,31.9988,15.9994,39.9480,4.0026,1.00797];

137

138 % AVOGAD is Avogadro's number in mks units (molecules/kmol)

139 AVOGAD = 6.02257e26;

140

141 TWOPI = 2*pi;

142 PIOV2 = 1.5707963;

143

144 % The FRAC are the assumed sea-level volume fractions in order:

145 % N2, O2, Ar, and He

146 FRAC = [0.78110,0.20955,9.3400e-3,1.2890e-5];

147

148 % RSTAR is the universal gas-constant in mks units (joules/K/kmol)

149 RSTAR = 8314.32;

150

151 % The R# are values used to establish height step sizes in

152 % the regimes 90km to 105km, 105km to 500km and 500km upward.

153 R1 = 0.010;

154 R2 = 0.025;

155 R3 = 0.075;

156

157 % The WT are weights for the Newton-Cotes Five-Point Quad. formula

158 WT =[0.311111111111111,1.422222222222222,0.533333333333333,...

159 1.422222222222222,0.311111111111111];

160

161 % The CHT are coefficients for high altitude density correction

162 CHT = [0.22,-0.20e-2,0.115e-2,-0.211e-5];

163 DEGRAD = pi/180.;

164

165 % Equation (14)

166 FN = (F10B/240)ˆ(1/4);

167 if (FN>1)

168 FN = 1.0;

169 end

170 FSB = F10B*FN + S10B*(1-FN);

171 TSUBC = 392.4 + 3.227*FSB + 0.298*(F10-F10B) ...

172 + 2.259*(S10-S10B) + 0.312*(XM10-XM10B) ...

173 + 0.178*(Y10-Y10B);

174

175 % Equation (15)

176 ETA = 0.5 * abs(SAT(2) - SUN(2));
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177 THETA = 0.5 * abs(SAT(2) + SUN(2));

178

179 % Equation (16)

180 H = SAT(1) - SUN(1);

181 TAU = H - 0.64577182 + 0.10471976 * sin(H + 0.75049158);

182 GLAT = SAT(2);

183 ZHT = SAT(3);

184 GLST = H + pi;

185 GLSTHR = (GLST/DEGRAD)*(24/360);

186

187 if (GLSTHR≥24)

188 GLSTHR = GLSTHR - 24;

189 end

190 if (GLSTHR< 0)

191 GLSTHR = GLSTHR + 24;

192 end

193

194 % Equation (17)

195 C = cos(ETA)ˆ2.5;

196 S = sin(THETA)ˆ2.5;

197

198 DF = S + (C - S) * abs(cos(0.5 * TAU))ˆ3;

199 TSUBL = TSUBC * (1 + 0.31 * DF);

200

201 % Compute correction to dTc for local solar time and lat correction

202 DTCLST = DTSUB (F10,GLSTHR,GLAT,ZHT);

203

204 % Compute the local exospheric temperature.

205 % Add geomagnetic storm effect from input dTc value

206 TEMP(1) = TSUBL + DSTDTC;

207 TINF = TSUBL + DSTDTC + DTCLST;

208

209 % Equation (9)

210 TSUBX = 444.3807 + 0.02385 * TINF - 392.8292 * exp(-0.0021357 * TINF);

211

212 % Equation (11)

213 GSUBX = 0.054285714 * (TSUBX - 183);

214

215 % The TC array will be an argument in the call to

216 % XLOCAL, which evaluates Equation (10) or Equation (13)

217 TC(1) = TSUBX;

218 TC(2) = GSUBX;

219

220 % A AND GSUBX/A OF Equation (13)

221 TC(3) = (TINF - TSUBX)/PIOV2;

222 TC(4) = GSUBX/TC(3);

223

224 % Equation (5)

225 Z1 = 90;

226 Z2 = min(SAT(3),105);

227 AL = log(Z2/Z1);

228 N = floor(AL/R1) + 1;

229 ZR = exp(AL/N);

230 AMBAR1 = XAMBAR(Z1);

231 TLOC1 = XLOCAL(Z1,TC);

232 ZEND = Z1;

233 SUM2 = 0;

234 AIN = AMBAR1 * XGRAV(Z1)/TLOC1;
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235

236 for I = 1:N

237 Z = ZEND;

238 ZEND = ZR * Z;

239 DZ = 0.25 * (ZEND-Z);

240 SUM1 = WT(1)*AIN;

241 for J = 2:5

242 Z = Z + DZ;

243 AMBAR2 = XAMBAR(Z);

244 TLOC2 = XLOCAL(Z,TC);

245 GRAVL = XGRAV(Z);

246 AIN = AMBAR2 * GRAVL/TLOC2;

247 SUM1 = SUM1 + WT(J) * AIN;

248 end

249 SUM2 = SUM2 + DZ * SUM1;

250 end

251

252 FACT1 = 1000/RSTAR;

253 RHO = 3.46e-6 * AMBAR2 * TLOC1 * exp(-FACT1*SUM2)/AMBAR1/TLOC2;

254

255 % Equation (2)

256 ANM = AVOGAD * RHO;

257 AN = ANM/AMBAR2;

258

259 % Equation (3)

260 FACT2 = ANM/28.960;

261 ALN(1) = log(FRAC(1)*FACT2);

262 ALN(4) = log(FRAC(3)*FACT2);

263 ALN(5) = log(FRAC(4)*FACT2);

264

265 % Equation (4)

266 ALN(2) = log(FACT2 * (1 + FRAC(2)) - AN);

267 ALN(3) = log(2 * (AN - FACT2));

268

269 if (SAT(3) > 105)

270 else

271 TEMP(2) = TLOC2;

272 % Put in negligible hydrogen for use in DO-LOOP 13

273 ALN(6) = ALN(5) - 25;

274 % Equation (24) - J70 Seasonal-Latitudinal Variation

275 TRASH = (MJD - 36204) / 365.2422;

276 CAPPHI = mod(TRASH,1);

277 DLRSL = 0.02 * (SAT(3) - 90) * exp(-0.045 * (SAT(3) - 90))...

278 * sign_(1,SAT(2)) * sin(TWOPI * CAPPHI+ 1.72)...

279 * sin(SAT(2))ˆ2;

280 % Equation (23) - Computes the semiannual variation

281 DLRSA = 0;

282 if (Z<2000)

283 YRDAY = TMOUTD (MJD);

284 % Use new semiannual model

285 [FZZ,GTZ,DLRSA] = SEMIAN08 (YRDAY,ZHT,F10B,S10B,XM10B);

286 if (FZZ<0)

287 DLRSA = 0;

288 end

289 end

290

291 % Sum the ∆-log-rhos and apply to the number densities.

292 % In CIRA72 the following equation contains an actual sum,
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293 % namely DLR = AL10 * (DLRGM + DLRSA + DLRSL)

294 % However, for Jacchia 70, there is no DLRGM or DLRSA.

295 DLR = AL10 * (DLRSL + DLRSA);

296

297 for I = 1:6

298 ALN(I) = ALN(I) + DLR;

299 end

300

301 % Compute mass-density and mean-molecular-weight and

302 % convert number density logs from natural to common.

303 SUMN = 0;

304 SUMNM = 0;

305

306 for I = 1:6

307 AN = exp(ALN(I));

308 SUMN = SUMN + AN;

309 SUMNM = SUMNM + AN*AMW(I);

310 AL10N(I) = ALN(I)/AL10;

311 end

312

313 RHO = SUMNM/AVOGAD;

314

315 % Compute the high altitude exospheric density correction factor

316 FEX = 1;

317

318 if ((ZHT≥1000)&&(ZHT<1500))

319 ZETA = (ZHT - 1000) * 0.002;

320 ZETA2 = ZETA * ZETA;

321 ZETA3 = ZETA * ZETA2;

322 F15C = CHT(1) + CHT(2)*F10B + CHT(3)*1500 + CHT(4)*F10B*1500;

323 F15C_ZETA = (CHT(3) + CHT(4)*F10B) * 500;

324 FEX2 = 3 * F15C - F15C_ZETA - 3;

325 FEX3 = F15C_ZETA - 2 * F15C + 2;

326 FEX = 1 + FEX2 * ZETA2 + FEX3 * ZETA3;

327 end

328

329 if (ZHT ≥ 1500)

330 FEX = CHT(1) + CHT(2)*F10B + CHT(3)*ZHT + CHT(4)*F10B*ZHT;

331 end

332

333 % Apply the exospheric density correction factor.

334 RHO = FEX * RHO;

335 return

336 end

337

338 % Equation (6)

339 Z3 = min(SAT(3),500);

340 AL = log(Z3/Z);

341 N = floor(AL/R2) + 1;

342 ZR = exp(AL/N);

343 SUM2 = 0;

344 AIN = GRAVL/TLOC2;

345

346 for I = 1:N

347 Z = ZEND;

348 ZEND = ZR * Z;

349 DZ = 0.25 * (ZEND - Z);

350 SUM1 = WT(1) * AIN;
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351 for J = 2:5

352 Z = Z + DZ;

353 TLOC3 = XLOCAL(Z,TC);

354 GRAVL = XGRAV(Z);

355 AIN = GRAVL/TLOC3;

356 SUM1 = SUM1 + WT(J) * AIN;

357 end

358 SUM2 = SUM2 + DZ * SUM1;

359 end

360

361 Z4 = max(SAT(3),500);

362 AL = log(Z4/Z);

363 R = R2;

364

365 if (SAT(3) > 500)

366 R = R3;

367 end

368

369 N = floor(AL/R) + 1;

370 ZR = exp(AL/N);

371 SUM3 = 0;

372

373 for I=1:N

374 Z = ZEND;

375 ZEND = ZR * Z;

376 DZ = 0.25 * (ZEND - Z);

377 SUM1 = WT(1) * AIN;

378 for J = 2:5

379 Z = Z + DZ;

380 TLOC4 = XLOCAL(Z,TC);

381 GRAVL = XGRAV(Z);

382 AIN = GRAVL/TLOC4;

383 SUM1 = SUM1 + WT(J) * AIN;

384 end

385 SUM3 = SUM3 + DZ * SUM1;

386 end

387

388 if (SAT(3) > 500)

389 T500 = TLOC3;

390 TEMP(2) = TLOC4;

391 ALTR = log(TLOC4/TLOC2);

392 FACT2 = FACT1 * (SUM2 + SUM3);

393 HSIGN = -1;

394 else

395 T500 = TLOC4;

396 TEMP(2) = TLOC3;

397 ALTR = log(TLOC3/TLOC2);

398 FACT2 = FACT1 * SUM2;

399 HSIGN = 1;

400 end

401

402 for I = 1:5

403 ALN(I) = ALN(I) - (1 + ALPHA(I)) * ALTR - FACT2 * AMW(I);

404 end

405

406 % Equation (7) - Note that in CIRA72, AL10T5 = log10(T500)

407 AL10T5 = log10(TINF);

408 ALNH5 = (5.5 * AL10T5 - 39.40) * AL10T5 + 73.13;
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409 ALN(6) = AL10 * (ALNH5 + 6) + HSIGN * (log(TLOC4/TLOC3) + FACT1 * SUM3 * AMW(6));

410

411 % Equation (24) - J70 Seasonal-Latitudinal Variation

412 TRASH = (MJD - 36204) / 365.2422;

413 CAPPHI = mod(TRASH,1);

414 DLRSL = 0.02 * (SAT(3) - 90) * exp(-0.045 * (SAT(3) - 90))...

415 * sign_(1,SAT(2)) * sin(TWOPI * CAPPHI+ 1.72)...

416 * sin(SAT(2))ˆ2;

417

418 % Equation (23) - Computes the semiannual variation

419 DLRSA = 0;

420 if (Z<2000)

421 YRDAY = TMOUTD (MJD);

422 % Use new semiannual model

423 [FZZ,GTZ,DLRSA] = SEMIAN08 (YRDAY,ZHT,F10B,S10B,XM10B);

424 if (FZZ<0)

425 DLRSA = 0;

426 end

427 end

428

429 % Sum the ∆-log-rhos and apply to the number densities.

430 % In CIRA72 the following equation contains an actual sum,

431 % namely DLR = AL10 * (DLRGM + DLRSA + DLRSL)

432 % However, for Jacchia 70, there is no DLRGM or DLRSA.

433 DLR = AL10 * (DLRSL + DLRSA);

434

435 for I = 1:6

436 ALN(I) = ALN(I) + DLR;

437 end

438

439 % Compute mass-density and mean-molecular-weight and

440 % convert number density logs from natural to common.

441 SUMN = 0.;

442 SUMNM = 0.;

443

444 for I = 1:6

445 AN = exp(ALN(I));

446 SUMN = SUMN + AN;

447 SUMNM = SUMNM + AN*AMW(I);

448 AL10N(I) = ALN(I)/AL10;

449 end

450

451 RHO = SUMNM/AVOGAD;

452

453 % Compute the high altitude exospheric density correction factor

454 FEX = 1;

455

456 if ((ZHT≥1000)&&(ZHT<1500))

457 ZETA = (ZHT - 1000) * 0.002;

458 ZETA2 = ZETA * ZETA;

459 ZETA3 = ZETA * ZETA2;

460 F15C = CHT(1) + CHT(2)*F10B + CHT(3)*1500 + CHT(4)*F10B*1500;

461 F15C_ZETA = (CHT(3) + CHT(4)*F10B) * 500;

462 FEX2 = 3 * F15C - F15C_ZETA - 3;

463 FEX3 = F15C_ZETA - 2 * F15C + 2;

464 FEX = 1 + FEX2 * ZETA2 + FEX3 * ZETA3;

465 end

466
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467 if (ZHT ≥ 1500)

468 FEX = CHT(1) + CHT(2)*F10B + CHT(3)*ZHT + CHT(4)*F10B*ZHT;

469 end

470

471 % Apply the exospheric density correction factor.

472 RHO = FEX * RHO;

473

474 end

475

476 %***********************************************************************
477 function XAMBAR2 = XAMBAR(Z)

478 % Evaluates Equation (1)

479

480 C = [28.15204,-8.5586e-2,+1.2840e-4,-1.0056e-5,-1.0210e-5,+1.5044e-6,+9.9826e-8];

481 DZ = Z - 100;

482 AMB = C(7);

483

484 for I = 1:6

485 J = 7-I;

486 AMB = DZ * AMB + C(J);

487 end

488

489 XAMBAR2 = AMB;

490

491 end

492

493 %***********************************************************************
494 function XGRAV2 = XGRAV(Z)

495 % Evaluates Equation (8)

496 XGRAV2 = 9.80665/(1 + Z/6356.766)ˆ2;

497

498 end

499 %***********************************************************************
500 function XLOCAL2 = XLOCAL(Z,TC)

501 % Evaluates Equation (10) or Equation (13), depending on Z

502 DZ = Z - 125;

503 if (DZ > 0)

504 XLOCAL2 = TC(1) + TC(3) * atan(TC(4)*DZ*(1 + 4.5e-6*DZˆ2.5));

505 return

506 end

507 XLOCAL2 = ((-9.8204695e-6 * DZ - 7.3039742e-4) * DZˆ2 + 1) * DZ * TC(2) + TC(1);

508 end

509 %***********************************************************************
510 function DTC = DTSUB (F10,XLST,XLAT,ZHT)

511 %

512 % COMPUTE dTc correction for Jacchia-Bowman model

513 %

514 % Calling Args:

515 % ------------

516 % F10 = (I) F10 FLUX

517 % XLST = (I) LOCAL SOLAR TIME (HOURS 0-23.999)

518 % XLAT = (I) XLAT = SAT LAT (RAD)

519 % ZHT = (I) ZHT = HEIGHT (KM)

520 % DTC = (O) dTc correction

521 %

522 B = [-0.457512297e1, -0.512114909e1, -0.693003609e2,...

523 0.203716701e3, 0.703316291e3, -0.194349234e4,...

524 0.110651308e4, -0.174378996e3, 0.188594601e4,...
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525 -0.709371517e4, 0.922454523e4, -0.384508073e4,...

526 -0.645841789e1, 0.409703319e2, -0.482006560e3,...

527 0.181870931e4, -0.237389204e4, 0.996703815e3,...

528 0.361416936e2];

529

530 C = [-0.155986211e2, -0.512114909e1, -0.693003609e2,...

531 0.203716701e3, 0.703316291e3, -0.194349234e4,...

532 0.110651308e4, -0.220835117e3, 0.143256989e4,...

533 -0.318481844e4, 0.328981513e4, -0.135332119e4,...

534 0.199956489e2, -0.127093998e2, 0.212825156e2,...

535 -0.275555432e1, 0.110234982e2, 0.148881951e3,...

536 -0.751640284e3, 0.637876542e3, 0.127093998e2,...

537 -0.212825156e2, 0.275555432e1];

538

539 DTC = 0;

540 tx = XLST/24;

541 ycs = cos(XLAT);

542 F = (F10 - 100)/100;

543

544 % calculates dTc

545 if (ZHT≥120 && ZHT≤200)

546 H = (ZHT - 200)/50;

547 DTC200 = C(17) + C(18)*tx*ycs + C(19)*txˆ2*ycs...

548 + C(20)*txˆ3*ycs + C(21)*F*ycs + C(22)*tx*F*ycs...

549 + C(23)*txˆ2*F*ycs;

550 sum = C(1) + B(2)*F + C(3)*tx*F + C(4)*txˆ2*F...

551 + C(5)*txˆ3*F + C(6)*txˆ4*F + C(7)*txˆ5*F...

552 + C(8)*tx*ycs + C(9)*txˆ2*ycs + C(10)*txˆ3*ycs...

553 + C(11)*txˆ4*ycs + C(12)*txˆ5*ycs + C(13)*ycs...

554 + C(14)*F*ycs + C(15)*tx*F*ycs + C(16)*txˆ2*F*ycs;

555 DTC200DZ = sum;

556 CC = 3*DTC200 - DTC200DZ;

557 DD = DTC200 - CC;

558 ZP = (ZHT-120)/80;

559 DTC = CC*ZP*ZP + DD*ZP*ZP*ZP;

560 end

561

562 if (ZHT>200 && ZHT≤240)

563 H = (ZHT - 200)/50;

564 sum = C(1)*H + B(2)*F*H + C(3)*tx*F*H + C(4)*txˆ2*F*H...

565 + C(5)*txˆ3*F*H + C(6)*txˆ4*F*H + C(7)*txˆ5*F*H...

566 + C(8)*tx*ycs*H + C(9)*txˆ2*ycs*H + C(10)*txˆ3*ycs*H...

567 + C(11)*txˆ4*ycs*H + C(12)*txˆ5*ycs*H + C(13)*ycs*H...

568 + C(14)*F*ycs*H + C(15)*tx*F*ycs*H + C(16)*txˆ2*F*ycs*H...

569 + C(17) + C(18)*tx*ycs + C(19)*txˆ2*ycs...

570 + C(20)*txˆ3*ycs + C(21)*F*ycs + C(22)*tx*F*ycs...

571 + C(23)*txˆ2*F*ycs;

572 DTC = sum;

573 end

574

575 if (ZHT>240 && ZHT≤300)

576 H = 40/50;

577 sum = C(1)*H + B(2)*F*H + C(3)*tx*F*H + C(4)*txˆ2*F*H...

578 + C(5)*txˆ3*F*H + C(6)*txˆ4*F*H + C(7)*txˆ5*F*H...

579 + C(8)*tx*ycs*H + C(9)*txˆ2*ycs*H + C(10)*txˆ3*ycs*H...

580 + C(11)*txˆ4*ycs*H + C(12)*txˆ5*ycs*H + C(13)*ycs*H...

581 + C(14)*F*ycs*H + C(15)*tx*F*ycs*H + C(16)*txˆ2*F*ycs*H...

582 + C(17) + C(18)*tx*ycs + C(19)*txˆ2*ycs...
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583 + C(20)*txˆ3*ycs + C(21)*F*ycs + C(22)*tx*F*ycs...

584 + C(23)*txˆ2*F*ycs;

585 AA = sum;

586 BB = C(1) + B(2)*F + C(3)*tx*F + C(4)*txˆ2*F...

587 + C(5)*txˆ3*F + C(6)*txˆ4*F + C(7)*txˆ5*F...

588 + C(8)*tx*ycs + C(9)*txˆ2*ycs + C(10)*txˆ3*ycs...

589 + C(11)*txˆ4*ycs + C(12)*txˆ5*ycs + C(13)*ycs...

590 + C(14)*F*ycs + C(15)*tx*F*ycs + C(16)*txˆ2*F*ycs;

591 H = 300/100;

592 sum = B(1) + B(2)*F + B(3)*tx*F + B(4)*txˆ2*F...

593 + B(5)*txˆ3*F + B(6)*txˆ4*F + B(7)*txˆ5*F...

594 + B(8)*tx*ycs + B(9)*txˆ2*ycs + B(10)*txˆ3*ycs...

595 + B(11)*txˆ4*ycs + B(12)*txˆ5*ycs + B(13)*H*ycs...

596 + B(14)*tx*H*ycs + B(15)*txˆ2*H*ycs + B(16)*txˆ3*H*ycs...

597 + B(17)*txˆ4*H*ycs + B(18)*txˆ5*H*ycs + B(19)*ycs;

598 DTC300 = sum;

599 sum = B(13)*ycs...

600 + B(14)*tx*ycs + B(15)*txˆ2*ycs + B(16)*txˆ3*ycs...

601 + B(17)*txˆ4*ycs + B(18)*txˆ5*ycs;

602 DTC300DZ = sum;

603 CC = 3.*DTC300 - DTC300DZ - 3.*AA - 2.*BB;

604 DD = DTC300 - AA - BB - CC;

605 ZP = (ZHT-240)/60;

606 DTC = AA + BB*ZP + CC*ZP*ZP + DD*ZP*ZP*ZP;

607 end

608

609 if (ZHT>300 && ZHT≤600)

610 H = ZHT/100;

611 sum = B(1) + B(2)*F + B(3)*tx*F + B(4)*txˆ2*F...

612 + B(5)*txˆ3*F + B(6)*txˆ4*F + B(7)*txˆ5*F...

613 + B(8)*tx*ycs + B(9)*txˆ2*ycs + B(10)*txˆ3*ycs...

614 + B(11)*txˆ4*ycs + B(12)*txˆ5*ycs + B(13)*H*ycs...

615 + B(14)*tx*H*ycs + B(15)*txˆ2*H*ycs + B(16)*txˆ3*H*ycs...

616 + B(17)*txˆ4*H*ycs + B(18)*txˆ5*H*ycs + B(19)*ycs;

617 DTC = sum;

618 end

619

620 if (ZHT>600 && ZHT≤800)

621 ZP = (ZHT - 600)/100;

622 HP = 600./100.;

623 AA = B(1) + B(2)*F + B(3)*tx*F + B(4)*txˆ2*F...

624 + B(5)*txˆ3*F + B(6)*txˆ4*F + B(7)*txˆ5*F...

625 + B(8)*tx*ycs + B(9)*txˆ2*ycs + B(10)*txˆ3*ycs...

626 + B(11)*txˆ4*ycs + B(12)*txˆ5*ycs + B(13)*HP*ycs...

627 + B(14)*tx*HP*ycs + B(15)*txˆ2*HP*ycs+ B(16)*txˆ3*HP*ycs...

628 + B(17)*txˆ4*HP*ycs + B(18)*txˆ5*HP*ycs + B(19)*ycs;

629 BB = B(13)*ycs...

630 + B(14)*tx*ycs + B(15)*txˆ2*ycs + B(16)*txˆ3*ycs...

631 + B(17)*txˆ4*ycs + B(18)*txˆ5*ycs;

632 CC = -(3*AA+4*BB)/4;

633 DD = (AA+BB)/4;

634 DTC = AA + BB*ZP + CC*ZP*ZP + DD*ZP*ZP*ZP;

635 end

636

637 end

638

639 %******************************************************************
640 function [FZZ,GTZ,DRLOG] = SEMIAN08(DAY,HT,F10B,S10B,XM10B)
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641 %

642 % COMPUTE SEMIANNUAL VARIATION (DELTA LOG RHO)

643 % INPUT DAY, HEIGHT, F10BAR

644 % 025. 650. 150.

645 % OUTPUT FUNCTIONS FZ, GT, AND DEL LOG RHO VALUE

646 %

647 % DAY (I) DAY OF YEAR

648 % HT (I) HEIGHT (KM)

649 % F10BAR (I) AVE 81-DAY CENTERED F10

650 % FZZ (O) SEMIANNUAL AMPLITUDE

651 % GTZ (O) SEMIANNUAL PHASE FUNCTION

652 % DRLOG (O) DELTA LOG RHO

653

654 TWOPI = 2*pi;

655

656 % FZ GLOBAL MODEL VALUES

657 % 1997-2006 FIT:

658 FZM = [0.2689,-0.1176e-1, 0.2782e-1, ...

659 -0.2782e-1, 0.3470e-3];

660

661 % GT GLOBAL MODEL VALUES

662 % 1997-2006 FIT:

663 GTM = [-0.3633, 0.8506e-1, 0.2401,-0.1897, ...

664 -0.2554,-0.1790e-1, 0.5650e-3,-0.6407e-3, ...

665 -0.3418e-2,-0.1252e-2];

666

667 % COMPUTE NEW 81-DAY CENTERED SOLAR INDEX FOR FZ

668 FSMB = F10B - 0.70*S10B - 0.04*XM10B;

669 HTZ = HT/1000;

670

671 FZZ = FZM(1) + FZM(2)*FSMB + FZM(3)*FSMB*HTZ ...

672 + FZM(4)*FSMB*HTZˆ2 + FZM(5)*FSMBˆ2*HTZ;

673

674 % COMPUTE DAILY 81-DAY CENTERED SOLAR INDEX FOR GT

675 FSMB = F10B - 0.75*S10B - 0.37*XM10B;

676

677 TAU = (DAY-1)/365;

678 SIN1P = sin(TWOPI*TAU);

679 COS1P = cos(TWOPI*TAU);

680 SIN2P = sin(2*TWOPI*TAU);

681 COS2P = cos(2*TWOPI*TAU);

682

683 GTZ = GTM(1) + GTM(2)*SIN1P + GTM(3)*COS1P ...

684 + GTM(4)*SIN2P + GTM(5)*COS2P ...

685 + GTM(6)*FSMB ...

686 + GTM(7)*FSMB*SIN1P + GTM( 8)*FSMB*COS1P ...

687 + GTM(9)*FSMB*SIN2P + GTM(10)*FSMB*COS2P;

688

689 if (FZZ<1e-6)

690 FZZ = 1e-6;

691 end

692

693 DRLOG = FZZ*GTZ;

694

695 end

696

697 %******************************************************************
698 function doy = TMOUTD(MJD)
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699

700 [year,month,day,hr,min,sec] = invjday(MJD+2400000.5);

701 doy = finddays(year,month,day,hr,min,sec);

702

703 end

Code K.1 Jacchia-Bowman JB2008 Atmospheric Density Model. Source: Matlab and Jacchia-Bowman
[98] [28].

1 %-------------------------------------------------------------------------%

2 % Temperature and density plots using Jacchia-Bowman 2008 Model Atmosphere

3

4 % Date: 17/04/2021

5 % Author/s: Yi Qiang Ji Zhang

6

7 %-------------------------------------------------------------------------%

8

9 clc;

10 close all;

11 clear all;

12 format long g

13

14 % Set interpreter to latex

15 set(groot,'defaultAxesTickLabelInterpreter','latex');

16 set(groot,'defaulttextinterpreter','latex');

17 set(groot,'defaultLegendInterpreter','latex');

18

19 global const PC

20

21 SAT_Const

22 constants

23 load DE430Coeff.mat

24 PC = DE430Coeff;

25

26 % read Earth orientation parameters

27 fid = fopen('eop19620101.txt','r');

28 % ...

----------------------------------------------------------------------------------------------------

29 % | Date MJD x y UT1-UTC LOD dPsi dEpsilon dX ...

dY DAT

30 % |(0h UTC) " " s s " " " ...

" s

31 % ...

----------------------------------------------------------------------------------------------------

32 eopdata = fscanf(fid,'%i %d %d %i %f %f %f %f %f %f %f %f %i',[13 inf]);

33 fclose(fid);

34

35 % read space weather data

36 fid = fopen('SOLFSMY.txt','r');

37 % ------------------------------------------------------------------------

38 % | YYYY DDD JulianDay F10 F81c S10 S81c M10 M81c Y10 Y81c

39 % ------------------------------------------------------------------------

40 SOLdata = fscanf(fid,'%d %d %f %f %f %f %f %f %f %f %f',[11 inf]);

41 fclose(fid);

42

43
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44 %% Density at h=400km for different years

45

46 % Dates vector

47 dates = 1999:1:2015;

48

49 % Temperature vector

50 temp_dates = zeros(1,length(dates));

51

52 % Density vector

53 rho_dates = zeros(1,length(dates));

54

55 % Height vector

56 height = [400 500 600];

57

58 % Strings (for automatic plotting)

59 str = strings([1,length(height)]);

60

61 % Loop for each height

62 for k=1:1:length(height)

63 % Loop for each date

64 for j=1:1:length(dates)

65 year = dates(j);

66 doy = 200;

67 [month,day,hour,minute,sec] = days2mdh(year,doy);

68 MJD = Mjday(year,month,day,hour,minute,sec);

69

70 % READ SOLAR INDICES

71 % USE 1 DAY LAG FOR F10 AND S10 FOR JB2008

72 JD = floor(MJD-1+2400000.5);

73 i = find(JD==SOLdata(3,:),1,'first');

74 SOL = SOLdata(:,i);

75 F10 = SOL(4);

76 F10B = SOL(5);

77 S10 = SOL(6);

78 S10B = SOL(7);

79

80 % USE 2 DAY LAG FOR M10 FOR JB2008

81 SOL = SOLdata(:,i-1);

82 XM10 = SOL(8);

83 XM10B = SOL(9);

84

85 % USE 5 DAY LAG FOR Y10 FOR JB2008

86 SOL = SOLdata(:,i-4);

87 Y10 = SOL(10);

88 Y10B = SOL(11);

89

90 % READ GEOMAGNETIC STORM DTC VALUE

91 fid = fopen('DTCFILE.txt','r');

92 % ------------------------------------------------------------------------

93 % | YYYY DDD DTC1 to DTC24

94 % ------------------------------------------------------------------------

95 DTCdata = fscanf(fid,'%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d ...

%d %d %d %d %d %d %d',[26 inf]);

96 fclose(fid);

97

98 doy = finddays(year,month,day,hour,minute,sec);

99 i = find(year==DTCdata(1,:) & floor(doy)==DTCdata(2,:),1,'first');

100 DTC = DTCdata(:,i);
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101 ii = floor(hour)+3;

102 DSTDTC = DTC(ii);

103

104 % CONVERT POINT OF INTEREST LOCATION (RADIANS AND KM)

105 % CONVERT LONGITUDE TO RA

106 [x_pole,y_pole,UT1_UTC,LOD,dpsi,deps,dx_pole,dy_pole,TAI_UTC] = ...

IERS(eopdata,MJD,'l');

107 [UT1_TAI,UTC_GPS,UT1_GPS,TT_UTC,GPS_UTC] = timediff(UT1_UTC,TAI_UTC);

108 [DJMJD0, DATE] = iauCal2jd(year, month, day);

109 TIME = (60*(60*hour+minute)+sec)/86400;

110 UTC = DATE+TIME;

111 TT = UTC+TT_UTC/86400;

112 TUT = TIME+UT1_UTC/86400;

113 UT1 = DATE+TUT;

114 GWRAS = iauGmst06(DJMJD0, UT1, DJMJD0, TT);

115 XLON = 60*const.Rad;

116 SAT(1) = mod(GWRAS + XLON, 2*pi);

117 SAT(2) = -70*const.Rad;

118 SAT(3) = height(k);

119

120 % SET Sun's right ascension and declination (RADIANS)

121 % Difference between ephemeris time and universal time

122 % JD = MJD_UTC+2400000.5;

123 % [year, month, day, hour, minute, sec] = invjday(JD);

124 % days = finddays(year, month, day, hour, minute, sec);

125 % ET_UT = ETminUT(year+days/365.25);

126 % MJD_ET = MJD_UTC+ET_UT/86400;

127 % [r_Mercury,r_Venus,r_Earth,r_Mars,r_Jupiter,r_Saturn,r_Uranus, ...

128 % r_Neptune,r_Pluto,r_Moon,r_Sun,r_SunSSB] = JPL_Eph_DE430(MJD_ET);

129

130 MJD_TDB = Mjday_TDB(TT);

131 [r_Mercury,r_Venus,r_Earth,r_Mars,r_Jupiter,r_Saturn,r_Uranus, ...

132 r_Neptune,r_Pluto,r_Moon,r_Sun,r_SunSSB] = JPL_Eph_DE430(MJD_TDB);

133 ra_Sun = atan2(r_Sun(2), r_Sun(1));

134 dec_Sun = atan2(r_Sun(3), sqrt(r_Sun(1)ˆ2+r_Sun(2)ˆ2));

135 SUN(1) = ra_Sun;

136 SUN(2) = dec_Sun;

137

138 % COMPUTE DENSITY KG/M3 RHO

139 [TEMP,RHO] = JB2008(MJD,SUN,SAT,F10,F10B,S10,S10B,XM10,XM10B,Y10,Y10B,DSTDTC);

140

141 % Save temperature

142 temp_dates(k,j) = TEMP(2);

143

144 % Save density in density vector

145 rho_dates(k,j) = RHO;

146

147 end

148 % Concatenate strings (for automatic plotting)

149 str(k) = {strcat('$h$ = ' , '\,', num2str(SAT(3)), '\,', '$\mathrm{km}$')};

150 end

151

152

153

154 % Plots

155

156 title1 = strcat('\textbf{Temperature $T$ }');

157 title2 = strcat('\textbf{Density $\rho$ }');
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158

159 plot_pdf1 = figure;

160 plot(dates,temp_dates);

161 grid on;

162 grid minor;

163 title(title1);

164 legend(str(:));

165 xlabel('Date [year]');

166 ylabel('Temperature [$ˆ\circ K$]');

167

168 plot_pdf2 = figure;

169 plot(dates,rho_dates);

170 grid on;

171 grid minor;

172 title(title2);

173 legend(str(:));

174 xlabel('Date [year]');

175 ylabel('Density [$\mathrm{kg}/\mathrm{mˆ3}$]');

176

177

178 % Save plots in .pdf and .png

179

180 % % Figure 1

181 % set(plot_pdf1, 'Units', 'Centimeters');

182 % pos = get(plot_pdf1, 'Position');

183 % set(plot_pdf1, 'PaperPositionMode', 'Auto', 'PaperUnits', 'Centimeters', ...

184 % 'PaperSize', [pos(3), pos(4)]);

185 % print(plot_pdf1, 'JB2008_temperature_vs_height.pdf', '-dpdf', '-r0');

186 %

187 % % Save png

188 % print(plot_pdf1,'JB2008_temperature_vs_height.png','-dpng','-r1000');

189 %

190 % % Figure 2

191 % set(plot_pdf2, 'Units', 'Centimeters');

192 % pos = get(plot_pdf2, 'Position');

193 % set(plot_pdf2, 'PaperPositionMode', 'Auto', 'PaperUnits', 'Centimeters', ...

194 % 'PaperSize', [pos(3), pos(4)]);

195 % print(plot_pdf2, 'JB2008_density_vs_height.pdf', '-dpdf', '-r0');

196 %

197 % % Save png

198 % print(plot_pdf2,'JB2008_density_vs_height.png','-dpng','-r1000');

Code K.2 Jacchia-Bowman JB2008 Atmospheric Density Model. Source: Own.

1 %-------------------------------------------------------------------------%

2 % Aerodynamic torque as a function of height, CD and Solar Acticity

3

4 % Date: 17/04/2021

5 % Author/s: Yi Qiang Ji Zhang

6

7 %-------------------------------------------------------------------------%

8

9 clc;

10 close all;

11 clear all;

12 format long g
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13

14 % Set interpreter to latex

15 set(groot,'defaultAxesTickLabelInterpreter','latex');

16 set(groot,'defaulttextinterpreter','latex');

17 set(groot,'defaultLegendInterpreter','latex');

18

19 global const PC

20

21 SAT_Const

22 constants

23 load DE430Coeff.mat

24 PC = DE430Coeff;

25

26 % read Earth orientation parameters

27 fid = fopen('eop19620101.txt','r');

28 % ...

----------------------------------------------------------------------------------------------------

29 % | Date MJD x y UT1-UTC LOD dPsi dEpsilon dX ...

dY DAT

30 % |(0h UTC) " " s s " " " ...

" s

31 % ...

----------------------------------------------------------------------------------------------------

32 eopdata = fscanf(fid,'%i %d %d %i %f %f %f %f %f %f %f %f %i',[13 inf]);

33 fclose(fid);

34

35 % read space weather data

36 fid = fopen('SOLFSMY.txt','r');

37 % ------------------------------------------------------------------------

38 % | YYYY DDD JulianDay F10 F81c S10 S81c M10 M81c Y10 Y81c

39 % ------------------------------------------------------------------------

40 SOLdata = fscanf(fid,'%d %d %f %f %f %f %f %f %f %f %f',[11 inf]);

41 fclose(fid);

42

43

44 %% Aerodynamic torque as a function of height, CD and Solar Acticity

45

46 % Dates vector

47 dates = [2005];

48

49 % Temperature vector

50 temp_dates = zeros(1,length(dates));

51

52 % Density vector

53 rho_dates = zeros(1,length(dates));

54

55 % Height vector

56 height = 400:50:700; % [km]

57

58 % Strings (for automatic plotting)

59 str = strings([1,length(height)]);

60

61 % Drag coefficient

62 CD = 1:0.1:4;

63

64 % F10_7 Solar activity

65 F10_7 = 150; % Use [65 150 250 300]

66
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67 % Cubesat Wetted Area

68 Area = 0.01; % [mˆ2]

69

70 % Cubesat velocity

71 G = 6.67408e-11;

72 M_E = 5.9742e24;

73 R_E = 6371e3;

74 velocity = zeros(1,length(height));

75

76 % Location of the center of the atmospheric force

77 r_dA = 0.03; % [m]

78

79 % Exchange coeff

80 sigma_n = 0.8;

81 sigma_t = 0.8;

82

83 % Density data

84 rho_data = zeros(length(height), length(CD));

85

86

87 % Loop for each height

88 for k=1:1:length(height)

89 % Loop for every CD

90 for drag_counter=1:1:length(CD)

91 % Loop for each date

92 for j=1:1:length(dates)

93 year = dates(j);

94 doy = 200;

95 [month,day,hour,minute,sec] = days2mdh(year,doy);

96 MJD = Mjday(year,month,day,hour,minute,sec);

97

98 % READ SOLAR INDICES

99 % USE 1 DAY LAG FOR F10 AND S10 FOR JB2008

100 JD = floor(MJD-1+2400000.5);

101 i = find(JD==SOLdata(3,:),1,'first');

102 SOL = SOLdata(:,i);

103 F10 = F10_7;

104 F10B = 0;

105 S10 = SOL(6);

106 S10B = SOL(7);

107

108 % USE 2 DAY LAG FOR M10 FOR JB2008

109 SOL = SOLdata(:,i-1);

110 XM10 = SOL(8);

111 XM10B = SOL(9);

112

113 % USE 5 DAY LAG FOR Y10 FOR JB2008

114 SOL = SOLdata(:,i-4);

115 Y10 = SOL(10);

116 Y10B = SOL(11);

117

118 % READ GEOMAGNETIC STORM DTC VALUE

119 fid = fopen('DTCFILE.txt','r');

120 % ------------------------------------------------------------------------

121 % | YYYY DDD DTC1 to DTC24

122 % ------------------------------------------------------------------------

123 DTCdata = fscanf(fid,'%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d ...

%d %d %d %d %d %d %d %d',[26 inf]);
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124 fclose(fid);

125

126 doy = finddays(year,month,day,hour,minute,sec);

127 i = find(year==DTCdata(1,:) & floor(doy)==DTCdata(2,:),1,'first');

128 DTC = DTCdata(:,i);

129 ii = floor(hour)+3;

130 DSTDTC = DTC(ii);

131

132 % CONVERT POINT OF INTEREST LOCATION (RADIANS AND KM)

133 % CONVERT LONGITUDE TO RA

134 [x_pole,y_pole,UT1_UTC,LOD,dpsi,deps,dx_pole,dy_pole,TAI_UTC] = ...

IERS(eopdata,MJD,'l');

135 [UT1_TAI,UTC_GPS,UT1_GPS,TT_UTC,GPS_UTC] = timediff(UT1_UTC,TAI_UTC);

136 [DJMJD0, DATE] = iauCal2jd(year, month, day);

137 TIME = (60*(60*hour+minute)+sec)/86400;

138 UTC = DATE+TIME;

139 TT = UTC+TT_UTC/86400;

140 TUT = TIME+UT1_UTC/86400;

141 UT1 = DATE+TUT;

142 GWRAS = iauGmst06(DJMJD0, UT1, DJMJD0, TT);

143 XLON = 60*const.Rad;

144 SAT(1) = mod(GWRAS + XLON, 2*pi);

145 SAT(2) = -70*const.Rad;

146 SAT(3) = height(k);

147

148 % SET Sun's right ascension and declination (RADIANS)

149 % Difference between ephemeris time and universal time

150 % JD = MJD_UTC+2400000.5;

151 % [year, month, day, hour, minute, sec] = invjday(JD);

152 % days = finddays(year, month, day, hour, minute, sec);

153 % ET_UT = ETminUT(year+days/365.25);

154 % MJD_ET = MJD_UTC+ET_UT/86400;

155 % [r_Mercury,r_Venus,r_Earth,r_Mars,r_Jupiter,r_Saturn,r_Uranus, ...

156 % r_Neptune,r_Pluto,r_Moon,r_Sun,r_SunSSB] = JPL_Eph_DE430(MJD_ET);

157

158 MJD_TDB = Mjday_TDB(TT);

159 [r_Mercury,r_Venus,r_Earth,r_Mars,r_Jupiter,r_Saturn,r_Uranus, ...

160 r_Neptune,r_Pluto,r_Moon,r_Sun,r_SunSSB] = JPL_Eph_DE430(MJD_TDB);

161 ra_Sun = atan2(r_Sun(2), r_Sun(1));

162 dec_Sun = atan2(r_Sun(3), sqrt(r_Sun(1)ˆ2+r_Sun(2)ˆ2));

163 SUN(1) = ra_Sun;

164 SUN(2) = dec_Sun;

165

166 % COMPUTE DENSITY KG/M3 RHO

167 [TEMP,RHO] = JB2008(MJD,SUN,SAT,F10,F10B,S10,S10B,XM10,XM10B,Y10,Y10B,DSTDTC);

168

169 % Density for each height and drag

170 rho_data(k,drag_counter) = RHO;

171 velocity(k) = sqrt((G*M_E)/(R_E+height(k))); % [m/s]

172 end

173 end

174 end

175

176 % Estimate a mean orbital velocity

177 mean_velocity = mean(velocity);

178

179 plot_pdf1 = figure;

180 [X_CD, Y_height] = meshgrid(CD,height);
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181 % Calculate aero_torque

182 aero_torque = 0.5.*X_CD.*rho_data*Area*mean_velocityˆ2*r_dA*3/sqrt(2);

183 % Countourf to plot the data

184 contourf(X_CD,Y_height,aero_torque,'ShowText','on');

185 % shading interp (optional)

186 title('\textbf{Moderate Solar activity: F10.7 = 150 $\mathbf{s.f.u.}$}');

187 xlabel('Drag coefficient $C_D$ [adim]');

188 ylabel('Orbital Altitude $h$ [$\mathrm{km}$]');

189 colorbar_label = colorbar;

190 colorbar_label.Label.Interpreter = 'latex';

191 set(colorbar_label,'FontSize',11);

192 colorbar_label.Label.String = 'Atmospheric drag torque [$\mathrm{N \cdot m}$]';

193 grid on;

194

195 % Save plots in .pdf and .png

196

197 % % Figure 1

198 % set(plot_pdf1, 'Units', 'Centimeters');

199 % pos = get(plot_pdf1, 'Position');

200 % set(plot_pdf1, 'PaperPositionMode', 'Auto', 'PaperUnits', 'Centimeters', ...

201 % 'PaperSize', [pos(3), pos(4)]);

202 % print(plot_pdf1, 'JB2008_F107_150.pdf', '-dpdf', '-r0');

203 %

204 % % Save png

205 % print(plot_pdf1,'JB2008_F107_150.png','-dpng','-r1000');

Code K.3 Jacchia-Bowman JB2008 Evolution of the atmosphere torque in terms of h CD and solar
activity. Source: Own.
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Appendix L

IMU Data Acquisition code

L.1 BNO055 IMU

The following code collects the data from the BNO055 IMU sensor [53].

First, the IMU must be calibrated:

1 /* This code reads calibrates the BNO055 IMU Sensor

2 */

3

4 // Libraries

5 #include <Wire.h> // This library allows to communicate with I2C / TWI devices.

6 #include <Adafruit_Sensor.h> // Library with drivers that are based on the ...

Adafruit Unified Sensor Driver

7 #include <Adafruit_BNO055.h> // This is a library for the BNO055 orientation sensor

8 #include <utility/imumaths.h> // Inertial Measurement Unit Maths Library (it ...

includes matrix.h, quaternions.h and vector.h)

9

10 // Global parameters and objects

11 #define BNO055_SAMPLERATE_DELAY_MS (100) // Define how fast the sensor sample rate ...

(sample every 100 ms)

12

13 Adafruit_BNO055 IMU = Adafruit_BNO055(); // Create IMU object and set what the ...

object is

14

15 // Calibration function

16 void displayCalStatus(void)

17 {

18 /* Get the four calibration values (0..3)

19 Any sensor data reporting 0 should be ignored,

20 3 means 'fully calibrated" */

21 uint8_t system, gyros, accel, mg =0;

22 IMU.getCalibration(&system, &gyros, &accel, &mg);

23

24 // The data should be ignored until the system calibration is > 0
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25 Serial.print("\t");

26 if (!system)

27 {

28 Serial.print("! ");

29 }

30

31 // Display the individual values

32 Serial.print("Sys:");

33 Serial.print(system, DEC);

34 Serial.print(" Gyros:");

35 Serial.print(gyros, DEC);

36 Serial.print(" Accel:");

37 Serial.print(accel, DEC);

38 Serial.print(" Magne:");

39 Serial.println(mg, DEC);

40 }

41

42 void setup() {

43 // Set the baud rate speed. This is how fast the data is to be sent through the ...

USB connection

44 Serial.begin(115200);

45

46 // Print initial message

47 Serial.println("BNO055 IMU Sensor Raw Data Initialized");

48 Serial.println("");

49

50 // Start the IMU sensor

51 IMU.begin();

52

53 // Wait 1000 ms to ensure the sensor starts correctly

54 delay(1000);

55

56 // Change the time clock on the chip to the time clock on board of the IMU

57 IMU.setExtCrystalUse(true);

58 }

59

60 void loop() {

61

62 displayCalStatus();

63

64 // Wait the specified delay before requesting next data

65 delay(BNO055_SAMPLERATE_DELAY_MS);

66

67 }

Code L.1 Arduino IMU calibration code. Source: Own.
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Figure L.1 Configuration of the BNO555 and the Arduino Nano
connections. Source: Own.

The following code collects the data from the BNO055 IMU sensor [53].

To begin to use the code, two libraries must be installed:

1 Adafruit Unified Sensor Driver

2 Adafruit Unified BNO055 Driver (AHRS/Orientation)

Code L.2 Adafruit Libraries for Arduino IDE. Source: Own

The first library incorporates all Adafruit Sensor Drivers, from accelerometers, gyroscopes, magnetome-
ters, barometric pressure, etc.. Besides, the Adafruit Unified Sensor Library provides a common interface
and data type for any supported sensor. It defines some basic information about the sensor (sensor limits,
etc.), and returns standard SI units of a specific type and scale for each supported sensor type. [87].

The second library is the driver for the Adafruit BNO055 Breakout, and is based on Adafruit’s Unified
Sensor Library (Adafruit Sensor) [53].

First, the IMU must be calibrated using L calibration function. The calibration process is simple, 3 steps
are needed to calibrate the IMU:

• To calibrate the gyroscope, just let the IMU rest in a flat surface.

• To calibrate the accelerometer, tilt the IMU 45 ◦ in all 3 axis x, y, z.

• To calibrate the magnetometer, swing the IMU and rotate it in all axis.

Once all of the instruments are correctly calibrated (calibration are ranged from 0− 3, when the output
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is 3, the sensor is correctly calibrated), the system parameter should be calibrated as well.

The code implemented to extract the Acceleration, Gyroscope and Magnetometer’s data is shown below
[99]:

1 /* This code reads [ACCELEROMETER, GYROSCOPE and MAGNETOMETER'S] raw data from the ...

BNO055 IMU Sensor

2

3 Connections

4 ===========

5 Connect SCL to SCL pin (analog 5 on Arduino UNO)

6 Connect SDA to SDA pin (analog 4 on Arduino UNO)

7 Connect Vin to 3-5V DC (depending on your board's logic level)

8 Connect GROUND to common ground

9

10 */

11

12 /* Units

13

14 - VECTOR_ACCELEROMETER - m/sˆ2

15 - VECTOR_MAGNETOMETER - uT

16 - VECTOR_GYROSCOPE - rad/s

17 - VECTOR_EULER - degrees

18 - VECTOR_LINEARACCEL - m/sˆ2

19 - VECTOR_GRAVITY - m/sˆ2

20 */

21

22 // Libraries

23 #include <Wire.h> // This library allows to communicate with I2C / TWI devices.

24 #include <Adafruit_Sensor.h> // Library with drivers that are based on the ...

Adafruit Unified Sensor Driver

25 #include <Adafruit_BNO055.h> // This is a library for the BNO055 orientation sensor

26 #include <utility/imumaths.h> // Inertial Measurement Unit Maths Library (it ...

includes matrix.h, quaternions.h and vector.h)

27

28 // Global parameters and objects

29 #define BNO055_SAMPLERATE_DELAY_MS (100) // Define how fast the sensor sample rate ...

(sample every 100 ms)

30

31 Adafruit_BNO055 IMU = Adafruit_BNO055(); // Create IMU object and set what the ...

object is

32

33 // Calibration function

34 void displayCalStatus(void)

35 {

36 /* Get the four calibration values (0..3)

37 Any sensor data reporting 0 should be ignored,

38 3 means 'fully calibrated" */

39 uint8_t system, gyros, accel, mg =0;

40 IMU.getCalibration(&system, &gyros, &accel, &mg);

41

42 // The data should be ignored until the system calibration is > 0

43 Serial.print("\t");

44 if (!system)

45 {
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46 Serial.print("! ");

47 }

48

49 // Display the individual values

50 Serial.print("Sys:");

51 Serial.print(system, DEC);

52 Serial.print(" Gyros:");

53 Serial.print(gyros, DEC);

54 Serial.print(" Accel:");

55 Serial.print(accel, DEC);

56 Serial.print(" Magne:");

57 Serial.print(mg, DEC);

58 }

59

60 void setup() {

61 // Set the baud rate speed. This is how fast the data is to be sent through the ...

USB connection

62 Serial.begin(115200);

63

64 // Print initial message

65 Serial.println("BNO055 IMU Sensor Raw Data Initialized");

66 Serial.println("");

67

68 // Start the IMU sensor

69 IMU.begin();

70

71 // Wait 1000 ms to ensure the sensor starts correctly

72 delay(1000);

73

74 // Get temperature from the IMU and save it into a 8-bit int variable named 'temp'

75 int8_t temp = IMU.getTemp();

76

77 // Print the temperature through the Serial Monitor

78 Serial.println(temp);

79

80 // Change the time clock on the chip to the time clock on board of the IMU

81 IMU.setExtCrystalUse(true);

82 }

83

84 void loop() {

85

86 // Display Calibration status (This line is optional)

87 // displayCalStatus();

88

89 // Work with the imu sensor from Adafruit library

90 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'acc' ...

(accelerometer) for the specific object IMU

91 imu::Vector<3> acc = IMU.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);

92 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'gyro' ...

(gyroscope) for the specific object IMU

93 imu::Vector<3> gyro = IMU.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);

94 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'mag' ...

(magnetometer) for the specific object IMU

95 imu::Vector<3> mag = IMU.getVector(Adafruit_BNO055::VECTOR_MAGNETOMETER);

96

97 // Print Acceleration data

98 Serial.print(acc.x());

99 Serial.print(",");
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100 Serial.print(acc.y());

101 Serial.print(",");

102 Serial.print(acc.z());

103 Serial.print(",");

104

105 // Print Gyroscope data

106 Serial.print(gyro.x());

107 Serial.print(",");

108 Serial.print(gyro.y());

109 Serial.print(",");

110 Serial.print(gyro.z());

111 Serial.print(",");

112

113 // Print Magnetometer data

114 Serial.print(mag.x());

115 Serial.print(",");

116 Serial.print(mag.y());

117 Serial.print(",");

118 Serial.println(mag.z());

119

120 // Wait the specified delay before requesting next data

121 delay(BNO055_SAMPLERATE_DELAY_MS);

122

123 }

Code L.3 Arduino and BNO055 IMU Raw data acquisition code. Source: Own.

The IMU has an on-board algorithm for continuous real-time generating quaternions.

L.2 Pitch and roll from accelerometers code

1 /* This code reads [ACCELEROMETER] from the BNO055 IMU Sensor and calculates pitch ...

and roll angles

2 */

3

4 // Libraries

5 #include <Wire.h> // This library allows to communicate with I2C / TWI devices.

6 #include <Adafruit_Sensor.h> // Library with drivers that are based on the ...

Adafruit Unified Sensor Driver

7 #include <Adafruit_BNO055.h> // This is a library for the BNO055 orientation sensor

8 #include <utility/imumaths.h> // Inertial Measurement Unit Maths Library (it ...

includes matrix.h, quaternions.h and vector.h)

9 #include <math.h> // Math functions

10

11 // Global parameters and objects

12 #define BNO055_SAMPLERATE_DELAY_MS (100) // Define how fast the sensor sample rate ...

(sample every 100 ms)

13

14 Adafruit_BNO055 IMU = Adafruit_BNO055(); // Create IMU object and set what the ...

object is

15

16 const float pi = 3.1415926535; // Number Pi
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17

18 //Variables

19 float theta, phi;

20

21 void setup() {

22 // Set the baud rate speed. This is how fast the data is to be sent through the ...

USB connection

23 Serial.begin(115200);

24

25 // Print initial message

26 Serial.println("BNO055 IMU Sensor Raw Data Initialized");

27 Serial.println("");

28

29 // Start the IMU sensor

30 IMU.begin();

31

32 // Wait 1000 ms to ensure the sensor starts correctly

33 delay(1000);

34

35 // Change the time clock on the chip to the time clock on board of the IMU

36 IMU.setExtCrystalUse(true);

37 }

38

39 void loop() {

40

41 // Work with the imu sensor from Adafruit library

42 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'acc' ...

(accelerometer) for the specific object IMU

43 imu::Vector<3> acc = IMU.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);

44

45 // Parameters

46 // Tilt approximation and normalize it to '1g' and convert into degrees

47 theta = - atan2(acc.x()/9.81,acc.z()/9.81)/(2*pi)*360;

48 phi = - atan2(acc.y()/9.81,acc.z()/9.81)/(2*pi)*360;

49

50 // Print Acceleration data

51 Serial.print(acc.x()/9.81);

52 Serial.print(",");

53 Serial.print(acc.y()/9.81);

54 Serial.print(",");

55 Serial.print(acc.z()/9.81);

56 Serial.print(",");

57 Serial.print(theta);

58 Serial.print(",");

59 Serial.println(phi);

60

61 // Wait the specified delay before requesting next data

62 delay(BNO055_SAMPLERATE_DELAY_MS);

63

64 }

Code L.4 Arduino BNO055 IMU pitch and roll code. Source: Own.
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L.3 Complementary filter code

1 /* This code reads [ACCELEROMETER] and [GYROSCOPE] data from the BNO055 IMU Sensor

2 * with a Complementary Filter for the output signal

3 */

4

5 // Libraries

6 #include <Wire.h> // This library allows to communicate with I2C / TWI devices.

7 #include <Adafruit_Sensor.h> // Library with drivers that are based on the ...

Adafruit Unified Sensor Driver

8 #include <Adafruit_BNO055.h> // This is a library for the BNO055 orientation sensor

9 #include <utility/imumaths.h> // Inertial Measurement Unit Maths Library (it ...

includes matrix.h, quaternions.h and vector.h)

10 #include <math.h> // Math functions

11

12 // Global parameters and objects

13 #define BNO055_SAMPLERATE_DELAY_MS (100) // Define how fast the sensor sample rate ...

(sample every 100 ms)

14

15 Adafruit_BNO055 IMU = Adafruit_BNO055(); // Create IMU object and set what the ...

object is

16

17 const float pi = 3.1415926535; // Number Pi

18

19 //Variables

20 float theta, phi;

21 float theta_meas, phi_meas;

22 float theta_filt_old = 0, phi_filt_old = 0;

23 float theta_filt_new, phi_filt_new;

24

25 float theta_gyro = 0, phi_gyro = 0;

26 float Dt; // Change in time

27 unsigned long millisOld; // Marker of t[n-1]

28

29 void setup() {

30 // Set the baud rate speed. This is how fast the data is to be sent through the ...

USB connection

31 Serial.begin(115200);

32

33 // Print initial message

34 Serial.println("BNO055 IMU Sensor Raw Data Initialized");

35 Serial.println("");

36

37 // Start the IMU sensor

38 IMU.begin();

39

40 // Wait 1000 ms to ensure the sensor starts correctly

41 delay(1000);

42

43 // Change the time clock on the chip to the time clock on board of the IMU

44 IMU.setExtCrystalUse(true);

45

46 // Start millis counter

47 millisOld = millis();

48 }
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49

50 void loop() {

51

52 // Work with the imu sensor from Adafruit library

53 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'acc' ...

(accelerometer) for the specific object IMU

54 imu::Vector<3> acc = IMU.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);

55 // Go to BNO055's 'imu' and bring back a vector of 3 components into 'gyro ...

(gyroscope) for the specific object IMU

56 imu::Vector<3> gyro = IMU.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);

57

58 // Parameters

59 // Tilt approximation and normalize it to '1g' and convert into degrees

60 theta_meas = - atan2(acc.x()/9.81,acc.z()/9.81)/(2*pi)*360;

61 phi_meas = - atan2(acc.y()/9.81,acc.z()/9.81)/(2*pi)*360;

62

63 theta_filt_new = theta_filt_old*0.9 + theta_meas*0.1;

64 phi_filt_new = phi_filt_old*0.9 + phi_meas*0.1;

65

66 // Change in time (seconds)

67 Dt = (millis()-millisOld)/1000.;

68 millisOld = millis();

69

70 // Complementary filter

71 theta = (theta + gyro.y()*Dt)*0.95 + theta_meas*0.05;

72 phi = (phi - gyro.x()*Dt)*0.95 + phi_meas*0.05; // Minus sign is for the ...

particular orientation

73

74 theta_gyro = theta_gyro + gyro.y()*Dt;

75 phi_gyro = phi_gyro - gyro.x()*Dt; // Negative sign due to body axis

76

77 // Print Acceleration data

78 Serial.print(acc.x()/9.81);

79 Serial.print(",");

80 Serial.print(acc.y()/9.81);

81 Serial.print(",");

82 Serial.print(acc.z()/9.81);

83 Serial.print(",");

84 // Raw data

85 Serial.print(theta_meas);

86 Serial.print(",");

87 Serial.print(phi_meas);

88 Serial.print(",");

89 // Filtered data

90 Serial.print(theta_filt_new);

91 Serial.print(",");

92 Serial.print(phi_filt_new);

93

94 // Gryoscope data

95 Serial.print(",");

96 Serial.print(gyro.y()); // Pitch Rotational velocity

97 Serial.print(",");

98 Serial.print(gyro.x()); // Roll Rotational velocity

99

100 Serial.print(",");

101 Serial.print(theta_gyro); // Pitch

102 Serial.print(",");

103 Serial.print(phi_gyro); // Roll
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104

105 // Complementary filter data

106 Serial.print(",");

107 Serial.print(theta); // Pitch

108 Serial.print(",");

109 Serial.println(phi); // Roll

110

111 // Next iteration

112 theta_filt_old = theta_filt_new;

113 phi_filt_old = phi_filt_new;

114

115 // Wait the specified delay before requesting next data

116 delay(BNO055_SAMPLERATE_DELAY_MS);

117

118 }

Code L.5 Arduino BNO055 IMU Complementary Filter. Source: Own.

L.4 Quaternion

1 /* This code reads [QUATERNIONS] data from the BNO055 IMU Sensor

2 */

3

4 // Libraries

5 #include <Wire.h> // This library allows to communicate with I2C / TWI devices.

6 #include <Adafruit_Sensor.h> // Library with drivers that are based on the ...

Adafruit Unified Sensor Driver

7 #include <Adafruit_BNO055.h> // This is a library for the BNO055 orientation sensor

8 #include <utility/imumaths.h> // Inertial Measurement Unit Maths Library (it ...

includes matrix.h, quaternions.h and vector.h)

9 #include <math.h> // Math functions

10

11 // Global parameters and objects

12 #define BNO055_SAMPLERATE_DELAY_MS (100) // Define how fast the sensor sample rate ...

(sample every 100 ms)

13

14 Adafruit_BNO055 IMU = Adafruit_BNO055(); // Create IMU object and set what the ...

object is

15

16

17 void setup() {

18 // Set the baud rate speed. This is how fast the data is to be sent through the ...

USB connection

19 Serial.begin(115200);

20

21 // Start the IMU sensor

22 IMU.begin();

23

24 // Wait 1000 ms to ensure the sensor starts correctly

25 delay(1000);

26

27 // Change the time clock on the chip to the time clock on board of the IMU

28 IMU.setExtCrystalUse(true);
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29

30 }

31

32 void loop() {

33

34 // Work with the imu sensor from Adafruit library

35 // Go to BNO055's 'imu' and bring back a vector of 4 components into 'quat' ...

(quaternion) for the specific object IMU

36 imu::Quaternion quat=IMU.getQuat();

37

38 // Print Quaternion data

39 Serial.print(quat.w()); // Real part

40 Serial.print(",");

41 Serial.print(quat.x()); // 'i'

42 Serial.print(",");

43 Serial.print(quat.y()); // 'j'

44 Serial.print(",");

45 Serial.println(quat.z()); // 'k'

46

47 // Wait the specified delay before requesting next data

48 delay(BNO055_SAMPLERATE_DELAY_MS);

49

50 }

Code L.6 Arduino and BNO055 IMU Quaternion code. Source: Own.

L.5 MPU9250 IMU

To setup the IMU for I2C communication protocol, first, it is needed to setup the address for the com-
munication:

1 /*
2 * This code configures the MPU9250 IMU for I2C communication with the STM32 Bluepill

3 */

4

5 #include <Wire.h>

6

7 const int MPU = 0x68; // I2C address of the MPU9250

8 int16_t AcX, AcY, AcZ, Tmp, GyX, GyY, GyZ; // MPU values

9

10 void setup()

11 {

12 Wire.begin(); // Initiate the library and join the I2C bus

13 Wire.beginTransmission(MPU); // Begin a transmission with the given address

14 Wire.write(0x6B); // Send value in bytes

15 Wire.write(0);

16 Wire.endTransmission(true); // End the transmission

17 }

18

19 void loop()

20 {

21 Wire.beginTransmission(MPU); // Begin a transmission with the given address
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22 Wire.write(0x3B);

23 Wire.endTransmission(false);

24 Wire.requestFrom(MPU, 12, true);

25

26 AcX = Wire.read() << 8 | Wire.read();

27 AcY = Wire.read() << 8 | Wire.read();

28 AcZ = Wire.read() << 8 | Wire.read();

29 GyX = Wire.read() << 8 | Wire.read();

30 GyY = Wire.read() << 8 | Wire.read();

31 GyZ = Wire.read() << 8 | Wire.read();

32

33 Serial.print("IMU values: ");

34 Serial.print(AcX);

35 Serial.print(",");

36

37 // Repeat for each value

38

39 Serial.print(GyY);

40 Serial.print(",");

41 Serial.print(GyZ);

42 }

Code L.7 STM32 I2C configuration of the MPU9250. Source: Own.

1 /*
2 * This code configures the MPU9250 IMU for SPI communication with the STM32 ...

Bluepill and prints data.

3 *
4 * MPU9250 library by Brian Chen used (https://github.com/brianc118/MPU9250)

5 */

6

7 #include "Wire.h"

8 #include <SPI.h>

9 #include <MPU9250.h>

10

11 #define SPI_CLOCK 1000000 // 1MHz clock works.

12 #define CS1 PA4 // STM32 NCS pin

13 #define WAITFORINPUT() { // Function to read serial imputs

14 while (!Serial.available())

15 {

16 };

17 while (Serial.available())

18 {

19 Serial.read();

20 };

21 }

22

23 MPU9250 mpu(SPI_CLOCK, CS1); // MPU object

24

25 void setup()

26 {

27 pinMode(CS1, OUTPUT); // Pin definition

28 SPI.begin(); // Initiate the library and join the SPI bus

29

30 Serial.println("Press any key to continue");
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31 WAITFORINPUT();

32

33 mpu.init(true); // Initiate the IMU

34

35 uint8_t wai = mpu.whoami(); // Connection status with mpu

36 if (wai == 0x71)

37 {

38 Serial.println("Successful connection");

39 }

40 else

41 {

42 Serial.print("Failed connection: ");

43 Serial.println(wai, HEX);

44 }

45

46 uint8_t wai_AK8963 = mpu.AK8963_whoami(); // Connection status with mag

47 if (wai_AK8963 == 0x48)

48 {

49 Serial.println("Successful connection to mag");

50 }

51 else

52 {

53 Serial.print("Failed connection to mag: ");

54 Serial.println(wai_AK8963, HEX);

55 }

56

57 mpu.calib_acc(); // Calibrations

58 mpu.calib_mag();

59

60 Serial.println("Send any char to begin main loop.");

61 WAITFORINPUT();

62 }

63

64 void loop()

65 {

66 mpu.read_all();

67 // Data is stored in variables from the library

68 Serial.print(mpu.gyro_data[0]);

69 Serial.print('\t');

70 Serial.print(mpu.gyro_data[1]);

71 Serial.print('\t');

72 Serial.print(mpu.gyro_data[2]);

73 Serial.print('\t');

74 Serial.print(mpu.accel_data[0]);

75 Serial.print('\t');

76 Serial.print(mpu.accel_data[1]);

77 Serial.print('\t');

78 Serial.print(mpu.accel_data[2]);

79 Serial.print('\t');

80 Serial.print(mpu.mag_data[0]);

81 Serial.print('\t');

82 Serial.print(mpu.mag_data[1]);

83 Serial.print('\t');

84 Serial.print(mpu.mag_data[2]);

85 Serial.print('\t');

86 Serial.print(mpu.temperature);

87 }
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Code L.8 STM32 SPI configuration of the MPU9250. Source: Own.

1 /*
2 * SCMD library by SparkFun used ...

(https://github.com/sparkfun/SparkFun_Serial_Controlled_Motor_Driver_Arduino_Library)

3 * Rest of libraries from Arduino

4 * STM32 package from http://dan.drown.org/stm32duino/package_STM32duino_index.json

5 *
6 * ---------- TEST SMT32 1 MOTOR + IMU, SAME I2C PORT (MOTOR IN I2C, IMU IN I2C2)

7 *
8 */

9

10 #include <Arduino.h>

11 #include <stdint.h>

12 #include "SCMD.h"

13 #include "SCMD_config.h" //Contains #defines for common SCMD register names and values

14 #include<Wire.h>

15

16 #define LEDPIN PC13 //STM32 LED pin

17

18 const int MPU=0x68; //I2C adress of the MPU9250

19 int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ; //MPU values

20

21 SCMD DriverOne; //Driver object

22

23 void setup() {

24

25 Wire.begin(); //Initiate the library and join the I2C bus

26 Serial.begin(9600); //Data rate in bytes per second //Serial Monitor initiation

27 pinMode(LEDPIN, OUTPUT); //LED definition

28 Serial.println("Start");

29

30 //IMU

31 Wire.beginTransmission(MPU); //Begin a transmission with the given adress

32 Wire.write(0x6B); //Send value in bytes

33 Wire.write(0);

34 Wire.endTransmission(true); //End the transmission

35

36 //MOTOR

37 DriverOne.settings.commInterface = I2C_MODE; //Driver mode definition

38 DriverOne.settings.I2CAddress = 0x5D; //Driver adress definition (0x5D by default)

39

40 while(DriverOne.begin() != 0xA9){ //Wait for idle

41 Serial.println("ID Mismatch");

42 delay(200);

43 }

44 Serial.println("ID Match");

45

46 Serial.println("Waiting for enumeration"); //Wait for peripherals (enumeration)

47 while(DriverOne.ready() == false);

48 Serial.println("Ready");

49

50 while(DriverOne.busy()); //Enables the driver

51 DriverOne.enable();
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52 }

53

54 void loop() {

55

56 int vel=255;

57 int steps=20;

58

59 for(int i= 0; i<=vel; i++){

60

61 DriverOne.setDrive(0,0,i);

62 Wire.beginTransmission(MPU); //Begin a transmission with the given adress

63 Wire.write(0x3B);

64 Wire.endTransmission(false);

65 Wire.requestFrom(MPU,12,true);

66

67 AcX=Wire.read()<<8|Wire.read();

68 AcY=Wire.read()<<8|Wire.read();

69 AcZ=Wire.read()<<8|Wire.read();

70 GyX=Wire.read()<<8|Wire.read();

71 GyY=Wire.read()<<8|Wire.read();

72 GyZ=Wire.read()<<8|Wire.read();

73

74 Serial.print("IMU values: ");

75 Serial.print(AcX);

76 Serial.print(",");

77 Serial.print(AcY);

78 Serial.print(",");

79 Serial.print(AcZ);

80 Serial.print(",");

81 Serial.print(GyX);

82 Serial.print(",");

83 Serial.print(GyY);

84 Serial.print(",");

85 Serial.print(GyZ);

86 Serial.print(", Speed: ");

87 Serial.println(i);

88 delay(steps);

89 }

90 delay(5000);

91

92 for(int i= vel; i>=0; i--){

93

94 DriverOne.setDrive(0,0,i);

95 Wire.beginTransmission(MPU); //Begin a transmission with the given adress

96 Wire.write(0x3B);

97 Wire.endTransmission(false);

98 Wire.requestFrom(MPU,12,true);

99

100 AcX=Wire.read()<<8|Wire.read();

101 AcY=Wire.read()<<8|Wire.read();

102 AcZ=Wire.read()<<8|Wire.read();

103 GyX=Wire.read()<<8|Wire.read();

104 GyY=Wire.read()<<8|Wire.read();

105 GyZ=Wire.read()<<8|Wire.read();

106

107 Serial.print("IMU values: ");

108 Serial.print(AcX);

109 Serial.print(",");
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110 Serial.print(AcY);

111 Serial.print(",");

112 Serial.print(AcZ);

113 Serial.print(",");

114 Serial.print(GyX);

115 Serial.print(",");

116 Serial.print(GyY);

117 Serial.print(",");

118 Serial.print(GyZ);

119 Serial.print(", Speed: ");

120 Serial.println(i);

121 delay(steps);

122 }

123 delay(5000);

124

125 }

Code L.9 Motor driver test with IMU using I2C. Source: Own.

1 /*
2 * SCMD library by SparkFun used ...

(https://github.com/sparkfun/SparkFun_Serial_Controlled_Motor_Driver_Arduino_Library)

3 * MPU9250 library by Brian Chen used (https://github.com/brianc118/MPU9250)

4 * Rest of libraries from Arduino

5 * STM32 package from http://dan.drown.org/stm32duino/package_STM32duino_index.json

6 *
7 * ---------- TEST IMU IN SPI + MOTOR IN I2C + millis

8 *
9 * Definitions stablished made to adapt to STM32 ports instead of Arduino ...

(Library is designed for Arduino)

10 * 1MHz of clock because SPI conection with IMU is max 1MHz (by datasheet)

11 */

12

13 #include <Arduino.h>

14 #include <stdint.h>

15 #include "SCMD.h"

16 #include "SCMD_config.h" //Contains #defines for common SCMD register names and values

17 #include "Wire.h"

18 #include <SPI.h>

19 #include <MPU9250.h>

20

21 #define LEDPIN PC13 //STM32 LED pin

22 #define SPI_CLOCK 1000000 // 1MHz clock works.

23 #define CS1 PA4 //STM32 NCS pin

24 //MOSI on PA7, MISO on PA6 and CLK on PA5 by default on STM32

25

26 #define WAITFORINPUT(){

27 while(!Serial.available()){};

28 while(Serial.available()){

29 Serial.read();

30 };

31 }

32

33 MPU9250 mpu(SPI_CLOCK, CS1); //MPU object

34 SCMD DriverOne; //Driver object
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35

36 unsigned long prevMillis=0; //Keeps track of previous MIllis() value

37 unsigned long currMillis=0; //Keeps track of current MIllis() value

38

39 int counter=0; //Counter for speed

40 bool laststate=true; //Current/Latest state of motor (false=decceleration, ...

true=acceleration)

41 bool waiting=false; //Check if the motor is at a const speed

42

43 int maxspeed=255; //Max velocity to reach

44 int delayramp=100; //Delay for increase in speed, in milisec

45 int delaywait=5000; //Delay on waiting

46

47 void setup() {

48

49 counter=0; //Reset of counter

50 pinMode(LEDPIN, OUTPUT); //LED definition

51 pinMode(CS1, OUTPUT); //Pin definitions

52 digitalWrite(LEDPIN, HIGH);

53 Serial.begin(9600); //Serial Monitor initiation

54 Serial.println("Start");

55 SPI.begin();

56

57 Serial.println("Press any key to continue");

58 WAITFORINPUT();

59

60 //IMU

61 mpu.init(true);

62

63 uint8_t wai = mpu.whoami(); //Connection with mpu

64 if (wai == 0x71){

65 Serial.println("Successful connection");

66 }

67 else{

68 Serial.print("Failed connection: ");

69 Serial.println(wai, HEX);

70 }

71

72 uint8_t wai_AK8963 = mpu.AK8963_whoami(); //Connection with mag

73 if (wai_AK8963 == 0x48){

74 Serial.println("Successful connection to mag");

75 }

76 else{

77 Serial.print("Failed connection to mag: ");

78 Serial.println(wai_AK8963, HEX);

79 }

80

81 mpu.calib_acc();

82 mpu.calib_mag();

83

84 //MOTOR

85 DriverOne.settings.commInterface = I2C_MODE; //Driver mode definition

86 DriverOne.settings.I2CAddress = 0x5D; //Driver adress definition (0x5D by default)

87

88 while(DriverOne.begin() != 0xA9){ //Wait for idle

89 Serial.println("ID Mismatch");

90 delay(200);

91 }
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92 Serial.println("ID Match");

93

94 Serial.println("Waiting for enumeration"); //Wait for peripherals (enumeration)

95 while(DriverOne.ready() == false);

96 Serial.println("Ready");

97

98 while(DriverOne.busy()); //Enables the driver

99 DriverOne.enable();

100

101 Serial.println("Send any char to begin main loop.");

102 WAITFORINPUT();

103 }

104

105 void loop() {

106

107 //Rollover is done in the ifs, with currMilils-prevMIllis. if it reaches rollover ...

the difference remains the sameas it is an unsigned value

108 currMillis=millis();

109

110 if(unsigned int (currMillis-prevMillis)>=delayramp && waiting==false){ //State ...

of accel or decel. Accounts for millis() override

111 prevMillis=currMillis;

112 if(counter<=maxspeed && laststate==true){ //Acceleration

113 counter=counter+1;

114 if(counter>maxspeed){ //Max speed reach

115 waiting=true;

116 counter=maxspeed;

117 }

118 }else if(counter>=0 && laststate==false){ //Deceleration

119 counter=counter-1;

120 if(counter<0){ //0 speed reach

121 waiting=true;

122 counter=0;

123 }

124 }

125 }

126

127 if(unsigned int (currMillis-prevMillis)>=delaywait && waiting==true){ //State of ...

waiting. Accounts for millis() override

128 prevMillis=currMillis;

129 waiting=false;

130 if(laststate){ //Start of decel

131 laststate=false;

132 }else{

133 laststate=true; //Start of accel

134 }

135 }

136

137 DriverOne.setDrive(0,0,counter);

138 mpu.read_all();

139

140 Serial.print(mpu.gyro_data[0]); Serial.print('\t');

141 Serial.print(mpu.gyro_data[1]); Serial.print('\t');

142 Serial.print(mpu.gyro_data[2]); Serial.print('\t');

143 Serial.print(mpu.accel_data[0]); Serial.print('\t');

144 Serial.print(mpu.accel_data[1]); Serial.print('\t');

145 Serial.print(mpu.accel_data[2]); Serial.print('\t');

146 Serial.print(mpu.mag_data[0]); Serial.print('\t');

239



APPENDIX L. IMU DATA ACQUISITION CODE

147 Serial.print(mpu.mag_data[1]); Serial.print('\t');

148 Serial.print(mpu.mag_data[2]); Serial.print('\t');

149 Serial.println(mpu.temperature);

150

151 Serial.print("Millis: ");

152 Serial.print(currMillis);

153 Serial.print(", State: ");

154 if(waiting==false){

155 if(laststate==true){

156 Serial.print("ACCELERATION");

157 }else{

158 Serial.print("DECELERATION");

159 }

160 }else{

161 Serial.print("WAITING");

162 }

163 Serial.print(", Speed: ");

164 Serial.println(counter);

165 delay (10);

166 }

Code L.10 Motor driver test with IMU using SPI. Source: Own.
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Appendix M

Complementary filter design

M.1 Pitch θ, Roll φ and Yaw ψ determination from 3 − axis

accelerometer and gyroscope

This section aims to approximate roll, pitch and yaw angles with an approximation.

Let θ be the pitch angle and φ be the roll angle.

x

1g

z

θ

ax

az

θ

Figure M.1 Acceleration vector decomposition. Source: Own.

The following trigonometric relations can be extracted from the figure above:

tan θ = ax
az

(M.1.1)

From the latter expression, the angle θ can be found as:

θ = arctan ax
az

(M.1.2)
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The same methodology can be used for the roll movement:

φ = arctan ay
az

(M.1.3)

NOTE: This is a first approximation, thus, the major limitation found is that this only works for tilt
angles from 0 − 89 ◦. For angles above this range, the data returned is not relevant. The problem is
caused by the trigonometric function tan(), when it reaches 90 ◦ the function has a vertical asymptote
at that angle (see Figure M.2).

θ

f(θ) = tan(θ)

− 3π
2

−π −π2 0 π
2

π 3π
2

Figure M.2 Tangent function. Source: Own.

See L.2 for the code to get the pitch and roll from the IMU sensor.

Notice the code has a negative sign before the atan operation. This is because the IMU sensor’s x̂ axis
is in the opposite direction of the x̂ direction that the student has set initially.
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(a) Positive pitch of the
IMU sensor. Source: Own.

(b) Negative roll of the
IMU sensor. Source: Own.

(c) Serial plot data of pitch
of the IMU sensor. Source:

Own.

(d) Serial plot data of roll
of the IMU sensor. Source:

Own.

Figure M.3 Pitch and roll of the IMU Sensor. Source: Own.

The orange data is pitch and purple data is roll and both pitch and roll are successfully measured.
Nevertheless, one issue that affects the accelerometer is that it is highly susceptible to vibrations and
noise. For instance, shaking the sensor will cause the accelerometer misread a pitch, thus, causing an
invalid data. The accelerometer is highly sensitive to all kind of vibrations and the system inappropriately
interprets vibration as tilt. In other words, even if the IMU does not pitch but suffer vibrations or brusque
motion, the output signal will measure a tilt when in fact it is not tilting.

To approach this problem a low pass filter must be added. A low pass filter enables to get rid f the higher
frequency movements that the accelerometer senses and takes into account low frequency movements.

The accelerometer measures a pitch θmeas angle and a roll angle φmeas (measured values) and let θfilt
and φfilt be the filtered values of pitch and roll angles, respectively.

The following low pass filter is added:

θfilt,new = [θfilt,old] · P1 + [θmeas] · P2 (M.1.4)
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where
P1 + P2 = 1 (M.1.5)

The above expressions can be interpreted as follows, given a measured angle, the newest pitch angle (most
recent angle) is a sum of the prior iteration pitch angle times a parameter P1 and the actual measured
pitch angle times a parameter P2. Notice that setting a P1 ≈ 1 value and P2 ≈ 0 shall be understood as
the prior iteration angle is most susceptible to remain the actual movement of the IMU (for the test, a
P1 = 0.9 and P2 = 0.1 was used). In the end, the most recent pitch angle is set to the old pitch angle for
the subsequent iteration.

After adding the filter, Figure M.4 show the unfiltered and the filtered data of the pitch angle. The
result now provides evidence to the fact that the accelerometer behaves poorly when it is subjected to
high frequency movements. It is important to notice that the filtered value is slower than the unfiltered
data. They both get to the same value but at a different pace. Thereby, in order to find the optimal
parameters, there must be a balance between accurate data and how fast the IMU accelerometer sensor
detects.

Figure M.4 Filtered positive pitch of the IMU sensor. Source: Own.

Nonetheless, the major advantage is that the filtered data is no susceptible to vibration motions. Overall,
it tends to have more stability and smoother outputs.
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Measuring rotational velocity with gyroscope

Now, due to the limitations given by the accelerometer. The next step is to use the built-in gyroscope to
measure the angular velocity. By means of the uniform angular equation of motion:

θgyro,new = θgyro,old + ωy∆t (M.1.6)

φgyro,new = θgyro,old + ωx∆t (M.1.7)

where the angular position θgyro,new is the prior step position plus a change in angular velocity times the
variation of time t. Since pitch is a rotation around the y axis, the angular velocity for pitch is ωy and
ωx for roll.

Figure M.5 Pitch and roll from the BNO055 Gyroscope sensor. Source:
Own.

Figure M.5 shows the same values of pitch and tilt extracted from the gyroscope sensor. This plot
shows first a positive pitch and then a negative roll between x ∈ 850− 875. Additionally, from between
x ∈ 930 − 960, some vibration and high frequency motion was induced to the sensor. Results suggest
that kind of high frequency motion does not affect the gyroscope’s sensibility. However, notice how the
gyroscope shows a drift in the value after keeping it at rest in a flat surface as the original situation
(x ∈ 960− 1000). Thus, it is not possible to only use a gyroscope to get the tilt and roll data.

On balance the following conclusions are extracted:

• The accelerometer is useful for low frequency motion but is highly sensitive to noise and susceptible
to vibration.
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• The gyroscope is not sensitive to noise but its values drifts over time.

• Gyroscopes short-term data is accurate and accelerometers long-term data is unerring.

To address the aforementioned problem, the upcoming step resides in finding a solution by getting the
best from the two worlds: accelerometer and gyroscope. The subsequent section proposes the use of a
complementary filter combining both sensors data to acquire an accurate stable tilt and roll.

Design of a complementary filter

At the moment so far, 4 different parameters are extracted from the BNO055 sensor. The pitch and roll
angles from the accelerometer sensor (θacc and φacc) and the pitch and roll angles from the gyroscope
sensor θgyro and φgyro.

θacc

φacc

}
Trust long-term data (M.1.8)

θgyro

φgyro

}
Trust short-term data (M.1.9)

In order to design a complementary filter, all four parameters are kept and the main idea is to combine
this four outputs which will allow the sensor to behave accurately in both sort and long term time period
[100].

The complementary filter using all four parameters is calculated as follows:

θ = [θ + ωy∆t]︸ ︷︷ ︸
θgyro

·PA + [θacc] · PB (M.1.10)

φ = [φ+ ωx∆t]︸ ︷︷ ︸
φgyro

·PA + [φacc] · PB (M.1.11)

The aforementioned expression can be interpreted as follows. On the short term, the sensor will use the
data from the gyroscope, because it is very precise and not susceptible to external forces. On the long
term, the sensor uses the data from the accelerometer, as it does not drift. Parameters PA ≈ 1 and
PB ≈ 0 in order to filter out high frequencies data for the accelerometer and filter out low frequencies for
the gyroscope. It must be noticed that θacc and φacc are NOT the filtered values but the raw data.

The complementary filter has to be used in a infinite loop. For every iteration, the pitch and roll angles
must be updated with the new data of the gyroscope values by means of integration over time. At the
same time, the filter checks if the magnitude of the force seen by the accelerometer has a reasonable value
that could be the real g-force vector. If the value is too small or too big, it is known for sure that it is a
disturbance that shall not be taken into account. Afterwards, pitch and roll angles will be updated with
the accelerometer data by taking PA = 95% of the gyroscopes angle and adding PB = 5% of the angle
calculated by the accelerometer. This will ensure that the measurement will not drift, but that it will be
very accurate on the short term [100].

Code L.3 implements the complementary filter explained beforehand.
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Figure M.6 Pitch and roll from the BNO055 Gyroscope sensor with a
Complementary Filter. Source: Own.

Figure M.6 clearly shows the responsiveness of responsiveness of the gyroscope data at short-term motion
and movements, keeping out the possible noise due to the accelerometer. Besides, stability is reached at
long-term as the sensor trusts the accelerometers data rather than the gyroscopes values. Nonetheless,
there is a modest overshoot when the IMU is brought back to the original position but after that it
immediately compensates out.

Adding Yaw ψ using the magnetometer

So far both pitch θ and roll φ were determined thanks to the Earth gravitational force vector as this
vector can be decomposed in two components at the IMU’s body axis for any roll or pitch movement.
However, the gravitational force remains the same for any yaw motion, thus, by means of the magnetic
North Pole location, yaw angle ψ can be extracted.
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xm

ym

Magnetic North

(a) Magnetic North vector aligned with the
Magnetometer’s x axis. Source: Own.

xm

ym

Magnetic North

ψ

(b) Magnetic North vector components with the
Magnetometer’s reference axis. Source: Own.

Figure M.7 Magnetometer’s reference frame. Source: Own.

Keeping in mind the Earth magnetic North’s vector, its components can easily be expressed in term of
the magnetometer’s reference frame (see Figure M.7). Thus,

tanψ = ym
xm

(M.1.12)

ψ = arctan ym
xm

(M.1.13)

Nevertheless, the above expressions only works in a 2D motion with the IMU’s magnetometer in a flat
surface. If the sensor has a positive pitch angle θ > 0 and then it yaws, the above expression does not
take into account three dimensional motion. Likewise, projecting the vector into a three dimensional
reference frame this problem can plainly be extrapolated to a 3D reference frame.

Here-under are the resultant data:
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Figure M.8 Magnetometer’s yaw plot. Source: Own.

Let’s have a closer look at the plot (see Figure M.8). When the IMU’s x axis is aligned with the Earth’s
magnetic North Pole vector, yaw angles is 0 ◦. Furthermore, as the IMU rotates the resultant yaw angle
decreases up to a point where it is pointing towards the South then, a whole rotation is made. This
is the reason why there is a jump from −180 ◦ and 180 ◦. In a unit circle, they are the same value.
Notwithstanding, if the IMU rolls, the sensor interprets the roll as a change in heading (yaw) as the
sensor is no longer aligned with the x− y plane.

249



APPENDIX N. PYTHON VISUALIZATION CODE

Appendix N

Python visualization code

This section shows how to extract data from Arduino and pass it into a Python script for further pro-
cessing. The main requirement is to have python installed as well as serial library:

1 pip install serial

Code N.1 Libraries to be installed. Source: Own

Once done that, the program can extract the data using the following code (this code works with the
IMU data acquisition orientation all axis.ino arduino file).

N.1 Import Arduino data code

1 # This code imports ARDUINO data into python

2

3 # Libraries

4 import time

5 import serial

6

7 # Code

8 arduinoData = serial.Serial('com5', 115200) # COM and baud rate

9

10 time.sleep(1) # Delay of 1 s to ensure the serial port working

11

12 # Loop forever

13 while True:

14 # Loop until there is data into serial port (hang on until there is data)

15 while (arduinoData.inWaiting() == 0):

16 pass

17

18 # Since there is data in serial port, read the data

19 data = arduinoData.readline()

20 data = str(data, 'utf-8') # Format the data
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21 data = data.split(',') # Split the data into a list

22

23 # print(data)

24

25 # Extract values from the accelerometer

26 acc_x = float(data[0])

27 acc_y = float(data[1])

28 acc_z = float(data[2])

29

30 # Extract filtered values (Complementary filter) of pitch and roll

31 pitch = float(data[11])

32 roll = float(data[12])

33

34 # Extract yaw

35 yaw = float(data[13])

36

37 print(

38 f"acc_x={acc_x}, acc_y={acc_y}, acc_z={acc_z}, pitch={pitch}, roll={roll}, ...

yaw={yaw}")

Code N.2 Python code to extract Arduino data. Source: Own.

N.2 vPython 3D representation code

1 # The following code rotates a reference frame

2

3 # Libraries

4 from vpython import * # vPython library

5 import numpy as np # Numpy library

6 import time # Time library

7 import math # Math library

8

9 # Libraries

10 import serial

11

12 # Code

13 arduinoData = serial.Serial('com3', 115200) # COM and baud rate

14

15 time.sleep(1) # Delay of 1 s to ensure the serial port working

16

17 # View orientation

18 scene.forward = vector(-1, -1, -1)

19

20 scene.width = 600

21 scene.height = 600

22

23

24 # Adding the Arduino

25 breadBoard = box(length=6, width=6, height=6,

26 color=color.white, opacity=0.25)

27

28 # Compound object

29 object = compound([breadBoard])
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30

31 x_arrow = arrow(length=4, shaftwidth=0.25,

32 color=color.red, axis=vector(1, 0, 0))

33 y_arrow = arrow(length=4, shaftwidth=0.25,

34 color=color.green, axis=vector(0, 1, 0))

35 z_arrow = arrow(length=4, shaftwidth=0.25,

36 color=color.cyan, axis=vector(0, 0, 1))

37

38 x_body_arrow = arrow(length=6, shaftwidth=0.25,

39 color=color.purple, axis=vector(1, 0, 0))

40 y_body_arrow = arrow(length=6, shaftwidth=0.25,

41 color=color.magenta, axis=vector(0, 1, 0))

42 z_body_arrow = arrow(length=6, shaftwidth=0.25,

43 color=color.white, axis=vector(0, 0, 1))

44

45

46 # Loop forever

47 while True:

48 # Loop until there is data into serial port (hang on until there is data)

49 while (arduinoData.inWaiting() == 0):

50 pass

51

52 # Since there is data in serial port, read the data

53 data = arduinoData.readline()

54 data = str(data, 'utf-8') # Format the data

55 data = data.split(',') # Split the data into a list

56

57 # Quaternions

58 q0 = float(data[0])

59 q1 = float(data[1])

60 q2 = float(data[2])

61 q3 = float(data[3])

62

63 # Convert quaternions to euler angles

64 roll = -atan2(2*(q0*q1+q2*q3), 1-2*(q1**2+q2**2))

65 pitch = asin(2*q0*q2-q3*q1)

66 yaw = -atan2(2*(q0*q3+q1*q2), 1-2*(q2**2+q3**2))

67

68 rate(50) # 50fps

69 k = vector(cos(yaw)*cos(pitch),

70 sin(pitch), sin(yaw)*cos(pitch))

71

72 y = vector(0, 1, 0)

73 s = cross(k, y) # Side vector

74 v = cross(s, k) # Up vector

75

76 vrotate = v*cos(roll) + cross(k, v)*sin(roll)

77

78 x_body_arrow.axis = k

79 z_body_arrow.axis = cross(k, vrotate)

80 y_body_arrow.axis = vrotate

81 object.axis = k

82 object.up = vrotate # Up direction

83 x_body_arrow.length = 4

84 z_body_arrow.length = 4

85 y_body_arrow.length = 4

Code N.3 3D CubeSat visualization. Source: Own.
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Appendix O

Reaction Wheel Control code

Here is presented the full control algorithm, the control algorithm flowchart is presented again in a bigger
scale:
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To download the code, check GitHub: Github

1 /* Reaction Wheel controller

2 *
3 * The following code provides a control for PLATHON project's CubeSat.

4 *
5 *
6 * The following libraries are used:

7 * STM32 Bluepill microcontroller package from ...

http://dan.drown.org/stm32duino/package_STM32duino_index.json

8 * SCMD Driver library by SparkFun used (https:// ...

github.com/sparkfun/SparkFun_Serial1_Controlled_Motor_Driver_Arduino_Library)

9 * MPU9250 IMU library by Rafa Castalla used ...

(https://github.com/rafacastalla/MPU9250-1)

10 * read_IMU() and IMU setup content code extracted from Andres Gomez and Miquel ...

Reurer, from the PLATHON group (magnetorquers section)

11 */

12

13 // ...

...

DEFINITIONS

14 // ...

...

LIBRARIES

15 #include <Arduino.h> // Arduino library

16 #include <stdint.h> // Integer types library

17 #include <SCMD.h> // Serial Controlled Motor Driver library

18 #include <SCMD_config.h> // Serial Controlled Motor Driver Configuration library

19 #include <SPI.h> // SPI library

20 #include <MPU9250.h> // IMU library

21 #include <Wire.h>

22

23 // ...

...

DEFINITIONS

24 #define LEDPIN PC13 // Integrated LED of the Bluepill

25 #define CS1 4 // STM32 NCS Chip select (SPI mode only) pin. ...

MOSI on PA7, MISO on PA6 and CLK on PA5 by default on STM32

26 #define STM32_CLOCK 72000 // Internal STM32 Clock (72MHz, in kHz so ...

period is millisec)

27 #define PI 3.14159265 // Number PI

28 #define Rad_to_deg 57.29577951 // Convert radians to degrees

29 #define Deg_to_rad 0.01745329 // Convert degrees to radians

30 #define Final_pointing_tolerance 1 // Tolerance for final pointing (+-1 degree of ...

tolerance) (Check if position is within the margin)

31 #define Pointing_mode_tolerance 5 // Tolerance for selecting pointing mode (+-5 ...

degree of tolerance) (Select whether to use coarse or fine mode)

32 #define Accel_tolerance 0.5 // Tolerance for acceleration measurement ...

(+-0.5 unit of acceleration of tolerance) (Acceptable error of acceleration)

33 #define Gyro_tolerance 1 // Tolerance for gyro measurement (+-1 unit of ...

gyroscope Z tolerance) (Accounts to know if it is rotating or not at a ...

constant speed for the ramp)

34

35 SCMD DriverOne; // Driver Object definition

36 MPU9250 IMU(SPI, CS1); // MPU object definition
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37

38 // ...

...

GLOBAL VARIABLES

39 float IMU_accel_data_X, IMU_accel_data_Y, IMU_accel_data_Z; // Values of local IMU ...

accelerometer (m/sˆ2)

40 float IMU_gyro_data_X, IMU_gyro_data_Y, IMU_gyro_data_Z; // Values of local IMU ...

gyroscope (degrees/s)

41 float IMU_mag_data_X, IMU_mag_data_Y, IMU_mag_data_Z; // Values of local IMU ...

magnetometer (uT)

42 float Pitch_deg, Roll_deg, Yaw_deg = 0; // Pitch, Roll and Yaw ...

(degrees)

43

44 // Declare variables outside IMU, since variables initiates to 0 without defining ...

them in function

45 float Accel_total_vector_modulus; // Accelerometer total vector magnitude ...

(m/sˆ2)

46 float Accel_pitch_deg, Accel_roll_deg; // Accelerometer pitch and roll angles ...

(degrees)

47 float Gyro_pitch_deg, Gyro_roll_deg; // Gyroscope pitch and roll angles (degrees)

48 bool Gyro_Accel_sync = false; // Check if Gyroscope and Accelerometer ...

are synchronized

49 float Mag_X_calc, Mag_Y_calc; // Calculated Magnetometer value (uT)

50 float Mag_X_corrected, Mag_Y_corrected; // Corrected value Magnetometer value ...

(with damping) (uT)

51 float Pitch_rad, Roll_rad; // Pitch and Roll angles (rad)

52

53 int RW_speed = 0; // Value of Reaction Wheel speed [from -255 to 255]

54 int OBC_mode_value = 0; // Value of On Board Computer mode (waiting, positioning, ...

detumbling, etc.)

55 int OBC_data_value = 0; // Value of On Board Computer data (desired angle turn, etc.)

56 int Stop_state = 0; // If Stop_state != 0, motor stops rotating

57

58 // PID control definitions

59 double PID_error, PID_last_error; // Initialize error and previousError

60 double PID_cumulative_error, PID_rate_error; // Initialize the cumulative Error ...

(Integral) and the rate of Error (Derivative)

61 float Current_Yaw_deg = 0; // Addition of 180 deg to all values. ...

The error is a substract, so the difference is the same

62

63 double kp = 1; // Proportional contribution

64 double ki = 0; // Integral contribution

65 double kd = 1; // Derivative contribution

66

67 float Deg_to_reach = 0; // Setpoint angle (degrees)

68 bool Zero_state = false; // Check if PID encompass yaw of 0 degrees (to turn the ...

value to a workable zone)

69 int PID_output = 0; // Output value of the PID [from 0 to 255]

70

71 // ...

...

FUNCTIONS

72 // ...

...

GENERAL USE FUNCTIONS

73 // ...

...

OBC Functions
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74 void OBC_mode_receive()

75 {

76 /*
77 Function to set the Bluepill to receiving mode. Uses Timer CH3. Serial1 as ...

UART communication

78

79 INPUT: None, but gets mode from User Serial1 input

80 OUTPUT: None, but saves OBC_mode_value

81 */

82

83 // Check if UART Serial1 is available

84 read_IMU();

85

86 if (Serial1.available() > 0)

87 {

88 String bufferString = ""; // String for buffer of Serial1

89 // Keep saving input prompt

90 while (Serial1.available() > 0)

91 {

92 bufferString += (char)Serial1.read(); // Adds chars to the Serial1 buffer

93 }

94 // Conversion from String to int

95 OBC_mode_value = bufferString.toInt();

96 Serial1.print("Mode Number: ");

97 Serial1.println(OBC_mode_value);

98 }

99 }

100

101 void OBC_data_receive()

102 {

103 /*
104 Function to set the Bluepill to receiving data mode. Uses Timer CH3. Serial1 ...

as UART communication

105

106 INPUT: None, but gets data from User Serial1 input

107 OUTPUT: Save OBC_data_value

108 */

109 read_IMU();

110 // Check if UART Serial1 is available

111 if (Serial1.available() > 0)

112 {

113 String bufferString = ""; // String for buffer of Serial1

114 // Keep saving input prompt

115 while (Serial1.available() > 0)

116 {

117 bufferString += (char)Serial1.read(); // adds chars to the Serial1 buffer

118 }

119 OBC_data_value = bufferString.toInt(); // Conversion from String to int

120 }

121 }

122

123 void EmergencyStop()

124 {

125 /*
126 Function to STOP the motor from rotating.

127

128 INPUT: None, but gets data from User Serial1 input

129 OUTPUT: Save OBC_data_value

261



APPENDIX O. REACTION WHEEL CONTROL CODE

130 */

131

132 // Check if UART Serial1 is available

133 if (Serial1.available() > 0)

134 {

135 String bufferString = ""; // String for buffer of Serial1

136 // Keep saving input prompt

137 while (Serial1.available() > 0)

138 {

139 bufferString += (char)Serial1.read(); // adds chars to the Serial1 buffer

140 }

141 Stop_state = bufferString.toInt(); // Conversion from String to int

142 Serial1.print("Emergency Stop activated"); // In this case turn, but can be ...

what is needed

143 }

144

145 // Timer1.attachInterrupt(TIMER_CH4, read_show_IMU);

146 // read_show_IMU();

147 // mode_Select(OBC_mode_value);

148

149 if (Stop_state != 0)

150 {

151 // If it stopped

152 set_impulse(0, 0);

153 Serial1.flush();

154 OBC_data_value = 0;

155 mode_OBC_Input_Wait();

156 }

157 }

158

159 // ...

...

Driver Functions

160 void set_impulse(bool RW_direction, int New_RW_speed)

161 {

162 /*
163 Function to set the motor at a fixed direction and speed (B = port 1, A = port 0)

164

165 INPUT:

166 RW_direction: Reaction Wheel direction [Clockwise or Counter Clockwise] in A

167 New_RW_speed: New reaction wheel speed [from 0 to 255]

168 OUTPUT:

169 None, but saves speed of the Reaction Wheel

170 */

171

172 // Account for change in direction

173 // If motor's z-axis direction is coincident with CubeSat's z-axis direction

174 /**
175 * RW_direction == true ---> CounterClockwise, motor direction = 0

176 * RW_direction == false ---> Clockwise, motor direction = 1

177 *
178 * */

179 // If motor's z-axis direction is CONTRARY to CubeSat's z-axis direction

180 /**
181 * RW_direction == true ---> CounterClockwise, motor direction = 1

182 * RW_direction == false ---> Clockwise, motor direction = 0

183 *
184 * */
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185

186 if (RW_direction) // Reaction Wheel Counter Clock Wise

187 {

188 DriverOne.setDrive(1, 0, New_RW_speed); // Change direction depending on motor ...

connection

189 RW_speed = New_RW_speed;

190 }

191 else // Reaction Wheel Clock Wise

192 {

193 DriverOne.setDrive(1, 1, New_RW_speed);

194 RW_speed = -New_RW_speed;

195 }

196 }

197

198 void generate_ramp(bool RW_direction, int Acc_ramp_time_duration, int RW_ramp_speed_reach, bool Acc_Dec_state)

199 {

200 /*
201 Function to generate ramps. In this case it is a Single Impulse.

202 As we dont know the time it lasts, we have to see if speed changes on the ...

cubesat. That is the use of the while.

203

204 INPUT:

205 RW_direction: Reaction Wheel direction [Clockwise or Counter Clockwise]

206 Acc_ramp_time_duration: Duration of ramp

207 RW_ramp_speed_reach: Final speed reached

208 Acc_Dec_state: Check wether in acceleration state ('1') or deceleration ...

state ('0')

209 OUTPUT:

210 None

211 */

212

213 Serial1.println("Ramp Start");

214 bool waiting = true;

215

216 set_impulse(RW_direction, RW_ramp_speed_reach);

217

218 Timer1.attachInterrupt(TIMER_CH4, read_show_IMU);

219 waiting = true;

220

221 while (waiting)

222 { // Range of tolerance

223 if (Acc_Dec_state)

224 { // If accelerating

225 if (abs(IMU_gyro_data_Z) > Gyro_tolerance)

226 { // If gyro is not 0 or so, means it has constant speed of rotation

227 if (abs(IMU_accel_data_X) < Accel_tolerance)

228 { // Stop of acceleration

229 waiting = false;

230 }

231 }

232 }

233 else

234 { // If decelerating

235 if (abs(IMU_gyro_data_Z) < Gyro_tolerance)

236 { // If gyro is not 0 or so, means it has constant speed of rotation

237 if (abs(IMU_accel_data_X) < Accel_tolerance)

238 { // Stop of acceleration

239 waiting = false;
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240 }

241 }

242 }

243 delay(1); // Delay for ensuring getting inside the while loop

244 }

245 waiting = true;

246 Timer1.detachInterrupt(TIMER_CH4);

247 }

248

249 // ...

...

IMU Functions

250 void read_IMU()

251 {

252 /*
253 Function to read IMU_Data (and refreshes the global variables for IMU data).

254

255 INPUT:

256 None

257 OUTPUT:

258 None, but saves IMU variables and Roll, Pitch and Yaw

259 */

260

261 // Begin reading IMU and pitch, yaw, roll

262 IMU.readSensor();

263

264 // Accelerations

265 IMU_accel_data_X = IMU.getAccelX_mss();

266 IMU_accel_data_Y = IMU.getAccelY_mss();

267 IMU_accel_data_Z = IMU.getAccelZ_mss();

268 // Gyroscope

269 IMU_gyro_data_X = (IMU.getGyroX_rads() * Rad_to_deg);

270 IMU_gyro_data_Y = (IMU.getGyroY_rads() * Rad_to_deg);

271 IMU_gyro_data_Z = (IMU.getGyroZ_rads() * Rad_to_deg);

272 //Magnetometer

273 IMU_mag_data_X = IMU.getMagX_uT();

274 IMU_mag_data_Y = IMU.getMagY_uT();

275 IMU_mag_data_Z = IMU.getMagZ_uT();

276

277 // GetTime of IRS, in case value is correct if timer definition changes.

278 // The dT is the time step of each interrupt, thus, each read of the IMU

279 // First division of clock by preescaler (frequency of timer), then inversion ...

(period of timer), then multiplication by overflow (period of channel)

280 ...

float dT = ((1 / ((float)STM32_CLOCK / (float)Timer1.getPrescaleFactor())) * Timer1.getOverflow()) * 0.001; // ...

dT in seconds

281

282 // Get the angle Pitch and Roll angle(w = w0 + dT*angular_vel)

283 Gyro_pitch_deg += dT * (IMU.getGyroY_rads()) * Rad_to_deg;

284 Gyro_roll_deg += dT * (IMU.getGyroX_rads()) * Rad_to_deg;

285

286 // Gimbal lock compensation

287 Gyro_pitch_deg = Gyro_pitch_deg + Gyro_roll_deg * sin(dT * (IMU.getGyroZ_rads()));

288 Gyro_roll_deg = Gyro_roll_deg - Gyro_pitch_deg * sin(dT * (IMU.getGyroZ_rads()));

289

290 // Modulus of the acceleration vector, calculate the total (3D) vector

291 ...

Accel_total_vector_modulus = sqrt((IMU.getAccelX_mss() * IMU.getAccelX_mss()) + (IMU.getAccelY_mss() * IMU.getAccelY_mss()) + (IMU.getAccelZ_mss() * IMU.getAccelZ_mss()));
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292 ...

Accel_pitch_deg = asin((float)IMU.getAccelX_mss() / Accel_total_vector_modulus) * Rad_to_deg; // ...

Calculate the pitch angle from accelerometer

293 ...

Accel_roll_deg = asin((float)IMU.getAccelY_mss() / Accel_total_vector_modulus) * Rad_to_deg; // ...

Calculate the roll angle from accelerometer

294

295 /* Accelerometer calibration */

296

297 // To calibrate the accelerometer, put the values 0 . 0 in the variables and ...

uncomment the 3 Serial1.prints

298 // When compiling, leave the IMU immobile so that the accelerometer calibrates ...

properly.

299 // Once the values a r e obtained, they are noted and it is recompiled as it ...

had been before.

300

301 Accel_pitch_deg -= -11.17;

302 Accel_roll_deg -= -0.45;

303

304 // Serial1.print(Accel_pitch_deg,6);

305 // Serial1.print("\t");

306 // Serial1.println(Accel_roll_deg,6);

307

308 // If gyroscope and accelerometer are synchronized

309 if (Gyro_Accel_sync)

310 {

311 // ----- Gyro & accel have been synchronized

312 Gyro_pitch_deg = Gyro_pitch_deg * 0.95 + Accel_pitch_deg * 0.05; // Correct ...

the drift of the gyro pitch angle with the accelerometer pitch angle. ...

Original values were 0.9996 and 0.0004m, respectively.

313 Gyro_roll_deg = Gyro_roll_deg * 0.95 + Accel_roll_deg * 0.05; // Correct ...

the drift of the gyro roll angle with the accelerometer roll angle

314 }

315 else

316 { // The 0.98 and 0.02 values are taken from http:// ...

www.pieter-jan.com/node/11else{

317 // ----- Synchronize gyro & accel

318 Gyro_pitch_deg = Accel_pitch_deg; // Set the gyro pitch angle equal to the ...

accelerometer pitch angle

319 Gyro_roll_deg = Accel_roll_deg; // Set the gyro roll angle equal to the ...

accelerometer roll angle

320 Gyro_Accel_sync = true; // Set the IMU started flag

321 }

322

323 // Final corrected Pitch and Roll angle (degrees)

324 Pitch_deg = Pitch_deg * 0.9 + Gyro_pitch_deg * 0.1;

325 Roll_deg = Roll_deg * 0.9 + Gyro_roll_deg * 0.1;

326

327 // Final corrected Pitch and Roll angle (radians)

328 Pitch_rad = -Roll_deg * Deg_to_rad;

329 Roll_rad = Pitch_deg * Deg_to_rad;

330

331 // Calculated values of Magnetometer along X and Y axis

332 ...

Mag_X_calc = IMU.getMagX_uT() * cos(Pitch_rad) + IMU.getMagY_uT() * sin(Roll_rad) * sin(Pitch_rad) - IMU.getMagZ_uT() * cos(Roll_rad) * sin(Pitch_rad);

333 Mag_Y_calc = IMU.getMagY_uT() * cos(Roll_rad) + IMU.getMagZ_uT() * sin(Roll_rad);

334

335 // Correct drif (same as Pitch_deg)
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336 Mag_X_corrected = Mag_X_corrected * 0.9 + Mag_X_calc * 0.1;

337 Mag_Y_corrected = Mag_Y_corrected * 0.9 + Mag_Y_calc * 0.1;

338

339 // The magnetic north has been modified, originally, it was from X to Y (towards ...

which the reading 0 was 90 degrees offset) and without the negative sign of ...

the beginning (towards which the reading would add the angles ...

counterclockwise instead of clockwise).

340

341 Yaw_deg = -atan2(Mag_Y_corrected, Mag_X_corrected) * Rad_to_deg;

342

343 // If you want to be precise, add the declination of the geographical place ...

where you are (https: // www.ign.es/web/gmt-declinacion-magnetica)

344 // Yaw_deg += Declination;

345

346 // The next two lines contain the value of Yaw_deg between 0 and 360 degrees.

347 if (Yaw_deg < 0)

348 Yaw_deg += 360;

349 if (Yaw_deg >= 360)

350 Yaw_deg -= 360;

351 }

352

353 void show_IMU()

354 {

355 /*
356 Function to show IMU_Data on the Serial1 Monitor

357

358 INPUT:

359 None

360 OUTPUT:

361 None

362 */

363

364 // Print accelerometer values

365 // Serial1.print("Ax: ");

366 Serial1.print(IMU_accel_data_X, 4);

367 Serial1.print(';');

368 Serial1.print(IMU_accel_data_Y, 4);

369 Serial1.print(';');

370 // Serial1.print(IMU_accel_data_Z,4);

371 // Serial1.println("");

372

373 // Print Gyro values

374 // Serial1.print(" / G: ");

375 // Serial1.print(IMU_gyro_data_X,4); Serial1.print(';');

376 // Serial1.print(IMU_gyro_data_Y,4); Serial1.print(';');

377 Serial1.print(IMU_gyro_data_Z, 4);

378 Serial1.print(';');

379 // Serial1.println("");

380

381 // Print Mag values

382 // Serial1.print("MAGS: ");

383 // Serial1.print(IMU_mag_data_X,4); Serial1.print(';');

384 // Serial1.print(IMU_mag_data_Y,4); Serial1.print(';');

385 // Serial1.print(IMU_mag_data_Z,4);

386 // Serial1.println("");

387

388 // Print orientation angles

389 // Serial1.print(" / D: ");
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390 // Serial1.print(Pitch_deg, 4);

391 // Serial1.print(';');

392 // Serial1.print(Roll_deg, 4);

393 // Serial1.print(';');

394 Serial1.print(Yaw_deg, 4);

395 Serial1.println("");

396 }

397

398 void read_show_IMU()

399 {

400 /*
401 Function to both read and show IMU_Data.

402

403 INPUT:

404 None

405 OUTPUT:

406 None, but saves IMU variables and Roll, Pitch and Yaw

407 */

408

409 read_IMU();

410 show_IMU();

411 }

412

413 // ...

...

PID Functions

414 void computePID()

415 {

416 /*
417 Function to calculate PID

418

419 INPUT:

420 None

421 OUTPUT:

422 None, but saves PID values

423 */

424

425 // Time step

426 ...

float dT = ((1 / ((float)STM32_CLOCK / (float)Timer1.getPrescaleFactor())) * Timer1.getOverflow()) * 0.001; // ...

in seconds

427

428 read_show_IMU();

429

430 Current_Yaw_deg = Yaw_deg;

431

432 // Check if PID passes through 0 degrees

433 if (Zero_state)

434 {

435 // Saves if the pid pass through 0, if it does it moves the zone away from 0

436 // New variable to not modify the Yaw_deg value

437 Current_Yaw_deg = Yaw_deg + 180; // Addition of 180 deg to all values. The ...

error is a substract, so the difference is the same

438 }

439

440 if (Current_Yaw_deg >= 360)

441 Current_Yaw_deg -= 360; // One of them will increase over 360, it is a correction

442
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443 // Percentage

444 volatile float Yaw_deg_perc = (Current_Yaw_deg - 360) / (-360) * 100;

445

446 // Transform angle to percentage (Deg_to_reach == setPoint)

447 volatile float Deg_to_reach_perc = (Deg_to_reach - 360) / (-360) * 100;

448

449 // Errors

450 PID_error = Deg_to_reach_perc - Yaw_deg_perc; // Calculate error ...

(Proportional)

451 PID_cumulative_error += PID_error * dT; // Calculate the cumulative ...

error (Integral)

452 PID_rate_error = (PID_error - PID_last_error) / dT; // Calculate the rate of ...

error (Derivative)

453

454 // PID Control

455 float PID_P = kp * PID_error; // Proportional

456 float PID_I = ki * PID_cumulative_error; // Integral

457 float PID_D = kd * PID_rate_error; // Derivative

458

459 /*
460 // Limit

461 // Ensure not overflow

462 if (PID_P > 255)

463 PID_P = 255;

464 if (PID_P < -255)

465 PID_P = -255;

466 if (PID_I > 255)

467 PID_I = 255;

468 if (PID_I < -255)

469 PID_I = -255;

470 if (PID_D > 255)

471 PID_D = 255;

472 if (PID_D < -255)

473 PID_D = -255;

474 */

475

476 PID_output = PID_P + PID_I + PID_D; // PID control

477

478 // Prevent overflow

479 if (PID_output > 255)

480 PID_output = 255;

481 if (PID_output < -255)

482 PID_output = -255;

483

484 bool RW_direction = true; // true=positive (CounterClockwise), false=negative ...

(Clockwise)

485

486 if (PID_output < 0)

487 {

488 PID_output = -PID_output;

489 RW_direction = false;

490 }

491

492 set_impulse(RW_direction, PID_output);

493

494 // Save current error and time for next iteration

495 PID_last_error = PID_error; // Save current error

496 }
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497

498 // ...

...

MODES OF OPERATION FUNCTIONS

499 void mode_OBC_Input_Wait()

500 {

501 /*
502 0. Default mode, OBC Reading

503

504 INPUT:

505 None

506 OUTPUT:

507 None, but exits to mode_Select

508 */

509 if (Stop_state != 0)

510 {

511 Stop_state = 0;

512 Timer1.detachInterrupt(TIMER_CH3);

513 }

514 OBC_mode_value = 0;

515 Timer1.attachInterrupt(TIMER_CH3, OBC_mode_receive);

516 while (OBC_mode_value == 0)

517 {

518 delay(1); // If not used the while function does not work

519 // it can be added more conditions to evade being blocked until a data is ...

received.

520 // for example, it could function an interrupt with a forced exit and an if ...

after or something

521 }

522 Timer1.detachInterrupt(TIMER_CH3);

523 Serial1.println(OBC_mode_value);

524 mode_Select(OBC_mode_value);

525 }

526

527 void mode_Select(int mode_value)

528 {

529 /*
530 Function to select Mode

531

532 INPUT:

533 mode_value ['0': Waiting; '1': Positioning; '2': Reading]

534 OUTPUT:

535 None, but exits to selected mode

536 */

537

538 switch (mode_value)

539 {

540 default: // Mode OBC Input Waiting (0): Waiting for OBC

541 Serial1.println("Reading mode from OBC");

542 mode_OBC_Input_Wait();

543 break;

544 case 1: // Mode Positioning RW only

545 Serial1.println("Mode Positioning");

546 mode_Positioning_RW();

547 break;

548 case 2: // Mode IMU reading (TEST mode)

549 Serial1.println("Reading IMU");

550 mode_IMU_reading();
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551 break;

552 case 3: // Mode Motor ON OFF (TEST mode)

553 Serial1.println("Mode motor ON OFF");

554 mode_motor_on_off();

555 break;

556 }

557 }

558

559 void mode_Positioning_RW()

560 {

561 /*
562 1. Mode Positioning (RW only)

563

564 INPUT:

565 None

566 OUTPUT:

567 None, but exits to suitable positioning type

568 */

569

570 OBC_mode_value = 0;

571 Serial1.println("Positioning begin");

572 // Insert code to select if the positioning will be coarse (impulses) or fine (PD)

573 /* It should be something like:

574 * read IMU degree value

575 * get OBC value from OBC and save in global variable

576 * comparison to OBC value (wanted position), add to the void function definition

577 * if (comparison<acceptable_error){

578 * positioning_fine();

579 * }else{

580 * positioning_coarse();

581 * }

582 */

583 read_IMU();

584 Serial1.print("Axis Z position: ");

585 Serial1.println(Yaw_deg);

586 Serial1.println("Insert degree value to turn");

587 OBC_data_value = 0;

588 Timer1.attachInterrupt(TIMER_CH3, OBC_data_receive);

589 while (OBC_data_value == 0)

590 {

591 delay(1); // If not used the while function does not work

592 }

593 Timer1.detachInterrupt(TIMER_CH3);

594

595 Serial1.print("Value to turn: "); // In this case turn, but can be what is needed

596 Serial1.print(OBC_data_value);

597

598 // Initiate EmergencyStop routine

599 Timer1.attachInterrupt(TIMER_CH3, EmergencyStop);

600

601 // Depend on the tolerance enable Fine or Coarse positioning

602 if (abs(OBC_data_value) <= Pointing_mode_tolerance)

603 {

604 positioning_Fine();

605 }

606 else

607 {

608 positioning_Coarse();
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609 }

610 }

611

612 void positioning_Coarse()

613 {

614 /*
615 1.1. Mode Positioning Coarse: For now simple

616

617 INPUT:

618 None

619 OUTPUT:

620 None, but exits to positioning_Fine or mode_select

621 */

622

623 Serial1.println("Mode Positioning Coarse");

624

625 // Stores a new variable to not overwrite the original value, also for motor as ...

it needs a positive value and direction

626 float degree_turn_value = OBC_data_value;

627 bool RW_direction = true; // true=positive (CCW), false=negative (CW) along ...

CubeSat's z-axis

628 // In case OBC_data_value is positive, value remains ...

the same and rw direction is true, the default value of the variable

629 // In case OBC_data_value is negative, value change to ...

positive and rw direction is false

630

631 if (degree_turn_value < 0)

632 {

633 degree_turn_value = -degree_turn_value;

634 RW_direction = false;

635 }

636

637 ...

float Initial_IMU_degree_value, Final_IMU_degree_value, Delta_degree_ramp, Degree_stop_wait;

638 float Prev_Yaw_deg, Check_Yaw_deg;

639 int overlap_count = 0;

640 bool waiting = true;

641

642 // ----------------------------------------------------------ACCELERATION

643

644 read_show_IMU();

645 Initial_IMU_degree_value = Yaw_deg; // Stores initial degree, only in Z

646 int initial_RW_speed = RW_speed;

647 generate_ramp(RW_direction, 0, 30, 1);

648 // 0 will not be used as we dont define the time the motor lasts to do an ...

impulse. 255 is the max value

649 // This values will be substituted by how we want the time and speed to reach in ...

the ramp.

650 read_show_IMU();

651 Final_IMU_degree_value = Yaw_deg; // Stores final degree, only in Z

652

653 Delta_degree_ramp = Final_IMU_degree_value - Initial_IMU_degree_value; // degree ...

turnt on acc, only in Z.

654

655 if (RW_direction == false) // RW Clockwise

656 {

657 Delta_degree_ramp = Final_IMU_degree_value - Initial_IMU_degree_value; // ...

degree turnt on acc, only in Z. Should be positive
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658 }

659

660 if (RW_direction)

661 {

662 Delta_degree_ramp = Final_IMU_degree_value - Initial_IMU_degree_value; // ...

degree turnt on acc, only in Z. Should be positive

663 }

664 else

665 {

666 Delta_degree_ramp = -(Final_IMU_degree_value - Initial_IMU_degree_value); // ...

degree turnt on acc, only in Z. Should be positive

667 }

668

669 if (Delta_degree_ramp < 0)

670 {

671 Delta_degree_ramp += 360; // In case its negative adds 360

672 // Negative cases: changes goes by 0 . EX: 330 to 30 when CCW (should be 60 ...

but calculus is 30-330= -300)

673 // EX: 30 to 330 when CW (should be 60 ...

but calculus is 30-330= -300)

674 }

675 // Serial1.print("ID: ");

676 // Serial1.print(Initial_IMU_degree_value);

677 // Serial1.print(" / T: ");

678 // Serial1.print(Delta_degree_ramp); // Difference of ange

679 // Serial1.print(" / ED: ");

680 // Serial1.println(Final_IMU_degree_value); // Final, End angle

681 // --------------------------------------------------------------WAITING

682 if ((degree_turn_value - 2 * Delta_degree_ramp) > 0) // if it is <0, skip the ...

waiting phase, deceleration must be done immediately after, and still it ...

would be too much turn.

683 {

684 waiting = true;

685 if (RW_direction)

686 {

687 // CASE CCW

688

689 /*
690 RW CCW

691 CB CW

692 IMU positive

693

694 Angulo inicial 300

695

696 gira 150 en sentido CB CW = degree_turn_value

697

698 angulo final acc 350 = Final_IMU_degree_value

699

700 Delta_degree_ramp=350-300=50

701

702 Degree_stop_wait=350+(150-2*50)=400; 40

703

704 */

705 ...

Degree_stop_wait = Final_IMU_degree_value + (degree_turn_value - 2 * Delta_degree_ramp); // ...

Get value of degree to start stop

706

707 Timer1.attachInterrupt(TIMER_CH4, read_show_IMU);
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708 Serial1.println("Waiting");

709 while (waiting)

710 { // Stays as long as waiting is true.

711

712 // CAUTION WITH READING VALUES; AS IT IS ALWAYS FROM 0 TO 360

713 // Degree_stop_wait will always be > Yaw_deg. If Yaw_deg>> (ex: 359 ), ...

Degree_stop_wait can be >360. Thus the value of If Yaw_deg would never reach ...

Degree_stop_wait

714 // Degree_stop_wait cant be decreased, as the way to check if its reached ...

is by a greater. If it is decreased by 360 (so it stays in relative place), ...

it could be < Yaw_deg and would immediately exit the while without waiting.

715 // the way to do is check if there is a heavy change on Yaw_deg (pass on ...

0) to check if adding or substracting a lap, making it go out of the 0 and ...

360 range.

716 // It should not be a high acceleration enough to make a jump of degree of ...

180 in such short time,so it should be fine.

717 // Caution disconnection from IMU, could give a false jump, that is why a ...

check on Yaw_deg first.

718

719 if (Yaw_deg < 0.0001 && Yaw_deg > -0.0001)

720 { // if it is almost exactly 0 then most probably there is a ...

disconnection. Close numbers should not trigger it.

721 }

722 else if (Yaw_deg - Prev_Yaw_deg < -180)

723 { // Checks for a heavy change (greater than half ...

turn). Done by changes in 0, like jumping from 359 to 0.

724 overlap_count += 1; // adds a lap

725 }

726 else if (Yaw_deg - Prev_Yaw_deg > +180)

727 { // Checks for a heavy change (greater than half ...

turn). Done by changes in 0, like jumping from 0 to 359. (Not possible in ...

theory, as it increases, but deviations could mess it up)

728 overlap_count -= 1; // substracts a lap

729 } // if neither are triggered, change has been samall ...

or no change has been done yet

730 Prev_Yaw_deg = Yaw_deg;

731 Check_Yaw_deg = Yaw_deg + (360 * overlap_count); // Rewriting of value, in ...

new variable so it does not add itself.

732 if (Check_Yaw_deg > Degree_stop_wait)

733 { // As it is CCW, degree increases. When reading is > to ...

stop value, exits the while

734 waiting = false; // exit condition

735 }

736 delay(1); // To solve errors

737 // No writing of read_IMU as it is already done by a timer. Just to remind ...

Yaw_deg is constantly reading values.

738 }

739 Timer1.detachInterrupt(TIMER_CH4);

740 }

741 else

742 {

743 // CASE CW

744 // if its <0, it must be done immediately after, and still it would be too ...

much turn.

745 ...

Degree_stop_wait = Final_IMU_degree_value - (degree_turn_value - 2 * Delta_degree_ramp); // ...

Get value of degree to start stop

746
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747 Timer1.attachInterrupt(TIMER_CH4, read_show_IMU);

748 while (waiting)

749 { // Stays as long as waiting is true.

750 Serial1.println("Waiting");

751

752 // CAUTION WITH READING VALUES; AS IT IS ALWAYS FROM 0 TO 360

753 // Degree_stop_wait will always be < Yaw_deg. If Yaw_deg<< (ex: 1 ), ...

Degree_stop_wait can be <0. Thus the value of If Yaw_deg would never reach ...

Degree_stop_wait

754 // Degree_stop_wait can't be increased, as the way to check if its ...

reached is by a greater. If it is increased by 360 (so it stays in relative ...

place), it could be > Yaw_deg and would immediately exit the while without ...

waiting.

755 // the way to do is check if there is a heavy change on Yaw_deg (pass on ...

0) to check iff adding or substracting a lap, making it go out of the 0 and ...

360 range.

756 // It should not be a high acceleration enough to make a jump of degree of ...

180 in such short time, so it should be fine.

757 // Caution disconnection from IMU, could give a false jump, that is why a ...

check on Yaw_deg first.

758

759 Check_Yaw_deg = Yaw_deg; // New variable so it does not change during an ...

iteration

760 if (Check_Yaw_deg < 0.0001 && Check_Yaw_deg > -0.0001)

761 { // if it is almost exactly 0 then most probably there is a ...

disconnection. Close numbers should not trigger it.

762 }

763 else if (Check_Yaw_deg - Prev_Yaw_deg > +180)

764 { // Checks for a heavy change (greater than half ...

turn). Done by changes in 0, like jumping from 359 to 0. (Not possible in ...

theory, as it decreases, but deviations could mess it up)

765 overlap_count += 1; // adds a lap

766 }

767 else if (Check_Yaw_deg - Prev_Yaw_deg < -180)

768 { // Checks for a heavy change (greater than half ...

turn). Done by changes in 0, like jumping from 0 to 359.

769 overlap_count -= 1; // substracts a lap

770 } // if neither are triggered, change has been samall ...

or no change has been done yet

771

772 Prev_Yaw_deg = Check_Yaw_deg;

773 Check_Yaw_deg = Check_Yaw_deg + (360 * overlap_count); // Rewriting of ...

value. It does not add itself as it gets the read value in each iteration. In ...

other words, it will not go through the iteration with numbers outside 0 and ...

360 range

774 if (Check_Yaw_deg < Degree_stop_wait)

775 { // As it is CCW, degree increases. When reading is > to ...

stop value, exits the while

776 waiting = false; // exit condition

777 }

778 delay(1); // To solve errors

779 // No writing of read_IMU as it is already done by a timer. Just to remind ...

Yaw_deg is constantly reading values.

780 }

781 Timer1.detachInterrupt(TIMER_CH4);

782 }

783 }

784
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785 // ----------------------------------------------------------DECELERATION

786 // Serial1.print("ID: ");

787 // Serial1.print(Final_IMU_degree_value);

788 // Serial1.print(" / ED: ");

789 // Serial1.println(Degree_stop_wait);

790

791 // Initial_RW_Speed returns speed to original value instead of 0

792 generate_ramp(RW_direction, initial_RW_speed, 0, 0);

793 // This is to assure the impulse is the same, as if there is some momentum ...

accumulation, returning to 0 would be a different impulse

794 // 0 will not be used as we dont define the time the motor lasts to do an ...

impulse. 255 is the max value

795 // This values will be substituted by how we want the time and speed to reach in ...

the ramp.

796

797 read_show_IMU();

798 Final_IMU_degree_value = Yaw_deg; // can be overwritten, final degree of manoeuvre

799 if (RW_direction)

800 {

801 Delta_degree_ramp = Final_IMU_degree_value - Initial_IMU_degree_value; // ...

Should be positive

802 }

803 else

804 {

805 Delta_degree_ramp = Initial_IMU_degree_value - Final_IMU_degree_value; // ...

Should be positive

806 }

807 if (Delta_degree_ramp < 0)

808 { // can be overwritten, real turn of manoeuvre

809 Delta_degree_ramp += 360; // In case its negative adds 360

810 // Negative cases: changes goes by 0 . EX: 330 to 30 when CCW (should be 60 ...

but calculus is 30-330= -300)

811 // EX: 30 to 330 when CW (should be 60 ...

but calculus is 30-330= -300)

812 }

813

814 // Serial1.print("ID: ");

815 // Serial1.print(Degree_stop_wait);

816 // Serial1.print(" / T: ");

817 // Serial1.print(Delta_degree_ramp);

818 // Serial1.print(" / ED: ");

819 // Serial1.println(Final_IMU_degree_value);

820

821 ...

if ((Delta_degree_ramp - degree_turn_value) < Final_pointing_tolerance && (Delta_degree_ramp - degree_turn_value) > Final_pointing_tolerance)

822 {

823 // Detach EmergencyStop

824 Timer1.detachInterrupt(TIMER_CH3);

825

826 // Real turn vs wanted turn, checks if it is considered good

827 mode_OBC_Input_Wait(); // Valid position

828 }

829 else

830 {

831 // Recalculate the OBC_data_value for PID

832 OBC_data_value = OBC_data_value - Delta_degree_ramp;

833 positioning_Fine(); // Correction

834 }
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835 }

836

837 void positioning_Fine()

838 {

839 /*
840 1.2. Mode Positioning Fine: PID

841

842 INPUT:

843 None

844 OUTPUT:

845 None, but exits to mode_select

846 */

847

848 Serial1.println("Mode Positioning Fine");

849

850 bool waiting = true;

851

852 read_show_IMU();

853 Deg_to_reach = OBC_data_value + Yaw_deg; // Get value to reach, contained in 360

854 if (Deg_to_reach < 0)

855 {

856 Deg_to_reach += 360;

857 Zero_state = true; // Used to store if it passes 0.

858 // A PD passing through 0 could give great problems, as it has a very big ...

change in value. Further used in computePID()

859 }

860 else if (Deg_to_reach >= 360)

861 {

862 Deg_to_reach -= 360; // These two lines contain the value of the Yaw_deg in ...

0-360 degrees.

863 Zero_state = true;

864 }

865 else

866 {

867 Zero_state = false;

868 }

869

870 if (Zero_state)

871 {

872 Deg_to_reach + 180;

873 if (Deg_to_reach >= 360)

874 Deg_to_reach -= 360;

875 }

876

877 Timer1.attachInterrupt(TIMER_CH4, computePID);

878 while (waiting)

879 { // Range of tolerance

880 ...

if (abs(IMU_gyro_data_Z) < Gyro_tolerance && abs(IMU_accel_data_X) < Accel_tolerance && abs(Deg_to_reach - Yaw_deg) < Final_pointing_tolerance)

881 { // we consider it is stopped, modify values to be accurate

882 waiting = false;

883 }

884 delay(1); // Change

885 }

886 waiting = true;

887 Timer1.detachInterrupt(TIMER_CH4);

888

889 // At exit, RW_speed could not be 0
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890 OBC_data_value = 0;

891 Serial1.println("End of manoeuvre");

892

893 // Detach EmergencyStop

894 Timer1.detachInterrupt(TIMER_CH3);

895

896 mode_Select(OBC_mode_value);

897 }

898

899 void mode_IMU_reading()

900 {

901 /*
902 2- IMU reading (TEST PURPOSE Function)

903

904 INPUT:

905 None

906 OUTPUT:

907 None, but saves IMU variables and Roll, Pitch and Yaw

908 */

909

910 OBC_mode_value = 0;

911 Timer1.attachInterrupt(TIMER_CH4, read_show_IMU);

912 Timer1.attachInterrupt(TIMER_CH3, OBC_data_receive);

913 while (OBC_data_value == 0)

914 {

915 delay(1); // If not used the while function does not work

916 }

917 Timer1.detachInterrupt(TIMER_CH3);

918 Timer1.detachInterrupt(TIMER_CH4);

919 OBC_data_value = 0;

920 mode_Select(OBC_mode_value);

921 }

922

923 void mode_motor_on_off()

924 {

925 /*
926 3- Motor ON/OFF (TEST PURPOSE Function)

927

928 INPUT:

929 None

930 OUTPUT:

931 None

932 */

933 OBC_mode_value = 0;

934 set_impulse(true, 100);

935 Timer1.attachInterrupt(TIMER_CH3, OBC_data_receive);

936 while (OBC_data_value == 0)

937 {

938 delay(1); // If not used the while function does not work

939 }

940 Timer1.detachInterrupt(TIMER_CH3);

941 set_impulse(true, 0);

942 OBC_data_value = 0;

943 mode_OBC_Input_Wait();

944 }

945

946 // ...

...
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VOID SETUP

947 void setup()

948 {

949 delay(1000); // wait to let open the serial

950 // ...

...

Timers

951 Timer1.pause();

952 Timer1.setPrescaleFactor(7200); // 72MHz Clock / 7200 = 10KHz timer

953 Timer1.setOverflow(1000); // Overflow occurs at 1000, each 100 ms timer ...

restarts

954

955 Timer1.setMode(TIMER_CH3, TIMER_OUTPUT_COMPARE); // Configure channel to ...

OUTPUTCOMPARE: Channel for OBC read values

956 Timer1.setMode(TIMER_CH4, TIMER_OUTPUT_COMPARE); // Channel for IMU read values

957 Timer1.setCompare(TIMER_CH3, 1); // Phase value in Overflow range

958 Timer1.setCompare(TIMER_CH4, 1);

959

960 Timer1.refresh(); // Refresh timer and start over

961 Timer1.resume();

962

963 // ...

...

Initiations

964 Serial1.begin(9600);

965 SPI.begin();

966

967 Serial1.println("START");

968

969 // ...

...

Setups

970

971 pinMode(LEDPIN, OUTPUT); // Integrated LED

972 pinMode(CS1, OUTPUT); // NCS Pin definition

973

974 // ...

...

Driver Setup

975 Serial1.println("Configuring Driver...");

976 DriverOne.settings.commInterface = I2C_MODE; // Driver Comm Mode

977 DriverOne.settings.I2CAddress = 0x5D; // Driver Address (0x5D by Default)

978

979 while (DriverOne.begin() != 0xA9)

980 { // Driver wait for idle

981 Serial1.println("ID Mismatch");

982 delay(200);

983 }

984 Serial1.println("ID Match");

985

986 Serial1.println("Waiting for enumeration"); // Driver wait for peripherals

987 while (DriverOne.ready() == false)

988 ;

989 Serial1.println("Ready");

990

991 while (DriverOne.busy())

992 ; // Driver enable

993 DriverOne.enable();
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994 Serial1.println("Driver Ready to Use!");

995

996 // ...

...

IMU Setup

997 Serial1.println("Configuring MPU9250...");

998 int status = IMU.begin();

999 if (status < 0)

1000 {

1001 Serial1.println("IMU initialization unsuccessful");

1002 Serial1.println("Check IMU wiring or try cycling power");

1003 Serial1.print("Status: ");

1004 Serial1.println(status);

1005 while (1)

1006 {

1007 }

1008 }

1009

1010 IMU.setGyroRange(IMU.GYRO_RANGE_500DPS);

1011

1012 // ...

...

IMU Calibration

1013 // Use for getting the values o n calibration setting below

1014

1015 // To calibrate the magnetometer or the compass, everything is commented except ...

the last 3 lines.

1016 // It moves in the shape of an eight approximately 2 min. It is recommended to ...

carry out several times until the measurements are fine-tuned.

1017 // Uncomment everything and enter the values o b t a i n e d from the MagBias and ...

ScaleFactor to view the results of the magnetometer.

1018 //

1019 // IMU.calibrateMag();

1020 // Serial1.println("Done");

1021 //

1022 // Serial1.print(IMU.getMagBiasX_uT());

1023 // Serial1.print(",");

1024 // Serial1.print(IMU.getMagBiasY_uT());

1025 // Serial1.print(",");

1026 // Serial1.println(IMU.getMagBiasZ_uT());

1027 //

1028 // Serial1.print(IMU.getMagScaleFactorX());

1029 // Serial1.print(",");

1030 // Serial1.print(IMU.getMagScaleFactorY());

1031 // Serial1.print(",");

1032 // Serial1.println(IMU.getMagScaleFactorZ());

1033

1034 // Reactioni wheels + Magnetorquer

1035 IMU.setMagCalX(9.42, 0.91); // The first value corresponds to the MagBias, and ...

the second the ScaleFactor.

1036 IMU.setMagCalY(41.82, 0.98);

1037 IMU.setMagCalZ(-6.59, 1.14);

1038

1039 // Only reaction wheels

1040 // IMU.setMagCalX(14.06, 0.84); // The first value corresponds to the MagBias, ...

and the second the ScaleFactor.

1041 // IMU.setMagCalY(29.85, 1.36);

1042 // IMU.setMagCalZ(-32.30, 0.94);
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1043

1044 Serial1.println("MPU9250 Ready to Use!");

1045

1046 Serial1.println("Reading mode from OBC");

1047 mode_OBC_Input_Wait();

1048 }

1049

1050 // ...

...

VOID LOOP

1051 void loop()

1052 {

1053 }

Code O.1 Full control of the Cubesat with coarse and fine pointing mode. Source: Own.
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Table O.1 Variables explanation of the control algorithm. Source: Own.

Name Description Type Units Ambit
LEDPIN Integrated LED of the Bluepill #define - Bluepill configuration
CS1 STM32 NCS Chip select (SPI mode only) pin #define - Bluepill configuration
STM32 CLOCK Internal STM32 Clock #define kHz Bluepill configuration
PI Number PI #define - Math values
Rad to deg Convert radians to degrees #define - Math values
Deg to rad Convert degrees to radians #define - Math values
Final pointing tolerancy Tolerancy for final pointing #define Deg (Âž) Tolerancies
Pointing mode tolerancy Tolerance for selecting pointing mode #define Deg (Âž) Tolerancies
Accel Tolerance Tolerance for acceleration measurement #define m/s2 Tolerancies
Gyro Tolerance Tolerance for gyro measurement #define Deg/s Tolerancies
DriverOne Driver Object definition SCMD - Object initiations
IMU MPU Object definition MPU9250 - Object initiations
IMU accel data X Values of local IMU accelerometer along X

axis
float m/s2 IMU Values

IMU accel data Y Values of local IMU accelerometer along Y
axis

float m/s2 IMU Values

IMU accel data Z Values of local IMU accelerometer along Z
axis

float m/s2 IMU Values

IMU gyro data X Values of local IMU gyroscope along X axis float Deg/s IMU Values
IMU gyro data Y Values of local IMU gyroscope along Y axis float Deg/s IMU Values
IMU gyro data Z Values of local IMU gyroscope along Z axis float Deg/s IMU Values
IMU mag data X Values of local IMU magnetometer along X

axis
float uT IMU Values

IMU mag data Y Values of local IMU magnetometer along Y
axis

float uT IMU Values

IMU mag data Z Values of local IMU magnetometer along Z
axis

float uT IMU Values
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Pitch deg Pitch angle float Deg (Âž) Orientation angles
Roll deg Roll angle float Deg (Âž) Orientation angles
Yaw deg Yaw angle float Deg (Âž) Orientation angles
Accel total vector modulus Accelerometer total vector magnitude float m/s2 Angles determination
Accel pitch deg Accelerometer Pitch angle float Deg (Âž) Angles determination
Accel roll deg Accelerometer Roll angle float Deg (Âž) Angles determination
Gyro pitch deg Gyroscope Pitch angle float Deg (Âž) Angles determination
Gyro roll deg Gyroscope Roll angle float Deg (Âž) Angles determination
Gyro Accel sync Check if Gyroscope and Accelerometer are

synchronized
bool - Angles determination

Mag X calc Calculated Magnetometer value along X axis float uT Angles determination
Mag Y calc Calculated Magnetometer value along Y axis float uT Angles determination
Mag X corrected Corrected Magnetometer value along X axis float uT Angles determination
Mag Y corrected Corrected Magnetometer value along Y axis float uT Angles determination
Pitch rad Pitch angle float rad Angles determination
Roll rad Roll angle float rad Angles determination
RW speed Value of Reaction Wheel speed int - Motor values
OBC mode value Value of mode sent by the On Board Com-

puter
int - OBC readings

OBC data value Value of turn sent by the On Board Com-
puter

int Deg (Âž) OBC readings

Stop State Check if an Emergency Stop is performed int Deg (Âž) OBC readings
PID error Proportional error from PID double - Fine Positioning (PID)
PID last error Previous proportional error from PID double - Fine Positioning (PID)
PID cumulative error Cumulative (Integral) error from PID double - Fine Positioning (PID)
PID rate error Rate (Derivative) error from PID double - Fine Positioning (PID)
kp Proportional constant double - Fine Positioning (PID)
ki Integral constant double - Fine Positioning (PID)
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kd Derivative constant double - Fine Positioning (PID)
Deg to reach Setpoint angle float Deg (Âž) Fine Positioning (PID)
Zero state Check if PID encompass yaw of 0 degrees bool - Fine Positioning (PID)
PID output Output value of the PID int bytes Fine Positioning (PID)
RW direction Direction of the Reaction Wheel bool - (Inside functions) Mo-

tor settings
New RW speed Speed to set on the Reaction Wheel int bytes (Inside functions) Mo-

tor settings
Acc ramp time duration Duration of ramp int s (Inside functions) Mo-

tor settings
RW ramp speed reach Final speed reached int bytes (Inside functions) Mo-

tor settings
Acc Dec state Check wether in acceleration or deceleration

state
bool - (Inside functions) Mo-

tor settings
dT Time step of each interrupt, calculated from

Timer
float s (Inside functions) IMU

reading and Fine Posi-
tioning (PID)
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Table O.2 Functions of the control algorithm. Source: Own.

Name Description Input Output Ambit
OBC mode receive() Get mode from OBC None, but gets mode from

User Serial1 input
None, but saves
OBC mode value

OBC readings

OBC data receive() Get data from OBC None, but gets mode from
User Serial1 input

None, but saves
OBC data value

OBC readings

EmergencyStop Stops the motor if the user calls an
emergency stop

None, but gets stop state
from User Serial1 input

None OBC readings

set impulse() Set the motor at a fixed direction
and speed

RW direction,
New RW speed

None, but saves RW speed Motor settings

generate ramp() Creates a ramp RW direction,
Acc ramp time reach,
RW ramp speed reach,
Acc Dec state

- Motor settings

read IMU() Read data from the IMU None None, but saves IMU vari-
ables, pitch, roll and yaw

IMU reading

show IMU() Show data from the IMU on the Se-
rial1 monitor

None None IMU reading

read show IMU() Read then show data from the IMU None None, but saves IMU vari-
ables, pitch, roll and yaw

IMU reading

computePID() Compute the PID and updates the
motor speed and direction

None None, but saves PID val-
ues

Fine Positioning
(PID)

mode OBC Input Wait() Default mode, waits for a mode in-
put from OBC

None None, but exits to
mode Select()

Modes

mode Select() Decides the mode to execute de-
pending on the mode read

mode value None, but exits to selected
mode

Modes

mode Positioning RW() Waits for a data input from OBC
and decides the positioning type
(coarse or fine)

None None, but exits to suitable
positioning type

Modes
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positioning Coarse() Executes a coarse pointing control
(ramps and waiting)

None None, but exits to
positioning Fine()

or mode Select()

Modes

positioning Fine() Executes a fine pointing control
(PID)

None None, but exits to
mode Select()

Modes

mode IMU reading() Test purpose function to read and
show IMU values constantly

None None, but saves IMU
values and exits to
mode Select()

Modes

mode motor on off Test purpose function to start and
stop the motor

None None, but exits to
mode Select()

Modes
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