
Information extraction with mBERT
from a self annotated dataset

Marc Ros Martı́

ieConsumo S.L.

Supervisors:
Vicenta Bosch Ayala
Lluı́s Padró Cirera

A thesis submitted for the degree of

Master in Artificial Intelligence

Barcelona, January 2022

This thesis is submitted to the Facultat d’Informàtica de Barcelona, Uni-
versitat Politècnica de Catalunya in fulfilment of the requirements for
the Master in Artificial Intelligence.

Marc Ros Martı́, January 2022

Copyright © 2022
Marc Ros Martı́

Acknowledgements

I would like to thank Tica and Josep for trusting me to develop this
project. I’m grateful to have learned from you and to have contributed
to your long-term work in the field. I would also like to thank Lluı́s
Padró for advising me on this project. Finally, thanks to my family for
supporting me all this time and, especially, to Laura, for being my best
working (and non-working) partner.

Abstract

In this project, we present an approach to automatically extract relevant
information (Named Entity Recognition) from clinical courses. One of
the main particularities of this work is that we performed the whole
task end-to-end: from collecting and annotating the data to training a
deep learning model. After determining the most relevant labels for the
task, we generated the dataset by annotating the raw text of the clinical
courses using an in-house annotation tool. The resulting dataset is com-
posed of 3501 annotated sentences in Spanish. Although this amount of
data should be enough to perform the task, it suffers from class imbal-
ance. We overcame this problem by applying Data Augmentation tech-
niques for NLP. Using all this data, we fine-tuned a pre-trained distilled
multilingual BERT (DistilmBERT) model. Our best-performing model
uses augmentation techniques (combining both Back-Translation and
Word Replacement with Contextualized Word Embeddings) and a Lin-
ear layer model head. It achieves a macro F1-score of 86.39% on the test
set, 1.43pp better than our best model with the non-augmented dataset,
which proves the worthiness of the augmentation solution.

Keywords: NLP, NERC, Annotation, Transformers, BERT, mBERT, Dis-
tilmBERT, Data Augmentation

Resum

En aquest treball presentem una proposta per extreure informació relle-
vant de manera automàtica (Named Entity Recognition) de cursos clı́nics.
La gran particularitat d’aquest projecte és que hem realitzat la tasca
sencera, d’inici a fi: des de la recol·lecció i anotació de la dataset fins
a l’entrenament d’un model de Deep Learning. Després de determi-
nar quines eren les etiquetes més rellevants per a la tasca, hem generat
la base de dades tot annotant el text lliure dels cursos clı́nics fent ús
d’una eina d’anotació d’elaboració pròpia. La base de dades consta de
3501 oracions anotades en castellà. Tot i que aquesta quantitat de dades
podria ser suficient per a realitzar la tasca, la base de dades pateix de
class imbalance. Per aquesta raó, vam decidir intentar solucionar el
problema aplicant tècniques de Data Augmentation per a NLP. Fent ús
de totes les dades finals, hem fet fine-tuning d’un model distilled mul-
tilingual BERT (DistilmBERT) pre-entrenat. El nostre millor model fa
ús de data augmentation (combinant Back-Translation i Word Replace-
ment amb Contextualized Word Embeddings) i una Linear layer com a
model head. Aquest model aconsegueix un valor de 86.39% de macro
F1-score a les dades de test, que és 1.43pp millor que la nostra millor
proposta sense augmentar les dades. Aquests resultats demostren la
utilitat d’aplicar tècniques d’augment de dades en el nostre projecte.

Paraules clau: NLP, NERC, Anotació, Transformers, BERT, mBERT,
DistilmBERT, Data Augmentation

Resumen

En este trabajo presentamos una propuesta para la extracción automática
de información relevante (Named Entity Recognition) de cursos clı́nicos.
La gran particularidad de este proyecto es que hemos realizado la tarea
de inicio a fin: des de la recogida y anotación de los datos hasta el
entrenamiento de un modelo de Deep Learning. Después de deter-
minar cuáles eran las etiquetas más importantes para nuestro trabajo,
hemos generado la base de datos anotando los cursos clı́nicos (en texto
libre) con una herramienta de anotación de elaboración propia. La
base de datos final consta de 3501 oraciones anotadas, todas ellas en
castellano. A pesar de que este número de datos podrı́a parecer sufi-
ciente, la base de datos está claramente no balanceada. Por esta razón,
hemos solucionado el problema aplicando técnicas de Data Augmenta-
tion para NLP. Haciendo uso de todos los datos finales, hemos hecho
fine-tuning de un modelo distilled multilingual BERT (DistilmBERT) ya
pre-entrenado. Nuestro mejor modelo hace uso de data augmentation
(combinación de Back-Translation y Word Replacement con Contextu-
alized Word Embeddings) y una Linear layer como model head. Este
modelo consigue una puntuación macro F1 de 86.39% en la base de
datos de test. Este resultado es 1.43pp mejor que nuestra mejor prop-
uesta sin aumentar los datos. Por consiguiente, estos resultados de-
muestran la aplicabilidad de técnicas de aumento de datos en nuestro
proyecto.

Palabras clave: NLP, NERC, Anotación, Transformers, BERT, mBERT,
DistilmBERT, Data Augmentation

Contents

1 Introduction 1
1.1 Objectives . 3

2 Literature Review 4
2.1 Annotation . 4
2.2 Transformers . 5

2.2.1 Attention Layers . 6
2.2.2 Feed Forward Networks . 8
2.2.3 Positional Encoding . 8

2.3 BERT . 9
2.3.1 Input Representation . 10
2.3.2 Pre-training BERT . 11
2.3.3 Fine-tuning BERT . 12

2.3.3.1 Linear-chain CRF . 12
2.4 Unsupervised Cross-Lingual LM . 13

2.4.1 Multilingual BERT . 13
2.4.2 XLM-R . 14

2.5 Data Augmentation for NLP . 16
2.5.1 Easy Data Augmentation . 16
2.5.2 Back-Translation . 16
2.5.3 Word Replacement . 17

3 Methodology 18
3.1 Data . 18
3.2 Annotation . 20
3.3 Modelling . 23

3.3.1 Rule-Based System . 23
3.3.2 Transformer-Based Model . 24

i

CONTENTS ii

3.3.2.1 mBERT vs. XLM-R . 24
3.3.2.2 DistilmBERT vs. mBERT 25
3.3.2.3 DistilmBERT for NERC 26

3.4 Data Augmentation . 27
3.4.1 Back-Translation . 27
3.4.2 Word Replacement with CWE 28

3.4.2.1 Define target entities 28
3.4.2.2 Obtain CWE . 29
3.4.2.3 Similarity between CWE 29
3.4.2.4 Implementing changes in dataset 30

3.4.3 Oversampling . 30

4 Experiments 32
4.1 Experimental setup . 32

4.1.1 Input formatting . 32
4.1.2 DistilmBERT for NERC . 33
4.1.3 Parameter setting . 34
4.1.4 Data . 34
4.1.5 Hardware . 36

4.2 Evaluation Metrics . 36

5 Results and Discussion 38
5.1 Baseline . 38
5.2 Original vs. Corrected Dataset . 39
5.3 Hyperparameter Tuning . 40
5.4 Final results . 44
5.5 Analysis of General Results . 45
5.6 Analysis at entity level . 46

6 Conclusions 48

7 Future work 49

A Annotation Manual 50
A.1 System Overview . 50
A.2 General Annotation Guidelines . 51
A.3 Annotating the product . 52
A.4 Annotating: Inductor vs. Trigger . 54

CONTENTS iii

A.5 Annotating: HM2 vs. Harm . 55
A.6 Annotating: Part of body (POB) . 56

B Handcrafted Rules 57

C Hyperparameter Tuning 64

References 67

List of Figures

2.1 Transformer model architecture . 6
2.2 Attention Layers . 7
2.3 BERT framework: pre-training and fine-tuning 10
2.4 BERT input representation . 11
2.5 Wikipedia vs. CommonCrawl Dataset sizes 15

3.1 PIPADI Annotation Tool (PAT) - Mastersheet 21
3.2 DistilmBERT-Linear architecture for NERC 26
3.3 Overview of Data Augmentation with CWE 31

5.1 Comparison of models with original vs. augmented datasets. 40
5.2 Comparison of models with different augmented datasets. 41
5.3 Normalised Confusion Matrix from best model 46

A.1 PIPADI Annotation Tool - System Overview 50

iv

List of Tables

3.1 PIPADI dataset example . 21
3.2 Sentences to include in the dataset . 22
3.3 Distribution of labels in PIPADI dataset 22
3.4 Multilingual model architectures and sizes. 25

4.1 Volumes of the dataset splits . 34
4.2 Number of tokens per label in each of the splits 34
4.3 Volumes of the augmented datasets 35
4.4 Number of tokens per label in the augmented datasets 35
4.5 Example of CWE augmentation . 36

5.1 Results in the devel set with the rule-based system. 38
5.2 Comparison in the devel set between original and corrected datasets. 39
5.3 Legend of Hyperparameter combinations. 40
5.4 Best results with DistilmBERT-CRF on devel set. 43
5.5 Results on the devel set with the best configurations. 44
5.6 Results on the test set with the best configurations. 44

A.1 General Annotation guidelines. 52
A.2 IND vs. TRG annotation guidelines. 54
A.3 HM2 vs. HARM annotation guidelines. 55
A.4 POB annotation guidelines. 56

C.1 All the experimentation done on the devel set - I. 64
C.2 All the experimentation done on the devel set - II. 65
C.3 All the experimentation done on the devel set - III. 66

v

Chapter 1

Introduction

Natural language processing (NLP) is a subfield of Artificial Intelligence (AI) that
deals with the interaction between computers and human language. Its main goal
is to program computers able to understand the contents of documents so as to per-
form a wide range of tasks [55]. Among them, information extraction (IE) is one
of the most prominent. It consists in extracting (automatically) structured infor-
mation from unstructured, semi-structured or structured machine-readable docu-
ments. Inside the field of IE, there are several specific tasks that can be performed
like Named Entity Recognition (NER), relation extraction, event extraction or tem-
plate filling. In this work, the task to be performed is NER, and more concretely
Named Entity Classification (NEC/NERC). Prior to defining the goal of NERC,
it is necessary to clarify what a named entity is. A named entity is a real-world
object that can be referred to with a proper name [56]. Importantly, a real-world
object is not solely restricted to physical objects but also to abstract. Thus, some
of the more typical entities are both physical (persons, locations, organizations,
products, etc.) and non-physical (dates, times, temporal expressions, etc.). These
are only some generic examples of named entity types; depending on the use case,
new application-dependent ones can be defined. Said that, NERC aims to find
each mention of a named entity in a given text and classify it with its correspond-
ing label [21].

The preferred algorithms to perform NERC have evolved over time from hand-
crafted rule-based systems to more complex statistical and machine learning ap-
proaches. The current state-of-the-art for the task is using Neural NERC, i.e. the
text (usually tokenized) is used as the input of a neural network. Among the dif-
ferent Neural NERC approaches, the Transformer-based models [50] like BERT [7]
are the current hot-topic in the field. These models are usually hard and expensive

1

Introduction 2

to train from scratch, e.g. BERT, without being one of the biggest models at all,
has 335M of parameters and requires massive amounts of data. A way to solve
these limitations is applying transfer learning, usually taking a pre-trained model
in a general-purpose corpus and fine-tuning it to the specific area of application.
Bear in mind that Transformer-based models are not originally intended for down-
stream tasks (like NERC). Thus, its architecture needs to be adapted depending on
the task. In the case of NERC, it is necessary to add either a Fully-Connected or
CRF layer [47] on top of it, which allows performing classification tasks at token
level.

IE is probably the most used NLP task in industry and, inside IE, NERC is the
most typical application. Indeed, this report presents the application of NERC in-
side a company: ieConsumo S.L. [23]. ieConsumo S.L is an SME specialized in
product safety management. Among their areas of expertise, they deal with prod-
uct risk assessment. They offer their services to companies that need to recognize
and identify possible hazards that their product may have and evaluate them.

Their current effort is to develop PSM [35], a tool that helps to extract meaning-
ful product safety data (e.g from users’ complaints) that can be used to improve
products, reduce their risk and prevent possible recall in the future. There are
several multinational corporations interested in acquiring their application. In the
meanwhile, ieConsumo aims to make PSM even more competitive and appealing
to potential clients. One of its main disadvantages is that currently the application
is quite manual. Concretely, given a source of data, it requires an operator to detect
and introduce one by one the necessary inputs for the application to work. Among
these inputs there is the product involved, the type and severity of the injury, the
circumstances around the incident, etc. In such a scenario, a good way to auto-
matically detect these elements is to apply NERC. Indeed, this was the goal of the
project: advance in the process of automatically populating PSM applying NLP.

The initial idea for this project was to use data from the complaints of potential
customers. Like this was not possible, the project was developed using a similar
field of application: clinical courses where a product is involved in an injury. For
that, we took advantage of a project previously conducted by the company: PI-
PADI [22]. The objective of PIPADI is, in their own words ”build an information
collection system that allows us to analyze the conditions in which an accident took

1.1. OBJECTIVES 3

place, study the possible risk factors associated with accidents and in the cases
where an object was involved, proceed to analyze it”. Several hospitals partici-
pated in the program. Most of the available clinical courses came from Hospital de
Nens de Barcelona (pediatrics) [6] and Hospital de la Vall d’Hebron (burns) [10].
The available data was basically a set of free-text descriptions that needed to be
conveniently annotated so as to perform the NERC task.

Given all the necessary context, we can present our methodology. First, accord-
ing to the needs of the company, we defined the named entity labels that needed to
be extracted from the text. After that, the data was annotated, generating our self-
annotated dataset (PIPADI dataset). Then, to gain familiarity with the latest trends
of NLP, we used this data to fine-tune a transformer-based model for the NERC
task. Given that the available dataset was in Spanish, we had to select a multi-
lingual transformer-based model, like multilingual BERT [8] (extension of BERT
pre-trained in 104 languages instead of only English) or XLM-R [12]. These mod-
els are able to handle multiple languages, Spanish among them. See how using a
multilingual model is not only convenient given the available dataset but also to
add value to potential customers, especially if they are multinational companies
that need to deal with complaints from users from all over the world.

1.1 Objectives

General objective: The overall aim of this Master Thesis is to automatize the process
of extracting relevant information from clinical courses by means of implementing
an NLP model for information extraction (NERC).

Specific objectives:

• To determine the most relevant entities to extract from the text.

• To find an annotator tool according to the company requirements.

• To annotate the dataset.

• To implement a solution fine-tuning a transformer-based multilingual model.

• To test and assess the solution with a test set.

Chapter 2

Literature Review

2.1 Annotation

In machine learning, data labeling is the process by which one or more labels are
associated with raw data. It is an essential task as it generates the necessary infor-
mation for a machine learning model to learn. Data labeling is a mandatory step
for most of the fields of Artificial intelligence, from computer vision to NLP.

In NLP data labelling is also referred to as annotation. Depending on the task,
the type of annotation is going to vary considerably, going from sentence-level
labels to concrete token-level labels. For NERC, the objective task in this Master
Thesis, the annotators will need to assign a label to each of the sentence tokens.
For that, the BIO (or IOB2) format [37] is a common approach. Basically consists in
adding B or I prefix before a named entity label. The B- prefix indicates the begin-
ning of a named entity. The I- prefix indicates that the tag is inside a named entity.
Finally, O indicates that a token does not belong to a labelled named entity [53].
This is the format employed but some of the most well known NERC datasets, like
CoNLL-2002 [48] or CoNLL-2003 [49].

To make this process easier for annotators, there are several free labeling tools
for text annotation in NLP. Some of the best are Doccano [11], Brat [31] or INCEp-
TION [9]. Doccano is probably the simplest of the three but it does not support
relational annotations. If you need more functionalities, Brat looks like a conve-
nient solution. Finally, INCEpTION is less straightforward than the prior tools;
however, it supports PDF files and provides more features [19].

4

2.2. TRANSFORMERS 5

2.2 Transformers

Vaswani et al [50] presented Transformers in 2017. Transformers are sequence
transduction models that completely get rid of recurrence and convolutions, as
they are only based on attention mechanisms [1]. These models, by taking full
advantage of the attention mechanism, can find global dependencies in the input
or output sequence, regardless of their distance. In terms of efficiency, fully re-
lying on attention allows much more parallelization than with recurrent models
(which are inherently sequential algorithms). Concerning convolutional models,
despite being more parallelizable than recurrent models, the number of operations
to relate two arbitrary positions grow depending on the distance between them.
This makes it more complex to learn dependencies between distant points. With
Transformers this is not an issue, as in the attention mechanism the number of op-
erations is reduced to a constant value.

As some of the most competitive neural sequence transduction models, Trans-
formers follow an encoder-decoder structure. Note that transduction models are
used in NLP basically for machine translation tasks. Indeed, the authors of [50]
focused their experimentation only on this type of task. The encoder processes
the tokens in the input sequence, generating a vector (context vector) that con-
tains meaningful information about them. This vector is later fed into the decoder,
which will generate an output sequence of symbols (one at a time). Note that these
models are auto-regressive, i.e. the inputs for the decoder are not only the outputs
of the encoder but also the symbols previously generated by the decoder itself.

Figure 2.1 shows the Transformer model architecture.

• Encoder. Left hand side of Figure 2.1. The proposed architecture includes a
stack of 6 identical layers, each of them composed of two sub-layers: a multi-
head self-attention mechanism and a position-wise fully connected feed-forward
network. Both modules are connected using residual connections. The out-
put of each sub-layer can be defined as LayerNorm(x + Sublayer(x)), being
Sublayer(x) the function implemented by each sublayer.

• Decoder. Right hand side of Figure 2.1. Also composed of a stack of 6 identi-
cal layers. However, there are relevant differences regarding the multi-head
attention layers. On the one hand, there is a third sublayer type that will

2.2. TRANSFORMERS 6

Figure 2.1: Transformer model architecture

be in charge of applying multi-head attention to the output of the encoder
stack (context vector). On the other hand, see how in the decoder stack, right
after the positional encoding, instead of applying a ”Multi-Head Attention”
module they used a ”Masked Multi-Head Attention” module. This modified
module ensures that the predictions for a concrete position do not have in-
formation of subsequent positions (preserving the auto-regressive nature of
encoder-decoder architectures). As its name suggests, this module will sim-
ply mask all the positions after the current one, in order to prevent attention
from taking future elements into account.

The following subsections analyse the operation of the sub-layers that compose
the encoder and decoder stacks.

2.2.1 Attention Layers

Attention mechanism was first introduced in [1] to improve the performance of
encoder-decoder models for machine translation. They used it to allow the de-
coder to weigh the input vectors according to their relevance, giving higher weights
to the most relevant ones [2]. In Transformers, the idea is still the same: learn

2.2. TRANSFORMERS 7

(weigh) contextual relationships between elements in the sequence. In this case
though, it is applied (with minor changes) to both the encoder and the decoder, as
seen in the analysis of Figure 2.1.

When it comes to its implementation, every input needs to have three repre-
sentations: key, query, and value [42]. An attention function maps these represen-
tations into an output. The output is the weighted sum of the values, being the
weight per each of them the result of applying a compatibility function between
the key and the query (the more compatible, the more weight, i.e the more rele-
vant is a certain element in the sequence). Note that queries and key-value pairs
are all vectors. Therefore, in order to improve the efficiency of the implementation,
they can be packed into matrices (Q, K, and V, respectively) that allow to process
them simultaneously, taking advantage of highly optimized matrix multiplication
implementations.

Figure 2.2: (left) Scaled Dot Product Attention. (right) Multi-Head Attention

As shown in Figure 2.2 the authors of [50] decided to use Multi-Head Attention
in their implementation. For that, they presented Scaled Dot Product Attention,
their implementation of the attention mechanism:

• Scale Dot Product Attention. Left hand side of Figure 2.2.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

The novelty of this definition with respect to the standard dot product atten-
tion is the scaling factor dk (dimensionality of keys and queries). This is done
to prevent the dot product from increasing a lot in magnitude. Otherwise, it

2.2. TRANSFORMERS 8

pushes the softmax to regions where it saturates, which makes the gradients
very small (stops learning)

• Multi-Head Attention. Right hand side of Figure 2.2. The authors discovered
that it was beneficial to perform the Scale Dot Product Attention several times
instead of a single one. For that, they linearly project Q, K, and V matrices h
times (where h is the number of multi-heads). Then, Scaled Dot Product at-
tention is applied in parallel for all of them. Finally, the resulting versions are
concatenated and projected to the original space. It is worth mentioning that
to prevent this system from increasing the computational cost of the model,
the dimensions of the representations are divided by the number of attention
heads h. This way, the total computational cost is similar to performing a
typical single-head attention.

2.2.2 Feed Forward Networks

As shown in Figure 2.1 both the encoder and the decoder include a fully connected
feed-forward network right after the attention layer block. This network applies
to each position of the sequence separately and identically:

FFN(x) = max(0, xW1 + b1)W2 + b2

As shown in the expression above, this network is nothing but two linear trans-
formations with a ReLU activation function in between of them. In the case of
the decoder block, after the last Feed Forward Network, the decoder output goes
through a last Linear Transformation and Softmax function to convert the output
into next-token probabilities (language modelling).

2.2.3 Positional Encoding

Unlike recurrent or convolutional models, Transformers do not have a mechanism
to take advantage of the order of the sequence (the attention mechanism gets rid of
it). To solve this issue, the authors introduced positional encodings. These encod-
ings are present at the bottom of the encoder and decoder stacks and have the same
dimension as the token embeddings, allowing all of them to be summed (see the
bottom of the encoder and decoder stacks in Figure 2.1). The positional encodings

2.3. BERT 9

are generated through these formulas:

PEpos,2i = sin(pos/10002i/dmodel)

PEpos,2i+1 = cos(pos/10002i/dmodel)

Where pos is the position and i is the dimension

2.3 BERT

Transformers have been a revolution in NLP. Since its introduction, several transformer-
based models have been presented. Among them, BERT (Bidirectional Encoder
Representations from Transformers) [7] is probably the one that has gained more
notoriety. Note how, as its name indicates, it does not use the full Transformer
architecture, but only the encoder block. BERT is designed to pre-train deep bidi-
rectional representations from text in an unsupervised manner. In addition, apply-
ing transfer learning (fine-tuning), its pre-trained implementation can easily deal
with a wide range of NLP tasks. It only requires the addition of a suitable output
layer/s. In fact, applying transfer learning to pre-trained language models was
nothing new. There were feature-based approaches like ELMo [34] that were us-
ing the pre-trained representations as input features to other architectures. And,
like BERT, there were also fine-tuning approaches (e.g. GPT [36]) adapting to the
specific task by fine-tuning all the pre-trained parameters (and adding some task-
specific ones). However, the issue for both approaches was that their language
representations were unidirectional (e.g. left-to-right in GPT). BERT overcomes
this limitation thanks to Masked Language Modeling, their pre-training strategy
(see 2.3.2).

Figure 2.3 shows how, after pre-training the model, it can be adapted to a
wide range of downstream tasks by only introducing some minimal task-specific
changes. For the NERC task (purpose of this project), it is enough to add a Fully
Connected Layer or a CRF layer (with Softmax activation) on top of BERT’s origi-
nal architecture.

2.3. BERT 10

Figure 2.3: BERT framework: pre-training and fine-tuning

The authors proposed two different model sizes for BERT:

• BERTbase : L = 12, H = 768, A = 12. Replicates GPT. 110M parameters.

• BERTlarge : L = 24, H = 1024, A = 16. 335M parameters.

Where L are the number of layers or Transformer Blocks, H is the hidden size
and A is the number of attention heads.

2.3.1 Input Representation

In order to handle different types of tasks (regardless of being sentence or token
level), the authors proposed an input representation that unambiguously repre-
sents token sequences for both single and pairs of sentences. Note how for the
authors, sentence is defined as an arbitrary span of contiguous text, while sequence
is the result of tokenizing the sentence (either a single sentence or two sentences
packed together). BERT takes sequences as input.

For the tokenization, BERT uses WordPiece subword-based tokenizer [59] with
a 30K token vocabulary. Subword-based tokenization is a solution between word
(the most common) and character-based tokenization. It works by splitting rare
words (not frequent in the training corpus) into smaller meaningful subwords, e.g.
boys may be split into boy and ##s (subword that denotes plurals) [41]. Apart from
that, BERT includes a couple of special tokens: [CLS] and [SEP]. [CLS] is always
the first token of every sequence. It is intended to be used for classification tasks,
using its corresponding output hidden state (C in Figure 2.3) as the aggregate se-
quence representation. Concerning [SEP], it is used to separate the tokens from

2.3. BERT 11

different sentences (remember that the input of BERT can be pairs of sentences).

Finally, the representation of the input tokens is the sum of the token embed-
dings, its segment (either if the token is at the left or the right of the special to-
ken [SEP]) and the positional embeddings. This procedure is shown in Figure 2.4.
Note how token embeddings and position embeddings (and how they are com-
bined) are not novel with respect to the Transformers proposal (section 2.2.3). The
main differences are the introduction of the special tokens ([CLS] and [SEP]) and
segment embeddings, which are necessary to handle the representation of pairs of
sentences.

Figure 2.4: BERT input representation

2.3.2 Pre-training BERT

BERT is pre-trained on two unsupervised tasks: Masked Language Model (MLM)
and Next Sentence Prediction (NSP). The pre-training corpora are BooksCorpus
(800M words) and English Wikipedia (2500M words)

As previously explained, models like ELMo or GPT used unidirectional lan-
guage models. They did that because, until that moment, it was not possible to
implement bidirectional conditional language models without indirectly seeing
the target word, making the task trivial. BERT overcomes this issue with a sim-
ple and clever alternative: if you don’t want to see the target word, simply mask
it. For that, 15% of the input tokens are randomly masked. The training objective
is to predict the masked tokens. This task is called Masked LM (MLM) or Cloze.
Note how for the pre-training, like language modelling is a token prediction task,
the original BERT architecture needs to be modified with a fully connected output
layer (with as many units as the vocabulary size) and a softmax activation function.

2.3. BERT 12

The other pre-training objective is NSP. NSP is introduced to ensure that the
model is able to understand the relationship between sentences, helping to im-
prove the performance on tasks that work with pairs of sentences (e.g. NLI). The
task itself is quite simple, given a pair of input sentences A and B, 50% of the time
B is going to be the actual next sentence after A. The objective is to predict if B is the
sentence after A or not. As this is a sentence-level task, only the hidden state corre-
sponding to the special token [CLS] is going to be used. Again, the architecture is
modified adding some additional fully connected layers and a softmax activation
function with cross-entropy loss.

2.3.3 Fine-tuning BERT

As said, the self-attention mechanism in the Transformer model is ideal to model
many NLP tasks. Thus, it is easy to fine-tune BERT (indeed is pointed out as one
of its most important strengths by the authors). Actually, it is only necessary to
adapt the inputs to the task and add some task-specific output layers. Afterwards,
the parameters of the model have to be fine-tuned end-to-end.

If the task is at token-level, the output layers have to be fed with the final hid-
den states corresponding to the subword tokens (T in Figure 2.3). On the contrary,
if it is a sentence-level task, the output layers have to be fed with the final hidden
state associated with the special token [CLS] (C in Figure 2.3).

In this Master Thesis, the task to perform is NERC. Therefore, the fine-tuning
configuration that needs to be implemented is the one associated with token-level
tasks. In that regard, the output layer for the NERC task can be either a Fully
Connected or CRF layer [47]. In the following subsection, we present a brief recap
of linear-chain CRFs.

2.3.3.1 Linear-chain CRF

The model form of a linear-chain CRF is as follows:

P (y|x;w) = exp(
∑n

i=1wf(x, i, yi−1, yi))∑
z∈Y exp(

∑n
i=1wf(x, i, zi−1, zi))

Where x is a sequence of words, y is the corresponding sequence of tags, f are
feature vectors (in this case, the output of BERT) and w are the parameters of the

2.4. UNSUPERVISED CROSS-LINGUAL LM 13

model. In inference mode, the goal is to compute the sequence of tags y that maxi-
mizes the equation above, i.e. argmaxP (y|x;w)

y

. This can be solved with the Viterbi

algorithm. Finally, to find w that best fits the training data (parameter estimation),
it is necessary to maximize the conditional log-likelihood of the training data.

2.4 Unsupervised Cross-Lingual LM

The transformer-based language models that were able to push the limits in natu-
ral language understanding (NLU) have been extended to more languages in or-
der to deal with Cross-Lingual Understanding (XLU) tasks, in which a model is
learned in one language and applied to other languages. See how this matches
the long-term objectives of ieConsumo, i.e. having the ability to deal with multi-
lingual data (Chapter 1). In the following subsections some of the most relevant
cross-lingual language models are going to be presented.

2.4.1 Multilingual BERT

As explained in section 2.3.2, BERT is pre-trained on English corpus. To adapt to
XLU tasks and to have the ability to handle multiple languages at the same time,
the authors of BERT proposed multilingual BERT (mBERT) [8]. It is worth noting
that, to my knowledge, they didn’t publish any paper presenting the approach.
The readme on their github repository is the only official source of information [8].

mBERT is nothing but an extension of BERT in the multilingual space. In-
deed, the architecture and pre-training objectives are exactly the same in both ap-
proaches. However, mBERT presents some specific considerations that are worth
mentioning. To begin with, it is pre-trained on the top 104 languages with the
largest Wikipedias. Nevertheless, there is a lot of size variation among them. Thus,
if the sampling strategy is proportional to the corpus size, low-resource languages
may be under-represented (used fewer times during pre-training, ergo fewer re-
sources allocated to them). To compensate for this, the authors introduced an ex-
ponentially smoothed weighting sampling strategy, i.e. sampling after exponen-
tiating the probability of each language (proportional to its corpus size) by some
factor and then normalizing it. The factor they decided to use is 0.7, which means
that high-resource languages are under-sampled and low-resource languages are
over-sampled. For tokenization, it still uses a shared WordPiece vocabulary, but

2.4. UNSUPERVISED CROSS-LINGUAL LM 14

increasing its size from 30k to 110k (necessary to handle the increase of the num-
ber of words due to the inclusion of more languages). Concerning fine-tuning,
the authors claim that it does not require any special consideration with respect to
standard BERT.

The available mBERT models use BERTbase configuration, i.e. L = 12, H =

768, A = 12. Note that, with the increase of the WordPiece vocabulary size from
30k to 110k, the number of parameters of the models go from 110M to 172M.

2.4.2 XLM-R

XLM-RoBERTa (XLM-R) [12] is a transformer-based multilingual masked language
model pre-trained on text in 100 languages. Prior unsupervised cross-lingual lan-
guage models like mBERT [8] or XLM [28] (same authors as XLM-R) were able to
push the performance to achieve the state-of-the-art in several XLU tasks. In addi-
tion, they did it despite working on a quite small scale for both model complexity
(total number of parameters) and training data (Wikipedia in their case). Taking
this into consideration, XLM-R follows an analogous reasoning to the one followed
in the monolingual space by RoBERTa [13]: try to improve the performance by pre-
training longer and on more data. Following this approach, RoBERTa proved that
BERT was undertrained. Similarly, XLM-R shows that mBERT and XLM are under-
tuned, obtaining their approach considerably better results.

XLM-R changes the pre-training strategy of BERT and mBERT and focuses only
on MLM, without including NSP. During the pre-training, in every iteration, each
batch of data belongs to a single language. For that, it is necessary to sample
streams of text from each language. The authors proposed to follow the sampling
distribution that they described in [28], which is a multinomial distribution with
probabilities qi where:

qi =
pαi∑N
j=1 p

α
j

with pi =
ni∑N
k=1 nk

Note how α is a variable that controls the exponential smoothing of the lan-
guage sampling rate. With α = 1 the sampling distribution is simply proportional
to the size of the training corpus. This can be harmful to lower-resource languages,
as the model will be biased towards the languages with more data. Introducing α

alleviates this issue. Note how this sampling strategy is exactly the same as the

2.4. UNSUPERVISED CROSS-LINGUAL LM 15

one presented in mBERT (but properly formalized in a paper instead of a readme).
Despite mBERT uses α = 0.7 and XLM uses α = 0.5, XLM-R goes with α = 0.3,
which means that it is giving even more relevance to low-resource languages than
its predecessors.

Like most of the previous approaches for both monolingual and multilingual
transformer-based language models, the authors proposed to use sub-word tok-
enization. In this case, they did it directly on raw text data using Sentence Piece
[26] (instead of WordPiece) with a unigram language model [25]. The vocabulary
size for this sub-word representation is large in comparison to the other exposed
methods, going up to 250k units (remember that BERT has 30k units and mBERT
110k units).

Concerning the pre-training data, analogously to the logic applied in RoBERTa
(which uses 10 times more data than the original BERT implementation), the au-
thors aimed to improve the performance of the state-of-the-art by scaling up the
amount of data. Concretely, instead of using Wikipedia, they built a Common-
Crawl corpus in 100 languages (2.5 TB of data). In their approach, not only did they
increase the overall dataset size but also they focused on increasing the amount of
data for the lower-resource languages. Figure 2.5 shows the difference in size (GB)
between CommonCrawl and Wikipedia for each of the training languages. Note
how there is a notorious difference in all the languages but especially in the ones
with fewer resources in Wikipedia.

Figure 2.5: Wikipedia vs. CommonCrawl Dataset sizes

The authors presented two different pre-trained XLM-R models:

• XLM -Rbase : L = 12, H = 768, A = 12. Replicates mBERT. 270M parameters.

• XLM -Rlarge : L = 24, H = 1024, A = 16. 550M parameters.

2.5. DATA AUGMENTATION FOR NLP 16

XLM-R consistently outperforms mBERT on the tested XLU tasks (XNLI, NERC
and QA). For both XNLI and QA, XLM-R sets new state-of-the-art results. Con-
cerning our task of interest, NERC, the results are on pair with previous state-of-
the-art (LSTM + CRF approach described in [29]), improving mBERT by 2.41pp on
F1 score on cross-lingual transfer (fine-tuning only in English) and 1.86pp on F1
score after fine-tuning on each language.

2.5 Data Augmentation for NLP

In NLP (like in most AI fields) the quality of the system is highly dependent on the
amount of available data. For example, in Neural Machine Translation, the worst
results are usually from low-resource language pairs, where the lack of data leads
to poor quality. In most of the cases getting more data is not even an option as it
is expensive and time-consuming. Therefore, data augmentation (i.e. generating
additional synthetic data from the available data) arises as a suitable solution [32].
Indeed, the usage of data augmentation for deep learning in image processing has
become a standard technique, but it has not been so common in NLP tasks. In the
following subsections some possible approaches to augment textual datasets are
going to be presented.

2.5.1 Easy Data Augmentation

Easy data augmentation [51][32] is probably the simpler approach to augment tex-
tual datasets. It is a process where a set of simple operations are applied to generate
new synthetical data. For example, random swap consists in randomly selecting
n words in the sentence and swapping their positions to generate new sentences.
Another option is to perform random deletion or insertion of words. Finally, the
most interesting technique is synonym replacement, which consists in replacing a
randomly selected word by its synonym. In section 2.5.3 more concrete ways on
how to handle this process are going to be presented.

2.5.2 Back-Translation

Back-Translation [43], is a technique that was firstly introduced in the context of
Neural Machine Translation (MT). In this scenario (i.e. with a dataset of pairs of
sentences in source and target languages), the idea is that by translating from the
target language to the source language, the dataset may be increased by generating

2.5. DATA AUGMENTATION FOR NLP 17

some small differences from the original source sentence. This technique proved
to be especially useful in pairs of languages with low-resources. This idea can be
extended from MT to other tasks. However, like the datasets are no longer going to
be pairs of source-target sentences, it is necessary to add an additional translation
step. Thus, the sentences are translated to a pivot auxiliary language and then
are translated back to the original language. In the process, while preserving the
semantics of the sentence, some words may change, augmenting the dataset. To
ensure that the dataset is sufficiently augmented, it is useful to carefully select the
pivot language so that it does not share a lot of vocabulary and structure with the
source language [20] [32].

2.5.3 Word Replacement

A logical yet powerful way to augment a textual dataset is to replace words with
plausible alternatives. Contrary to easy data augmentation, this technique ensures
that the new sentences make sense. In the context of MT, the authors of [30] pre-
sented an approach that consisted in targeting low-frequency words (referred as
rare words) and creating new synthetical contexts containing them. For that, they
looked for contexts in which a high-frequency word could be replaced by a rare
word. Note that their objective was not to preserve the original meaning of the sen-
tence but to ensure that the new pair maintained the semantic equivalence while
being plausible (i.e. fluent and grammatically correct). For a given high-frequency
word, the substitution was done by selecting the K words in the rare-word vocabu-
lary with the highest conditional probability according to its left and right context.
For that, they used forward and backward LSTM Language Models [54]. The final
replacements were decided by selecting the rare words that were in the top K sub-
stitutions for both the forward and backward context. It is important to note that
this paper was written before the Transformers era. For this reason, it was nec-
essary to use two unidirectional LMs (forward and backward) to bidirectionally
cover the context. Since BERT, this is no longer necessary as it can properly handle
bidirectionality (thanks to the Masked LM pre-training task). After the publication
of [30], the idea of augmenting the dataset by smartly replacing some words, i.e.
taking into consideration their context, has gained popularity. Nowadays, with the
explosion of the transformer-based models, a common and effective technique is
to use synonym replacement using/comparing contextualized word embeddings
(hidden representations from the input subword tokens) from BERT or RoBERTa
(instead of the LSTM LMs used before).

Chapter 3

Methodology

3.1 Data

As explained in the Introduction (Chapter 1), the available raw data for the project
comes from clinical courses mostly from Hospital de Nens de Barcelona and Hos-
pital de la Vall d’Hebron. Such courses were specifically written to be as informa-
tive as possible of the circumstances that triggered the visit to the doctor, with a
special focus on the products involved in the harmful event. For that, the medical
doctors were requested to write the courses following an adaptation of the proce-
dures defined by the Consumer Product Safety Commission (CPSC) of the United
States in the National Electronic Injury Surveillance System (NEISS) [5], whose
main purpose is ”to collect data on consumer product-related injuries occurring in
the United States”. The analysts of CPSC use NEISS data to check the number of
injuries associated with particular products and to detect potential hazards. The
application of NEISS in the catalan health system was conducted by ieConsumo
with its PIPADI program [22]. As in the case of CPSC and NEISS, ieConsumo aims
to use PIPADI to detect emerging hazards and performing risk evaluations of con-
sumer products.

When a hospital works with either NEISS or PIPADI, the medical records are
coded according to their Coding Manual. Among the coded variables, an anonymiz-
ed narrative description of the incident is included. These descriptions were the
raw data to be annotated to perform the NERC task. The raw PIPADI dataset in-
cludes 6487 descriptions. Below you can find an example of one of them:

Se ha tragado el tapón de plástico de la botella de coca-cola. Estaba en casa. Tiene una
erosión de 3mmm en el pilar derecho (esofago).

18

3.1. DATA 19

To obtain meaningful information from raw descriptions, it is necessary to de-
fine what is the relevant information for the task. In the concrete case of NERC, the
labels for the named entities need to be specified. These are the labels that were
decided according to the needs of the company:

• Product (PRD): Consumer good involved in the incident.

• Part of Product (POP): Part of the consumer good involved in the incident.

• Harm (HARM): Injury.

• Part of Body (POB): Part of body injured.

• Inductor (IND): Action/moment from which the normal course of the activ-
ity is changed, leading to a harming mechanism (without a defect or operat-
ing failure of the product involved).

• Trigger (TRG): Defect or operating failure of the product, leading to the inci-
dent.

• Harming Mechanism 1 (HM1): The step just before HM2 that irretrievably
lead to HM2.

• Harming Mechanism 2 (HM2): The step that produces the injury or damage.

The labels were defined after several discussions and with the objective of
meaningfully sequencing the harmful incident. Given that our goal was to analyse
risks associated with consumer products, PRD and POP are essential tags: if there
is not a consumer product involved, the description cannot be included in the final
dataset. Excluding the mandatory entity, the most important tags are IND, TRG,
HM1 and HM2. These tags help the analyst understand the context of the incident
and why it happened. It is impossible to sequence the harmful incident without
these tags. Most specifically, TRG is probably the most decisive tag, because an
operating failure or defect should raise all the alarms when evaluating the risk of
a product. Finally, HARM and POB give an idea of the harmful consequences of
the incident and its severity. These tags can help to prioritize the evaluation of
products involved in incidents with more severe consequences.

3.2. ANNOTATION 20

3.2 Annotation

After defining the entity labels, the next step was to annotate the PIPADI raw
dataset. As explained in section 2.1, there are several free annotating tools that
can be suitable for this task: Brat [31], Doccano [11] and INCEpTION [9]. Brat has
not been updated since 2012 and it does not look like it is being maintained. IN-
CEpTION is up-to-date but it is quite complex to use. Finally, Doccano looks like a
good balance: is maintained and is more straightforward than INCEpTION. How-
ever, regardless of the selected tool, all of them present a huge handicap: they re-
quire some tech expertise, from Docker containers to Python or Java. In this work,
an important requirement was that the annotation could potentially be done by
people without advanced technical knowledge. To adapt to the business needs, an
in-house annotation tool was built: PAT (PIPADI Annotator Tool).

It is important to clarify that it is not the objective of PAT to compete with
the aforementioned tools, which are better and more scalable for an expert user
in the field. PAT is simply a convenient solution to give answer to the company
requirements:

• A tool that is able to support named entity annotation.

• A tool that can be used by annotators with all types of background.

• A tool that does not require the installation of programming languages.

• A tool that supports collaborative annotation.

• A tool with version control.

Analysing the requirements, Google Sheets [18] was selected for building the
UI of PAT. Note how by default Google Sheets already support the last four re-
quirements. It was part of this project to handle the first (and most important)
one. Figure 3.1 shows the UI of PAT. The spreadsheet has a first column with the
clinical course description (raw PIPADI dataset) and afterwards as many columns
as the labels defined in section 3.1. The annotator, after reading the description,
should exactly transcript the entity in the text in its corresponding column. If some
description has more than one entity of a certain label, the different entities should
be separated by adding ”;” between them.

3.2. ANNOTATION 21

Figure 3.1: PIPADI Annotation Tool (PAT) - Mastersheet

The PAT spreadsheet is connected with a Python backend that checks the an-
notated and validated sentences and, if they do not present transcription errors,
tokenizes them, generates its BIO labels (see section 2.1) and adds them to the
final dataset. Afterwards, the PAT mastersheet receives the feedback from the in-
ternal process. If a sentence has been correctly added to the dataset, its status is
set to Done. On the contrary, if the process is not successful due to transcription
errors, the annotator receives feedback on the words that have been incorrectly
transcribed. This way, the errors can be corrected faster, and a better UX is given to
the annotator. For more details about the tool and concrete annotation guidelines,
you can check the Annotation Manual available in Appendix A.

The final PIPADI dataset was annotated by a single annotator (myself). It is
stored in a json file following the format of CoNLL-2002 [48] and CoNLL-2003 [49].
Table 3.1 shows an example of the dataset.

Token NER tag
Se B-HM2

pillo I-HM2
los O

dedos B-POB
con O
la O

puerta B-PRD

Table 3.1: PIPADI dataset example

3.2. ANNOTATION 22

The PIPADI dataset has a total of 3501 annotated sentences. See how the origi-
nal raw dataset (i.e. only the raw descriptions of the clinical courses) is larger, with
6487 sentences. The mismatch comes from the fact that not all the descriptions are
suitable for the PIPADI dataset. This happens when there is no consumer product
in the description of the event. In such case, the sentence has no interest, as it is not
possible to perform a risk evaluation from it, and is filtered out. See an example of
this situation in Table 3.2.

Description Included in dataset
La bicicleta se ha roto y se ha caido al suelo ✓
Ha tropezado y se ha caido al suelo X (no consumer good involved)

Table 3.2: Sentences to include in the dataset

Concerning the distribution of labels in the dataset, Table 3.3 shows the number
of sentences containing at least one entity per each of the tags and the number of
entities and tokens available per tag.

PRD POP HARM POB IND TRG HM1 HM2
Nº sentences 3498 570 3365 3276 1540 405 1582 1353
Nº instances 5388 625 6485 6184 1823 437 1677 1445
Nº tokens 7837 866 11514 11616 3648 907 3261 3056

Table 3.3: Distribution of labels in PIPADI dataset

From Table 3.3 it can be concluded that almost all the sentences in the dataset
have at least one entity of the labels PRD, HARM and POB. On the other hand,
there are two clear minority classes, POP and TRG. In section 3.4 some actions to
handle the class imbalance in the dataset are going to be presented. In addition, it
can be seen how in terms of both instances and tokens, HARM and POB are clearly
the majority classes. This makes sense because in most of the clinical courses the
patient presents multiple injuries in several parts of the body, while the products
involved (PRD) and the sequence of actions leading to the injury (IND, TRG, HM1
and HM2) are usually single instances.

Finally, during the annotation process, it could be observed how most of the
clinical courses present spelling mistakes and grammatical errors. After generating
the PIPADI dataset, a more concrete analysis was conducted and it was stated that
95% of the sentences present at least one error. With concern about this big error

3.3. MODELLING 23

rate and with articles like [27] reporting the bad operation of Transformer-Based
models in noisy scenarios, a corrected PIPADI dataset was also generated. The
grammatical corrector of Google Docs [17] was used for such a purpose. Note that
during the correction process the original number of tokens and their ordering
were not modified (we needed to have a human-in-the-loop for that). This was
done to take advantage of the available annotations, to speed up the process. In
the results section (Chapter 5), the performance using the original and corrected
dataset is compared.

3.3 Modelling

This section presents the models and methods used to perform the NERC task
from our self-annotated datasets. The strategy consisted in generating a baseline
using a Rule-Based system and afterwards improving it by fine-tuning pre-trained
multilingual Transformer-Based models.

3.3.1 Rule-Based System

When thinking about Artificial Intelligence most people think about Deep Learn-
ing and very few about rule-based systems. However, in the industry, they are
still one of the preferred methods. Among their virtues, there is one that stands
out: explainability. Contrary to deep learning black-box models, rules are easy
to interpret and to handle even for a non-technical audience. For a company like
ieConsumo, with the most experienced professionals in the field but with a lack of
technological background, this is an important asset. Therefore, it was worth it to
implement a rule-based system, at least to have a baseline for the task.

Another advantage of using a rule-based system in this project was that, given
that we self-annotated the dataset, we gathered a lot of knowledge and spotted
patterns of the dataset during the annotation process. To be fair, as we collected
information from the entire dataset during the annotation (and not only from the
training set), our rules may be a little bit biased. Thus, it is possible that we suffer
from a little bit of data leakage. Apart from that, the data in the validation and
test set was not used to generate the rules. All the resources and insights came
exclusively from the data in the training set (following the dataset split explained
in Chapter 4)

3.3. MODELLING 24

The final rule-based system is composed of 32 rules. Most of them are based
on patterns learnt during the annotation process. They combine typical structures,
focusing on the presence of certain keywords and the part-of-speech (POS) of the
words surrounding them, with resources extracted from the training dataset. Such
resources are basically dictionaries of the most common entities per each of the
tags. The ordering is very relevant in a rule-based system: if a token satisfies more
than one rule, the one that appears in the first place is the one that is going to
be applied. Thus, the first rules are the ones that represent the most common
structures in the dataset. For example, a very common structure in PIPADI is the
one where the doctors write down their prognosis: Tiene un HARM en el POB. In
this case, the keywords would be Tiene and en. The words in their surrounding
with NOUN as POS would be tagged as HARM and POB, respectively. In the last
rules, the dictionaries are applied. This way, if a token does not meet the typical
structures, the prediction will be the label with which is commonly tagged. Finally,
it should be taken into consideration that at this stage the objective was not to
create very complex rules but to have a system that could provide a sufficiently
good baseline. If you want to check the final set of rules, you have them available
in Appendix B.

3.3.2 Transformer-Based Model

The main approach developed for this project consisted in fine-tuning a pre-trained
multilingual transformer-based model for the NERC task. This section goes through
the process of selecting the model to implement. Each of the subsections presents
a set of discussions to get to the final proposal. Note that all the experimentation
referred to in this section is conveniently explained in Chapters 4 and 5.

3.3.2.1 mBERT vs. XLM-R

Given that the dataset presented in section 3.1 is in Spanish, the first decision to
be made was whether to use a model solely pre-trained in Spanish (like BETO [3])
or go for a more general multilingual approach. Despite BETO outperforms by
1pp the best multilingual BERT model in the Spanish corpus for NERC task, we
decided to go for a multilingual model. The reason is that, even though for this
project the data is exclusively in Spanish, the company aims to use a similar model
to manage complaints from users from all over the world. Thus, the ability to han-
dle different languages with a single pre-trained model makes the multilingual

3.3. MODELLING 25

approach very convenient for us.

Nowadays, the referent multilingual transformer-based models are mBERT [8]
(see section 2.4.1) and XLM-R [12] (see section 2.4.2). Although XLM-R outper-
forms mBERT in the NERC task by a relevant margin (1.86pp), not only perfor-
mance should be taken into consideration. XLM-R was born with the idea to prove
that mBERT was undertrained and for that, it was pre-trained for longer and with
more data and higher model complexity. Therefore, there is a trade-off between
performance and computational cost. Although it is true that most of the increase
of computational cost is handled during the pre-training phase, it also has some
impact during fine-tuning (more parameters to fine-tune). Table 3.4 (taken from
[12]) shows a comparison of their model architectures and sizes.

Model #lgs tokenization L Hm Hff A V #params
mBERT 104 WordPiece 12 768 3072 12 110K 172M
XLM-R 100 SPM 24 1024 4096 16 250K 550M

Table 3.4: Multilingual model architectures and sizes. #lgs are the number of pre-training
languages, L is the number of layers, Hm is the number of hidden states of the model, Hff

is the dimension of the feed-foward layer, A the number of attention heads and V is the
size of the sub-word vocabulary.

With the context provided by table 3.4, the trade-off between mBERT and XLM-
R in the NER task is an increase of 1.86pp at the cost of having to fine-tune almost
400M extra parameters. Given the scarcity of computational resources (more on
that in Chapter 4) and the limited time available for this project, mBERT looks like
a more convenient solution. Thus, it was the model selected for the project.

3.3.2.2 DistilmBERT vs. mBERT

DistilBERT [38] is a distilled version of BERT. Its authors generated it by apply-
ing knowledge distillation during the pre-training phase of BERT. Their model
reduces the size of BERT by 40% while maintaining 97% of its capabilities. In ad-
dition, the reduction of size significantly speeds up the training (60% faster). Such
characteristics are ideal for projects with little computational resources, like ours.
Fortunately, mBERT has also its distilled version (DistilmBERT), which is twice as
fast as mBERT. It has 6 layers, dimension of 768 and 12 attention-heads (134M pa-
rameters vs. 172M in mBERT).

3.3. MODELLING 26

The strategy followed in this project consisted in trying to optimize as much
as possible the computational resources. Therefore, all the experimentation and
hyperparameter-tuning were done with DistilmBERT. In the experimentation phase,
using DistilmBERT instead of BERT allowed us to perform more experiments in
the same amount of time, which in the end resulted in a more complete and better
training. As a final step, to try to push the performance, mBERT can always be
used with the best DistilmBERT configurations.

3.3.2.3 DistilmBERT for NERC

DistilmBERT, like mBERT, has the same architecture as BERT. Therefore, as ex-
plained in section 2.3.3, we needed to add some output modifications to adapt it
for the NERC task. For this task, the fine-tuning configuration that needs to be
implemented is the one associated with token-level tasks, i.e. relying on the hid-
den representation of each of the input tokens instead of the one corresponding
to the special token [CLS] (used for sentence classification tasks). For that, it is
necessary to add an output layer on top of the original architecture. In most of
the experimentation done the selected output was a single fully-connected layer
with a softmax activation and cross-entropy loss function. In addition, like several
articles like [12] or [39] show the benefits of using an output CRF layer (with a
negative log-likelihood loss function), this approach was also tested.

Figure 3.2: DistilmBERT-Linear architecture for NERC [4]. The architecture with CRF is
equivalent. Only needs to substitute the Linear layer by a CRF layer.

3.4. DATA AUGMENTATION 27

3.4 Data Augmentation

As shown in section 3.2 the final PIPADI dataset has 3501 annotated sentences,
which looks enough for fine-tuning DistilmBERT. However, having a little bit more
data, especially containing the minority classes POP and TRG (remember Table
3.3), could help to improve the performance and compensate the class imbalance
of the dataset.

Easy Data Augmentation is one of the Data Augmentation techniques for NLP
included in the Literature Review (section 2.5). Despite its simplicity (or pre-
cisely because of that), some of their proposed techniques (like random swap-
ping/deletion) could introduce noise to the dataset while lacking explainability,
e.g. it may be difficult to justify to a non-expert audience why a random swap
helps to improve the performance. For this reason, we implemented more elabo-
rated data augmentation techniques, like Back-Translation and Word Replacement
using Contextualized Word Embeddings. In the following subsections, details of
the approach followed for both of them are presented.

3.4.1 Back-Translation

In Back-Translation [43], the idea is to augment the dataset by modifying some
words of a sentence in the process of translating it to a pivot language and then
going back to the original language. There are a couple of important decisions to
be made when using Back-Translation in a dataset. First, the selection of the afore-
mentioned pivot language, which is very important. Ideally, the pivot should be as
different as possible from the original language, this way there are more chances
to augment the dataset. Second, how to do the translations.

When applied to this project, we selected English as our pivot language. There-
fore, we did a Spanish-English-Spanish back-translation process. Here, it is true that
the recommendation to choose a very different pivot language is not 100% ful-
filled, there are languages that are much more different from Spanish than English.
However, it was done out of convenience: one thing is adding small modifications
to the dataset and another one is to add a lot of noise. This effect was reduced
when using English rather than other options. Concerning the translator, although
a good and logical option was to use the python’s free library Googletrans [15]
(that implements Google Translate API), the selected option was Marian [24]. The

3.4. DATA AUGMENTATION 28

main reason is that Googletrans has a maximum request limit while Marian (open
source) can manage as many requests as necessary.

The whole training data was back-translated using the Marian NMT model
(with a human-in-the-loop checking that the generated sentences made sense). The
issue with this approach is that it can modify the ordering of the words and the
number of tokens in the sentence. This was not desirable because it prevented
us from taking advantage of the annotations done for the original dataset. Con-
sequently, after back-translating, it was necessary to annotate again. However, it
was not feasible at that stage to re-annotate all the training set. Thus, it was done
exclusively for a sample of the training data (398 sentences). Note how this aug-
mented dataset does not modify the distribution of classes shown in Table 3.3, as
no actions were taken to balance the dataset when using this technique.

3.4.2 Word Replacement with CWE

As seen in section 2.5.3, [30] proposes a way to increase the dataset by smartly re-
placing some words. In their proposal, they performed the substitution of words
using forward and backward LSTM LMs. Now, their approach can be replicated
with the representations obtained from bidirectional transformer-based models.

To implement this technique in the project, several decisions had to be taken.
1. Define the target entities, 2. How to obtain the Contextualized Word Embed-
dings (CWE), 3. Evaluate similarity between the different CWE, 4. Implement the
changes to the dataset. You have an overview of the whole process in Figure 3.3.

3.4.2.1 Define target entities

In [30], the focus is to improve the translations involving rare-words, generating
new synthetic contexts for them. In our case, the issues came from an imbalance in
the dataset, with a couple of labels (POP and TRG) clearly underrepresented, and a
label (IND) difficult to annotate. Replicating the idea in [30], the goal was to gener-
ate new contexts for the entities of these labels. To do that, we substituted from the
sentence entities belonging to other classes. Concretely, from PRD and POB, which
are present in almost all the sentences, increasing the likelihood of augmenting the
dataset for the target entities. Let’s clarify the idea with an example:

3.4. DATA AUGMENTATION 29

La silla se ha roto y el niño ha caı́do. Tiene una fractura en la clavı́cula.

In the example, in bold we have the target entity and underlined the possible
entities to substitute: se ha roto belongs to TRG, silla is the PRD and clavı́cula is
the POB. See how, for example, silla could be substituted for another product like
bicicleta. With that, we would generate a plausible substitution that increases the
examples for TRG. Note how PRD and POB are not only convenient because they
are very common entities but also because it is easier to substitute them and get
logical substitutions. Other entities, like HM1 or HM2, are usually verbs, which
are more complex to substitute without compromising the plausibility. Finally, the
decision to substitute more than one type of entity is aligned with the findings
described in [30], where they obtained better results when performing more than
one substitution.

3.4.2.2 Obtain CWE

According to the approach shown in [40], we obtained the Contextualized Word
Embeddings (CWE) from the final DistilmBERT layer (to be consistent with 3.3.2).
Note that we used the pre-trained model directly in inference mode, i.e. before
fine-tuning it with our dataset. The embeddings allowed us to substitute words
for others with similar meanings. Therefore, we needed to generate them for the
entities that could be potentially substituted, PRD and POB. Then, to perform the
final substitution, these embeddings were compared with the embeddings of dif-
ferent entities belonging to the same label. Moreover, to check the influence that
the context has on the quality of the embedding, we also generated context-free
embeddings for these entities. In this case, instead of inputting whole sentences to
DistilmBERT, we employed PRD and POB entities in isolation (check Figure 3.3).
In principle, context-based embeddings should be better. However, the extra vari-
ability added by the context-free approach can also lead to promising results. In
the results section (Chapter 5), both approaches are compared.

3.4.2.3 Similarity between CWE

In the PIPADI dataset it is quite common to have multi-token entities. Given that
the embeddings were generated at token level, it was necessary to find a way to
represent them at entity level. To solve this issue, the embeddings from tokens
belonging to the same entity were simply averaged. Once we had them, we needed

3.4. DATA AUGMENTATION 30

a way to evaluate the possible substitutions. For that, we used cosine distance
[52]. To ensure a certain level of quality and generate new sentences as plausible
as possible, only the embeddings with the distance below a certain threshold were
actually substituted. These thresholds, that we determined experimentally, were
set to 0.2 and 0.3 for the context-based and context-free embeddings, respectively.
To perform the final substitution both the replacements for PRD and POB had to
ensure the quality constraint; otherwise, they were discarded.

3.4.2.4 Implementing changes in dataset

An important advantage of this approach with respect to Back Translation is that
we do not rely on external systems to implement it: the embeddings are gener-
ated from DistilmBERT and the rest of the process has been implemented by our-
selves. This is important because using the black-box MarianMT model for Back-
Translation prevented us from taking advantage of the annotations done for the
original dataset, forcing us to re-annotate the new sentences. On the contrary, with
this approach, we have absolute control of the process of substitution, which al-
lows us to automatically generate the new labels from the original annotations.
As a result, almost all the training dataset can be augmented. In Chapter 4 differ-
ent configurations for the augmented dataset (i.e. with more or less augmented
sentences) are compared.

3.4.3 Oversampling

Finally, as one of the reasons to do Data Augmentation is to compensate the class
imbalance, we also performed a typical strategy to deal with this situation: over-
sampling the minority class. In this case, we experimented with different config-
urations in which sentences containing the conflictive labels (TRG, POB and IND)
were duplicated.

3.4. DATA AUGMENTATION 31

Figure 3.3: Overview of Data Augmentation with CWE. The first action to make was to
select which entities we wanted to replace (step 1). In our project were PRD and POB.
In the figure, we exemplify it with PRD. There were two options: either computing the
embeddings from the PRD entities in their context (context-based approach, in orange)
or computing them in isolation, from a dictionary only containing PRD (context-free ap-
proach, in green). For both options, we got the embeddings (WE in the figure) from the last
layer of DistilmBERT (T green boxes in Figure 3.2) (step 2). The embeddings are vectors
of dimension 768. To compare them (step 3), we used cosine distance. In the context-
based approach, we compared the context-based embeddings with other context-based
embeddings (from different sentences). On the contrary, in the context-free approach, we
compared context-based embeddings with context-free embeddings (green box). In both
cases, for each embedding, we selected as its replacement the embedding that is at the
minimum distance and ensures a certain level of quality. Finally (step 4), we generated
the two augmented datasets replacing the original entities with the ones obtained in the
previous step.

Chapter 4

Experiments

4.1 Experimental setup

For the rule-based system (section 3.3.1) the only particularity of the implementa-
tion is the way to obtain the POS tags for Spanish tokens. We used the Spanish
pipeline es core news sm from spaCy [46]. Bear in mind that we used this sys-
tem only as a baseline. The core of the experimentation consisted in fine-tuning a
pre-trained DistilmBERT model. To implement it, we used the PyTorch transfor-
mers library from Hugging Face [58][14]. Most concretely, the distilbert-base-
multilingual-cased model (L = 6, H = 768, A = 12). The following sub-
sections deepen on the requirements and particularities to fine-tune it.

4.1.1 Input formatting

When fine-tuning BERT (or mBERT), there are input formatting requirements that
need to be satisfied (remember section 2.2.3). To begin with, the input must be to-
kenized and we need to add the special tokens [CLS] and [SEP] at the start and
end of each sentence. Then, all of them are converted to their ID in the pre-
trained model vocabulary. The whole process can be done with the tokenizer
DistilBertTokenizerFast from the transformers library. Nevertheless,
like our dataset was already tokenized, we directly added the special tokens and
mapped them to their IDs. When analysing the token IDs, we realized how a sur-
prisingly high number of them were set to 100, which is the ID corresponding to
the special token [UNK]. When this happens means that these tokens were not
present in the vocabulary used to pre-train the model. We expected this to happen
in the presence of typos but not for words perfectly written, which was the case. As
seen, DistilmBERT tokenizer (WordPiece) can break words into several sub-words.

32

4.1. EXPERIMENTAL SETUP 33

Hence, commonly seen sub-words can also be represented by the model [60]. In
our case, even if the original word is out-of-vocabulary, it is likely that their sub-
words are not, which solves the issue. Consequently, what we did was to apply
DistilBertTokenizerFast on top of the tokens from the dataset. When doing
so, we also had to align to a sub-token-level the token-level labels.

After tokenization, the resulting length of the sentences may vary a lot. To
have a uniform input format, all sentences need to be padded or truncated to a
fixed length, MAX LEN. When padding, the special token [PAD] is added to the se-
quence. In our dataset, the maximum length of the training sentences (after Word-
Piece tokenization) is 121. To give some margin for potential longer sentences in
the test set, we set MAX LEN=220 (still far from BERT’s maximum sentence length,
512 tokens). The [PAD] tokens are mapped to their token ID, 0. Finally, it is neces-
sary to generate the attention masks which is simply an array of 1’s and 0’s used
to indicate which are the [PAD] tokens. This mask indicates to the self-attention
mechanism to ignore the [PAD] tokens in its calculations.

Note that both padding and the generation of the attention masks can also be
handled by DistilBertTokenizerFast. In our implementation we applied it
to perform the entire input formatting process: sub-word tokenization, padding,
generation of attention mask and mapping of the tokens to the ID in the model
vocabulary.

4.1.2 DistilmBERT for NERC

We needed to modify the pre-trained DistilmBERT model to perform the NERC
task. For that, we employed the interface DistilBertForTokenClassification
from Hugging Face. This implementation allows to easily load the pre-trained
model and adds the necessary output layers to perform the NERC task. Concretely,
it is simply the DistilmBERT architecture with a token classification head (linear
layer) on top of the hidden-states output. Although almost all the experimentation
was done with this DistilmBERT-Linear model, we also tried to see if it was useful
or not to use a CRF layer (DistilmBERT-CRF) instead. In [45], they obtained their
best results with this model head. Unfortunately, Hugging Face does not provide
an interface for BERT-CRF. To do the implementation, we used as reference the
code published by [45] in [44]. For both model heads, we set a dropout rate of 10%
after DistilmBERT’s output.

4.1. EXPERIMENTAL SETUP 34

4.1.3 Parameter setting

Following the fine-tuning recommendations given by the authors of BERT (Ap-
pendix A.3 in [7]), for the hyperparameter tuning task we exclusively focused on
the following options:

• Batch size: 16, 32

• Learning Rate: 2e-5, 3e-5, 5e-5

• Epochs: 2, 3, 4

For the optimizer, Adam was used (AdamW class from the transformers li-
brary). Apart from the learning rate, it is also required to set the value for Adam’s
epsilon parameter. For that, we used the default value eps=1e-8.

4.1.4 Data

For the experimentation and evaluation of the project, we divided the PIPADI
dataset (and its corrected version) following an 80-10-10 (train-devel-test) split.
The split was stratified on the minority classes (POP and TRG) to ensure that their
proportions were preserved. The final splits were saved to ensure reproducibility.
The tables below summarize the characteristics per each partition.

Nº sentences Nº tokens
Training 2800 34100
Devel 350 4337
Test 351 4268

Table 4.1: Volumes of the dataset splits

PRD POP HARM POB IND TRG HM1 HM2
Training 6311 683 9196 9237 2881 731 2636 2425
Devel 773 89 1165 1203 385 88 315 319
Test 753 94 1153 1176 382 88 310 312

Table 4.2: Number of tokens per label in each of the splits

In Tables 4.1 and 4.2 we can see how, effectively, the splits were correctly strat-
ified, maintaining the proportion of the minority classes. As explained in section
3.4, to try to mitigate the imbalance issue, we implemented several data augmenta-
tion techniques, which focused on increasing the proportion of the minority class

4.1. EXPERIMENTAL SETUP 35

while providing some more training examples. Apart from Back-Translation, with
the approaches based on CWE and oversampling, we specifically augmented sen-
tences where there were instances of the problematic labels. Remember how for
CWE we wanted to compare the quality of the datasets generated through context-
based embeddings (CWE Free in Tables 4.3 and 4.4) versus the ones obtained with
context-free embeddings (CWE Context in Tables 4.3 and 4.4). In addition to the
minority classes POP and TRG, we expected to have issues with the prediction of
the label IND (it was even complex for us to annotate it). Consequently, in some
of the approaches (denoted with + IND), we did not only focus on augmenting
the minority classes but also the label IND, to a maximum of 750 augmented sen-
tences. The information for each of the augmentation approaches is summarized
in the tables below.

Nº sentences Nº tokens
Back-Translation 398 4357
CWE Free 525 11437
CWE Free + IND 750 15936
CWE Context 600 9580
CWE Context + IND 750 11808
Oversampling 525 7668
Oversampling + IND 750 10698

Table 4.3: Volumes of the augmented datasets

PRD POP HARM POB IND TRG HM1 HM2
Back-Translation 822 104 1038 1438 272 65 266 352
CWE Free 2416 481 2023 4608 586 507 302 514
CWE Free + IND 3446 481 2723 6455 1069 507 523 732
CWE Context 2019 553 2214 2560 712 563 347 612
CWE Context + IND 2519 553 2687 3210 1050 563 479 747
Oversampling 1362 481 2023 1893 586 507 302 514
Oversampling + IND 1933 481 2792 2651 1112 507 539 683

Table 4.4: Number of tokens per label in the augmented datasets

In Table 4.4 it can be seen how, apart from Back-Translation, all the approaches
augmented the proportion of tokens belonging to the minority classes. In addi-
tion, the + IND approaches did likewise for the label IND. The approach followed
for CWE augmentation consisted in replacing entities from classes PRD and POB

4.2. EVALUATION METRICS 36

from the sentences containing difficult labels (full explanation in section 3.4.2.2).
Hence, it is interesting to check the variation in the number of tokens correspond-
ing to these labels. The training dataset has on average 2.25 PRD tokens and 3.3
POB tokens per sentence. These values go up to 4.6 and 8.7 for CWE Free and to
3.3 and 4.3 for CWE Context. The fact that these values increase makes sense, as
in a lot of cases the replacement is done by adding some adjectives to the original
entity. However, the rise looks much more reasonable for the context-based ap-
proach. Concerning the context-free approach, the replacements, despite making
sense, are sometimes a little bit weirder, which can explain the huge increase. This
situation is exemplified in Table 4.5. Apart from that, the sentences containing the
difficult labels are usually longer than the rest, which proportionally increases the
token count.

Sentence
Original Mientras andaba se golpeo contra el armario
CWE Context Mientras andaba se golpeo contra el armario de madera
CWE Free Mientras andaba se golpeo contra el armario de telefonica roto

Table 4.5: In the Original row, the entity to replace is highlighted in bold. It can be seen
how with CWE Context replacement it is substituted by armario de madera while in CWE
Free is substituted by armario de telefonica roto. Both replacement entities exist in the dataset.
Although both solutions are correct and make sense, the one from CWE Context looks more
natural. This proves that the quality of the replacement increases when the embeddings
take into consideration the context.

4.1.5 Hardware

All the fine-tuning experimentation is executed on Google Colaboratory [16], tak-
ing advantage of their GPUs (NVIDIA Tesla K80 [33]) accessible for free.

4.2 Evaluation Metrics

For the evaluation, we used the standard metric for NERC task: F1-score [21]. F1-
score is the harmonic mean of the Precision and Recall metrics.

4.2. EVALUATION METRICS 37

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

F1 = 2 ·
Precision · Recall
Precision + Recall

Precision and Recall are inherently binary metrics (either the prediction is a
positive or a negative). For this reason, when the data is multiclass it is neces-
sary to define how to compute them. One option is using micro F1-score, which
calculates the metrics globally, i.e. counting the total number of true positives,
false negatives and false positives. The other option is macro F1-score, which is
the unweighted mean of the metrics for each label. In this project, we decided to
use macro F1-score. The reason is that some of the most relevant labels are under-
represented. Thus, using micro F1-score, even with very bad results in these labels
the metric would look good. On the contrary, evaluating with the macro strategy
gives a better idea of the real/practical quality of the model.

As said, the PIPADI dataset was labelled using the BIO format. Hence, given
that there are 8 type of entities (PRD, POP, HARM, POB, IND, TRG, HM1 and
HM2) plus the output label (O), we had a total of 17 unique classes. Despite the
predictions following the BIO format, i.e. predicting per each token its tag with
B- or I-, we decided to do the evaluation following an IO format. This was done
because it is really uncommon in our dataset to have consecutive entities from the
same label, while it is more frequent for the model to correctly predict the entity
but fail between B- and I-. In addition, we are not reporting the results including
the class O and we ignore the predictions for the special tokens [CLS], [SEP] and
[PAD], as they are not interesting for the task.

Chapter 5

Results and Discussion

In this Chapter, the most relevant results are presented. Apart from what is shown
in this section, you can find the outcome for our whole experimentation in Ap-
pendix C.

5.1 Baseline

The first step in the experimentation was to obtain a baseline using our rule-based
system (section 3.3.1). Table 5.1 shows the results obtained in the devel set.

Total PRD POP HARM POB IND TRG HM1 HM2
F1-score 58.52 63.91 18.52 88.69 79.95 19.53 54.24 75.62 67.91

Table 5.1: Results in the devel set with the rule-based system.

The macro F1-score using the rule-based system gets to 58.52%. It is interesting,
though, to check the results at entity level. As expected, the classes identified as
most difficult (POP, IND, TRG) are the ones getting the worst results. However,
it is interesting to highlight how in TRG the result is quite good (54.24%). This
happens because TRG is a class that does not have overlapping tokens with other
labels: their entities are quite exclusive. Therefore, it is relatively easy to get correct
results simply by checking if the token is present in the dictionary of most typical
entities from the training set. Something similar happens with PRD, HM1 and
HM2. Finally, the labels getting the best performance are HARM and POB. This is
something expected as these entities always appear following the same structure
in the descriptions of the dataset. Remember that you can have a closer look at the
final set of rules on Appendix B.

38

5.2. ORIGINAL VS. CORRECTED DATASET 39

5.2 Original vs. Corrected Dataset

In section 3.2 it has been explained how, due to the great number of clinical courses
containing typos and mistakes, we created the corrected version of the PIPADI
dataset. We wanted to verify if, like it is exposed in [27], the performance would
be compromised by the presence of misspelling errors. Thus, we tested the per-
formance of fine-tuning a DistilmBERT-Linear model on the original and corrected
datasets (Table 5.2). Note that this was done prior to a proper process of hyper-
parameter tuning. For this experiment we used Epochs=4, Batch Size=32,

LR=2e-5.

Total PRD POP HARM POB IND TRG HM1 HM2
Original 83.38 89.36 72.21 96.93 97.61 69.14 63.53 87.20 91.01
Corrected 83.84 89.92 74.48 96.79 97.54 69.87 63.75 87.74 90.64

Table 5.2: Comparison in the devel set between original and corrected datasets.

Table 5.2 shows how the corrected dataset outperforms the original one. How-
ever, the difference is smaller than expected (0.46pp). This is explained by the
fact that we applied WordPiece tokenization. As explained in 4.1.1, by splitting
incorrect words, it is more likely that their sub-words are present in the model
vocabulary, which makes BERT-based models robust to errors. Given the simi-
lar performance, the costs associated with the corrected approach should be taken
into consideration. To begin with, if we trained our models with corrected sen-
tences, we would have to ensure that the testing data (i.e. the real use case) is also
corrected. Therefore, the company would have to include a good and automatic
corrector as a previous step to apply their service. In our opinion, it is not worth
it to add this (potentially expensive) extra step for such a small difference in per-
formance. For this reason, the corrected dataset was discarded and we performed
the rest of the experimentation solely on the original dataset. Apart from that, it
is impressive to see how, just with a first trial configuration, it is possible to mas-
sively improve the results of the baseline (around 25pp). At entity level, the model
keeps struggling with the difficult labels POP, IND and TRG. However, in the case
of POP and IND, the improvement is huge: 56pp and 50pp, respectively. On the
other hand, TRG is the label that improves the less (9pp).

5.3. HYPERPARAMETER TUNING 40

5.3 Hyperparameter Tuning

The core of the experimentation consisted in fine-tuning a pre-trained DistilmBERT-
Linear model. For that, we performed hyperparameter tuning according to the rec-
ommendations given for BERT (section 4.1.3). Apart from that, we tested the data
augmentation techniques implemented in this work. Figure 5.1 compares multiple
combinations of hyperparameters and augmentation techniques. For the sake of
clarity, experiments with the same combination are averaged.

Figure 5.1: Comparison of models with original vs. augmented datasets. The hyperpa-
rameter combination legend can be found in Table 5.3

Num. Epochs Batch Size Learning Rate
Combination 1 2 16 2e-5
Combination 2 4 16 2e-5
Combination 3 3 16 2e-5
Combination 4 5 32 2e-5
Combination 5 4 32 2e-5
Combination 6 2 32 5e-5
Combination 7 4 32 5e-5
Combination 8 3 32 5e-5
Combination 9 2 16 5e-5
Combination 10 3 16 5e-5

Table 5.3: Legend of Hyperparameter combinations.

5.3. HYPERPARAMETER TUNING 41

In Figure 5.1 it can be seen how, regardless of the configuration, the perfor-
mance on the devel set is better when fine-tuning the model with an augmented
dataset (blue markers). As you can observe, there are more blue (augmented) than
orange (non-augmented) markers. The reason why this happens is because there
were a lot of data augmentation configurations to test (remember Table 4.4), while
the non-augmented was just one. In addition, you can also note how Combina-
tions 9 and 10 have much more samples than the rest. This is due to the fact that in
our initial experiments we spotted that with these configurations the performance
was better. Hence, we tried more data augmentation options on them. On Figure
5.2 we can check on detail each of them. For the sake of clarity, experiments with
the same combination are averaged.

Figure 5.2: Comparison of models with different augmented datasets. It is the replica of
Figure 5.1 without the non-augmented dataset and specifying the augmentation strategy
followed in each case. To relate the legend with the explanation in 4.1.4 and Table 5.3:
CWE-F stands for CWE Free, CWE-F-I for CWE Free - IND, CWE-F+BT is the combination
of CWE Free and Back-Translation, CWE-C for CWE Context, CWE-C+BT is the combination
of CWE Context and Back-Translation, CWE-C-I for CWE Context - IND, CWE-C-I+BT is the
combination of CWE Context - IND and Back-Translation, OS for Oversampling and OS-I for
Oversampling - IND

With data augmentation, the initial approach was to directly handle the com-
plex labels of the dataset. For this reason, the original techniques were CWE Free
- IND (blue marker) and CWE Context - IND (orange marker), which generated

5.3. HYPERPARAMETER TUNING 42

new contexts for sentences containing the difficult labels (TRG, POP and IND).
It can be seen how their performance (especially for CWE Context - IND - orange
marker) is progressively growing with the successive hyperparameter combina-
tions. When reaching Combination 9, there was a relevant peak in performance and
we decided that, from there, we would test new configurations. At that point, CWE
Free - IND and CWE Context - IND were successfully improving the performance
on TRG and POP, but were failing to rise it up for IND. We noticed that when gen-
erating new contexts for sentences with TRG and POP, we were already adding
contexts for IND, as these labels tend to coincide in the same sentence. Thus, the
contexts specifically generated for IND were not strictly necessary. Indeed, they
were overfitting the model for that label. To solve this issue, we decided to get rid
of them and we created CWE Free and CWE Context, focusing exclusively on TRG
and POP. Moreover, we decided to include also the sentences generated through
Back-Translation (CWE-F+BT and CWE-C+BT), as they were not biased to any class
and provided a good way to increase the variability on the training set. Finally, we
compared our approaches to the effect of simply oversampling training examples
including the difficult labels TRG and POP OS and also IND OS-I.

As seen in Figure 5.2, the new data augmentation approaches boost the perfor-
mance on the devel set. However, like Combination 9 is only trained for 2 epochs
(without severe overfitting), we were concerned to be wasting the full potential of
the models. Hence, we increased the number of epochs to 3 (Combination 10). With
this combination, despite the models overfitting a little bit more, the performance
increases (in some cases). The final leading configurations belong exclusively to
these combinations (top right corner in Figure 5.2).

To sum up, the main findings from Figures 5.1 and 5.2 are the following:

• Employing an augmented dataset improves the performance.

• The augmentation should be exclusively focused on the minority classes (TRG
and POP). Despite IND being a complex class, providing more contexts for
this label worsens the performance, as the model overfits the training data.

• There is not a very relevant difference in performance between augmenting
with context-based (CWE-C) rather than context-free (CWE-F) embeddings.
Depending on the configuration, both of them can perform well. Indeed,

5.3. HYPERPARAMETER TUNING 43

among the best models both options are present (CWE-F+BT vs. CWE-C and
CWE-C+BT).

• The combination of word replacement and Back-Translation enriches the aug-
mented dataset to the point that 2 of the top models use them (CWE-F+BT
and CWE-C+BT).

• Classical approaches to deal with the imbalance datasets (Oversampling) are
an easy, fast and inexpensive approach to boost the performance.

As seen in section 4.1.2, as a last step for the hyperparameter tuning process,
we also tried changing the model head to a CRF layer (DistilmBERT-CRF). Taking
advantage of our findings with a Linear head, we directly applied the top config-
urations to the new model. Table 5.4 shows the best results with this approach.

Data Augmentation Epochs Batch Size Learning Rate Macro F1
Non-Augmented 10 16 5e-5 75.86
CWE-F+BT 8 16 5e-5 78.94

Table 5.4: Best results with DistilmBERT-CRF on devel set.

The results shown in Table 5.4 are not up to the expectations that we had for
DistilmBERT-CRF, being around 10pp below the equivalent configurations with
DistilmBERT-Linear. The main limitation comes from the complex classes, where
low results are obtained. Data Augmentation seems to help in that sense (+3pp),
but it is not enough to ensure sufficiently good quality. However, this does not
mean that this model is not a useful approach; simply, it probably requires much
more dedication to the fine-tuning process than what we devoted. Actually, we
didn’t do it because of our restrictions on computational resources. As it can be
seen, fine-tuning this model requires much more epochs than with a Linear layer.
In addition, the time per epoch increases from 120 to 355 seconds. In practical
terms, this means that in the time necessary to fine-tune DistilmBERT-CRF once,
around 10 experiments could be done with DistilmBERT-Linear. And this is not
only a matter of time but also that long executions penalize you on Google Co-
laboratory. When we experimented with DistilmBERT-CRF, we usually surpassed
the free GPU usage limit and we had to wait for around 24 hours to continue the
experimentation. All in all, under these circumstances, it was not worth it for us to
devote more time to this model.

5.4. FINAL RESULTS 44

5.4 Final results

This section summarizes the performance of our best models on the devel set (Ta-
ble 5.5) and shows the final results on the test set.

Total PRD POP HRM POB IND TRG HM1 HM2
10: CWE-F+BT 88.06 90.69 84.68 97.59 97.80 73.29 76.97 90.25 93.18
10: CWE-C+BT 87.44 89.91 82.46 97.72 97.67 71.40 77.78 88.61 94.00
9: CWE-C+BT 87.37 90.41 84.58 97.49 97.59 72.41 76.12 88.17 92.16
10: CWE-C 87.27 90.82 80.15 97.84 97.55 70.74 78.79 89.67 92.62
10: OS 87.15 90.03 81.65 98.00 97.47 69.99 78.03 89.50 92.55
9: CWE-F+BT 87.05 90.11 76.81 97.48 97.50 71.32 82.84 88.26 92.12
10: Non-Aug 86.06 89.47 81.00 97.09 97.72 70.86 72.16 88.22 91.94
Baseline 58.52 63.91 18.52 88.69 79.95 19.53 54.24 75.62 67.91

Table 5.5: Results on the devel set with the best configurations. The baseline and the best
results obtained without data augmentation are also included.

As you can check on Appendix C, there are a lot of configurations getting an
F1-score over 86% on the devel set. In Table 5.5 we have decided to show only the
ones above 87%. As we can see, among these top performers we have exclusively
the hyperparameter combinations 9 and 10. Interestingly, without data augmenta-
tion, the best results obtained are not that far from the augmented versions (around
1-2pp). When it comes to the complex labels, apart from TRG, the non-augmented
version obtains comparable results, especially on POP.

With the best configurations we evaluated on the test set:

Total PRD POP HRM POB IND TRG HM1 HM2
10: CWE-C+BT 86.39 89.68 71.98 98.13 98.26 75.38 75.43 89.21 93.18
10: OS 85.71 89.57 67.95 97.84 98.16 74.88 78.03 87.80 91.43
10: CWE-F+BT 85.16 89.11 68.00 97.98 98.01 73.76 75.51 86.98 91.91
10: CWE-C 84.99 89.85 67.87 98.18 98.37 73.71 72.16 87.58 92.23
9: CWE-F+BT 84.96 90.06 69.53 97.77 98.29 73.07 72.20 87.05 91.75
10: Non-Aug 84.96 89.07 71.48 98.13 98.57 74.86 69.03 87.46 91.04
9: CWE-C+BT 84.27 88.14 63.60 98.08 97.80 73.10 71.43 89.03 92.96

Table 5.6: Results on the test set with the best configurations.

5.5. ANALYSIS OF GENERAL RESULTS 45

5.5 Analysis of General Results

Table 5.6 shows the results on the test set. Some of the most important findings are
that the top 3 results use Combination 10, which shows its superiority with respect
to Combination 9. All the models decrease their performance with respect to the
devel set, but some of them are particularly affected: 9: CWE-F+BT, -2.09pp; 10:
CWE-C, -2.28pp; 10: CWE-F+BT, -2.9pp; 9: CWE-C+BT, -3.1pp. Indeed, only 10:
CWE-C+BT, 10: OS and 10: Non-Aug decrease less than 2pp. This shows how, in
general, with the augmented datasets we tended to overfit to the devel set. This is
especially important for the POP class, with only one of the augmented models (10:
CWE-C+BT) being able to go over 70%, while on the devel set almost all of them
surpassed the 80%. On the contrary, the augmentation proves to be very useful for
the TRG label, consistently outperforming by a relevant margin (2-6pp) the results
for the non-augmented model. When it comes to the rest of the classes, although
quite similar, the performance is slightly better for the augmented approaches (es-
pecially for the top 2). Despite its strengths and weaknesses, the best performing
models on the test set use augmentation techniques, outperforming by a relevant
margin (1.43pp) the best non-augmented model. In any case, we should be more
careful not to overfit the devel set when applying data augmentation in the future.

To conclude, 10: CWE-C+BT is our best model. Performing a Wilcoxon test [57]
at entity-level we proved that its performance is statistically significantly better
(p-values < 0.05) than the other models, with the exception of 10: OS (p-value =
0.148). This last point is particularly relevant, we spent a lot of resources and time
working on both Word Replacement with CWE and Back-Translation. However,
working with Oversampling was a matter of minutes. This approach is optimal in
terms of the cost-benefit trade-off. On the one hand, it improves the performance
with respect to the non-augmented approach. On the other hand, it does not re-
quire the dedication of the aforementioned data augmentation techniques. When it
comes to the comparison between context-based (CWE-C) and context-free (CWE-
C) replacement, the context-based approach has proved to perform better on the
test set (context-free seems to overfit more the devel set). Finally, it is worth men-
tioning that data augmentation is not an exact science and that the best-performing
approaches in this work may not be suitable for other datasets.

5.6. ANALYSIS AT ENTITY LEVEL 46

5.6 Analysis at entity level

Performing an analysis at entity level is key in our project. Not only does it help to
evaluate the performance of our model but also reflects the quality of the annota-
tion process. In fact, some of the results make much more sense from the annotator
perspective. Using the information from Figure 5.3, we will give feedback for some
of the entities:

Figure 5.3: Normalised confusion matrix from best model (10: CWE-C+BT) on the test set.

• PRD: 6% of their entities are predicted as O. See how, from all the entities,
PRD is the third with the highest confusion with O (only after two complex
classes, POP and IND). We believe that this value is especially high in PRD
because of how the annotation was done. PRD should not be a complex class
to annotate, but if we remember the definition given in section 3.1, we should
only care about products involved in a harmful event. Therefore, despite
being in the sentence, all the products that are not involved in an incident
have not been tagged as PRD. We believe that, although this decision makes
sense at business level, in terms of the operation of the model is sub-optimal.
Maybe a better solution would be to tag all the products in the sentence as
PRD and, afterwards, perform some post-processing or apply some relation
extraction model to determine whether it is involved in the incident or not.

5.6. ANALYSIS AT ENTITY LEVEL 47

• POP: Creating the POP label was probably a design mistake. Actually, we
had doubts until the last moment. To begin with, POP is a difficult label
to annotate. For example, it is not unlikely to find situations where there
are parts of parts of product, which makes the annotation trickier. In addi-
tion, there are sentences in which the same token is PRD and other sentences
where it is POP, e.g. Se ha enganchado con la puerta vs. Se ha enganchado con
la puerta del coche, in the first case puerta would be clearly tagged as PRD
and in the second case as POP. As a result, 22% of their tokens in the test
set are predicted as PRD. We believe that a good option (especially given
the low number of POP tokens) would be to annotate all POP as PRD and
afterwards determine the relation (part of) by means of some relation extrac-
tion model. In that sense, we have tried using some simple rules that have
achieved promising results (around 60% of F1-score for POP on devel).

• IND: The trickiest class to annotate. Probably its definition has been too
broad. In it, we look for the moments right before the harmful event. How-
ever, within this definition, we can include a lot of different things, which
makes it difficult to find patterns for the annotations of this label. Conse-
quently, it is the class that most times is incorrectly predicted with O.

• TRG: Probably the most decisive, yet scarce, label. It includes entities that
show defects or operating failures of the product. This label is key because
spotting defects in a product is at the core of risk assessment. Correctly de-
tecting these entities can be vital to raise the alarm and prevent incidents to
happen. The fact that with augmentation techniques we are able to boost its
performance is one of the best news of this project. Concerning its perfor-
mance, it presents a lot of overlapping with HM1, which explains that 13%
of their tokens are predicted with that label.

Chapter 6

Conclusions

In this work, we fine-tuned DistilmBERT to perform information extraction (NERC)
from clinical courses. The goal was to automatically extract relevant information
necessary to evaluate the risks associated with the products involved in a harm-
ful incident. Taking advantage of the experience in the field of the professionals
of ieConsumo S.L., we defined the named entity labels to extract from the text:
Product (PRD), Part of Product (POP), Harm (HARM), Part of Body (POB), In-
ductor (IND), Trigger (TRG), Harming Mechanism 1 (HM1) and Harming Mech-
anism 2 (HM2). After that, we annotated the raw dataset using an in-house an-
notation tool built to satisfy our business requirements, i.e. to be user-friendly
for people without a technical background. The final dataset, built following the
fashion proposed by CoNLL-2002/2003, has a total of 3501 annotated sentences.
Although this amount of data might be enough to perform the task, the dataset is
clearly imbalanced, with some classes clearly under-represented (POP and TRG).
To overcome this issue, we studied and implemented several data augmentation
techniques for NLP, like Back-Translation (BT) or Word Replacement with Contex-
tualized Word Embeddings (CWE), and more classical ways to deal with imbal-
ance (oversampling). After building a baseline with a simple rule-based system,
we performed an exhaustive hyperparameter-tuning process to fine-tune Distilm-
BERT for NERC. Although we tried with both a Linear and a CRF head, we did
most of the experimentation with the Linear output, as it was more convenient
given our computational resources. Our experiments prove the worthiness of data
augmentation, outperforming the non-augmented strategy. Our best approach is
a DistilmBERT-Linear model trained with an augmented dataset (CWE+BT). It ob-
tains good results on the task (86.39% F1-score), ensuring a sufficiently good qual-
ity (>70%) for all the labels, regardless of their support.

48

Chapter 7

Future work

Despite all the presented work, there are still things to be done related to this
project. For example, we left for future work the task of re-annotating the dataset.
The current version was labeled by a single annotator (myself), which is sub-
optimal. Doing a second annotation could be beneficial to prevent mistakes. In
addition, we could correct some of the issues that we found related to the label def-
inition, like considering removing the POP tag or annotating every single instance
of PRD. In this scenario, it could also be interesting to annotate relations between
entities (to enable relation extraction). Furthermore, to try to push the performance
of the system, it would be ideal to have better computational resources: more pow-
erful and with higher availability. The free version of Google Colaboratory, despite
being a convenient solution, limited our experimentation (especially) due to its us-
age limits. Better hardware would allow us to try with more powerful models (like
mBERT or XLM-R) and to do a better job when using a CRF model head. Finally,
if ieConsumo reached an agreement to handle the user complaints from a multi-
national company, it would be necessary to replicate the procedure followed in
this project with the new data. In addition, this new multilingual dataset, together
with our decision to work with a multilingual model, would allow us to test the
cross-lingual ability of our approach.

49

Appendix A

Annotation Manual

A.1 System Overview

We have created an in-house tool to perform the annotation task. The way to pro-
ceed has consisted in using a shared Google Sheet to ensure a collaborative (and
version controlled) tool while providing a good UX for non-tech-savvy users. This
spreadsheet is controlled by an automatic bot (PIPADI bot from now on), which is
in charge of checking the validity of the annotated and validated entries and gen-
erating the dataset from them.

The spreadsheet is composed of several blocks:

Figure A.1: PIPADI Annotation Tool - System Overview

• Input Block: Contains the raw text descriptions that have to be annotated.
The user has nothing to do in that block.

50

A.2. GENERAL ANNOTATION GUIDELINES 51

• Annotation Block: Presents as many columns as the number of pre-specified
labels to annotate the text with.

• Feedback Block: Presents information about:

Who has labeled (and validated) a certain annotation.

If the input entry should be removed.

PIPADI bot feedback. The automatic bot will show you the annotation
status of each input entry. Also shows the words incorrectly annotated in
case of transcription errors.

A.2 General Annotation Guidelines

During the process of annotation, it is normal to face situations where the anno-
tator may doubt between multiple options on how to label the text. It is for that
reason that it is necessary to establish some clear guidelines to follow in these cases.
In this section we show those guidelines that can be applied regardless of the label,
as they are common for all of them:

• Not annotating articles: When annotating a noun, we have no interest in
annotating the articles that go with it, as it does not include relevant infor-
mation for the task.

• Exactly transcribing the text: include all the mistakes. We should prepare
the machine to read spelling mistakes.

• Annotating the same token as many times as it appears in the description:
if it appears 3 times, 3 times we need to annotate it (separating each annota-
tion with “;”).

• Separate elements in enumerations of the same label: do not include the
connectors in the annotation.

• Maintain order of appearance inside each label: the order itself is not rele-
vant when generating the dataset but will make things easier for the validator

Examples:

A.3. ANNOTATING THE PRODUCT 52

Case Descripton Annotation
Not annotating arti-
cles

Se ha golpeado con la pelota pelota (PRD)

Exactly transcripting
the text (including
mistakes)

Se ha golpeado con un valon valon (PRD)

Annotating multiple
references to a token

Se ha golpeado en la cara. Tiene una
contusión en la cara.

cara; cara (POB)

Separate elements in
enumerations of the
same label

Se ha golpeado la cara y el brazo cara; brazo (POB)

Table A.1: General Annotation guidelines.

As a final reminder, it is essential to annotate all the references to the same to-
ken. Otherwise, we would be fooling the machine. It is also very important to
correctly separate the multiplicities or enumerations of tokens with ”;”. In case
this is not done, the annotations won’t be validated.

In the following sections, some specific details about the annotation of each of
the different labels are going to be presented.

A.3 Annotating the product

The product must be a consumer good, i.e. something that can be bought (not
built) by a person or company. Thus, typical elements involved in incidents such
as “escaleras ” (stairs), “escalones” (steps), “pared” (wall) or “suelo” (floor), which
are not consumer goods, should not be annotated as products.

Now, considering that a consumer good is present in the description, we can
encounter several situations in which it may be complex to discern what is the
exact span of the product. Let’s list 4 typical complex scenarios that can happen
when annotating a product:

• The product is complemented (contextualized): Usually, a product can be
the center of a Noun Phrase (sintagma nominal) which presents other phrases
complimenting it:

A.3. ANNOTATING THE PRODUCT 53

Adjectives: may provide relevant information about the product that may
help to contextualize it and to perform the hazard evaluation.

Example 1: “el niño cogió una pieza pequeña”.

The fact that it is a small part is relevant, as it implies the possibility that the
kid swallows it.

Example 2: “el niño chocó con una puerta metálica”

The material of the product is also relevant as it can affect the type and sever-
ity of the injury.

It is true that there are other adjectives that are completely irrelevant for the
task, such as the ones related to the colour: “cogió el juguete amarillo”. In
any case, these kinds of details are not usually present in the description and
therefore we include the adjectives in the product annotations.

Prepositional Phrases:

In Spanish, these phrases will typically start with the preposition “de”, which
leads to three different types of phrases:

Specifying the location

Example: “Se ha chocado con la puerta de la entrada”

The location where the incident takes place is not relevant. Therefore, should
not be included in the annotation.

Specifying the material

Example: “Se ha chocado con la puerta de cristal”

The material of the product is also relevant as it can affect the type and sever-
ity of the injury. Therefore, should be included in the annotation.

Specifying the activity

Example: “Le ha golpeado la pelota de fútbol”

The activity of the product is relevant as it can affect the type and severity of
the injury. For example, it is not the same to be hit by a ping-pong ball than
a basketball ball. Therefore, should be included in the annotation

• There are multiple products in the description:

Example: “Tropieza con la muleta, se choca contra la puerta de cristal y se
corta el brazo”

A.4. ANNOTATING: INDUCTOR VS. TRIGGER 54

In order to make things easier to model, both products (remember that should
be consumer goods) should be annotated

• Hidden products inside Harming Mechanisms :

Sometimes in Spanish there are products which are hidden inside a hid-
den mechanism. For example: “pedrada” (piedra), “martillazo” (martillo),
“pelotazo” (pelota) or “balonazo” (balón)

It would be a good practice to annotate these cases as products instead of
harming mechanisms. Although it may be more complex for the model to
understand, there is an underlying product that should be caught up. More-
over, once the information is extracted, these tokens can be easily converted
into the product noun by means of the process of lemmatization.

A.4 Annotating: Inductor vs. Trigger

Checking the definitions of the proposed labels, it is clear how both Inductor and
Trigger reflect a change in the normal course of an activity which finally leads
to a harming mechanism (i.e. a harming mechanism can be neither Inductor nor
Trigger). However, it is important to clarify the differences between them so as to
ensure the correct annotation of entries. Concretely, the difference that the annota-
tor should look for is if this change of the course of the activity is led by a defect
or operating failure of the product involved. If this is the case, it should be labeled
as Trigger; otherwise, as Inductor. It is important to note that this does not mean
that the Inductor cannot be caused by a product, simply means that the product
has behaved as expected.

Case Descripton Annotation
An inductor is never
a harming mecha-
nism

Iba corriendo, se cayó y se golpeó en
el codo

se cayó (HM)

Inductor without a
product involved

Iba corriendo, se tropezó, se cayó y se
golpeó en el codo

se tropezó (IND)

Inductor with a prod-
uct involved

Al pisar la pelota cayó y se golpeó en
el codo.

Al pisar (IND)

Typical trigger: de-
fect of product

La pelota explotó y le golpeó en el
codo

explotó (TRG)

Table A.2: IND vs. TRG annotation guidelines.

A.5. ANNOTATING: HM2 VS. HARM 55

Unlike most of the labels, that usually have kind of a predetermined structure,
the Inductor is the label that can present a more free structure. Sometimes the
action from which the event turns into a harmful incident can be kind of complex
and we still should annotate it correctly. For example: “La madre dejó el paquete
de pastillas y la niña se tragó todo el bote”. Both “paquete de pastillas” and “bote”
should be labeled as products, “se tragó” should be annotated as HM1 and finally
“La madre dejó” is the Inductor as this is the action from which the action leads to
the harmful event.

A.5 Annotating: HM2 vs. Harm

The harm mechanism may be composed of only one step or two linked steps. The
last step of these two-linked steps (HM2) is the one that produces the injury or
damage (Harm). Therefore HM2 is often confused with the Harm. For example,
a knife cuts a person’s skin resulting in a cut. It can lead to confusion: “cuts” is a
verb, the harming mechanism, and “cut” is a noun, the harm itself, so be aware of
this linguistic peculiarity.

In addition, when it comes to the Harm there are a couple of details that are
worth mentioning. Firstly, the harm is often contiguous in the text to the severity
associated with it. It is important to catch it so as to give more information about
the injury for posterior analysis. Finally, it is common to see incidents in which
the description reports more than one harm, remember in these cases to correctly
annotate them, using ”;” as separation.

Case Descripton Annotation
HM2 is a verb Le ha golpeado la cara Le ha golpeado

(HM2)
Harm is a noun Tiene un golpe en la cara golpe (HARM)
Harm including con-
tiguous severity

Tiene una quemadura de 3º grado en
la mano

quemadura de 3º
grado (HARM)

Harm including non-
contiguous severity

Tiene una quemadura en la mano de
3º grado

quemadura; 3º
grado (HARM)

Enumeration of
harms

Tiene un golpe en la cara y una que-
madura en la mano

golpe; quemadura
(HARM)

Table A.3: HM2 vs. HARM annotation guidelines.

A.6. ANNOTATING: PART OF BODY (POB) 56

A.6 Annotating: Part of body (POB)

This is probably one of the most straightforward labels to annotate. However, it
is necessary to pay attention to a couple of situations that could lead to mistakes.
On the one hand, this is probably the label that will appear more times inside a
text due to the fact that it usually goes together with the Harming Mechanisms
(HM2) and Harms. Remember to correctly annotate the enumerations and catch
every single reference to a part of the body in the text, regardless you have already
annotated it once for the same text.

Case Descripton Annotation
POB together with
HM2

Se ha golpeado la cara cara (POB)

POB together with
Harm

Tiene un golpe en la cara cara (POB)

POB together with
Harm and HM2

Se ha golpeado la cara. Tiene un golpe
en la cara.

cara; cara (POB)

Enumeration of POBs Se ha golpeado en la cara y el brazo.
Tiene una contusión en la cara y un
esguince en el brazo

cara; brazo; cara;
brazo (POB)

Table A.4: POB annotation guidelines.

Appendix B

Handcrafted Rules

import pandas as pd
import j son
import numpy as np
import spacy
from sk learn . metr i cs import f 1 s c o r e , confus ion matr ix

Load r e s o u r c e s
HARM RESOURCES = pd . read csv (’ resources/ d i c t i o n a r i e s /pipadi/harm resources . csv ’ ,

names=[’ resource ’ , ’ count ’]) [’ resource ’] . t o l i s t ()
HM1 RESOURCES = pd . read csv (’ resources/ d i c t i o n a r i e s /pipadi/hm1 resources . csv ’ ,

names=[’ resource ’ , ’ count ’]) [’ resource ’] . t o l i s t ()
HM2 RESOURCES = pd . read csv (’ resources/ d i c t i o n a r i e s /pipadi/hm2 resources . csv ’ ,

names=[’ resource ’ , ’ count ’]) [’ resource ’] . t o l i s t ()
IND RESOURCES = pd . read csv (’ resources/ d i c t i o n a r i e s /pipadi/ i n d u c t o r r e s o u r c e s . csv ’ ,

names=[’ resource ’ , ’ count ’]) [’ resource ’] . t o l i s t ()
POB RESOURCES = pd . read csv (’ resources/ d i c t i o n a r i e s /pipadi/part of body resources . csv ’ ,

names=[’ resource ’ , ’ count ’]) [’ resource ’] . t o l i s t ()
POP RESOURCES = pd . read csv (’ resources/ d i c t i o n a r i e s /pipadi/part of product resources . csv ’ ,

names=[’ resource ’ , ’ count ’]) [’ resource ’] . t o l i s t ()
PRD RESOURCES = pd . read csv (’ resources/ d i c t i o n a r i e s /pipadi/product resources . csv ’ ,

names=[’ resource ’ , ’ count ’]) [’ resource ’] . t o l i s t ()
TRG RESOURCES = pd . read csv (’ resources/ d i c t i o n a r i e s /pipadi/ t r i g g e r r e s o u r c e s . csv ’ ,

names=[’ resource ’ , ’ count ’]) [’ resource ’] . t o l i s t ()

def apply ru les (tokens , pos tags) :
P r e p a r e l i s t t o s t o r e p r e d i c t i o n s from r u l e
p r e d i c t i o n s = np . f u l l (len (tokens) , ’O’) . astype (’<U16 ’)
for i in range (len (tokens)) :

i f p r e d i c t i o n s [i] != ’O’ :
continue

i f 0 < i < len (tokens) − 1 :

Look ing f o r t y p i c a l Harm + POB p a t t e r n : T i e n e HARM en POB.
i f tokens [i − 1] == ’ Tiene ’ :

j , keep = 0 , 1
while keep == 1 :

57

Handcrafted Rules 58

i f j == 0 and pos tags [i + j] == ’DET ’ :
pass

e lse :
i f tokens [i + j] . lower () in POB RESOURCES

and pos tags [i + j] in [’NOUN’ , ’PROPN ’ , ’ADJ ’] :
p r e d i c t i o n s [i + j] = ’POB ’

e lse :
p r e d i c t i o n s [i + j] = ’HARM’

i f pos tags [i + j + 1] == ’PUNCT’ :
keep = 0

i f tokens [i + j + 1] == ’ en ’ :
keep = 0
Check f o r POB
new i = i + j + 2
k , keep2 = 1 , 1
while keep2 == 1 :

p r e d i c t i o n s [new i + k] = ’POB ’
i f new i + k == len (tokens) − 1 :

break
i f tokens [new i + k + 1] == ’ . ’ or tokens [new i + k + 1] == ’ , ’ \

or tokens [new i + k + 1] == ’ tambien ’
or tokens [new i + k + 1] == ’ t a m b i n ’ :

keep2 = 0
k += 1
i f (k == 15 and keep2 == 1)

or (keep2 == 1 and new i + k == len (tokens) − 1) :
keep2 = 0
p r e d i c t i o n s [new i + 1 : new i + k] = ’O’

j += 1
i f (j == 15 and keep == 1) or (keep == 1 and i + j == len (tokens) − 1) :

keep = 0
p r e d i c t i o n s [i + 1 : i + j] = ’O’

i f tokens [i] == ’ tambien ’ or tokens [i] == ’ t a m b i n ’ :
i n i t z = max (0 , i − 20)
s tar t harm = 0
for z in range (i n i t z , i) :

i f tokens [z] == ’ Tiene ’ :
s tar t harm = 1

i f s tar t harm == 1 :
j , keep = 1 , 1
while keep == 1 :

i f j == 1 and pos tags [i + j] == ’DET ’ :
pass

e lse :
p r e d i c t i o n s [i + j] = ’HARM’

i f pos tags [i + j + 1] == ’PUNCT’ :
keep = 0

i f tokens [i + j + 1] == ’ en ’ :
keep = 0
Check f o r POB
new i = i + j + 2
k , keep2 = 1 , 1

Handcrafted Rules 59

while keep2 == 1 :
p r e d i c t i o n s [new i + k] = ’POB ’
i f new i + k == len (tokens) − 1 :

break
i f tokens [new i + k + 1] == ’ . ’ or tokens [new i + k + 1] == ’ , ’ :

keep2 = 0
k += 1
i f (k == 15 and keep2 == 1)

or (keep2 == 1 and new i + k == len (tokens) − 1) :
keep2 = 0
p r e d i c t i o n s [new i + 1 : new i + k] = ’O’

j += 1
i f (j == 15 and keep == 1) or (keep == 1 and i + j == len (tokens) − 1) :

keep = 0
p r e d i c t i o n s [i + 1 : i + j] = ’O’

Look ing f o r t y p i c a l ”Quemaduras” g r a v i t y : e x t e n s i o n / grado
e l i f tokens [i] == ’ extens ion ’ or tokens [i] == ’ e x t e n s i n ’ :

p r e d i c t i o n s [i] = ’HARM’
j , keep = 1 , 1
while keep == 1 :

p r e d i c t i o n s [i + j] = ’HARM’
i f tokens [i + j] == ’%’ :

keep = 0

i f (j == 10 and keep == 1) or (keep == 1 and i + j == len (tokens) − 1) :
keep = 0
p r e d i c t i o n s [i + 1 : i + j + 1] = ’O’

j += 1

e l i f (tokens [i] == ’ 1 ’ or tokens [i] == ’ 2 ’ or tokens [i] == ’ 3 ’) and \
(’ grado ’ in tokens [i + 1] or ’ profund ’ in tokens [i + 1]

or ’ superf ’ in tokens [i + 1]) :
p r e d i c t i o n s [i] = ’HARM’
p r e d i c t i o n s [i + 1] = ’HARM’
i f i + 2 < len (tokens) − 1 :

i f ’ profund ’ in tokens [i + 2] or ’ superf ’ in tokens [i + 2] :
p r e d i c t i o n s [i + 2] = ’HARM’

Try t o c a t c h some POB which a r e not t o g e t h e r
e l i f ’ i zquierd ’ in tokens [i] or ’ derech ’ in tokens [i] :

i f pos tags [i − 1] == ’NOUN’ :
p r e d i c t i o n s [i] = ’POB ’
p r e d i c t i o n s [i − 1] = ’POB ’

Look ing f o r p r o d u c t
e l i f tokens [i − 1] == ’ contra ’ or tokens [i − 1] == ’ con ’ :

i f pos tags [i] == ’NOUN’ and tokens [i]
not in [’ suelo ’ , ’ pared ’ , ’muro ’ , ’ e s c a l e r a s ’ ,

’ esca lon ’ , ’ ex tens ion ’ , ’ e x t e n s i n ’] :
p r e d i c t i o n s [i] = ’PRD ’
i f pos tags [i + 1] == ’NOUN’ or pos tags [i + 1] == ’ADJ ’ :

Handcrafted Rules 60

p r e d i c t i o n s [i + 1] = ’PRD ’
i f i + 3 < len (tokens) :

i f pos tags [i + 2] == ’ADP’ and pos tags [i + 3] == ’NOUN’ :
p r e d i c t i o n s [i + 2] = ’PRD ’
p r e d i c t i o n s [i + 3] = ’PRD ’

i f i + 2 < len (tokens) :
i f pos tags [i + 1] == ’ADP’ and pos tags [i + 2] == ’NOUN’ :

p r e d i c t i o n s [i + 2] = ’PRD ’
i f pos tags [i] == ’DET ’ and pos tags [i + 1] == ’NOUN’ \

and tokens [i + 1] not in [’ suelo ’ , ’ pared ’ , ’muro ’ , ’ e s c a l e r a s ’ ,
’ esca lon ’ , ’ ex tens ion ’ , ’ e x t e n s i n ’] :

p r e d i c t i o n s [i + 1] = ’PRD ’
i f i + 2 < len (tokens) :

i f pos tags [i + 2] == ’NOUN’ or pos tags [i + 2] == ’ADJ ’ :
p r e d i c t i o n s [i + 2] = ’PRD ’
i f i + 4 < len (tokens) :

i f pos tags [i + 3] == ’ADP’ and pos tags [i + 4] == ’NOUN’ :
p r e d i c t i o n s [i + 3] = ’PRD ’
p r e d i c t i o n s [i + 4] = ’PRD ’

i f i + 3 < len (tokens) :
i f pos tags [i + 2] == ’ADP’ and pos tags [i + 3] == ’NOUN’ :

p r e d i c t i o n s [i + 3] = ’PRD ’

e l i f tokens [i] == ’ marca ’ :
i f pos tags [i + 1] in [’NOUN’ , ’PROPN ’] :

p r e d i c t i o n s [i + 1] = ’PRD ’
i f tokens [i − 1] == ’ l a ’ and tokens [i − 2] == ’ de ’ :

i f pos tags [i − 3] == ’NOUN’ :
p r e d i c t i o n s [i − 3] = ’PRD ’
j = 1
while pos tags [i − 3 − j] in [’NOUN’ , ’ADJ ’ , ’PROPN ’] :

p r e d i c t i o n s [i − 3 − j] = ’PRD ’
j += 1
i f i − 3 − j < 0 :

break
e l i f tokens [i − 3] == ’ es ’ or tokens [i − 3] == ’ son ’ :

j = 1
while pos tags [i − 3 − j] in [’NOUN’ , ’ADJ ’ , ’PROPN ’] :

p r e d i c t i o n s [i − 3 − j] = ’PRD ’
j += 1
i f i − 3 − j < 0 :

break
i f tokens [i + 1] == ’ de ’ and tokens [i + 2] == ’ l a ’ :

i f pos tags [i + 3] in [’NOUN’ , ’ADJ ’ , ’PROPN ’] :
p r e d i c t i o n s [i + 3] = ’PRD ’
j , out = 1 , 0
while pos tags [i + 3 + j] in [’NOUN’ , ’ADJ ’ , ’PROPN ’] :

p r e d i c t i o n s [i + 3 + j] = ’PRD ’
j += 1
i f i + 3 + j == len (tokens) :

out = 1
break

i f out == 0 :
i f (tokens [i + 3 + j] == ’ es ’ or tokens [i + 3 + j] == ’ son ’) \

Handcrafted Rules 61

and pos tags [i + 3 + j + 1] in [’NOUN’ , ’ADJ ’ , ’PROPN ’] :
p r e d i c t i o n s [i + 3 + j + 1] = ’PRD ’

i f tokens [i + 1] == ’ del ’ :
i f pos tags [i + 2] in [’NOUN’ , ’ADJ ’ , ’PROPN ’] :

p r e d i c t i o n s [i + 2] = ’PRD ’
j , out = 1 , 0
while pos tags [i + 2 + j] in [’NOUN’ , ’ADJ ’ , ’PROPN ’] :

p r e d i c t i o n s [i + 2 + j] = ’PRD ’
j += 1
i f i + 2 + j == len (tokens) :

out = 1
break

i f out == 0 :
i f (tokens [i + 2 + j] == ’ es ’ or tokens [i + 2 + j] == ’ son ’) \

and pos tags [i + 2 + j + 1] in [’NOUN’ , ’ADJ ’ , ’PROPN ’] :
p r e d i c t i o n s [i + 2 + j + 1] = ’PRD ’

Look ing f o r i n d u c t o r
e l i f tokens [i] . lower () == ’ no ’ :

i f (tokens [i + 1] == ’ t i e n e ’ or tokens [i + 1] == ’ tener ’)
and pos tags [i + 2] == ’NOUN’ :

p r e d i c t i o n s [i] = ’IND ’
p r e d i c t i o n s [i + 1] = ’IND ’
p r e d i c t i o n s [i + 2] = ’IND ’

e l i f (tokens [i + 1] == ’ l l e v a ’ or tokens [i + 1] == ’ l l e v a b a ’)
and pos tags [i + 2] == ’NOUN’ :

p r e d i c t i o n s [i] = ’IND ’
p r e d i c t i o n s [i + 1] = ’IND ’
p r e d i c t i o n s [i + 2] = ’IND ’

e l i f (pos tags [i + 1] == ’AUX’ or pos tags [i + 1] == ’VERB ’)
and pos tags [i + 2] == ’ADJ ’ :

p r e d i c t i o n s [i] = ’IND ’
p r e d i c t i o n s [i + 1] = ’IND ’
p r e d i c t i o n s [i + 2] = ’IND ’

e l i f tokens [i] . lower () == ’ s in ’ :
i f pos tags [i + 1] == ’NOUN’ and tokens [i + 1] . lower () not in HARM RESOURCES \

and tokens [i + 1] . lower () not in PRD RESOURCES :
p r e d i c t i o n s [i] = ’IND ’
p r e d i c t i o n s [i + 1] = ’IND ’

i f pos tags [i + 1] == ’VERB ’ :
p r e d i c t i o n s [i] = ’IND ’
p r e d i c t i o n s [i + 1] = ’IND ’

Look ing f o r m i s s i n g Harms
e l i f tokens [i] . lower () in HARM RESOURCES and pos tags [i] in [’NOUN’ , ’PROPN ’ , ’ADJ ’] :

Add t h a t t o k e n [i − 1] d o e s not i n c l u d e n e i t h e r ”NO” nor ”SIN”
i f tokens [i − 1] . lower () != ’ no ’ and tokens [i − 1] . lower () != ’ s i n ’ :

p r e d i c t i o n s [i] = ’HARM’
i f pos tags [i − 1] == ’ADP’ :

p r e d i c t i o n s [i − 1] = ’HARM’

Look ing f o r HM1

Handcrafted Rules 62

e l i f tokens [i] . lower () in HM1 RESOURCES and pos tags [i] not in [’AUX’ , ’PRON’] :
p r e d i c t i o n s [i] = ’HM1’
i f pos tags [i − 1] == ’AUX’ :

p r e d i c t i o n s [i − 1] = ’HM1’
i f pos tags [i − 2] == ’PRON’ :

p r e d i c t i o n s [i − 2] = ’HM1’
i f pos tags [i − 1] == ’PRON’ :

p r e d i c t i o n s [i − 1] = ’HM1’

Look ing f o r HM2
e l i f tokens [i] . lower () in HM2 RESOURCES and pos tags [i] not in [’AUX’ , ’PRON’] :

p r e d i c t i o n s [i] = ’HM2’
i f pos tags [i − 1] == ’AUX’ :

p r e d i c t i o n s [i − 1] = ’HM2’
i f pos tags [i − 2] == ’PRON’ :

p r e d i c t i o n s [i − 2] = ’HM2’
i f pos tags [i − 1] == ’PRON’ :

p r e d i c t i o n s [i − 1] = ’HM2’

Look ing f o r m i s s i n g i n d u c t o r s
e l i f tokens [i] . lower () in IND RESOURCES and pos tags [i] not in [’AUX’ , ’PRON’] :

p r e d i c t i o n s [i] = ’IND ’
i f pos tags [i − 1] == ’AUX’ :

p r e d i c t i o n s [i − 1] = ’IND ’
i f pos tags [i − 2] == ’PRON’ :

p r e d i c t i o n s [i − 2] = ’IND ’
i f pos tags [i − 1] == ’PRON’ :

p r e d i c t i o n s [i − 1] = ’IND ’

Look ing f o r t r i g g e r
e l i f tokens [i] . lower () in TRG RESOURCES and pos tags [i] not in [’AUX’ , ’PRON’] :

p r e d i c t i o n s [i] = ’TRG ’
i f pos tags [i − 1] == ’AUX’ :

p r e d i c t i o n s [i − 1] = ’TRG ’
i f pos tags [i − 2] == ’PRON’ :

p r e d i c t i o n s [i − 2] = ’TRG ’
i f pos tags [i − 1] == ’PRON’ :

p r e d i c t i o n s [i − 1] = ’TRG ’

Look ing f o r m i s s i n g p r o d u c t s
e l i f tokens [i] . lower () in PRD RESOURCES and pos tags [i] in [’NOUN’ , ’PROPN ’ , ’ADJ ’] :

p r e d i c t i o n s [i] = ’PRD ’
i f pos tags [i − 1] == ’ADP’ :

p r e d i c t i o n s [i − 1] = ’PRD ’

Look ing f o r m i s s i n g p r o d u c t s
e l i f tokens [i] . lower () in POP RESOURCES and pos tags [i] in [’NOUN’ , ’PROPN ’ , ’ADJ ’] :

p r e d i c t i o n s [i] = ’POP ’
i f pos tags [i − 1] == ’ADP’ :

p r e d i c t i o n s [i − 1] = ’POP ’

Look ing f o r m i s s i n g POB
e l i f tokens [i] . lower () in POB RESOURCES

and pos tags [i] in [’NOUN’ , ’PROPN ’ , ’ADJ ’ , ’NUM’] :

Handcrafted Rules 63

p r e d i c t i o n s [i] = ’POB ’
i f pos tags [i − 1] == ’ADP’ :

p r e d i c t i o n s [i − 1] = ’POB ’
i f pos tags [i − 1] == ’DET ’ :

p r e d i c t i o n s [i − 1] = ’POB ’
i f pos tags [i − 2] == ’ADP’ :

p r e d i c t i o n s [i − 2] = ’POB ’

return p r e d i c t i o n s

Appendix C

Hyperparameter Tuning

Head Dataset Augment Epochs BS LR F1
Linear Original CWE-F+BT 3 16 5e-5 88,06
Linear Original CWE-F+BT 3 16 5e-5 87,8
Linear Original CWE-C+BT 3 16 5e-5 87,44
Linear Original CWE-C+BT 2 16 5e-5 87,37
Linear Original CWE-C 3 16 5e-5 87,27
Linear Original OS 3 16 5e-5 87,15
Linear Original CWE-F+BT 2 16 5e-5 87,05
Linear Original CWE-F+BT 3 16 5e-5 86,9
Linear Original CWE-F+BT 3 16 5e-5 86,86
Linear Original OS 2 16 5e-5 86,79
Linear Original OS 2 16 5e-5 86,79
Linear Original CWE-C 3 16 5e-5 86,69
Linear Original CWE-C+BT 2 16 5e-5 86,69
Linear Original CWE-C-I 2 16 5e-5 86,68
Linear Original CWE-F+BT 2 16 5e-5 86,65
Linear Original CWE-F 2 16 5e-5 86,64
Linear Original CWE-C+BT 2 16 5e-5 86,63
Linear Original CWE-C+BT 2 16 5e-5 86,63
Linear Original OS 2 16 5e-5 86,54
Linear Corrected Back Translation 2 16 5e-5 86,52
Linear Original CWE-F 2 16 5e-5 86,49

Table C.1: All the experimentation done on the devel set - I.

64

Hyperparameter Tuning 65

Head Dataset Augment Epochs BS LR F1
Linear Original CWE-C-I 3 16 5e-5 86,44
Linear Original CWE-F 2 16 5e-5 86,38
Linear Corrected Back Translation 3 16 5e-5 86,37
Linear Original CWE-C+BT 3 16 5e-5 86,24
Linear Original CWE-C+BT 3 16 5e-5 86,17
Linear Original OS 3 16 5e-5 86,15
Linear Original CWE-F-I 3 16 2e-5 86,12
Linear Original CWE-F+BT 2 16 5e-5 86,07
Linear Original None 3 16 5e-5 86,06
Linear Corrected None 4 32 2e-5 85,99
Linear Original CWE-F-I 2 16 5e-5 85,89
Linear Original CWE-F-I 2 16 5e-5 85,83
Linear Original CWE-C 2 16 5e-5 85,83
Linear Original CWE-F 3 16 5e-5 85,7
Linear Original CWE-F+BT 2 16 5e-5 85,69
Linear Original CWE-F+BT 2 16 5e-5 85,68
Linear Original None 3 32 5e-5 85,66
Linear Original CWE-C-I 2 16 5e-5 85,65
Linear Original None 3 16 5e-5 85,59
Linear Original CWE-C-I+BT 2 16 5e-5 85,55
Linear Original CWE-F-I 4 16 2e-5 85,5
Linear Original CWE-C-I 4 32 2e-5 85,45
Linear Original CWE-F-I 4 32 2e-5 85,44
Linear Original OS-I 2 16 5e-5 85,43
Linear Original None 3 16 5e-5 85,4
Linear Original CWE-F-I 3 16 5e-5 85,39
Linear Original CWE-F-I 3 32 5e-5 85,39
Linear Original None 2 16 5e-5 85,39
Linear Original CWE-C 2 16 5e-5 85,32
Linear Original CWE-C-I 2 16 5e-5 85,26
Linear Original CWE-F 3 16 5e-5 85,25
Linear Original None 3 32 5e-5 85,25
Linear Original CWE-C-I 3 32 5e-5 85,16
Linear Original CWE-C-I 4 32 2e-5 85,16

Table C.2: All the experimentation done on the devel set - II.

Hyperparameter Tuning 66

Head Dataset Augment Epochs BS LR F1
Linear Original None 4 32 5e-5 85
Linear Corrected None 2 16 5e-5 84,95
Linear Original CWE-C-I 2 32 5e-5 84,92
Linear Original None 4 32 2e-5 84,81
Linear Original CWE-F-I 4 32 2e-5 84,77
Linear Original OS-I 2 16 5e-5 84,75
Linear Original OS-I 2 16 5e-5 84,75
Linear Original CWE-C-I 5 32 2e-5 84,71
Linear Original CWE-C-I 3 16 2e-5 84,7
Linear Original None 2 16 5e-5 84,59
Linear Original None 3 32 5e-5 84,58
Linear Original None 3 32 5e-5 84,54
Linear Original CWE-F 3 16 5e-5 84,51
Linear Original CWE-C-I 4 32 2e-5 84,48
Linear Original None 2 16 5e-5 84,46
Linear Original None 4 32 2e-5 84,44
Linear Original CWE-F-I 4 32 2e-5 84,39
Linear Original CWE-F 2 16 5e-5 84,34
Linear Original None 4 16 2e-5 84,2
Linear Original CWE-C-I 3 16 2e-5 84,19
Linear Corrected Back Translation 4 32 2e-5 84,18
Linear Original None 3 16 2e-5 84,05
Linear Original CWE-C-I 4 32 2e-5 84,01
Linear Original None 3 16 2e-5 83,93
Linear Corrected None 4 32 2e-5 83,89
Linear Corrected None 4 32 2e-5 83,79
Linear Original CWE-C-I 2 16 2e-5 83,24
Linear Original CWE-F-I 2 32 5e-5 83
Linear Original None 4 32 2e-5 82,31
CRF Original CWE-F+BT 8 16 5e-5 78,94
CRF Original CWE-F 8 16 5e-5 78,51
CRF Original CWE-F 7 16 5e-5 77,23
CRF Original None 10 16 5e-5 75,86
CRF Original None 6 16 5e-5 73,92
CRF Original None 15 32 2e-5 69,85

Table C.3: All the experimentation done on the devel set - III.

References

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. 2014. arXiv preprint arXiv:1409.0473.

[2] J. Brownlee and S. Cristina. Machine Learning Mastery. The attention
mechanism from scratch. https://machinelearningmastery.com/

the-attention-mechanism-from-scratch/, 2021.

[3] José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-Hui Ho, Hojin Kang,
and Jorge Pérez. Spanish pre-trained bert model and evaluation data. In
PML4DC at ICLR 2020, 2020.

[4] Miao Chen, Fang Du, Ganhui Lan, and Victor S Lobanov. Using pre-trained
transformer deep learning models to identify named entities and syntactic
relations for clinical protocol analysis. In AAAI Spring Symposium: Combining
Machine Learning with Knowledge Engineering (1), 2020.

[5] United States Consumer Product Safety Comission (CPSC). Neiss. https://
www.cpsc.gov/Research--Statistics/NEISS-Injury-Data, 2021.

[6] Hospital de Nens de Barcelona. https://hospitaldenens.com/.

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. NAACL, 2019.

[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova. Multilingual
bert. https://github.com/google-research/bert/blob/master/

multilingual.md, 2019.

[9] DFG, Technische Universitat Darmstadt, and Ubiquitous Knowledge Process-
ing. Inception. https://inception-project.github.io/, 2021.

[10] Hospital Vall d’Hebron. https://www.vallhebron.com/ca.

67

https://machinelearningmastery.com/the-attention-mechanism-from-scratch/
https://machinelearningmastery.com/the-attention-mechanism-from-scratch/
https://www.cpsc.gov/Research--Statistics/NEISS-Injury-Data
https://www.cpsc.gov/Research--Statistics/NEISS-Injury-Data
https://hospitaldenens.com/
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://inception-project.github.io/
https://www.vallhebron.com/ca

REFERENCES 68

[11] Doccano. Doccano. https://doccano.herokuapp.com/, 2021.

[12] Alexis Conneau et al. Unsupervised cross-lingual representation learning at
scale. 2019.

[13] Y. Liu et al. Roberta: A robustly optimized bert pretraining approach. 2019.
arXiv preprint arXiv:1907.11692.

[14] Hugging Face. Transformers. https://huggingface.co/docs/

transformers/index, 2021.

[15] Google. Googletrans. https://pypi.org/project/googletrans/,
2020.

[16] Google. Google colaboratory. https://colab.research.google.com/
?hl=es, 2021.

[17] Google. Google docs. https://www.google.com/docs/about/, 2021.

[18] Google. Google sheets. https://www.google.com/sheets/about/,
2021.

[19] Fabian Gringel. The best free labeling tools for
text annotation in nlp. https://dida.do/blog/

the-best-free-labeling-tools-for-text-annotation-in-nlp,
202.

[20] Salvador Merina Herrera. Human language engineering: Advanced machine
translation, 2021. Slides from HLE master course from MAI (FIB).

[21] Salvador Merina Herrera. Human language engineering: Information extrac-
tion, 2021. Slides from HLE master course from MAI (FIB).

[22] ieConsumo. Programa pipadi. http://www.pipadi.com/index.php,
2021.

[23] ieConsumo S.L. http://www.ieconsumo.org/.

[24] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu
Hoang, Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T. Martins, and Alexandra
Birch. Marian: Fast neural machine translation in C++. In Proceedings of ACL

https://doccano.herokuapp.com/
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://pypi.org/project/googletrans/
https://colab.research.google.com/?hl=es
https://colab.research.google.com/?hl=es
https://www.google.com/docs/about/
https://www.google.com/sheets/about/
https://dida.do/blog/the-best-free-labeling-tools-for-text-annotation-in-nlp
https://dida.do/blog/the-best-free-labeling-tools-for-text-annotation-in-nlp
http://www.pipadi.com/index.php
http://www.ieconsumo.org/

REFERENCES 69

2018, System Demonstrations, pages 116–121, Melbourne, Australia, July 2018.
Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/P18-4020.

[25] T. Kudo. Subword regularization: Improving neural network translation
models with multiple subword candidates. ACL, pages 66–75, 2018.

[26] T. Kudo and J. Richardson. Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. EMNLP,
2018.

[27] Ankit Kumar, Piyush Makhija, and Anuj Gupta. Noisy text data: Achilles’
heel of bert, 2020.

[28] G. Lample and A. Conneau. Crosslingual language model pretraining.
NeurIPS, 2019.

[29] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neu-
ral architectures for named entity recognition. NAACL, pages 260–270, 2016.

[30] F. Marzieh, A. Bisazza, and C. Monz. Data augmentation for low-resource
neural machine translation. 2017. arXiv preprint arXiv:1705.00440.

[31] MIT. Brat. https://brat.nlplab.org/, 2012.

[32] E.S. Shahul. NeptuneBlog. Data augmentation in nlp: Best practices from a
kaggle master. https://neptune.ai/blog/data-augmentation-nlp,
2021.

[33] NVIDIA. Nvidia tesla k80. https://www.nvidia.com/es-es/

data-center/tesla-k80/, 2021.

[34] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer. Deep contextualized word representations. NAACL, 2018.

[35] PSM. Product safety management. https://www.

productsafetymanagement.com/es/inicio/, 2021.

[36] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving lan-
guage understanding with unsupervised learning. Technical report, OpenAI,
2018.

http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://brat.nlplab.org/
https://neptune.ai/blog/data-augmentation-nlp
https://www.nvidia.com/es-es/data-center/tesla-k80/
https://www.nvidia.com/es-es/data-center/tesla-k80/
https://www.productsafetymanagement.com/es/inicio/
https://www.productsafetymanagement.com/es/inicio/

REFERENCES 70

[37] Ramshaw and Marcus. Text chunking using transformation-based learning.
1995.

[38] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,
a distilled version of bert: smaller, faster, cheaper and lighter, 2020.

[39] Stefan Schweter and Alan Akbik. Flert: Document-level features for named
entity recognition, 2021.

[40] A. Prakash. Towards Data Science. 3 types of contextualized word embed-
dings from bert using transfer learning. https://towardsdatascience.
com/3-types-of-contextualized-word-embeddings-/

from-bert-using-transfer-learning-81fcefe3fe6d, 2021.

[41] Chetna Khanna. Towards Data Science. Wordpiece: Subword-based
tokenization algorithm. https://towardsdatascience.com/

wordpiece-subword-based-tokenization-algorithm-1fbd14394ed7,
2018.

[42] Karim Raimi. Towards Data Science. Illustrated: Self-
attention. https://towardsdatascience.com/

illustrated-self-attention-2d627e33b20a#, 2019.

[43] R. Sennrich, B. Haddow, and A. Birch. Improving neural machine translation
models with monolingual data. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, pages 86–96, 2016.

[44] Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo. Bertimbau - portuguese
bert. https://github.com/neuralmind-ai/portuguese-bert, 2019.

[45] Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo. Portuguese named en-
tity recognition using bert-crf, 2020.

[46] spaCy. Spanish. https://spacy.io/models/es, 2021.

[47] Charles Sutton and Andrew McCallum. An introduction to conditional ran-
dom fields, 2010.

[48] Erik F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task:
Language-independent named entity recognition. In COLING-02: The 6th
Conference on Natural Language Learning 2002 (CoNLL-2002), 2002. URL
https://www.aclweb.org/anthology/W02-2024.

https://towardsdatascience.com/3-types-of-contextualized-word-embeddings-/ from-bert-using-transfer-learning-81fcefe3fe6d
https://towardsdatascience.com/3-types-of-contextualized-word-embeddings-/ from-bert-using-transfer-learning-81fcefe3fe6d
https://towardsdatascience.com/3-types-of-contextualized-word-embeddings-/ from-bert-using-transfer-learning-81fcefe3fe6d
https://towardsdatascience.com/wordpiece-subword-based-tokenization-algorithm-1fbd14394ed7
https://towardsdatascience.com/wordpiece-subword-based-tokenization-algorithm-1fbd14394ed7
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a#
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a#
https://github.com/neuralmind-ai/portuguese-bert
https://spacy.io/models/es
https://www.aclweb.org/anthology/W02-2024

REFERENCES 71

[49] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition. In Pro-
ceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL
2003, pages 142–147, 2003. URL https://www.aclweb.org/anthology/

W03-0419.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez N.,
Ł. Kaiser, and I. Polosukhin. Attention is all you need,. Advances in Neural
Information Processing Systems, pages 5998–6008, 2017.

[51] Jason Wei and Kai Zou. EDA: Easy data augmentation techniques for boosting
performance on text classification tasks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6382–
6388, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1670. URL https://aclanthology.

org/D19-1670.

[52] Wikipedia. Cosine similarity. https://en.wikipedia.org/wiki/

Cosine_similarity, 2021.

[53] Wikipedia. Inside–outside–beginning (tagging). https://en.wikipedia.
org/wiki/Inside-outside-beginning_(tagging), 2021.

[54] Wikipedia. Long short-term menory. https://en.wikipedia.org/

wiki/Long_short-term_memory, 2021.

[55] Wikipedia. Natural language processing. https://en.wikipedia.org/
wiki/Natural_language_processing, 2021.

[56] Wikipedia. Named entity. https://en.wikipedia.org/wiki/Named_

entity, 2021.

[57] Wikipedia. Wilcoxon signed-rank test. https://en.wikipedia.org/

wiki/Wilcoxon_signed-rank_test, 2021.

[58] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite,
Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,

https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://aclanthology.org/D19-1670
https://aclanthology.org/D19-1670
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Inside-outside-beginning_(tagging)
https://en.wikipedia.org/wiki/Inside-outside-beginning_(tagging)
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Named_entity
https://en.wikipedia.org/wiki/Named_entity
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

REFERENCES 72

Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing: System Demonstrations, pages 38–
45, Online, October 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-demos.6. URL https://aclanthology.org/

2020.emnlp-demos.6.

[59] Y. Wu, M. Schuster, Z. Chen, Q. V. Lee, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, and K. Macherey et al. Google’s neural machine translation
system: Bridging the gap between human and machine translation. Technical
report, OpenAI, 2016. arXiv preprint arXiv:1609.08144.

[60] Albert Au Yeung. Bert - tokenization and encoding. https:

//albertauyeung.github.io/2020/06/19/bert-tokenization.

html/, 2020.

https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://albertauyeung.github.io/2020/06/19/bert-tokenization.html/
https://albertauyeung.github.io/2020/06/19/bert-tokenization.html/
https://albertauyeung.github.io/2020/06/19/bert-tokenization.html/

	Introduction
	Objectives

	Literature Review
	Annotation
	Transformers
	Attention Layers
	Feed Forward Networks
	Positional Encoding

	BERT
	Input Representation
	Pre-training BERT
	Fine-tuning BERT
	Linear-chain CRF

	Unsupervised Cross-Lingual LM
	Multilingual BERT
	XLM-R

	Data Augmentation for NLP
	Easy Data Augmentation
	Back-Translation
	Word Replacement

	Methodology
	Data
	Annotation
	Modelling
	Rule-Based System
	Transformer-Based Model
	mBERT vs. XLM-R
	DistilmBERT vs. mBERT
	DistilmBERT for NERC

	Data Augmentation
	Back-Translation
	Word Replacement with CWE
	Define target entities
	Obtain CWE
	Similarity between CWE
	Implementing changes in dataset

	Oversampling

	Experiments
	Experimental setup
	Input formatting
	DistilmBERT for NERC
	Parameter setting
	Data
	Hardware

	Evaluation Metrics

	Results and Discussion
	Baseline
	Original vs. Corrected Dataset
	Hyperparameter Tuning
	Final results
	Analysis of General Results
	Analysis at entity level

	Conclusions
	Future work
	Annotation Manual
	System Overview
	General Annotation Guidelines
	Annotating the product
	Annotating: Inductor vs. Trigger
	Annotating: HM2 vs. Harm
	Annotating: Part of body (POB)

	Handcrafted Rules
	Hyperparameter Tuning
	References

