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Users’ Cognitive Load
A Key Aspect to Successfully Communicate Visual Climate Information
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ABSTRACT: The visual communication of climate information is one of the cornerstones of climate 
services. It often requires the translation of multidimensional data to visual channels by combin-
ing colors, distances, angles, and glyph sizes. However, visualizations including too many layers 
of complexity can hinder decision-making processes by limiting the cognitive capacity of users, 
therefore affecting their attention, recognition, and working memory. Methodologies grounded 
on the fields of user-centered design, user interaction, and cognitive psychology, which are based 
on the needs of the users, have a lot to contribute to the climate data visualization field. Here, we 
apply these methodologies to the redesign of an existing climate service tool tailored to the wind 
energy sector. We quantify the effect of the redesign on the users’ experience performing typical 
daily tasks, using both quantitative and qualitative indicators that include response time, success 
ratios, eye-tracking measures, user perceived effort, and comments, among others. Changes in the 
visual encoding of uncertainty and the use of interactive elements in the redesigned tool reduced 
the users’ response time by half, significantly improved success ratios, and eased decision-making 
by filtering nonrelevant information. Our results show that the application of user-centered design, 
interaction, and cognitive aspects to the design of climate information visualizations reduces the 
cognitive load of users during tasks performance, thus improving user experience. These aspects 
are key to successfully communicating climate information in a clearer and more accessible way, 
making it more understandable for both technical and nontechnical audiences.
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The accessibility to climate information has implications for how society makes the 
best use of scientific knowledge to adapt to climate change (Harold et al. 2016). For 
years, climate service providers have faced the challenge of how to best communicate 

climate-related data and information, together with their inherent uncertainty, in an easy and 
understandable way for both expert and nonexpert users (Kaye et al. 2012; Lorenz et al. 2015). 
This has resulted in service providers often using visual representations to supply climate 
knowledge tailored for users’ decision-making (Gerst et al. 2020; Taylor et al. 2015).

As a standardized mapping approach to represent climate uncertainty is lacking, different 
techniques have been applied for this purpose, often resulting in users spending more time 
trying to understand the mapping approach than focusing on the interpretation of the pre-
sented information itself (Kaye et al. 2012). In general, users’ familiarity with a type of data 
visualization has been found to play a significant role in the process of reading and making 
sense of maps and graphs (Lorenz et al. 2015). Commonly used representations of climate 
data include choropleths, heat maps, and line charts (Taylor et al. 2015). Although familiar to 
users, these elements have limitations when used to communicate climate data to decision-
makers in a way that is transparent, understandable, and that does not lead to a false sense 
of certainty. An example of such limitations is seen when communicating climate predictions 
from the next two weeks up to a few decades into the future. A characteristic of such predic-
tions is that they are probabilistic, meaning they provide information on the probability of 
a certain climate outcome to occur (e.g., winds below or above a threshold, not optimal for 
the energy production). In addition, climate predictions are often given in the form of large 
amounts of data covering the whole globe, and their quality (i.e., level of success of a predic-
tion against observationally based information) depends on the specific location and time 
(Kaye et al. 2012). Both aspects, probabilities and forecasts quality (referred to as skill by the 
climate science community), add complexity to the visual communication and can eventu-
ally compromise the understanding of climate predictions by users (Bonneau et al. 2014; 
Terrado et al. 2019).

Visualizations of complex climate data tend to prioritize solutions that take into account 
the greatest combination of variables and dimensions, e.g., color, size, distance or bright-
ness of the glyphs (the graphic symbols used to represent a value). This complexity calls for 
formats paying special attention to visual encoding, which encompasses the translation of 
multidimensional data into visual elements on a chart or map representation. Visual encod-
ing is useful in the sense that it allows to convey a higher amount of information in a single 
visualization (Grainger et al. 2016; Lloyd 1997). However, it rarely considers if the information 
needs to be displayed all at a time, with a certain visual aesthetic, or if it will be too complex 
for its proper interpretation (Cleveland and McGill 1985; Sager et al. 2007). Indeed, aesthet-
ics might be worth considering if striving to create something memorable, that helps to raise 
awareness about a specific scientific challenge (Borkin et al. 2013). However, an attractive 
image cannot qualify as effective unless it accurately conveys something meaningful or cred-
ible (Holmes 1984; Kosara 2013).

According to Stephens et al. (2012), for a visualization to be effective, it is important 
to consider a balance between density (the amount of data represented), robustness (the 
representation of scientific confidence and consensus), and saliency (the relevance of the 
information to user needs). Although visualizing climate forecast uncertainties and as-
sociated probabilities has been thought to increase users’ trust (Joslyn and LeClerc 2011; 
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Roulston et al. 2006), it does not automatically lead to better decisions (Greis et al. 2015). This 
is especially critical when the visual elements used to represent uncertainty compete with 
the limited cognitive resources of the users (i.e., their attention, recognition, and working 
memory) (Antifakos et al. 2004; Riveiro et al. 2014; Davis et al. 2020). Visualizations with 
a heavy cognitive load, that is, involving a high amount of working memory resources, can 
have negative effects on users’ understanding and learning and can impact their ability to 
complete a task or make an informed decision (Cairo 2012; Few 2009; McInerny et al. 2014). 
In such cases, the use of interactive elements can offer mechanisms for progressively dosing 
the information that is to be shown (Veras Guimarães 2019; Bertin 2010; Ware et al. 2002; 
Yoghourdjian et al. 2018).

Methodologies grounded on the fields of user-centered design (UCD), user interaction, 
and cognitive psychology have a lot to contribute to the climate data visualization field 
(Christel et al. 2018; Bevington et al. 2019). UCD techniques involve users throughout the 
design process in order to create highly usable visualization tools based on their needs 
(Davis et al. 2020; Dong et al. 2008; Yucong et al. 2019). User interaction makes use of inter-
active elements to let users decide what to see, when, or to show only those values that are 
relevant for a given task. This facilitates decision-making, returns control to the users, and al-
lows them to discard the nonrelevant information at each moment (Lau and Vande Moere 2007; 
Gerharz and Pebesma 2009; Ware 2012). Within the framework of UCD methodologies, 
technologies such as the eye-tracker have been used to quantify and analyze visual patterns, 
attention, and cognitive aspects. Adding cognition and perception (i.e., processes about how 
humans acquire knowledge, understanding and interpretation) can help detect and solve 
initial design problems in UCD. Rather than just favoring visual exploration, these disciplines 
offer increasingly effective methods to develop and evaluate visualization systems that ex-
plicitly consider real-world user requirements (Block 2013).

Tools and learnings from the UCD field have already been applied to the visualization 
of climate information and climate services. For instance, Argyle et al. (2017) showed how 
incorporating usability evaluation into the design of decision support tools can improve the 
efficiency, effectiveness, and user experience of a weather forecasting application. Other stud-
ies have similarly applied UCD to inform the design of climate information websites, apps, and 
prototypes (Ling et al. 2015; Oakley and Daudert 2016; Khamaj et al. 2019). Design elements 
have also been introduced in the development of climate services to increase their usability, 
in particular for the renewable energy sector (Christel et al. 2018). On the other hand, cogni-
tive and psychological sciences have been applied to the visualization of climate data. Some 
examples are the use of cognitive psychology methods to help make information provided 
by IPCC graphs more accessible to expert and nonexpert audiences (Harold et al. 2016) and 
improve users’ task performance (Hegarty et al. 2010). Differences in the interpretation of 
climate graphs between experienced and nonexperienced users have been explored else-
where (Atkins and Mcneal 2018; Gerst et al. 2020), both for climate change variables and for 
temperature and precipitation outlooks.

The aim of this paper is to provide quantitative and qualitative evidence of how the use 
of user-centered design, visualization techniques, and interaction elements can reduce the 
cognitive load of nonexpert users during tasks’ performance. We compare two different 
map visualizations of uncertainty. First, the one used in Project Ukko, a climate service tool 
prototype that provided climate predictions tailored to the energy sector (http://project-ukko.
net/). The second visualization was a redesigned version of Project Ukko, using a simplified 
visual encoding of uncertainty and the use of interactive elements. We quantified the effects 
of the redesign on the users’ experience performing typical daily tasks, using indicators that 
include response time, success ratios, eye-tracking measures, and user perceived effort and 
comments, among others. We show that involving experts from different disciplines [climate 
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experts, user experience (UX) and visualization experts, communicators] in the co-production 
process and simplifying the visual encoding used in the visualization, has an impact on the 
users’ cognitive load, favoring response times and confidence in decision-making.

Study context: Previous work with experts
Project Ukko introduced design to explore new forms of representation for wind predic-
tions, which was considered a groundbreaking step in the visualization of climate services 
(Christel et al. 2016). The representation of uncertainty in Project Ukko was achieved through 
multiple visual resources, namely, glyph thickness representing the intensity (speed) of pre-
dicted wind, glyph inclination representing the predicted change in wind conditions (i.e., 
higher-than-normal, normal, or lower-than-normal wind), and opacity representing the 
quality of the prediction (skill).

After the development of Project Ukko, a user test was carried out in order to detect func-
tional or usability problems. The test identified a series of conflicting aspects in the tool, 
mainly related to visual encoding (Makri 2015) and flexibility of use, that needed improve-
ment. These aspects included the use of too many categories for each represented variable, the 
difficulties to detect color hue associated with narrow glyphs, and the excess of information 
in nonrelevant areas of the map.

These findings indicated that the development of a new visualization was needed in order 
to solve the problems detected. For informing this new redesign of Project Ukko, we started by 
organizing a workshop to gather expert user needs and limitations experienced while using the 
tool. We also conducted four interviews with target users, including climate experts and opera-
tors and managers of wind power plants, to obtain specific behavioral information related to 
their daily work activities. As a result, some important requirements were identified, e.g., that 
users often based their decisions on simple metrics or threshold values predefined by their 
companies. This allowed the redesign of a new version of the tool: the S2S4E Decision Support 
Tool (S2S4E 2020), an operational climate service which integrates subseasonal to seasonal cli-
mate predictions for renewable energy production. In S2S4E, a series of changes were applied 
to the initial Project Ukko visualization following well-established visual recommendations 
(Tufte 2001; Few 2009; Yoghourdjian et al. 2018; Veras Guimarães 2019). Some interactive 
elements were also incorporated to allow users to filter the nonrelevant information, thus 
reinforcing their cognitive abilities during daily work activities (Gerharz and Pebesma 2009). 
Specifically, the modifications include (see comparison in Fig. 1): (i) hiding values that do not 
meet the minimum guarantees of quality (prediction skill); (ii) simplifying the visual encod-
ing for some variables (intensity and predicted change); and (iii) reducing the visual noise by 
using colors that are similar to the background color for nonrelevant predicted changes, i.e., 
middle category, showing conditions that can be considered “normal” or close to the average 
historical observations for a particular region (Chun 2017).

Methodology
To make a comparison and validation from the point of view of perception and cognitive load, 
we assessed if the changes applied to the original tool (Project Ukko) to create the redesigned 
one (S2S4E) were fully effective for a general public and not only for an expert audience. To 
avoid interference in the comparison of cognitive load measurements between both visual 
representations, not all the improvements included in the S2S4E tools were shown in this 
study (e.g., color blindness palette, labeling improvement and customizable elements).

The experiment. We conducted an experiment with nonexperts to assess if users’ tasks 
performance when using Project Ukko was improved after redesigning the tool taking into 
account user-centered design, visualization techniques, and interaction elements. A sample 
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of 20 people was tested in order to guarantee 95% of detection of problems (Virzi 1992; 
Faulkner 2003). The sample was composed by 50% of men and 50% of women aged between 
22 and 50, with a low-to-medium knowledge in data visualization, which entailed being 
familiar with common charts or basic maps but without expertise in visualization of climate 
or uncertainty information. Recruited participants were students and administrative staff in 
academia from the human resources, communication, and finance departments. Participants 
were asked not to have consumed exciting substances that could affect the test results.

The study consisted in two main analyses: (i) a quantitative analysis through the application 
of a user testing session with two tasks to be completed with both tools (Project Ukko and re-
design), and (ii) a qualitative analysis of the positive versus the negative aspects for both tools 
through the application of a bipolar laddering pocket methodology (Pifarré and Tomico 2007). 
We also implemented a brief two-question quiz (Schrepp et al. 2017) to determine which 
visualization needed more mental effort, and which was the tool preferred by participants 
for decision-making processes.

The development of user testing sessions followed well-established recommendations 
of planning, moderation, and analysis (Nielsen 1993; Faulkner 2003). User testing ses-
sions were moderated by an expert and recorded to measure time and responses afterward 
(Holtzblatt et al. 2004). Participants were asked to perform two tasks (task 1 and task 2 be-
low) with each of the tools, based on two typical daily work activities of the intended users 
(Anderson et al. 2011; Block 2013).

Participants were provided with some context about the real-world conditions in which 
the tasks would take place. In addition, all the information and conditions necessary to 
carry out the tasks were presented in the statements, visualization, and captions shared with 
participants, for them to be able to perform the tasks without having an expert or climate 
science background. It was simply necessary to identify the requested areas or properties 
visually (Trivedi 2012). Task 1 was aimed to test if the tool allows good detection of areas 

Fig. 1. (left) Project Ukko and (right) the redesigned tool based on user requirements research and visual encoding tech-
niques. Applied changes: filtering out glyphs under a certain prediction skill threshold; simplification of the intensity 
representation from five to only two size; and simplification of the predicted change color scale from five to three colors, 
where a similar color to the background one is used for values close to the historical average and more distinguishable 
colors are used for values higher and lower than the historical average.
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with particular conditions while task 2 was aimed to test the differentiability of glyph rep-
resentation at specific locations.

Task 1 statement: Locate or identify an area on the map that is appropriate to the loca-
tion of a wind power plant. The area must meet a series of conditions: For Project Ukko, 
the suitable area should have a prediction skill over 50%, high or medium-high intensity, 
and an upper or mid-upper predicted change in wind speed (Fig. 1, left panel). For the 
redesigned version, the area should have a skill over 50%, intensity over 50%, and upper 
predicted change (Fig. 1, right panel). [This task required users to be able to identify at least 
one of the areas that met the conditions specified.]
Task 2 statement: Identify aloud the conditions that occur in the points included in the 
highlighted area on the map in terms of skill, intensity, and predicted change. [This task 
required users to be able to identify the characteristics of two kinds of glyphs contained in 
a certain map area].

For both task 1 and task 2, we measured the cognitive load and task performance from a 
quantitative perspective using the following indicators:

1) Success rates when completing a task, including total or partial success (Freitas et al. 2002; 
Winckler et al. 2004; Ellis and Dix 2006).

2) Response time when completing a task.
3) Number of fixations (i.e., number of gaze points located very close in space, when the eyes 

are locked toward an object).
4) Fixation duration (i.e., period of time allocated to a fixation (Wang et al. 2014; 

Majooni et al. 2018).
5) Number of accesses to legend for the completeness of tasks (Pretorius et al. 2005; 

Klingner et al. 2008).

We also compared qualitative aspects in the use of both tools taking into account the level 
of user satisfaction and the decision-making facilitation using the following indicators:

6)  Subjective effort perception (i.e., user perception on which tool was easier to use while 
performing the tasks (two-question quiz).

7) Preference between both tools regarding the decision-making process (two-question quiz).
8) Positive and negative aspects (bipolar laddering pocket methodology).

The number of fixations, the fixation duration, and the number of visual paths to legend 
(quantitative indicators 3, 4, and 5) were monitored using an eye-tracker (GP3 Eye tracker of 
gazepoint), a sensor-based device that measures eye positions (i.e., point of regard) or eye 
movement.

To investigate whether there were differences between tools or tasks, a chi-squared test 
was performed for indicator 1 and a two-way analysis of variance (ANOVA) was performed 
for indicators 2 to 5 using R software (R Core Team 2018).

During the performance of tasks 1 and 2, we promoted the thinking-aloud technique to 
identify and detect usability problems (Nielsen 1993; Olmsted-Hawala et al. 2010). Also, 
the sequence of tasks was randomly presented to the users to avoid biases derived from the 
learning acquired during the completion of the tasks (Li et al. 2013). We used the bipolar lad-
dering pocket methodology (qualitative indicator 8), which is a reduced version of the bipolar 
laddering technique. It consists of asking the user about three positive and three negative 
aspects of both tools (instead of the 10 aspects requested in the extended modality). Then the 
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users rate (from 1 to 10) the aspects mentioned regarding their importance (for the positive 
ones) or their severity (for the negative ones). By evaluating users’ subjective opinions using 
a scale from 1 to 10 we are able to better quantify input results that are qualitative, which 
helps identify the key aspects to work with or prioritize the problems that need to be solved 
(Pifarré and Tomico 2007).

Results
Quantitative analysis of Project Ukko vs redesign. The assessment of success rates (indicator 
1) indicated that the number of successfully completed tasks was significantly better when 
using the redesigned tool than when using Project Ukko, X2 (9, N = 20) = 60.6, p < 0.001 (see 
Figs. 2a,b). In the case of Project Ukko, only 15.8% of the participants successfully completed 
task 1 and 21.1% task 2. In contrast, with the redesigned tool, task success was much higher, 
reaching 97.4% and 68.4% for task 1 and task 2, respectively. Although a higher proportion of 
failures and abandonments occurred during task 1, especially with Project Ukko, completion 
of task 2 showed various cases of partial success (i.e., identified just one of the two types of 
glyphs presented) for both tools, reaching 31.6% with the redesigned tool.

The average time to solve a task (indicator 2) was significantly lower for task 1 compared 
to task 2 (p = 0.001) and for the redesigned tool when compared to Project Ukko (p < 0.001) 
(see Figs. 2c,d).

The eye-tracker measurements of the number of fixations (indicator 3) was significantly 
lower for task 1 compared to task 2 (p = 0.024) but showed no significant differences between 
Project Ukko and the redesigned tool (p = 0.234) (see Figs. 2e,f). The fixation duration (in-
dicator 4) did not show a significant difference between tasks (p = 0.061) or between both 
tools (p = 0.651) (see Figs. 2g,h). The number of accesses to legend (indicator 5) followed a 
similar trend as observed for the indicator of response time, with Project Ukko showing higher 
numbers than the redesigned tool (p = 0.017) and significantly lower values for task 1 when 
compared with task 2 (p = 0.021) (see Figs. 2i,j).

Qualitative analysis of project Ukko vs redesign. In terms of perceived effort (indicator 6), a 
much bigger effort was perceived for Project Ukko (89.9% of participants) than the redesigned 

Fig. 2. (a),(b) Comparison of participants’ success rates, (c),(d) average time to solve the tasks, (e),(f) number of fixations, 
(g),(h) fixations duration, and (i),(j) number of accesses to legend when using Project Ukko and the redesigned tool for 
tasks 1 and 2, respectively.
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version (10.5% of participants). Likewise, regarding the tool preferred for decision-making 
(indicator 7), 89.50% of the participants stated that they would choose the redesigned tool 
as their working tool for daily tasks decision-making.

By analyzing the results of the bipolar laddering pocket technique (indicator 8) we found 
that the number of positive aspects mentioned by participants was just 15 for Project Ukko 
against 42 mentioned for the redesigned tool (see Fig. 3). Regarding the negative aspects, 32 
and 12 aspects were pointed out for Project Ukko and the redesigned tool, respectively. On 
average, positive aspects were rated with an average score of 7.3 for Project Ukko and 8.75 
for the redesign. Conversely, negative aspects were rated with a greater severity for Project 
Ukko, with an average score of 7.4, than for the redesigned tool, with an average score of 5.8.

Discussion
Considering user requirements when developing climate data visualizations is key to improve 
decision-making. Moreover, the simplification of a complex visualization through changes 
in visual encoding and interactivity often increases efficiency. Here we use quantitative and 
qualitative indicators to assess whether the redesign of the Project Ukko tool, taking into ac-
count user requirements, visual encoding and interactivity, enhances communication, users’ 
cognitive capacity, and translates into a better task performance.

When comparing the experience of participants with both Project Ukko and the redesigned 
tool, the quantitative indicators of success rate and response time when completing a task 
(indicators 1 and 2) demonstrate that the changes made to the redesigned tool increased 
the rate of success or partial success and allowed participants to perform the tasks faster. 
It is necessary to highlight that, in the case of Ukko, the success rate was extremely low for 
task 1. This was due to an incorrect identification of the area, which was done based on its 
brightness (high skill values), but that did not meet the minimum requirements of thickness 
(high intensity values). From a usability point of view, this is commonly defined as a false 

Fig. 3. Frequency histograms of participants’ ratings of positive and negative aspects mentioned for (a),(c) Project Ukko 
and(b),(d) the redesigned tool. All the mentioned aspects (n = 97) receive a score from 1 to 10. Positive aspects are rated 
from 10 (very positive) to 1 (less positive) and negative aspects are rated from 10 (very serious) to 1 (slightly serious).
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success, since users believe they have performed the task correctly, when in fact the answer 
was wrong (Brinck et al. 2002).

Qualitative methods such as the bipolar laddering and two-question quiz applied in 
this study are based on subjective user assessment (e.g., experience, feelings, intuition, 
opinions), which is often perceived as less reliable than other quantitative methods 
(Szafir and Szafir 2016). However, they are well-established practices that support and comple-
ment quantitative analysis and have been widely applied (Lim et al. 2019; Navarro et al. 2020). 
These methods provide useful insights to understand user’s preferences and the positive 
and negative aspects that intervene in the performance and efficiency of users to perform 
day-to-day tasks.

In general, the changes in shape and size (i.e., the visual encoding of the information) as 
well as the reduction of categories were highly rated by the participants, enhancing the clar-
ity and ease of use of the redesigned tool. In the case of Ukko, a large number of participants 
were not able to identify the categories associated with a glyph (skill, intensity, predicted 
change) nor the exact category, even when they tried to compare them to nearby glyphs. This 
was because thin lines, which were combined with opacity (a visual encoding that affects 
visibility), made color detection more difficult. Sometimes the participants were unable to 
identify the exact thickness of a group of glyphs despite the many accesses to the legend, 
which led them to randomly select a category to avoid abandoning the task. Overall good prac-
tices in data visualization indicate that opacity, combined with color and reduced thickness, 
can make graphical interpretation worse (Dastani 2002; Jenny and Kelso 2007; Ware 2012). 
Also, the use of the slope of the glyphs was perceived as a negative aspect by participants. 
This is confirmed by visual encoding good practices, indicating that changes in slope are 
more difficult to be interpreted, especially for nominal data (Alexandre and Tavares 2010; 
Munzner 2014). In addition, in the context of wind data visualization, the use of slopes tends 
to be related to wind direction (Powers et al. 2017), as was also pointed out by some of the 
participants during the test. Therefore, using slope to display the wind predicted change can 
be counterintuitive for users.

Only two sizes and three colors were combined in the redesigned tool. This favors the 
detection of the areas of interest because the visual encoding does not create competition be-
tween variables (in this case, wind intensity and predicted change) (Iliinsky and Steele 2011; 
Riveiro et al. 2008). Additionally, glyphs below a specific skill threshold (which would be 
discarded in a decision-making process) can be hidden from the display, allowing the user 
to focus on feasible options. This has been recognized as an effective means to reduce user 
memory workload and enhance task performance (Hegarty 2011).

The most frequently mentioned negative aspect of the redesigned tool referred to the 
color chosen for the middle prediction category (“Small dark glyphs, showing average 
values, have a similar color to the background”). Users found the color too similar to the 
background, therefore lacking sufficient contrast. However, this was decided on purpose, 
since target users are more interested in situations that depart from normal (i.e., upper 
and lower than average values), since these are the ones in which they need to take action 
(Kohlhammer and Zeltzer 2004). Therefore, by choosing a color similar to the background for 
nonrelevant values, we reduced visual noise in the representation. On the other hand, values 
of upper and lower predicted change (indicating wind conditions above and below normal) 
use a green-yellow color hue, which stimulates more photoreceptors in the human eye and 
hence are easily detected by users (UNSW 2015).

Despite color being a crucial element of visual encoding, we did not include further changes 
in the color scale used in the test to compare Project Ukko and its redesigned visualization. 
This was decided in order to focus the analysis in the visual encoding and interactivity as-
pects and to avoid a major change between both tools that could bias the results of the test. 
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However, in order to improve the accessibility of any climate service, color-blindness should 
be taken into account in color choices for visual representations (Light and Bartlein 2004). 
In the case of Project Ukko, even using color-blind-friendly scales, the combination of color, 
opacity, and certain widths reduced the effective perception by color-blind people. In this 
sense, the S2S4E Decision Support tool (S2S4E 2020) already included changes in the color 
palette to improve its accessibility by taking into account color-blindness aspects.

Some changes applied in the redesign of Project Ukko were also related to the use of interac-
tive filters to dose or personalize information. The skill filter in the redesigned version of the 
tool allows one to explore the uncertainty associated with the predicted change focusing just 
on the relevant data for the user (i.e., values below a preferred skill threshold are hidden). In 
the same way, the intensity slider allows the user to establish a preferred threshold, giving 
more visual presence (larger glyph size) to the values above this threshold. This capacity of 
filtering and personalizing was highlighted as a strong positive aspect of the redesigned tool. 
One of the users even suggested adding interactivity to the color legend, to be able to filter 
by the predicted change. Indeed, interactivity allows users to consume information step by 
step, explore particular aspects of complex datasets, and display relevant information in their 
own world view (Beddington 2011; McInerny et al. 2014). This is thus a highly recommended 
feature for online climate services taking into account that there may be limits to how useful 
interactive visualizations are if the viewers do not have the required skills to interact with 
the presented information (diSessa 2004).

The second task proposed to participants was more challenging than the first task regard-
less of the tool used. The classification of two types of glyphs proposed in task 2 took more 
time to complete than the identification of an area of interest in task 1. This was especially 
remarkable for Ukko, with a higher number of categories competing at the same time for visual 
attention (Alhadad 2018; Munzner 2014). Also, the number of times that participants needed 
to check the legend (indicator 5) was larger for Project Ukko. The difference between Project 
Ukko and the redesigned tool is probably related to Project Ukko’s negative aspects linked 
to problems for understanding the legend, which had a more complex visual encoding. The 
combination of different categories in Project Ukko was also considered as a negative aspect 
(e.g., “overwhelming representation,” “mixing too many categories increases complexity”) 
in contrast to positive aspects of the redesigned tool linked with the simplicity of the rep-
resentation (e.g., “the representation is very clear,” “easy to distinguish between glyphs”). 
This would also explain the low success rate of task 1 for Ukko where, despite having more 
accesses to the legend, the area selected by participants did not meet the requirements of the 
statement in terms of skill, intensity and predicted change.

The difference in the purpose of task 1 and task 2 (identification versus classification, 
respectively), might also be the reason why participants needed to check the legend more 
often at the second task. Overall, the obtained number of accesses to the legend (combined 
with a simpler visualization) suggests a reduction in the cognitive load of the participants 
during the completion of the tasks with the redesigned tool as they could retain the legend 
better and therefore reduce the number of times they had to check it.

Regarding the fixation duration, the quantitative indicator behaved almost equally be-
tween tasks and between tools, with durations ranging between 0.25 and 0.31 s. The num-
ber of fixations are the number of times a user pays attention to a certain point or area of 
interest on the screen. According to available bibliography, a longer fixation duration may 
indicate a bigger cognitive load during task performance (Duchowski 2007; Ooms et al. 2014; 
Andrzejewska and Skawińska 2020; Klingner et al. 2008; Krejtz et al. 2018) or that users have 
found more interesting elements to fix their attention for a longer time, without necessarily im-
plying a greater difficulty or cognitive load (Henderson and Ferreira 2004; Klingner et al. 2008; 
Ooms et al. 2012; Krejtz et al. 2018; Andrzejewska and Skawińska 2020).
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Advanced brain monitoring tools, such as electroencephalograms and eye-tracker mea-
sures of pupillometry, can be useful to further study cognitive load (Anderson et al. 2011; 
Jiang et al. 2014; Keskin et al. 2020). It would be interesting to test them with other eye-tracker 
models to explore if this could be due to the accuracy of the model used.

The perceived effort during the task performance (indicator 6) identifies Project Ukko as 
being more complex to use than the redesigned tool, which was indicated as the tool preferred 
by 90% of the participants tested in this work (indicator 7). This contributes to the hypothesis 
that by eliminating or simplifying visual encodings nonrelevant to a target action or task and 
increasing interactivity, we favor decision-making.

The results and opinions of the bipolar laddering (indicator 8) clearly supported the previous 
indicators. A total of 29 positive comments were obtained for the redesigned tool, compared 
to 15 for the original Ukko tool (Table 1). This was also confirmed by the higher average score 
obtained for the redesign (8.75) when compared to Project Ukko (7.33). In the same way, the 
redesigned tool received fewer negative comments (12 compared to 41 for Ukko) and they 
were less serious (obtained scores of 5.83 for the redesign against 7.33 for Ukko). The most 
serious aspects associated with Ukko referred to the difficulty to differentiate the categoriza-
tion of glyphs due to the combination of encoding through color, intensity, and thickness, 
often making participants unable to identify the corresponding category. These aspects had 
a very high frequency, 25 comments with notable severity and an obtained score of 8.

Table 1. Participants’ positive and negative comments for Project Ukko and the redesigned tools with the number of participants 
that mentioned a particular aspect (freq.) and average rate of its importance/severity (avg.).

Project Ukko

Positive Freq. Avg. Negative Freq. Avg.

Easy to distinguish extreme areas 7 7.8 Difficult to distinguish opacity 9 8

A very detailed version with lots  
of information

3 6.6 Mixing width and brightness is too complex 9 8.22

Static legends are more traditional 3 6.6 Thin glyphs with low visibility are impossible to distinguish 7 7.57

Visually attractive 2 7.5 Using the combination of two variables (color and slope) for  
prediction change is too complex

4 6.25

Slopes are confusing, they usually are used to show wind direction 3 7.33

Mixing too many categories increases complexity 3 6.33

Overwhelming representation 2 7

Terrain not visible enough 1 6

Slope value (of glyphs) is difficult to measure 1 5

Legend is confusing 1 5

Total 15 7.33 41 7.39

Redesign

Positive Freq. Avg. Negative Freq. Avg.

Shapes and sizes are easier to identify 8 8.25 Small dark glyphs (showing average values) have a color similar  
to the background

5 5.6

The representation is very clear 6 9.3 The descriptive labels of the skill slider (using mathematical terms)  
may not be clear to all audiences.

3 6.66

Easy to distinguish between glyphs 5 8.4 Too basic to represent predicted change 1 6

Skill filtering is very useful 4 9.25 By simplifying some of the categories, we lose information 1 6

High contrast 2 9.5 Terrain not visible enough 1 6

Easy location of an area 2 9 All the three filters or descriptive labels could have been  
interactive (such as color category)

1 4

Simple categorization 2 8

Total 29 8.75 12 5.83
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Regarding the negative comments obtained for the redesigned tool, five participants re-
ferred to the color similarity of some glyphs to the background of the tool (values close to the 
mean in terms of predictive change). However, after explaining the reasons for this design 
decision (reduce visual noise by attenuating non relevant points), all users found the change 
appropriate. Another negative aspect was related to the label terminology of the skill slider, 
which included mathematical terms that may not be clear to all audiences. When delving 
into the reasons for the negative assessment, the participant clarified that the control seems 
useful, but that the texts used in the labels could be clearer or more intuitive.

Paradoxically, some positive comments received for Ukko, referred to its higher density 
of information, greater detail in the representation of predicted change (five categories in-
stead of the three categories in the redesigned tool) and visual appeal. However, although 
users who mentioned these aspects believed that these characteristics could be valuable in 
a context where exploration was the objective of visualization, they did not favor clarity or 
decision-making.

Conclusions
The behavioral decision-making literature shows how people often struggle to understand 
particular climate terminology. There is often a mismatch between the understanding of 
concepts such as probabilities or uncertainty between experts and nonexperts. Although 
visualizing forecast uncertainties and associated probabilities is thought to increase users’ 
trust, it does not automatically lead to better decisions.

Our results identify relevant aspects that can improve user experience and reduce cogni-
tive load and that are worth considering when designing climate data visualizations. These 
include choosing representations and categories tailored to specific decisions, avoiding 

Glossary
Our work is based on the collaboration of multiple disciplines that, 
when combined, improve the user experience and favor decision-
making. User-centered design (UCD) allows us to meet the 
needs of the users. Interaction design allows us to dose and 
customize the way the data are displayed. Design and data visu-
alization rules improve the way of visually encoding information 
and highlight what is really important. Cognitive psychology 
helps us measure the impact of complex visualizations on users 
and, with the help of other disciplines, favors their understanding.

These disciplines have specific terminology used in this paper:
Accessibility: Discipline and rules that guarantee that web-

sites and technologies are designed and developed so that people 
with disabilities can use them independently from their capability 
limitations: auditory, visual, cognitive, physical, or neurological.

Cognition: Mental process of acquiring knowledge and under-
standing through senses, thought, and experience.

Cognitive load: Refers to the used amount of human working 
memory resources, which is limited in both capacity and duration.

Cognitive psychology: The scientific study of mental pro-
cesses such as attention, memory, perception, problem solving, 
and understanding.

Eye-tracker: Sensor-based device which measures where the 
participant is looking at (the point of gaze) and the motion of the 
eyes.

Fixation: A period of time during which the eyes are locked 
toward an object or visual element.

Color hue: The attribute of color defined by wavelength (red, 
blue, etc.).

Glyph: A hieroglyphic character or symbol used in visualiza-
tion as a part of a chart or graph.

Interaction design: Design of interactive products focusing 
on the way users interact with them, including visual representa-
tion, terminology, devices, and behavior.

Multidimensional visualization: Graph or visualization 
showing more than one variable through visual encoding (color, 
size, etc.).

Opacity: Property of a visual element that determines how 
transparent (or less visible) it will be. The lower the opacity value, 
the more transparent the element is.

Perception: The way in which something is regarded, under-
stood, or interpreted.

Usability testing: Evaluation of a product or a service  
in order to detect problems or evaluate how easy it is to  
use it.

User-centered design: Iterative design process in which 
designers focus on the user needs and involve them in each phase 
of the design process.

Visual encoding: Translating the data into a visual element 
on a chart/map or graph using visual properties as length, posi-
tion, size, color, slope, opacity, etc.

Working memory: The cognitive system with a limited capac-
ity that can hold information temporarily.
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visual encoding that interferes with users’ perception of the represented forms, and offering 
interactive elements that allow users to filter nonrelevant information or highlight relevant 
information for the decision at hand. In the redesign of Project Ukko we included all these 
changes at the same time. Hence, we cannot empirically establish the relative influence of each 
of these individual aspects in the overall reduction of the users’ cognitive load. Nevertheless, 
we demonstrate that all these aspects can help reduce cognitive load, favor decision-making, 
and thus improve the overall user experience with a climate service.

In future works, it would be interesting to delve into the weight of each of the implemented 
actions (simplifying the number of categories, avoiding redundant visual encoding, custom-
izing the visualizations based on user needs through interactive controls) in the total reduc-
tion of the cognitive load.

Likewise, analyzing the implemented changes in the context of the final tool, in combina-
tion with other improvements not assessed in the framework of this study (redesign of the 
navigation, color-blind aspects, customization, and levels of detail available), can highlight 
additional benefits. This would delve further into the visual communication of climate in-
formation.

Our study highlights that, when combining techniques and knowledge from different 
disciplines [climate science, design, user-centered design (UCD), user interaction, and cog-
nitive psychology], we are able to find better solutions for the visualization of climate data, 
especially when aimed at supporting decision-making. In addition, we identify a clear need 
for co-design and increased empirical testing of the resulting products. We recommend infor-
mation providers and tool designers in the field of climate services to collaborate more with 
end users throughout the whole design process to identify what is effective and to leverage 
the knowledge and well-established techniques from nonclimate related disciplines that have 
a lot to offer.
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