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Abstract
Objective. High-frequency oscillations (HFOs) have emerged as a promising clinical biomarker for
presurgical evaluation in childhood epilepsy. HFOs are commonly classified in
stereo-encephalography as ripples (80–200 Hz) and fast ripples (200–500 Hz). Ripples are less
specific and not so directly associated with epileptogenic activity because of their physiological and
pathological origin. The aim of this paper is to distinguish HFOs in the ripple band and to improve
the evaluation of the epileptogenic zone (EZ). Approach. This study constitutes a novel modeling
approach evaluated in ten patients from Sant Joan de Deu Pediatric Hospital (Barcelona, Spain),
with clearly-defined seizure onset zones (SOZ) during presurgical evaluation. A subject-by-subject
basis analysis is proposed: a probabilistic Gaussian mixture model (GMM) based on the
combination of specific ripple features is applied for estimating physiological and pathological
ripple subpopulations.Main Results. Clear pathological and physiological ripples are identified.
Features differ considerably among patients showing within-subject variability, suggesting that
individual models are more appropriate than a traditional whole-population approach. The
difference in rates inside and outside the SOZ for pathological ripples is significantly higher than
when considering all the ripples. These significant differences also appear in signal segments
without epileptiform activity. Pathological ripple rates show a sharp decline from SOZ to non-SOZ
contacts and a gradual decrease with distance. Significance. This novel individual GMM approach
improves ripple classification and helps to refine the delineation of the EZ, as well as being
appropriate to investigate the interaction of epileptogenic and propagation networks.

1. Introduction

High-frequency oscillations (HFOs) have emerged as
a promising clinical biomarker for helping in the
identification of the epileptogenic zone (EZ), defined
as the brain area indispensable for seizure generation
[1]. In refractory childhood epilepsy, the top prior-
ity is the selection of the most appropriate treatment
for each child [2]. In this sense, individualized HFOs

study provides new insights into personalized pre-
surgical evaluation [3]. Resection of areas with high
HFO rates is associated with good postsurgical out-
come [1, 4, 5]. HFOs are defined as fast spontaneous
transient events with at least four oscillations above
80Hz that stand out from baseline [6]. HFOs are clas-
sified into ripples (80–200/250 Hz) and fast ripples
(200/250–500 Hz) [7]. The recommended sampling
frequency for signal acquisition is at least four to five
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times the highest frequency of interest [8]. Hence, fre-
quencies higher than 1 kHz and 2 kHz are required to
identify ripples and fast ripples, respectively [9], lead-
ing to large storage, high processing, and extended
computation time requirements for long-term intra-
cranial EEG recordings [10]. For this reason, recent
studies are still focused on the ripple band [11–13].

High-frequency activity occurs not only in the
epileptogenic cortex, but also in normal cortical areas
[14, 15]. Ripples aremore frequently noticed both as a
pathological and physiological phenomenon than fast
ripples [16], which are more specifically elicited by
epileptogenic tissues [17]. On one side, many cognit-
ive, visual ormotor tasks generate physiologicalHFOs
[18–20]. On the other, pathological HFOs are mostly
generated in the seizure onset zone (SOZ) but they
propagate outside [21, 22]. Consequently, their dis-
tinction is still challenging [23]. Large clinical stud-
ies have shown too high a variability of HFO rates to
establish a global threshold, and there is no guaran-
tee that channels with the highest rates indicate the
resection area to achieve seizure freedom. Differences
in rate can also occur due to the presence of physiolo-
gical oscillations, different electrode types and SOZ
location [4].

Previous studies have assessed this issue focus-
ing on the statistical differences in features from
ripples inside and outside the SOZ [20, 24, 25],
considering as pathological all spontaneous ripples
inside the SOZ recorded interictally or preictally.
The most discriminant features from these studies
were the amplitude and the instantaneous frequency.
Ripples inside the SOZ showed statistically significant
higher amplitudes and lower instantaneous frequen-
cies. However, physiological ripples such as those
of the hippocampus have features overlapping with
those of pathological ones [4]. Probably, this is caused
by global classification approach that applies the same
feature boundaries to all patients, and due to not con-
sidering the simultaneous presence of pathological
and physiological ripples [26, 27].

The aim of this paper is to present a novel
approach to separate pathological and physiological
HFOs in the ripple band in a retrospective study
with pediatric patients suffering from focal epilepsy.
For this, we propose (a) a subject-by-subject analysis
without spatial constraints; (b) a probabilistic Gaus-
sian mixture model (GMM) based on the combina-
tion of several features; and (c) the estimation of the
physiological and pathological ripple subpopulations
within the overall HFO distribution of each patient.

This novel individual GMMapproach can help to:
(a) refine the delineation of the pathologicHFO zone,
even with data without epileptiform activity, check-
ing the increased rates inside the SOZ versus outside;
(b) investigate the interaction of epileptogenic and
propagation networks.

2. Materials andmethods

2.1. Database description and acquisition settings
A proof of concept was evaluated in ten pediatric
patients diagnosed with intractable epilepsy at Sant
Joan deDéu Barcelona Children’s Hospital with a sus-
picion of a single epileptic generator. All subjects gave
informed consent and the study was approved by the
ethical committee of the sameHospital. Table 1 shows
a summary of the available clinical information. Eight
out of the ten patients achieved seizure freedom after
surgery.

Stereroelectroencephalography (SEEG) signals
were acquired using a referential montage (refer-
ence in the white matter) during 7.16 (±1.34) days
using a Micromed system with 1024 Hz sample fre-
quency (400 Hz bandwidth) and DIXI depth elec-
trodes implanted stereotactically. Simultaneous scalp
EEG was recorded from electrodes on the midline
sagittal plane (Fz, Cz, Pz).

Aided by the scalp EEG, SEEG corresponding to a
30 min period of slow-wave sleep interictal activity of
the first night of each patient was selected for further
analysis. At that time, changes in medication were
minor, no previous seizure had been recorded and no
electrical stimulation had been performed. Segments
were considered as interictal if they were at least 1 h
away from subtle seizures and 8 h from focal to bilat-
eral tonic-clonic seizures. Two experienced epilepto-
logists thoroughly examined these epochs, low-pass
filtered to 45 Hz, and scored the sections character-
ized by low-frequency interictal epileptiform activ-
ity (IEA). The same experts defined the SOZ visually,
identifying the channels with early ictal discharges on
the long-term video SEEG recordings.

2.2. HFOs detection
The SGM algorithm was used to detect HFOs in
the ripple band (80–200 Hz). SGM is already pub-
lished andwas validated using simulated and real data
assessed by two experts [28]. Briefly, the algorithm
consists of: (a) baseline estimation using the entropy
of the autocorrelation; (b) S-Transform [29] to cal-
culate time-frequency features; and (c) GMM-based
clustering of the features to decide if events are
HFO-like activity. The detected HFOs were treated
as independent events on a channel-by-channel
basis.

The HFO rate was obtained as the number of
HFOs per minute for each channel, and the density
was the ratio between the duration of all HFOs and
the duration of the segments. This calculation was
performed for the whole available 30 min signal, and
IEA and non-IEA segments separately. Because rate
and density showed comparable results, only rate res-
ults are shown.
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2.3. HFO feature extraction
Previous studies have reported amplitude and
instantaneous frequency as the most discriminant
features between SOZ and non-SOZ [20, 24, 25].
After performing the detection with the SGM
algorithm, we calculated these features from each
detected HFO in the band-pass filtered signal
(80–250 Hz, using a finite impulse response filter
of 80th order).

• Instantaneous frequency, the inverse of the average
oscillation period (between-peaks time).

• Amplitude, the maximum value of the envelope,
computed by the Hilbert transform.

2.4. Clustering pathological and physiological
ripples and statistical analysis
The selected features were log-scaled to reduce skew-
ness and used to fit a two-cluster GMM, using a full-
covariance matrix. An independent model was fit-
ted to each patient and to each feature to soft-cluster
ripples into two groups: pathological and physiolo-
gical. HFOs were labeled as clearly pathological
if both membership probabilities (high-amplitude
cluster and low-frequency cluster) exceeded 50%. On
the other hand, clearly physiological ripples were
identified when both membership probabilities were
lower than 50%, that is, low-amplitude and high-
frequency HFOs. The ripples that did not meet these
criteria were considered as undefined.

To evaluate the differences in rates inside and out-
side the SOZ an independent t-test was used (signific-
ance set to 5%). To compare both groups, SOZ and
non-SOZ were normalized by dividing their mean
rate by the number of channels that compose them.

2.5. Pathological ripples as a delimiter of the SOZ
One of the most evident uses of the detection of
clearly pathological ripples is the delineation of the
pathological ripple zone and its overlapping with the
SOZ. The channels with higher pathological ripple
rates are expected to be located inside the SOZ,
markedly linked with the epileptogenic process. We
define the pathological ripple zone as the contacts
with the pathological HFO rate exceeding a certain
percentile. To determine the most suitable value, per-
centiles from 50 to 95, in steps of 5, were considered.
For each measurement, the following quantities were
defined:

• True positive (TP): number of channels belonging
to the SOZ exceeding the percentile.

• False positive (FP): number of channels not
belonging to the SOZ exceeding the percentile.

• True negative (TN): number of channels not
belonging to the SOZ and not exceeding the
percentile.

• False negative (FN): number of channels belonging
to the SOZ but not exceeding the percentile.

The following performance measures were ana-
lyzed for each considered percentile value:

Sensitivity=
TP

TP+ FN
(1)

Specificity=
TN

TN+ FP
(2)

Accuracy=
TP+TN

TP+TN+ FP+ FN
. (3)

2.6. Data availability
The conditions of our ethical approval do not
allow public archiving of anonymized patient data.
Derived data supporting the findings are avail-
able on reasonable request from the corresponding
author. The SGM algorithm [28] is implemented
in Python and freely-available (https://github.com/
cmiglio/epyHFO).

3. Results

3.1. Classification between physiological
and pathological ripples
Once HFOs were detected for each patient using
SGM, independent GMMs were fitted to each sub-
ject and feature (amplitude and instantaneous fre-
quency) to obtain clearly pathological and physiolo-
gical groups that contained events whose features
were more distinctive. For ease of reference, the
clearly pathological and clearly physiological groups
are hereinafter labeled as pathological and physiolo-
gical, respectively. Figure 1(a) shows, as an example, a
pathological and a physiological ripple. Both time and
time-frequency representations are similar, being dif-
ferent only in the amplitude above 80 Hz (higher for
pathological) and the instantaneous frequency (lower
for pathological). The distributions of the features
used by the SGM detector (area, entropy, time width
and frequency width) [28] did not show statistic-
ally significant differences between groups, indicating
that the time-frequency pattern was similar for all the
ripples.

Figure 2 shows the average amplitude and instant-
aneous frequency for each subject considering the
whole SEEG segment, and IEA andnon-IEA segments
separately. Features remained similar whether epilep-
tiform activity was present or not, suggesting that
ripple characteristics depend on their pathological or
physiological nature but not on the presence of low-
frequency epileptiform activity. The high between-
subject variability (especially in amplitudes) that
hinders the estimation of global boundaries between
pathological and physiological ripples is remarkable.
For example, physiological ripples of patient 10 have
similar amplitudes to pathological ripples of patient
6 and 7.
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Figure 1. (a) Example of ripple classified as pathologic (b) example of ripple classified as physiologic.

Figure 2.Mean values of amplitude and frequency features for all the patients for the physiological and pathological ripples,
considering the whole-time segment, or only segments with epileptiform (IEA) or non-epileptiform activity (non-IEA).

3.2. Occurrence of pathological ripples
Figure 3(a) shows the overall ripple rates inside
and outside the SOZ for each patient, considering
the whole segment, only IEA, and only non-IEA

segments. In the first case, rates were statistically
higher inside the SOZ in four patients. Consider-
ing the IEA segments, five patients showed statistical
differences. And in non-IEA segments four patients

5
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Figure 3. (a) Average of ripple rates inside and outside the SOZ, for the whole-time segment, for the time segments with
epileptiform activity (IEA) and for the time segments without epileptiform activity (non-IEA). (b) Average of pathological ripple
rates inside and outside the SOZ, for the whole time segment, for the time segments with epileptic activity and for the time
segments without epileptic activity. The patients marked with an asterisk (∗) showed significant higher values in rates between
inside the SOZ and outside the SOZ.

showed significantly higher rates inside the SOZ.Note
that 40% of the patients showed similar rates inside
and outside the SOZ if no separation between patho-
logical and physiological was performed.

Figure 3(b) shows pathological ripple rates inside
and outside the SOZ. These were significantly higher
in the SOZ than outside for all patients. While aver-
aged ratios between SOZ and non-SOZ rates were
1.01 ± 0.45, ratios increased to 5.42 ± 2.98 when
only pathological ripples were considered. Patholo-
gical ripples co-occurring in time with other low-
frequency IEA showed a significantly higher rate
inside SOZ for most patients (3, 4, 5, 6, 8, 9 and
10) whereas pathological ripples not accompanied
of IEA, showed statistically higher values for all the
patients.

These rates correspond to grand averages of all
channels, whose count differed outside and inside the
SOZ. Figure 4 shows the rates for all channels and
patients, sorting channels in descending rate order, in
three cases: all the ripples, only pathological, and only
physiological. Considering all ripples, the highest-
rate channels did not belong to the SOZ in half of the
patients (1, 3, 4, 6, 9) and in the other half some SOZ
channels did not exhibit the highest rates. In con-
trast, considering the pathological ripples only, the
highest rates were mostly in SOZ channels, and rates
decreased more dramatically. Physiological ripples

were distributed into more channels and mainly out-
side the SOZ.

3.3. Performance of pathological ripples as a
delimiter of the SOZ
Sensitivity, specificity and accuracy were computed
for percentile values from 50 to 95. Figure 5 shows
these measures for each patient as well as over-
all mean and standard deviation. For overall val-
ues, the optimal value is around 75 and 80: for
the percentile 75 the values obtained were a sens-
itivity of 88.98% (71.43%–100%), a specificity of
81.58% (76.09%–100%), and an accuracy of 81.22%
(76.34%–88.89%). For the percentile 80, sensitiv-
ity was 81.71% (57.14%–100%), specificity 86.4%
(82.02%–100%), and accuracy of 84.57% (81.72%–
92.31%).

3.4. Pathological ripples outside the SOZ
As expected, the percentage of pathological ripples
was much higher inside than outside the SOZ. How-
ever, pathological ripples outside the SOZ distrib-
uted heterogeneously among patients. Most patients
showed a low number of pathological ripples out-
side the SOZ, but patients 1, 3 and 5 presented a
substantial number of pathological ripples outside
the SOZ (see figures 3 and 4). For each patient,
the percentage change in rates with respect to the

6
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Figure 4. (a) Distribution of ripples for each one of the channels for all the patients, for all, pathological and physiological ripples.
Red colored channels are the SOZ channels determined by experts.

Figure 5. Performance measures for all patients and overall values. For overall values, as percentile increases sensitivity decreases
while specificity and accuracy increase.

7
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Figure 6. (a) Percentual variation of rates considering all the detected ripples (left) and only clearly-pathologic ripples (right)
along distance to the SOZ for all the patients (100% is set to SOZ value). See supplementary figure 1 (available online at
stacks.iop.org/JNE/18/0460f2/mmedia) for individual patients. (b) Tridimensional distribution of feature values and rates for
patient 9.

SOZ (100% being the SOZ) was computed by group-
ing electrodes by distance to the SOZ. Figure 6(a)
shows the change with distance (from the nearest
to the furthest group) for all the patients. The
effect of distance on HFO rates was observed, but
only for pathological ripples the rate showed a
steep decline between SOZ and non-SOZ and a
gradual decline with increasing distance. This was not
observed if all ripples or only physiological ones were
considered.

Figure 6(b) shows, as an example, the ripple rate
tridimensional spatial distribution of patient 9. Con-
sidering all ripples, the SOZ region (contacts with a
green cross) showed high rates (darker colors) but
also other regions; therefore the high-rate area was
more widespread. Considering only the pathological
ripples, the highest rate channels appeared in a nar-
rower area.

4. Discussion

In the recent years, the differentiation between
physiological and pathological HFOs has generated
considerable debate. Whereas pathological HFOs are
more specific to the epileptogenic tissue, physiolo-
gical HFOs occur across different brain areas, mostly
in the occipital and temporal cortex [30]. Still, patho-
logical HFOs can also be recorded outside the SOZ
mainly due to propagation.

Among HFO characteristics, the fast ripple rate
is significantly increased in the SOZ and seems to
provide better post-surgical outcomes in terms of
seizure freedom [31]. However, fast ripples require
high sampling rates [6, 9] that are not common in
clinical practise, making ripple analysis very interest-
ing [11–13]. Ripple activity, however, is abundant in
both epileptogenic and physiological brain areas and
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its usefulness to delineate the EZ has been questioned
[3, 32].

In all patients, especially pediatric, the reduc-
tion in time of the invasive presurgical assessment
could positively impact children’s and their carers’
life. Ripple analysis could also be especially useful if
seizures fail to be recorded during this assessment.

4.1. Pathological and physiological ripples
differentiation and its relationship with the SOZ
The most accepted metrics for the delimitation of
SOZ is the rate per channel [5, 27]. In our work, rates
were found to be like those reported in other studies
[33, 34].

Unlike the fast ripple rate, the ripple rate does
not localize the SOZ effectively [16, 27]. In addition,
previous studies have shown the difficulty to estim-
ate thresholds to associate rates with the SOZ or not
due to the presence of physiological ripples, among
others [4]. In our study, when considering all ripples
together, ripple rates were statistically higher inside
the SOZ only in 4 out of 10 patients. In addition,
we found contacts outside the SOZ with similar or
even higher HFO rates to those inside the SOZ (see
figure 4).

We hypothesized that pathological ripples appear
mostly in the SOZ, whereas physiological ripples scat-
ter roughly evenly along contacts inside and out-
side the SOZ, caused by brain activity not related
to epilepsy. Several studies have characterized the
HFO activity and reported that ripples in the SOZ
had higher amplitude and lower frequency than
ripples outside the SOZ [11, 15, 16]. Our res-
ults agreed: amplitude and instantaneous frequency
showed within-subject statistical differences between
inside and outside the SOZ, for all the patients (see
figure 3). However, these previous studies showed
a considerable overlap between the SOZ and non-
SOZ ripple distributions, providing unclear conclu-
sions regarding the determination of the SOZ based
on ripple activity. This could be caused by consider-
ing the ripples detected inside and outside the SOZ as
pathological and physiological, respectively. The pur-
pose of our study was to identify pathological ripples,
independently of their localization. By using GMM-
based clustering, we achieved a statistically consistent
soft classification of ripples into two clusters (clearly
pathological and clearly physiological) using the two
proposed features. Ripples labeled as clearly patholo-
gical by probabilistic membership gathered mostly in
the SOZ and exhibited a significant higher rate inside
than outside the SOZ for all patients, even during
periods without IEA (see figure 3). In addition, only
the rate of clearly pathological ripples delimited the
SOZ and showed a monotonic decrease with increas-
ing distance from the SOZ (see figure 6), in contrast
to the alternative of considering all ripples for the rate

calculation. We hypothesized that this phenomenon
reflects the propagation of the some of the patholo-
gical ripple activity to other nearby regions, similarly
to what happens with low-frequency interictal epilep-
tiform discharges.

Another clearly physiological group was identi-
fied by an opposite probabilistic membership defin-
ition, and an undefined ripple group remained,
including all the events overlapping in the feature
space, which might introduce noise to subsequent
evaluation. The uncertainty introduced by this
undefined group could have hindered the achieve-
ment of better results and the conclusions in previous
studies. In our work, we considered it not necessary
to estimate all the pathological ripples to help delin-
eate the SOZ. Eight out of ten patients included in
this study presented successful surgery outcomes, a
fact that indicates that the region was well determ-
ined during the presurgical analysis. In the other two
cases, surgery was either not possible or incomplete
because of the affected brain areas.

One of the main advantages of using soft-
clustering methods such as GMM is that these mem-
bership probabilities could be lowered to include
more events in both groups.

Our main objective was to provide a novel
methodology for separating clear pathological from
physiological ripples, but the delimitation of the SOZ
could also be achieved. Figure 4 shows the ripple rate
distribution per channel (all ripples, pathological,
and physiological) for all the subjects. The patholo-
gical ripple distribution presented a steeper decline
in rate, suggesting that pathological ripples cluster
around an area composed by a lower number of chan-
nels that correlate better with the SOZ. In contrast,
this pattern was not observed when analyzing the
distribution of either all the detected ripples or the
physiological ripples.

Considering different percentile values of patho-
logical ripples in each channel, wemeasured the sens-
itivity, specificity and accuracy in detecting the SOZ
(see figure 5). Depending on the application the pref-
erence would be to bemore sensitive ormore specific,
but a trade-off value was found around percentiles 75
and 80. For these percentiles a mean specificity value
of 84.42% (79.78%–100%) amean sensitivity value of
85.05% (57.14%–100%), and a mean accuracy value
of 83.08% (79.57%–89.23%) was found. These val-
ues exceed the performance measures reported in the
literature, for example Liu et al 2018 [25] reported
an overall specificity of 63% (20%–87%), a sensitivity
of 85% (38%–100%) and an accuracy of 65% (25%–
80%). This increase could be explained by the applic-
ation of unique features boundaries to each patient
as well as not considering pathological ripples con-
fined only to the SOZ but also possible in secondary
regions.
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4.2. Inter-subject variability
We observed different rates and feature distributions
among subjects. The heterogeneous nature of the epi-
leptic patients because of different location of the
SOZ, age, type of lesion, etc, may be the explanation
of the variability in the generation and propagation of
ripples.

Due to these heterogeneities, intra-subject feature
clustering is especially relevant in HFO analysis [3].
Despite such variability, previous studies have extrac-
ted results on the SOZ localization through grouped
analysis, reporting significant but subtle differences
in average [20, 24, 35]. One of our main contribu-
tions in comparison with these studies is the confirm-
ation that performing a subject-by-subject analysis
withGMM-based clustering improves ripple discrim-
ination into clearly pathological and clearly physiolo-
gical. For the definition of both groups, an individual
GMM was fitted to each patient, obtaining unique
feature boundaries that were especially important
because of the high inter-subject feature variability
(see figure 2). Despite this variability, the proposed
methodology obtained promising results in all cases.

4.3. Concurrency of pathological ripples
and low-frequency IEA
There is a high interaction between pathological high-
frequency activity, NREM sleep, and low-frequency
IEA [36]. That is the reason why it has been recom-
mended to perform HFO analysis during slow-wave
sleep (stage N3) with visible waveform abnormalities
(epileptiform discharges) [9, 14]. In our study, seven
patients showed significant differences between the
rates inside and outside the SOZ during IEA, while all
the patients showed significant differences when con-
sidering only the segments without IEA or the whole
data.

According to our promising results, once patho-
logical ripples were separated, the analysis of rather
short 30 min recordings could give relevant inform-
ation leading to a more accurate localization of the
pathological ripple zone, independently of the pres-
ence of low-frequency IEA.

4.4. Limitations and further work
We found that the analysis of ripples in short time
segments can provide valuable information to help
infer the EZ in children with focal epilepsy. Long-
term studies could help understand the epileptogenic
process during different brain states (awake, pre-ictal,
ictal) and elucidate the role of ripples in the genera-
tion and propagation of epileptic seizures. Addition-
ally, recent studies found that the detection of HFOs
is possible in noninvasive recordings [23, 34, 37–39].
Thus, the differentiation between ripples consider-
ing a whole-head picture and noninvasive data could
answer several questions concerning the generation
and propagation of epileptiform activity. Moreover,
the epileptic and physiological processes assessed by

noninvasive signals could allow an increase of the
available databases and research groups involved in
epilepsy research.

It is important to note that we performed the
analysis without considering that some of the detec-
ted events could be synchronous. A previous study
has assessed that the ripple-onset preceding a syn-
chronized and multichannel ripple activity has more
value to help infer the EZ, and that the synchron-
ized and multichannel activity reflects the propaga-
tion [21]. This information could be used to devise
new features that might improve the discrimination
between physiological and pathological events, and
gain insight to further study the current undefined
group.

Our results suggest that interictal pathological
ripples present in other brain tissues could repres-
ent early-propagation areas elucidating epileptic net-
works (see figure 4). In this sense, the pathological
ripples could be used as a valuable tool to detect
seizure propagation pathways. This could be of spe-
cial interest in pediatric patients, analyzing the time
course of these networks and their influence on
seizure generation and developmental outcomes.

4.5. Conclusion
Our study provides a simple, fully-automated, unsu-
pervised approach to distinguish pathological and
physiological HFOs from a database of pediatric
patients with focal epilepsy, relying only on the ripple
band. Previous studies aimed to differentiate the
characteristics of ripples occurring inside and outside
the SOZ. In this studywe improve the previous results
by not assuming any spatial constraint for the iden-
tification of pathological and physiological ripples.
By using a limited group of ripples labeled as clearly
pathological and exploiting the soft-clustering capab-
ilities of GMMs on a subject-by-subject basis, we were
able to obtain valuable information to infer the EZ
individually even with data from non-IEA. Our indi-
vidualized approach overcomes the difficulties posed
by the high variability among subjects present in the
HFO features, which hinders the estimation of dis-
criminating boundaries.
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