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Abstract: This paper describes three different approaches for the implementation of an online
signature verification system on a low-cost FPGA. The system is based on an algorithm, which
operates on real numbers using the double-precision floating-point IEEE 754 format. The double-
precision computations are replaced by simpler formats, without affecting the biometrics performance,
in order to permit efficient implementations on low-cost FPGA families. The first approach is an
embedded system based on MicroBlaze, a 32-bit soft-core microprocessor designed for Xilinx FPGAs,
which can be configured by including a single-precision floating-point unit (FPU). The second
implementation attaches a hardware accelerator to the embedded system to reduce the execution
time on floating-point vectors. The last approach is a custom computing system, which is built from a
large set of arithmetic circuits that replace the floating-point data with a more efficient representation
based on fixed-point format. The latter system provides a very high runtime acceleration factor at the
expense of using a large number of FPGA resources, a complex development cycle and no flexibility
since it cannot be adapted to other biometric algorithms. By contrast, the first system provides just
the opposite features, while the second approach is a mixed solution between both of them. The
experimental results show that both the hardware accelerator and the custom computing system
reduce the execution time by a factor×7.6 and×201 but increase the logic FPGA resources by a factor
×2.3 and ×5.2, respectively, in comparison with the MicroBlaze embedded system.

Keywords: online signature; FPGA; biometrics verification; DTW; hardware accelerator; fixed-point

1. Introduction

A handwritten signature requires a conscious action by the user, and therefore, it is
one of the most usual methods by which persons claim their identity verification and accept
responsibility for a signed document. Nonetheless, handwritten signatures have certain
disadvantages, which have hindered their widespread use as biometric verification. The
main challenge is the large intra-class and small inter-class variability. Samples taken from
the genuine user may have large variability in their shapes. In addition, trained forgery
signatures carried out by impostors may look very similar to signatures from the genuine
user. Online signatures provide advantages for automatic biometric verification due to the
additional information obtained from the capturing device, an electronic pen on a touch
screen. Capturing angle and pressure samples, along with the shape coordinates, provides
additional information about signature dynamics that increases inter-class variability.

Biometric systems are typically developed on general-purpose microprocessors due
to the development comfortability provided by programming languages and compilers.
Implementation issues, such as power consumption, data format, processing speed, or
memory requirements, are not generally considered since they are assumed to run on
high-performance computers. In contrast, portable systems are generally based on low-cost
embedded microprocessors featured by memory and computing limitations. In such cases,
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algorithm optimizations, hardware accelerators or custom computers can be explored to
provide an efficient implementation.

Biometric algorithms are usually composed of a set of computing stages that are used
not only in different biometric modalities but also in computer vision, cryptography, and
other fields. The computational requirements at some stages may hinder their applicability
for real-time systems on general-purpose microprocessors. In such cases, the acceleration
of some calculations by using FPGAs is an interesting possibility. Most of the works related
to accelerators on FPGAs focus on a particular computing stage, such as the simplified FFT
(Fast Fourier Transform) presented in [1], SVM (Support Vector Machine) implementations
in [2] or the three-dimensional DTW (Dynamic Time Warping) architecture shown in [3].
However, complete biometric systems accelerated on FPGAs are scarce due to the develop-
ment effort that must be carried out for their implementation. The work presented in [4]
describes a pyramid-pipeline architecture of a convolutional neural network on FPGA for
speaker recognition, and a complete biometric speaker verification system was presented
in [5]. Other examples are the hardware accelerator of cryptosystem for iris, presented
in [6], and the iris identification system on FPGA based on hardware-software co-design [7].
Related work about online signature biometrics on FPGA is even more scarce. The FPGA
role described in [8] is to act as a wireless slave, which is connected to a computer executing
a very simple signature algorithm. The online signature verification system proposed
in [9] is based on a hardware accelerator, which has been deprecated by the second system
presented in this paper.

The paper is organized into six sections. The next section of the paper briefly describes
the online signature verification algorithm, which is implemented in the presented systems.
Section 3 starts describing the adopted replacements of the IEEE 754 double-precision
format in order to efficiently implement the algorithm on a low-cost FPGA family. The
section continues with an architecture overview of the three implemented systems, their
main advantages and drawbacks. Section 4 shows a detailed explanation about the DTW
stage implemented on these systems, not only because it vastly dominates the total ex-
ecution time of the signature verification but also because it is widely adopted in other
biometric modalities, such as speaker [10], electrocardiogram [11], iris [12], and many
others. The experimental results obtained on the three systems are reported in Section 5.
Finally, discussions are presented in the last section.

2. Signature Verification Algorithm

Signature biometric systems are usually based on two phases: enrollment and verifica-
tion. At the enrollment phase, the system is trained for a genuine user who provides several
signatures to extract a set of distinguishing features, which is stored as the user dataset.
During the verification phase, a new signature is presented, and its features are extracted
and matched against the previously stored one. Then, by computing a similarity score that
is compared with a threshold value, the signature is classified as genuine or counterfeit.

Most online signature verification techniques can be classified as template, statistical or
structural matching [13,14]. Template matching is a straightforward comparison of samples
from the genuine user and the presented signature, which are usually pre-aligned by a
DTW algorithm [15]. In statistical matching, the most salient behavioral signature features
are compared and scored by means of a neural network, a hidden Markov model or a
GMM (Gaussian Mixture Models). Structural matching is based on syntactic approaches
for representing signatures that are compared through graph or tree techniques.

The signature verification algorithm consists of four stages: pre-processing, DTW,
extraction of features and GMM matching, as depicted in Figure 1. The initial pre-processing
applies a set of transformations on the captured signature, as resampling, centering and
rotating the shape, and normalization. The resulting data are a set of 256-width vectors
containing normalized samples. Then, a DTW algorithm computes the optimal alignment
between the time-dependent samples of the processed signature and the enrolled template.
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Finally, a set of statistical features are extracted from the aligned signature, known as
pseudo-distances, to execute a GMM model that calculates a distance score.
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Figure 1. Overview of the online signature verification algorithm.

The dataset of an enrolled user on the implemented online signature system [16]
is composed of a signature template and its GMM parameters. The signature template
consists of 256-width vectors containing normalized samples (x-y coordinates, pressure,
angles). A set of distinctive features from the signature are selected to generate a GMM
model. The parameters of the optimal GMM model for each enrolled user are computed by
the expectation-maximization (EM) algorithm [17] with a public signature database [18].
The database contains 25 genuine signatures and 25 skilled forgeries for 100 different users.
Basically, the implemented algorithm is an improved version of the presented one [19] by
adding dynamic features, such as speeds and accelerations, at the GMM matching.

The algorithm performance was tested by the public database available in [18]. The
DET (Detection Error Tradeoff) curve, shown in Figure 2, represents the relationship
between FMR (False Match Rate) and FNMR (False Non-Match Rate) for different threshold
decision values [16,19]. The EER (Equal Error Rate) achieved by the proposed online
signature algorithm is 2.74%, which is a competitive performance when compared to other
biometric modalities presented in some competitions [20].
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3. Hardware Implementations

This paper proposes the implementation of three different approaches for the signature
verification system using an FPGA. The first one is an embedded system based on a 32-bit
microprocessor, which includes a single-precision floating-point unit (FPU). In the second
one, the FPU is substituted by a hardware accelerator especially designed for resolving
calculations on floating-point vectors. The last one is a custom computing system built by
means of a large set of fixed-point arithmetic circuits.
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The algorithm was initially developed on MATLAB where, by default, real numbers
are represented by IEEE 754 double-precision format. This standard is a 64-bit floating-
point format, which provides both a large dynamic range of representable data and high
resolution [21]. However, arithmetic circuits based on this format are significantly complex,
and usually, only 64-bit high-performance processors include double-precision FPU. There-
fore, to achieve high efficiency when the algorithm is implemented on low-cost FPGAs,
the double-precision data must be replaced to simplify the arithmetic circuits but without
affecting the biometric performance. Moreover, the format replacement also reduces the
required capacity of the involved memories.

As mentioned, the systems based on the 32-bit embedded microprocessor require an
IEEE 754 single-precision FPU or the hardware accelerator. However, the implementation
of the customized system using the single-precision format is not practical due to the
large number of required arithmetic circuits. The IEEE 754 arithmetic circuits require a
large number of hardware resources and execution clock cycles due to denormalization,
normalization and rounding steps that are not carried out on integer arithmetic circuits.
Alternatively, real numbers can be represented by binary fixed-point formats, which are ba-
sically integers scaled by a constant factor. Consequently, the implementation of arithmetic
circuits in such format is much simpler and faster than their floating-point counterparts.
However, the number of bits in the fixed-point format must be properly adjusted to avoid
overflow or underflow problems that would affect the algorithm performance.

As the algorithm includes several stages that require different ranges and precisions, a
variable fixed-point format is chosen. Using the Q-format [22] and the notation Qmk.nk to
represent a format, mk and nk stands for the number of bits for the integer and fractional
parts, respectively. If K is the total number of computations involved in the whole algorithm,
the mk and nk values in the k-th computation are selected according to the methodology
shown in Figure 3. Note as mk can be easily calculated by logging the range of results to
avoid overflow errors. On the other hand, nk is selected as the minimum value that does
not provide excessive error due to lack of precision.
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Figure 3. Methodology used to adjust the fixed-point formats on MATLAB.

The algorithm is initially executed in double-precision and single-precision formats
to record results and verify that both versions provide the same biometric performance.
The final distance scores (rdouble-precision, rsingle-precision) are used to calculate the maximum
error criterium for the fixed-point version. Then, the methodology continues executing the
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fixed-point version of the algorithm, obtaining mk from the logged results and incrementing
nk until the distance score (rQm.n) meets the error criterium at each computation on the
entire signature database, according to the following equation.

error =

∣∣∣∣∣ rdouble−precision − rQm.n

rdouble−precision

∣∣∣∣∣ ≤
∣∣∣∣∣ rdouble−precision − rsin gle−precision

rdouble−precision

∣∣∣∣∣ (1)

The fixed-point formats obtained range from the simpler Q10.0 format at the pressure
samples acquisition to the largest Q7.45 format associated with the pseudo-distances.
Table 1 shows the statistical analysis of the errors obtained from both algorithm versions
on the database.

Table 1. Statistical analysis of data formats.

Data format Average
Error

Standard
Deviation Variance Median

Single-precision 1.292 × 10−3 7.768 × 10−3 6.034 × 10−5 2.272 × 10−4

Fixed-point 3.353 × 10−4 7.229 × 10−4 5.227 × 10−7 9.541 × 10−5

3.1. MicroBlaze Embedded System

Figure 4 shows an overview of the embedded system based on MicroBlaze, a 32-bit
soft-core general-purpose microprocessor for Xilinx FPGAs. It can be configured to better
fit the computational requirements with the possibility of providing a single-precision
FPU to accelerate floating-point operations. In this approach, the algorithm is written
in C programming language, and single-precision IEEE 754 format is used. The C com-
piler automatically translates floating-point code to FPU instructions, and, therefore, the
implementation or modification of the algorithm is reduced to a programming problem.
Consequently, this implementation provides the lowest development effort but the worst
execution time when compared against the other alternatives. The flexibility of the system
is very high since the hardware can be reused for other biometric algorithms.
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3.2. Hardware Accelerator

The second approach attaches a hardware accelerator, named FPBA (Floating-Point
Biometric Accelerator) [23], to the embedded system. The FPBA is a programmable acceler-
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ator designed to speed up operations on floating-point vectors, commonly used in several
biometric algorithms. MicroBlaze configures the FPBA at runtime, setting pointer registers
to the vectors stored on external memory and the floating-point instructions that must
be executed. Then, the FPBA launches the instructions, automatically retrieving/writing
vectors from/to memory when required through memory channels, independent of Mi-
croBlaze. Starting from the first approach, the implementation of the algorithm is also
reduced to a programming problem but replacing the C code that must be accelerated by
FPBA instructions on floating-point vectors.

The FPBA is basically a programmable processor that controls a pipelined FPU at-
tached to memory channels, improving the execution time of biometric algorithms on
floating-point vectors. A vector is a set of sequentially ordered data, which is stored in the
memory. Vector lengths are configurable, launching a set of FPBA instructions repeatedly
in hardware-controlled loops. Partial results of a vector computation can be temporarily
stored in the internal registers and can be retrieved when needed. Any FPBA instruction
defines the operation type (MIN, ADD, SQRT, etc.) on the involved source and destination
operators, which can be vectors (V0 to V7), registers (R0 to R15) or scalars (S0 to S7).

Figure 5 depicts an overview of the architecture, which is mainly focused on the fast
execution of single-precision operations on vectors, commonly used in biometrics. Firstly,
the pipelined FPU increases the throughput to one instruction per clock cycle of the most
frequently used operations (as the maximum, addition/subtraction and multiplication).
The throughput of more complex operations, such as the square root and exponential,
is greatly decremented to one instruction per 28 clock cycles. Secondly, a register file
temporarily stores partial results of operations that form a computation over vectorized
data. Finally, the double control unit (CU0 and CU1) permits two sets of instructions
virtually executed in parallel, multiplexing on time the driving of signals for the FPU and
registers through an arbiter. The CU0 can continuously launch those instructions with the
faster throughput; meanwhile, CU1 is waiting for the result from instructions with a slower
throughput.
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FPBA instructions should be properly ordered and grouped, reducing latencies due to
operand dependencies. Moreover, instructions can also be separated to take profit of the
double control unit, enhancing the execution time. This approach improves the execution
time when compared with the previous embedded system, maintaining the flexibility of
the hardware reusability for other biometrics. Nonetheless, it requires a deep knowledge of
the FPBA architecture and timing details, and, therefore, a higher development effort when
compared with the first approach.
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3.3. Custom Computing System

The last implementation approach is a custom computing system, which does not
require the MicroBlaze embedded processor, as depicted in Figure 6. The PicoBlaze,
which is a very simple 8-bit microcontroller, is primarily used to trigger the starting of
the verification and to retrieve the final score through an RS232 communication port, as
well as for debugging tasks. All computations are carried out using a set of specialized
arithmetic circuits that are provided with internal BRAM (Block RAM) memories to share
data between them. The DTW circuit additionally requires external memory to store the
large result matrix. The feature extraction circuit is embedded in the GMM circuit, and it
permits the parallel computing of the pseudo-distances along the optimal warping path, in
order to reduce the execution time.
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4. DTW

The DTW result is used to find the optimal time alignment between signals s and t
by computing a G matrix, which is composed of g(i, j) points. The optimal warping path
is the set of points with minimal g(i, j), pairing each s(j) sample with another t(i) sample.
Figure 7 shows the bidimensional DTW implemented in the signature algorithm, which
aligns 256-width x-y samples from the acquired signature

{
sx, sy

}
to the enrolled template{

tx, ty
}

. The DTW computes the result matrix G by pairing shape samples
{

sx(j), sy(j)
}

and
{

tx(i), ty(i)
}

on a permitted region R. Typically, DTW regions can be the Sakoe–Chiba
band or the Itakura parallelogram [15,24], which is the one chosen in the work presented.
The algorithm starts declaring the initial condition and continues computing each new
g(i, j) on R, until the last g(255, 255) is calculated.

The initial condition is declared at the point i = j = −1. Alignment outside the region
is not permitted by declaring g(i, j) = ∞ on the points that do not belong to R.

g(−1,−1) = 0 (2)

g(i, j) = ∞; (i, j) /∈ R (3)

Each g(i, j) on R is selected as the minimum value of three possible paths, depending
on both previously computed points of the G matrix and three distances.

g(i, j) = min


g(i− 1, j− 2) + 2 · d(i, j− 1) + d(i, j)
g(i− 1, j− 1) + 2 · d(i, j)
g(i− 2, j− 1) + 2 · d(i− 1, j) + d(i, j)

; (i, j) ∈ R (4)
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The d(i, j) denotes the Euclidean distance between the bidimensional samples, which
involves a square root operation.

d(i, j) =
√
(tx(i)− sx(j))2 +

(
ty(i)− sy(j)

)2 (5)
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tion of each g(i,j) element at the region.

In order to enhance the execution time of the DTW algorithm, all three approaches
minimize the number of square root operations by an auxiliary matrix D, which is previ-
ously calculated. The distances required to calculate g(i, j) are retrieved from the D matrix,
avoiding repeating the distance computation on the same point. Furthermore, the runtime
of the DTW algorithm can be optimized by parallelizing the computations of the matrices
D and G, which are adopted in the last two approaches. Finally, a high throughput square
root calculation on the previous optimizations can greatly reduce the DTW execution time,
as in the custom circuit approach.

4.1. MicroBlaze Embedded System

The next programming pseudo-C code shows the main details about the implementa-
tion of the algorithm on the MicroBlaze microprocessor. The G matrix will be computed
only at the (i, j) points belonging to the region R. Consequently, an initializing function
writes g(i, j) = ∞, excepting at the starting point g(−1,−1). In order to improve execu-
tion time, a distance D matrix is previously computed to avoid repeated computations
of distances on the same point. The D matrix stores d(i, j) at points that belong to R, and
required distances are retrieved from D during the G matrix computation. Each matrix
is composed of 256 × 256 single-precision data, requiring 256 KB of storage capacity on
external memory. As it is shown, matrices D and G are processed row by row, and each
row is calculated by a set of operations on sequentially ordered data.
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4.2. Hardware Accelerator

In the previous programming code, column data from the D and G matrices are
sequentially allocated in external memory, as in floating-point vectors. Consequently, the
FPBA can accelerate computations carried out on columns by launching a set of instructions.
The throughput of all required instructions is one per clock cycle, except the square root
instruction in the D matrix computation. The execution time on the FPBA is enhanced
by the double control unit, which launches instructions for G and D matrices in a time-
multiplexed way. Since G computation requires the previous calculus of D, the computation
of the G matrix at row i is virtually executed in parallel with the D matrix at the next row
i + 1. For the sake of simplicity, the programming code for the first and last row is omitted
as they are slightly different from the code shown.
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The D matrix computation is performed by the following CU1 code, which consists
of six instructions in a loop, generating (j1− j0) iterations by controlling a k index, which
starts at 0. The first instruction stores in register R14 the subtraction result from a scalar S5,
which stores the tx(i + 1) sample, and a sample sx(j) from the vector V5. The sx(j) values
are sequentially retrieved from memory according to j = j0 + k, since the vector pointer
was configured to start at the sx(j0) element. Similarly, another instruction stores in R15
the other required subtraction, and the following instructions complete the calculation.
The last instruction stores the result d(i + 1, j) sequentially on the V7 pointer, which was
configured by MicroBlaze to the first element d(i + 1, j0).
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In order to enhance the G matrix computation, the CU0 instructions are ordered to
reduce latencies due to operand dependencies and grouped to calculate two consecutive
g(i, j) and g(i, j + 1) elements at each loop iteration. Consequently, the vector length
was configured to (j1− j0)/2 and the last two instructions write g(i, j) and g(i, j + 1) at
each iteration in the V4 vector. The V0 and V1 vector pointers are set to the first required
elements of D at the rows i and i− 1, to read d(i, j− 1) and d(i− 1, j), respectively. Similarly,
V2 and V3 vectors point the first elements of G elements to be retrieved from memory,
reading a new g(i− 1, j− 2) and g(i− 2, j− 1) at each iteration. After completing a set of
multiplications and additions, instructions (*) in the following code store the three possible
g(i, j) values in registers R4, R5, R6. Similarly, R9, R10, R11 are written with the possible
g(i, j + 1) values at (**). The last instructions choose the minimum values to be stored in
g(i, j), g(i, j + 1), and write R0, R1 with the data required for the next iteration. Due to the
fast throughput of these instructions, the CU0 launches many of them meanwhile CU1 is
calculating the square root result.
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single-cycle data throughput. The core is able to calculate one square root per clock cycle 
in fixed-point format after an initial latency of 22 clock cycles. Distance results are tempo-
rarily stored in BRAMs instead of the external RAM, since only the previous two rows of 
D are required during the computation of a row of G. The double-port BRAMs allow to 
simultaneously store a new result and retrieve a previously calculated distance. 

4.3. Custom Computing System

The DTW computing circuit is a highly parallelized architecture able to simultaneously
access several double-port internal BRAM memories, performing a throughput of one g(i, j)
calculus per clock cycle after an initial latency. It is composed of two dedicated circuits built
from fixed-point arithmetic circuits and a controller unit, as depicted in Figures 8 and 9. The
first circuit is devoted to the calculus of the D matrix at the next row i + 1, while the second
circuit computes the G matrix on the current row i, similarly as in the FPBA. The controller
not only drives the multiplexers, demultiplexers and BRAMs at the computing circuits but
also maintains a proper synchronization of both circuits and generates the required indexes
for the region R. The region bounds j0, j1 at the i and i + 1 rows are retrieved from two
BRAM memories (acting a ROMs), generating the required range of j indexes during the
calculation of D and G at each row.
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Figure 9. Datapath of the G matrix computing circuit.

The D matrix circuit is quite simple. It devotes two BRAMs to retrieve the tx(i + 1),
ty(i + 1), sx(j), sy(j) samples and a few arithmetic fixed-point circuits to calculate the dis-
tances d(i + 1, j). The square root circuit is the CORDIC core from Xilinx’s LogiCORE [25],
which is configured to enhance the performance by fully parallel architecture with a single-
cycle data throughput. The core is able to calculate one square root per clock cycle in
fixed-point format after an initial latency of 22 clock cycles. Distance results are temporarily
stored in BRAMs instead of the external RAM, since only the previous two rows of D
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are required during the computation of a row of G. The double-port BRAMs allow to
simultaneously store a new result and retrieve a previously calculated distance.

The G matrix circuit is significantly more complex. It devotes two BRAMs (da, db) and
a set of multiplexers and demultiplexers to store the result d(i + 1, j) and to retrieve the three
distances d(i, j), d(i− 1, j), d(i, j− 1) in a single clock cycle, as required for the calculation
of each g(i, j). During a row computation, d(i, j) and d(i, j− 1) are read from BRAM db,
d(i− 1, j) is retrieved from BRAM da, and meanwhile it stores the result d(i + 1, j). The
roles of da and db are alternatively swapped on each new row calculation. Similarly, only
two rows of G are required during the g(i, j) calculation, and two BRAMs simultaneously
retrieve all the necessary data and store the result. During a row calculation, g(i− 1, j− 1)
and g(i− 1, j− 2) are read from gb, g(i− 2, j− 1) is retrieved from ga meanwhile it stores
the result g(i, j). On each new row, the ga, gb roles are swapped, and a set of fixed-point
arithmetic circuits calculate the g(i, j) result. The results are also written into the external
memory since the following feature extraction stage requires the complete G matrix to
compute the pseudo-distances on the optimal warping path.

5. Experimental Results
5.1. Speed Processing

The execution times, expressed in clock cycles, for the three implementations are
experimentally obtained and shown in Table 2 at each of the stages of the algorithm. These
results represent the average execution time obtained from all the available signatures of
a single user. The execution times are not dependent on the presented signature, except
a slight variation in the features extraction stage due to the different warping paths used
to compute the pseudo-distances, which is negligible in the total execution time. Between
brackets, the speed-up factors of the last two implementations are reported when compared
with the embedded system. The table also shows the execution time in milliseconds at the
clock frequencies used in the implemented systems, according to the synthesis results.

Table 2. Execution times, expressed in clock cycles (speed-up factor) and milliseconds.

MicroBlaze
Embedded System

40 MHz

FPBA and
Embedded System

40 MHz

Custom
System
50 MHz

Pre-processing 236.80 × 103

5.92 ms
36.47 × 103 (×6.5)

0.91 ms
1.38 × 103 (×171.6)

0.028 ms

DTW 4786.80 × 103

119.7 ms
632.64 × 103 (×7.6)

15.8 ms
21.87 × 103 (×218.8)

0.437 ms

Features extraction 15.15 × 103

0.38 ms
2.92 × 103 (×5.2)

0. 073 ms
1.76 × 103 (×8.6)

0.035 ms

GMM 146.26 × 103

3.66 ms
11.54 × 103 (×12.7)

0.29 ms
0.75 × 103 (×195)

0.015 ms

Total 5185.01 × 103

129.6 ms
683.57 × 103 (×7.6)

17.1 ms
25.76 × 103 (×201.3)

0.515 ms

The total execution time is clearly dominated by the DTW stage since it requires both
calculations on large matrices and square root operations. Experimental results show that
the speed-up factors are ×7.6 and ×201 for the FPBA and custom system, respectively.
The acceleration of the custom DTW circuit is very noticeable due to the high throughput
achieved when calculating g(i, j) (one computation per clock cycle).

As stated in Section 1, there is a lack of online signature systems on FPGAs. However,
we can compare the acceleration of the execution time of our custom DTW circuit against
other DTW-based FPGA accelerators in Table 3. The 3D-DTW accelerator [3] for action
recognition is designed to be connected to the ARM microprocessor embedded in the target
Zynq-7000 device, a high-performance SoC from Xilinx. The core running at 100 MHz
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can accelerate the execution time ×40 times faster than the software counterpart. A closer
comparison can be achieved with the 2D-DTW accelerator for embedded platforms [26].
As the previous accelerator, it is designed to be connected to an ARM microprocessor on a
Cyclone V device from Altera, achieving a ×7.5 speed-up running at 60 MHz.

Table 3. Comparison of the DTW algorithms, execution and cycle time (in clock cycles and millisec-
onds/nanoseconds), and speed-up.

Frequency
(MHz) Dim Points

in R
Execution

Time
Cycle
Time Speed-Up

[3] 100 3D 331,776 11.6·106

116 ms
34.9

349 ns ×40

[26] 60 2D 3125 7200
0.12 ms

2.3
38.4 ns ×7.5

FPBA 40 2D 21,845 632.6 × 103

15.8 ms
29.0

723.28 ns ×7.6

Custom
System 50 2D 21,845 21,870

0.44 ms
1.0

20.01 ns ×218.8

We compare the execution time of different DTW implementations since the result
depends on several parameters. The dimension of samples affects the calculation of the
distance, the sample width and region R determine the number of points to compute g(i, j),
and the data format affects the latency of the arithmetic circuits. Therefore, the cycle time
of calculating g(i, j) is a better comparative measurement.

The core shown in [3] presents important differences when compared with the DTW
algorithm implemented in this work. First, it does not compute the optimal warping path
since it only requires the minimum g(i, j) value at the last row, which scores the similarity
of the aligned samples. The algorithm is repeated in 12 different templates in order to
classify the captured action. Moreover, each distance is calculated from the addition of 3
square root operations. Additionally, it does not use any specific region, calculating g(i, j)
at all possible points. Finally, to improve the execution time, the DTW stops if the minimum
value of g(i, j) at any point in a row is greater than a threshold condition. The execution
time for 576-width floating-point samples ranges from 8.7 × 106 to 11.6 × 106 clock cycles
at 100 MHz. The higher time should be considered since it calculates g(i, j) on all the
points (331,776 points), providing a cycle time of 349 ns (34.9 clock cycles).

The DTW accelerator [26] is much closer to the proposed version used in this paper
since it implements the Euclidean distance for 2D samples. However, the resolution of
samples is limited to 8-bit, and it uses the Sakoe–Chiba region. The execution time for
250-width samples is 0.12 ms (7200 clock cycles) by computing only the 5% of the G matrix
(3125 points) due to the parameters of the region. Therefore, the cycle time when calculating
g(i, j) is about 38.4 ns (2.3 clock cycles).

The custom computing system works with 28-bit samples using a Q1.27 fixed-point
format. The DTW execution time, for 256-width samples on an Itakura region that computes
33.3% of the G matrix (21,845 points), is 0.437 ms (21,870 clock cycles). Therefore, the cycle
time of g(i, j) achieves 20.01 ns, which is very close to the theoretical one (1 clock cycle).

The FPBA is not specifically designed to calculate the DTW but rather to speed up
several computing stages of biometric algorithms. Therefore, the performance is not as
competitive as in the DTW accelerators. The 256-width samples are in 32-bit floating-point
format, taking 15.8 ms to calculate the DTW in the same region as in the custom system.
The cycle time is 723.28 ns (29.0 clock cycles).

5.2. FPGA Resources

The devoted FPGA hardware resources and clock frequency are obtained from the
synthetized circuits on a XC3S2000 device and reported in Table 4. The incremented ratio



Appl. Sci. 2022, 12, 378 14 of 16

of FPGA resources for the FPBA and the custom systems, when compared with the first
implementation, are also reported in brackets. The FPBA is attached to the embedded
system, and therefore, the logic resources are incremented. The custom computing system
is built from a large set of dedicated arithmetic circuits and internal memories, significantly
incrementing the number of FPGA resources needed. Mainly, the CLBs (Complex Logic
Block), which mainly consists of LUTs (LookUp Table) and FFs (Flip-Flop), are incremented
by factors ×2.3 and ×5.2 for the FPBA and the custom system, respectively. The clock
frequency of the custom system is slightly increased due to the simplified architecture of
the fixed-point arithmetic circuits.

Table 4. Hardware FPGA resources (area ratio) and clock frequency.

MicroBlaze
Embedded System

FPBA and
Embedded System

Custom
System

CLB Slices 2393 5434 (×2.27) 12,537 (×5.23)

LUTs 4148 8999 (×2.17) 20,416 (×4.92)

FFs 2591 5663 (×2.19) 10,482 (×4.05)

MULT 18 × 18 7 11 (×1.57) 18 (×2.57)

BRAM 18 Kbit 16 16 (×1.00) 29 (×1.81)

Clock frequency 40 MHz 40 MHz 50 MHz

6. Discussion

The paper presents three different approaches to implementing an online signature
verification system on a low-cost FPGA family from Xilinx. Firstly, the IEEE 754 double-
precision data were replaced by simpler formats without degrading the algorithm biometric
performance. The simple-precision floating-point format is adequate for embedded systems
based on the 32-bit microprocessor MicroBlaze configured with internal FPU. The same
data format is used for the hardware FPBA, which accelerates floating-point computations
on data vectors. An alternative representation of real numbers is the fixed-point format
since arithmetic circuits are simpler and faster than their floating-point counterparts. This
data format is used by the custom computing system, which is built from a large set of
devoted arithmetic circuits.

Each of the three tested alternatives has its advantages and drawbacks. The MicroBlaze
embedded system provides a simpler and faster development cycle since the compiler au-
tomatically translates single-precision operations to FPU instructions. The system provides
a high flexibility because it could be adapted to different biometric algorithms by including
a new programming code. Nonetheless, execution time is limited due to the floating-point
operations on large data. The FPBA accelerates the processing time (×7.6) on floating-point
vectors, also providing a high flexibility. However, the programming effort is increased
since it is required to rewrite the code that must be accelerated as vector operations and
write FPBA instructions properly. Another drawback is the increase in FPGA resources
(×2.3). The last alternative is a custom computing system built from a large set of devoted
fixed-point arithmetic circuits and internal BRAM memories. This proposal features the
opposite advantages and drawbacks when compared to the embedded system, providing a
very large acceleration (×201) but no system flexibility. Furthermore, the implementation
area is noticeably incremented (×5.2), and the development effort is enormous due to the
large set of customized computational circuits and memories that must be managed.

Depending on the target, one proposal is preferred against the others. Taking a multi-
modal biometric system into perspective, a custom computing system could provide a
very fast execution time at the expense of a huge increase in both the FPGA resources and
development effort, which may not be justifiable. In such a case, the FPBA could be the
preferred option since it allows accelerating the processing time without increasing the
hardware resources, along with a reasonable development effort.
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