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Abstract
Due to the fact that the energy sector is in transition, there are goals for lowering the energy cost
with the use of renewables and batteries. This presents challenges to the system and the solution
is the issuing of energy communities that can be used to make electricity provision more clean
and secure. It is also to see how energy flexibility elements or elements on the consumption side
can make the system more efficient and cheaper, which is being done in this paper concerning
the day-ahead bid and batteries. Traditional day-ahead bidding methods have become costly,
mainly when the forecasted energy consumption differs from the actual consumption, which has
to be resolved by penalizing with an imbalance cost. This thesis is part of a more significant
project (Layered Energy System) that is to be deployed in Spain. Applying such changes to the
electricity system first requires becoming familiar with and understanding Spain’s context. The
first part of this thesis provides research to understand the Spanish regulatory framework, how
the market works, and the status of these technologies in Spain.

Following that, this thesis’s primary work is to explore how day-ahead market bid could
be improved through the use of batteries for better planning and error assumptions. It mentions
several day-ahead bidding strategies in the context of energy and batteries. And then selects
a subset (three) of the studied strategies and implements them, comparing their performance
on actual electricity data. Finally, selects the one that best fits various scenarios and require-
ments. A particular objective function is opted to be minimized with respect to the battery
constraints that involve the variables. A linear program will find the values that best fits
those variables at every time step t of a single day. The methodology is an improvement
over traditional predictive models. After comparing different strategies, Results show that
strategy one, namely "Stochastic Chance-constraint optimization", yields the best results. In this
strategy, the battery would have the freedom to maximize profit even if it sometimes increases
imbalance. The preferred error distribution for this strategy is the Gamma distribution. Using
a battery to offset imbalances can help to minimize total energy cost for a whole day (up to 26%).

The last part of the thesis is ongoing research about capacity traders and market perfor-
mance. It surveys the literature on trading strategies in various contexts and markets relevant
to capacity traders. The market performance in capacity trading needs to consider how well the
buildings can reach their desired capacity through bidding and selling. Performance metrics
that are typically used to evaluate those trading strategies were documented. This feature is
being worked on with python, but it will not be able to be shown.
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Collaboration
In collaboration with i.LECO NV

i.LECO is a company based in Geel, Belgium, conducted by a team with a long track record of
successfully completing and providing value to challenging smart energy projects and products.
"i.LECO" develops advanced solutions for a more sustainable world. They collaborate with
both B2C and B2B customers to reduce CO2 emissions and enable the seamless integration
of innovative technologies such as energy storage and electric vehicles into existing properties.
i.LECO was founded in Q1-2019 with the aim of empowering and accelerating the necessary
green energy transition through innovative software, with a final focus on the future expected
network structure of "local energy communities." [87]
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Chapter 1

Introduction

In the light of increasing populations, more significant energy demands, less abundant, and
more costly traditional energy sources, it is becoming imperative to change the approach to
energy usage. For decades, fossil fuels have been used to create electricity, but they have several
drawbacks. They damage the environment, are non-renewable and unsustainable, and the
extraction of fossil fuels is risky. The approach towards using renewable energy and energy
storage systems is a must for a better and more sustainable future. If this target is reached, an
expected reduction of a significant amount of greenhouse gas emissions will occur. Increasing
the energy system’s flexibility is necessary to make this transition possible to compensate for
the variability of the renewables. Energy communities are essential to address the challenge of
climate change. The strategy of the EU for 2050, defined as "Clean package", acknowledges the
need for regulatory frameworks which empowers renewable-based self-consumers (also referred
to as prosumers) to generate, consume, store, and sell electricity back to the grid.

The technology for households, businesses or buildings to generate their own energy has become
readily accessible, called self-consumption. Understanding what is going on in the energy market
has also become possible, thus allowing a household to optimize its intelligent energy system. At
the same time, everyone wants to keep the energy system as reliable as possible. Due to the fact
that the energy sector is in a transition phase, there are goals for lowering the energy cost with
the use of renewable energy and the introduction of batteries. This presents challenges to the
system and the solution is the issuing of energy communities that can be used to make electricity
provision cleaner and more secure. It is how flexible elements or elements on the compensation
side (like batteries) can make the system more efficient and cheaper, which has been done in
this thesis in the day-ahead bid using a battery. Grid-scale battery energy storage systems are
rapidly becoming realistic energy solutions as battery technology advances [117]. As a result,
there has been an increase in interest in discovering new and efficient battery applications in
power systems [82]. More industries will concentrate on the development and construction of
the battery as a grid-scale energy storage system. The battery energy storage system (BESS)
will engage in numerous marketplaces and profit from various services as its capacity grows [33].

Making bidding decisions and allocating BESS capacity have become critical challenges. In
the energy sector, retailers usually buy energy on the day-ahead market. The day-ahead
market is a financial market in which market players buy and sell energy at specific day-ahead
prices for the upcoming day for every timestep of the day. For example, a retailer puts a bid
on how much he thinks his clients will consume for the next day and during the next day
if his forecast varies from the actual energy consumption, he is penalized with an imbalance
cost. Traditional techniques are limited to forecasting the energy using historical data without
considering the battery, which can be costly when there is a deviation between the forecasted

3
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data and the actual data of the next day. That is why a battery would be an excellent addi-
tion to this system; however, the battery can be used in various ways, which this thesis will
mention. One of the goals of this thesis is to introduce, address and compare different day-
ahead bidding strategies, considering a battery with constraints exists and the scheduling of the
battery operation when the next day comes in order to minimize energy cost and maximize profit.

Locally produced energy can be used for self-consumption, fed into the grid at specific rates,
stored in energy storage systems, or traded with other local consumers and vice versa. In
recent history, energy markets have been utilized as a reliable means of connecting buyers and
sellers. Since the late 1990s, computers have increasingly been employed as intelligent agents to
trade on behalf of human operators [66]. This viewpoint is similar to the resource allocation
difficulties seen in real-time trading marketplaces. Another goal of this thesis is to look into the
use of algorithmic trading as an efficient mechanism for managing energy demand for households
with variable power supplies. Zero-intelligence (ZI) and Zero-Intelligence Plus (ZIP) trading
algorithms are applied to this problem in a continuous double auction environment (more to
read about it in section 5.1).

This thesis is part of a more significant project (Layered Energy System (LES) model [37]) that
is yet to be pilot in Spain. This topic is essential to address, and much work is being done on it
with regards to batteries in the day-ahead markets in the context of energy communities in Spain.
The rules and regulations need to be understood and analyzed in order to pilot this project in
Spain (the technical work). Research has been done to understand the Spanish Reg-
ulatory framework, to understand how the market works and to understand the
status of these technologies in Spain. This should help apply the concepts being developed
by i.LECO then transfer how they can be implemented in the Spanish context. Once familiar
with these, the technical task comes next, which is exploring how the battery can be used
for a battery and cheaper bidding strategies in the day-ahead energy markets in
Spain. After obtaining an algorithm that allows the battery to optimize interaction with the
day-ahead energy market, ways to use this algorithm in the context of energy trading have been
explored. Following that, the thesis will introduce capacity traders and analyze traders’
performance and findings when a python simulation is applied. It will also discuss
ZIC and ZIP traders in a capacity trading setting. The whole point of this is to make
energy cheaper for the consumers and prosumers and maximize profit.

1.1 Contributions
• The Spanish regulatory framework chapter introduces definitions, rules, and regulations

in the Spanish context. These define what is currently possible in Spain and how it will
possibly improve in the near future. It also mentions how projects like the LES (section 4)
can be applied in Spain and what still needs to be improved.

• Following that, the literature review chapter provides an introduction to the domain. Day-
ahead bidding, battery operation and capacity trading are presented, thereby highlighting
influential papers while paying attention to work focusing on bidding strategies, battery
operation and trading mechanisms.

• The LES bidding chapter is then introduced to show the work that has been done in
this thesis. The chapter shows different strategies on how the battery can be used to
improve the day-ahead bidding stage and how the battery, considering its constraints,
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can be optimally scheduled for the following day at every timestep t in order to minimize
energy cost and maximize profit eventually.

• When addressing the Continuous Double Auction, it is important to keep in mind that
many publications proposing new trading methods used their own version. However, it is
not always visible how they compare to one another; thus a summary of the overview is
provided along with the key auction characteristics.

• When a household or a business, generates its own energy or receives energy from its
retailer, there will be three conditions. Condition one is when the household does not
use all its energy, there will be excess energy at a specific timestep t. Condition two is
when the household has consumed all of its energy, it still needs more energy at a specific
timestep t. Condition three is when the household uses up all of its energy and does not
need any extra. A trading mechanism can happen in that case. If a household needs
extra energy at timestep t, another household with extra energy can undergo a trade
and provide him with what is necessary. Following that, different metrics that market
performance of capacity trading are looked into. This is still an ongoing research.

5
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1.2 Problem Statement
Spain is a phase where there is a huge transition in the energy sector. Because of the growing
use of renewable energy sources, the existing energy system is experiencing imbalances, and the
expenses to address them are expensive. There are possibilities for congestion, high dispatch,
surplus and shortage, forecasting challenges, and less typical reserves. The energy crisis refers to
the concern that the world’s demands on the finite natural resources needed to power the world
today are decreasing as demand increases. Natural resources are in limited supply. Energy is
also becoming more costly, so the goal is to minimize energy costs and maximize profit in Spain.
The objectives of this thesis are as follows.

1.2.1 Objectives
1. Identify the Spanish energy context in relation to i.Leco’s Layered Energy System (LES)

model.

2. Explore how the day-ahead market bid could be improved through use of batteries for
better planning and error compensation. Opt to solve the problem from a mathematical
programming perspective. A particular objective function is opted to be minimized with
respect to constraints that involve the variables. A Linear program will find the values
that best fit those variables at every time step t.

3. Ongoing research: discuss capacity traders and delve into different metrics for measuring
market performance in capacity trading.

1.3 Thesis Outline
Chapter 2 draws light upon the Spanish regulatory framework for local energy communities
and collective self-consumption. It introduced how the Spanish regulations have improved and
the current regulations and markets, roles and operators concerning i.LECO’s LES model.

Chapter 3 provides an introduction to the domain where relevant related work is described.

Chapter 4 introduces, discusses, and compares the strategies applied to the day-ahead bidding
and battery operation to minimize energy cost. That done, a sample of results is demonstrated.

Chapter 5 introduces the concept of auctions and delves more into continuous double auctions
(CDA). Out of many trading agents, two agents are mentioned more in detail: ZIC and ZIP.
Following that, an ongoing research is about capacity traders and the market performance
metrics are discussed.

Chapter 6: provides the conclusion that reflects what has been done and what was learned.

Chapter 7: provides all the references used for this thesis.
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Chapter 2

Spanish Energy Regulatory Framework

2.1 Self-consumption and Local Energy Communities

Figure 2.1: An (local) Energy Community
[9] taken with permission

In light of energy production through renewable energy sources, an individual can produce his
energy. Self-consumption is when an individual fulfils his energy needs through his own energy
production, preferably renewable energy sources like PV solar panels. 100% self-consumption is
when the individual can provide all of his energy needs through solar and not need the grid.
The evolution and production of locally consumed electricity are becoming a must with the
initiative to battle climate change and avoid using fossil fuels and significant investments in
grid infrastructure. An energy community is where citizens participate in the energy system
and engage in various cooperative energy actions [16]. A local energy community (LEC) is, for
example, when people who live on the same street can come together and install a collective
number of solar cells, or a group of friends can invest in wind turbines and start sharing this
generated energy among each other. If there is an excess of local energy production, selling
power to the main grid or other nearby consumers is an option. Local energy communities
involve citizens and public and private actors who produce, sell and consume sustainable energy.
The local power is shared within the community and can also be sold to the grid. Figure 2.1
is an example of what an (local) energy community is. A group of houses can produce their
energy and be connected to the main grid if they need more energy from the primary source.
Community energy projects are characterised by varying degrees of community involvement
in decision-making and benefits sharing [120]. The role of the local energy community is to
facilitate the proactive participation of the broad sectors of society on the chain of energy value,
always from a local position regarding the territory where they operate and the socio-economic
benefit they generate [58].
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Figure 2.2: How an (local) Energy Community works
[110] taken with permission

2.1.1 European definition and framework
A European Union (EU) package called the "Clean Energy Package" identifies some categories
of energy community initiatives as ’energy communities’ in European legislation [16]. Another
way energy communities are defined is that it is a way to somehow ’organise’ collective energy
actions around open, democratic participation and governance and the provision of benefits for
the local community members [16]. In the Clean Energy Package, there are two legal definitions
of energy communities. Citizen energy community contained in the revised Internal Electricity
Market Directive (EU) 2019/944 and renewable energy community contained in the revised
Renewable Energy Directive (EU) 2018/2001 [16].

Article 2(16) Renewables Directive defines ’Renewable Energy Community (REC)’ as
an autonomous legal entity, based on open and voluntary participation, and effectively controlled
by shareholders or members that are located in the proximity of the renewable energy projects
that are owned and developed by that legal entity[102]. In the RECs, the shareholders or
members of which are natural persons, SMEs or local authorities, including municipalities
and the primary purpose of which is to provide environmental, economic or social community
benefits for its shareholders or members or for the local areas where it operates, rather than
financial profits. The RECs are entitled to produce, consume, store and sell renewable energy
(without using fossil fuels) [102].

Article 2(11) Electricity Directive defines ’Citizen Energy Community (CEC)’ as a le-
gal entity that is based on voluntary and open participation and is controlled effectively by
members or shareholders that are natural persons, local authorities, including municipalities,
or small enterprises [102]. Its primary purpose is to provide environmental, economic or social
community benefits to its members or shareholders or to the local areas where it operates
rather than to generate financial profits [102]. The CECs may engage in generation, including
from renewable sources, distribution, supply, consumption, aggregation, energy storage, energy
efficiency services or charging services for electric vehicles or provide other energy services to its
members or shareholders [102].
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Figure 2.3: Comparing REC and CEC
[102] taken with permission

Trading energy within communities needs a digital system for counting, negotiating and commu-
nicating. The work aims to define market mechanisms that can be a tool to match preferences.
Energy communities face legal and commercial barriers, but new EU directives will make it
possible in the future.

2.1.2 Current regulatory framework in Spain
In Spain, the framework duplicates the rights, privileges and responsibilities from the EU
directives for citizen and renewable energy communities [51]. Royal Decree 244/2019 completes
the Royal Decree-Law 15/2018 by extending self-consumption to a group of people beyond
single owners. A self-consumption facility may now be located in more than one dwelling. Power
surpluses may be shared with nearby consumers located in other buildings or fed into the grid
[102].

Collective Renewable self-consumption:

• Article 2(14) - Renewables Directive defines Renewables self-consumer as a customer that
operates within his property (allowed by the state) who generates renewable energy for his
consumption and may sell or store his excess of energy to another household that is not
a renewable self-consumer (energy generation is not the consumer’s primary profession)
[102].

• Article 2(15) - Renewables Directive defines jointly acting renewables self-consumer or,
in other words, collective self-consumption as a group of two or more renewables self-
consumers collectively functioning in fulfilment of the point in Article 2(14) who are
located in the same building or multi-apartment block [102].
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Figure 2.4: The link between renewables self-consumption as an activity and renewable energy
communities as a way to organise

[102] taken with permission

According to the elEconomista.es, the government is going to amend self-consumption (whether
single or collective). It will give further benefits to the local energy communities (a new type
of legal figure derived from European regulations) with the ability to produce, consume, store
and sell energy (principally renewable green energy) using its facilities, without its participants
losing their status as final customers [32]. According to Spanish Government (Gobierno De
España) and the minister council, it approves the Royal Decree that regulates the conditions of
self-consumption of electricity [40]. This means that the standard enables the figure of collective
self-consumption, which will promote this formula in neighbouring communities.

2.1.3 Development of Self-Consumption in Spain
Retailers in Spain have an active role in the development of self-consumption. Many retailers
offer their clients the installations and resolution of procedures for a self-consumption PV solar
panel installation as a service [90, 43, 13]. These offers are mainly made at an individual level.
As the regulations regarding collective self-consumption and local energy communities progress,
self-consumption projects for energy communities are beginning to be explored and implemented
[28, 99]. Schemes regarding compensation for extra energy put back into the grid are now
available. The retailer is then free to offer another price or formula for compensation of surplus
energy to be specified in the contract with the client. Generally speaking, retailers put a fixed
price per every kWh imported back into the grid; other retailers apply the market price, which
on average is 0.05 euro/kWh. There are many examples from different retailer offices like Fac-
tor Energia, Iberdrola, Estabanell Energia, Holaluz, Bon Preu Energia and others [90, 43, 13, 44].

From the financial point of view, self-consumption deployment entails additional resources
mainly stemming from consumers, which helps diversify centralised energy investments [46].
At the socioeconomic level, distributed generation increases the number of actors that share
the benefits of electricity generation activity, historically concentrated in a reduced number of
large companies [46]. Distributed PV is associated with higher rates of jobs creation per MW
than other energy sources, including large-scale PV [11]. For example in Iberdola [57], if the
customer is a prosumer and there is an energy surplus, they compensate their customer at a
rate of 0.051 euro/kWh. How to pay:

• If the contracted power is equal or less than 10kW:
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• If the contracted power is between 10kW and 15kW:

2.2 Collective Self-Consumption in Spain
European directives in relation to the "Clean Energy" have been translated to a national legal
framework in addition to "self-consumption" and "energy communities" [60]. This framework
made a big change in Spain because the past legislation was a barrier for self-consumption
[95, 80]. There is no detailed legislation on energy communities that exists in Spain yet [45].
Self-consumption and Collective self-consumption (CSC) is a concept that allows citizens to
organise their participation in the energy system and open the way for new types of energy
initiatives in Spain.

2.2.1 Regulatory Developments and Requirements for CSC
With the rise of the Royal Decree-Law 15/2018, it represents three main points related to
collective self-consumption which are:

• Cancellation of the sun tax [115, 41, 45] (A tax that was imposed on instantaneously
consumed locally PV generation)

• Simplification of the classification of self-consumption facilities.

• Authorization of collective self-consumption.

The Royal decree 23/2020 (23 June 2020) mentions energy communities and aggregators, only
defining their general purpose and nature [45]. In addition to that, with respect to the Royal
Decree 244/2019, energy fed to the main grid is economically remunerated and self-consumption
installations shared by several customers are permitted [41, 45]. This means that it is possible
to share solar panel installations with other self-consumers. However, in order to share energy
with others in the form of collective self-consumption, at least one of the following requirements
must be met [6, 45, 46]:

• Self-consumers must be in a low voltage distribution grid in the same transformation
center.

• There must be a max distance of 500 meters between the PV plant and the self-consumers.

• The production of the PV system and the self-consumers must be registered in the same
cadastral reference (taking into account the first 14 digits)
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In all ways of self-consumption, the consumer and the owner may be different natural or
legal persons and storage elements are allowed to be installed [45]. It must be noted that
consumers who are sharing a self-consumption installation (most probably a PV solar panel),
must communicate together and send to the distribution company (individually or through a
marketer) a contrato de acuerdo de reparto which is mentioned in more detail in Section 2.2.3.
The Royal Decree 244/2019 establishes two types of connection modalities: [6]:

• Through the public network: where the participants are connected to a low voltage
distribution and a bidirectional meter will be placed. The bidirectional smart meter
will be in charge of accounting for the production and consumption of energy from the
installation.

• Through direct connection to the internal network: the system is connected to
the internal network of the associated self-consumers.

2.2.2 Energy Surplus Compensation and Billing Schemes for CSC
The way Spain implements the net billing scheme and the several forms of collective self-
consumption is as follows [6, 45, 46]:

1. CSC without surpluses: Participants are implementing self-consumption installation
and using up all the energy without sending back excess energy into the electric network.

2. CSC with surpluses not eligible for compensation: Energy surplus is sold to the
electricity market. The producer is the installation owner, and he will formalize the sale
of the energy surplus.

3. CSC with surpluses under compensation: Consumers get financial compensation
for the surplus that they gave back to the electricity grid. The marketer, for whom each
user has contracted the supply, is in charge of compensating its customer for the excess
energy cost at the end of each billing period.

People producing less than 100kW will be exempt from the obligation to register as an electricity
supplier and will be subject only to technical regulations [45, 46]. The generation installations
are connected to associated consumers’ internal network (direct lines) or the low voltage network.
The law says those with the methods of supply with self-consumption with a surplus may
inject excess energy into the distribution network from their production facility. Those without
surplus must install an anti-fouling mechanism to prevent the injection of surplus energy into
the distribution network [45, 46, 6]. Regarding grid access, production facilities of up to 15 kW
located on urbanized land and meeting the urban legislation requirements will be exempt from
the need for access and connection permits [45].

An interested person must inform the distributor of the type of self-consumption they have at
the time and their interest in the compensation modality. In addition to that, if the installation
produces more energy than is consumed, the marketer with which they have contracted the
electricity supply will compensate them financially for the kWh put back into the grid at the end
of each billing period. Some requirements to benefit from the surplus compensation mechanism
are [1, 45, 46]:

1. The energy must be renewable

2. The installation power cannot exceed 100kW (if exceeded, it is sold through the wholesale
market).
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3. The consumer must sign a single supply contract for consumption with a marketer.

4. There must be an agreement on ’surplus compensation’ between the consumer and
producer.

5. The consumer will not have a financial benefit; it will only be compensated for the energy
it did not consume.

At the end of each billing period (max one month), the bidirectional meter of the corresponding
installation is read, and the marketer applies a discount on the electricity bill based on the
KWh that it has discharged [1, 46]. The electricity exported to the grid, at times when PV
generation exceeds local demand, is rewarded at a price that depends on the wholesale market
price. Every month, the retailer charges the consumer the resulting net amount, together with
capacity-dependent costs and taxes. Net balance cannot be negative. Suppose the remuneration
for the electricity exported to the grid is greater than the cost of the imported electricity. In that
case, the balance is zero, and, in practice, the consumer is giving away the excess of generation
at no cost [46].

Examples of collective self-consumption and local energy communities (LEC) are going to
be mentioned in section 2.3.

2.2.3 Contrato de Acuerdo de Reparto
As mentioned earlier, the Royal Decree 244/2019 of April 5 mentions, within other features,
collective self-consumption, which is where consumers can group and share, in an agreed manner,
an energy production facility that is built close to them (based on renewable energy production
like PV solar panels). For the locally generated energy to be adequately distributed among
the participants, the Royal Decree 244/2019 sets up a set of definitions for these modalities
of self-consumption [6, 39]. Participants in collective self consumption have to sign a deal
which is the Contrato de Acuerdo de Reparto which is a deal agreement contract signed by the
participants of the installation including the conditions of how the energy will be distributed,
prices set and others [6, 39]. In relation with the provisions of Law 24/2013, Royal Decree
244/2019 and the prior Agreement of the Delegate Commission of the Government for Economic
affairs, it follows the conditions in the contract [39]:

The net hourly energy generated individually from those participants i who carry out col-
lective self-consumption or consumers associated with the facility through a network, ENG h,i,
will be:

ENGh,i = βh,i ∗ ENGh

Where ENGh is the total hourly net energy produced by the generators and βh,i is the hourly
distribution coefficient in hour h among consumers who participate in the collective self-
consumption of the energy generated in hour h [39].

• For each consumer and participant in collective self-consumption, this coefficient will
take the values that appear in an agreement signed by all participants of the collective
self-consumption and notify the distribution company in charge of reading the consumption.
The value of these coefficients may be determined based on the power to be billed for each
of the participating consumers, of the economic contribution of each consumer for the
generation installation, or any other criteria provided that there is an agreement signed
by all participants and provided that the sum of these coefficients βh,1 of all consumers
participating in the collective self-consumption is the unit for each hour of the billing
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period. The coefficient will take the value of 1 for each hour of the billing period in cases
where there is only one consumer associated with a nearby installation via a network [39].

• The distribution coefficient’s value may differ for each hour of the billing period as provided
in the agreement signed by all the participants. The sum of the coefficients of all the
consumers who participate in collective self-consumption is the unit for every hour by
itself [39].

• The value of the coefficient can be changed once a year [39].

If there is an agreement on the hourly energy distribution between the participants, the
information must be sent to the company distributor with the following [39]:

1. The consumers must send a plain text file (.txt) containing the value of their coefficients
with the value of all the year’s hours. The file name will be the corresponding year with
".txt", with a field separator ";", and the decimal character will be the comma ","

Field Information and/or units Long. Kind long. fixed Example

CUPS Universal point Code Supply 22 Chain No
Time Time that will take integer values 1 to 8760 4 Whole No 543

Coefficient Coefficient that will be a number 8 Decimal No 0.134564

Table 2.1: CSC Contract format

2. Consumers may cancel the value of the coefficient in the current year and up to the next
20 years.

3. If, at the beginning of the next year, the distributor doesn’t send a new set of coefficients,
it will use the one of the year before.

Suppose all participants in self-consumption agree on constant coefficients throughout the year.
In that case, the same procedure has to happen as mentioned earlier, except that it will be a
single value instead of a different value for every hour of every consumer. [39, 6].

Field Information and/or units Long. Kind long. fixed Example

CUPS Universal point Code Supply 22 Chain No
Coefficient Coefficient that will be a number 8 Decimal No 0.134564

Table 2.2: CSC Contract with a single constant coefficient

The distribution company in charge must apply the distribution of energy with accordance to
the coefficient βh,i as mentioned by the participant’s signed agreement. In a case where this
agreement was not done, the distribution coefficients will be calculated accordingly: βh,ii = Pci∑

Pcj

where Pci is the maximum power contracted to the associated consumer i and ∑
Pcj is the sum

of maximum powers contracted by all consumers who participate in collective self-consumption
[39]. In other words, the energy will be spread out equally among the participants because they
would have equal coefficients.

Examples of the contract are found in Section 2.3
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2.2.4 Main challenges and developments of local energy communi-
ties in Spain

With continuous development in the Spanish regulations, there is still a lot to regulate concerning
local energy communities and collective self-consumption. For example, one of the requirements
for CSC is that there must be a maximum distance of 500m between the energy resource and the
self-consumers. Another example is the agreements for CSC, where the energy spread among
the participants is based on a fixed coefficient that can be only changed once a year. These
mentioned CSC requirements (including the ones in section 2.2.1) are limiting. There needs to
be more flexibility in this sense in order to maximize the benefit of local energy communities.

There have not been many experiences in order to make rules and regulations in the local energy
communities sector. Spain is still in a phase where many pilot projects are happening, and as
more projects happen, the rules and regulations are expected to evolve in the following years.
Two significant differences, however, remain; an energy community represents an organizational
format that requires a legal entity underlying several governance-related rules, and its potential
activities go beyond self-consumption [45]. With increasing projects, the regulations are expected
to become more apparent since local energy communities are new in Spain. Projects will closely
be followed, and step by step, upgrade the regulations for local energy communities. Based
on these Pilot projects, maybe better and clearer regulations will be put in one or two years,
including taxation and others.

2.3 Examples of applications in Spain
With the examples below and the surplus regulations mentioned in 2.2.2, if there is a surplus,
participants can either return the energy to the grid or sell it to neighbours with compensation
on the bill at the end of the month (registered to return surplus of energy).

2.3.1 Agreement of Contrato de Acuerdo de Reparto
Assume three houses live on a residential street just like the figure 2.7 or three apartments in a
building just like in figure 2.5. These three houses decided to share an installation and place it
on one of the houses’ roof. As mentioned in the contract, the participants have to agree on how
the energy be distributed on an hourly basis for the whole coming year.

• The coefficient can different for every hour of every day with sum of the coefficients at
every hour across the participants in a single CSC is equal to one. Different people/houses
use electricity differently and the table below is an example of how the coefficients could
be.

CUPS: ES12345678910121314152
Hour Coef. of Participant 1 Coef. of Participant 2 Coef. of Participant 3
1 0.200000 0.300000 0.500000
2 0.350000 0.450000 0.300000
. . . .
. . . .
8759 0.543210 0.123456 0.333334
8760 0.200000 0.300000 0.500000
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• The coefficient can be a constant having the sum of all the coefficients across the participants
in a single CSC at every hour is equal to exactly one.

CUPS: ES12345678910121314152
Coef. of Participant 1 Coef. of Participant 2 Coef. of Participant 3
0.200000 0.300000 0.500000

• The coefficient can be equal for all the participants: in this case 3 houses, meaning each
house will get 0.333333 of the energy generated by the PV panels for every house of every
year.

2.3.2 CSC and LEC
Some examples of self consumption are mentioned in [7]:

• Apartment Building
Collective self-consumption installation has multiple uses, and in this case, it is in a
residential building. It can be either a simple installation to cover compensation of
common areas like the elevator or a more complex installation that intends to supply the
needs of the apartments in the building.

– Individual Neighbor : if some apartment wants to install a PV panel for their personal
use, they should get the approval of more than half of the people living there. Once
they have agreed, the person can apply any self-consumption modality as long as it
follows what the regulations allow.

– Community Installation: in case more than one apartment in a building want to
share an installation, there should be an agreement, as mentioned earlier.

Figure 2.5: Collective self Consumption in a Residential Area [7]

The image above is an example of a community installation in a building. The PV
production will be distributed through an agreement (as mentioned in section 2.2.3)
between the participants that includes a distribution coefficient decided between each
other. Apartment 1 has 50% of the production, apartment 2 has 10% and apartment 3 has
40%. If the neighbors are consuming it all, they will use up all their part of production,
and if not, they’ll get a compensation for it.
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• Industrial Estate
As figure 2.6 shows, an industrial collective self-consumption facility in a location such as
a business park has many similar aspects with the previous case. In this example, there
exist three self-consumers which are two industries and a farm and they all use PV energy.

Figure 2.6: Collective self Consumption in an Industrial Estate [7]

To install a CSC system in a certain location, a negotiation between the owners of the
buildings should be done. For example, it’s possible that a company has a warehouse
with a large roof where they PV self-consumption installation is found but that company
doesn’t want to give its own surplus to the grid but instead give it to it’s neighbors. If the
company doesn’t have enough space, they can negotiate with others to install PV panels
on their roofs or other common area.

• Residential Area
Residential areas, towns or places with single-family houses are in the category. As
mentioned in previous sections, they should abide by the requirements: 500m of maximum
distance from the user for the PV located, connected to the same low voltage distribution
and located in the same cadastral area.

Figure 2.7: Collective self Consumption in a Residential Area [7]

As figure 2.7 shows, one person in the neighbourhood decided to share his PV self-
consumption installation with his neighbours. These three houses decided to use a
standard installation and place the panels on that house’s roof. Whatever the terms of the
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distribution, it all goes back to the contract between the distributor and the autonomous
community.

2.3.3 Current Energy Community Projects
1. Crevillent – A local energy community (LEC) in action: Crevillent, a municipality

in the province of Alicante located in southeast Spain with around 30,000 inhabitants, is
said to be one of the country’s driest places. The Crevillent electric cooperative, Grupo
Enercoop, led and set out to make the best use of the sun which is a vital resource to
make Crevillent a reference Local Energy Community in Spain and Europe and to show
how the energy transition can start successfully at the local level [83]. The city council,
Generalitat Valenciana, and IDAE will support the LEC project in Crevillent in which
they call it Comptem is short for Comunidad para la Transición Energética Municipal.
They will promote energy and electricity self-consumption through using public spaces,
rooftops of buildings or industries to set up collective PV solar panels [71].
With the future put in mind, by 2030, they forecast that the Comptem project will contain
almost 5 MW installed in the urban environment of the municipality between PV plants
and self-consumption services. Additionally, using its renewable generation, this capacity
will cover more than half the population’s energy needs, and the other part will be from
sources of renewable energy already installed by the municipality[71].
Comptem will have a mobile application where citizens can check their information in
detail in real time of their consumption and bill and through which they have a personal
advisor to optimize the use of the energy they have [35]. On the other hand, digital
information panels will be set up with large influx where information on the production
and consumption will be displayed thus introducing energy awareness and local life [35].
This pilot project is part of a bigger EU project called "Merlon".

2. Castilfrío de la Sierra (Soria) - first rural energy community: Under Hacendera
Snolar, the motivation is to cover part of the municipality’s electricity demand and help
reduce carbon emissions and energy costs for the town and the people who live in it
[15]. A pilot project is going to be launched centred on collective self-consumption and
citizens involvement by the collaboration of The Red Eléctrica Group, the Megara Energía
cooperative, the municipality of Castilfrío de la Sierra and Caja Rural de Soria [15]. Raquel
Arias, from Megara Energía, mentions that the initiative responds locally to a global
problem since clean energy contributes primarily to fighting climate change.
The Solar Farm of Castilfrío de la Sierra contains two PV solar plants of 7.36 and 5.5 kWp
for self-consumption that are on the two municipality buildings’ rooftops (social centres)
[15]. The mentioned installed, already happening, supplies electricity to a big part of the
town (town hall, social centre, medical offices, some houses, water pumps, etc.), which
saves around 60% of the electricity bill [15]. Additionally, it reduces the carbon footprint
by 6.98 Tm of CO2 per year and reduces energy expenditure by 13.64 MWh yearly in the
first phase (60.27% annual savings) [15].

2.4 The Spanish Energy Market
The Spanish energy sector was liberated in 1997. The actors’ tasks have been separated from the
generation to the promotion of energy to the end-user [81]. The market players of this product,
energy, for Spain, the Iberian Electricity Market (MIBEL), is supervised by the National Com-
mission of Market and Competition (CNMC). MIBEL is made up of players who produce energy
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and others who consume it [79]. The producers are responsible for generating electricity, either
for their consumption or for third parties. They are also responsible for building, operating
and maintaining their production plants. Multiple roles intervene between the source of energy
production and its consumption.

PPAs or Bilateral Contracts are a commercial contract between two parties where one
party undertakes placing the power in the network, and the other party receives the electricity
market [36]. These contracts have to be known to the market operators, and system operators,
who are responsible for verifying and validating the contracts in technical terms and the com-
mercial relationship with the parties involved that directly affect the rest of the market [36]. A
long-term contract between an energy generator and a buyer that represents demand can be
directly a big consumer or a retailer that represents several consumers. There are two types
of PPA: the Virtual PPA (based on financial agreement) and Physical PPA (which includes a
direct physical delivery of energy from a specific renewable plant) [92].

2.4.1 Markets
There are multiple energy markets in Spain, like the day-ahead market, the intraday market.

The day-ahead market is the market that is more important concerning this master thesis.
The day-ahead market, an essential element of the electrical energy production market, attempts
to perform electrical energy transactions by submitting selling and takeover bids for electrical
energy on behalf of market agents for the twenty-four hours of the next day. OMIE will be used
by buying and selling agents in Spain to offer their bids to the day-ahead market [88]. The
day-ahead market in Spain is hourly. Today, the retailer bids how much he thinks his clients
will consume for the next day. When the next day arrives, his predictions vary from the actual
consumption, and he is penalized with an imbalance cost.

Intraday means "within the day". The intraday markets are an important tool that allows
market agents to adjust the day-ahead market’s resulting schedule by submitting selling and
takeover bids for energy, according to expected needs in real-time [88].

2.4.1.1 Free vs Regulated Market:

When people are asked if they are in the regulated or free markets, they often do not know how
to answer this. It is essential to know about the two markets, as in what changes is the price
that will be paid for in return for energy. It goes back to where the energy is being generated
and the utility companies which sell the energy, which at the end of the month, sends a bill to
the consumer [112].

Consumers can choose whom they are going to pay the electricity bill to (a company that sells
electricity) [112]. The process of freeing the market is not yet complete, and the regulated
market is still there. The two markets contain the following on their electricity bill [112]: Access
fees (which are set by the government, and they are used to pay the costs of maintaining the
grid and transportation of electricity) and the taxes. What varies between the two markets is
the price charges for producing electricity.

• Regulated Market: the PVPC tariff (Voluntary Small Consumer Price), where the kWh
price changes every hour and every day depending on the supply-demand between the
person producing energy and the person selling the energy to the consumers. This means
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that the bill will rise if energy is consumed during expensive times of the day and down if
energy is consumed at cheaper times. For example, one kWh at 1 pm is sold at 1 euro
while at 1 am it is 0.3 euros. This is because demand is different at different times of the
day, which makes the price vary. It is allowed to pay the PVPC rate as long as the power
contract is lower than 10kW, and only certain authorized companies can do that [112].
An auction’s results depend on supply and demand to set the price for the energy used
in this market. The price is affected by external trends like, for example, during winter
or summer in Spain, the energy is more expensive because people tend to use heaters
and air conditioners; however, in spring and autumn, the energy is cheaper because the
temperature is moderate.

• The Free Market is when the company sets the price of kWh and puts it in the contract.
It would already know how much the customer is going to pay [112]. For example, the
contract would say that the customer will pay 0.5 euros for every kWh, and that will be
constant whether it was during peak times or not. Sometimes, these companies/retailers
make discounts and supplies combined like electricity and gas, which are usually stable for
the consumer.

2.4.2 Roles and Operators
• Market Operator: is the one who manages the auction system for the purchase and sale

of energy in the daily and intraday market, and in Spain, the market operator is called
OMIE [88]. OMIE processes purchases and sales offers, matches offers and communicates
the results [88]. It settles and communicates the payments and collections in the market
and sets the operation rules and regulations [88]. OMIE is responsible for performing the
billing and liquidation of the energy that is purchased and sold [88]. The ones who sell
make offers to sell, and the ones who buy make offers to buy. This market takes offers
from both and calculates a price per kWh that is common for all. After the first match,
the final price is re-adjusted according to technical constraints to obtain a viable daily
program. To resolve those technical constraints comes with an extra cost added to the
cleared price from the previous market clearance.

• Transmission System Operators (TSO): Red Electrica de España (REE) is respon-
sible for the transmission of electricity across Spain. REE is responsible for managing the
system technicalities like guaranteeing security, quality and reliability of the supply and
balancing the production and demand at any given time. It sets the regulations of the
technical operations of the system, and it settles the payments and collections related to
the guarantee of supply. It provides auxiliary services, and deviation management [100].

• Distribution System Operator (DSO): is responsible for distributing the electrical
energy; in other words, they expand, maintain and operate the distribution networks to
transfer the energy to the end-users. In Spain, the voltage is below 220kV. Actors can use
the distribution lines to distribute the electricity to the end-user by paying some tariff [94].
There are several DSOs across Spain, each of them is responsible for a different territory,
however the big ones are: Endesa, Iberdarola, Union Fenosa, HC Energia and Enel
Viesgo. The DSOs are responsible for expanding the network following demands for
electricity supply, measuring the final consumption (to set the monthly bill), ensuring good
service (to avoid blackouts and others), applying tariffs to customers, maintaining the
database of supply points updated and control in real-time and present annual investment
plans to the boards of the regional communities (Catalunya, Madrid, and others) [113].
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• Retailer is the one who operates in the free market and supplies electricity to the
customers [113]. The customers have an agreed signed contract with their freely chosen
retailer. The retailer is the one who sends the bill to the end-user with which the price is
calculated based on the signed contract [4]. With power under 10kW, small consumers
can benefit from the Voluntary Price for Small Consumers (PVPC), a price calculated
based on the average hourly electricity prices (this choice is slowly fading away). Their
responsibilities include using the power lines from the DSO and delivering them to the
end-user by paying the tariffs for the use of the network, setting electricity rates for its
customers, and agreeing on certain services depending on the control. It is responsible for
buying energy that is sold to its customers in the wholesale market, pay the tariffs to the
DSO bills its customers for the services, and settles with the operators the purchase of
energy and all the stages included [113].

2.4.3 Spanish Energy Sector Setup
• The Spanish Electricity Sector - Today (2021) [97, 85]:

As of January 2021 aggregation activities are possible in Spain, with the format:

1. Large industries that can directly offer flexibility to the ancillary markets with at
least 1 MW.

2. Retailers with aggregated flexibility of at least 1 MW can participate in the ancillary
markets.

Practically, the aggregator and retailer have joint roles. The retailer can also act as an
aggregator if it can aggregate 1 MW and comply with the requisites of the ancillary
markets of the TSO. Flexibility services are limited to ancillary markets (TSO). The DSO
currently is not considered for flexibility services. The DSO is mainly involved when
installing a self-consumption plant to provide the needed permission or possible technical
changes that might be needed for the installation to be possible. Each retailer balances
its portfolio, acting as its own Balancing Responsible Party (BRP). The introduction of
the aggregator is a good development because, in the future, batteries will be involved in
the markets; right now, they cannot, but in the future, they can.

• The Spanish Electricity Sector - Future (2022+) [97, 85]: According to the
roadmap of REE, the aggregator will become a separate role from the retailer in June
2022. This means that a consumer can have two separate companies contracted, a retailer
that represents the consumer in the wholesale market and an aggregator that manages his
availability and flexibility to give services to other actors in the sector, initially only to
the TSO.
A key thing to be resolved is the compensation mechanism between the aggregator and the
retailer. Since the retailer predicts the consumption of its clients, it pays for the deviation
between predicted and actual consumption. However, suppose another party, such as the
aggregator, modifies a client’s consumption. There should be a mechanism so that the
retailer is not penalized for the interference of a third party.

• Data flow Between Sector Players [12, 10, 99]: Currently, in Spain, a smart meter
is installed at all points. Granularity is usually 1 hour and goes down to 15 minutes for
industries. The DSO collects this data daily, so it is not available on a real-time basis but
daily basis. The DSO usually cleans the data once a month for billing purposes and then
sent to the retailer. The DSO bills a fee to the retailer who uses this monthly consumption
data. The retailer receives this consumption data monthly and uses it to bill the final
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customer, applying its margins according to the price set between the retailer and the
consumer.
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Chapter 3

Literature Review

Throughout this chapter, related work that has been conducted up until this point in time will
be explored. Since this thesis focuses on energy day-ahead bidding, battery operation, and two
trading methods used in a CDA market, this chapter will briefly overview the work done in
these areas.

3.1 Day-ahead bidding and battery operations
A battery energy storage system will probably play an essential role in the future smart grid.
Applying an optimal day-ahead bid and knowing how to operate the battery is crucial in
minimizing energy costs and maximize profit. Paper [33] talks about applying an optimal
day-ahead bidding strategy and operation for the battery using Reinforcement Learning. Xiaolin
Ayón, María Ángeles Moreno, and Julio Usaola, in paper [8], mention a similar approach where
a probabilistic optimization method is proposed. It produces an optimal bidding curve to
be submitted by an aggregator to the day-ahead electricity market and the intraday market,
considering the flexible demand of the customers (based on batteries, for example). It also
considers the possible imbalance costs and the uncertainty of forecasts (demand or market
prices, for instance). Francisco Javier Eransus, in paper [38], suggests a simple methodology
to be used by renewable power generators to bid in Spanish markets to minimize the cost of
their imbalances. The optimal bid depends on the probability distribution function of the
energy to produce, the probability distribution function of the future system imbalance, and its
expected cost. Arnau Risquez Martin, paper [101], addresses modelling of bidding strategies
on the day-ahead electricity market. In his master thesis, Arnau applies strategies designed
with an overall objective of maximizing the power plant operator’s profit. In the master thesis
paper, [29], Carolina Contreras develops an optimization bidding method for a real-world case
study of a Spanish energy retailer that decreases the estimated imbalance cost. It is based on a
forecast of the system’s imbalance quantity and past imbalance costs, with new information
available after the day-ahead market gate closure for intraday market participation to affect the
imbalance quantity of the agent’s investment in a direction that reduces their possible imbalance
cost. In paper [82], Hamed proposes an optimal supply and demand bidding, scheduling, and
deployment design framework for battery systems. It considers a variety of design parameters
such as day-ahead and real-time market pricing, their statistical dependence, and the location,
size, efficiency, lifetime, and charge and discharge rates of the batteries. In paper [31], Saborni
Das and Mousumi Basu propose an optimum bidding approach that considers the uncertainty
of renewable energy resources and Demand-Response programs’ outage probability. Tent chaos
mapping is used to produce non-repetitive and adaptive load scenarios and all potential re-
newable power output scenarios within the confidence intervals. [31] proposes a bidding model
optimized using mixed-integer nonlinear programming, and the ’Value of stochastic solution’ is
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utilized to examine the efficiency of stochastic programming in incorporating uncertainty into
the bidding issue. Paper [124] addresses unit commitment (UC) difficulties while considering the
unpredictability of load and wind power generation. The UC issue is expressed as a two-stage
stochastic programming problem with a chance constraint that limits the likelihood of load
imbalance. Paper [61], proposes a two-stage stochastic optimization model to assist a prosumer
aggregator in defining bids for the day-ahead energy and secondary reserve markets. The
aggregator maximizes prosumers’ flexibility to reduce the net cost of purchasing and selling
energy and secondary reserves in both the day-ahead and real-time market stages. Scenarios are
used to predict the uncertainties of renewable generation, consumption, outside temperature, and
prosumer behaviours and preferences. Leon Haupt, in his master thesis [52], proposes a model
that incorporates battery cycle ageing through the use of a piece-wise linear cost function. This
method gives a close approximation of the battery deterioration mechanism of electrochemical
batteries and may be readily integrated into current market dispatch systems with a limited
time window. In paper [18], it mentions that each agent represents a user and this agent can
either bid as a buyer or ask as a seller, and this happens in order to maximize the user’s profit.
The paper continues to say that after several rounds of bidding, the market would arrive to a
state where each agent’s trading price and quantity have been determined. This method is good
for simulation; however, it does not mention how the process updates the bids and asks and how
the market gets to equilibrium. The optimal bidding strategy for battery storage in electricity
markets is investigated in paper [53]. They also use a battery life model in conjunction with a
profit maximization model to calculate the best bids in the day-ahead energy, spinning reserve,
and regulatory markets. A deconstructed online computation technique to determine cycle life
under diverse operating methods is presented to decrease the model’s complexity.

In the microgrid optimum scheduling issue, paper [105] shows how to mathematically rep-
resent resources such as battery energy storage systems, solar generating systems, directly
controlled loads, load shedding, programmed deliberate islanding, and generation curtailment.
The suggested modelling also includes a methodology for determining the availability cost of
battery and solar system assets.

3.2 Energy Trading Market, Agents and Capacity Traders
Over the many years that passed, people in some residential areas were merely considered
energy consumers, where they only purchased energy from larger power plants leading to a
centralized energy distribution system. Technology has been developing and multiplying in this
era, leading to alternative ways to produce and generate energy. The rapid development of
renewable energy generation technologies is changing the idea of "centralized distribution" of
energy [76, 73]. As energy trading occurs, a market and some pricing mechanisms must exist
to set the price when undergoing P2P energy trading. Some studies have been done just like
in [77], where market rules of energy supply and demand have been allocated to determine a
reasonable price. Actions vary from one person to another, and the same thing can be said
about energy demand. Each household’s demand and preferences differ from the other. Market
and pricing mechanisms are usually designed to increase the economic benefits as a whole.
In the paper, [68], proposed an intuitional pricing model that is directly declared based on
the supply-demand ratio, as the price was calculated by the difference between the feed-in
tariff and retail tariff. In paper [69], three mechanisms have been compared to determine
P2P prices like bill sharing, mid-market rate and auction-based pricing strategy. Neverthe-
less, more and more studies still need to be done to determine which pricing mechanism is
more reasonable. Agent-based methods have been introduced in the energy trading market,
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where multiple agents compete with each other. In paper [18], it mentions that each agent
represents a user and this agent can either bid as a buyer or ask as a seller, and this happens
in order to maximize the user’s profit. The paper continues to say that after several rounds
of bidding, the market would arrive at a state where each agent’s trading price and quantity
have been determined. This method is good for simulation; however, it does not mention how
the process updates the bids and asks and how the market gets to equilibrium. Means of con-
tinuous double auction (CDA) market have been introduced in several papers like in [59, 121, 21].

Vytelingum, D. Cliff, and Jennings, in paper [116], describe a new bidding strategy that
autonomous trading agents can use to participate in continuous double auctions. Paper [42]
employs an autonomous agent model to capture the desires of both the electricity seller and buyer
in terms of price and quantity of power to be exchanged at different points of the day. Paper
[3] discusses Community Energy Markets (CEM), which offer trading opportunities amongst
community members to make savings and profits. In his research, he offers a CEM model
and runs an agent-based simulation to investigate the CEM’s advantages to consumers and
prosumers. Paper [78] develops a local energy market in which prosumers and consumers in a
community may directly exchange electricity. This local power market promotes the integration
of renewable energy sources on a local scale. The study analyzes and assesses two local market
designs, a direct peer-to-peer market and a closed order book market, as well as two-agent
behaviours, zero-intelligence agents, and intelligently bidding agents. Matthew Duffin and John
Cartlidge, in paper [34], explore and extend Wah and Wellman’s model, found in paper [119],
and demonstrate that results are bid-shading parameters used for zero-intelligence (ZIC) trading
agents. Following that, they introduce a more realistic minimally intelligent trading algorithm,
ZIP and discusses its results.
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Chapter 4

Layered Energy System Bidding

4.1 LES Framework
The Layered Energy System (LES) is a concept that tackles energy transition concerns. An open
energy market model must always be in balance. The current energy system is facing imbalances
due to the increased usage of renewable energy sources, and the costs to fix them are high.
Several difficulties, such as congestion and high dispatch, excess and scarcity, forecasting issues,
and less conventional reserves, might develop [37]. LES avoids these issues by incentivizing local
customers to optimize the system by utilizing their flexibility. LES is based on near-real-time
energy and flexibility auctions that favour locally produced energy over external energy. All
stakeholders have roles and responsibilities to take part in order to build a system that benefits
everyone [37].

With the Layered Energy System (LES), individuals can have the best of both worlds. On
the one hand, it allows households and businesses to communicate and even exchange energy.
LES, on the other hand, provides market participants with distributed flexibility. Because
market rules drive LES, it comes at a cost. Nonetheless, overall energy will most likely become
less expensive for everyone, including those who do not have solar panels on their roof. A
Layered Energy System is a mechanism that organizes local communities into local marketplaces.
Trading energy on this local market is free in the sense that prices for in-feed and take-off are
symmetrical at the same time. Because a community is unlikely to meet all demand at all times,
the local market maintains an open connection with wholesale traders who can participate in the
local market. However, because this ’external’ supply is subject to a premium, energy supplied
elsewhere has a disadvantage compared to energy produced locally. All local trade must fit
within the physical boundaries of the grid involved, which the distribution system operator
maintains [37].

LES helps achieve four primary energy sector goals: lower system costs, customer empow-
erment, speeding transition, and scalability. At the same time, it adheres to a few essential
concepts. Consumers and producers benefit from local renewable energy production and flexibil-
ity while maintaining their freedom of choice. Operators and energy suppliers continue to have
access to local consumers and their smart and flexible energy production, and consumption [37].
In the Netherlands, i.LECO is working with Stedin on implementing the LES concept in the
Netherlands. The work done in this thesis fits with this concept, and LES can benefit from it.
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4.2 Definition
For LES day-ahead markets, there are two primary steps:

1. The first step is the day-ahead bidding, which involves coming up with committed net
energy consumption for each time-step of the next day.

2. The second step is the actual consumption of energy.

Deviations from the committed energy consumption result in imbalance fees, meaning that it is
always preferable to plan energy consumption accurately in the day-ahead phase rather than
pay extra imbalance fees later. A battery, or other flexible resources, can then be used to try
and match the committed power as much as possible in order to compensate for the forecasting
inaccuracy. This can be done by charging and discharging the battery such that the imbalance
costs are reduced.

Currently the day-ahead bid is determined simply by taking the forecast of the grid bal-
ance of the next day, ignoring the operation of the battery or any other flexible resources. The
purpose is to explore how the day-ahead market bid could improve by considering
forecasting errors and the battery operation responsible for compensating those
errors..

The errors of day-ahead energy demand forecasts will be expected to have a mean of zero
during a 24-hour period which means that the battery power used to help follow the day-ahead
market commitment will also be expected to have a mean of zero; however, due to the inefficiency
of the battery, the average battery power on the AC side will need to be slightly positive to
compensate for losses if the state of charge is going to be maintained.

4.2.1 System, Market Information and Data Provided
Consider the following test system, which comprises simply of a grid connection, an uncontrollable
electrical load, and a battery.

Energy purchased the day before is purchased at the day-ahead market price. Any deviation
from the day-ahead committed energy consumption at a given time-step must be bought or
sold at the imbalance price, which is equal to the day-ahead market price for that time-step +
0.02€/kWh (if buying deficit) or – 0.02€/kWh (if selling excess).
A CSV file with time-series data will be provided to describe:

• the true energy demand

• the cleared energy buy and sell prices (DAM prices)
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4.2.2 Research Question
Assuming that a day-ahead forecast of energy demand is made and the probability distribution
function of the forecasting errors is known, what is the optimal bidding strategy on the day-ahead
market to reduce energy costs (day ahead + imbalance)? In this chapter, different strategies
will be explained and after that, their results will be demonstrated.
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4.3 Battery
For this paper, the basic battery is assumed to have the following characteristics:

• Initial Battery state of charge: 60%

• Total capacity: 50 kWh

• Max charging power limit: 1 kW

• Max discharging power limit: 1 kW

• Charging power efficiency: 0.95

• Discharging power efficiency: 0.95

4.3.1 Battery Model constraints:

Be
t = BSoC

t ∗Bc (4.1)
0 ≤ BSoC

t ≤ 1 (4.2)

Be
t+1 = Be

t + (PC
t ηc −

PD
t

ηd
) ∗∆t (4.3)

PC
t ≤ Pmax (4.4)
PD
t ≤ Pmax (4.5)
PB
t = PC

t − PD
t (4.6)

PC
t ≤ Pmax ∗ ν (4.7)
PD
t ≤ Pmax ∗ (1− ν) (4.8)
BSoC
t_beg = 0.6 (4.9)

Where:

• Be
t is the battery energy available at time t

• BSoC
t is the battery state of charge at t (0 - 100%)

• Bc is the total battery capacity

• Be
t+1 is the battery energy availability in the next time-step t+ 1

• PC
t and PD

t are the charging and discharging power respectively at t

• ηc and ηd are the charge and discharge efficiency respectively (both equal at 95%)

• PB
t is the battery power at t

• Pmax is the maximum power of the battery

• ∆t is the time resolution (duration of time interval t)

• t_beg is the time t at the start of every day (t = 0, 96, ...)

• ν is a Boolean variable
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Constraint (4.1) makes sure that the battery’s energy is always between 0 and the max battery
capacity.
Constraint (4.2) states that the battery SOC is always between 0 and 1.
Constraint (4.3) shows how the battery energy for the next timestep t is calculated.
Constraints (4.4, 4.5) make sure that charging and discharging power is less than or equal to
the max battery power respectively.
Constraint (4.6) shows how the battery power is calculated.
Constraints (4.7, 4.8) force the battery to either charge or discharge at time-step t but never
both at the same time. If ν = 1, the battery charges, else it discharges.
Constraint (4.9) refers to the idea that the battery SOC at the end of the day is the same as
at the start of the day. So the amount energy charged and discharged from the battery that
happened are equal.
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4.4 Step One: Day-Ahead Bidding Stage with Battery
For the day-ahead bidding stage, given that a forecast for the next day already exists, it is
not a perfect one which means that there will be errors when comparing the forecast values to
the actual load of the next day. The error (between forecast and actual data) is assumed to
follow a known probability distribution which is the same across all the time-steps in a single
day, and that it is not correlated, so it does not add up with time. It is also expected that the
errors of the day-ahead energy demand forecasts will have a mean of zero which means that the
battery power used to help follow the day-ahead market commitment will also be expected to
have a mean of zero. The error is in a range roughly between -1 and 1 and will be tested in
three probability distributions that are Gaussian distribution (or in other words, Normal),
Uniform distribution, and Gamma distribution.

Gaussian distribution is a symmetric probability distribution around the mean, indicating
that data closer to the mean occur more frequently than data further away from the mean [5,
106, 19]. The mean and standard deviation are the two parameters of the standard normal
distribution. A normal distribution has 68% of the observations within one standard deviation
of the mean, 95% within two, and 99.7% within three [106, 19]. Uniform distribution is a
type of probability distribution in statistics in which all outcomes are equally probable. The
results of a continuous uniform distribution are both continuous and infinite [20, 67]. Gamma
distribution is a type of continuous probability distribution that is extensively used in research
to describe continuous variables that are always positive and have skewed distributions. It
happens naturally in systems where the time between occurrences is essential [108, 62].

Given that there is:

• A forecast of the load

• The parameters of the randomized error (load forecast error)

• The day ahead market price λt (given with no error)

The goal is to find an optimal day ahead market strategy for committed power,
taking into consideration the availability of a battery, such that the expected cost
is minimized. Note that in the Day-Ahead Market (DAM) stage, the battery operation plan
is not fixed, which means a forecast has a probabilistic component, so the best that can be done
is to have a general idea of what may happen. Note that in the battery constraints mentioned in
section (4.3.1), there are two constraint (4.7,4.8) that ensure the battery charges or discharges
but never do both at any time t.

4.4.1 Scenario Generation
Knowing what kind of data is being dealt with is crucial in anything related to optimization,
machine learning techniques, and what follows. One danger is that traditional approaches
lead people to view uncertainty in a binary way to assume that the world is either certain,
and therefore open to precise predictions, or uncertain, and therefore wholly unpredictable.
Underestimating uncertainty can lead to strategies that neither defend against the threats nor
take advantage of the opportunities that higher levels of uncertainty may provide. As article
[30] states, there are four levels of uncertainty:

1. A Clear-Enough Future: A precise single forecast is considered ’enough’ for determining
the future. Traditional prediction/forecasting strategy tools are used.
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2. Alternate Futures: A few discrete possible future outcomes are defined. Decision analysis,
game theory, option valuation models are used here.

3. A Range of Futures: A range of possible outcomes but nothing discrete (random variables
between -1 and 1, for example). Scenario planning, forecasting, latent-demand research is
applied here.

4. True Ambiguity: No basis to forecast the future. Non-linear dynamic models, analogies,
and pattern recognition are used here.

In this optimization problem, the level of uncertainty is a range of futures roughly between
-1 and 1.

Monte Carlo is a commonly used approach in probabilistic system analysis. It is a form
of simulation in which the results are computed using repeated random sampling, and statistical
analysis [98]. It is a numerical experimentation approach for obtaining the statistics of the output
variables of a system computational model given the statistics of the input variables. In each
experiment, the values of the random input variables are sampled based on their distributions,
and the output variables are computed using the computational model. A series of experiments
are carried out in this fashion, and the findings are utilized to compute the statistics of the
output variables [75, 84]. This simulation approach is quite similar to random tests, in which
the particular outcome is unknown in advance. In this sense, Monte Carlo simulation may be
thought of as a systematic approach to what-if analysis [98].

Monte Carlo simulation is used here to generate scenarios for the forecast error, and it usually
requires assuming a probability distribution for the uncertainty. However, this assumption
may be unrealistic because it is difficult to accurately identify the shape of the uncertainty
distribution for the day-ahead bidding stage problems. Here, probabilistic forecasting of the
error is going to be tested on three different distributions which are Gaussian, Uniform and
Gamma distribution.

In the day-ahead market (DAM), the battery plan is not fixed, so taking only one sample to
represent the possible forecast deviation (between forecast and actual load) of the next day is
not efficient because the actual load is not known yet, which may lead to one way of how the
battery might operate and that may not be correct. For that reason, several scenarios will be
generated to represent how the error in the forecast might be at every time step.

Following the scenario generation section, the strategies will be introduced.

4.4.2 Strategies
To get the day-ahead market energy commitment (pcommitt ), the battery (with respect to its
constraints) has to be taken into consideration. Different strategies will to undergo day-ahead
Bidding to eventually find the pcommitt and the pBt at every time-step t.

A similar approach is mentioned in [8], where a probabilistic optimization method that generates
optimal bidding curves for an aggregator to submit to the day-ahead electricity market and the
intraday market, taking into account his customers’ elastic demand (based on time-dependent
resources such as batteries and shiftable need) and the potential imbalance costs as well as
forecast uncertainty (market prices,...). The paper [8]’s optimization approach seeks to reduce
the overall cost of traded energy over a day while taking into account inter-temporal limitations.
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Following the natural temporal sequence of electricity spot markets, the suggested formula-
tion leads to various linear optimization issues. A scheduling procedure meets inter-temporal
restrictions on time-dependent resources after the day-ahead market clearing.

4.4.2.1 Strategy One

The strategy used here is called Two-stage chance-constrained programming which is a
type of stochastic programming. To solve stochastic programming problems numerically, the
(continuous) distributions of the data process should be discretized by generating a finite number
of scenarios of the data process (as mentioned in section 4.4.1). The size of the deterministic
equivalent problem is proportional to the number of generated scenarios. When the number of
scenarios of the process is finite, then the problem can be written as one large (deterministic)
programming problem.

Following what was mentioned in section 4.4.1, that makes this a probabilistic problem with
many different scenarios explaining how the battery might operate each having a probability of
happening. In a pool of infinite space, the probabilistic problem is split into X (the number of
scenarios) deterministic problems and the one answer that gives the best result on average over
the X problems is found. X independent worlds each with their battery and their deviation
forecast (sampled from the probability distribution function) are created. Following that, the
optimization problem of finding the energy bid (that is applied to all X worlds) is solved giving
the highest total profit (minimum total cost).

In this strategy, the optimization problem decides on its own if the battery should charge
or discharge depending on what it sees as best to minimize the energy cost. That way the bat-
tery would have the freedom to maximize profit even if it means sometimes increasing imbalance.
That can be counter-intuitive but sometimes it is possible to make more money buying when the
price is low and selling when the price is high than you can make from minimizing imbalance.

Now at every time-step t there exists:

• a forecast load pft

• the DAM price λt

• the imbalance price γt

It’s also known that:
pft = paLt + ξt (4.10)

where:

• paLt is the true load

• ξt is the error

At this stage, since as mentioned, there will be X scenarios s:

• δs,t stands for the deviation forecast for every scenario s and time-step t

In the day-ahead (DA) stage, all the battery variables and constraints, mentioned in section
(4.3.1), should be indexed by the scenarios s following one single bid commitment that works
for all scenarios and expecting that in each scenario, there will be a different battery operation
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plan. Every scenario has a probability ps.
The imbalance:

pimbs,t = paLt − pcommitt + pBs,t

leading to:
pimbs,t = pft − δs,t − pcommitt + pBs,t

At every time-step t Energy cost (EC):

ECt = λt ∗ (pcommitt + pimbs,t ) + γt ∗ |(pimbs,t )| ∗∆t

Replacing pimbs,t in the equation above:

ECt = λt ∗ (pft − δs,t + pBs,t) + γt ∗ |(pft − δs,t − pcommitt + pBs,t)| ∗∆t

With all that is given above, the objective function would be to minimize the total energy
cost for a 24-hour period (96 time-steps):

Min
S∑
s=1

ps ∗
T∑
t=1

λt ∗ (pft − δs,t + pBs,t) + γt ∗ |(pft − δs,t − pcommitt + pBs,t)| ∗∆t (4.11)

Subject to the constraints mentioned in section (4.3.1) indexed by s.

Remember that in the DAM stage, a fixed battery operation plan doesn’t exist, there only exists
a forecast which has a probabilistic component, so the best to be done is to have a general idea
of what might be done. Knowing the pft , λt, δs,t, ps, and γt, the result should calculate the best
values for pcommitt and pBs,t that returns the minimal expected energy cost. It is also important to
add the absolute operator. That is because, if it is not included, there could be a huge negative
imbalance followed by a huge positive imbalance and eventually cancel each other out and the
total imbalance would be zero (which should not happen).
Note: The absolute operator makes the problem non-linear so the problem has reformulated to
a linear problem and still returns the same results and much better run-time. This procedure is
explained in in Section 4.7.1.

4.4.2.2 Strategy Two

This strategy is a different version of the previous strategy in section (4.4.2.1). The optimization
problem in this strategy does not decide if the battery charges or discharges, but rather already
predefined that when the deviation is negative, the battery discharges, and when positive, the
battery charges. This limits the behavior of the battery to force it to always work to reduce the
imbalance. Since the point is to minimize the energy cost for 24 hours (96 time-steps), the focus
in this strategy is to limit the behaviour of the battery to force it to always work to reduce the
imbalance.

imbalance = paLt − pcommitt

Knowing that the battery has a certain efficiency whether charging (c) or discharging (d) and it
is being used, there will be some energy losses. For that matter, some extra energy should be
assigned and added into the day-ahead bid at every time-step for those losses with respect to
the battery constraints (mentioned in 4.3.1). The battery losses would be:
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• for charging: (1− c)% of the expected absolute value of the deviation forecast at every
time-step

• for discharging: (1− d)% of the expected absolute value of the deviation forecast at every
time-step

In the battery model (section 4.3.1), the constraints (4.3) and (4.6) are very important. In
constraint 4.3, the battery can either charge (PC > 0 and PD = 0), discharge (PC = 0 and
PD > 0) or do none (PC = PD = 0) but it cannot do both charge and discharge. This arrives
to the idea that (using constraint (4.3)):

• Be
t+1 = Be

t

• Be
t+1 = Be

t + (PC
t ηc)∆t = Be

t + (PB
t ηc)∆t −→ in case of charging

• Be
t+1 = Be

t + (P
D
t

ηd
)∆t = (PB

t /ηd)∆t −→ in case of discharging

These battery losses will be taken into consideration when calculating the day-ahead power
commitment of with respect to the battery constraints mentioned in section (4.3.1). The losses
(%t,s) will be added to the objective function (same one of the previous strategy) as follows:

Min
S∑
s=1

ps ∗
T∑
t=1

λt ∗ (pft − δs,t + pBs,t + %t,s) + γt ∗ |(pft − δs,t − pcommitt + pBs,t + %t,s)| ∗∆t (4.12)

Subject to the constraints mentioned in section (4.3.1) indexed by s.

4.4.2.3 Strategy Three

This strategy has a similar approach to the one implemented in section 4.4.2.2. Here, the data
is re-sampled from a 15-minute interval to an hourly interval by summing the forecasted and
finding the average of the DAM prices of every for time-steps (for example 0:00, 0:15, 0:30, 0:45).
That done, the optimization problem is applied to the hourly data resulting in decision variables
at every hour which are power committed, battery power charged, battery power discharged,
overall battery power, battery energy, and battery state of charge.

After that, the data which contains the 15-minute intervals is used again but this time the
battery state of charge (SOC) is taken at the state of each hour (decision variable from the
hourly optimization), and then these are treated as fixed values for the 15-minute optimization
knowing that the SOC refers to the actual value at a given time-step while the power refers to
the average power between the two time-steps. For example, in one hour, four powers and five
SOCs are needed which is to say that in the region of 0:00 to 1:00

• SOC: 0:00. 0:15, 0:30, 0:45, 1:00

• POW: 0:00, 0:15, 0:30, 0:45

To be able to optimize for this hour, the SOC at 0:00 and 1:00 is fixed (obtained from the
previous hourly optimization) and then the second optimization is free to choose four powers in
the desired change in SOC but not necessarily the same average power. Here the same procedure
and constraints have been used.
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4.4.2.4 Strategy Four

Here, Agent-based models (ABM) are used for uncertainty for short term predictions (24-
hour period).

Explaining Agent-Based Modeling:
Agent-based modelling is a type of modellings in which actions and interactions of autonomous
agents, both with each other and the environment, are explicitly modeled in a computer program.
As mentioned in [65], Agent-based modelling is a field that excels in its ability to simulate
complex systems. Agent is a thing that does things to other things, observe the image below. It
is noticed that there is an agent, an entity or thing that knows things and does things. Now this
thing is situated in a model in some kind of environment, where there are other agents which
sits inside a model that the modeler has chosen and drawn boundaries around. Looking at these
agents, following inputs from others, from the environment and from their own behaviors, they
will make decisions and they will perform actions. These actions can affect themselves, affect
the environment around, or other agents (whether directly or indirectly). So it is literally the
thing that does things to other things that gives rise to a pattern of interaction [47, 55, 17, 74].

The ABM components are Agents, States, Decision rules, Actions they perform, an environment
they are in, and the time in which they exist. An agent can be anything, a person, idea, country,
etc... The state is something that the agent has or knows, like location, technologies, etc... the
decision rules are that take inputs and the conditions and convert them into some actions and
overall behaviour; they can be static or dynamic. Actions are when the agent performs (or does
not) something based on input: the state and internal decision rules. The agents are autonomous;
they choose to act or not act considering its environment, state, and computation that it needs
to do. These actions can affect agents, their own rules, their state or the environment, and it is
often through the indirect interaction through the environment that the true complexity of the
system arises. The environment is not an agent but is still relevant, and it provides the agents
with information and structure. ABM takes place in discrete time - ticks (96 time-steps) where
between two ticks, everything is assumed to happen at the same time like in the real world [47,
55, 17, 74]. What happens in ABM is parallel to what happens in the real world. Knowing
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that computers are sequential processing machines, things have to happen simultaneously, even
if some things happen after the other. The order or sequence of agent interaction is essential
because if a particular agent always goes first, for example, it is always allowed to buy first, and
it will purchase the cheapest resource and always have an advantage. The agents are shuffled
every time-step and enable them to form interactions, and by doing things, parallel action is
simulated like in the real world. Agent-based modelling is much more flexible than other types
of modelling, such as equation-based modelling. With enough rules, almost any behaviour can
be modelled in any phenomenon that can be observed [74]. They present how phenomena and
patterns can arise from elementary behaviours, which is a hallmark of complex systems.

It also has a downside:

• Too many rules are hard to understand. For example, if there are 20 rules affecting one
agent, how is it going to know which rule is felt most strongly

Applying ABM to the problem
We want minimize the total energy cost for a 24-hour period (96 time-steps). It would be smart
to buy energy at low prices and use battery at high prices. Here there is a grid, a battery
(with it’s constraints) and a uncontrollable load. In this model, the grid and the battery are
the agents where they interact with each other to know which is better to use at a certain
time-step considering the prices and the battery restrictions. The problem is stochastic because
the forecast deviation of the next day is unknown and random. A threshold x will be places
and x will represent the value in which the DAM price is either high or low. The decision rules
would be that if the Day-ahead market (DAM) price t is below threshold x the power is bought
and when the t is above the x then the battery is used first with respect to it’s constraint and
then the rest of the power is bought. Another rule would be to charge battery when deviation
scenario we are in is positive and discharge when negative. This is applied to every one of the
time-steps.

The point here is to apply some basic rules to be able to reach what is needed to reach.
This may sound naive but through different researches and experiments, this has worked quite
well.

4.4.2.5 Strategy Five

The strategy here is called Distributionally Robust optimization (DRO) which is another
approach for handling uncertainty. Many real world decision problems arising in these kind of
topics have uncertain parameters. This parameter uncertainty may be due to limited observability
of data, noisy measurements, implementations, and prediction errors [96]. Stochastic and Robust
optimization have allowed to model this uncertainty within a decision-making framework.
The availability of data makes the limited hypotheses of Robust Optimization looks like the
opportunity of using the available data is being missed and on the other hand, stochastic
optimization makes use of the data to build a certain probability distribution but lacks the safety
that Robust provides [96]. with this in mind, the idea of Distributionally Robust Optimization
(DRO) comes to mind where the best of both worlds are put into one and assumed that:

1. a nominal probability distribution (distribution that is close to the real unknown distribu-
tion)

2. the protection from the worst possible distribution.
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The key idea here is to find a solution vector that minimizes the worst-case expected cost. The
worst case expected cost is calculated over an ambiguity set which is a family of probability
distributions. DRO is a Min-Max problem where you minimize the maximum expected loss with
respect to the constraints. The ambiguity set is a family of potential distributions to describe
uncertainty. For example, it can be moment-based (where distributions share the same mean
and covariance matrix) or metric-based (which is based on a distance function that computes
the distance between the two distributions and then collects the distribution which is close in
the sense of distance to an empirical distribution which is based on historical distribution for
instance) [96]. The distance usually chosen is the Wasserstein distance. DRO is used to hedge
against any misrepresentation of probabilistic forecast and may perform better than classical
approaches under available information.

Here the constraints would be the battery constraints mentioned in section 4.3.1. The objective
function would be the similar to the one mentioned in section 4.4.2.1
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4.5 Step Two: Battery Operation Stage
When the next day arrives, there is:

• the committed power (P commit) (which was bid from the day-ahead bidding stage)

• the actual power

• the difference between the two which is the power imbalance (P imb)

The actual power (P actual) is the actual load power (P aL) + the battery power (PB)
Given the day-ahead market price (λ) as well as what was mention, the equation for energy
cost (EC) at time t is

ECt = (λt ∗ P commit
t + λt ∗ P imb

t + γt ∗ |P imb
t |)∆t (4.13)

Knowing that:

P imb
t = P actual

t − P commit
t (4.14)

P actual
t = P aL

t + PB
t (4.15)

Using equation (4.14), the EC equation (4.13) can be updated:

ECt = (λt ∗ P actual
t + γt ∗ |P imb

t |)∆t

and using the equations (4.14) and (4.15) finally reaching the form which is the Objective
function:

ECt = (λt ∗ P aL
t + λt ∗ PB

t + γt ∗ |P aL
t + PB

t − P commit
t |)∆t (4.16)

Where:

• t is the timestep

• γt is the imbalance cost (For now γt = 0.02)

• λt is the Day-Ahead Market Price at time t (€/kWh)

It is important to add the absolute operator. That is because, if it is not included, there could
be a huge negative imbalance followed by a huge positive imbalance and eventually cancel
each other out and the total imbalance would be zero (which should not happen). Note: As
mentioned before (in section 4.4.2.1), the absolute operators makes the problem non-linear so it
has been transformed to linear (section 4.7.1) with the same results and better run-time.
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4.6 Experiments and Results
In this section, experiments have been done on the strategies 1, 2, and 3 and their results are
displayed. Three strategies, mentioned in section 4.4.2, were tested on a number of days (10)
throughout the month with three probability distributions (Gaussian, Uniform, and Gamma)
giving different results in the day-ahead market procedure followed by the battery operation for
the next day.

4.6.1 Results for Step One: Day-Ahead Bidding Stage with Battery
4.6.1.1 Strategies’ objective function and computational time comparisons:

Since the random generation of the scenarios (using the Monte Carlo technique) that represent
the possible errors for the next day (mentioned in strategies in section 4.4.2) is not the same
with every run, they are still within the same range of values (roughly between -1 and 1). For
stochastic processes, the optimization problem was run over a number of days (10), then
the average of the metrics scored each day were taken that is used to analyze each strategies’
effectiveness. With random processes, it is important to see the bigger picture.

The forecasted error in Table 4.1 is assumed to be of a Gaussian distribution, table 4.2
to be of a Uniform distribution and Table 4.3 to be of a gamma distribution. With the numbers
of scenarios tested: 50. The stdev column in each of the figures demonstrates the standard
deviation of the total cost of each day in comparison to the average for each strategy.

Computational Time (in seconds) DA total cost (in euros/day) Stdev

Strategy 1 24.091 3.3736 1.14
Strategy 2 5.231 3.6784 1.121
Strategy 3 21.291 3.631 1.115

Table 4.1: Computational Time and Objective function for every strategy during the DAM
procedure when the forecasted error is of a Gaussian distribution

Computational Time (in seconds) DA total cost (in euros/day) Stdev

Strategy 1 22.292 3.6053 1.326
Strategy 2 5.215 3.940 0.924
Strategy 3 19.892 4.172 1.286

Table 4.2: Computational Time and Objective function for every strategy during the DAM
procedure when the forecasted error is of a Uniform distribution
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Computational Time (in seconds) DA total cost (in euros/day) Stdev

Strategy 1 22.5283 3.0676 1.073
Strategy 2 4.8479 5.3382 0.901
Strategy 3 24.3565 3.4798 1.031

Table 4.3: Computational Time and Objective function for every strategy during the DAM
procedure when the forecasted error is of a Gamma distribution

It’s relevant to note that it’s unimportant what the objective function gives as a result in the
day-ahead market; the key point is that the power committed sets out good results for the
battery operation when the next day comes to minimize the energy cost at the end of the day.

4.6.1.2 Forecasted power vs Committed power vs DAM prices

Figures 4.1,4.3,4.5, 4.7,4.9,4.11, 4.13,4.15 and 4.17 compare the committed power, forecasted
power and the DAM prices at every time-step t for a single day. Figures 4.2,4.4,4.6, 4.8,4.10,4.12,
4.14,4.16, and 4.18 show the residuals for each strategy, which is the difference between forecast
and committed power at every time-step for a single day for every probability distribution
(Gaussian, Uniform, and Gamma). The number of scenarios is 50. The graphs below show
power committed in comparison to the forecasted power and the DAM prices with every strategy.
The left y-axis represents the power and the right y-axis represents the DAM prices. When the
strategies are applied, different results are noticed and observed. The residual’s value is the
difference between the forecast and the committed power for every time step of a single day.
Note that there has been multiple runs on several days however only the graphs of one of the
days was put for the results to represent the idea behind each strategy. It will be data from
Sunday, March 21, 2021.

Figures 4.1 to 4.6 represent the results when the error’s probability distribution is assumed to
be Gaussian.

Figure 4.1: DA - Strategy One: DAM prices vs committed vs forecast power (Gaussian)
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Figure 4.2: DA - Strategy One: Residuals (Gaussian)

Figure 4.3: DA - Strategy Two: DAM prices vs committed vs forecast power (Gaussian)

Figure 4.4: DA - Strategy Two: Residuals (Gaussian)
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Figure 4.5: DA - Strategy Three DAM prices vs committed vs forecast power (Gaussian)

Figure 4.6: DA - Strategy Three: Residuals (Gaussian)

Figures 4.7 to 4.12 represent the results when the error’s probability distribution is assumed
to be Uniform.

Figure 4.7: DA - Strategy One: DAM prices vs committed vs forecast power (Uniform)
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Figure 4.8: DA - Strategy One: Residuals (Uniform)

Figure 4.9: DA - Strategy Two: DAM prices vs committed vs forecast power (Uniform)

Figure 4.10: DA - Strategy Two: Residuals (Uniform)
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Figure 4.11: DA - Strategy Three: DAM prices vs committed vs forecast power (Uniform)

Figure 4.12: DA - Strategy Three: Residuals (Uniform)

Figures 4.13 to 4.18 represent the results when the error’s probability distribution is assumed
to be Gamma.

Figure 4.13: DA - Strategy One: DAM prices vs committed vs forecast power (Gamma)
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Figure 4.14: DA - Strategy One: Residuals (Gamma)

Figure 4.15: DA - Strategy Two: DAM prices vs committed vs forecast power (Gamma)

Figure 4.16: DA - Strategy Two: Residuals (Gamma)
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Figure 4.17: DA - Strategy Three: DAM prices vs committed vs forecast power (Gamma)

Figure 4.18: DA - Strategy Three: Residuals (Gamma)

Take figure 4.1 for instance, notice the line that represents the forecasted power and the line that
represents the committed power. At times between t = 0 and t = 5, the DAM prices are high so
the forecasted power during that period is much higher than the committed power. At times
between t = 55 and t = 65 the DAM prices are low which shows that at every time-step during
that period, the committed power is higher than the forecasted power. Figure 4.2 represents the
difference between forecasted power and the committed power at every time-step of the figure
above 4.1. When the DAM prices, figure 4.1, are higher, the residual value (in figure 4.2) at
time-step t is positive which indicates that the forecasted power is higher than committed power
and the opposite (values are negative) applies for when the DAM prices are lower. The same
applies to the rest of the figures in this section (strategy [1,2,3] and probability distributions
[Uniform,Gaussian,Gamma]).

Time-steps with high DAM prices contain a lower value for the committed power; mean-
while, time-steps with lower DAM prices have a higher value for the committed value. The
particular reason for that is the algorithm assumes (because of the different scenarios generated
in section 4.4.1) that when the next day comes, the extra energy bought when prices were
low would be used to charge the battery and when prices are high, the battery is in use, with
respect to its constraints, and it’ll fulfill the difference between the committed power and forecast.
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The optimization strategy assumes more power should bought at lower price. When the
next day comes, the battery will fulfill the difference between the committed power and the
actual demand power leading to a lower overall energy cost.

In the day-ahead bidding stage, it does not matter what the results are in the objective
function; the critical part is the result of the objective function when the next day comes and
the operation of the battery

4.6.2 Results for Step two: Battery Operation Stage
Two basic ’methods’ are included, and both additional methods consider the forecast itself to
be the day-ahead commitment bid but differ when it comes to the next day. The first primary
method assumes a battery, but the second additional method doesn’t consider a battery in the
second stage. These two methods are only baselines for comparison with the strategies already
mentioned in section 4.4.2.

• Forecast with Battery: The DA bid commitment is the forecast, and the battery is used
the next day’s "imbalances".

• Forecast No Battery: The baseline for comparison where the DA bid commitment is the
forecast, and the battery is never used.

The optimization problem is applied using the power committed resulting from the day-ahead
bid stage. Below, the results of the strategies (section 4.4.2 and 4.5) are illustrated.

4.6.2.1 Strategies’ objective function and computational time comparisons:

The optimization problem was run over a number of days, and the average of the results was
taken. Tables 4.4-4.7 compare the average computation time, the average objective function
(which is the average total cost over a number of days), and the average financial savings for
each strategy with the numbers of scenarios tested: 50 and the committed power obtained in
the Day-ahead Market is the value used in the optimization problem. The Stdev column in each
of the figures demonstrates the standard deviation of the total cost of each day in comparison
to the average for each strategy. The financial savings columns are how much is being saved
per strategy when compared to the baseline values of Forecast No Battery.

Tables 4.4-4.5 represent the results when the error’s probability distribution is assumed to be
Gaussian:

Computation Time (in seconds) total cost (in euros/day) Stdev

Forecast No Battery — 4.197532 1.071
Forecast with Battery 0.186813 3.80027 1.073

Strategy 1 0.17364 3.45815 1.103
Strategy 2 0.12382 3.60681 1.103
Strategy 3 0.174833 3.609142 1.084

Table 4.4: Time and Objective function for every strategy for the next day (Gaussian)
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Financial Savings (euro/day) savings (%)

Forecast No Battery —- —-
Forecast with Battery 0.38003 9.464 %

Strategy 1 0.73939 17.615 %
Strategy 2 0.59072 14.073 %
Strategy 3 0.58839 14.018 %

Table 4.5: Financial Savings for every strategy for the next day (Gaussian)

Tables 4.6-4.7 represent the results when the error’s probability distribution is assumed to be
Uniform:

- Computation Time (in seconds) Total cost (in euros/day) Stdev

Forecast No Battery —- 4.719524 1.071
Forecast with Battery 0.2173 3.88407 1.064

Strategy 1 0.175 3.56228 1.121
Strategy 2 0.129048 3.66779 1.024
Strategy 3 0.1829 3.68974 1.12

Table 4.6: Time and Objective function for the strategies for the next day (Uniform)

- Financial Savings (euro/day) savings (%)

Forecast No Battery — —
Forecast with Battery 0.88345 17.702 %

Strategy 1 1.15725 24.5205 %
Strategy 2 1.051734 22.285 %
Strategy 3 1.2978 21.8196 %

Table 4.7: Financial Savings for every strategy for the next day (Uniform)

Tables 4.8-4.9 represent the results when the error’s probability distribution is assumed to be
Gamma:

Computation Time (in seconds) total cost (in euros/day) Stdev

Forecast No Battery — 4.10726 0.995
Forecast with Battery 0.1776 3.693 0.943

Strategy 1 0.1832 3.0366 0.842
Strategy 2 0.12914 3.3989 0.849
Strategy 3 0.1804 3.2612 0.949

Table 4.8: Time and Objective function for every strategy for the next day (Gamma)
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Financial Savings (euro/day) savings (%)

Forecast No Battery — —
Forecast with Battery 0.41424 10.09 %

Strategy 1 1.0707 26.07 %
Strategy 2 0.70836 17.25 %
Strategy 3 0.84606 20.6 %

Table 4.9: Financial Savings for every strategy for the next day (Gamma)

It is clear that as the number of scenarios increase, the time it takes to solve the optimization
problem will increase. In addition to that, the rise in the number of scenarios will most likely
get you closer to the actual values for load demand of the next day (but will have take more
time to compile).

4.6.2.2 Committed power vs Actual load vs battery SOC:

Figures 4.19,4.21,4.23,4.25 illustrates the comparison between the committed power, actual load
power and battery SOC compared to each other at every time-step t. Figures 4.20,4.22,4.24,4.26
shows the error between actual power and committed power. The Figures are results for only one
of the days, which is March 21, 2021, the number of scenarios is 50, and the error’s probability
distribution is Gaussian. It is to set an idea of the procedure when comparing committed
power, actual load, and battery SOC. Note that the left y-axis represents the power values, and
the right y-axis represents the Battery SOC values.

Figure 4.19: Forecast With Battery: Battery SOC vs actual vs committed power (Gaussian)
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Figure 4.20: Forecast With Battery: Residuals (Gaussian)

Figure 4.21: Strategy One: Battery SOC vs actual vs committed power (Gaussian)

Figure 4.22: Strategy One: Residuals (Gaussian)
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Figure 4.23: Strategy Two: Battery SOC vs actual vs committed power (Gaussian)

Figure 4.24: Strategy Two: Residuals (Gaussian)

Figure 4.25: Strategy Three: Battery SOC vs actual vs committed power (Gaussian)
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Figure 4.26: Strategy Three: Residuals (Gaussian)

Figures 4.19, 4.21, 4.23, and 4.25 shows how the battery is functioning with respect to the differ-
ence found in between the committed power and the actual demand power (Figures 4.20, 4.22,
4.24, and 4.26) for every strategy respectively, considering the battery’s constraints. Remember
that in the day-ahead bidding stage, the idea is to buy power at every time step based on the
DAM prices. Figures 4.19 to 4.26 represents the results of the different strategies. The battery
state of charge (SOC) varies from one strategy to another (because of the different values of the
committed power for every strategy) at every time-step t.

Let’s take Figures 4.21-4.22 for instance. Between time-steps t = 0 and t = 12 in figure
4.22, most of the values of the error (which is the difference between actual and committed
power in figure 4.21) are below zero which means that the battery will discharge as seen figure
4.21 between time-steps t = 0 and t = 12. Between time-steps t = 13 and t = 70, the battery is
charging most of the time because the error values were above zero. And finally the last part
of the figure, the errors are below zero again, so the battery is discharging back to 60% SOC
(because of one of the battery’s constraints in 4.9).

4.6.2.3 Total Bidding Cost and Total Imbalance Cost comparison

In this section, the total bidding cost, total imbalance cost and the total overall cost for each
strategy are demonstrated. For Tables 4.10-4.12 and Figures 4.27 to 4.31 below:

• Total bidding cost is the DAM prices multiplied by the power committed at all time-steps
(λt ∗ P commit

t )

• Total imbalance cost is the imbalance cost (0.02) multiplied by the absolute value of the
result of the true power added to the battery power and subtracted from the committed
power
(γt ∗ |P aL

t + PB
t − P commit

t |))

• Total overall cost is the same as the objective function of every strategy (section 4.4.2).

Bidding cost vs Imbalance cost at every time t:

Figures 4.27 to 4.31 represent the results of the optimization for every strategy during a
single day which is 21 March 2021, and the number of scenarios is 50 knowing that the error’s
probability distribution is Gaussian. The following figures show how the imbalances and
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bidding costs behave at every time-step for every strategy. Note that the left y-axis represents
the bidding cost values, and the right y-axis represents the imbalance cost values at every
time-step t.

Figure 4.27: Forecast With No Battery: Bidding cost vs imbalance cost at every time-step
(Gaussian)

Figure 4.28: Forecast With Battery: Bidding cost vs imbalance cost at every time-step (Gaussian)
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Figure 4.29: Strategy One: Bidding cost vs imbalance cost at every time-step (Gaussian)

Figure 4.30: Strategy Two: Bidding cost vs imbalance cost at every time-step (Gaussian)

Figure 4.31: Strategy Three: Bidding cost vs imbalance cost at every time-step (Gaussian)

The figure 4.27, shows how a lot of imbalances exist at every time-step when no battery
is involved knowing that for every imbalance power, there is an extra charge. Figures 4.28
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to 4.31 have a much smaller range of imbalances at every time-step. Some strategies have more
imbalances than others, but the overall total cost is what matters at the end of the day.

Total overall cost vs Total bidding cost vs Total imbalance cost:

The following tables 4.10-4.11 compares the strategies’ objective function, total bidding cost
and total imbalance cost across all time-steps and figures 4.32-4.33 is the representation of the
tables using a horizontal stacked bar chart respectively.

Table 4.10 and Figure 4.32 represent the results when the error is assumed to be Gaussian:

Total Overall Cost Total Bidding Cost Total Imbalance Cost

Forecast No Battery 4.197532 3.79617 0.52246
Forecast with Battery 3.8003 3.70302 0.09989

Strategy 1 3.45825 3.37971 0.13235
Strategy 2 3.60681 3.69293 0.05816
Strategy 3 3.60914 3.62354 0.08280

Table 4.10: Total cost, total bidding cost and total imbalance cost for every strategy (Gaussian)

Figure 4.32: Total cost vs bidding vs imbalance (Gaussian)

Table 4.11 and Figure 4.33 represent the results when the error is assumed to be Uniform:

Total Overall Cost Total Bidding Cost Total Imbalance Cost

Forecast No Battery 4.71952 3.76623 0.951303
Forecast with Battery 3.88407 3.76623 0.15041

Strategy 1 3.56228 3.69503 0.20685
Strategy 2 3.66779 4.00769 0.195754
Strategy 3 3.68974 3.99119 0.15039

Table 4.11: Total cost, total bidding cost and total imbalance cost for every strategy (Uniform)
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Figure 4.33: Total cost vs bidding vs imbalance (Uniform)

Table 4.12 and Figure 4.34 represent the results when the error is assumed to be Gamma:

Total Overall Cost Total Bidding Cost Total Imbalance Cost

Forecast No Battery 4.10726 5.0081 0.6651
Forecast with Battery 3.693 5.0081 0.6368

Strategy 1 3.036598 3.15119 0.11383
Strategy 2 3.3989 3.9041 0.202
Strategy 3 3.2612 3.4365 0.0832

Table 4.12: Total cost, total bidding cost and total imbalance cost for every strategy (Gamma)

Figure 4.34: Total cost vs bidding vs imbalance (Gamma)

4.6.3 Different Range of Values for the Error
A minor recap:

• The day-ahead bidding stage was involved in coming up with committed net energy
consumption for each time-step of the next day, considering that a battery exists within
the process.
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• In the stage where the next day arrives, the battery with respect to certain constraints
(section 4.3), is being optimized and used to compensate for the imbalances (between the
committed and actual power) and helping in reducing the total energy cost.

All the results found in section 4.6 are based on an error that is part of a known probability
distribution (ones tested here are (Uniform Gaussian and Gamma) that is roughly within a
range of -1 and 1. However, a question can arise, and that question is: What would happen if the
range changed to a smaller or large one? Having a smaller range for the probability distribution
of the error leads to smaller values for the imbalances (difference between committed and
actual power). With smaller imbalances and since the battery compensates for the imbalances,
therefore the overall total cost would be smaller. And if the range of errors was larger than the
one tested, it will lead to larger values for the imbalances and eventually a larger total energy cost.

A minor test was applied to show the idea mentioned in this section. A single day (March
21, 2021), three distributions (Uniform, Gaussian and Gamma) and strategy 1 (mentioned in
section 4.4.2.1) were be applied and the result is found in the following tables 4.13,4.14,4.15.

If the range of errors is [-0.5,0.5], table will show present the results:

Error Distribution DA objective Total Overall Cost Total Bidding Cost Total Imbalance Cost

Uniform 2.1951 2.25704 2.2353 0.10511
Gaussian 2.2169 2.20965 2.3042 0.10467
Gamma 2.1005 2.1764 2.2027 0.0565

Table 4.13: DA objective function, Total cost, total bidding cost and total imbalance cost for
strategy One with a range of errors [-0.5,0.5]

If the range of errors is [-1,1] (the one used in this paper), table will show present the results:

Error Distribution DA objective Total Overall Cost Total Bidding Cost Total Imbalance Cost

Uniform 2.34616 2.41653 2.2822 0.139127
Gaussian 2.3539 2.26623 2.354 0.15288
Gamma 2.2073 2.2388 2.32005 0.1214

Table 4.14: DA objective function, Total cost, total bidding cost and total imbalance cost for
strategy One with a range of errors [-1,1]

If the range of errors is [-2,2], table will show present the results:

Error Distribution DA objective Total Overall Cost Total Bidding Cost Total Imbalance Cost

Uniform 2.956 2.73 2.823 0.402
Gaussian 2.4714 2.48734 2.5903 0.3167
Gamma 2.2534 2.3049 2.35078 0.1326

Table 4.15: DA objective function, Total cost, total bidding cost and total imbalance cost for
strategy One with a range of errors [-2,2]
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The second column of tables 4.13, 4.14, and 4.15 defines the Day-ahead objective function
value at every error distribution mentioned during the day-ahead bidding stage. The last three
columns represent the total overall cost, bidding cost, and imbalance cost for every distribution
during the battery operation stage. The mentioned table can indicate that if the error range is
smaller and closer to zero, the imbalances will be smaller, making the total energy cost smaller,
and the opposite applies when the range of errors is larger.

4.6.4 Discussions and Analysis
The purpose is to explore how the day-ahead market bid could improve by considering forecasting
errors and the battery operation responsible for compensating those errors. The objective is
to maximize profit and minimize energy costs at the day/week/month. Three strategies were
applied and their results were compared amongst each other and amongst two extra baseline
methods which are forecast no battery and forecast with battery (mentioned in section 4.6.2).
The need to choose which strategy is best depends on several aspects which are:

1. Computation time in the day-ahead bidding stage

2. Total overall cost (objective) in the battery operation stage

3. Battery behavior during the day

4. Total bidding cost

5. Total imbalance cost

6. Financial Savings

Tables 4.1,4.2 and 4.3 demonstrate the computational time and objective function of each
strategy for a Gaussian, Uniform and Gamma distribution respectively in the day-ahead bid-
ding stage. In this stage, what matters is the computational time and in both tables 4.1, 4.2
and 4.3. strategy 2 has the best values with strategy 1 being the slowest one. In addition,
the objective function in these tables is not of big importance because if it’s good in the
day-ahead stage and bad in the battery operation stage then it’s of no use. So, according
to tables 4.1, 4.2 and 4.3, strategy 2 is best because it is the fastest in terms of computation time.

Stepping into the next day, tables 4.4-4.7 represent the computation time, total cost (ob-
jective function) and financial savings and compare every strategy. Observing these tables, the
computation time is fairly similar between all of them but the objective function in strategy
1 stands out with a value of 3.445815 (for table 4.4) and 3.56228 (for table 4.6) in compari-
son to the others. The same applied to the tables 4.5, 4.7 and 4.9 where strategy 1 has the
best values in the Financial Savings column with 17.615%, 24.52095% and 26.07% respectively.

Figures 4.19 to 4.25 show battery operation, committed power and actual load power be-
ing compared to each other for every strategy. Figure 4.19 shows the battery continuously
charging and discharging continuously at every time-step. Figures 4.21 to 4.25 have a much
smoother battery behavior; however, Figure 4.21 has the smoothest battery operation in com-
parison to the rest of the strategies. The first strategy uses the battery more often than the
other two as it is noticed through the values on the right y-axis which are between 0.4 and 1.
Strategy two, where the battery focuses strictly on reducing imbalances, has battery SOC values
between 0.55 and 0.85. Strategy three’s battery SOC values are between 0.6 and 0.8. Note that
the battery’s SOC is always between 0 and 1.
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Figures 4.32 to 4.34 and Tables 4.10-4.12 compare the total overall cost, total bidding cost and
total imbalance cost of every strategy for when the error’s probability distribution is either
Gaussian, Uniform or Gamma respectively. In figures 4.32, 4.33 and 4.34, the first bar from
the top represents the forecast with no battery and noticed that in comparison to the rest, it is
the worst with a big total cost, bid cost and imbalance cost. Comparing the strategies, Strategy
one has the lowest total cost and bidding cost, and Strategy two has the lowest imbalance cost.
Strategy three is the worst in comparison to the other two strategies; however, in terms of
computation time, it is better than strategy one (mentioned in earlier section 4.6.1). Strategy
one has a better total cost than strategy two because sometimes it is possible to make more
money buying power when the price is low and selling when the price is high than what is made
from minimizing imbalance values.

Following that, strategy one is the best option because it gives the best results. In strategy
one, when the prices are low, more power is bought, and the extra power is used to charge the
battery when the price is high and less committed power is bought.

Strategy one was tested on three different distributions (Uniform, Gaussian, and Gamma).
What is also important is to see which distribution seems to be preferred when applying this
strategy. Figure 4.35 compares the committed power at every time-step t across the different
distributions and to the DAM prices, and figure 4.36 compares the Battery SOC at every
time-step t across the different distributions for a single day which is March 21, 2021. Figure
4.37 shows the average of the financial savings over a number of several days for the three
probability distributions applied in this experiment. The values in the figure 4.37 were taken
from tables 4.5,4.7, and 4.9 with the selected strategy being strategy one.

Figure 4.35: committed power across the different distributions of the error and to the DAM
prices for a single day

61



Master Thesis Optimizing Energy Market Participation with Batteries

Figure 4.36: Battery SOC across 3 different distribution of the error for a single day

Figure 4.37: Average financial saving (in %) across 3 different probability distributions of the
error

In figure 4.35, in most of the time-steps, the results coming from the committed power for the
’Gaussian distribution’ contain the better results when comparing against the DAM prices. In
most cases, the Gaussian distribution is a more realistic distribution where the probability grows
higher as the values get closer to the center (the mean), which is zero.
In figure 4.36, when the error probability distribution is Gaussian, the battery is used more
often, and around time-step t = 70, the battery’s SOC reaches 100% which can be in some
cases problematic because there is no wiggle room for the system to change its mind in case
something happens. When the error probability distribution is Gamma, the battery shows a
smoother line in the figure 4.36 and does not reach 100% battery SOC, which leaves some room
for any sudden changes.
In figure 4.37, the gamma distribution shows the best financial savings (in %) with a 26.07%
savings in comparison to the Gaussian with 17.615 % and Uniform with 24.5205 %.
For the purpose is to maximize profit and minimize total energy cost, strategy 1 produces the
best results across all tested error probability distributions, and the preferred error probability
distribution is Gamma since it contains the best financial savings and battery operation.
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4.7 Solvers Used
Different solvers were used and tested through this optimization problem that range from
non-linear solvers couenne to linear solvers like gurobi, cplex, ipopt and cbc.

Initially, the couenne solver was used because the problem was non-linear due to the ab-
solute value in the optimization problem. When the couenne solver ran, much time was spent
trying to find an optimal solution. For example, during the day-ahead bidding stage in section
4.4, the more scenarios added to the strategies, the more time it required to find a solution which
could go up to 5 hours (depending on the strategy). For that reason, the non-linear problem
was transformed into a linear problem as mentioned in section 4.7.1. When the problem became
linear, gurobi, cplex, ipopt and cbc solvers were applied to indicate which one gives the best
result across all strategies. Gurobi and Clpex were unable to find a solution; however, ipopt and
CBC could find one. The solution cbc solver gave was better than the one of the ipopt solver,
not to mention that it was also faster in terms of computational time. Therefore the cbc was
the one to used for this optimization problem.

4.7.1 From Non-Linear to Linear
In the sections 4.4.2 (in day-ahead bidding stage) and 4.5 (in the battery operation stage), an
absolute absolute operator and it’s importance were mentioned in the optimization problems.
Optimization with absolute values makes a linear problem a non-linear one. Absolute value
functions are complicated to perform standard optimization procedures on since they are not
continuously differentiable functions and are non-linear [50, 70]. It is possible to manipulate the
absolute value expression found in the problem and to be able to avoid these difficulties and
change the problem into a linear one [50, 70]. Let’s take an example:

minf(x) = g(x) + b ∗ |x− a|

subject to: other constraints

can be switched into:
minf(x) = g(x) + b ∗ p+ b ∗ q

subject to:
other constraints
x− a+ p− q = 0
p, q >= 0

4.8 Summary
It is not easy to predict people’s behavior and especially when it comes to energy usage. A
forecast can be made, but there will always be an error compared to the actual energy demand,
knowing that every error, or deviation/imbalance, adds an extra cost. In order to avoid the
extra costs and errors, a battery can be used to compensate for those imbalances and maybe
minimize the total bidding cost knowing that a battery has certain constraints.

This chapter aims to find an optimal bidding strategy of the BESS to maximize profit and
minimize total energy cost. Three strategies (section 4.4.2) have been applied and studied.
These strategies were compared amongst each other well as two other extra methods (section
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4.6.2) were used as baselines for comparison. It is challenging to predict people’s energy demand
for the day-ahead bidding stage, so errors still happen. For that reason, a number of scenarios
(of how possibly the error might be) were made assuming that the probability distribution of
the error is known. Three probability distributions of the error were considered, which are
Uniform, Gaussian and Gamma and that is to see how the strategies would perform with
different probability distributions of the error. Decisions on which strategy is best were based
on computational time in the day-ahead bidding stage (section 4.4), the total cost, and financial
savings in the battery operation stage (section 4.5). With the results (section 4.6), it can be
concluded that strategy 1 is the most successful strategy in comparison to the rest of the
strategies. Strategy 1 uses two-stage chance-constraint programming, and the financial saving
reaches almost an average of 25% of the energy cost.

It can be concluded that using a battery, with respect to its constraints, can be beneficial in
reducing the error in the forecast, leading to minimizing the energy cost at the end of the
day and the month. However, it is essential to know how to use the battery to minimize the
energy cost. With strategy 1(since it said to be the best strategy), when the prices are low,
more power is bought, and the battery charged, and when prices are high, the battery is used,
with respect to its constraints, and less power is bought. Moreover, the preferred probability
distribution of the error is a Gamma distribution.

Optimization Technique Uncertainty Modeling

Deterministic Single-value forecast
Chance-constraint programming Probability distribution or scenarios (Probability)

Agent-based Modeling Apply a set of rules
Robust Optimization Worst-case among scenarios or continuous set

Technique Chance-constraint Distributionally Robust ABM

Uncertainty Probability distribution
or scenarios

Worst-case among Scenar-
ios or continuous set follow set of decision rules

Goal
Optimize objective & be
feasible within a level of
confidence

Optimize the worst-case
value of uncertainty

find values that satisfy
the decision rules

Risk Controllable Risk-averse Controllable
Computation Easy (reformulation) Easy (reformulation) Easy

Critique Assumption on the shape
of the distribution Too conservative Too many rules are hard

to understand & complex

4.8.1 Future Work
After that, consider how the bidding strategy would change if the following were considered:

• the battery power limit

• the battery energy capacity

• the grid power limit
That is to see how they effect the efficiency of different optimization techniques. To see if there
are preferable parameters for optimizing a customer’s energy usage costs.
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Chapter 5

Trading Markets, Agents and Capacity
Traders

This chapter will explore Continuous Double Auctions (CDA) and trading agents limited to
Zero-Intelligence Constraint (ZIC) and Zero-Intelligence Plus (ZIP) techniques. A table with
a summary of this section will be provided at the end of this chapter. It will then introduce
capacity traders and some metrics for market performance.

5.1 Auctions
Before delving into CDA and the trading agents, let us introduce the notion of an auction.

For many years, buyers and sellers have gathered in markets and bargained in various hu-
man societies. When bargaining, the sellers declare the offer price they wish to sell, and the
buyers answer with a lower bid price than the offer. The seller may lower the offer slightly, and
the buyer may slightly raise the bid. These price adjustments are repeated until a bargain is
reached or one party walks away.

The term "auction" is used in economics to describe the process through which buyers and sellers
together agree on a transaction price, exchanging money for goods or services. A bargain is a
type of auction [24]. There are several different sorts of auctions. Auctions are commonly used
to allocate particular commodities, almost always in short supply, to participating merchants
who want to buy them [2, 122]. This is made feasible by the participation of the hereinafter
roles in any auction:

• Auctioneer: who selects who will get the product and at what price.

• Trader: might be either a bidder trying to acquire products, or a seller aiming to sell
things or a mix of the two.

An example of an auction is the English Auction [22, 24]. Items are always appointed to the
top bidder in this auction, who purchases them at a price provided by the highest bid. If a
seller of items i receives bids from A, B, and C with values b(A) > b(B) > b(C), the auctioneer
will assign the items to A, who will then pay b(A). This method is also known as a first-price
auction. A shout can either be a bid submitted by a buyer or an offer submitted by a seller.

Differentiating different variants of an auction is not limited to only identifying the trans-
action price. Paper [89] discusses over 30 auction types depending on a given number of
properties. Paper [2] offers a quick summary of the properties stated. The summary of the
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properties can be found in paper [2] and they include: open-cry or sealed-bid, single or multi-
dimensional, one or two sided, first or kth price, single or multi- unit, and single or multi-item.
According to paper [2], the design and implementation of the auction mechanism allow individu-
als to reason about other characteristics inherent in the method used. Papers [63, 2] provide a
detailed overview as going deeper into this topic is not part of this thesis. The brief overview
mentions: allocative efficiency, budget balance, individual rationality, incentive compatibility,
and tractability.

5.2 Continuous Double Auction
Following what has been mentioned in section 5.1, any auction includes an auctioneering process,
which according to paper [116], is defined by a market protocol that defines the following auction
aspects:

... the nature of bids and asks allowed in
the market, the clearing rule that
indicates when a transaction occurs, the
pricing rule that indicates the price at
which a transaction occurs and the
information published to the buyers and
sellers in the market.

Vytelingum, D. Cliff, and Jennings [116]

A trading mechanism was introduced by [107] which triggered and formed the basis of a widely
used market, called the Continuous Double Auction (CDA) [23, 49, 111]. In CDA, there are
multiple buyers and sellers that participate through submitting shouts, generated from their
individual limit prices. To formulate the CDA mechanism, basic notions have to explored first:

• Definition 1: limit price ls is the maximum price the buyers are willing to pay and the
minimum price the sellers will ask [107, 104].

• Definition 2: transaction price tp is the price the goods are going to be bought at.

• Definition 3: trading round is the period during which asks and bids are submitted until
there is a match and a transaction occurs. There are typically several trading rounds in a
trading day. At the beginning of the trading round, Obid = 0 and Obid = max ask [116,
104].

• Definition 4: The outstanding bid, Obid, is the current best bid (highest unmatched bid).
The outstanding ask, Oask, is current best ask (lowest unmatched ask) [104].

Paper [107]’s protocol is characterized as an open-cry, single-dimensional, one-sided, single-item
auction with matching shouts being cleared at the average of the bid and the ask [116]. Two
more rules are imposed:

• Any new bid should be higher than Obid while all new asks should be lower than Oask.
This is called the NYSE spread improvement rule.

• Shouts only entail a single unit, are not queued and upon receiving an improving shut,
removed from the auction. This is called No-order queuing.
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Any CDA operates for a specified amount of time, trading period, generally across several trading
days, with each day containing training rounds [116].

Each round comprises of the following steps:

1. Participating traders submitting their shouts until a trade is possible or maybe till a
certain number of failed trades occur.

2. If a match between a bid and an ask occurs, a transaction is made, the round is over, and
the auction moves to the next round.

It’s called continuous double auction because of participants can continuously submit their
shouts while the auction mechanism each time a new shout enters. In case some transaction
happens, the surplus generated is updated. For sellers, ls is subtracted from the ts and for the
buyers it’s a similar formula:

surplusseller = units ∗ (tp − ls) (5.1)
surplusbuyer = units ∗ (ls − tp) (5.2)

The overall surplus generated by a trader is the sum across all rounds acquired. The market
surplus is the sum across all traders after a trading period has ended.

5.2.1 CDA different Versions
CDA has no "standard" definition or implementation; it varies depending on how each author
defines it. The authors of paper [49] only accept single-unit shouts and define the transaction
price tp as the price of the transaction’s first submitted shout. The NYSE spread-improvement
mechanism is not employed in this case, and shouts are not withdrawn from the auction when
an improved shout is provided. When a transaction is completed successfully, any shouts that
did not find a match are removed from the auction, resulting in a clean state for the following
round. Cliff and Bruten employed a version of CDA that is NYSE open-cry auction with shouts
being removed from auction when a better shout is submitted. Miller, Rust, and Palmer in
Paper [103] use discrete period for submitting bids and asks. Authors of paper [48] employ a
version that is quite similar with the entire transaction history being publicly available. There
are many more versions of CDA.

5.3 Trading Agents
There are many other trading agent strategies. For example, Zero-intelligence Plus, Adaptive
Attitude (AA) [72], Adaptive Aggressiveness (AAg) [116], Fuzzy logic [54], Chris Priest [93],
Gjerstad and Dickhaut (GD) [48] and many more.

However, in this section, the focus will be on introducing Zero-intelligence and Zero-intelligence
Plus trading agents which are CDA traders. An analysis of these two strategies is provided with
a minor example of how they function in the market.

5.3.1 Zero-Intelligence
Zero-intelligence (ZI) was developed by Gode and Sunder in paper [49] and they explored CDA’s
performance. They decided to replace human traders with ZI computer program traders to
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isolate different human behavioural impacts on market performance. In addition to that, some
more changes have been applied:

Each bid, ask, and transaction was valid
for a single unit. A transaction canceled
any unaccepted bids and offers. Finally,
when a bid and ask crossed, the
transaction price was equal to the earlier
of the two.

Gode and Sunder [49]

The ZI agents generates random asks (if its role is a seller) and bids (if its role is a buyer).
Following that, they’re distributed uniformly over the entire range of trading prices [49]. ZI
buyer is given a price range and during every round a uniformly random bid is made where
every price in the range has an equal probability. ZI seller the same is applied for the seller
with a price range of its own.

Realistic pricing ranges must be supplied for these agents to operate at all. If the upper
bound of buyers is lower than the lower bound of sellers, the market will fail to perform since
bids and asks would never match.

There are two versions of ZI [49] and they are: [bi, bi+n] [si, si+n]

• Zero-Intelligence Constraint (ZI-C): This is subject to a budget limit that prevents
it from buying or selling at a loss.

• Zero-Intelligence Unconstrained (ZI-U): This has no budget limit.

ZI is given price ranges for both buyers and sellers, resulting in four parameters. The price
ranges for the ZI buyer is [bi, bi+n] and the one for ZI seller is [si, si+n]. Because there are just
four parameters, tuning ZI is a simple task. Digging deeper into ZI agent design reveals that it
does not require market information, such as previous transaction prices or the latest bid/ask
prices, to function. ZI cannot adjust to changing markets because of its random nature, and no
information is used in calculating the price. Lastly, no agent desires may be included in a ZI
trader.

5.3.2 Zero-Intelligence Plus
Following the Zero-Intelligence agent type, Dave cliff and Bruten introduced an improved version
called Zero-intelligence Plus (ZIP) in [27, 23]. But why did they want to improve ZI? The ZI
agents are supplied with certain price ranges as a prior information. Cliff and Bruten could not
see how ZI-C traders might be employed in scenarios like Smith’s experiment [27, 23], which
convinced Gode and Sunder.

After doing analysis and experiments, Cliff and Bruten did not agree with the following
statement:
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the convergence of transaction price [to
the theoretical equilibrium price] in zi-c
markets is a consequence of the market
discipline; trader’s attempts to maximize
their profits, or even their ability to
remember or learn about events of the
market, are not necessary for such
convergence

Cliff and Bruten[23]

ZIP was introduced shortly after and held on to the idea that minimal machine learning tech-
niques would result in a performance similar to the human compared to the ZI agent. In ZIP,
agents can have only one role, either a seller or buyer. Each ZIP agent keeps tracks of a profit
margin which determines the difference between the limit price and the shout price that are
going to be submitted [123].

For sellers, the limit price is the least amount the agent requires get for a unit to consider a
transaction. For bidders, the limit price is the most the agent is willing to pay for a unit. It is
prohibited for both ZI-C and ZIP agents to take a loss in a trade. If an agent had a successful
trade in the prior round, its profit margin grows [56]. The behaviour of ZIP agents in Cliff and
Bruten’s paper is as follows.

ZIP sellers agent[27, 23]:
• If the last shout was accepted at price q

– Any seller who asks a price less than or equal to q increases their profit margin.
– If the previous shout was a bid, any seller who demanded a price more than or equal

to q reduces its profit margin.

• Else

– If the previous shout was an ask, any seller who asked a price more than or equal to
q reduces its profit margin.

For buyers agent [27, 23]:
• If the last shout was accepted at price q

– Any buyer who bids a price more than or equal to q increases the its profit margin.
– If the previous shout was an ask, any buyer who requested for a price less than or

equal to q reduced its profit margin.

• Else

– If the last shout was a bid, each buyer who requested for a price less than or equal
to q reduces the its profit margin.

ZIP agent contains eight parameters according to [25, 56, 114], and they are:

1. Each agent has a different learning rate (βi), which specifies how quickly the profit margin
should change. It is obtained at random from a parameterized uniform distribution (βb,
βb + β∆).
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2. Each agent has a momentum (γi) which refers to the Widrow-Hoff with momentum [122]
machine learning rule. The momentum is obtained at random from a uniform distribution
with parameters (γb, γb + γ∆).

3. Each agent has an initial profit margins of ZIP agents (µi(0)), that is obtained at random
from a uniform distribution. This distribution differs for sellers and buyers. For sellers
the parameters are (µb, µb + µ∆).

4. Cliff’s two parameters, cr and ca, determine the distribution of stochastic perturbations
used to calculate each trader’s target price.

As noticed, ZIP requires certain market information, which is anything linked to an agent’s last
shout Q. Things like its type (whether it is a bid or an ask), whether it’s accepted or not, and
the price of Q. Zip is also able to adapt to the market as it changes, and in addition to that,
the agent’s preferences are possible to pinch through its parameters [27, 56].

How does the ZIP agent work?

ZIP applies the Widrow-Hoff with the momemtum learning rule [27, 122, 56]:

∆i(t) = β ∗ (τi(t)− pi(t)) (5.3)

Knowing that βi represents the learning rate, pi represents the price at which the trader
submitted its shout and τi represents the target price determined based on the most recently
submitted shout. After that, it updates its profit margin µi at time t+ 1 [14, 56]:

µi(t+ 1) = pi(t) + Γi(t+ 1)
li − 1 (5.4)

where li is the trader’s limit price and

Γi(t+ 1) = γi(t) + (1− γi(t)) ∗∆i(t) (5.5)

where, as mentioned earlier, γi is the momentum. After the traders submits the shout at time t,
the shout price is calculated [56]:

pi(t) = li ∗ (1 + µi(t)) (5.6)

There is an improved version with 60 parameters instead 8 called ZIP60 in paper [26] but it
won’t be discussed because it’s out of the scope of this thesis.
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5.4 Summary on Trading Markets and Agents
Two tables (5.1, 5.2) will be present in order to summarize the main points of CDA market and
ZI and ZIP trading agents.

- CDA

Round finishes when transaction is possible
Price Calculated per transaction

Liquidity Best suited for high-volume trading
Frequency Best suited for high frequency trading

Mechanism runs Every time a shout is submitted

Table 5.1: CDA Summary [118, 64]

Trader Params Market Info Adapt to market changes to agent preferences

ZI None None No trades below/above the limit
ZIP 8 Last shout data Yes Learning rate and momentum

Table 5.2: ZI and ZIP trading agents summary
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5.5 Capacity traders and Market Performance
Capacity trading in the context of business parks is related to capacity (peak) charges. A
business within a business park will have a peak amount that they should not exceed. Their
energy bill is calculated firstly by applying the standard tariffs but then adding an additional
capaciteit or peak charge (in Belgium, it is called capaciteit). The peak power is set at, say,
50kW because a company suspects they will rarely exceed this power over a set time period
(PTU, in the context of the business park that is working on a PTU, is 15 minutes). Their bill
is charged by multiplying their peak power limit by a pricing co-efficient regardless of whether
they use their peak or are way below it. Obviously, for this reason, businesses will choose a
peak power limit that is a low as possible. However, if they exceed their peak power, the peak
power they reached becomes their new peak power limit, which remains in place for however
long their energy contract is fulfilled.

Now, if several businesses in a park use power at different times, they can forecast their
likely usage. Then if they expect to have an excess capacity that they will not use over some
time (i.e. the day-ahead gets split up into 15 min blocks or PTU), they can sell it to another
business through a capacity auction and the other way around if a business needs more capacity
they buy but just for that specifically selected time slot. This kind of action also benefits the
electrical services infrastructure, as peak loads come with risks of damage to hardware. If a
business park can spread out, it is capacity by strongly incentivising some users to not use
up to their peak limit during a period while other businesses have to use a lot, as opposed to
everybody just using power independently of each other and at times perhaps exceeding a safe
amount of power for the park and damaging a nearby transformer.

The market performance in the context of capacity trading also needs to take into account how
well the buildings can reach their desired capacity through bidding and selling. Furthermore,
this feature is still being worked on, but it will not be available through the primary continuous
double auction by Dave Cliff due to the time limit.

5.5.1 Market Performance Measurement
This section will go through several market performance metrics that have been offered for the
purpose of:

• Measuring how well the auction is.

• Interest of the traders participating.

• The performance throughout a run.

The theoretical market equilibrium will be introduced first. A perfect auction is often dis-
tinguished by the fact that supply equals demand (the items being sold equals the items
being bought). When auction prices rise, more sellers will enter the auction, since everyone
wants a share of the profit, as the traditional economics recommend. Similarly, a drop in auc-
tion prices would stimulate demand as more purchasers want to purchase items at a reduced cost.

Stotter, Cartlidge, and Dave Cliff in paper [109] say that "At some point, the quantity de-
manded will equal the quantity supplied. This is the theoretical market equilibrium"
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1. A first performance metric is to observe the amount of profit generated by participating
traders in the auction, called market surplus. Equations 5.2 and 5.1 are used to calculate
the surplus of a single trader leading to the actual market surplus Sactual:

Sactual =
∑
j

P
(j)
actual (5.7)

Where j is the number of participants and p(j)
actual is the surplus generated by trader j.

Following the definition of the theoretical market equilibrium P0, the surplus is calculated
with the condition for each trader if all trades occurred at the optimal price-point (also
known as the theoretical surplus Ptheoretical).

• For buyers with limited price lb:

pbuyertheoretical =
n∑
i=1

ui ∗ (lp − p0) (5.8)

• For sellers with limited price ls:

psellertheoretical =
n∑
i=1

ui ∗ (p0 − ls) (5.9)

Where n is the amount of transactions where that particular buyer was involved in and u
is the amount of units sold during transaction i. Therefore the theoretical market surplus
Stheoretical will be:

Stheoretical =
∑
j

p
(j)
theoretical (5.10)

With p(j)
theoretical is the theoretical surplus generated by trader j.

Using the Sactual and Stheoretical, the allocative efficiency metric e is defined. Alloca-
tive efficiency [91] is when the auction mechanism implements a solution that maximizes
the total valuation across all agents (the total profit earned by all traders divided by the
maximum total profit that could have been earned by all the traders).

e = Sactual
Stheoretical

(5.11)

When e<1, it says that this surplus ceiling was not reached for some transactions. When
e>1 demonstrates that some traders were exploited as more surplus was generated than
calculated theoretically. When e=1, this results that all traders have the max amount of
surplus available for every single transaction. The scenario where e>1 only occurs if the
price limit is ignored.
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2. The second performance metric is the one that measures the profit dispersion that oc-
curs during an auction. The profit/price dispersion metric [86, 91] assesses the significance
of the gap between generated and theoretical surplus (the extent to which values of a
variable differ from a fixed value such as the mean). Smaller values imply that traders’
surpluses are close to theoretical surpluses, but larger values suggest generated surpluses.

pd =
√√√√ 1
n
∗

n∑
i=1

(p(a)
t − p

(i)
t )2 (5.12)

Where p(a)
t and p(i)

t are the actual surplus and theoretical surplus of trader i respectively,
and n is the amount of traders participating.

3. The third performance metric is Smith’s alpha. Smith’s alpha metric α captures the
equilibrium finding capabilities of a particular auction through the following equation [109,
107]:

α = 1
p0

√√√√ 1
n
∗

n∑
i=1

(pi − p0)2 (5.13)

It is calculated as the root mean square deviation of trade prices from the equilibrium price
(EP) (i.e., the standard deviation of trade prices around EP rather than the mean). A low
value of α is a desirable property (describes a stable market trading close to equilibrium.).
A low α value means the generated clearing prices lie very close to p0 while a higher value
denotes clearing prices were generated that differ significantly from p0.
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Conclusions

This thesis is part of a more significant project (Layered Energy System (LES) model [37]) that
is yet to be piloted in Spain. This field is essential to address, and much work is currently being
done on batteries in the day-ahead markets in the context of energy communities in Spain. In
order to pilot this project in Spain (the technical work), the Spanish rules and regulations need
to be understood and analyzed. Firstly, the rules and regulations concerning Local Energy
Communities were defined. It provided a clear understanding of what is and is not possible
in Spain. It explained local energy communities and collective self-consumption as well as
the markets, operators and roles. Examples were also provided to make the understanding
more clear. Research demonstrated how the market works and the status of these technologies
in Spain. The literature review chapter then presented similar research papers for both the
day-ahead bidding chapter and the trading markets chapter. It provided an anchor point for
readers looking to start their journey into the field.

Once familiar with the topic’s surroundings, the technical task is what came next. This
technical task explores how using the battery allows for better and cheaper bidding strategies in
the day-ahead energy market in Spain. It explores how the day-ahead market could improve
through the use of batteries for better planning and error compensation. Firstly several error
scenarios were generated to represent the deviation between the power committed (the power
forecasted in the day-ahead market) and the actual data (when the next day comes) that will
possibly happen. Three distributions of the errors were tested, which are Gaussian, Uniform
and Gamma. After that, five different algorithms were introduced as different ways of how
the battery can operate and how to optimize it. A subset (three) of the studied strategies was
selected and implemented, comparing their performance on actual electricity data and choose
the one that best fits various scenarios and requirements in real-world commercial pilots. They
opted to find an optimal day-ahead strategy for committed power, considering the availability
of the battery so that the expected total energy cost is minimized. They opted to solve the
problem from a mathematical programming perspective. A particular objective function (total
cost euro/day) was minimized with respect to constraints involving certain variables. A linear
program was applied to find the values that best fit those variables at every time-step t. After
those variables were determined, the best strategy was chosen based on the results obtained,
such as the total cost (euro/day) and the financial savings (in %). After the best strategy was
chosen, the preferred error distribution was chosen based on their performances. Strategy One
(from section 4.4.2.1) is the best strategy since it gives the best results across all mentioned error
distributions (Uniform, Gaussian and Gamma). The preferred error distribution is the Gamma
distribution because it gives the best results (highest financial savings and smoothness of
the battery operation) in comparison to the other two distributions. Using a battery to offset
imbalances can help minimise total energy cost for a whole day (up to 26%).
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After obtaining an algorithm that allows the battery to optimize interaction with the day-ahead
energy market, ways to use this algorithm in the context of energy trading have been explored.
The domain of auctions was first introduced, then continuing with an investigation of Continuous
Double Auction (CDA) characteristics providing a definition and ensuring all auction aspects
were clear. CDA variants were discussed and compared in terms of well-established auction
properties. An extensive review of existing CDA strategies was then mentioned but focused on
two strategies were are Zero-intelligence (ZI) and Zero-intelligence Plus (ZIP). Assumptions
made by the authors were mentioned, as were the parameters required by each trader. Capacity
(energy) traders were explained in the context of business parks, and different performance
metrics aimed to quantify how well an auction performed. The market performance in the
context of capacity trading takes into account how well the buildings in business parks are able
to reach their desired capacity through bidding and selling, but this is a feature that is being
worked on in using Python and will not available through the basic continuous double auction
simulation by Dave Cliff [25] due to time limit. The performance metrics that were described
are:

1. Allocative efficiency [91] which is when the auction mechanism implements a solution
that maximizes the total valuation across all agents (the total profit earned by all traders
divided by the maximum total profit that could have been earned by all the traders)

2. A metric that measures the profit/price dispersion that occurs during an auction. This
metric assesses the significance of the gap between generated and theoretical surplus [86,
91].

3. Smith’s alpha which captures the equilibrium finding capabilities of a particular auction
[109, 107].

The whole point of this is to make energy cheaper for the consumers and prosumers, minimize
energy cost and maximize profit.

6.1 Future work:

6.1.1 LES bidding
Consider how the bidding strategy would change if the following were considered:

• the battery power limit

• the battery energy capacity

• the grid power limit

That is to see how they will effect the efficiency of different optimization techniques to see if
there are preferable parameters for optimizing a customer’s energy usage costs.

6.1.2 Capacity Traders
There is an research in exploring how the work could be expanded in relation to i.Leco’s ongoing
work in capacity trading. It is also to study how market performance can be measured in
capacity trading between buildings in a business park. For capacity traders, the future work is
to apply the feature which undergoes trading of energy. This feature is modified version of the
basic continuous double auction simulation by Dave Cliff. It takes into account how well the
buildings are able to reach their desired capacity through bidding and selling.
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