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Abstract: Invoice factoring is a handy tool for developing businesses that face liquidity problems.
The main property that a factoring system needs to fulfill is to prevent an invoice from being factored
twice. Distributed ledger technology is suitable for implementing the platform to register invoice
factoring agreements and prevent double-factoring. Several works have been proposed to use this
technology for invoice factoring. However, current proposals lack in one or several aspects, such
as decentralization and security against corruption, protecting business and personally identifiable
information (PII), providing non-repudiation for handling disputes, Know-Your-Customer (KYC)
compliance, easy user on-boarding, and being cost-efficient. In this article, a factoring registration
protocol is proposed for invoice factoring registration based on a public distributed ledger which
adheres to the aforementioned requirements. We include a relayer in our architecture to address
the entry barrier that the users have due to the need of managing cryptocurrencies for interacting
with the public ledger. Moreover, we leverage the concept of Verifiable Credentials (VCs) for KYC
compliance, and allow parties to implement their self-sovereign identities by using decentralized
identifiers (DIDs). DIDs enable us to relay on the DIDComm protocol for asynchronous and secure
off-chain communications. We analyze our protocol from several security aspects, compare it to the
related work, and study a possible business use case. Our evaluations demonstrate that our proposal
is secure and efficient, as well as covers requirements not addressed by existing related work.

Keywords: invoice factoring; public distributed ledger; blockchain; smart contract; decentralized
identifiers; self-sovereign identities; DIDComm; relayer; dispute resolution

1. Introduction

In business-to-business financial relationships, it is a common practice to pay for
some services or products with some delay—for example, several months later. In this
situation, the provider (namely the seller) might sell her future receivable finance (invoice
from a buyer) with a discount to a factoring entity (namely the factor, e.g., a bank). Invoice
factoring has been a popular way to provide cash flow for businesses [1]. There are several
issues and challenges in the traditional invoice factoring process [2]. For example, it often
requires several manual steps, and the information is dispersed among different systems
and databases [3,4].

There are also trust issues related to factoring. The factor has to trust the buyer to have
paid the amount of invoice by the due deadline, and the buyer has to comply with the
factoring contract between the seller and the factor. Moreover, a malicious seller may try to
cash an invoice at multiple factors to fraudulently double the amount of received money.
This issue is known as double factoring, and it is a main problem that a factoring system
needs to prevent. In more detail, double factoring is possible because there are no insights
between factors, whether an invoice has already been financed or not [5]. In general, the
implication of the buyer is necessary to provide awareness between factors in whether an
invoice has already been financed.
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Usually, we can assume that the buyer is a trusted party, since this entity does not
have any economic incentives in the factoring process. This is clearly true when the buyer
is an administration or a government. To prevent double factoring, many ecosystems
(e.g., countries) use one or several centralized entities to register factoring agreements.
However, this puts a lot of power in the hands of these centralized entities and makes it
difficult for users to dispute situations in which factoring data is unavailable, wrongly
recorded or manipulated by negligence or on purpose. Besides, if there are several possible
centralized registries for invoice factoring, which is quite common, another problem arises.
In this case, the factoring information is scattered and it is the responsibility of the buyer—
the less involved entity in the factoring process—to check the records of all possible trusted
third parties and make sure that the payment is made to the correct party. In this context,
a public distributed ledger seems a natural tool to solve these issues because not only
can it keep the record of factoring agreements but it can also prevent double factoring [6].
A distributed ledger can make the record-keeping database distributed and highly available,
as well as logically unique and secure from manipulations. This way, factoring agreements
can be made faster with fewer errors and still carry the authenticity and credibility of
manual contracts.

Several works have been proposed in the literature to implement new generation
invoice factoring protocols using distributed ledger technologies [2,5,7,8]. However, as we
discuss in detail in Section 6.2, none of them is completely able to fulfill the requirements
that such a new generation ledger-based protocol should cope with. Concretely, ledger-
based invoice factoring solutions should operate without a single point-of-failure, provide
privacy and protection of personally identifiable information (PII) and business information,
provide non-repudiation for handling disputes, be decentralized and secure against cor-
ruption, comply with Know-Your-Customer (KYC), be cost-efficient, and provide an easy
user on-boarding.

In this article, we propose a protocol that fulfills all the previous requirements, that is
optimal in terms of cost, and that is built over a public ledger, which is the most reliable,
transparent, and secure type of ledger. Regarding other proposals, we address the entry
barrier related to the fact that users have to manage cryptocurrencies for interacting with
public ledgers. In general, many users, prefer not to use cryptocurrencies because they are
highly volatile, risky, and non-compliant. To overcome this problem, we include a relayer
in our architecture. Additionally, the proposed protocol also enables new functionality
that is not available in any other related protocol. Specifically, the protocol allows parties
to implement their self-sovereign identities making use of their self-managed identifiers
(DIDs). The protocol also leverages the concept of Verifiable Credentials (VCs), which
are credentials issued to self-sovereign identities and grant permission to the parties to
participate in our invoice factoring architecture. Another advantage of using DIDs is that
we can relay on new communications models that are being developed in this ecosystem,
like DIDComm. DIDComm allows us to implement asynchronous and secure off-chain
communications between participants, which means that a party does not need to be
present at the moment that another party sends a message. The response can be received,
processed, and approved asynchronously.

Our contributions are designing the system architecture, procedures, and communica-
tion protocols for an efficient system which is decentralized and highly available. We use
different cryptographic primitives to make our architecture secure against attacks and pre-
serve the privacy of involved parties. Our registration system relies on a public distributed
ledger to prevent double-factoring and protect digital evidence from manipulations. The
involved parties identify each other in a secure and privacy-preserving manner to comply
with the KYC regulation. While we rely on a public distributed ledger, the parties are not
required to use cryptocurrencies. Moreover, the buyer is not required to invest too many
resources, nor be heavily involved in the factoring process.

The rest of this article is organized as follows: in Section 2, we present the followed
methodology; in Section 3, we provide the background; in Section 4, we present the related
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work; in Section 5, we introduce our protocol; in Section 6, we evaluate the proposal; and
we conclude in Section 7.

2. Methodology

For the design of our ledger-based invoice factoring solution, we followed the design-
science research methodology [9]. Following this methodology, we reviewed the literature
to better understand invoice factoring services in the first step. Our study revealed that
prevention of double-factoring is the critical motivation behind such services. In addition,
ledger-based invoice factoring solutions should operate without a single point-of-failure,
provide privacy and protection of personally identifiable information (PII) and business
information, provide non-repudiation for handling disputes, be decentralized and secure
against corruption, comply with Know-Your-Customer (KYC), be cost-efficient, and provide
an easy user on-boarding.

In the second step, the distributed-ledger technology motivated us to search for a
solution based on this technology to completely prevent double-factoring while satisfying
the other requirements. We reviewed several works which implemented new generation
invoice factoring protocols using distributed ledger technologies [2,5,7,8]. However, as we
discuss in detail in Section 6.2, none of them was completely able to fulfill the requirements.

In the third step, we designed a system architecture, and developed its procedures
and communication protocols based on the distributed ledger technology for an efficient
invoice factoring system. We made use of proven and solid cryptographic primitives
to make our design secure while being functional and efficient. In Section 3, we briefly
introduce the cryptographic primitives and the technology we use in our design.

The fourth step was to evaluate our solution and compare it with the related work. Our
solution suites different cases for business use. Nonetheless, as an example, we demonstrate
its applicability in a digital data marketplace in Section 5.3. Besides that, we analyzed
the security of our proposal and compared it with the related work. According to the
methodology, the remainder of the article presents our research, design, and evaluations.

3. Background
3.1. Cryptographic Primitives

A number of cryptographic primitives have been used to secure our design, and
we briefly introduce them next. The interested reader is referred to reference [10] for
more detail.

Encryption is a security mechanism to make data confidential. In particular, the data
is transformed to a sequence of random-looking bytes that can only be understood by
intended parties that have access to a decryption key. There are two types of encryption:
symmetric and asymmetric. In symmetric encryption, a secret key is shared between
intended parties and is used for both encryption and decryption. In contrast, in asymmetric
encryption, a pair of keys (public and private) are used. The public key is available to
everyone and can be used to encrypt data, but only one entity owns the private key and
can decrypt the encrypted data.

A digital signature is a security mechanism to provide assurance about the originality
of signed data and confirm the signatory’s informed consent. Digital signatures are a
method of public-key (asymmetric) cryptography. More specifically, the private key is used
to generate a fixed-size signature from the data, and everybody can validate the signature
by the corresponding public key. If a fake private key is used or the data is manipulated,
the signature does not match the data and the public key.

A hash function is a cryptographic primitive to derive a fixed-size digest of its input
data. Secure hash functions (such as SHA-256) are irreversible in practice, and the original
data cannot be guessed from their output value. However, brute-force guessing attacks
are still possible if the length of the input is too short. Therefore, special families of hash
functions with configurable (sliding) time-complexity and memory-consumption are used
in security protocols to reduce the vulnerability of online and offline brute-force attacks.
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These algorithms (such as scrypt [11]) are built around the idea of iteratively applying the
input data and a random number (a.k.a. the salt) to a secure cryptographic hash function.
The salt is used to increase the cost of pre-computation.

Diffie-Hellmann (DH) Key Exchange protocol [12] is the first key exchange protocol
in a public-key (asymmetric) setting. It allows two parties to create a shared secret (key)
without any prior secret sharing and secure it through an insecure communication channel.
In a DH key exchange, participants agree on a finite cyclic group G of order n and a
generator g ∈ G. One party selects a random number b1 ∈ (1, n) and sends gb1 to the other
party. Then, the other party selects another random number b2 ∈ (1, n) and sends gb2 . The
agreed DH secret is gb1b2 . In order to use DH key exchange securely, the two ends should
authenticate the received values to prevent man-in-the-middle attacks and apply a key
derivation function (KDF) to the agreed DH secret.

3.2. Public Distributed Ledgers

The main technology to build a public ledger is a blockchain network. In a blockchain
network, users can run a blockchain node to send their transactions or use some available
node that allows them to do so. Then, in a distributed way, the blockchain network can
create a unique sequence of ordered transactions. In more detail, the network creates a
chain of blocks using a consensus algorithm to order transactions [13]. A block contains
several transactions, and an important property is that, once the consensus algorithm
definitively accepts a block, all the nodes will know this block, and it will be impossible to
manipulate or delete it [14].

In a blockchain network, users can own one or more accounts. Accounts are identified
via a public identifier (usually derived from a random public key using a hash function).
New blockchain accounts can be created by simply generating a pair of asymmetric keys and
deriving the account identifier from the public key. In general, account identifiers are not
directly linked with any user data, so they can be considered pseudo-anonymous identifiers.

Transactions carry the source account identifier and a destination account identifier,
and they are all digitally signed using the private key of the source account. All the nodes
that form the blockchain network see the same state (also known as world state) that results
from executing all the transactions in order [15].

In most current public ledgers, the main use of blockchain is to create a cryptocurrency.
As a result, the ledger state represents the balance of each account, and transactions are
used to transfer the balance from one account to another. However, blockchain networks
can be used to build other generic applications, like we will do for registering the factoring
process. For this purpose, many distributed ledgers also provide users with the ability to
use smart contracts [16] and develop decentralized applications (dapps).

Ethereum [17] is the most popular public blockchain capable of running smart con-
tracts, and the platform of choice for many developers for implementing dapps [18]. Taking
Ethereum as a reference, we can define a smart contract as code that implements business
logic to manage a portion of the ledger state. Smart contracts are deployed (installed)
in the ledger through transactions. Deployed contracts, like user accounts, also have an
identifier. Then, the portion of the ledger state, which is controlled by the smart contract,
can be modified by sending a transaction to a function of that smart contract. In this case,
the smart contract makes the corresponding state changes according to its explicit and
immutable logic. Moreover, once a smart contract is deployed on the blockchain, it can
be automatically executed through transactions. The correct operation of smart contracts
is guaranteed by thousands of nodes all over the world, so smart contracts cannot be
censured or stopped [19].

The main advantages of implementing business logic using smart contracts are that,
on the one hand, the logic is publicly available and auditable, and, on the other hand, the
logic is immutable and tamper-proof, which guarantees that the execution will always be
as defined. These advantages can be used to enforce the terms of an agreement between
parties without the need for intermediaries [20].
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3.3. Decentralized Identifiers

Identifiers (IDs), as their name suggests, are used to identify and distinguish between
individuals/entities in the digital world. There are two important properties that an ID
shall have: uniqueness and verifiability. The former property guarantees that two different
entities do not have the same ID, and the latter one requires that the link between an ID
and the related entity must be provable. Both properties are often provided by relying on a
central server or a third-party called identity provider. Decentralized identifiers (DIDs) [21]
are a means to implement self-sovereign identities (SSIs)—IDs that are under full control of
their related entity. DIDs are designed to allow for a verifiable and decentralized digital
identity system for subjects and to decouple them from centralized registries, ID providers,
and certificate authorities. A DID has a controller which has full power over the subject
of the DID without requesting permission from any other entity. Other entities may only
facilitate the discovery of information related to a DID.

A DID is a simple text in form of a URI, e.g., did:bc:1234, consisting of a URI scheme
identifier (did), a DID method (bc), and a DID method-specific identifier (1234). This
opaque string associates a DID subject with a DID document (DDO) to ensure secure and
reliable interactions among subjects. When a user acknowledges a claim from an issuer, the
corresponding DDO is generated. Each DDO can contain public cryptographic material
(e.g., public keys and authentication mechanisms) or service endpoints in order to provide
a set of mechanisms to reach the subject and communicate with it securely.

A DID method specification explains specific ways for creating, resolving/verifying,
updating, and deleting DIDs, and these functionalities are implemented differently for
each DID method. A list of registered DID methods (more than 80) and their specifications
can be accessed from reference [22]. Blockchains and distributed ledgers, in general, are
suitable candidates for implementing the verifiable data registry required for implementing
DIDs. Regardless of the type of blockchain (public, private, permissioned, or permission-
less), specific methods are proposed. In particular, there are proposals based on Sovrin,
Ethereum, Bitcoin, Tangle, Hyperledger, ICON, Corda, and other blockchains, and some of
them are already operational.

For any identity management solution, privacy is a pivotal component; and blockchain-
based DIDs must be carefully designed so that their immutable and transparent nature
does not impair privacy. The following features of DIDs can implement privacy by design
at the very lowest level of infrastructure and for building robust, modern, and privacy-
preserving technologies:

• Pairwise-pseudonymous DIDs: In addition to being used as well-known public
identifiers, DIDs can be used as private identifiers issued on a per-relationship basis.
In this way, subjects can have multiple pairwise-unique DIDs that cannot be correlated
without their permission and, therefore, do not compel a subject to have a single DID,
like a national ID number.

• Off-chain private data: It is possible, and already implemented in some existing DID
methods, that all private data are stored off-chain and shared only over encrypted,
private, and peer-to-peer connections. Because there are two risks for storing personally
identifiable information (PII) on a public blockchain, even encrypted or hashed: (1) When
the information is shared with multiple parties, the encrypted or hashed data becomes
a global correlation point. (2) When the encryption is eventually broken, e.g., by a
quantum computer, the data will be accessible forever on an immutable public ledger.

• Selective disclosure: DIDs can open the door for individuals to gain greater control
over their personal data by using DIDs and the greater ecosystem of Verifiable Creden-
tials [23] based on them: (1) by privately sharing encrypted digital credentials only
with intended parties, or (2) by using zero-knowledge proofs (ZKP) to minimize data
leakage. For example, a ZKP enables a user to disclose that he/she is over a certain
age without disclosing his/her exact date of birth.
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3.4. DIDComm

DIDComm is an asynchronous communication protocol for establishing secure and
private channels between parties based on their DIDs [24]. DIDComm supports both
centralized and decentralized communication models. Different parties do not need a
highly available webserver to be accessible for communications. Individuals on semi-
connected mobile devices can also exchange messages in a decentralized fashion, and
messages can pass through mixed networks, e.g., an email can connect A to B without
a direct connection. DIDComm also supports HTTPS endpoints which can be used to
communicate with standard HTTP servers over TLS.

All the information required for establishing a DIDComm channel exists in the DDOs
of the involved parties. DIDComm uses public-key cryptography, and the privacy of
communications are preserved in the sense that third parties do not learn about the content
and the sender of a message. Each party utilizes a software agent to process requests and
manage keys. All interactions actually take place between the two ends’ software agents.
An agent can be implemented in a special desktop/mobile application or a web-based
application and be run inside a standard web browser.

Next, we briefly explain how direct and indirect messaging work in DIDComm. In
the direct case, Alice directly sends a message to the endpoint specified in Bob’s DDO [25].
In a decentralized and ad-hoc case, the endpoint is Bob’s agent, who is accessible through
the Internet [26]. The confidentiality and integrity of the message are guaranteed by typical
public-key cryptography and digital signature. To do so, their agents use the other party’s
public key, which is specified in his/her DDO.

In the indirect case, Alice and Bob cannot connect directly, and Alice uses an inter-
mediary Relay [27]. She wraps her encrypted message in another message, encrypts the
whole, and sends them to a Relay (direct messaging). The Relay decrypts and unwraps the
message and forwards it to Bob (direct messaging). Finally, Bob decrypts and recovers the
original message.

4. Related Work

This section describes solutions that have been published in the literature, and that
propose similar approaches to us to solve invoice factoring. That is to say, approaches that
propose solutions based on distributed ledger technologies.

The first work that is worth mentioning is DecReg [5], which has been used by the
Netherlands financial industry. DecReg can be used to track fiat payments and invoices
that have been factored. The DecReg framework prevents double factoring by design and
is implemented over a private blockchain. The operation of the framework requires that
buyers operate a node in the private blockchain. To do so, buyers receive credentials from a
Central Authority (CA). The CA not only provides credentials but also monitors the access
to the private blockchain and prevents uncertified parties from accessing confidential
information. Regarding dispute resolution, if an argument between a seller and a factor
takes place, in DecReg, the signatures of transactions (of the private ledger) are used to
resolve the dispute.

Battaiola et al. [7] proposed a framework for registering factoring agreements that
can prevent double factoring and preserve the privacy of involved parties. The proposed
architecture employs a distributed ledger as the source of truth. All parties submit their
private inputs in the form of commitments to ensure the integrity and confidentiality of
factoring data. The protocol operates over a private blockchain network. In particular,
authors suggest the use of Hyperledger Fabric [28]. Involved parties have to operate the
infrastructure of the private ledger. In addition, the registration of the factoring of an
invoice requires that each involved party sends a transaction to the private ledger.

Guerar et al. [8] propose a factoring scheme based on a public distributed ledger. In
particular, authors suggest the use of the Ethereum public blockchain network [17]. In the
proposed protocol, buyers are not considered trustworthy. Following this assumption, the
authors develop a framework to assess the credibility of buyers based on reputation. That
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is to say, a reputation record is created for each buyer based on his previous behavior. To
implement this reputation system, the platform is in charge of creating stable identifiers for
linking reputation records to each buyer. On the other hand, in the proposed framework,
factoring is negotiated using an on-chain auction in which any investor, not just banks
and financial institutions, can register as a factor. Additionally, the protocol is specified
for products rather than for services, as the authors mention that the invoice factoring
negotiation process begins when transported goods are received. Finally, to provide data
availability, authors suggest the use of a peer-to-peer distributed file system. In particular,
authors base their solution in the Inter-Planetary File System (IPFS) [29].

In reference [2], the authors introduce a framework for factoring registration based
on the use of a public distributed ledger. The proposed protocol is designed to reduce
the buyer’s involvement in the factoring process. In particular, the buyer is only required
to publish a hash of invoice details for factor verification, and the rest of the process was
carried out by sellers and factors using on-chain and off-chain communications. A smart
contract is used to register invoice factoring details on-chain efficiently and to avoid double
factoring. In particular, only the seller needs to interact with the smart contract and only
one transaction is sent to the public distributed ledger to complete the registration of the
factoring process. In addition, authors use pseudo-anonymous identifiers, symmetric
encryption for on-chain data and cryptographic commitments to improve the privacy of
sellers and factors. In this protocol, the buyer uses the registered information in the public
distributed ledger to pay to the corresponding factor. The payment is done off-chain via
a bank transfer using fiat money. Finally, after the registration process takes place, the
data stored on-chain can be used as digital evidence for the resolution of possible disputes
between involved parties.

5. Proposed Architecture

In our architecture, we have the three classical entities of the factoring scenario: the
buyer, the seller, and the factor. Additionally, we have a smart contract deployed on a public
distributed ledger and a relayer that facilitates sending the transactions to the ledger. At a
high level, our protocol works as follows:

• The seller submits a request to the buyer for registering an invoice.
• The buyer issues a cryptographic digest for the invoice.
• The seller negotiates with several factoring companies and chooses a desired factor.
• The factor verifies the cryptographic digest of the invoice by querying the buyer, and

then sends the signed factoring agreement to the seller.
• The seller uses a relayer to register the agreement in a smart contract that is available on

a public ledger.
• The factoring company queries the smart contract to ensure that it is actually selected

as the factor.
• Since the factoring decision registered in the smart contract is immutable, the factor

pays the agreed amount (invoice amount− fee) to the seller.
• When the invoice payment deadline is reached, the buyer checks the smart contract and

notices that the invoice is factored.
• Finally, the buyer pays the invoice amount to the factor.

Next, we present a detailed explanation of our proposal, including our design goals,
assumptions, and the detailed protocol.

5.1. Design Goals & Assumptions

In our architecture, we assume that the buyer is trustworthy for the factoring process.
This is clearly true when the buyer is an administration or a government, which is our main
use case. In the case of other types of buyers, the factor would need to check the correspond-
ing creditworthiness before accepting to factor invoices issued by a specific buyer.

Our architecture is for a registration system but the actual payments are made off-chain
using fiat transfers between bank accounts. All the interactions to complete a factoring
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registry are managed by a smart contract. All parties can trust the correct execution of
transactions managed by the smart contract because the blockchain platform guarantees
this execution. If the invoice has been factored, the buyer has to pay the invoice to the bank
account of the entity registered by the smart contract. Therefore, all involved parties have to
review the smart contract code and ensure its correctness. The smart contract address is also
part of the negotiation between the seller and the factor.

An important obstacle against the adoption of distributed applications is the need
of having cryptocurrency to pay the transaction fees. Managing cryptocurrencies may be
difficult for institutions and companies because of their high volatility, financial risk, and
regulation issues. This may lead to a situation in which parties refuse to use cryptocurrency
and, hence, cannot interact directly with smart contracts.

To overcome this problem, we use a relayer, as shown in Figure 1. A relayer is a
facilitator that sends the transactions on behalf of other users. The relayer will pay the fees,
but it is not a trusted party. In more detail, this means that the seller is who authorizes the
factoring registrations, and the relayer is an entity to merely forward and pay the transaction
fee. The advantage of this architecture is that the seller can pay the relayer with classical
payment methods (e.g., credit cards, bank transfer, etc.).

Public 
Blockchain

User

User

Transaction Relayer

 Fiat 

Cryptocurrency (for transaction fee)

Cryptocurrency (for transaction fee)

Figure 1. Transaction relayer.

Since the buyer does not have incentives in the factoring process, as a general rule, in
our design, the factoring process is as less complex and resource-consuming as possible
for the buyer. In particular, in our architecture, the buyer will not need specific digital
certificates for the factoring process and will not perform digital signatures related to this
process. Instead, the buyer’s software agent gives access to some minimal information
about his invoices so that factors can check the information provided by sellers.

Another issue to take into account is that, when using a public ledger, we gain
transparency, but, at the same time, everybody has access to the stored data. In the factoring
process, there is sensitive business information which shall be appropriately protected. For
privacy protection, we do not store sensitive data directly on the blockchain. Instead, some
part of the data is symmetrically encrypted before being stored on-chain; another part of
the data is stored off-chain, and we use cryptographic commitments to provide proofs of
existence. Once an invoice factoring has been registered, we guarantee that:

• There is no possibility of double factoring.
• The relevant parties have access to the relevant data and its proof of existence.
• There is no way to dispute the factoring once the smart contract has registered it.

In addition, to perform the registration process, all parties are identified by DIDs,
and some communications use DIDComm. Our proposal is independent of any specific
DID-method, but we have the following assumptions:

• Sellers and factors may have multiple DIDs, but once a pair decides to enter a factoring
agreement, they use a specific DID during the whole process. Their DIDs shall be
bound to a pair of digital signature keys to sign requests for non-repudiation purposes.

• While our architecture supports multiple buyers, but we focus on invoices related to
one buyer and assume that the respected sellers and factors already know the DID of
the buyer.
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• We have a relayer role in our architecture which is also identified by a DID. In addition
to the DID, the relayer has a blockchain address for issuing transactions. However,
there is no need for the DID and the address to be linked together.

• The other entities in our proposal are not required to have blockchain addresses.

Finally, we assume that an invoice contains the following information: the seller and the
buyer identities, invoice number, issuance date, due payment deadline, total amount (and
currency code), and other details about the service/goods provided by the seller to the buyer.
We assume that the identity of the seller and the invoice number are enough to identify the
invoice uniquely; thus, the use of unique invoice numbers should be enforced. Besides,
the identifier of the buyer, due payment deadline, and the total amount are necessary for
factoring negotiations. Other information can be added to the invoice without affecting
how our architecture works.

5.2. The Protocol

Our architecture is framed in a financial context; hence, strict regulatory restrictions
apply to it. In particular, following the Know-Your-Customer (KYC) regulation, the in-
volved parties need to be well identified to each other, and their agreements have to be
persisted for later audits and law enforcement.

In order to comply with the KYC regulation, in our architecture, the buyer issues
Verifiable Credentials (VCs) to certify the real identity of the factors, the sellers, and also exact
details of the invoices. The buyer is supposed to pay the factor; therefore, as mentioned, we
assume that factors can trust buyers for this purpose. Our protocol avoids the buyer from
having to digitally sign a VC or any other data. Instead, the authenticity of VCs are verified
by securely querying the (agent of the) buyer.

The process of factoring an invoice starts with the registration phase and is followed
by factoring and payment phases. Each phase consists of several steps, which are explained
in the following sections. In Table 1, we show the notation that we utilize to describe
our protocol.

Table 1. Notation.

Notation Meaning

KDF(m) secure symmetric key derived from m (deterministic)
h(s, m) a salted hash function using salt s and string m.

IDA real identity of entity A
@A blockchain address of entity A

DIDA the public DID of entity A
PUA the public component of digital signature key-pair of A

Enc(K, m) symmetric encryption of m using key K
σX

m digital signature over message m; X can be the signer’s address or DID
I invoice number
S seller
B buyer
F factor
C smart contract
R relayer

5.2.1. Phase 1: Credential Registration

In this phase, VCs are registered by the buyer for identifying factors and for identifying
invoices of sellers (seller-invoice VC). Both VCs are registered in essentially the same manner.
We first explain the factors’ VC registration, and then the seller-invoice VCs.

Factor’s credential: The VC of a factor is registered as follows (see Figure 2):

1a The factor establishes a mutually authenticated DIDComm channel with the buyer
and sends one of its DIDs (DIDF). This channel is re-used for other communications
between these two entities.
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2a.1 The buyer selects a random number s (salt) and generates an identifier for the credential
as follows:

PF = h(s, (DIDF, PUF, IDF)). (1)

To generate the identifier for the factor (PF), we use its decentralized identifier (DIDF),
the real identity of the factor (IDF), and the public key of the factor (PUF). The factor’s
public key is obtained from the DDO that resolves DIDF. Finally, the verifiable
credential for the factor is the following tuple:

CF = (PF, DIDF, PUF, IDF). (2)

2a.2 The buyer keeps the VC and salt for further reference and replies to the factor with PF.

FactorBuyer

(1a)

(2a.1) ( s , P
F 
, C

F 
)

1

(DID
F
)

Request for a factor VC

(2a.2)

(P
F
)

Figure 2. Registration of a factor’s VC.

Note that having the value of PF, the factor can compose his/her credential (CF). After
that, any seller with a copy of CF can consult the buyer’s agent, send PF, and obtain s to
check the integrity of the VC content. Note that PF is cryptographically bound to the
contents of CF. Therefore, if any of the contents are changed, PF does not match them
anymore. Secure hash functions which are resistant against brute-force guessing attacks
(such as scrypt [11]) should be used here. They prevent an attacker from discovering the
actual content of CF by trying different values, and matching PF with the guessed content.
The security of the communication with the buyer and pre-image resistance of the hash
function assure the authenticity of the VC. The VC is kept private and only exchanged
between intended parties. For better anonymity and prevention of linking attacks, a factor
can have multiple DIDs but can use only one of them during the whole process of factoring
a particular invoice.

Seller-invoice credential: When a seller decides to factor an invoice, she asks the buyer
to register a seller-invoice VC. The registration is independent of factors’ registration. In
particular, this registration consists of the following steps (see Figure 3):

1b The seller establishes a mutually authenticated DIDComm channel with the buyer and
sends one of its DIDs (DIDS) and the identifier (I) of the corresponding invoice. This
channel is re-used for other communications between these two entities.

2b.1 The buyer checks that a credential has not been already registered for the invoice I.
Then, they proceed by selecting a random salt s and generating the credential identifier.
A seller-invoice credential is similar to a factor’s VC, but it contains not only the seller
identifiers but also invoice information:

CI = (PI , DIDS, PUS, IDS, I, aI , dI , @C), (3)

where DIDS and IDS are the seller’s identifiers, PUS is the public key of the seller, I is
the invoice number, aI is the invoice amount, dI is the invoice payment deadline, and
@C is the blockchain address of the factoring smart contract. Finally, PI is the identifier
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of the seller-invoice credential, which is generated in the same way as in Equation (1),
but computing the hash over the contents of CI :

PI = h(s, (DIDS, PUS, IDS, I, aI , dI , @C)). (4)

SellerBuyer

(1b)

(2b.3)

(2b.1)

(P
I 
)

(s , P
I  
, C

I  
)

(DID
S  

, I )

Request for a seller-invoice VC

(2b.2) b
1

Figure 3. Registration of an invoice for a seller (seller-invoice VC).

The verification process of CI is also the same as CF. As factors, sellers can also have
multiple DIDs for better anonymity and prevention of linking attacks. However, as with
factors, a seller can only use one of its DIDs to receive the seller-invoice credential for
a particular invoice. The buyer performs the following additional processing for seller-
invoice registration:

2b.2 The buyer selects another random number b1 ∈ (1, n) and stores it for later use. In
particular, b1 will be used by the selected factor to derive an encryption key using
a Diffie-Hellman (DH) key exchange scheme. As we explain in the next phase of
the protocol, we use DH to establish a shared secret key between the buyer and the
selected factor using the buyer’s agent and on-chain information provided by the factor.

2b.3 The buyer replies to the seller with PI . Having the value of PI , the seller can compose
the corresponding seller-invoice credential CI (see Equation (3)).

5.2.2. Phase 2: Factoring

According to Figure 4, the steps followed in this phase are the following:

3.1 The factoring phase starts with the seller contacting multiple factors to negotiate and
compare the different offers and conditions for the possible invoice factoring. The
seller provides her invoice details, including the invoice number (I), the total amount
of the invoice (aI), and the payment due deadline (dI), to the factor. The factor specifies
his/her offered amount for the invoice (aF = aI − fee) and the deadline for completing
the factoring registration (dF). Then, according to the received offers, the seller selects
the best factor to continue with. After this decision, the factor sends its credential to
(CF) to the seller, and the seller sends the seller-invoice credential (CI) to the factor.
Remember that the seller-invoice credential identifies both, the seller and the invoice
that is going to be factored.

3.2 The factor extracts the seller-invoice credential identifier (PI) from the credential
received from the seller and sends it to the buyer agent using an end-to-end encrypted
DIDComm channel. Then, the buyer answers with the associated salt s and the DH
parameter gb1 . Next, using Equation (4) with the salt and the DH parameter received,
the factor can check whether the CI provided by the seller is valid and accepted by the
buyer or not. In the affirmative case, the protocol continues with the next step.

3.3 On the side of the seller, a similar operation as the previous one is carried out to check
the credential of the factor (CF). This step begins with the seller extracting the factor
credential identifier (PF) from the credential received from the factor and sending
this identifier to the buyer agent using an end-to-end encrypted DIDComm channel.
Then, the buyer answers with the associated salt s. Next, using Equation (1) with the
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salt received, the seller can check whether the CF provided by the factor is valid and
accepted by the buyer or not. In the affirmative case, the protocol continues with the
next step.

4.1 When the verifiable credential presented by the selected factor is verified, the seller
sends her bank account number (IBANS) to the factor using the associated end-to-end
encrypted DIDComm channel.

4.2 The factor checks the smart contract at address @C (as specified in CI) to ensure that
the invoice has not been already factored. In addition, he/she subscribes to one or
several nodes of the distributed ledger to be notified about any factoring agreement
registered by the smart contract in the ledger.

4.3 The factor sends the agreement information (A) and settlement information (S) to the
seller. All these data are digitally signed using the public key PUF, which is resolved
from DIDF (the signature is noted as σDIDF

S ):

F → S : A,S , σDIDF
S , (5)

A = (CI , CF, aF, IBANS), (6)

S = (PI , dF, Enc(KFB, CF, IBANF), gb2 , r, h(r,A)), (7)

where r is a random number (salt), A is actually a confirmation for the seller, and
neither is given to the buyer nor stored on-chain. However, the salted hash of A is
included in the signature (σDIDF

S ) as a commitment and for non-repudiation purposes.
In contrast, S will be registered on-chain and a part of it is encrypted and hidden
from the seller. Notice that the encrypted part is essentially the account number of
the factor where the buyer has to pay in case the invoice has been factored. Clearly,
this information is not necessary to be known by the seller. To create this symmetric
encryption, the value gb2 is provided on-chain by the factor to allow the buyer to
reconstruct the shared key KFB and decrypt that part. To do so, the factor selects a
random number b2 ∈ (1, n) and uses the DH key-exchange formula to generate the
symmetric encryption key KFB:

KFB = KDF((gb1)b2). (8)

1

FactorSellerSmart-ContractBuyer Relayer

(3.1)

(5.2)

(4.2)

(5.1)

(5.3)

(4.3)

Invoice data 
exchange and negotiations

(3.3) Factor’s credential
   
verification

(4.1)
Seller’s bank account

Check registered factorings

Signed factoring agreement 
and settlement

Bilaterally signed 
factoring agreement 

Registration

(3.2)
Seller-invoice credential

   
verification

(3.2)

Meta-transaction

Exchange of credentials

Figure 4. The factoring phase.
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After an agreement is reached, the relevant factoring and payment details have to be
registered in the distributed ledger. In general, each interaction that modifies the state of a
public ledger requires a fee to be paid. In our protocol, one of our main design goals is to
have the minimum possible number of transactions for completing a factoring registration
in order to avoid paying excessive fees. Actually, we only need one transaction per invoice
factoring, and the majority of the communications between the different parties are off-
chain. In particular, our protocol is designed so that only the seller has to pay for invoice
registration, while interactions with the distributed ledger by the factor and the buyer are
view-only, as well as are free of charge.

Moreover, as mentioned in Section 5.1, managing cryptocurrencies to pay the fees
may be difficult for institutions and companies. To overcome this problem, we use a
relayer. In order to explain how the relayer works, we have to understand the purpose of
the signature in a regular transaction. In this respect, the signature in a regular transaction
has two different purposes. In the first place, it determines who pays the fee, and, in the
second place, it is used to authenticate and authorize a user in front of a smart contract.
Introducing a relayer in our protocol allows us to decouple the signature required for
paying the transaction fee, which will be paid by the relayer, from the signatures required
for authentication/authorization, which will be performed bilaterally by both, the seller
and the factor.

An advantage of using a relayer is that it enables a clear and easy-to-implement busi-
ness model for our protocol. The relayer can charge sellers per usage (e.g., per transaction
request), and the sellers may have to buy some credit to use the relayer’s API with any
classical off-chain payment method, such as a credit card, bank transfer, etc.

5.1 The seller checks that the factor’s signature over the settlement data (σDIDF
S ) is valid

(Equation (5)), that the agreement data (A) is what it has been negotiated with the
factor, and that the hash value included in the settlement information (S) is correct.
The seller records the factor’s signature for possible later use as digital evidence. Then,
the seller creates a message for the bilateral settlementM:

M = (S , σDIDF
S ). (9)

Then, the seller signsM and sends the bilateral settlement message and its signature
to the relayer:

S→ R : (M, σ
DIDS
M ). (10)

Notice that we do not need to trust the relayer, and the seller does not share any
confidential/private data with it. The signature σ

DIDS
M authenticates the seller and

prevents the relayer from changing any detail of the bilateral agreement. Therefore,
the relayer only plays the role of a facilitator and nothing more. As mentioned, the
factor and the buyer do not need to interact with the relayer because they only need to
query the smart contract. These queries are performed directly from blockchain nodes
and are free-of-charge.

5.2 The relayer deduces the transaction fee plus probably some extra commission from
the seller’s credit, bundles the received information into a meta-transaction, and sends
it to the smart contract:

R→ C : (mtx, σ@R
mtx), (11)

mtx = (M, σ
DIDS
M ). (12)

Notice that, in fact, the settlement data (S) is triply signed at this step: (i) by the relayer
to pay its transaction fee, (ii) by the seller for registering the factoring agreement, and
(iii) by the factor for promising to pay the invoice. The first signature is automatically



Electronics 2021, 10, 1467 14 of 20

verified by the blockchain platform, and the transaction fee is reduced from the
balance of the relayer.

5.3 In the final step of this phase, the smart contract processes the meta-transaction (mtx)
as follows:

• Determines the public keys used for signingM and S , that is PUS and PUF,
respectively. With these keys, it checks the signatures in the meta-transaction.

• Verifies that the current blockchain time is smaller than the registration deadline
(dF). This deadline is extracted from S .

• If the invoice is already registered by the seller, the meta-transaction is rejected.
• If all the previous steps are correctly passed, the smart contract registers the

factoring agreement by setting a flag in its key-value storage and storing the
public keys and settlement information in a log.

In most distributed ledgers, logs are on-chain data produced by the transaction execu-
tion, but the log’s contents are not recorded in the ledger’s global state. This makes logs
much cheaper than storing data in the smart contract storage and also makes them conve-
nient if their content is not needed by successive transactions (the case in our registration
protocol). More details about the registration by the smart contract are given next.

We efficiently store the data by using only one boolean flag per invoice in the key-value
storage of the smart contract:

PI ⇒ true. (13)

Obviously, the mapping can only be set if it was not already set to another value and
is sufficient for the correct functionality of the smart contract and prevention of double-
factoring. The complete settlement information (S) is not required anymore to be accessible
by the smart contract code, so we can store it in a log to get the immutability of blockchain:

log(PI ,S , PUS, PUF). (14)

PI is defined as an index field for quick search. We use PI again as the key of the
log, which is known by all involved parties. The buyer can use it as the key to finding
out whether the invoice is factored or not, and get access to the logged information. The
contract cannot link the identities of the seller and the factor with the transaction. Therefore,
the public keys are recorded for later verification by the buyer. The salted hash (fingerprint)
of the factoring agreement h(r,A) is also included in S , which can be used as a proof-of-
existence by the seller or the factor in case of dispute. Finally, the seller and the factor can
be subscribed to the smart contract, get automatically informed about the registration, and
verify the contract log to ensure everything is recorded in line with their agreement.

5.2.3. Phase 3: Payment

In the third and last phase, the factor pays the seller after checking the information
registered by the smart contract. Later, the buyer will pay the complete invoice amount to
the factor also, after checking the information registered by the smart contract. The steps
followed in this phase are described next (see Figure 5):

6. The factor proceeds to pay aF = aI − fee to the account of the seller. This has to happen
before the agreed payment deadline.

7.1 When the deadline of an invoice (dI) expires, the buyer queries the smart contract to
figure out whether the invoice has been factored or not. The buyer knows the address
of the smart contract (@C) and the pseudo-anonymous identifier of the invoice (PI).
Using these two values, the buyer queries a node of the distributed ledger to obtain
the log with the index field PI from the smart contract. From this on-chain log, the
buyer obtains Enc(KFB, CF, IBANF) and gb2 .

7.2 The buyer computes KFB and decrypts the encrypted part of the logged information
using the obtained gb2 and the value b1 that it stored in step (2b.2) for this invoice.
Then, the buyer:
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• Verifies that the value PUF which is recorded by the smart contract, belongs to CF.
Otherwise, the factor has cheated because the seller has verified everything other
than this encrypted part. In this case, the buyer cannot pay the factor because of
the KYC regulation.

• Obtains the seller-invoice credential related to PI from its database and matches
its public key with the recorded PUS. If the public key does not match, obvi-
ously both the seller and the factor are cheating because the invoice does not
belong to this seller. In this case, the buyer will pay the invoice amount to the
authentic seller.

If the verifications in the last step are passed, the buyer knows the correct selected
factor and his/her associated IBAN and pays the invoice amount (aI) to that IBAN.

1

FactorSellerSmart-ContractBuyer

(6)

(7.2)

(7.1)

Payment

Payment

Check registered factoring

Figure 5. Payment phase.

5.3. Use Case

This section describes a typical scenario for better understanding the process in which
our system is used to register a factoring agreement related to monetizing geolocation data.
In our scenario, the buyer is the municipality of a city buying anonymized geolocation data
from an online navigation platform (the seller). The municipality uses the data for better
provisioning of city growth and land development in areas, such as public transport system,
highway routing, housing and zoning, placement of new public services and utilities, and
other land use plannings. In order to simplify things and avoid physical authentication
complexities, we assume all parties are registered legal entities, and the government has
issued them verifiable credentials. The credentials specify their tax identification number
which can be used to identify them (real identity) in our protocols.

The municipality buys a lot of products and services from private companies, and
many of them make factoring agreements with financial institutions. In order to reduce
errors and prevent double-factoring, the municipality has accredited an implementation of
our architecture, and the sellers have to register their factoring agreements in this system.
The implementation provides a special agent to the buyer for performing the required
operations. In addition, the municipality owns a government-issued VC and DID which is
in the control of the agent.

The municipality invites different providers of online navigation systems to a tender,
and after receiving their offers, selects the best candidate. During post-tender negotiations,
the seller agrees to receive its money 90 days after supplying the data. However, the
company lacks enough working capital to continue its service properly, and decides to
factor the invoice. The seller connects to the buyer’s agent over DIDComm, authenticates
itself using the government-issued VC, and proceeds until it receives a seller-invoice VC
for the aforementioned invoice.

Then, the seller contacts multiple factors, negotiates with them, compares their offers
and conditions, and, finally, selects one of them. The factor connects to the municipality’s
agent over DIDComm, and registers a factor VC. After that, the seller and the factor establish
a DIDComm channel and exchange and verify their seller-invoice and factor VCs. Note that
their tax identification numbers are also evident from their VCs, and they register tax IDs
for their paper work. The seller provides the factor with its bank account number, and the
factor digitally signs the factoring agreement and sends the signed settlement information



Electronics 2021, 10, 1467 16 of 20

to the seller. The seller connects to a relayer and gives the bilaterally signed agreement
to it, which subsequently hands all this information to the system’s smart contract. The
smart contract verifies the request and registers the agreement in the public distributed
ledger (blockchain). In this stage, the factor pays the seller a sub-total of the invoice amount
according to their agreement. After the 90-day period is passed, the municipality’s agent
checks the smart contract and finds out that the invoice has been factored. It decrypts the
encrypted part of the logged information, verifies that everything is correct, and pays the
complete invoice amount to the bank account of the factor.

6. Evaluation

In this section, we provide a security analysis of our proposal and a comparison with
related work.

6.1. Security Analysis

In the following security analysis, we analyze the security of verifiable credentials,
data security and privacy, availability, and dispute handling. For each of these aspects, we
explain security requirement(s), possible attack(s), and our mitigation method(s).

6.1.1. Verifiable Credentials

The contents of the seller-invoice and factor credentials are not published or disclosed
by the buyer; their owners may hand them to other parties at will. Their identifiers are
generated by a cryptographic hash function (such as scrypt), which is:

• One-way: the content of a credential cannot be recovered from its identifier.
• Pre-image resistant: a fake credential cannot be matched to a valid identifier.
• Integrity guarantee: if the credential is manipulated, the identifier does not match

(avalanche effect).
• Resistant to guessing attacks: guessing attacks are infeasible because a fresh salt

is used (blocks offline attacks), and its computation is resource-intensive (blocks
online attacks).

For a verifier to verify a credential, the identifier is queried over an authenticated DID-
Comm channel. Therefore, as long as the hash and DIDComm are secure, the credentials
are secure, as well.

6.1.2. Data Security and Privacy

We use a smart contract to process and store critical factoring agreement details on the
blockchain. The blockchain is designed to guarantee the precise execution of the contract
and protect stored data from manipulations. All this data is publicly readable; therefore,
confidentiality and privacy are more of a concern in comparison to traditional systems.

We do not store any information that can be used to identify or trace the seller or the
factor on the blockchain. No personally identifiable information (PII), even the invoice
number, is transmitted over the network in plain text or publicly stored on the blockchain.
The signatures of the seller and the factor are verified by the smart contract and their public
keys are recorded to prevent fraud. However, these keys do not contain any information
that can be traced back to the real identity of their owner. In addition, sellers and factors are
free to use new public keys for each invoice factoring, which protects them against curious
observers who try to link transactions together and trace individuals.

Only the seller and the factor store the agreement information (the amount that the
factor pays to the seller, and the bank account number of the seller), and this information is
hidden from the buyer. In addition, we privately hand over the identity and bank account
number of the factor to the buyer. To be more precise, the factor encrypts this information by
a symmetric key which only the buyer can know. Therefore, no one (including the seller)
can have access to this information.

The buyer in our architecture is not involved in the negotiations between the seller
and the factors. In particular, the buyer cannot predict if the seller will factor her invoice or
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not (before the agreement about payment conditions and other invoice details). Moreover,
our architecture protects the factors from each other as they do not have access to their
competitors’ conditions (before and after finalizing the factoring contract). Factors are not
notified if the seller applies to multiple factors to obtain a better bid for the invoice.

6.1.3. Availability

Public distributed ledgers are maintained by many geographically distributed nodes
over the Internet. For example, at the time of this writing, the Ethereum network is operated
by more than three and half a thousand nodes [30]. Therefore, our on-chain registered data
is highly available for both the factors to protect them from double-factoring, and the buyer
to discover the correct payment information.

One may be concerned about the availability of the relayer. The first and the most
important thing is that the safety and correctness of our protocol is not endangered when the
relayer becomes unavailable. However, the protocol may not proceed, and the seller may lose
her time to conclude the factoring agreement. We used DIDComm for our communications
which is more resistant to temporary network disconnections. Nonetheless, if the relayer is
unavailable, the seller may switch to a distributed network of third-party relayers, e.g. the
Gas Station Network (GSN) [31], to fulfill its duties. As we do not trust the relayer, this will
not pose any threats to the security of our protocol.

6.1.4. Dispute Handling

We must remark that our registration protocol is not secure against malicious buyers
because, if the buyer registers false information, this cannot be disputed by the seller nor
the factor. As a result, the seller and the factor need to trust the buyer. A malicious buyer,
for example, may not pay the seller or the factor. A malicious buyer may also scam factors
by creating a fake seller and a high amount of non-existent invoices. Then, the fake seller
receives the payments from the factors, but the corresponding payments are not made by
the malicious buyer. In case the buyer is not trustful, some mechanism to enforce good
behavior must be used (like a reputation system as in Guerar et al. [8]).

On the one hand, a seller may be concerned about a malicious factor that may refrain
from payment. In this case, the seller reveals the agreement information to a judge, and
the judge can doom the factor according to the tamper-proof evidence stored by the smart
contract on the blockchain. On the other hand, a factor may also be concerned about the
case in which the buyer pays the amount to another bank account. In this case, the factor
reveals the agreement information, as well as its private DH value (b2), to a judge. The
judge can also detect the culprit in this case by referring to the bank account logs and
the blockchain evidence. Note that a fraudulent seller/factor cannot conclude an invoice
factoring agreement because, before paying anything to the factor, the buyer verifies the
stored information on the blockchain against his registered information.

6.2. Comparison to Related Work

Below, we compare our protocol with the related work described in Section 4. A
summary of this comparison is shown in Table 2.

Table 2. Comparison with related work.

[5] [7] [8] [2] This Proposal

Type of ledger private private public public public
# Transactions 1 5 7 1 1

Users do not need cryptocurrency true true false false true
Enables SSI false false false false true

The first aspect to take into account is the type of the ledger used to register the
invoice factoring. DecReg [5] and Battaiola et al. [7] propose to use a private ledger, while
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Guerar et al. [8], Mohammadzadeh et al. [2], and the protocol proposed in this article use
a public ledger. The type of ledger is one of the most relevant decisions to take when
designing an invoice factoring solution since it directly impacts in aspects, such as privacy,
immutability, transparency, availability, the need to optimize the number of transactions,
and the need that users manage cryptocurrency to do the registrations.

Private or permissioned ledgers are blockchain networks that restrict their access to
registered users. This allows implementing some degree of privacy by grating visibility
to the set of transactions only to designated participants. This is the approach followed
by DecReg [5], in which transactions are not publicly released, and the system relies on a
Central Authority (CA) to control the access to the system. Nevertheless, since the CA acts
as a point of centralization, it can become a single point of failure, making it vulnerable
to double factoring attacks. In fact, if the CA is compromised, it can deny a factor from
accessing the network, and make it impossible for the factor to determine if an invoice has
already been factored. In this framework, data is not encrypted, and the CA limits access
to confidential data to individuals outside the private blockchain network, which does not
fully protect the privacy of the network’s participants. In addition, the buyer is required
to operate a node on the private blockchain and obtain credentials from the CA, which
heavily involves the buyer in the factoring process. On the other hand, if a dispute arises
between a seller and a factor, the only proof that can be used under DecReg is the signatures
on transactions. The main problem is that the system relies on the CA for managing access
to the system, and the transactions are not publicly available.

Battaiola et al. [7] also propose to use a private ledger for registering invoice factoring.
However, instead of sending transaction data in clear, they use commitments to hide data
and provide privacy. Although the authors claim that any other ledger can be used in place
of the private ledger without compromising protection, this replacement is not cost-effective
due to the number of transactions (five) required to complete a factoring registration. In
particular, the proposal needs one transaction from the seller to do the invoice registration,
another from the buyer to approve this registration, another from the seller to register
the factoring proposal, another from the factor to accept the factoring proposal, and
finally, another for registering the payment (or the factoring expiration). In addition, the
availability and immutability of data are dependent on the security provided by the private
ledger. A more secure private network includes more nodes and organizations, resulting in
a higher operating cost. In particular, in reference [7], it is not specified who is responsible
for the cost of operating the private ledger.

As shown in Table 2, Guerar et al. [8], Mohammadzadeh et al. [2], and the proposed
protocol use a public ledger. Public ledgers provide the best immutability, transparency
and availability. However, when designing a solution over a public ledger, special care
must be taken with privacy, cost, and cryptocurrency management. Regarding privacy,
these three proposals make use of commitments to guarantee that sensitive data is not
disclosed in the public network.

Regarding cost, the solution proposed in reference [8] conducts the invoice factoring
negotiation on-chain which makes it rather expensive, requiring seven transactions to
complete an invoice factoring. Concretely, the buyer, who is generally not that much
motivated for the factoring process, must perform three transactions in the public ledger
per invoice factoring: one transaction to accept the invoice and pay the shipping, another
transaction to confirm the delivery of the products, and a final transaction to pay the entire
amount of the invoice to the corresponding factor. Another critical issue of the proposal by
Guerar et al. is that, since the platform is in charge of creating stable accounts for reputation,
if the platform does not correctly certify the real identities of buyers, the system’s security is
jeopardized. Finally, it is worth it to mention that the proposal uses IPFS. Although this
peer to peer distributed file system can provide a reasonable level of availability, it is not
as high as that provided by on-chain data, which is critical if the buyer needs to access
payment data with no downtime.
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Mohammadzadeh et al. [2] proposed a protocol based on a public ledger that is cost-
efficient, just requiring one transaction in the ledger to register an invoice factoring. Appro-
priately, the single transaction for the invoice factoring registration is performed by the seller,
who is the most interested party. However, in the protocol by Mohammadzadeh et al., the
seller is forced to use cryptocurrency to execute this transaction, which might be an obstacle
against the adoption of the protocol.

In the protocol proposed in this article, we include a relayer in the architecture to
overcome the problem of users having to manage cryptocurrency. The relayer allows us to
free users from having to use cryptocurrency while keeping the properties of decentralized
applications. Furthermore, as shown in Table 2, our protocol is not only optimal in terms of
cost, and built over the most reliable, transparent, and secure type of ledger; it also enables
new functionality not available in any other related protocol. Specifically, the protocol
allows parties to implement their self-sovereign identities making use of their self-managed
identifiers (DIDs). The protocol also leverages the concept of Verifiable Credentials (VCs),
which are credentials issued to self-sovereign identities and grant permission to the parties
to participate in our invoice factoring architecture. Another advantage of using DIDs is
that we can relay on the new communications models that are being developed in this
ecosystem, like DIDComm. DIDComm allows us to implement asynchronous and secure
off-chain communications between participants, which means that a party does not need
to be present at the moment that another party sends a message. The response can be
received, processed, and approved asynchronously.

7. Conclusions

In this article, we presented a protocol that uses a public distributed ledger to register
invoice factorings. The protocol presented is based on some preliminary work [2], but
we added several enhancements and simplified the protocol to increase its efficiency and
flexibility, as well as to facilitate user on-boarding. We used Decentralized IDentifiers
(DIDs) and let the involved parties use their self-sovereign identities (SSIs). One advantage
of using DIDs is that we can relay on the new protocols being developed in this ecosystem,
like DIDComm, which allows us to implement asynchronous secure communications
between participants. When using DIDs, we can also leverage on the concept of Verifiable
Credentials (VCs) to grant permission to parties allowed to participate in our invoice
factoring ecosystem.

In this ecosystem, the buyer, who is considered to be the trusted party for the factoring
process, issued Verifiable Credentials to DIDs of sellers and factors. The proposed protocol
was very efficient, using only one meta-transaction per factoring registry. The seller used
to pay the cost of executing the meta-transaction in the public distributed ledger since
it was the party with the highest interest in the service. To provide sellers with an easy
on-boarding, a relayer was introduced in our invoice factoring ecosystem. The advantage
of using the relayer is that sellers can have the high security and availability levels provided
by public distributed ledgers without having to deal with cryptocurrency. This is because
sellers can pay to the relayer with off-chain methods, like credit card or bank transfer, but
the relayer cannot alter any aspect of the invoice factoring agreement being recorded. As a
result, the proposed architecture provided an efficient and friendly protocol for registering
factored invoices.
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