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Abstract— This paper presents a machine learning method
for optimal pressure sensor placement in water distribution
networks. The proposed approach considers annealing meta-
heuristics, and it is focused on the optimal placement of the
sensors to perform leak localization. Unlike other works, this
method considers a limited number of sensors to be placed
and some restrictions on critical nodes that can be excluded
or preselected. The approach is based on minimizing a cost
function; this cost function is assigned as the leak location
error, which varies depending on the subset of nodes where the
sensors are assigned and the configuration of the leak location
method. A leak localization technique based on k-NN classifiers
was used, and during the minimization of the cost function,
classifier hyperparameters were simultaneously optimized. The
proposed method was tested on the Hanoi water distribution
network programmed in MATLAB.

I. INTRODUCTION

Losses caused by leaks are one of the main problems in
managing drinking water systems. Globally, about one-third
of chemically treated water is lost due to leakage before
reaching final consumers [1]. Even if they are small, these
leaks generate considerable losses when they remain unre-
paired for long periods. For such reason, it is of paramount
importance to detect and locate them as soon as possible
[2]. Leak diagnosis methods depend mainly on two factors:
the quality of the available data and the algorithms. In
general, there is a limited number of pressure or flow-rate
measurements that are compared with nominal conditions of
a hydraulic reference model to generate residuals [3]. Then,
by evaluating the specific characteristics of these residuals, it
is possible to diagnose the leaks. However, the algorithms are
minimal for the quantity and quality of the available data.
Ideally, it is possible to place sensors at each node of the
WDN, but the installation, monitoring, and maintenance of
such sensors is not possible [4]. Even the most instrumented
networks have a minimal number of sensors. Therefore, it
is of primary importance to select appropriately the network
nodes where the sensors will be placed since an optimal
distribution of the available sensors will facilitate pressure
monitoring and leak localization.

The Sensor Placement Problem (SPP) for WDNs has been
addressed since the last century, mainly for water quality
control and pollutant detection [5]–[7]. Recently, SPP has
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also focused on detecting cyberattacks [8]. When the sensor
placement is focused on locating leaks, the optimal node
set is typically computed by minimizing a cost function
associated with the average location error. Sensor placement
is also often calculated by maximizing a leak isolability
index. In the literature, there are different methods for sensor
placement based on leak location error minimization. Some
of them consider metaheuristic such as genetic algorithms
[9], [10] or particle swarm optimization [11]. Other works
are focused on minimizing the error in the leak detection
based on the information theory [4], evolutionary algorithms
[12], decision-making techniques, such as DEMATEL com-
bined with fuzzy logic [13], among others. Recently, some
works propose multi-target sensor placement algorithms to
minimize both the error in leak detection and the error in
leak localization [14], [15].

A characteristic of the works cited above is the common
assumption that the sensors could be placed in any network
node. However, in practice, physical criteria can restrict or
prioritize some nodes over others. For example, in critical
locations near a hospital or governmental buildings, it is
required to monitor pressure levels even if the information
is not relevant enough for the leak diagnosis algorithms.
Furthermore, in partially instrumented networks, it is desired
to take advantage of the sensors that are already installed to
reduce the economic cost associated with new installations.

Another characteristic of the works reported in the liter-
ature is that only the placement of the sensors can increase
the efficiency of some leak localization method, and the
hyperparameters do not need to be modified. However, a
set of detection nodes that leads to accurate leak location
with specific hyperparameter values can also lead to poor
performance with another hyperparameter. In this work, the
proposed method considers tuning the algorithm’s hyperpa-
rameters simultaneously with sensor placement. To the best
of the author’s knowledge, these problems remain open and
are the subject of study in this paper.

This work proposes an optimal sensor placement method
based on simulated annealing (SA). Such an algorithm
searches for the subset of nodes that minimizes a cost
function related to the accuracy leak detection employing a
k-NN classifier. In addition, we propose a methodology for
tuning the hyperparameters, which improves the leak local-
ization. Furthermore, the method considers some restrictions
on prioritizing some nodes, such as pre-installed sensors
or critical nodes, to increase the applicability. The method
effectiveness is tested in the well-accepted benchmark of the
Hanoi Network.
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Fig. 1: Leak localization scheme.

II. BACKGROUND ON LEAK LOCALIZATION

The leak localization method used in this work is based
on the approach presented in [16], where residual pressures
are implemented as input data to a classifier algorithm
that returns an estimation of the leak location. Fig. 1
summarizes the methodology used in this work. Pressure
residuals consider the difference between the pressures (h)
obtained by sensors and the estimated pressures (h′) obtained
from a hydraulic network model in leak-free conditions
simulated in EPANET-2 [17]. This model represents the
stationary hydraulic behavior of a well-calibrated WDN.
However, it is worth mentioning that the model is fed with
estimated demands (q̂1, q̂2, . . . , q̂N ) since in practice, the real
demands (q1, q2, . . . , qN ) are not measured. In real WDN,
the estimated demands are typically calculated based on the
total demand of the network as a distribution at the nodal
level according to historical consumption records [10]. This
way of estimating the demand is also considered for some
academic benchmark such as the Hanoi network. Also, this
work assumes that the data are significantly affected by
model uncertainties and sensor noise. It is assumed that the
method is tested under the minimum night flow regime when
the uncertainty in the demands is minimal and with only one
leak. Simultaneous leaks are not considered and are beyond
the scope of this paper. Finally, it is considered that the
number of available sensors is less than the number of nodes.

Leak localization is performed using a k-NN classifier
based on supervised learning. In order to train the classifier,
first collects several samples associated with each class
(training data), each sample containing a certain number of
features of the events or objects to be classified. When a new
sample is submitted for classification, distance measures are
used as a similarity metric to associate the queried sample
to the most similar class. In leak localization, a class is used
for each possible leak location, and the leaks are associated
with the closest node within the network, so that the number
of classes to identify equals the number of nodes. This is
explained in detail in [2]. When a sample r is queried, the
proximity between this sample and the training data within
the input space is measured, the k samples closest to r
perform a vote. Consequently, the class with the most votes
(the most frequent class among neighbors) is assigned to the
queried sample. The input samples are vector-shaped, and

each element provides information about its position in the
input space. Therefore, the similarity between two samples
r = [r1, r2, . . . , rn] and r′ = [r′1, r

′
2, . . . , r

′
n] is measured

as a distance between points. Although, the metric used to
quantify the similarity does not necessarily have to be a
Euclidean distance [18]. Table I shows the most common
distance metrics for distance-based classifier. The distance
type (later named δ) and the number of nearest neighbors
(k) are the two hyperparameters of k-NN that we proposed
to be optimized.

TABLE I: Types of distance.

Number Name Definition

1 Manhattan d(r, r′) =
n∑

j=1

|rj − r′j |

2 Euclidean d(r, r′) =
( n∑

j=1

|rj − r′j |2
)1/2

3 Chebychev d(r, r′) = max
j
|rj − r′j |

4 Cosine d(r, r′) = 1−
r · r′

‖r‖ ‖r′‖

Considering the limited availability of pressure measure-
ments under leakage and no-leak conditions, pressure resid-
uals obtained from synthetic data are used to train the k-NN
classifier. In order to generate training and testing data, the
real WDN in Fig. 1 is replaced by the WDN model where the
demands are increased to simulate different leak scenarios.
For example, to simulate a leak of 8 l/s at node 3, the
demand q̂3 is increased by 8 l/s with respect to leak-free
conditions. This process is repeated for different nodes and
for different leak magnitudes. Half of the simulated data is
used for training and the rest for testing/evaluation.

III. FORMULATION OF SENSOR PLACEMENT PROBLEM

The major problem in sensor placement is the large num-
ber of possible combinations to evaluate. The total number
of combinations, C, is given by:

C =
N !

S!(N − S)!
, (1)

where N is the number of candidate nodes and S is the
number of sensors to be placed. According to (1), when
the number of sensors is doubled from 3 to 6 in a net-
work containing 30 nodes, the combinations increase up to
14 625%. In the case of doubling the number of nodes, the
combinations increase by more than 800%. In the case where
both parameters are doubled, the number of combinations
increases by more than 1 200 000%. In a hypothetical case
of a network with 60 nodes and 6 sensors to be installed,
C ≈ 5× 107. If we assume that it would take 0.1 s to
evaluate each possible combination, the total time required
would be 58 days. However, there are WDNs of 1 200 nodes
or more and 10 or more sensors must be placed, where the
combinations amount to 1.6× 1024, with computation times
of 5.2× 1015 years.



This work aims to place a certain number of pressure
sensors in a WDN and the hyperparameters of a k-NN
classifier to maximize its efficiency when used as a leak
localization method. Since a way to evaluate the placement
of sensors together with the hyperparameters of the classifier
is needed, a vector is described as:

S = {s1, s2, . . . , sW , k, δ}, (2)

where S is a vector containing the sensor locations and
the hyperparameters of the classifier, si is the index of the
node where a sensor is installed, k is the number of nearest
neighbors, and δ is the type of distance to use in k-NN.
The optimality of a sensor placement is defined from the
leak location error. According to [9], a suitable error-index
is defined as:

εi(S) =

{
dij/dmax if dij < dmax, i = 1, 2, . . . , l,

1 otherwise,
(3)

where dij is the shortest path distance between the node
where the leak is detected (i) and its true location (j), dmax
is a predefined threshold that defines the maximum allowable
distance error, and l is the number of simulated leaks. The dij
value is computed according to Floyd-Warshall’s algorithm
[19]. Since the objective is to maximize the isolability of
leakage at all nodes in the network, the error rate that takes
into account all node leaks is calculated as:

ε(S) = 1−
l∑

i=1

εi(S)

l
, (4)

where ε(S) provides the fraction of correctly located leaks
for a given configuration S, i.e., ε(S) = 1 when all l leaks
were correctly located, and ε(S) = 0 when all leaks were
located beyond the allowable error distance.

IV. SENSOR PLACEMENT METHODOLOGY

The Simulated Annealing (SA) algorithm is considered
here, which is a metaheuristic optimization technique in-
spired by the metal annealing processing [20]. Unlike deter-
ministic optimization methods (e.g. gradient-based methods),
the main advantage of SA is its ability to avoid being trapped
in local optimal. Metaphorically, SA is like dropping some
bouncing balls over a landscape, and as the balls bounce and
lose energy, they settle to some local minimum. But, if the
balls are allowed to bounce long enough and lose energy
slowly enough, some of the balls will eventually fall into the
globally lowest locations. Essentially, SA is a search along
a Markov chain, which converges to the global minimum
under the right conditions.

The SA algorithm emulates the physical process of heating
a material and then slowly lowering the temperature to
decrease its defects, thus minimizing the energy of the
system. In computational implementations for minimizing
a function, “temperature” is a numerical variable used to
control an iterative search for the minimum. In each iteration,
a new point is randomly generated. The extent of the search
(the distance of the new point from the current point) is

based on a probability distribution with a scale proportional
to temperature. The algorithm accepts all new points that
lower the cost function, but also, with some probability,
the points that raise the cost. By accepting points that
raise the cost, the algorithm avoids being trapped in local
minima and is able to explore globally for more possible
solutions. The temperature is systematically lowered as the
algorithm progresses, narrowing the search range to converge
to a minimum. The proposed SA algorithm is described as
follows:

1) Define an initial temperature (Tinit), a random solution
is generated as the current solution (Scurrent) and deter-
mine its cost (ε(Scurrent)).

2) By perturbing the current solution, a new candidate
solution (Scand) is chosen and its cost (ε(Scand)) is
calculated. The new solution (Scand) is accepted as the
current solution if ε(Scand) > ε(Scurrent). Otherwise, the
solution will be accepted depending on a probability
function (PF) determined by the current temperature.

3) Repeat Step 2 until reaching equilibrium, which means
that the probability of finding a better solution with
current temperature is very low. The number of repe-
titions (L) is defined as a Markov chain.

4) The temperature is decreased and the process is re-
peated until a final temperature (Tend) is reached at
which the probability of improving the cost of the
solution is approximately zero, at which point the
system is said to have reached thermal equilibrium.

The last candidate solution is assumed as the optimal
solution. The pseudocode in Algorithm 1 formally expresses
the steps described above.

Algorithm 1: SA-based sensor placement.
Input: Tinit, Tend, L, Scurrent, α, β
T ← Tinit
ε(Scurrent)← evaluate(Scurrent)
Sbest ← Scurrent, ε(Sbest)← ε(Scurrent)
while T > Tend do

for k from 1 to L do
Scand ← disturbance(Scurrent)
ε(Scand)← evaluate(Scand)
Pa ← PF(ε(Scand), ε(Scurrent), T )
if Pa > random[0, 1] then

Scurrent ← Scand, ε(Scurrent)← ε(Scand)
if ε(Scurrent) > ε(Sbest) then

Sbest ← Scurrent, ε(Sbest)← ε(Scurrent)
end

end
end
T ← αT , L← β L

end
return Sbest

It should be clarified that although Algorithm 1 opti-
mizes the solution S, it is actually a pre-solution Ŝ =
{ŝ1, ŝ2, . . . , ŝM}, because the solution to be optimized by



the algorithm can not include the nodes that already contain a
sensor, excluded nodes and prioritized or pre-selected nodes.
Therefore, M is the number of sensors that do not have a
defined location.

In the disturbance subroutine, the pre-solution to be
perturbed is modified by changing one of its elements by an
element in the neighboring set. However, for Algorithm 1,
there are three sets of neighborhoods depending on which
element will be modified. If the element to modify is a node,
the possible new element to replace it will be taken from the
set A; if the element to modify will be the number of nearest
neighbors it will be replaced by an element in the set B, and
finally, if the element to modify will be the distance type
(δ) it will be replaced by an element in the set C. This is
explained as:

Ŝ = {ŝ1, ŝ2, . . . , ŝM︸ ︷︷ ︸
A

, k︸︷︷︸
B

, δ︸︷︷︸
C

} (5)

Set A in (5) includes all network nodes, except the subsets
with pre-assigned and excluded nodes:

A = {1, 2, . . . , N} − I ∪ U, (6)

where N is the number of nodes in the network, I is the set
of nodes where they already have a sensor, and U is the set
of excluded nodes. Set B is a vector describing the number
of nearest neighbors to be used in the classifier, as defined
by:

B = {1, 2, . . . , l/N}, (7)

where l is the number of leaks simulated in the data gener-
ation stage. The set C is a vector as described in (8) being a
vector of 4 elements, each element refers to a distance type
used by the classifier. The distance type is represented by an
integer, as shown in Table I.

C = {1, 2, 3, 4} (8)

For example, if the solution Ŝ = {ŝ1, ŝ2, . . . , ŝM , k, 4}
contains the number 4 as type of distance, in Table I, the
distance number 4 is the cosine distance, which indicates that
this configuration will be evaluated with a k-NN classifier
with the cosine distance type. In the evaluate subroutine,
ε(Scand) is calculated using (4) given the solution S, How-
ever, at this stage the solution S to evaluate is the union of
the set of nodes with pre-installed sensors and pre-selected
nodes I and the pre-solution Ŝ, therefore, the solution to be
evaluated is the one shown in (9) this guarantees that the
best solution found by Algorithm 1 is the best configuration
of nodes that best locates leaks in conjunction with the
preinstalled and prioritized sensors.

S = I ∪ Ŝ = {i1, . . . , im, ŝ1, . . . , ŝM , k, δ}, iz ∈ I, (9)

where m is the sum of the number of pre-selected nodes and
the number of nodes with pre-installed sensors, Therefore,
W = M +m. Subsequently, to calculate the probability that
the new solution is accepted or not it is necessary to define
the probability function (PF), this returns a value between 0

and 1, PF = 1 being the maximum probability guaranteeing
acceptance of the new solution, otherwise PF = 0 being
the rejection of the new solution., but rather a probability
function given by:

PF(ε(Scand), ε(Scurrent), T ) = exp

(
∆ε

T

)
, (10)

∆ε = ε(Scand)− ε(Scurrent), (11)

where ∆ε is the deterioration on the current solution. Thus,
∆ε > 0 is considered an improvement to the solution.
On the other hand, the cooling function used in this work
is a geometric evolution presented in [20]. This function
decreases the temperature by successive multiplication with
a “cooling factor” α, wich can assume values between 0.7
and 0.99, depending on the optimality required in the results,
as:

Tn+1 = αTn. (12)

Since α < 1, the temperature is guaranteed to decrease
in each iteration until it is asymptotically zero. On the other
hand, for the length of the Markov chain, a variable chain’s
length (L) is chosen, increasing its size as the temperature
decreases, in order to intensify the search for better solutions
at lower temperatures. The way in which it is increased is
expressed as a function of the initial and final lengths (Linit
and Lend), both proposed by the user, also, it is calculated as
a function of α, Tinit and Tend, the increase of the Markov
chain is given by:

Ln+1 = β Ln, (13)

where β is given by:

β = exp

(
ln(Lend)− ln(Linit)

n

)
, (14)

n =
ln(Tend)− ln(Tinit)

ln(α)
. (15)

Both Tinit and Tend are calculated based on a given number
of perturbations to an initial solution, Tinit is selected such
that the largest efficiency deterioration found in those per-
turbations has 25% chance of being accepted as the current
solution and Tend is selected such that the smallest decrease
found in those perturbations has 0.000000001% chance of
being accepted as the current solution.

V. RESULTS

The Hanoi WDN was considered for testing the proposed
method. This benchmark proposed in [21] has 31 nodes, 36
pipelines, and one reservoir, as shown in Fig. 2. A previous
work [10] states that the optimal number of sensors for this
network are two by considering the relationship between
installation costs, maintenance, and the information obtained
from the network. Therefore, as a reference point, we also
consider two sensors to be placed in the network.

Different leakage scenarios corresponding to 19 leak mag-
nitudes were simulated on each node of the Hanoi network,
totaling 589 leak scenarios, of which 295 scenarios were used
for training, and the remaining ones were used for testing.
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Fig. 2: Hanoi network with a 2-sensor placement.

Leakage was simulated assuming flow rates between 1 l/s
and 10 l/s, which is equivalent to adding 6% to 60% to
the estimated minimum network consumption. In addition,
to test the robustness of the computed sensor placement, the
pressure residuals were intentionally contaminated by a zero-
mean Gaussian noise with SNR = 26 dB.

The results of applying Algorithm 1 on the data of
the Hanoi network is shown in Fig. 2, where the optimal
locations selected to place two sensors were nodes 12 and
27. In order to maximize the leak isolability using k-NN, the
algorithm also determines that for the simulated conditions
the best distance metric is the cosine distance and the best
number of nearest neighbors is k = 19. It can be explained
that the algorithm selects all the neighbors corresponding
to leaks from the same node by the large amount of noise
added to the classifier input. In tests with noise-free data, the
optimal number of neighbors was k = 3 in most cases. The
computing time to find the best solution was 43.54 s, obtain-
ing an objective-function value ε(S) = 0.623. It should be
noted that the computation time increases geometrically with
the number of nodes in the network and with the number of
sensors to be placed, so strategies must be designed to reduce
the computation time in more complex networks.

The convergence of Algorithm 1 over the number of
iterations is shown in Fig. 3. This figure shows the behavior
of this algorithm, where a series of solutions are evaluated
and accepted as solution to the problem, even if the best
solution was found, this is allowed in order to avoid local
optima. While the temperature is high the accepted solutions
can be worse than the previous one, however, as the control
parameter “temperature” decreases, the worst solutions are
less likely to be accepted.

Due to the small size of the problem in the case study,
it is possible to compute and display the search space as in
Fig. 4, where it can be seen that the algorithm managed to
find the global maximum.

For the cases of excluded nodes and pre-assigned nodes,
two scenarios are evaluated. In the first, nodes 12 and 27
are excluded, this in order to simulate a scenario where the
best nodes according to the algorithm are excluded. In the
second scenario, a critical sensor has been pre-assigned in

0 500 1000 1500 2000 2500 3000
Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 3: Convergence of the simulated annealing algorithm.
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 ε̄

Fig. 4: Search space for placing two sensors.

node 21. The results regarding the best sensor placement
and the computation time are shown in Table II. In the
first case, the best nodes where to place two sensors are
nodes 11 and 29, the hyperparameters (distance type and
number of nearest neighbors) are cosine distance and k = 13,
respectively. In order to verify these results, the solution
space for this case was computed and is shown in Fig. 5,
where it is demonstrated that both the global maximum and
the maximum found by Algorithm 1 match. For the second
case, Table II shows that the best locations to place sensors,
under the restrictions mentioned above, are nodes 11 and
21, being the latter node where a pre-installed sensor was
simulated, therefore, the algorithm evaluated the solutions
that contained that node. In this case, the algorithm also
returns the cosine distance as the best distance metric and
19 as the best number of nearest neighbors. In order to
validate these results, the solution space was also computed
and displayed in Fig. 6, where it is observed that the global
maximum within the solution space is the same as the one
obtained by the algorithm. Both Fig. 5 and Fig. 6 show that
all solutions that violate the corresponding restrictions in the
solution space have zero cost.

TABLE II: Algorithm 1 test results.

Case Excluded
nodes

Pre-selected
nodes

Best node
set found

Computing
time (s)

1 12,27 None 11,29,13,4 34.11
2 12,27 21 11,21,19,4 42.37
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Fig. 5: Search space with two excluded nodes (12 and 27).

 ε̄

Fig. 6: Search space with two excluded nodes (12 and 27)
and one pre-assigned node (node 21).

VI. CONCLUSIONS

In this paper, an optimal sensor placement method for
water distribution networks has been proposed. The proposed
solution considers restrictions on excluded and pre-assigned
nodes, also optimizing the hyperparameters of a k-NN clas-
sifier for leak localization. The combinatorial optimization
problem in sensor placement was solved using a simulated
annealing algorithm. The proposed method has been tested
in Hanoi network under different leak scenarios. Results
show that the SA-based method is able to find the global
optimum. Planned future works include optimal placement
of heterogeneous sensors and testing on more complex
networks.
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