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Since the development of the famous algorithm behind Google’s Search Engine,
PageRank has been used in many other fields beyond the web. These fields go from
neuroscience to literature.

This thesis elaborated in the Universitat Politècnica de Catalunya wants to port the
PageRank algorithm to another field completely different from the web. More specif-
ically, it will develop a feature selection algorithm based on PageRank and study its
performance.

Feature selection in machine learning is one of the most relevant problems in the
field of Data Science. This project will study the feature selection problem from an
unconventional approach: Google’s PageRank algorithm.
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Chapter 1

Introduction and scope

This chapter introduces the topic of this project and contextualizes it defining the
most relevant concepts related to it, describing the problem that the project has to
solve, and determining its scope.

1.1 Concept definition

To begin with, we need to define some fundamental concepts needed to understand
the project and follow the explanations easily.

1.1.1 Machine Learning

Machine Learning is an application of Artificial Intelligence [1]. Like all the other
applications of AI, Machine Learning tries to give computers characteristics of hu-
man behavior. In this case, Machine Learning provides systems the ability to au-
tomatically learn tasks and improve from experience without being explicitly pro-
grammed. The primary aim is to allow computers to learn a specific task without
the need for human intervention or assistance and adjust actions accordingly.

To achieve this, the process usually starts with observations or data such as examples
to look for patterns in data and make decisions in the future based on the examples
provided.

There are two1 main categories of Machine Learning algorithms:

• Supervised machine learning algorithms: this category of algorithms uses la-
beled examples. This means that they are using information learned in the
past. With this information, algorithms generate inferred functions to make
predictions about the output data. After sufficient training, the system can pro-
vide targets for any new input. Because this category of learning algorithms
has already labeled data, they can compare their output with the correct one
to modify their models accordingly.

• Unsupervised machine learning algorithms: in contrast to supervised learn-
ing algorithms, this category of algorithms does not use previously labeled or
classified data. Unsupervised learning studies hidden structures from unla-
beled data and infer a function to describe it.

This project focuses on supervised machine learning algorithms.

1Semi-supervised and Reinforcement algorithms will not be explained.
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1.1.2 Dataset

A dataset is a collection of data that is often represented by a matrix where rows
represent instances (or observations) and columns represent variables (or properties)
of the instances. Variables can be classified into two different groups based on the
values that they can take:

• Numerical variables: this type of variables take numerical values (e.g., Height).

• Categorical variables: this type of variables take a value from a finite set of
possible ones (e.g., Gender). Each of the possible values that the variable can
take is also known as category or label.

Datasets are used to train Machine Learning models. Supervised machine learning
algorithms can also use them to compare their results with the correct ones (i.e., the
ones in the dataset).

1.1.3 Classifier

Classifiers are predictive models whose goal is to map input variables (i.e., obser-
vations) to discrete output variables (i.e., categorical variables) [2]. For example, we
could design a classifier that receives relevant information from a patient (e.g., Age,
Gender, Height, Weight, Blood pressure, Heartbeats per minute. . . ) as an input and
output if the person is likely to suffer a Heart disease. The output of a classifier is
usually known as the target variable.

There are a lot of different Machine Learning algorithms that can be used to generate
classification models. Here is a list of some of the most popular ones:

• Decision Tree

• Naive Bayes

• Artificial Neural Networks

• k-Nearest Neighbors (KNN)

• Support Vector Machines (SVM)

1.1.4 Feature selection

In Machine Learning, feature selection is the process of selecting a subset of vari-
ables from a dataset to generate a model [3]. Feature selection can be used for these
reasons:

• Model simplification: if we reduce the number of features it will be easier for
the user to interpret it.

• Shorter training time: commonly, the training time of a Machine Learning
model grows very fast because of the dimensionality2 of the dataset. Feature
selection is one method of dimensionality reduction that can significantly re-
duce training time.

• Overfitting reduction: feature selection helps reducing overfitting in Machine
Learning.

2number of variables in the dataset.
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Selecting a subset of features from a dataset is not a trivial thing to do. A feature
selection method can not select features randomly. Feature selection tries to find
redundant or irrelevant features that can be removed from the set of features without
incurring much loss of information.

1.1.5 PageRank

PageRank is the famous algorithm behind the Google search engine. It was pre-
sented by Larry Page and Sergey Brin back in 1998 in a paper called “The Anatomy
of a Large-Scale Hypertextual Web Search Engine” [4]. The purpose of the algorithm
was to measure the importance of website pages. According to Google:

PageRank works by counting the number and quality of links to a page
to determine a rough estimate of how important the website is. The un-
derlying assumption is that more important websites are likely to receive
more links from other websites.

Nowadays, PageRank is not the only algorithm used by Google to order search re-
sults, but it is the first algorithm that was used by the company, and it is the best
known.

The original PageRank algorithm receives an unweighted directed graph as an input
and returns the PageRank score of each node. The Google search engine represents
the web as a graph where each node is a website page and the edges represent the
links between each of them. This graph was used as the input of the PageRank
algorithm to calculate the importance of each webpage.

The PageRank score of a node pi is calculated as follows:

PR(pi) =
1− d

N
+ d ∑

pj∈M(pi)

PR(pj)

L(pj)
(1.1)

Where N is the number of nodes in the graph, M(pi) is the set of nodes that link to
pi , L(pj) is the out-degree of the node pj and d is called the dumping factor (usually
set to 0.85).

There is a generalization of the PageRank algorithm called Weighted PageRank [5],
which accepts weighted graphs. This algorithm calculates the score of a node pi as
follows:

PR(pi) =
1− d

N
+ d ∑

pj∈M(pi)

PR(pj) ∗ weight((pj, pi))

L(pj)
(1.2)

Where N is the number of nodes in the graph, M(pi) is the set of nodes that link to
pi , L(pj) is the weighted out-degree of the node pj and d is the dumping factor.

1.2 Problem to be solved

One of the most important things when training a Machine Learning model is the
data that is being used. Nowadays, we are surrounded by a large amount of data.
Hence, it is often the case where we want to train a model with a dataset containing
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a significant amount of variables (i.e., features). In this case, probably, using all
the features in the dataset is not a good idea. Training a model with a dataset that
has a lot of variables increments significantly both the training time of the model
and the probability of overfitting. Given the fact that some of the variables could
be irrelevant or redundant compared with the other ones, perhaps we could remove
them without losing relevant information for the model. This is known as the feature
selection problem.

As mentioned before, the feature selection problem consists of selecting a subset of
variables from a dataset. This selection takes into consideration the relevance and
redundancy of each of the features in the dataset to keep those features that give
most of the information relevant for the future model. The goal of this project is to
develop a feature selection algorithm based on Google’s PageRank.

The PageRank algorithm calculates the importance of each node in a graph. On the
web, the algorithm is used to calculate the importance of each website. Hence, the
graph used by the Google search engine represents each website page as a node
and the edges represent the links between them. Since its presentation back in 1998,
PageRank has been used in many different fields beyond the web [6]. These fields
go from Biology to Literature.

This project wants to explore the possible modifications needed to use PageRank as
a feature selection algorithm. The main idea is to build a graph where the nodes
represent the variables of a dataset and use it as an input for PageRank to obtain the
score (i.e., the relevance) of each variable.

1.3 State of the Art

In this section, there is a brief explanation of the feature selection algorithms that are
currently used.

We can classify feature selection algorithms in four different groups based on their
evaluation criteria:

• Filter methods: these methods are used during the preprocessing of the data
and are independent to the training algorithm used. They usually have low
computational complexity. This kind of feature selection algorithms defines a
score for each of the variables in the dataset based on their correlation, PCA3,
variance, etc.

• Wrapper methods: these methods take into account the accuracy of the model
to evaluate the performance of the features. Since every time that the algorithm
wants to do an evaluation it needs to train the model, the time complexity is
very high.

• Embedded methods: these methods are specific to each of the different train-
ing algorithms (e.g., Decision Trees).

• Hybrid methods: these methods were created as a combination of the filter
methods and the wrapper methods.

The feature selection algorithm that will be developed in this project will be a filter
method.

3Principal Component Analysis
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1.4 Stakeholders

This project is intended for researchers in the field of data science and specifically
machine learning. It is also addressed to the users of those fields who want to use or
study alternative methods of feature selection.

The results of this project could potentially benefit data scientists that need a fast
and simple method of feature selection.

1.5 Objectives

The main goal of this project is to develop a feature selection algorithm based on
PageRank. This objective will be divided into several steps:

• Study possible graph representations of a dataset: design different graph rep-
resentations of a dataset. All versions will represent the features of the dataset
as nodes in the graph but they will differ in the way that they represent the
relations (i.e., edges) between each feature (i.e., node).

• Implement the methods to represent datasets as graphs: implementation of
the code that transforms a dataset into a graph representation that will be the
input of the PageRank algorithm.

• Implement the PageRank algorithm: once we can transform a dataset into a
graph we need to implement the actual PageRank algorithm to calculate how
important each feature in the dataset is.

• Implement an algorithm to evaluate subsets of features: we need to develop
an algorithm capable of evaluating the subset of variables selected.

• Evaluation of the feature selection algorithm: we will evaluate the algorithm
proposed and compare the results obtained with other feature selection algo-
rithms.

1.6 Requirements

These are the requirements needed to meet the quality standards of this project:

• The algorithm proposed should have a reasonable time complexity.

• The code must be easy to understand to be used by other users.

• Modular implementation of the software. This will make upgrades and modi-
fications accessible.

• Limited use of external libraries.

• The feature selection method should perform coherently. The subset of fea-
tures selected can not be random and must follow any of the characteristics
that we expect from a good feature selection.

1.7 Possible requirements and obstacles

Here there is a list of the possible obstacles and risks that may occur during the
realization of this project:
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• Disease or injury: usually this is an uncommon event but given the fact that
this project is done during the COVID-19 pandemic it must be taken into con-
sideration.

• Errors during the design of the algorithm: they can cause unexpected behav-
iors. Since the design of the algorithm is one of the first steps of the project this
type of error can be severe.

• Errors during the implementation of the algorithm: they may appear during
the code implementation of the algorithm.

• Errors during the evaluation of the obtained results: this kind of error is very
important because it can potentially lead the project to wrong conclusions.

• Hardware failure: they are unpredictable but their consequences can be miti-
gated easily if the project is sufficiently backed up.

1.8 Methodology

This section defines the methodology and the tools that will be used during the
project.

1.8.1 Working methodology

The working methodology that we chose was Scrum [7]. Scrum is an agile method-
ology that breaks the work into goals that can be completed within time-boxed iter-
ations (called sprints) no longer than one month and most commonly two weeks. At
the end of the sprint, the team meets to demonstrate the work done and decide the
work that will be done during the next sprint.

We will apply this methodology by meeting every two weeks via Google Meet. We
chose this method because it allows us to stay in touch frequently to clarify doubts
and to make sure that both the author and the tutor are on the same page.

1.8.2 Development tools

These are the tools that will be used during the project:

• Programming language: the chosen programming language will be Python.
The decision was easy because at the moment it is the most used programming
language when it comes to data science.

• External libraries: the main external library that will be used is Pandas. Pan-
das is a Python library used to interact with datasets. It has methods to read
and write the dataset and to make queries.

• Document preparation: this document will be elaborated using the LATEX soft-
ware system. LATEX is widely used in academia for the communication and
publication of scientific documents in many fields including mathematics, com-
puter science, engineering. . .
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Chapter 2

PageRank Feature Selection
algorithm

This chapter is the most theoretically important of the whole thesis since it will detail
the PageRank-based feature selection algorithm around which the whole thesis is
based.

First of all, we will explain the logic we have followed to adapt the performance of
the PageRank algorithm to the attribute selection problem. For this purpose, we will
also provide pseudocode that summarizes in a general way the algorithm operation.

Secondly, once we have defined the algorithm in a general way, we will list and
explain the algorithm’s parameters, which allows the user to tune the algorithm’s
operation according to his needs.

Finally, we will describe the different configurations of the algorithm (combinations
of parameters) that we will test during the experimentation phase of the thesis.

2.1 Algorithm description

As we have already mentioned, we will start by describing the PageRank-based fea-
ture selection algorithm, which we will refer to as PRFS from now on.

First, let us briefly recall the problem we want to solve: selecting features in a dataset
used to train a predictive model. The problem is easy to define formally:

The input to the problem will be a dataset D that, in this thesis, we will interpret as a
matrix of size ns× (n f + 1) where ns represents the number of samples in the dataset
and n f represents the number of features. The extra column in the dataset is the
target variable to be predicted using predictive models. Since the feature selection
algorithm we propose is a filter method, the problem will consist of assigning a
score to each of the attributes in the dataset so that we can subsequently produce a
ranking. The ideal objective is that the ranking produced by the algorithm places the
most "important" attributes in higher positions (later, we will define what we mean
by important) so that the user can keep only the attributes that he/she considers
necessary.

Having defined the problem we are facing more formally, let us recall what the
PageRank algorithm consists of and how it can solve the attribute selection prob-
lem. The PageRank algorithm can be interpreted as a graph centrality algorithm.
The algorithm receives a graph as input and assigns a score to every one of its nodes.
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With all this in mind, it is possible to intuit the functioning of the algorithm we
have designed. The algorithm has two distinct phases: first, it will build a graph
representing the input dataset in which each of the features will be represented by a
node, and second, once the graph has been constructed, it will calculate the score of
each of the nodes using the PageRank algorithm and will order the features based
on the score that the PageRank algorithm has assigned to their nodes.

We can consider another version of the algorithm that, apart from receiving the
dataset as input, also receives an integer n representing the number of features we
want to select. Instead of returning the ranking of all the features, this version will
return a set with the first n features.

Here there is the pseudocode of the last version of the algorithm:

Algorithm 1: PRFS algorithm
Input:
D - Dataset
n - Number of features that the user wants to select
params - Parameters of the algorithm
Output:
FS - Subset of n features

1 G := DatasetGraphRepresentation(D, params);
2 PR := CalculatePageRankScores(G);
3 F := GetFeaturesOrderedByPageRankScore(D,PR);
4 i := 0;
5 FS := [];
6 while i < n do
7 FS.append(F [i]);
8 ++i;
9 end

We can observe in the pseudocode that the algorithm also receives the user’s param-
eters. Therefore, in the following subsection, we will detail the parameters of the
algorithm and their functionality.

2.2 Parameters

As seen in the proposed pseudocode, the algorithm receives some parameters used
to create the graph. The parameters determine how the graph that will represent the
input dataset is constructed.

Before listing and defining in detail each one of the parameters, let us stop and think
about what characteristics the graph representing the dataset should have so that,
using the logic of the PageRank algorithm, the scores that the algorithm assigns to
the feature nodes meet the objective we want to achieve.

To do so, let us analyze how the graph used by PageRank is constructed when used
by search engines. In search engines, PageRank is used to score every web page that
is available on the Internet. The algorithm represents the web as a graph where the
nodes represent web pages, and the edges represent links between them. Thus, we
can visualize the graph as if pages were transmitting scores between them.
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We have transferred this logic to the feature selection problem. The graph with
which we will represent the data set will represent every feature in the form of nodes
that transmit scores to each other. Thus, the algorithm will have to do the following:

• Reward relevance: each feature will transmit a better score to those features
that are relevant. It will give more points to those features that have informa-
tion related to the target variable.

• Penalize redundancy: each feature will give less score to those features that
contain redundant information. Likewise, it will give less score to those fea-
tures with information already contained in other features.

Features will penalize and reward the aspects we have just mentioned by assigning
a weight to the edges that connect them with the rest of the features.

Having explained the logic that the graph representing the input dataset must fol-
low, we will mention the parameters that will define its shape. The parameters are
the following:

• Graph type (or model): parameter that determines how the graph’s adjacency
matrix will be constructed and what shape the graph will have.

• Alpha function (α): the function that will be used to calculate the metric in
charge of representing the relevance of the features. Because the relevance of a
feature depends on the information it shares with the target variable, the alpha
function will calculate the relationships between the features and the target
variable.

• Beta function (β): the function that will be used to calculate the metric in
charge of representing the non-redundancy of the features. As the redundancy
of a feature depends on the information it shares with the other features, the
beta function will be used to calculate the relationship between the features.

• Weight (w): a real number that will give more importance to the relevance or
non-redundancy. It will weigh the values calculated by the alpha function and
those of the beta function.

Having listed the parameters, we will explain in detail each of them separately in
the following sections.

2.2.1 Graph models

We have designed two different graph models that the user can use to represent the
input dataset.

Feature graph

The first graph model is called the feature graph. The feature graph model is a
complete weighted directed graph with the same number of nodes as features in the
dataset. Each node represents a feature, and it is connected to the rest of the nodes.
The weight of every edge in the graph is defined as follows:

Given G = (V, E) the feature graph of a dataset D with n samples represented as
an n × m matrix with columns { f1, ..., fm−1, t} where ∀i ∈ {1, ..., m− 1}, fi repre-
sents a feature and t represents the target variable that the user wants to predict,
∀ fi f j ∈ E, weight( fi f j) = α( f j, t) + w ∗ β( fi, f j).
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FIGURE 2.1: Feature graph of a dataset with three features.

In this graph model ∀ fi ∈ V the PageRank score of fi is defined as follows:

PR( fi) =
1− d
|V| + d ∑

f j 6= f j

(α( fi, t) + w ∗ β( fi, f j)) ∗ PR( f j)

∑ f j 6= f j
α( fi, t) + w ∗ β( fi, f j)

(2.1)

Feature+Target graph

The second graph model is called the feature+target graph. The feature+target graph
model is a complete weighted directed graph with the same number of nodes as
features in the dataset and one additional node representing the target variable. The
weight of every edge in the graph is defined as follows:

Given G = (V, E) the feature+target graph of a dataset D with n samples repre-
sented as an n×m matrix with columns { f1, ..., fm−1, t} where ∀i ∈ {1, ..., m− 1}, fi
represents a feature and t represents the target variable that the user wants to pre-
dict,

• ∀ fi f j ∈ E, weight( fi f j) = w ∗ β( fi, f j).

• ∀ fit ∈ E, weight( fit) = 1.

• ∀t fi ∈ E, weight(t fi) = α( fi, t).

In this graph model ∀ fi ∈ V the PageRank score of fi is defined as follows:

PR( fi) =
1− d
|V| + d ∑

f j 6= f j

w ∗ β( fi, f j) ∗ PR( f j)

∑ f j 6= f j
w ∗ β( fi, f j)

+
α( fi, t) ∗ PR(t)

∑ f j
α( f j, t)

(2.2)
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FIGURE 2.2: Feature+Target graph of a dataset with three features.

2.2.2 Alpha functions

The alpha function parameter of the PRFS algorithm is used to calculate the metric
that evaluates the relationship between the features and the target variable (i.e., the
relevance of each feature). The parameter can be any function f : Rn ×Rn → R that
receives the values of one feature and the values of the target variable as parameters
and returns a real number. The return value of the alpha function should be directly
proportional to the relevance of the feature. Here there is a list of the alpha functions
that we propose as parameters for the PRFS algorithm:

Correlation

The first alpha function that we thought about is the absolute value of the Pearson
Correlation coefficient. It is defined as follows:

correlation( fi, t) =
∣∣∣∣ Cov( fi, t)
Var( fi) ∗Var(t)

∣∣∣∣ (2.3)

Pearson correlation measures the linear relationship between two continuous vari-
ables and has a value between 1 and -1. In other words, the Pearson Correlation
Coefficient measures the relationship between 2 variables via a line [8]. When the
correlation coefficient is closer to value 1, it means there is a positive relationship
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between the variables. A positive relationship indicates an increase in one variable
associated with an increase in the other. On the other hand, the closer correlation
coefficient is to -1 would mean there is a negative relationship which is that the in-
crease in one variable would result in a decrease in the other. If the variables are
independent, then the correlation coefficient is close to 0, although the Pearson cor-
relation can be small even if there is a strong relationship between the two variables.
We take the absolute value of the Pearson Correlation because we are only interested
in the amount of correlation between the feature and the target variable.

Spearman Correlation

The second alpha function is very similar to the first one. In fact, the only thing that
changes is the correlation coefficient. This version uses the Spearman correlation
coefficient instead of the Pearson’s [9] [10]:

spearman_correlation( fi, t) =

∣∣∣∣∣∣ ∑r ( fir − fi)(tr − t)√
∑r ( fir − fi)2 ∑r (tr − t)2

∣∣∣∣∣∣ (2.4)

Where r is the rank of each of the ordered values of fi and t. The fundamental dif-
ference between the two correlation coefficients is that the Pearson coefficient works
with a linear relationship between the two variables. In contrast, the Spearman Co-
efficient works with monotonic relationships as well. A monotonic relationship is a
relationship that does one of the following:

1. As the value of one variable increases, so does the value of the other variable.

2. As the value of one variable increases, the other variable value decreases.

However, not exactly at a constant rate, whereas in a linear relationship, the rate of
increase/decrease is constant.

Mutual Information

The Mutual Information [11] between two random variables measures non-linear
relations between them. Besides, it indicates how much information can be obtained
from a random variable by observing another random variable.

It is closely linked to the concept of entropy. This is because it can also be known as
the reduction of uncertainty of a random variable if another is known. Therefore, a
high mutual information value indicates a large reduction of uncertainty, whereas a
low value indicates a small reduction. If the mutual information is zero, that means
that the two random variables are independent.

The following formula shows the calculation of the mutual information for two dis-
crete random variables:

mutual_in f ormation( fi, t) = ∑
y∈t

∑
x∈ fi

p fi ,t(x, y) ∗ log
(

p fi ,t(x, y)
p fi(x)pt(y)

)
(2.5)

Where p fi and pt are the marginal probability density functions and p fi ,t the joint
probability density function.
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As explained before, it is related to entropy. This relation is shown in the following
formula:

mutual_in f ormation( fi, t) = H( fi, t)− H( fi|t)− H(t| fi) (2.6)

Entropy H measures the level of expected uncertainty in a random variable. There-
fore, H( fi) is approximately how much information can be learned of the random
variable fi by observing just one sample.

H( fi) = − ∑
x∈ fi

P( fi = x) ∗ log(P( fi = x)) (2.7)

The joint entropy measures the uncertainty when considering together two random
variables.

H( fi, t) = − ∑
x∈ fi

∑
y∈t

P( fi = x, t = y) ∗ log(P( fi = x), P(t = y)) (2.8)

The conditional entropy measures how much uncertainty has the random variable
fi when the value of t is known.

H( fi, t) = − ∑
x,y∈ fi ,t

P(x, y) ∗ log(P(x|y)) (2.9)

Accuracy

This last alpha function is a little bit different than the usual alpha functions. It is as
simple as calculating the accuracy of a Naive Bayes classifier using only one feature.

accuracy( fi, t) = NBscore( fi, t) (2.10)

When this alpha function is used, the algorithm can be considered a wrapper feature
selection algorithm because it uses a predictive model to evaluate features. We will
use the Naive Bayes classifier, but we could use any other classifier. We will use this
classifier because it is simple (has very few parameters) and fast. The logic behind
this alpha function is that the most relevant features should get higher accuracy.

2.2.3 Beta functions

The beta function parameter of the PRFS algorithm is used to calculate the metric
that evaluates the relationship between each pair of features (i.e., the redundancy of
each feature). The parameter can be any function f : Rn ×Rn → R that receives the
values of two features as parameters and returns a real number. The return value
of the beta function should be directly proportional to the non-redundancy of the
features between them. Here there is a list of the alpha functions that we propose as
parameters for the PRFS algorithm:
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Uncorrelation

The uncorrelation beta function is the inverse of the correlation alpha function be-
tween the pair of features.

uncorrelation( fi, f j) =

∣∣∣∣ Cov( fi, f j)

Var( fi) ∗Var( f j)

∣∣∣∣ (2.11)

This function is the same as the correlation alpha function but inverted. This way,
the function will return higher values (i.e., closer to 1) when the features are not lin-
early correlated and return lower values (closer to 0) when the features are linearly
correlated.

Spearman Uncorrelation

The spearman uncorrelation beta function is the inverse of the spearman correlation
alpha function between the pair of features.

spearman_uncorrelation( fi, f j) =

∣∣∣∣∣∣ ∑r ( fir − fi)( f jr − f j)√
∑r ( fir − fi)2 ∑r ( f jr − f j)2

∣∣∣∣∣∣ (2.12)

This function is the same as the spearman correlation alpha function but inverted.
This way, the function will return higher values (i.e., closer to 1) when the features
have a low Spearman correlation coefficient and return lower values (closer to 0)
when the features have a high Spearman correlation coefficient.

Accuracy

This beta function is very similar to the accuracy alpha function. In this case, the beta
accuracy function returns the difference between using only one feature and both.

accuracy( fi, f j) = max(NBScore({ fi, f j}, {t})− NBScore({ fi}, {t}), 0) (2.13)

The logic behind this alpha function is that less redundant features should add more
accuracy to the predictive models obtained using both features. In this case, the
Naive Bayes is very convenient because the model assumes independence between
variables, and those variables that are dependent (i.e., redundant) obtain worse re-
sults.

2.3 Parameter configurations

This section will define the parameter configurations that we will use during the
experimentation. Here we can see a list of the combination of graph models, alpha
functions, and beta functions chosen:

• Feature graph, correlation and uncorrelation.

• Feature graph, spearman_correlation and spearman_uncorrelation.
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• Feature+Target graph, correlation, uncorrelation.

• Feature+Target graph, spearman_correlation, spearman_uncorrelation.

• Feature+Target graph, mutual_information, uncorrelation.

• Feature+Target graph, accuracy, accuracy.

When it comes to the weight functions, we will experiment with values 0.2, 0.5,
and 0.8. These values have only an exploratory purpose of seeing the effects of the
weight parameter.
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Chapter 3

Datasets

In this chapter, we will explain the datasets used during the experimentation of the
Page Rank Feature Selection algorithm developed in this thesis. We will divide the
datasets into two distinct groups: synthetic datasets and real datasets.

3.1 Synthetic datasets

The first group of datasets that we are going to describe is synthetic datasets. Syn-
thetic datasets will be created by ourselves with artificial data. They allow us to
easily interpret the experimentation results with the algorithm because we already
know useful information about the dataset beforehand. For each synthetic dataset
class, we are going to produce different versions. Each version will be created
adding/removing redundant and irrelevant variables to/from the original dataset.

3.1.1 Dice dataset

The first synthetic dataset that we created is called the Dice dataset. Each sample in
the dataset contains four relevant variables representing four dice.

Variable name Domain
dice1 {1, 2, 3, 4, 5, 6}
dice2 {1, 2, 3, 4, 5, 6}
dice3 {1, 2, 3, 4, 5, 6}
dice4 {1, 2, 3, 4, 5, 6}
target {0, 1, 2, 3}

The target variable is calculated as follows:

target(dice1, dice2, dice3, dice4) =


3, if dice1 + dice2 + dice3 + dice4 ≥ 17
2, if dice1 + dice2 + dice3 + dice4 ≥ 14
1, if dice1 + dice2 + dice3 + dice4 ≥ 11
0, otherwise

The dataset is very easy to create because we only need to generate three random
integers between one and six and calculate the target variable for each sample. All
versions of the Dice dataset will contain 2000 samples.
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Version 1

The version adds one redundant variable and four irrelevant variables to the original
dataset.

Variable name Variable type Domain
dice1 Relevant variable {1, 2, 3, 4, 5, 6}
dice2 Relevant variable {1, 2, 3, 4, 5, 6}
dice3 Relevant variable {1, 2, 3, 4, 5, 6}
dice4 Relevant variable {1, 2, 3, 4, 5, 6}

d1_d2_sum Redundant variable {4, ..., 24}
i1 Irrelevant variable {1, 2, 3, 4, 5, 6}
i2 Irrelevant variable {1, 2, 3, 4, 5, 6}
i3 Irrelevant variable {1, 2, 3, 4, 5, 6}
i4 Irrelevant variable {1, 2, 3, 4, 5, 6}

target Target variable {0, 1, 2, 3}

Redundant variable d1_d2_sum is calculated as follows:

d1_d2_sum = dice1 + dice2

We create all irrelevant variables in this version and the following versions of the
Dice dataset the same way we create the relevant variables: generating a random
number between one and six. The only important difference is that we do not con-
sider the value of the irrelevant variables when determining the target variable.

Version 2

The version adds two redundant variables and eight irrelevant variables to the orig-
inal dataset.

Variable name Variable type Domain
dice1 Relevant variable {1, 2, 3, 4, 5, 6}
dice2 Relevant variable {1, 2, 3, 4, 5, 6}
dice3 Relevant variable {1, 2, 3, 4, 5, 6}
dice4 Relevant variable {1, 2, 3, 4, 5, 6}

d1_d2_sum Redundant variable {4, ..., 24}
d3_d4_sum Redundant variable {4, ..., 24}

i1 Irrelevant variable {1, 2, 3, 4, 5, 6}
i2 Irrelevant variable {1, 2, 3, 4, 5, 6}
i3 Irrelevant variable {1, 2, 3, 4, 5, 6}
i4 Irrelevant variable {1, 2, 3, 4, 5, 6}
i5 Irrelevant variable {1, 2, 3, 4, 5, 6}
i6 Irrelevant variable {1, 2, 3, 4, 5, 6}
i7 Irrelevant variable {1, 2, 3, 4, 5, 6}
i8 Irrelevant variable {1, 2, 3, 4, 5, 6}

target Target variable {0, 1, 2, 3}

Redundant variables d1_d2_sum and d3_d4_sum are calculated as follows:

d1_d2_sum = dice1 + dice2

d3_d4_sum = dice3 + dice4
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Version 3

The version adds two redundant variables (the same as version 2) and forty irrele-
vant variables to the original dataset.

Variable name Variable type Domain
dice1 Relevant variable {1, 2, 3, 4, 5, 6}
dice2 Relevant variable {1, 2, 3, 4, 5, 6}
dice3 Relevant variable {1, 2, 3, 4, 5, 6}
dice4 Relevant variable {1, 2, 3, 4, 5, 6}

d1_d2_sum Redundant variable {4, ..., 24}
d3_d4_sum Redundant variable {4, ..., 24}

i1...i40 Irrelevant variables {1, 2, 3, 4, 5, 6}
target Target variable {0, 1, 2, 3}

3.1.2 Sklearn dataset

The second synthetic dataset that we have created is called the Sklearn dataset.
We can generate this dataset using the make_classi f ication function included in the
Scikit Learn Python library [12]. This function initially creates clusters of points nor-
mally distributed about vertices of an n_informative-dimensional hypercube and
assigns an equal number of clusters to each class. It introduces interdependence
between these features and adds various types of further noise to the data. These
are some of the most important parameters that the make_classi f ication function re-
ceives:

• n_samples: The number of samples.

• n_features: The total number of features. These comprise n_informative infor-
mative features, n_redundant redundant features, n_repeated duplicated fea-
tures and n_features-n_informative-n_redundant-n_repeated useless features
drawn at random.

• n_informative: The number of informative features. Each class is composed
of a number of gaussian clusters each located around the vertices of a hyper-
cube in a subspace of dimension n_informative. For each cluster, informative
features are drawn independently from N(0, 1) and then randomly linearly
combined within each cluster in order to add covariance. The clusters are then
placed on the vertices of the hypercube.

• n_redundant: The number of redundant features. These features are gener-
ated as random linear combinations of the informative features.

• n_classes: The number of classes (or labels) of the classification problem.

Version 1

This version of the Sklearn dataset will be generated with the following parameters:

• n_samples: 2000.

• n_features: 15.

• n_informative: 5.

• n_redundant: 5.
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• n_classes: 2.

Variable name Variable type Domain
relevant1..relevant5 Relevant variable R

redundant1..redundant5 Redundant variable R

irrelevant1..irrelevant5 Irrelevant variable R

target Target Variable {0, 1}

Version 2

This version of the Sklearn dataset will be generated with the following parameters:

• n_samples: 2000.

• n_features: 20.

• n_informative: 5.

• n_redundant: 5.

• n_classes: 2.

Variable name Variable type Domain
relevant1..relevant5 Relevant variable R

redundant1..redundant5 Redundant variable R

irrelevant1..irrelevant10 Irrelevant variable R

target Target Variable {0, 1}

Version 3

This version of the Sklearn dataset will be generated with the following parameters:

• n_samples: 2000.

• n_features: 50.

• n_informative: 5.

• n_redundant: 5.

• n_classes: 2.

Variable name Variable type Domain
relevant1..relevant5 Relevant variable R

redundant1..redundant5 Redundant variable R

irrelevant1..irrelevant40 Irrelevant variable R

target Target Variable {0, 1}

3.2 Real datasets

3.2.1 Heart Disease UCI dataset

This dataset contains information from 300 UCI patients such as their age, resting
blood pressure, sex... The target variable refers to the presence of heart disease in
the patient.
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The dataset was developed by the Cleveland Clinic Foundation, the Zurich Univer-
sity Hospital, the Basel University Hospital, and the Hungarian Institute of Cardiol-
ogy.

3.2.2 Titanic dataset

This dataset consists of the information of the 2224 passengers and crew from the
famous RMS Titanic.

For each passenger, we have much information such as their age, gender, socio-
economic class... The target variable represents whether the passenger survived or
not.
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Chapter 4

Algorithm evaluation

Once we have defined the Page Rank Feature Selection algorithm and presented the
datasets that we selected, we will describe the methods that we used to evaluate the
algorithm. The algorithm evaluation process can be divided into four steps:

1. Experimentation

2. Data extraction

3. Graph generation

4. Conclusions

This chapter will describe steps 1 to 3, and we will dedicate a whole chapter to the
conclusions later.

4.1 Experimentation

In this section, we will explain the first step of the algorithm evaluation process.
We suppose that the final version of the PRFS algorithm is already implemented.
The experimentation consists of executing the feature selection algorithm with the
selected datasets using different parameter configurations. As the result of the ex-
perimentation, we will obtain the feature ranking for every combination of datasets
and parameter configurations.

4.2 Data extraction

This section describes the data that we extract after the experimentation. After the
execution of the feature selection algorithm, we obtain a ranking of the features. We
thought about how we could evaluate if a given ranking of features was good or
not. We know that a good ranking keeps the best features (relevant) in higher posi-
tions and the worst (irrelevant) features in the lower positions. Considering this, we
thought that we could evaluate the ranking by evaluating the incremental subsets of
features that we obtain if we start by selecting the first feature in the ranking, then
the two best features, continuing until we finish with all the features in the ranking
selected. For example, if we execute the PRFS on a dataset D = { f1, f2, f3, f4, f5, t}
and we obtain the ranking [ f2, f5, f3, f4, f1] the incremental subsets of features would
be {{ f2}, { f2, f5}, { f2, f5, f3}, { f2, f5, f3, f4}, { f2, f5, f3, f4, f1}}. For every set we cal-
culate the following data:

• Relevant variables: Number of relevant variables in the subset.
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• Redundant variables: Number of redundant variables in the subset.

• Irrelevant variables: Number of irrelevant variables in the subset.

• Naive Bayes accuracy: Accuracy of a Naive Bayes model trained using the
features in the subset.

• Decision Tree accuracy: Accuracy of a Decision Tree model trained using the
features in the subset.

• Support Vector Classifier accuracy: Accuracy of a Support Vector Classifier
model trained using the features in the subset.

It is important to note that the classification of variables into relevant, redundant,
and irrelevant will only be done in the synthetic dataset. Because of that, we will not
calculate the number of relevant, redundant, and irrelevant variables selected in the
subsets of the subsets features of real datasets. It is also important to note that we
will not spend time selecting the best parameters of the classifier models because our
goal is not to solve the classification problem. We only want to compare the accuracy
obtained using every subset of features to evaluate how the accuracy evolves when
we incrementally add features from the ranking. This is why we used the default
parameters of each model defined in the SciKit Learn library.

4.3 Graph generation

In the previous section, we have defined the data extraction process. This section
will define how we are going to represent the extracted data graphically.

For each combination of dataset and parameter configuration, we will generate two
graphs:

• Accuracy graph: This graph will illustrate how the accuracy evolves when
we increase the number of features selected. The horizontal axis will represent
the number of features selected, and the vertical axis will represent the accu-
racy obtained. There will be three plots for each figure, one for every different
classifier.

• Feature type graph: This graph will illustrate how the feature type count
evolves when we increase the number of features selected. The horizontal axis
will represent the number of features selected, and the vertical axis will rep-
resent the type count. There will be three plots for each figure, one for every
different type of feature.

All graphs will be generated using the famous matplotlib library. They can be found
in the results chapter.
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Chapter 5

Conclusions

This chapter summarizes the conclusions that we have extracted from the results of
the experimentation in this thesis.

Feature selection is a very modern field of study that is growing very fast. This thesis
has only covered a very small fraction of the field of feature selection. Even though
we have experienced how necessary it is to keep working on improving the feature
selection techniques because, as we can observe in the results obtained, all datasets
contain variables that add noise to the predictive models that worsen the results
obtained. Applying feature selection techniques to the datasets is very important
because:

• The predictive models obtained will obtain better results because we reduce
overfitting.

• We will reduce the size of the training dataset and, consequently, the storing
requirements.

• We can visualize patterns in the dataset easily because we remove some of the
irrelevant data.

• We reduce both the training and the prediction time of the models and all re-
sources related to them.

This thesis has introduced a new feature selection algorithm: the PageRank Feature
Selection algorithm. We have put much effort into trying to adapt the PageRank al-
gorithm to the field of feature selection. Our goal has not been easy because the web
(the field where the PageRank algorithm belongs) is completely unrelated to feature
selection. We are very proud of the results that we have obtained because although
there are, for sure, better feature selection algorithms than the PRFS algorithm, we
have shown that there is room for new ideas to solve the feature selection problem.

After carefully analyzing the experimentation results, we have observed some pos-
itive and negative aspects of the PRFS algorithm. About the positive aspects, we
have observed that:

• If we look at the accuracy plots, we can see that, in most cases, the accuracy
increases very fast with the first features in the obtained ranking. If we look
at the feature type count graphs, we can see that the irrelevant features tend
to be concentrated in the last positions in the ranking, whereas the relevant
features tend to be in the beginning. This shows that the algorithm produces
results that are coherent with the logic that we presented in the description of
the algorithm.
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• The algorithm is very modular, and there is room for trying a lot of different
parameters in the future that may produce even more interesting results.

• The algorithm is very fast. This makes sense because the algorithm is based on
the PageRank algorithm designed to work with a huge dataset: the web.

Some of the negative aspects of the PRFS algorithm are:

• The algorithm only produces a ranking of the features but does not produce
a specific subset. The ranking itself is very useful because we know that the
features in the higher positions are usually the most interesting ones in the
dataset. However, the user does not know how many of them are really im-
portant. This is a negative aspect of the algorithm compared to other feature
selection algorithms that produce a specific subset of features. In the case of
PRFS, the user will need to apply other techniques to determine how many of
the features in the ranking wants to keep.

• The algorithm oversimplifies redundancy and relevance using the same metric
(the result of the selected alpha function and beta function) for all features. It
is often the case where one feature is linearly redundant/relevant, and another
is non-linearly redundant/relevant.

When it comes to the parameters of the algorithm, we can conclude that:

• It is better to penalize non-relevance than penalizing redundancy. This is ac-
complished by using weight values lower than 1.

• Both graph types produce very similar results, but the Feature+Target graph
has a great advantage in comparison with the Feature graph. In the first graph
model, both the alpha function and the beta function values are separated in
terms of evaluating the PageRank scores. This is very useful because we can
use alpha and beta functions with totally different result ranges, such as the
mutual information alpha function and the uncorrelation beta function.

• It is not easy to determine which alpha and beta function to use because it
depends a lot on how the features and the target variable are correlated.
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Chapter 6

Time management

This project has a total duration of 4 months and 8 days (from February 15th to June
22nd). There is a total of 92 business days in this period. Dedicating an average of
5 hours every day means that the project has an estimated duration of 460 hours.
Since we have not confirmed any date to present the project, we assume the project
will be presented on June 28th (the closest possible day).

6.1 Resources

Every project has a set of resources associated that are necessary to successfully de-
velop it. These are the resources needed for this particular project:

• Team [R1]: we are a 2 person team formed by the author of the thesis and its
director.

• Software [R2]:

– Code editor: Visual Studio Code is an open-source editor owned by Mi-
crosoft. Nowadays, it is one of the most used editors for software devel-
opment.

– Version Control System: this project will use git. In particular, it will use
the Github platform.

• Hardware [R3]: Only one computer will be necessary: a Macbook Pro running
macOS Catalina.

6.2 Task definition

The following section defines all the tasks included in this project. These tasks were
designed taking into consideration the objectives described in the previous chapter.
There is a brief description and an estimate duration given for each task (see Table
6.1 and Figure 6.1 for a table task decomposition and Gantt diagram).

6.2.1 Project management

Every project needs proper management to define and organize the work that needs
to be done. This is why the Program Management course (GEP) is very important.
Some of the tasks defined in the following paragraphs take place during the dis-
course of the mentioned course.
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Introduction and scope

This task defines the context and scope of the project. It also defines the objectives
and the working methodology. This task is fundamental because it defines the path
that the project will follow. 22 hours will be spent with this task.

Time management

Definition of the tasks included in this project. For each task, we will provide a
definition, its dependencies, and its time decomposition. This task was finished in 8
hours.

Budget and sustainability

Very similar to the time management task. It will define the economic aspects of the
project and justify its sustainability. Since this is a research project, this task will not
be as sophisticated as if it had been a project developed in a company. It will take 6
hours to define the budget of this project.

Report

Elaboration of this document. One of the most significant tasks of the whole project.
The thesis report will contain all the information related to the project and, this doc-
ument is what typically lasts in time. We have estimated a total of 50 hours to finish
this task.

Oral presentation

Once the project gets finished, it needs to be presented in a tribunal. This task in-
cludes both the preparation of the oral presentation itself and the elaboration of the
slides that will be used. This task will need 14 hours.

Meetings

Every two weeks, there will be a meeting between the author and his director. They
will be used to discuss the work done and prepare what will be done until the next
meeting. The meetings will last 1 hour approximately. Since there are 18 weeks
between the beginning and the end of the project, there will be a total of 9 meetings
making an approximate total of 10 hours spent on this task.

6.2.2 Preliminary work

Before any implementation, we need to get in touch with the essential aspects related
to the project’s topic.

Research

To start, we need to get informed about the main topics of this project. Fortunately,
some of the concepts have already been learned in courses like Machine Learning
(APA) and Big Data (CAIM). We need to understand:

• Feature selection algorithms: what are they used for and how they work.
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• PageRank: how does the algorithm work, where has been used before, and
how to implement it.

To understand these concepts a minimum of 45 hours will be needed.

There are a lot of different Machine Learning algorithms that can be used to generate
classification models. Here is a list of some of the most popular ones:

State of the art

Explore the state of the art of the feature selection problem. It will be interesting
to explore how the feature selection problem is solved nowadays to compare the
results obtained with the alternative method proposed in this project and evaluate
its performance.

6.2.3 Minimum Viable Product

The main goal of this group of tasks is to develop an early version of the feature
selection algorithm proposed.

Design

Once we have sufficient knowledge about how feature selection and PageRank work,
we will design a prototype of a feature selection algorithm based on PageRank. This
initial prototype must be able to solve the feature selection problem and should de-
fine two important things: how to represent the feature graph and how to calculate
the PageRank scores of each feature. It does not have to be a definitive solution. We
will design this prototype using pseudocode. When we have the pseudocode, we
will have an idea about the feasibility of the proposed solution and we can move on
to the implementation. Because of the characteristics of this project, the tasks that
are related to the design of the algorithm will be very time-consuming. This is why
the estimated duration of this task will be of 70 hours.

Implementation

This task consists of the pseudocode implementation proposed in the previous task
using the Python programming language. As mentioned before, this implementa-
tion must provide the user the possibility to solve the feature selection problem. This
task will take 50 hours to complete.

6.2.4 Final product

This is one of the last tasks of the project. At the end of this task, we must have a
complete feature selection algorithm based on PageRank implemented in Python.
This complete version will incorporate more feature graph representations than the
minimum viable product. It will also incorporate validation methods to evaluate the
feature selections made by the algorithm. This task has a duration of 160 hours.
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TABLE 6.1: Project task decomposition.

Code Name Duration Dependencies Resources

T1 Project management 110h
T1.1 Introduction and scope 22h R1, R3
T1.2 Time management 8h T1.1 R1, R3
T1.3 Budget and sustainability 6h T1.1, T1.2 R1, R3
T1.4 Report 50h T1.4 R1, R3
T1.5 Oral presentation 14h T1.4 R1, R3
T1.6 Meetings 10h T1.4 R1, R3

T2 Preliminary work 70h
T2.1 Research 45h R1, R3
T2.2 State of the art 8h T2.1 R1, R3

T3 Minimum Viable Product 120h T2
T3.1 Design 70h R1, R2, R3

T3.1.1 Feature graph 45h
T3.1.2 PageRank 25h

T3.2 Implementation 50h T3.1 R1, R2, R3

T4 Final product 160h T3
T4.1 Design 70h R1, R2, R3

T4.1.1 Additional feature graphs 45h
T4.1.2 Evaluation algorithms 25h T4.1.1

T4.2 Implementation 50h T4.1 R1, R2, R3
T4.3 Performance evaluation 40h T4.2 R1, R2, R3

Total 460h
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FIGURE 6.1: Gantt diagram.
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6.3 Risk management

In the previous chapter, we mentioned the possible obstacles that may occur during
the realization of this project. The following points discuss what would happen
if we, unfortunately, face any of the possible problems. For each problem we will
propose a solution or an alternative task:

• Disease or injury: this obstacle will cause a delay in the following deadlines.
Unfortunately, this obstacle is unpredictable and the only thing that we can do
to mitigate its effects is to reduce the time dedication of the next tasks.

• Errors during the design and implementation of the algorithm: it is possible
to face obstacles during the design and implementation of the feature selection
algorithm. In the worst-case scenario, we will need to focus on the implemen-
tation of a less sophisticated working prototype.

• Hardware failure: in the case of an eventual failure in the computer used to
develop the project, fortunately, the amount of work lost will not be severe
because the team will use appropriate backup techniques. This obstacle has
a nearly immediate solution because the author has more than one computer
available.
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Chapter 7

Budget

In this chapter, we will elaborate a detailed economic study to estimate the budget
of this project. Once we have an idea of the resources needed, we will be able to
determine its feasibility.

7.1 Staff costs

To start, we need to identify the different roles that are involved in the project: project
manager, junior researcher, and junior developer. The project management role will
be shared between the director and the author of the project. The roles of junior
researcher and junior software developer will be individually assumed by the au-
thor. The following table (7.1) illustrates the cost per hour of work for each of the
mentioned roles:

TABLE 7.1: Cost per hour of the different roles.

Role Gross Salary [13] SS Total Cost

Project Manager 23 €/h 6.9 €/h 29.9 €/h
Junior Researcher 15 €/h 4.5 €/h 19.5 €/h
Junior Developer 22 €/h 6.6 €/h 28.6 €/h

Once we have defined the cost per hour of each role, we can calculate the CPA (Cost
per activity). This can be done using the time management information that we
described in the previous chapter. Table 7.2 shows the roles that are involved in
each task and its total cost.
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TABLE 7.2: Staff cost per activity.

Code Name Duration PM Researcher Developer Cost

T1 Project management 110h 110h - - 3,289 €

T1.1 Introduction and scope 22h 22h - - 657.8 €
T1.2 Time management 8h 8h - - 239.2€
T1.3 Budget and sustainability 6h 6h - - 179.4 €
T1.4 Report 50h 50h - - 1,495 €
T1.5 Oral presentation 14h 14h - - 418.6 €
T1.6 Meetings 10h 10h - - 299 €

T2 Preliminary work 70h - 70h - 1,365 €

T2.1 Research 45h - 45h - 877.5 €
T2.2 State of the art 25h - 25h - 487.5 €

T3 Minimum Viable Product 120h - 35h 85h 3,113.5 €

T3.1 Design 70h - 35h 35h 1,683.5 €
T3.2 Implementation 50h - - 50h 1,430 €

T4 Final product 160h - 55h 105h 4,075.5 €

T4.1 Design 70h - 35h 35h 1,683.5 €
T4.2 Implementation 50h - - 50h 1,430 €
T4.3 Performance evaluation 40h - 20h 20h 962 €

Total 460h 110h 160h 190h 11,843 €

7.2 Generic costs

7.2.1 Amortitzation of the resources

• Hardware: The hardware used during this project will be a MacBook Pro
(1448 €) and an external monitor (200 €). If we assume that the hardware used
has a life expectancy of 5 years (60 months) the amortization of this resource
will be 5/50 ∗ (1448 + 200) = 154.8 €

• Software: all software used in this project will be open source and free. The
software amortization will be 0 €

7.2.2 Indirect costs

To estimate the budget of the project we should also take into consideration indi-
rect costs related to it. Since the thesis will be developed using a computer and an
internet connection, we need to calculate the cost of the electricity and the internet
service provider bill:

• Internet: the internet service provider bill is around 50 € per month. Hence,
the total cost will be 50/(30 ∗ 24) ∗ 460 = 31.94 €

• Electricity: At the moment, the kWh price is 0.07622 € [14]. Given that the
wattage of the computer and the monitor used is 100W, the total cost of the
electricity is 0.1 ∗ 460 ∗ 0.07622 = 3.51 €
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7.2.3 Total generic costs

The following table summaizes the total amount of generic costs of this thesis:

TABLE 7.3: Generic costs.

Name Cost

Amortization 154.8 €
Internet 31.94 €
Electricity 3.51 €

Total 190.25 €

7.3 Contingency

We may experience delays and complications during the development of this project
that could cause additional costs. Software development projects usually prepare an
additional 15% of the general cost of the project as a contingency plan. The contin-
gency cost of this project is (11843 + 190.35) ∗ 0.15 = 1,805 €.

7.4 Incidental costs

The previous chapter has defined the possible risks that may appear durings this
thesis. The following table shows the costs of applying the alternative plans related
to each risk:

TABLE 7.4: Incidental costs.

Name Estimated cost Risk Cost

New computer 1,449 € 5% 72.45€
Design time increase (20h) 572 € 20% 114.4€
Implementation time increase (15h) 429 € 20% 85.8€

Total 272.65 €

7.5 Final budget

This section summarizes all the information explained about the costs of this project:

TABLE 7.5: Final budget.

Name Cost

Staff costs 11,843 €
General costs 190.25 €
Contingency 1,805 €
Incidental costs 272.65 €

Total 14,110.9 €



36 Chapter 7. Budget

7.6 Management control

This section explains how are we going to identify alterations in the project cost.

We will use the following formulas:

• Estimated cost: the cost that have estimated for each task (see Table 7.2).

• Real cost: the actual cost that will be spent in the end. It will be used to
recalculate the estimated cost of other tasks and identify tasks that have been
miss-estimated.

• Deviation: the difference between the estimated cost of a task and its real one.

The indicator that we will focus on fundamentally is the deviation of each task. No-
tice that a positive deviation means that we have over-estimated the cost of a given
task and we will destinate more resources to other tasks that need them. In contrast,
a negative deviation means that we have under-estimated the costs of the task and
we will have to reduce the resources that were destined for other tasks to accomplish
the objectives of the underestimated task.
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Chapter 8

Sustainability

8.1 Environmental impact

Have you thought about the environmental impact of your project? Have you
considered minimizing this impact, by for example reusing resources?

Estimating the environmental impact of this thesis is not an easy thing to do because
of its particular characteristics. The only remarkable impact that we could consider
is the amount of energy that will be consumed during the project. We will use a very
reduced quantity of energy thanks to the hardware that will be used.

How is it solved the problem you are trying to solve? Does your solution provide
any improvement in the environmental impact?

The problem that we are trying to solve is feature selection. As we described in the
first chapter, one of the use cases of feature selection is to reduce the dimensional-
ity of a dataset that is going to be used to train a machine learning model. Usually,
when the dimensionality of a dataset is reduced, the training time also decreases
significantly. If the training time is reduced, the resources consumed will also be
meaningfully smaller. Nowadays, there are solutions to the feature selection prob-
lem but, if the solution that we develop performs better than the existing ones, it will
have a positive environmental impact.

8.2 Economy

Have you estimated the impact that your project will have, including both human
and material costs?

In chapter 3, we have already estimated the impact of this thesis considering human
and material costs.

How is it solved the problem you are trying to solve? Does your solution provide
any improvement economically?

We have already mentioned that feature selection reduces the resources that will be
needed when training a machine learning model. The amount of resources used has
a strong direct correlation to the number of economical assets that will be spent.

8.3 Social

How do you think this project will enrich you personally?
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To start, this thesis allows me to learn about a lot of topics that I am very interested
in such as machine learning. Also, I will be surrounded by professionals with a lot
of experience that will guide me through this journey and enrich me personally.

How is it solved the problem you are trying to solve? How do you think your
solution will improve people’s quality of life? Is there a real need of developing
your solution?

The problem that we want to solve has a strong relationship with machine learning.
Hence, society, in general, could be beneficiated because machine learning is used
widely in today’s society. Our solution is not strictly necessary because there are
solutions to the feature selection algorithm already available but it will provide an
alternative solution.
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Appendix A

Results

This appendix recompiles some of the results obtained during the evaluation of the
algorithm. It does not contain all the graphs that we have generated because there
were a lot of them. We have divided the graphs and tables into three sections: rank-
ings, accuracy results, feature type results and execution time results.

A.1 Rankings

Rank Feature name
1 d1_d2_sum
2 dice3
3 dice4
4 dice1
5 dice2
6 i1
7 i4
8 i3
9 i2

TABLE A.1: Ranking of dice1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2

Rank Feature name
1 d1_d2_sum
2 dice3
3 dice4
4 dice1
5 dice2
6 i1
7 i4
8 i3
9 i2

TABLE A.2: Ranking of dice1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.5
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Rank Feature name
1 dice3
2 dice4
3 d1_d2_sum
4 dice1
5 dice2
6 i4
7 i1
8 i3
9 i2

TABLE A.3: Ranking of dice1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.8

Rank Feature name
1 d1_d2_sum
2 dice4
3 dice3
4 i4
5 i3
6 i2
7 i1
8 dice1
9 dice2

TABLE A.4: Ranking of dice1 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.2

Rank Feature name
1 d1_d2_sum
2 dice4
3 i4
4 dice3
5 i3
6 i2
7 i1
8 dice1
9 dice2

TABLE A.5: Ranking of dice1 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.5
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Rank Feature name
1 d1_d2_sum
2 dice4
3 i4
4 dice3
5 i3
6 i2
7 i1
8 dice1
9 dice2

TABLE A.6: Ranking of dice1 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.8

Rank Feature name
1 d1_d2_sum
2 dice3
3 dice4
4 dice1
5 dice2
6 i1
7 i4
8 i3
9 i2

TABLE A.7: Ranking of dice1 dataset using Feature+Target graph,
α = correlation, β = uncorrelation and w = 0.2

Rank Feature name
1 dice3
2 dice4
3 d1_d2_sum
4 dice1
5 dice2
6 i4
7 i1
8 i3
9 i2

TABLE A.8: Ranking of dice1 dataset using Feature+Target graph,
α = correlation, β = uncorrelation and w = 0.5
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Rank Feature name
1 dice3
2 dice4
3 dice1
4 d1_d2_sum
5 dice2
6 i4
7 i1
8 i3
9 i2

TABLE A.9: Ranking of dice1 dataset using Feature+Target graph,
α = correlation, β = uncorrelation and w = 0.8

Rank Feature name
1 d1_d2_sum
2 dice4
3 dice3
4 dice1
5 dice2
6 i4
7 i1
8 i3
9 i2

TABLE A.10: Ranking of dice1 dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.2

Rank Feature name
1 d3_d4_sum
2 d1_d2_sum
3 dice3
4 dice4
5 dice1
6 dice2
7 i1
8 i3
9 i8
10 i4
11 i1
12 i7
13 i6
14 i2

TABLE A.11: Ranking of dice2 dataset using Feature graph, α =
correlation, β = correlation and w = 0.2
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Rank Feature name
1 d3_d4_sum
2 d1_d2_sum
3 dice3
4 dice1
5 dice4
6 dice2
7 i1
8 i3
9 i8
10 i4
11 i1
12 i7
13 i6
14 i2

TABLE A.12: Ranking of dice2 dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.5

Rank Feature name
1 d3_d4_sum
2 d1_d2_sum
3 dice3
4 dice1
5 dice4
6 dice2
7 i7
8 i4
9 i2
10 i1
11 i3
12 i5
13 i8
14 i6

TABLE A.13: Ranking of dice2 dataset using Feature+Target graph,
α = mutual_in f ormation, β = uncorrelation and w = 0.5
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Rank Feature name
1 relevant4
2 redundant4
3 relevant1
4 relevant2
5 relevant5
6 relevant3
7 redundant1
8 redundant3
9 redundant5
10 redundant2
11 irrelevant3
12 irrelevant2
13 irrelevant1
14 irrelevant5
15 irrelevant4

TABLE A.14: Ranking of sklearn1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2

Rank Feature name
1 relevant4
2 redundant4
3 relevant1
4 relevant5
5 relevant2
6 relevant3
7 redundant1
8 redundant3
9 redundant5
10 irrelevant3
11 irrelevant2
12 irrelevant1
13 irrelevant5
14 irrelevant4
15 redundant2

TABLE A.15: Ranking of sklearn1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.5
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Rank Feature name
1 relevant4
2 redundant4
3 relevant1
4 relevant2
5 relevant5
6 relevant3
7 irrelevant1
8 irrelevant2
9 irrelevant5
10 irrelevant4
11 irrelevant3
12 redundant3
13 redundant2
14 redundant1
15 redundant5

TABLE A.16: Ranking of sklearn1 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.2

Rank Feature name
1 relevant4
2 redundant4
3 relevant1
4 relevant3
5 relevant2
6 relevant5
7 redundant3
8 redundant1
9 redundant5
10 redundant2
11 irrelevant3
12 irrelevant1
13 irrelevant4
14 irrelevant2
15 irrelevant5

TABLE A.17: Ranking of sklearn1 dataset using Feature+Target
graph, α = accuracy, β = accuracy and w = 0.2
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Rank Feature name
1 relevant4
2 redundant4
3 relevant1
4 relevant3
5 relevant5
6 relevant2
7 redundant3
8 irrelevant1
9 irrelevant2
10 irrelevant3
11 irrelevant5
12 irrelevant4
13 redundant1
14 redundant5
15 redundant2

TABLE A.18: Ranking of sklearn1 dataset using Feature+Target
graph, α = mutual_in f ormation, β = uncorrelation and w = 0.2

Rank Feature name
1 cp
2 exang
3 oldpeak
4 thalach
5 ca
6 thal
7 slope
8 sex
9 age
10 restecg
11 trestbps
12 chol
13 fbs

TABLE A.19: Ranking of heart dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2
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Rank Feature name
1 fbs
2 restecg
3 chol
4 sex
5 trestbps
6 cp
7 thal
8 slope
9 ca
10 exang
11 age
12 thalach
13 oldpeak

TABLE A.20: Ranking of heart dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.5

Rank Feature name
1 cp
2 thal
3 exang
4 ca
5 chol
6 slope
7 thalach
8 oldpeak
9 sex
10 fbs
11 restecg
12 trestbps
13 age

TABLE A.21: Ranking of heart dataset using Feature+Target graph,
α = mutual_in f ormation, β = uncorrelation and w = 0.2
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Rank Feature name
1 ca
2 cp
3 thal
4 chol
5 oldpeak
6 exang
7 sex
8 thalach
9 slope
10 fbs
11 restecg
12 trestbps
13 age

TABLE A.22: Ranking of heart dataset using Feature+Target graph,
α = mutual_in f ormation, β = uncorrelation and w = 0.5

Rank Feature name
1 thal
2 cp
3 exang
4 slope
5 oldpeak
6 thalach
7 ca
8 age
9 sex
10 restecg
11 fbs
12 trestbps
13 chol

TABLE A.23: Ranking of heart dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.2
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Rank Feature name
1 cp
2 thal
3 exang
4 oldpeak
5 slope
6 thalach
7 ca
8 age
9 sex
10 trestbps
11 restecg
12 chol
13 fbs

TABLE A.24: Ranking of heart dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.5

Rank Feature name
1 Sex
2 Pclass
3 Cabin
4 Fare
5 Parch
6 Age
7 SibSp

TABLE A.25: Ranking of titanic dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2

Rank Feature name
1 Sex
2 SibSp
3 Age
4 Fare
5 Cabin
6 Pclass
7 Parch

TABLE A.26: Ranking of titanic dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.2
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Rank Feature name
1 Sex
2 SibSp
3 Cabin
4 Fare
5 Age
6 Pclass
7 Parch

TABLE A.27: Ranking of titanic dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.2

Rank Feature name
1 Sex
2 Fare
3 Pclass
4 Cabin
5 SibSp
6 Age
7 Parch

TABLE A.28: Ranking of titanic dataset using Feature+Target graph,
α = mutual_in f ormation, β = uncorrelation and w = 0.2

Rank Feature name
1 Sex
2 Fare
3 Pclass
4 Parch
5 Cabin
6 SibSp
7 Age

TABLE A.29: Ranking of titanic dataset using Feature+Target graph,
α = mutual_in f ormation, β = uncorrelation and w = 0.5

Rank Feature name
1 Sex
2 Cabin
3 Pclass
4 Fare
5 Age
6 SibSp
7 Parch

TABLE A.30: Ranking of titanic dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.2
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Rank Feature name
1 Sex
2 Cabin
3 Pclass
4 Fare
5 Age
6 Parch
7 SibSp

TABLE A.31: Ranking of titanic dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.5
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A.2 Accuracy results

FIGURE A.1: Accuracy of dice1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2

FIGURE A.2: Accuracy of dice1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.5

FIGURE A.3: Accuracy of dice1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.8



A.2. Accuracy results 53

FIGURE A.4: Accuracy of dice1 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.2

FIGURE A.5: Accuracy of dice1 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.5

FIGURE A.6: Accuracy of dice1 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.8
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FIGURE A.7: Accuracy of dice1 dataset using Feature+Target graph,
α = correlation, β = uncorrelation and w = 0.2

FIGURE A.8: Accuracy of dice1 dataset using Feature+Target graph,
α = correlation, β = uncorrelation and w = 0.5

FIGURE A.9: Accuracy of dice1 dataset using Feature+Target graph,
α = correlation, β = uncorrelation and w = 0.8
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FIGURE A.10: Accuracy of dice1 dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.2

FIGURE A.11: Accuracy of dice3 dataset using Feature+Target graph,
α = correlation, β = uncorrelation and w = 0.5

FIGURE A.12: Accuracy of dice3 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.5
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FIGURE A.13: Accuracy of dice3 dataset using Feature+Target graph,
α = mutual_in f ormation, β = uncorrelation and w = 0.5

FIGURE A.14: Accuracy of dice3 dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.5

FIGURE A.15: Accuracy of sklearn dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2
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FIGURE A.16: Accuracy of sklearn1 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.5

FIGURE A.17: Accuracy of sklearn1 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.2

FIGURE A.18: Accuracy of sklearn1 dataset using Feature+Target
graph, α = accuracy, β = accuracy and w = 0.2
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FIGURE A.19: Accuracy of sklearn1 dataset using Feature+Target
graph, α = mutual_in f ormation, β = uncorrelation and w = 0.2

FIGURE A.20: Accuracy of sklearn2 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2

FIGURE A.21: Accuracy of sklearn2 dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.2
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FIGURE A.22: Accuracy of sklearn2 dataset using Feature+Target
graph, α = mutual_in f ormation, β = uncorrelation and w = 0.2

FIGURE A.23: Accuracy of sklearn2 dataset using Feature+Target
graph, α = accuracy, β = accuracy and w = 0.2

FIGURE A.24: Accuracy of sklearn3 dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.5
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FIGURE A.25: Accuracy of heart dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2

FIGURE A.26: Accuracy of heart dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.5

FIGURE A.27: Accuracy of heart dataset using Feature+Target graph,
α = mutual_in f ormation, β = uncorrelation and w = 0.2
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FIGURE A.28: Accuracy of heart dataset using Feature+Target graph,
α = mutual_in f ormation, β = uncorrelation and w = 0.5

FIGURE A.29: Accuracy of heart dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.2

FIGURE A.30: Accuracy of heart dataset using Feature+Target graph,
α = accuracy, β = accuracy and w = 0.5
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FIGURE A.31: Accuracy of titanic dataset using Feature graph, α =
correlation, β = uncorrelation and w = 0.2

FIGURE A.32: Accuracy of titanic dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.2

FIGURE A.33: Accuracy of titanic dataset using Feature graph, α =
spearman_correlation, β = spearman_uncorrelation and w = 0.5



A.2. Accuracy results 63

FIGURE A.34: Accuracy of titanic dataset using Feature+Target
graph, α = mutual_in f ormation, β = uncorrelation and w = 0.2

FIGURE A.35: Accuracy of titanic dataset using Feature+Target
graph, α = mutual_in f ormation, β = uncorrelation and w = 0.5

FIGURE A.36: Accuracy of titanic dataset using Feature+Target
graph, α = accuracy, β = accuracy and w = 0.2
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FIGURE A.37: Accuracy of titanic dataset using Feature+Target
graph, α = accuracy, β = accuracy and w = 0.5
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A.3 Feature type results

FIGURE A.38: Feature type count of dice1 dataset using Feature
graph, α = correlation, β = uncorrelation and w = 0.2

FIGURE A.39: Feature type count of dice1 dataset using Feature
graph, α = correlation, β = uncorrelation and w = 0.5

FIGURE A.40: Feature type count of dice1 dataset using Feature
graph, α = correlation, β = uncorrelation and w = 0.8



66 Appendix A. Results

FIGURE A.41: Feature type count of dice1 dataset using Feature
graph, α = spearman_correlation, β = spearman_uncorrelation and

w = 0.2

FIGURE A.42: Feature type count of dice1 dataset using Feature
graph, α = spearman_correlation, β = spearman_uncorrelation and

w = 0.5

FIGURE A.43: Feature type count of dice1 dataset using Feature
graph, α = spearman_correlation, β = spearman_uncorrelation and

w = 0.8
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FIGURE A.44: Feature type count of dice1 dataset using Fea-
ture+Target graph, α = correlation, β = uncorrelation and w = 0.2

FIGURE A.45: Feature type count of dice1 dataset using Fea-
ture+Target graph, α = correlation, β = uncorrelation and w = 0.5

FIGURE A.46: Feature type count of dice1 dataset using Fea-
ture+Target graph, α = correlation, β = uncorrelation and w = 0.8
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FIGURE A.47: Feature type count of dice1 dataset using Fea-
ture+Target graph, α = accuracy, β = accuracy and w = 0.2

FIGURE A.48: Feature type count of dice3 dataset using Feature
graph, α = correlation, β = uncorrelation and w = 0.5

FIGURE A.49: Feature type count of dice3 dataset using Feature
graph, α = spearman_correlation, β = spearman_uncorrelation and

w = 0.5
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FIGURE A.50: Feature type count of dice3 dataset using Fea-
ture+Target graph, α = mutual_in f ormation, β = uncorrelation and

w = 0.5

FIGURE A.51: Feature type count of dice3 dataset using Fea-
ture+Target graph, α = accuracy, β = accuracy and w = 0.5

FIGURE A.52: Feature type count of sklearn1 dataset using Feature
graph, α = correlation, β = uncorrelation and w = 0.2
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FIGURE A.53: Feature type count of sklearn1 dataset using Feature
graph, α = correlation, β = uncorrelation and w = 0.5

FIGURE A.54: Feature type count of sklearn1 dataset using Feature
graph, α = spearman_correlation, β = spearman_uncorrelation and

w = 0.2

FIGURE A.55: Feature type count of sklearn1 dataset using Fea-
ture+Target graph, α = accuracy, β = accuracy and w = 0.2
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FIGURE A.56: Feature type count of sklearn1 dataset using Fea-
ture+Target graph, α = mutual_in f ormation, β = uncorrelation and

w = 0.2

FIGURE A.57: Feature type count of sklearn2 dataset using Feature
graph, α = correlation, β = uncorrelation and w = 0.2

FIGURE A.58: Feature type count of sklearn2 dataset using Feature
graph, α = spearman_correlation, β = spearman_uncorrelation and

w = 0.2
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FIGURE A.59: Feature type count of sklearn2 dataset using Fea-
ture+Target graph, α = mutual_in f ormation, β = uncorrelation and

w = 0.2

FIGURE A.60: Feature type count of sklearn2 dataset using Fea-
ture+Target graph, α = accuracy, β = accuracy and w = 0.2

FIGURE A.61: Feature type count of sklearn3 dataset using Feature
graph, α = correlation, β = uncorrelation and w = 0.5
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A.4 Execution time results

Dataset Graph type Alpha function Beta function Weight Execution time (s)
dice1 Feature Correlation Uncorrelation 0.2 0.0342
dice1 Feature Correlation Uncorrelation 0.5 0.0352
dice1 Feature Correlation Uncorrelation 0.8 0.0349
dice1 Feature Spearman Spearman 0.2 0.0375
dice1 Feature Spearman Spearman 0.5 0.0379
dice1 Feature Spearman Spearman 0.8 0.0328
dice1 Feature+Target Correlation Uncorrelation 0.2 0.0236
dice1 Feature+Target Correlation Uncorrelation 0.5 0.0195
dice1 Feature+Target Correlation Uncorrelation 0.8 0.0186
dice1 Feature+Target Accuracy Accuracy 0.2 0.1667
dice1 Feature+Target Accuracy Accuracy 0.8 0.1760
dice2 Feature Correlation Uncorrelation 0.2 0.0758
dice2 Feature Spearman Spearman 0.5 0.0659
dice2 Feature+Target MI Uncorrelation 0.5 0.1775
dice2 Feature+Target Accuracy Accuracy 0.5 0.4712
dice3 Feature Correlation Uncorrelation 0.5 0.5963
dice3 Feature Spearman Spearman 0.5 0.5472
dice3 Feature+Target MI Uncorrelation 0.5 0.6889
dice3 Feature+Target Accuracy Accuracy 0.5 4.2872

sklearn1 Feature Correlation Uncorrelation 0.2 0.0759
sklearn1 Feature Correlation Uncorrelation 0.5 0.0839
sklearn1 Feature Spearman Spearman 0.2 0.0973
sklearn1 Feature+Target Accuracy Accuracy 0.2 0.4919
sklearn1 Feature+Target MI Uncorrelation 0.2 0.1748
sklearn2 Feature Correlation Uncorrelation 0.2 0.1266
sklearn2 Feature Spearman Spearman 0.2 0.1273
sklearn2 Feature+Target MI Uncorrelation 0.2 0.2312
sklearn2 Feature+Target Accuracy Accuracy 0.2 0.8761
sklearn3 Feature Correlation Uncorrelation 0.2 0.6190

heart Feature Correlation Uncorrelation 0.2 0.0558
heart Feature Spearman Spearman 0.5 0.0514
heart Feature+Target MI Uncorrelation 0.2 0.0716
heart Feature+Target MI Uncorrelation 0.5 0.0775
heart Feature+Target Accuracy Accuracy 0.2 0.3057
heart Feature+Target Accuracy Accuracy 0.5 0.2999
titanic Feature Correlation Uncorrelation 0.2 0.0172
titanic Feature Spearman Spearman 0.2 0.0207
titanic Feature Spearman Spearman 0.5 0.0197
titanic Feature+Target MI Uncorrelation 0.2 0.0486
titanic Feature+Target MI Uncorrelation 0.5 0.0511
titanic Feature+Target Accuracy Accuracy 0.2 0.1201
titanic Feature+Target Accuracy Accuracy 0.5 0.1194

TABLE A.32: Execution time results table
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