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Abstract

We present a study devoted to a detailed description of modulated
rotating waves (MRW) in the magnetized spherical Couette system. The
set-up consists of a liquid metal confined between two differentially rotat-
ing spheres and subjected to an axially applied magnetic field. When the
magnetic field strength is varied, several branches of MRW are obtained
by means of three dimensional direct numerical simulations (DNS). The
MRW originate from parent branches of rotating waves (RW) and are
classified according to Rand’s [33] and Coughling & Marcus [4] theoreti-
cal description. We have found relatively large intervals of multistability
of MRW at low magnetic field, corresponding to the radial jet instability
known from previous studies. However, at larger magnetic field, corre-
sponding to the return flow regime, the stability intervals of MRW are very
narrow and thus they are unlikely to be found without detailed knowledge
of their bifurcation point. A careful analysis of the spatio-temporal sym-
metries of the most energetic modes involved in the different classes of
MRW will allow in the future a comparison with the HEDGEHOG exper-
iment, a magnetized spherical Couette device hosted at the Helmholtz-
Zentrum Dresden-Rossendorf.

Keywords: magnetohydrodynamics – nonlinear waves – bifurcation the-
ory – symmetry breaking – experiments – astrophysics
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1 Introduction

The study of how magnetic fields interact with conducting liquids in rotating
spherical containers is crucial for the understanding of many natural phenomena.
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For instance, the Earth’s [23] and Solar [34] dynamos are driven by global fluid
motions. In addition, the magnetorotational instability (MRI) [2] is considered
the best explanation for the transport of angular momentum in accretion disks
around black holes and stars, and also in protoplanetary disks [22], allowing
matter to fall into the center. Because of its relevance, MRI has been stud-
ied experimentally, with GaInSn between two rotating cylinders at Helmholtz-
Zentrum Dresden-Rossendorf (HZDR) [44, 43, 41], and in Maryland [42] with
liquid sodium between differentially rotating spheres.

In the context of the Maryland sodium experiment [42], recent numeri-
cal [19, 15] and experimental studies [27] have provided alternative interpre-
tations in terms of typical instabilities in magnetized spherical Couette (MSC)
flows encouraging further research into this problem. Consider an electrically
conducting liquid confined between two differentially rotating spheres and sub-
jected to a magnetic field. Although the spherical Couette (SC) system has
a simple formulation it reveals immense complexity even without considering
the magnetic field. The problem is described in terms of the three dimensional
incompressible Navier-Stokes equations with enforced differential rotation be-
tween the boundaries allowing the development of thin shear layers (Stewartson
layer [45]) parallel to the rotation axis along the tangent cylinder. Moreover,
thin Ekman or Ekman-Hartmann boundary layers [6] appear when the no-slip
condition, used to model planetary dynamos and for comparison with labora-
tory experiments, is imposed at the boundaries. These circumstances make the
numerical treatment extremely challenging because of the higher spatial resolu-
tion, even in the study of laminar flows at small differential rotation rates.

In case of a resting outer sphere (which is the focus of this paper) three
parameters determine the MSC problem: the aspect ratio χ = ri/ro, where ri
(ro) is the radius of the inner (outer) spherical boundary, the Reynolds number
Re, measuring the strength of differential rotation, and the Hartmann number
Ha measuring the intensity of the applied magnetic field. Without magnetic
field the basic axisymmetric SC flow is stable [40] up to a certain critical value
of Rec. Beyond this critical point a nonaxisymmetric instability develops and a
branch of stable or unstable solutions bifurcates and extends for larger values
of Re [30]. The flow topology of the instability depends strongly on the gap
width. For narrow gaps Taylor-Görtler vortices are formed [52, 51] whereas
for sufficiently wide gaps the instability occurs in form of spiral waves [50, 20,
1]. With further increasing Re, several bifurcations take place, giving rise to
chaotic [50] and eventually turbulent flows. A comprehensive overview of the
different flow regimes in the SC system with positive or negative differential
rotation was recently given in [49].

In contrast, the impact of magnetic fields on a spherical Couette system has
attracted less interest. Although the first instabilities of the basic axisymmetric
MSC flow have been characterised in the (χ,Re,Ha) parameter space [19, 46],
most nonlinear studies briefly explore the parameter space with direct numer-
ical simulations (DNS) and are focused on addressing the influence of input
physics such as considering different types of boundary conditions for the mag-
netic field [21, 15] (insulating or conducting inner sphere allowing magnetic lines
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to pass) or different topologies of the applied magnetic field (dipolar [15, 9], ax-
ial [42, 19, 25], or a combination of both [48]). Very recently, an exhaustive
numerical study [26], related to the Derviche Torneur sodium experiment in
Grenoble [3], revealed several dynamical regimes where coherent structures co-
exist with turbulent flows when a dipolar magnetic field is imposed.

In case of axially applied magnetic fields and small Re, the studies [21, 19, 46,
25] have shown that the MSC basic state is equatorially symmetric and stable
for all Ha. It is described as a strong azimuthal flow associated with a meridional
recirculation. At some critical value Rec, the basic flow becomes unstable to
non-axisymmetric perturbations. At low Ha the instability takes the form of an
equatorially antisymmetric radial jet instability at the equatorial plane, whereas
at large Ha the instability is equatorially symmetric and related to a shear layer
at the tangent cylinder [21, 19]. For moderate values of Ha, between the radial
jet and the shear layer instability, it takes the form of a meridional return
flow instability [19]. We note that the radial jet and return flow instabilities are
separated by a Ha interval in which the basic flow stabilises again [19, 46]. These
instabilities have been recently identified in the HEDGEHOG (Hydromagnetic
Experiment with Differentially Gyrating sphEres HOlding GaInSn) laboratory
experiment [27] at Helmholtz-Zentrum Dresden-Rossendorf when increasing the
magnetic field strength (Ha) for a fixed rotation rate (Re).

Both the SC and the MSC are SO(2)×Z2 equivariant systems, i. e., invariant
by azimuthal rotations and reflections with respect to the equatorial plane,
because of the symmetry of the geometry and the boundary conditions. In
SO(2) symmetric systems, branches of periodic rotating waves (RW) appear
after primary Hopf bifurcations [5, 7, 17] when the axisymmetric azimuthal
symmetry of the basic state is broken. Secondary Hopf bifurcations [33, 16, 17]
give rise to 2-frequency quasiperiodic amplitude or shape modulated rotating
waves (MRW) which may have different types of spatio-temporal symmetries.
A theoretical characterisation of MRW was first performed in [33] and extended
in [16] following several application examples such as the cylindrical Taylor-
Couette (TC) system. Although the MSC problem is somewhat different to the
TC system, it still retains the rotational symmetry, and thus the mathematical
analysis of MRW performed in [4], in terms of Floquet theory, also applies. An
algorithm for the identification of MRW in O(2) systems was developed in [32]
in the framework of center bundle construction [28, 16]. In case of the MSC
problem the existence of RW and MRW has been confirmed by experimental
studies [39] and by DNS [21, 19, 15] but their dependence upon parameters,
especially the Hartmann number, is still not well understood.

Recently, a continuation method was applied [14] to build up accurate bifur-
cation diagrams for RW to address the magnetic field strength dependence. The
Floquet analysis of periodic orbits was used to determine regions of stability of
different azimuthal wave numbers m and to characterise the symmetry of the
bifurcated MRW. The present study continues the work of [14] by describing
these MRW in terms of the established theory, using the analysis of [33] and [4],
and study their dependence upon the magnetic field strength. Our main focus
is to determine the dominant azimuthal modes involved in each solution and
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obtain their time scales in correspondence with the azimuthal symmetries of
the flow that can be measured in the HEDGEHOG experiment. Our analysis is
devoted to a moderate Reynolds number regime and extends previous numeri-
cal studies [21, 19, 46, 14] by determining the regions of stability of oscillatory
waves and describe them in terms of bifurcation theory. Yet, we leave for fu-
ture research the study of chaotic attractors that may originate from the flows
described in this paper at very weak magnetic fields.

The paper is organized as follows: In § 2 we introduce the formulation of
the problem, the numerical method used to integrate the model equations, and
some background summarising the theory of MRW classification. In § 3 the
bifurcation diagrams as a function of Ha and the different regions of stability
of MRW are presented. The classification of MRW is discussed in § 4 while the
analysis of the dominant azimuthal modes is presented in § 5. Finally, in § 6
the paper closes with a summary on the results obtained.

2 The HEDGEHOG model

2.1 The equations and the numerical method

We consider a conducting fluid of constant density ρ, the kinematic viscosity
ν, magnetic diffusivity η and electrical conductivity σ = 1/(ηµ0), where µ0 is
the free-space value for the magnetic permeability. The fluid is confined in a
spherical shell defined by inner and outer radii ri and ro. The outer sphere is at
rest while the inner rotates at a constant angular velocity Ω around the vertical
axis êz.

To compare with the HEDGEHOG laboratory experiment [27] the flow is
subjected to a uniform axial magnetic field B0 = B0 cos(θ)êr − B0 sin(θ)êθ, θ
being the colatitude and B0 the magnetic field strength (Fig. 1). To obtain the
dimensionless governing equations the length, time, velocity and magnetic field
are scaled using the characteristic quantities d = ro − ri, d

2/ν, riΩ and B0,
respectively. We adopt the inductionless approximation Rm � 1 valid in the
limit of low magnetic Reynolds number Rm = Ωrid/η. This is reasonable in the
case of the HEDGEHOG experiment because the fluid has very low magnetic
Prandtl number Pm = ν/η ∼ O(10−6) (eutectic alloy GaInSn [31]) and only
moderate Reynolds numbers Re = Ωrid/ν ∼ 103 are considered giving rise to
Rm = PmRe ∼ 10−3.

The magnetic field is decomposed as B = êz + Rmb. By neglecting terms
O(Rm), the Navier-Stokes and induction equations become

∂tv + Re (v · ∇)v = −∇p+∇2v + Ha2(∇× b)× êz, (1)

0 = ∇× (v × êz) +∇2b, (2)

∇ · v = 0, ∇ · b = 0. (3)

In this inductionless approximation the MSC system depends upon three non-
dimensional numbers: the Reynolds number, the Hartmann number and the
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(b)

Figure 1: HEDGEHOG experimental configuration. Detail of the rotating
spheres showing the ultrasonic Doppler velocimeter (UDV) sensors (thick cylin-
ders) and the electric potential probes (thin needles) attached to the outer
sphere.

aspect ratio

Re =
Ωrid

ν
, Ha =

B0d√
µ0ρνη

= B0d

√
σ

ρν
, χ =

ri
ro
.

No-slip (vr = vθ = vϕ = 0) at r = ro and constant rotation (vr = vθ = 0, vϕ =
sin θ) at r = ri are the boundary conditions imposed on the velocity field. For
the magnetic field, insulating exterior regions are considered in accordance with
the experimental setting, see [21] for more details.

The equations are discretized and integrated with the same method as de-
scribed in [11] and references therein. The velocity field is expressed in terms
of toroidal, Ψ, and poloidal, Φ, potentials

v = ∇× (Ψr) +∇×∇× (Φr) , (4)

which are expanded in spherical harmonics in the angular coordinates (r = r êr
is the position vector). In the radial direction a collocation method on a Gauss–
Lobatto mesh of Nr points is used. Specifically, the solution vector u = (Ψ,Φ)
(Eq. 4) is expanded in spherical harmonic series up to degree Lmax

Ψ(t, r, θ, ϕ) =

Lmax∑
l=0

l∑
m=−l

Ψm
l (r, t)Y ml (θ, ϕ), (5)

Φ(t, r, θ, ϕ) =

Lmax∑
l=0

l∑
m=−l

Φml (r, t)Y ml (θ, ϕ), (6)
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with Ψ−m
l = Ψm

l , Φ−m
l = Φml , Ψ0

0 = Φ0
0 = 0 to uniquely determine the two

scalar potentials, and Y ml (θ, ϕ) = Pml (cos θ)eimϕ, Pml being the normalized
associated Legendre functions of degree l and order m. The code is parallelized
in the spectral and in the physical space by using OpenMP directives. We use
optimized libraries (FFTW3 [10]) for the FFTs in ϕ and matrix-matrix products
(dgemm GOTO [18]) for the Legendre transforms in θ when computing the
nonlinear terms.

For the time integration, high order implicit-explicit backward differentia-
tion formulas (IMEX–BDF) [11] are used. In the IMEX method we treat the
nonlinear terms explicitly in order to avoid solving nonlinear equations at each
time step. The Lorenz term is also treated explicitly, which may necessitate
a reduced time step in comparison with an implicit treatment. However, this
is not a serious issue when moderate Ha are considered, as is the case for the
present study. The use of matrix-free Krylov methods (GMRES [36] in our
case) for the linear systems facilitates the implementation of a suitable order
and time stepsize control for the time integration (see [11] for details on the
implementation).

2.2 Background for Modulated Rotating Waves

The discretization of the MSC equations Eqs. (1-3) leads to a system of n =
(2L2

max + 4Lmax)(Nr − 1) ordinary differential equations (ODE) of the form

L0∂tu = Lu+B(u, u), (7)

where L0 and L are linear operators which include the boundary conditions
(see [11] for details). The first operator is invertible and the operator L depends
on Ha (the control parameter of the present study) and includes all the linear
terms, whereas the non-linear (quadratic) terms are included in the bilinear
operator B.

The system is SO(2)×Z2-equivariant, SO(2) generated by azimuthal rota-
tions, and Z2 by reflections with respect to the equatorial plane. For fixed Re,
at a critical Hac the basic axisymmetric (m = 0) flow is unstable to nonax-
isymmetric perturbations [19, 46] giving rise to a branch of RWs [7]. These
are solutions in which a fixed flow pattern with m1-fold azimuthal symmetry is
rotating at a frequency ω in the azimuthal direction [33]. For the MSC system,
RW have been recently computed [14], as a function of Ha, by means of con-
tinuation methods for periodic orbits [38]. However, RW can also be computed
as fixed points [37, 47] of the MSC system written in a reference frame rotating
with the same frequency ω:

L0∂tu = L(p)u+B(u, u) + ωL0∂ϕu. (8)

This is because RW satisfy u(t, r, θ, ϕ − ωt) = ũ(r, θ, ϕ̃), with ϕ̃ = ϕ − ωt. A
branch of RW, rotating at a frequency ω and with m1-fold azimuthal symmetry,
undergoes secondary Hopf bifurcations at a certain critical value of Ha giving
rise to a branch of MRW. According to [33] these are τ -periodic solutions of
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Figure 2: Contour plots of the nonaxisymmetric (m > 0) radial velocity on
colatitudinal cross-sections at t = 0 and t = τmin for a MRW at Ha = 3.5. The
main azimuthal drift corresponding to ω has been removed. The position of
colatitudinal cuts is one degree above the equator.

Eq. (8) (i. e. in a reference frame rotating with frequency ω) for which there
exist a basic (minimal) time τmin > 0 and an integer 0 ≤ n < m1/s such that

u(t, r, θ, ϕ) = u(t+ τmin, r, θ, ϕ+ 2πn/m1) ∀t, ∀ϕ. (9)

The spatio-temporal symmetry of each MRW is then described with three in-
tegers (m1, n, s). They are the m1-fold azimuthal symmetry of the parent RW,
the integer n related with the minimal period τmin in Eq. (9), and the s-fold
azimuthal symmetry of the MRW (see the scheme in Fig. 2). We note that s can
be deduced a priori from the stability analysis (Floquet theory) of a RW close
to the bifurcation point [4]. In this way, if at the bifurcation point the dom-
inant Floquet multiplier has m2-fold azimuthal symmetry then the azimuthal
symmetry of the bifurcated MRW will be s = GCF(m1,m2) (GCF stands for
great common factor). In the original system (Eq. (7)) MRW are quasiperi-
odic and any frequency obtained from a time spectrum analysis will be a linear
combination (with integer coefficients) of Rand’s fundamental frequencies [33]

ΩM = 2π/τmin, ΩW = s(ω + nΩM )/m1. (10)

We note that the MRW period τ seen when integrating system Eq. (8) (i. e.
rotating with frequency ω) may not be minimal (this only happens when n = 0).
However, there exists a frequency ωmin and its associated system (Eq. (8)) for
which the MRW will exhibit τmin periodicity. Detecting this minimal period
is important to efficiently obtain MRW with continuation methods for periodic
orbits [12], as these methods require a large number of time integrations over one

7



F. Garcia et al. Magnetized Spherical Couette Waves

modulation period. We note that azimuthally averaged properties of a MRW
(either obtained with Eq. (7) or Eq. (8)) will naturally reflect the minimal period
as any azimuthal drift is removed [32].

For a MRW close to the bifurcation point its rotating frequency is close to
that of the parent RW. An approximation for the second frequency (related with
the modulation period) can be obtained by means of Floquet theory in the way
we now describe. Let µ ∈ C be a Floquet multiplier and λ ∈ C be a Floquet
exponent [24] of a RW of the MSC system (Eq. (7)), rotating at a frequency ω
and with m1-fold azimuthal symmetry. The period of the RW is T = 2π/m1ω.
The Floquet multipliers and exponents are related by µ = eTλ. At a Hopf
bifurcation point a branch of MRW is born and a modulation period can be
approximated by τb = 2π/=(λ). At the bifurcation point <(λ) = 0 and thus
T=(λ) = Arg(µ) with Arg(µ) the complex argument (µ = |µ|eiArg(µ)). Then we
have

τb = 2πT/Arg(µ) = 4π2/m1ωArg(µ). (11)

We note that τb may neither be the minimal modulation period τmin nor the
modulation period τ observed when integrating the system Eq. (8). Neverthe-
less, ω and 2π/τb are fundamental frequencies as well, so they can be expressed
as functions of ΩM and ΩW [33]. This is useful because Floquet multipliers of
RW at bifurcation points have been already obtained in [14] and thus can be
used to check the frequencies obtained from a time series analysis of DNS of
MRW close to the corresponding bifurcation points.

Besides Rand’s classification of MRW [33] the authors of [4] provide an
equivalent classification by deriving a functional form for MRW, within the
context of Taylor-Couette flows, in terms of bifurcation and Floquet theory.
According to [4] a MRW may be described by (m1, c1,m2, c2) with m1 and
c1 = ω being the azimuthal symmetry and rotating frequency of the underlying
RW, and m2 and c2 = c1 +ωM/m2 (ωM = 2π/τ), the azimuthal symmetry and
frequency of the Floquet mode, respectively, associated to the modulation (with
period τ) seen in the frame rotating with frequency c1.

3 Bifurcation diagrams

For fixed χ = 0.5 and in the absence of magnetic field the basic axisymmetric
flow becomes unstable at sufficiently large Rec ≈ 489 (see [20]). Then, for Re =
103 the flow is nonaxisymmetric taking the form of a radial jet instability [20].
The linear stability analysis of the basic state of [19, 46] showed that with
increasing magnetic forcing (Ha) the basic state is recovered at Hac = 12.2, but
loses its stability again at Hac = 25.8 giving rise to a meridional circulation and
a return flow instability. With further increase of Ha the basic state becomes
stable again at Hac = 79.4 taking the form of a strong shear layer parallel to
the rotation axis and close to the inner boundary.

At the same Re = 103, branches of unstable/stable rotating waves with
azimuthal symmetry m = 2, 3, 4 bifurcated from the basic state at the critical
points have been recently computed in [14] for the three types of instabilities,
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i. e., for the radial jet instability in the range Ha ∈ [0, 12.2] and for the return
flow and shear layer instabilities in the range Ha ∈ [25.8, 79.4]. The stability
analysis (Floquet) of these waves provided the values of the bifurcation points
to branches of MRW which are described in this section.

The code and results for the computation of RW and their stability analysis
were validated in section 3(c) of [14]. In the present study the same spatial reso-
lutions are employed as the MRW are obtained in the same range of parameters.
We use Nr = 40 radial collocation points and a spherical harmonics truncation
parameter Lmax = 84 giving rise to a nonlinear system of 563472 degrees of
freedom (DOF). When increasing the resolution to Nr = 60 and Lmax = 126
(1903104 DOF), errors below 1% are obtained (see table 1 of [14]). Numerical
experiments with a VSVO time step method (see [11]) allows us to determine
an appropriate fixed time step (of order ∆t = 5 × 10−6) for an accurate fixed
time step integration.

We compute MRW using DNS and start each branch with initial condi-
tions built from a RW and its Floquet multiplier close to the bifurcation point.
Successive MRW on the branches are obtained from those at slightly different
Ha. An alternative procedure allows us to obtain additional branches of MRW
without knowing their parent branch of RW (the point where they bifurcate).
We set as initial condition a slightly perturbed unstable RW and integrate in
time (DNS) until the perturbations are saturated and an attractor is reached.
By means of time spectrum analysis we infer the quasiperiodic character of the
DNS. By imposing azimuthal symmetry constraints on the DNS (by retaining
only certain modes on the spherical harmonic expansion) we are able to capture
unstable MRW.

Figure 3(a,b) displays the time average and minimum/maximum values of
the volume averaged nonaxisymmetric (m > 0) kinetic energy Kna versus the
Hartmann number in the low magnetic field regime corresponding to the radial
jet instability. Branches for RW with m-fold azimuthal symmetry m = 2, 3, 4
were obtained in [14], where several bifurcation points along the branches were
computed as well. This information is summarised in Table 1. A branch of
RW or MRW is denoted by RWmmax

s or MRWmmax
s when the waves belonging to

the branch have s-fold azimuthal symmetry and their most energetic azimuthal
wave number (with the exception of m = 0) is mmax. For instance, a wave in the
MRW3

1 branch has 1-fold azimuthal symmetry (i. e. invariant by 2π azimuthal
rotations) and K3 ≥ Km (m 6= 0), Km being the mean rms kinetic energy
contained in the azimuthal wave number m.

The branches of RW2
2 and RW4

4 are unstable and thus the bifurcated MRW2
2

(at Hac = 5.27) and MRW4
2 (at Hac = 9.98) are unstable as well. Because

of the m = 2 azimuthal symmetry of the corresponding Floquet mode at the
bifurcation, the branches of MRW2

2 and MRW4
2 can be computed with m = 2

azimuthal symmetry constraints imposed on the DNS. In contrast to RW2
2 or

RW4
4, the branch of RW3

3 has a stable Ha interval. The RW3
3 branch corresponds

to the branch of the most unstable linear mode of the basic state [46], emerging
at Hac = 12.2. At Hac = 3.95, RW3

3 becomes unstable by decreasing Ha, at a
Hopf bifurcation, giving rise to a branch of stable MRW3

1. By further decrease
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Figure 3: Bifurcation diagrams for rotating and modulated rotating waves
(RW/MRW) corresponding to the equatorially asymmetric radial jet instability.
The label notation is RW/MRWmmax

s , s being the azimuthal symmetry of the
waves and mmax 6= 0 their most energetic azimuthal wave number. A stable
branch of complex waves with 3 frequencies, mmax = 3, and azimuthal sym-
metry s = 1 is also included (CW3

1). For Ha → 0 different complex and even
chaotic flows are identified but their description is out of scope of the present
study. The volume averaged nonaxisymmetric (m > 0) kinetic energy Kna is
plotted versus the Hartmann number Ha. (a) Time average and (b) maximum
(thick line) and minimum (thin line) of the time series. Solid/dashed lines mean
stable/unstable waves.
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of Ha (along the RW3
3 branch) a second Hopf bifurcation, which does not break

the m = 3 azimuthal symmetry, gives rise to a branch of unstable MRW3
3 at

Hac = 3.33. Again these waves can be computed with azimuthal symmetry
constraints as done for the case of MRW2

2 or MRW4
2. At Hac ≈ 3.1 the branch

of MRW3
3 becomes stable to arbitrary random perturbations with m = 1-fold

azimuthal symmetry.

Table 1: Critical parameters of the equatorially asymmetric RWs at the bifur-
cations where they change the stability (|µ| = 1). They are obtained by inverse
interpolation with a polynomial of degree 5. The sign of the real part of the
Floquet exponent of the two leading eigenfunctions before and after the transi-
tion is shown. The azimuthal symmetry (2π/m2 azimuthal periodicity) of the
eigenfunction with a change of sign is also stated. We use ES=1 for equatorially
symmetric flows, ES=0 otherwise. The rotating frequency ω and the fundamen-
tal frequency of the time spectrum fω = mω/2π, the argument of the Floquet
multiplier Arg(µ) and the corresponding modulation period τb and fundamental
frequency fb = 1/τb (see Eq. (11)), are also tabulated.

m ES Signs at transition Hac m2 ω fω Arg(µ) τb fb

2 0 (+,+)→ (+,−) 5.27 2 132.40 42.145 0.291 0.512 1.952
3 0 (+,+)→ (+,−) 3.33 3 138.88 66.310 2.131 0.044 22.492
3 0 (+,−)→ (−,−) 3.95 1 139.07 66.399 0.774 0.122 8.181
4 0 (+,+)→ (+,−) 9.98 2 136.08 86.630 3.131 0.023 43.173

2 1 (+,+)→ (+,−) 29.98 2 56.44 17.966 0.632 0.553 1.807
4 1 (−,−)→ (+,−) 31.95 1 101.62 64.691 2.076 0.047 21.377

By taking initial conditions on the MRW3
1 branch, a stable branch of quasiperi-

odic waves, with three frequencies and with mmax = 3 and azimuthal symme-
try m = 1 (labelled CW3

1), is found if Ha is decreased beyond the thresh-
old of Hac = 3.4. This sequence of bifurcations –basic steady state, RW3

3,
quasiperiodic with two frequencies MRW3

1 and quasiperiodic with three frequen-
cies MRW3

1 – seen at low Ha for the radial jet instability with mmax = 3 cor-
responds to the Ruelle-Takens scenario [35, 8] which is typical for systems with
symmetry [33, 16]. Figure 4(a) displays Poincaré sections (see figure caption)
for a selection of four different flows which evidence the sequence of bifurcations.
At Ha = 4 the Poincaré section of a RW3

3 (periodic orbit) is a point while at
the lower values Ha = 3.8 (red curve) and Ha = 3.5 (blue curve) the sections
of MRW3

1 (invariant tori) are closed curves. At Ha = 3.1 the cloudy Poincaré
section exhibits features of a 3 frequency solution. We note that an accurate
computation of bifurcation points to MRW with 3 frequencies in SO(2) systems
could be done efficiently as in [12] by considering MRW as periodic orbits.

An interesting property of MRW3
1, but also of MRW4

2, is that the amplitude
of oscillations of azimuthally averaged properties (Kna in particular) is very
small. In fact, the maximum and minimum curves of Fig. 3(b) are indistin-
guishable from each other. This may lead to confuse MRW3

1 or MRW4
2 with RW

as their azimuthally averaged properties appear to be nearly constant. This is
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Figure 4: (a) Poincaré sections defined by vr(r2, π/8, 0) = −6× 10−2 for a RW3
3

at Ha = 4 (black point) for MRW3
1 at Ha = 3.8, 3.5, from smaller (red) to larger

(blue) closed curves, and a CW3
1 at Ha = 3.1 (cloud of orange dots). The radial

positions are r1 = ri + 0.15d and r2 = ri + 0.5d. (b) The oscillations of the
m = 3 component of the flow are noticeable from the 3rd instability (the onset
of 3rd frequency via Hopf bifurcation). From top to bottom K3 for Ha = 3.1
(orange), Ha = 3.5 (blue), and Ha = 3.8 (red). (c) Time series of kinetic energy
densities Km for a MRW3

1 at Ha = 3.5. (d) Detail of (c) with scaled Km to
stress the small relative variance of the oscillations. The scaling factors are
28.7, 16.4, 1, 306 for m = 1, 2, 3, 4, respectively.
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0) kinetic energy Kna versus the Hartmann number Ha. (a) equatorially asym-
metric radial jet instability and (b) equatorially symmetric return flow instabil-
ity. Notation is as in Fig. 3. The different regions of multistability are high-
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each band. In contrast to the radial jet instability, less different types of mod-
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flow instability (panel (b)). Only MRW4
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delimit the thin band where unstable MRW2

2 are found.
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illustrated in Fig. 4(b) displaying the kinetic energy contained in the m = 3
azimuthal wave number (K3) for three different flows. For solutions lying on
the MRW3

1 branch (Ha = 3.5, 3.8) the kinetic energy K3 seems to be constant
contrasting to the oscillatory behaviour seen at Ha = 3.1. The amplitudes
of oscillation in the kinetic energy wave number m spectra for the MRW3

1 at
Ha = 3.5 shown in Fig. 4(c) are extremely small and become only visible when
the time series of Km are examined in detail (Fig. 4(d)).

Aside the branches of MRW shown in Fig. 3 and born at the bifurcation
points summarised in Table 1, we have found two additional branches with
m = 1-fold azimuthal symmetry and mmax = 2 labelled as MRW2

1. These MRW
correspond to the radial jet instability and display noticeable oscillations of the
azimuthally averaged physical properties. They are stable along all the branch
as no azimuthal constraint is imposed on the DNS. The branches of MRW2

1 are
displayed in Fig. 5(a) together with the branches of RW3

3, MRW3
1 and CW3

1

already shown in Fig. 3(a). The intervals of stability of the different waves
overlap, giving rise to regions of multistability of two and even three different
types of waves. In the limits of the 3-stability region we have found hysteretic
behaviour between the two branches of MRW2

1. Because we are using DNS the
branches of MRW2

1 are lost close to Ha = 3.5 (or Ha = 6) as they become
unstable and all the azimuthal symmetries are broken. The use of continuation
methods [38, 12] may help to understand their origin.

According to Fig. 5(a) for the radial jet instability (at low Ha) oscillatory
solutions (MRW and 3 frequency waves) are stable in a relatively wide interval
of Hartmann numbers. This contrasts with the dynamical behaviour obtained in
the return flow regime (moderate Ha) for which very narrow intervals of stability
of only two types of MRW are found (see Fig. 5(b) and Table 1). By increasing
Ha further, only RW are found for the case of the shear layer instability [14] at
the selected Re = 103 of the present study. According to these results, increasing
magnetic field results in a decrease of the flow complexity in the sense that less
different types of waves are obtained and the flow solutions exhibit a simpler
time dependence. For example, for Ha ∈ [35.24, 79.42] only RW with m = 2-fold
azimuthal symmetry are found [14].

4 Classification of MRW

Several examples of MRW (belonging to each of the branches previously de-
scribed) are classified in this section following Rand’s [33] and Coughling &
Marcus [4] theoretical work, previously summarised in Sec. 2.2. The numerical
approach for the classification and the flow patterns of the MRW are described
as well.

4.1 Classification algorithm

Our procedure is based on DNS (after filtering the initial transient) of the MSC
system equations (Eq. (7)) as well as on a rotating frame with selected rotating
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frequency (Eq. (8)) in the way we now describe:

1 Given an initial condition a time evolution of system Eq. (7) is performed
to determine fω. The latter corresponds to the main peak of the frequency
spectrum and can be found accurately by using Laskar’s algorithm [29]
applied to a time series of the radial velocity component vr(t, p) picked
up at a point inside the shell p = (r, θ, ϕ) = ((ri + ro)/2, π/4, 0). The
azimuthal symmetry s of the MRW and the azimuthal symmetry m1 of
the underlying rotating wave are detected by computing the azimuthal
wave number’s kinetic energy spectra. We have found in all cases that
m1 = mmax corresponds to the wave number of maximum amplitude
(except m = 0). The rotating frequency of the MRW is ω = 2πfω/m1.

2 Once ω is known, we integrate system Eq. (8) approximately one mod-
ulation period τ (by imposing |vr(0, p) − vr(τ, p)|/vr(0, p) < 10−3) and
capture the flow patterns at times t = 0, τ/4, τ/3, τ/2. If τ is not the min-
imal period then the patterns at time t = 0 and at time t = τ/j, for some
1 < j ≤ m1, should differ by an azimuthal rotation of 2πn/m1 degrees.
Then, the minimal rotation period τmin and the integer n appearing in the
labels (m1, n, s) of Rand’s classification [33] are identified. Fundamental
Rand’s frequencies are easily obtained from Eq. (10).

3 Aside c1 = ω and m1 the classification of [4] involves the integer m2 and
frequency c2 = c1+ωM/m2 with ωM = 2π/τ . The integer m2 corresponds
to the azimuthal symmetry of the underlying Floquet mode which can be
inferred from the DNS by removing the multiples of m1 in the spherical
harmonics expansion.

Rand’s [33] parameters correspond to the integers m1, n and s (see Eq. 9)
and the frequencies fω = m1ω/2π, fM = 1/τmin and fW = s(fω/m1+nfM )/m1

(from Eq. 10) whereas Coughling & Marcus [4] parameters are the integers m1

and m2 and the frequencies fω and f2 = m2fω/m1 + fτ . The results of the
classification are summarised in Table 2 for the 6 different types of MRW found
at low magnetic forcing corresponding to the radial jet instability.

We note that with the exception of the MRW2
1, the parent branch of RW

and the corresponding Floquet mode at the bifurcation is known [14] and thus
can be used to verify the results obtained from DNS. For MRW4

1 and MRW4
2 the

Laskar frequency closest to that obtained theoretically at the bifurcation point
(see Table 1 and Sec. 2.2) is fb = m2fω/m1 − fτ , with fτ = 1/τ . In contrast,
for the MRW2

2 and MRW3
3 we obtain fb = fτ . For the MRW2

1 at Ha = 5, the
origin of which (bifurcation point) is unknown, we assume fb = m2fω/m1 − fτ
as in the case of MRW with m2 6= m1.

4.2 Flow patterns for the MRW

Figure 6 visualises the flow patterns and the spatio-temporal symmetries for
three examples of MRW. Specifically, the nonaxisymmetric radial velocity is
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Figure 6: Contour plots of the nonaxisymmetric (m > 0) radial velocity on
spherical, colatitudinal and meridional cross-sections (from 1st to 3rd row) over
a period τ for the MRW3

1 at Ha = 3.5. The same sections for the MRW2
2

at Ha = 5 are from 4th to 6th rows. Last row correspond to the colatitude
section of the MRW2

1 lying on branch 1 at Ha = 5. The main azimuthal drift
corresponding to ω has been removed. The cross-sections at t = 0 are taken
through a maximum of vr. The position of colatitudinal and meridional cuts
are marked with a vertical line on the spherical sections which are displayed
from a 0◦ latidude point of view.
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Table 2: Rand’s classification [33] for the modulated rotating waves: the integers
m1, n and s and the frequencies fω = m1ω/2π, fM = 1/τmin, fW = s(fω/m1 +
nfM )/m1, fτ = 1/τ and fωmin

= m1ωmin/2π. The modulation period τ is that
exhibited by any scalar field, at a point inside the shell, when integrating the
system rotating at a frequency ω (i. e. removing the main azimuthal drift).
The modulation period τmin corresponds to that of any azimuthally averaged
property and that exhibited by any scalar field, at a point inside the shell, when
integrating the system rotating at a frequency ωmin. If τ = kτmin for any integer
k > 1 then ωmin = ω−2π/τ . The classification of [4] involves m1 and fω but also
m2 (the azimuthal symmetry of the Floquet multiplier) and f2 = m2fω/m1+fτ .
For the MRW2

1 at Ha = 5, (1) stands for branch 1 and (2) for branch 2.

Ha m1 n s fω fM fW fτ fωmin fb m2 f2

5.00 2 0 2 42.12 2.12 21.06 2.12 42.12 2.12 2 44.24
5.00(1) 2 1 1 42.19 4.19 12.64 2.10 38.00 19.00 1 23.89
5.00(2) 2 1 1 42.06 4.45 12.74 2.28 37.50 18.75 1 23.31
3.5 3 2 1 66.05 42.86 35.91 14.29 23.19 7.73 1 36.30
3.25 3 0 3 66.32 22.52 22.11 22.52 66.32 22.52 3 88.85
9.8 4 1 2 86.58 0.26 10.95 0.13 86.07 43.16 2 43.42

displayed at time instants t = 0, τ/4, τ/3, τ/2, 2τ/3, 3τ/4 to capture the evolu-
tion over a modulation period τ . The main azimuthal drift corresponding to ω
has been removed by integrating the system of Eq. (8). Spherical, colatitudinal
and meridional cross-sections through a relative maximum of vr provide a global
view of the flow structure. Supplementary movies displaying the time evolution
over a modulation period, in the frame rotating with the corresponding fre-
quency (Eq. (8)), are provided for the colatitudinal sections of each MRW (2nd,
4rth and 7th rows) in Fig. 6. MRW are strongly equatorially asymmetric in the
form of a radial jet near the equatorial plane as described for RW corresponding
to the radial jet instability [14]. However, for MRW fluid motions start to be
noticeable within the cylinder parallel to the rotation axis and tangent to the
inner sphere (see meridional sections). For the MRW3

1 at Ha = 3.5 the patterns
at t = 0 and t = τ/3 are the same but differ by an azimuthal rotation of 4π/3
(see colatitudinal sections). Then, τ/3 is the minimal period and the MRW is
of class (3, 2, 1) according to Rand’s description [33]. For the MRW2

2 at Ha = 5
the patterns at all time instants are different and thus τ is the minimal period
and the MRW is of class (2, 0, 2). Finally, for the MRW2

1 at Ha = 5 the patterns
at t = 0 and t = τ/2 are the same but differ by an azimuthal rotation of π.
Then, τ/2 is the minimal period and the MRW is of class (2, 1, 1).

17



F. Garcia et al. Magnetized Spherical Couette Waves

5 Dominant azimuthal mode analysis

This section is devoted to a detailed description of the main azimuthal modes
involved in four examples of MRW. They are MRW3

1 at Ha = 3.5, MRW2
2 at

Ha = 5, and two MRW2
1 on branch 1 and 2, both at Ha = 5. The later choice

makes sense as experimental data at Ha = 5 is already available [27]. For each
example of MRW we select three sets of positive azimuthal wave numbers in
its spherical harmonics expansion (Eqs. (5-6)) containing more than 96% of the
nonaxisymmetric (m > 0) kinetic energy. Apart from being the most energetic
modes, the choice of the sets is also motivated to reflect the azimuthal symmetry
of the underlying RW and that of the perturbation (Floquet mode) giving rise
to the modulation. Indeed, the MRW can then be reasonably approximated
by the sum of the three sets of modes rather than by the full expansion of
Eqs. (5-6). From a time integration of a MRW, with the main azimuthal drift
removed (i. e. integrating the system Eq. (8)), we can follow individually the
evolution of each set (the sum of their modes) over a modulation period τ . This
provides useful information about the location of maximum flow velocities for
specific azimuthal symmetries and hence is important from the experimental
point of view, as flow measurement probes in the HEDGEHOG experiment can
be located adequately to capture certain azimuthal symmetries.

For each set of modes we consider individually their equatorially symmetric
as well as antisymmetric component to study in detail the equatorial symme-
try. MRW are dominated by the antisymmetric contribution as is characteristic
for radial jet instabilities at low magnetic field [19]. Measurement probes lo-
cated symmetrically with respect to the equator help to infer the equatorially
symmetric (ES) as well as antisymmetric (EA) part of the flow in experimental
devices [27]. In addition, any measurement in the equatorial plane refers only
to the ES part of the flow (as the EA part of any field is zero at the equator).
The dominant azimuthal wave number of the ES flow ms

max may differ from the
dominant azimuthal wave number (mmax) of the total solution which, indeed is
the case for our examples. We have found ms

max = 2mmax for all the classes of
MRW. Then, the time series of a scalar field at a point (r, π/2, ϕ) (equator) will
have half the period than that at a point (r, θ, ϕ), θ 6= π/2 (off the equator),
which is verified in our simulations.

5.1 MRW3
1 at Ha = 3.5

For the MRW3
1 at Ha = 3.5 we consider three set of modes m = 1, m = 2

and m = 3k, k ∈ Z (containing all the modes which are multiples of 3).
Their kinetic energy content is Km=1/Km>0 = 0.03, Km=2/Km>0 = 0.05 and
Km=3k/Km>0 = 0.91, where Km is the time and volume averaged kinetic en-
ergy contained in each set of modes and Km>0 is the nonaxisymmetric kinetic
energy. Figure 7 displays a snapshot of the nonaxisymmetric radial velocity in
spherical, colatitudinal and meridional cross-sections similar to Fig. 6. Each
column represents the ES or EA part of each set of modes extracted from the
spherical harmonics expansion of the total flow. Supplementary movies display-
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Figure 7: Most energetic modes with m = 1, m = 2 and m = 3k k ∈ Z,
equatorially antisymmetric (EA) or symmetric modes (ES) of the MRW3

1 at
Ha = 3.5 (top 3 rows) and modes m = 2, 4, 6 of the MRW2

2 at Ha = 5 (bottom
3 rows). Cross-sections are as Fig. 6 but the spherical section point of view is
at 45◦ latitude.
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ing the time evolution over a modulation period, in the frame rotating with the
corresponding frequency (Eq. (8)), are provided for each colatitudinal section in
2nd and 5th rows of Fig. 7. We recall that the corresponding time evolution of
the nonaxisymmetric part of the flow (also provided as supplementary movie)
will be accurately approximated by the sum of the flow components shown in
Fig. 7. The inspection of the latter figure and its associated movies provide
relevant information summarised in the following (also in Table 3):

• The set m = 3k is clearly associated with the underlying RW. The EA part
(5th column of Fig. 7) of this set of modes is dominant as the maximum
radial velocity is more than twice that of the ES part (6th column of
Fig. 7). In addition, the EA part is steady as is the case of a RW. The
ES part is not azimuthally drifting, but changing its shape with a period
τ/2 associated to the modulation. The azimuthal symmetry of the EA
(m = 3) and ES (m = 6) part is different (see colatitude sections) and
thus measured velocities for the EA and ES part exhibit different periods
(differing by a factor of two).

• The set m = 1 only contains a single azimuthal wave number and is related
with the Floquet multiplier giving rise to this branch of MRW. The radial
velocity patterns (1st and 2nd columns) resemble quite well those of the
Floquet multiplier given in Fig. 7 of [14] and evidence that polar fluid
motions appear noticeable for the MRW3

1 but are very weak for the RW3
3

(compare meridional sections of 1st/2nd columns with 5th/6th columns).
The time evolution of the m = 1 EA part corresponds to a polar vortex
with a purely retrograde azimuthal rotation (i. e. the pattern remains the
same) of period τ/2 whilst in the ES case, apart from the azimuthal drift
(in the prograde way), there is a very weak change of pattern with period
τ .

• The flow patterns of the single mode set m = 2 are related with those
of the m = 1 as well as m = 3k sets because of the nonlinear coupling
between the modes. Fluid motions develop in the polar as well as the
equatorial region and the time dependence is similar to that of the m = 1
set. The EA part rotates azimuthally (retrograde) without changing shape
and is τ periodic whilst the ES part is prograde but changing shape and
the period is τ/2.

We note that for the three sets of modes the observed change of shape is very
weak or absent. From this analysis we conclude the functional form of a MRW
in the MSC system is more complicated than that given in Eq. (8) (or Eq. (12))
of [4] in the context of Taylor-Couette flow. In particular, time dependence is
not only associated to the ϕ (azimuthal) coordinate as in [4], but also to the
radial and colatitudinal coordinates as is reflected by the change of shape of
the ES part of the flow (Table 3). However, their functional form remains valid
in the case of the EA part of the flow because no shape change is observed in
the rotating frame and the patterns are only azimuthally drifting. In addition,

20



F. Garcia et al. Magnetized Spherical Couette Waves

because the EA part of the flow is larger than the ES part and the shape changes
associated with this part are quite weak (see supplementary movies), its volume
averaged properties exhibit very small modulations as reproduced in the time
series of Fig. 4(b,c).

5.2 MRW2
2 at Ha = 5

The three sets of modes for the MRW2
2 at Ha = 5 are the most energetic

nonaxisymmetric modes m = 2, m = 4 and m = 6. Their kinetic energy
ratios are Km=2/Km>0 = 0.86, Km=4/Km>0 = 0.10 and Km=6/Km>0 = 0.03.
The outcomes of the mode analysis for the MRW2

2 are presented in Fig. 7 (three
bottom rows) and Table 3 (also supplementary movies). The results are different
for the case of MRW3

1. Now the time evolution (recall Eq. (8)) for the three sets,
their ES as well as EA part, exhibit a change of the pattern while it is drifting or
steady in the azimuthal direction. The significant change of shape of the modes
results in noticeable oscillations of the volume averaged properties (see Fig. 3(b)
at Ha = 5 on the MRW2

2 branch). As for the MRW3
1 the ES and EA part of

each mode have different periods τ/2 and τ . We note that the azimuthal drift
is always prograde but develops in a nonuniform fashion and that the dominant
azimuthal wave number of the EA part of the flow is m = 2 while that of the
ES part is doubled as is the case for the MRW3

1. Although the sets of modes
(columns in Fig. 7) have the position of the maximum nonaxisymmetric radial
velocity in the equatorial region, polar fluid motions are noticeable in the ES
m = 2 as well as EA m = 4 modes (also slightly the m = 6 ES mode, see
meridional sections). The time dependence of the EA (ES) component of the
m = 4 mode is qualitatively similar to the ES (EA) component of the m = 2, 6
modes, exhibiting a stronger change of shape. This may be an indication that
these flow components are strongly correlated with the corresponding Floquet
mode giving rise to the MRW2

2 branch.

5.3 MRW2
1 at Ha = 5: branch 1 and 2

Finally, the sets for the MRW2
1 on branch 1 and 2 at Ha = 5 are the modes m =

1, m = 2k and m = 3 which have Km=1/Km>0 = 0.007, Km=2k/Km>0 = 0.94
and Km=3/Km>0 = 0.032 in the case of branch 1 and Km=1/Km>0 = 0.017,
Km=2k/Km>0 = 0.87 and Km=3/Km>0 = 0.080 for the MRW2

1 on branch 2.
The time evolution of all the sets of modes in both branches is very similar.
The patterns for each set are shown in the columns of Fig. 8 and their type of
time dependence is outlined in Table 3. As happened for the other MRW the
dominant azimuthal wave number of the EA part of the flow is m = 2 while
that of the ES part is doubled to m = 4. In addition, noticeable polar fluid
motions are present in the m = 1 mode and the m = 2k mode does not exhibit
any azimuthal drift. This gives more support for the hypothesis that MRW2

1

bifurcate from a RW branch with m = 2 azimuthal symmetry and that their
Floquet mode has azimuthal symmetry m = 1. Moreover, the most noticeable
difference between the MRW2

1 on both branches is seen in the m = 1 and m = 3
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Table 3: Summary of the time evolution (in the frame of reference rotating with
frequency ω) of each set of dominant modes for the MRW3

1 at Ha = 3.5, the
MRW2

2 at Ha = 5, and the MRW2
1 on branch 1 and 2, both at Ha = 5. In all

the modes the observed change of shape is very weak or absent and the pattern
is azimuthally rotating or fixed. In some cases (marked with *) the azimuthal
drift is nonuniform. Polar or equatorial position of the maximum of the radial
velocity of each mode is also stated. The time evolution of each mode (each row
in the table) over a period τ is displayed in the supplementary movies for the
MRW3

1 and MRW2
2.

MRW3
1 at Ha = 3.5

m Eq. Sym. max vr period drift shape change Position max vr

1 -1 0.011 τ/2 retrograde 0 Polar
1 1 0.018 τ prograde 1 (weak) Polar
2 -1 0.015 τ retrograde 0 Equatorial
2 1 0.0025 τ/2 prograde 1 Polar
3k -1 0.085 − none 0 Equatorial
3k 1 0.041 τ/2 none 1 Equatorial

MRW2
2 at Ha = 5

m Eq. Sym. max vr period drift shape change Position max vr

2 -1 0.11 τ/2 none 1 (weak) Equatorial
2 1 0.0026 τ prograde* 1 Equatorial
4 -1 0.0014 τ prograde* 1 Equatorial
4 1 0.052 τ/2 none 1 (weak) Equatorial
6 -1 0.017 τ/2 none 1 Equatorial
6 1 0.0014 τ prograde* 1 Equatorial

MRW2
1 (branch 1) at Ha = 5

m Eq. Sym. max vr period drift shape change Position max vr

1 -1 0.0048 τ prograde* 1 Equatorial
1 1 0.0089 τ retrograde* 1 (weak) Equatorial
2k -1 0.094 τ/2 none 1 Equatorial
2k 1 0.054 τ/2 none 1 Equatorial
3 -1 0.0075 τ retrograde* 1 Equatorial
3 1 0.0087 τ prograde* 1 Equatorial

MRW2
1 (branch 2) at Ha = 5

m Eq. Sym. max vr period drift shape change Position max vr

1 -1 0.0033 τ prograde* 1 Equatorial
1 1 0.017 τ retrograde* 1 (weak) Equatorial
2k -1 0.093 τ/2 none 1 Equatorial
2k 1 0.05 τ/2 none 1 Equatorial
3 -1 0.015 τ retrograde* 1 (weak) Equatorial
3 1 0.0091 τ prograde* 1 Equatorial
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Figure 8: Most energetic m = 1, 2k, 3 equatorially antisymmetric (EA) or sym-
metric modes (ES) of the MRW2

1 at Ha = 5 on branch 1 (top 3 rows) and of
the MRW2

1 on branch 2 at Ha = 5 (bottom 3 rows). Cross-sections are as Fig. 6
but the spherical section point of view is at 45◦ latitude.
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mode while the m = 2k modes behave quite similarly (ω and τ are quite similar
as well, see Table. 2). This may be an indication that both branches bifurcate
at different points of the same branch of RW with azimuthal symmetry m = 2.
To fully understand the origin of the two branches of MRW2

1 a continuation
method for MRW as in [12] must be used.

6 Summary

Modulated rotating waves (MRW) in the magnetized shperical Couette system
were computed for the radial jet instability [19] and few for the return flow [21]
instability. The former for Hartmann numbers Ha < 10 and the later very close
to Ha = 30, both for fixed Reynolds number Re = 103. These values correspond
to experimental runs of the HEDGEHOG experiment already obtained [27] and
fall in the interval where branches of rotating waves (RW) with m = 2, 3, 4-fold
azimuthal symmetry have been recently obtained [14]. MRW are obtained by
means of direct numerical simulations (DNS) from initial conditions given by the
stability (Floquet) analysis of RW performed in [14] which provides estimations
for the time scales and symmetries of bifurcated MRW. The main findings of
the present study are summarized in the following.

For the equatorially asymmetric radial jet instability (Ha ∼ 5) several types
of MRW, and even 3 frequency time dependent flows, are described and their
regions of stability determined. Several large intervals of multistability of MRW
are found. This parameter regime is a good candidate for searching MRW in
the HEDGEHOG experiment. In contrast, in case of the equatorially symmetric
return flow instability (Ha ∼ 30) MRW are very rare and their regions of stability
very narrow. Almost only rotating waves (RW) described in [14] can be found
because of the moderate value of Re. This parameter regime is then a good
candidate for searching RW in the HEDGEHOG experiment. Broader stability
intervals for MRW corresponding to the return flow instability may appear with
increasing Re as shown in [19] for the aspect ratio χ = 0.33.

From the RW with three-fold azimuthal symmetry, bifurcated from the base
axisymmetric state at Hac = 12.2, the typical Ruelle-Takens scenario, giving
rise to m = 1-fold azimuthal symmetric MRW and 3 frequency radial jet time
dependent flows, has been found by decreasing the Hartmann number. The
flows belonging to this scenario have their kinetic energy mostly contained in
themmax = 3 azimuthal wave number matching the symmetry of the parent RW.
However, these MRW do not exhibit noticeable oscillations of volume averaged
physical properties, as is commonly found [19, 13], which may lead a wrong
classification as RW if only volume-averaged properties are investigated.

We follow the theoretical studies of [33] and [4] and provide a description of
the different types of MRW found in terms of their classification. In particular,
the spatio-temporal symmetries of the MRW [33] and their connection with RW
and Floquet modes [4] are rigorously stated. The figures and supplementary
movies along a modulation period for a representative set of MRW provide an
easy visualisation of the theoretical classification.
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By investigating the evolution of the most energetic azimuthal wave numbers
in the spherical harmonics expansion of a MRW, a careful analysis of the spatio-
temporal symmetries of the different azimuthal modes (equatorially symmetric
or antisymmetric) for a selected types of MRW corresponding to the radial jet
instability is performed. The study of MRW in terms of its dominant modes
with m = 1, 2, 3-fold fixed azimuthal symmetry allows us to determine the
regions (equatorial or polar) within the shell with maximum signal (i. e. large
flow velocities) for each class of azimuthal symmetry in order to constrain the
measurement set-up in the HEDGEHOG experiment.

A characteristic difference between MRW and their corresponding parent
RW is that the onset of modulation is associated with the appearance of notice-
able flow velocities in the polar regions. A careful inspection of the equatorial
symmetry evidences that the dominant azimuthal wave number of the flow mmax

corresponds to that of the antisymmetric flow whilst it is doubled in the case of
symmetric flow. This is relevant for future runs of the HEDGEHOG experiment
as any measurement in the equatorial plane refers to the equatorially symmetric
part of the flow.

Finally, we give numerical evidence that the time evolution of a specific sin-
gle mode m, viewed in the frame azimuthally drifting with the corresponding
frequency, can not only be associated with the azimuthal coordinate as in [4],
hence a time dependence on the radial as well colatitudinal coordinates needs to
be considered. MRW with nearly constant mean properties can be accurately
approximated by nonlinear interaction of their dominant modes, which are ei-
ther almost steadily azimuthally rotating or fixed exhibiting a weak change of
the flow topology as the time dependence of their volume-averaged properties
suggests. MRW with oscillating mean properties have some dominant modes,
which are changing their pattern while also are azimuthally rotating or fixed.
For these MRW the azimuthal drift seen in some azimuthal modes takes place
in nonuniform fashion.
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