IberSPEECH 2021
24-25 March 2021, Valladolid, Spain

Self-supervised Deep Learning Approaches to Speaker Recognition:
A Ph.D. Thesis Overview

Umair Khan and Javier Hernando

TALP Research Center, Department of Signal Theory and Communications,
Universitat Politecnica de Catalunya Barcelona, Spain

{umair.khan, javier.hernando}@upc.edu

Abstract

Recent advances in Deep Learning (DL) for speaker recognition
have improved the performance but are constrained to the need
of labels for the background data, which is difficult in prac-
tice. In i-vector based speaker recognition, cosine (unsuper-
vised) and PLDA (supervised) are the basic scoring techniques,
with a big performance gap between the two. In this thesis we
tried to fill this gap without using speaker labels in several ways.
We applied Restricted Boltzmann Machine (RBM) vectors for
the tasks of speaker clustering and tracking in TV broadcast
shows. The experiments on AGORA database show that us-
ing this approach we gain a relative improvement of 12% and
11% for speaker clustering and tracking tasks, respectively. We
also applied DL techniques in order to increase the discrimina-
tive power of i-vectors in speaker verification task, for which we
have proposed the use of autoencoder in several ways, i.e., (1) as
a pre-training for a Deep Neural Network (DNN), (2) as a near-
est neighbor autoencoder for i-vectors, (3) as an average pooled
nearest neighbor autoencoder. The experiments on VoxCeleb
database show that we gain a relative improvement of 21%,
42% and 53%, using the three systems respectively. Finally we
also proposed a self-supervised end-to-end speaker verification
system. The architecture is based on a Convolutional Neural
Network (CNN), trained as a siamese network with multiple
branches. From the results we can see that our system shows
comparable performance to a supervised baseline.

Index Terms: deep learning, speaker verification, i-vector, au-
toencoder, CNN, speaker embeddings

1. Introduction

Deep Learning (DL) approaches have shown their success in
image and speech technologies which has inspired the commu-
nity to apply these approaches in speaker recognition as well
[1,2, 3]. The current DL application in speaker recognition can
be categorized as: at the frontend, like [4, 5, 6, 7, 8, 9], at the
backend, such as in [10, 11, 12], and as an end-to-end system
such as in [13, 14, 15]. The most common and the so called
speaker embeddings are typically extracted from an intermedi-
ate layer of a Deep Neural Network (DNN). The inputs to the
network are feature vectors, like the Mel-Frequency Cepstral
Coefficients (MFCC) or in some cases spectrograms. Whereas
the output of the network is fed with the class (speaker) labels
for the background data. Therefore, these DL approaches are
typically constrained to labeled background data.

The i-vector representation of speech [16], with cosine
scoring, is an unsupervised process. However, Probabilistic
Linear Discriminant Analysis (PLDA) [17] is the most efficient
backend for i-vectors which leads to a superior performance
as compared to cosine scoring but at the cost of labeled back-
ground data. However, in practice, it is difficult to access large
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amount of labeled data. In this thesis [18], we applied self-
supervised DL approaches to improve the performance without
using speaker labels. We addressed this problem in three differ-
ent ways.

As a first objective of this thesis, we applied Restricted
Boltzmann Machine (RBM) vector representation of speech for
the tasks of speaker clustering and tracking in TV broadcast
shows. Such a representation is referred to as RBM vector
which has shown success in speaker verification task in [19]. In
the second objective, we applied self-supervised DL approaches
in order to increase the discriminative power of i-vectors for
speaker verification. For this purpose we used autoencoder in
three different ways, i.e., (1) as a pre-training for a DNN, (2)
as a nearest neighbor autoencoder for i-vectors, (3) as an aver-
age pooled nearest neighbor autoencoder. In the last main ob-
jective of this thesis, we proposed a self-supervised end-to-end
speaker verification system. The network architecture is based
on a Convolutional Neural Network (CNN) which is trained as
a siamese network with multiple branches.

The rest of the paper is organized as follows. Sections 2,
3, and 4 explain the three main objectives of the thesis, respec-
tively. Section 5 describes the experimental setup and results.
Section 6 lists the publication resulted from the Ph.D. thesis and
section 7 concludes the paper.

2. RBM vectors for speaker clustering and
tracking

We have proposed RBMs at the front-end for the tasks of
speaker clustering and speaker tracking in TV broadcast shows.
RBMs are trained to transform utterances into a vector based
representation. Because of the lack of data for a test speaker, we
propose RBM adaptation to a global model. First, the speaker
independent global model, which is referred to as universal
RBM (URBM), is trained with all the available background
data. Then a speaker dependent adapted RBM model is trained
with the data of each test speaker. The visible to hidden weight
matrices of the adapted models are concatenated along with the
bias vectors and are whitened using Principal Component Anal-
ysis (PCA) to generate the vector representation of speakers.
These vectors, referred to as RBM vectors, were shown to pre-
serve speaker-specific information and are used in the tasks of
speaker clustering and speaker tracking. Figure 1 shows a vi-
sualization of the connection weights of the URBM (top) and
of two randomly selected speakers (bottom). From the figure,
it is clear that the speaker dependent adapted RBM weights are
driven in speaker-specific direction which are discriminative.

For the speaker clustering task, we extract RBM vectors us-
ing the method described above for the test speakers. All the
speaker segments that are to be clustered are represented by
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Figure 1: Comparison of URBM and adapted RBMs weights.

RBM vectors. Then we cluster these RBM vectors by apply-
ing a bottom-up Agglomerative Hierarchical Clustering (AHC)
approach using cosine and PLDA scores [20]. For the speaker
tracking task, we implement a two stage strategy. The first
stage is speaker segmentation in which the audio is segmented
according to the speaker change points [21]. In the second
stage, the segments generated are identified against all the target
speakers, in order to specify which segment belongs to which
target speaker [21, 22]. We represent all the segments and tar-
get speakers by RBM vectors. Then, the RBM vectors of all the
segments are scored against the RBM vectors of all the target
speakers using cosine and PLDA scoring.

3. Autoencoder based approaches for
speaker verification

3.1. Autoencoder as a pre-training for DNN

In this work we have proposed the use of autoencoder pre-
training for post-processing of i-vectors in speaker verification
task. The conventional architecture of an autoencoder consists
of an encoder and a decoder as shown in Figure 2 (left). The
encoder is a function that encodes the input i-vector w into a
lower dimensional space, and the decoder is a function that de-
codes it back in order to reconstruct w. In order to avoid the
need of large amount of labeled background data, we train the
autoencoder using a large amount of unlabeled data. The train-
ing is carried out by minimizing the Mean Square Error (MSE)
between the input w and the reconstructed w”. Then, we train
a DNN classifier using a relatively small labeled data. There-
fore, this is a semi-supervised DL approach. We initialize the
parameters of the DNN training with the weight matrices and
bias vectors of the pre-trained autoencoder. In this way, we
train a hybrid autoencoder-DNN classifier. After the training,
we transform i-vectors into new representation as the output
from the second last layer of the network as shown in Figure
2. The goal is to improve the performance using fewer back-
ground speaker labels. The experimental results have shown
that the proposed approach has improved the baseline system
in two aspects. Firstly, the proposed system outperforms the
baseline system in terms of EER. Secondly, we have observed
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Figure 2: (left) Autoencoder pre-training (right) DNN training.

that the hybrid autoencoder-DNN training converges faster as
compared to the one without autoencoder pre-training [23].

3.2. Nearest neighbor approach

In this work we have proposed to train an autoencoder to re-
construct neighbor i-vectors instead of the same training i-
vectors, as usual. These neighbor i-vectors are selected in an
unsupervised manner according to the highest cosine scores
to the training i-vectors. In this way the autoencoder learns
speaker variability when no labeled background data is avail-
able. The conventional training is carried out by minimizing
the loss function : M SE(w",w). We propose to train the au-
toencoder by minimizing the loss function : MSFE(w",v), as
shown in Figure 3, where v is a neighbor i-vector of w and
w” = decoder(encoder(w)). We propose an automatic selec-
tion of the neighbor i-vectors according to the Algorithm 1, as
explained in [24].

Once the autoencoder is trained with the selected neighbor
i-vectors, we transform the testing i-vectors into a new speaker
vector representation. We extract the desired speaker vectors
at the output of the autoencoder. These are referred to as au-
toencoder vectors or shortly ae-vectors. In the experiments, ae-
vectors have shown to increase the discriminative quality of i-
vectors without using speaker labels.
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Figure 3: Proposed training of the autoencoder.



Algorithm 1: Proposed neighbor i-vectors selection
algorithm for a constant &k

Input : Training i-vectors w;, 1 < i < n
Output: Neighbor i-vectors v;;, 1 < 4 < n and
1<j<k

1 for each training i-vector w; do

2 for each training i-vector wy, 1 <t < n do

3 if i # t then

4 | Compute score;,; = cosine(w;, wt)

5 end

6 end

7 Select the corresponding & i-vectors with the
highest scores as v; ;

8 end

3.3. Average pooled nearest neighbor approach

In this work we train the network using a large set of nearest
neighbor i-vectors. For every input i-vector w a set of neigh-
bor i-vectors vy, is input to the network. During the training we
minimize the loss between reconstructed © and actual training
i-vector w. The neighbor i-vectors are selected using the same
algorithm but setting a threshold after selecting the constant
k number of neighbors. The network architecture is composed
of an average pooling layer followed by four fully connected
(FC) layers. The input layer is fed by the set of neighbor i-
vectors v,. We train the network by minimizing the loss func-
tion L(0, w), where L(-) can be Cosine Distance (CD) or MSE,
w is the training i-vector and © = f (v ), where f(-) is the non-
linearity deployed by the network. During the training, the loss
L(-) is back-propagated to the network in every iteration. In
this way, the DNN is able to learn from the nearest neighbor
i-vectors and avoids using actual speaker labels. After training,
we extract speaker vectors for the testing i-vectors, which are
used in the experiments [25].

4. End-to-end system

In this work we propose self-supervised siamese networks
trained using pairwise training samples, i.e., anchor, client and
impostor. Since we do not use speaker labels, we propose to
generate the training pairs in an unsupervised manner. The
client and impostor selection is carried out in the i-vector space
using two databases, i.e., A and B. Suppose Spka and Spkg
denote the speakers appearing in database A and B, respec-
tively. We assume that the speakers in database A do not appear
in database B, i.e., Spka N Spkp = ¢.

First, all the i-vectors in A are scored among each other
using cosine scoring. For every i-vector in A we select a fix
k number of neighbor i-vectors using Algorithm 1 as client i-
vectors. After this we apply a threshold to the cosine scores.
Then we score all the i-vectors in A with those in B. For every
i-vector in A, we select k£ number of i-vectors from B that are
closest according to scores. As the speakers in A do not appear
in B, these k selected i-vectors, subjected to a threshold, are
the impostors i-vectors. In this way, every i-vector in A has been
assigned k client and k impostor i-vectors. The network has two
identical branches and is trained by minimizing binary cross-
entropy loss as shown in Figure 4. The training pairs are in the
form [anchor, client] and [anchor, impostor]. After training, we
obtain decision scores for the experimental trials at the output of
the network. We also trained a triple-branch siamese for which
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Figure 4: Block diagram of our end-to-end siamese network.

we make pairs of three samples, i.e., [anchor, client, impostor],
and is trained by minimizing triplet loss. Unlike the double-
branch siamese, we extract speaker embeddings from the triple-
branch siamese [26].

5. Experimental results

For speaker clustering and tracking experiments we used
AGORA Catalan broadcast TV3 dataset [27]. We extracted
2631 speaker segments from the test partition, according to the
transcription, for speaker clustering. 414 target speakers were
tracked during the tracking experiments. Table 1 shows the re-
sults obtained using RBM vectors compared with i-vectors. For
speaker clustering an Equal Impurity (EI) of 37.14% is obtained
with 2000 dimensional RBM vectors using cosine scoring, gain-
ing a relative improvement of 12% over i-vectors. Similarly an
EI of 31.68% is obtained with PLDA scoring which results in a
relative improvement of 11% over i-vectors. For speaker track-
ing Equal Error Rate (EER) of 3.30% and 2.74% were obtained
using 2000 dimensional RBM vector using cosine and PLDA
scoring respectively, with relative improvements of 11.76% and
7.74% over baseline.

Table 1: Speaker clustering (El) and tracking (EER) results.

Clustering EI (Cosine) EI (PLDA)
[1] i-vector (400) 46.26 36.16
[2] i-vector (800) 42.19 3591
[3] i-vector (2000) 42.83 35.89
[4] RBM vector (400) 39.66 37.36
[5] RBM vector (800) 40.02 32.36
[6] RBM vector (2000) 37.14 31.68
Tracking EER (Cosine) EER (PLDA)
[7] i-vector (800) 3.74 2.97
[8] RBM vector (2000) 3.30 2.74




Table 2: Speaker verification results using autoencoder pre-
training for DNN, in terms of EER.

Approach Scoring EER(%)
[1] i-vector Cosine 17.61
[2] i-vector PLDA 9.54
[3] only-encoder-dnn Cosine 12.73
[4] conventional-dnn Cosine 8.58
[5] full-autoencoder-dnn ~ Cosine 7.51

Table 3: Speaker verification results using nearest neighbor ap-
proach, for different values of k, using cosine scoring.

Approach k EER(%)
[1] i-vector - 17.61
[2] ae-vector 1 15.32
[3] ae-vector 2 12.36
[4] ae-vector 5 10.62
[5] ae-vector 15 10.20
Fusion of [1] & [5] - 9.82

For speaker verification we used VoxCeleb-1 [28] dataset
for the nearest neighbor and average pooled nearest neighbor
approaches, and VoxCeleb-2 [29] dataset for the autoencoder
pre-training and end-to-end systems. From the test partition of
VoxCeleb-1, 37,720 speaker verification trials were scored for
evaluation. Table 2 compares the performance of the autoen-
coder pre-training with i-vectors. From the table it is clear that
our proposed speaker vectors has outperformed the i-vector sys-
tem by a relative improvement of 21%, in terms of EER. Also,
it is shown in [23] that using the pre-training strategy the DNN
training convergence was faster than the conventional training.
Table 3 shows the results obtained using the nearest neighbor
approach for different values of k. From the table we observe
that the ae-vectors has gained a relative improvement of 42%
over i-vector/cosine. Moreover the EER of 10% is very close to
that of i-vector/PLDA (9.54%). Table 4 shows the results ob-
tained using the average pooled nearest neighbor approach for
different values of k using CD and MSE losses. We observed
that MSE loss is the best choice. Moreover our approach has
gained a relative improvement of 53% over i-vector/PLDA at
the cost of using background data in testing [25].

Table 5 shows the results obtained using the end-to-end and
triple-branch networks. From the Table we can see that as we in-
crease the value of k, the performance improves. The best EER
of 6.90% was achieved using k equal to 10. Setting the value
of k equal to 10, we have trained our triple-branch siamese net-
work using triplet loss and we extracted speaker embeddings.
The triple-branch siamese network has achieved an EER of
6.95%. A score level fusion gives an EER of 6.07% which is
very close to the supervised AMSoftmax baseline [26, 30].

6. Publications

[1] Umair Khan, Pooyan Safari, and Javier Hernando. Re-
stricted Boltzmann Machine Vectors for Speaker Cluster-
ing. In Proc. IberSPEECH, pages 10-14, 2018, (Awarded
the ISCA travel grant).

[2] Umair Khan, Pooyan Safari, and Javier Hernando. Re-
stricted boltzmann machine vectors for speaker clustering
and tracking tasks in tv broadcast shows. Applied Sciences,
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Table 4: Speaker verification results using average pooled near-
est neighbor approach with CD and MSE, using cosine scoring.

k CD Loss MSE Loss
[1710 8.81 8.70
[2] 20 6.60 6.56
[31 30 5.68 5.64
[4] 50 4.97 4.98
[5] 100 4.84 4.45
[6] 150 6.53 4.48

Table 5: Speaker verification results using end-to-end and
triple-branch siamese, in comparison to supervised baselines.

Approach k EER(%)
[1] i-vector/PLDA - 9.54
[2] Baseline (AMSoftmax) - 5.71
[3] End-to-end 2 7.81
[4] End-to-end 5 7.73
[5] End-to-end 10 6.90
[6] Triple-branch 10 6.95
Fusion of [5] & [6] 10 6.07

[3] Umair Khan and Javier Hernando. Dnn speaker embed-
dings using autoencoder pre-training. In 2019 27th Euro-
pean Signal Processing Conference (EUSIPCO), pages 1—
5. IEEE, 2019.

[4] Umair Khan, Miquel India, and Javier Hernando. Auto-
encoding nearest neighbor i-vectors for speaker verifica-
tion. Proc. Interspeech 2019, pages 4060-4064, 2019.

[5] Umair Khan, Miquel India, and Javier Hernando. i-vector
transformation using k-nearest neighbors for speaker ver-
ification. In IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), pages 7574—
7578. 1IEEE, 2020.

[6] Umair Khan and Javier Hernando. Unsupervised training
of siamese networks for speaker verification. Proc. Inter-
speech 2020, pages 3002-3006, 2020.

[71 Umair Khan and Javier Hernando. The upc speaker
verification system submitted to voxceleb speaker recog-
nition challenge 2020 (voxsrc-20). arXiv preprint
arXiv:2010.10937, 2020, (3rd prize winner of self-
supervised track).

7. Conclusions

The contributions of this thesis are presented in three main ob-
jectives. Firstly, the use of RBM vectors for speaker clustering
and tracking, which resulted in a relative improvement (RI) of
12% and 11%, respectively. Secondly, we applied DL tech-
niques to improve i-vectors for speaker verification, in several
ways. The experimental results show that we gain a RI of 21%,
42% and 53%. Finally we trained an end-to-end speaker verifi-
cation system, which showed a comparable performance to su-
pervised baseline. From the thesis we conclude that using DL
approaches, despite of being unsupervised, we could do better
in scenarios where labels are not available for the training data.
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