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Abstract—A family F of w-subsets of a finite set X is called a
set system with the identifiable parent property if for any w-subset
contained in the union of some t sets, called traitors, of F at
least one of these sets can be uniquely determined, i.e. traced.
A set system with traceability property (TSS, for short) allows to
trace at least one traitor by minimal distance decoding of the
corresponding binary code, and hence the complexity of tracing
procedure is of order O(M), where M is the number of users
or the code’s cardinality. We propose a new construction of
TSS which is based on the old Kautz-Singleton concatenated
construction with algebraic-geometry codes as the outer code
and Guruswami-Sudan decoding algorithm. The resulting codes
(set systems) have exponentially many users (codevectors) M and
polylog(M) complexity of code construction and decoding, i.e.
tracing traitors. This is the first construction of traceability set
systems with such properties.

I. INTRODUCTION

The concept of tracing traitors was introduced in [1] in the
context of broadcast encryption. The aim of a tracing traitors
scheme is to encrypt data in a way preventing its illegal
redistribution. Namely, a distributor encrypts the data blocks
with session keys and gives the authorized users personal keys
to decrypt them. In order to create unauthorized decryption
keys (decoders), some authorized users can form a group
(coalition of traitors) and based on their common knowledge
(keys/decoders) create a forged key/decoder. Assuming that
the cardinality of possible coalition is not greater than t, once
a forged key is observed, the distributor should be able to
identify at least one traitor from a malicious coalition. Such
schemes called tracing traitors schemes as in [1] or schemes
with Identifiable Parent Property (IPP schemes, for short) as
in [2]. All known such schemes are based on perfect secret
sharing schemes (SSS, for short), see [4], [5]. Namely, t-IPP
codes introduced in [2] are based on the simplest threshold
n-out-of-n SSS.

A general w-out-of-n threshold SSS [4], [5], in which
any w (or more) participants can recover the secret key k
and any set of less than w participants get no a posteriori
information about k, was used for constructing the so-called
IPP set systems. Recall, that a family F = {F1, . . . , FM} of
w-subsets of a n-set {1, ..., n} = [n] is called a t-IPP set
system if for any w-subset which belongs to the union of
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some t (or less) sets of F at least on of these sets can be
uniquely determined, see [6], [7].

Let us call a family of codes Ci of length ni and cardinality
Mi or a family of set systems Fi of Mi wi-subsets of a ni-
element set a good family if there is a constant c > 0 s.t.

Ri = n−1i logMi ≥ c

For a general t-IPP set system, the traitor tracing procedure,
i.e., finding at least one of the “involved” sets, has complexity
O(nM t). It was suggested in the original paper [1] to
construct IPP codes in which traitor tracing can be done via
minimal distance decoding for the corresponding code. This
property was called traceability. Surely IPP systems with
traceability has much smaller complexity, namely of order
O(nM). It is proved in [1] that q-ary code has traceability
property if its minimal code distance d > (1 − t−2)n, and
hence q > t2 in order to get in this way a good family of IPP
codes (an easy consequence of the Plotkin bound). For an
IPP set system, which can be considered as a constant weight
code of weight w, the analogous condition which guarantees
the traceability property is that the minimal code distance
d > 2(1− t−2)w [9].

Nevertheless even such smaller complexity is still too big
for good families of IPP codes and IPP set systems since their
cardinality grows exponentially with the length n and hence
the overall decoding complexity is very large for practical
applications. A problem of constructing a good family of IPP
codes with polynomial complexity, i.e., with the complexity
of order poly(n) = polylog(M), was affirmatively solved in
[10] and [11]. The main goal of this paper is to construct a
good family of IPP set systems with polynomial complexity.

A. Related work

We strongly believe that our work and the works in [3],
[8] are different at heart. These papers deal with collision
secure fingerprinting codes. This name was introduced in [1]
as “secret” tracing schemes and later it was coined by Boneh
and Shaw [20] under the name “collusion-secure fingerprinting
codes”. These codes have a probabilistic nature in the sense
that the identification of traitors is only performed with high
probability. Moreover, a collision secure fingerprinting code is
not a single code, but a family of codes from which a particular
code is chosen randomly and is not known to traitors.

In our present work we deal with zero error identification,
i.e. with “open” tracing traitors schemes (according to the
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language of [1]), which later became known as codes with
Identifiable Parent Property (IPP). So in this sense they are
incomparable. Moreover, set systems can be viewed as a dif-
ferent paradigm since we are not dealing with ordered vectors
as fingerprinting marks but with unordered sets. It is only our
approach that seems to make both paradigms comparable. Let
us note also that, to our knowledge, all known identification
algorithms for Tardos codes have “decoding times which are
sublinear in the total number of users”, i.e. exponential in the
code length, and our algorithms have polynomial complexity.

II. CONCATENATED CONSTRUCTION OF GOOD IPP SET
SYSTEMS WITH POLYNOMIAL COMPLEXITY BASED ON

ALGEBRAIC-GEOMETRIC CODES

We start from some definitions and previous results on IPP
set systems.

Definition 1: A family F = {F1, . . . , FM} of w-subsets of
{1, . . . , n} is called a (t, w)-traceability set system ((t, w)-
TSS) if for any coalition U ⊂ [M ], |U | ≤ t and any set S s.t.
S ⊂ ∪u∈UFu and |S| ≥ w, it holds

|S ∩ Fj | < max
u∈U
|S ∩ Fu| for all j ∈ [M ] \ U

It will be more convenient to consider instead of subsets
Fi their corresponding characteristic vectors ci, instead of a
family F = {F1, . . . , FM} the corresponding constant weight
code C = {c1, . . . , cM} of weight w and length n. We shall
say that a binary vector a = (a1, . . . , an) is covered by a
vector b = (b1, . . . , bn) and denote a ≺ b if ai ≤ bi for all i.
Then, Definition 1 can be reformulated as follows

Definition 2: A binary constant weight code C of weight w
is called a (t, w)-traceability code if for any subset U ⊂ C,
|U | ≤ t and any vector s s.t. s ≺

∨
u∈U u and wt(s) ≥ w, it

holds
d(s, c) > min

u∈U
d(s, u) for all c ∈ C \ U

We need the following statement which can be proved along
the line of analogous fact for IPP codes [1]. We prove the
following Proposition for completeness.

Proposition 1: [9] A binary constant weight code C of
weight w is a (t, w)-traceability code if for its minimal code
distance d(C) the following inequality holds

d(C) > 2(1− t−2)w (1)

Proof. Let define for two binary vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) the “intersection” function

I(a, b) = |{i : ai = bi = 1}|

Then the Hamming distance

d(a, b) = wt(a) + wt(b)− 2I(a, b),

where wt(a) = |{i : ai = 1}| is the Hamming weight of a.
Hence the equation (1) is equivalent to I(C) < t−2w, where
I(C) = maxc6=c′∈C I(c, c

′). Consider any subset (coalition)

U ⊂ C, |U | ≤ t and any vector s s.t. s ≺
∨

u∈U u and
wt(s) ≥ w. Then

∑
u∈U I(u, s) ≥ wt(s) and hence

max
u∈U

I(u, s) ≥ wt(s)

t
≥ w

t

Since s ≺
∨

u∈U u then for any c ∈ C \ U one has that
I(c, s) ≤

∑
u∈U I(u, c) < t× w/t2 = w/t.

Note, that constant weight codes satisfying (1) possess
a stronger property than the traceability property. Namely,
consider for a given vector s generated by a coalition U , i.e.,
s ≺

∨
u∈U u and wt(s) ≥ w, the following list of codewords

L(s) = {c ∈ C : I(s, c) ≥ wt−1}

Then it follows from the proof that the list is nonempty and
belongs to U .

A. KS-EZ construction

To construct a family of good (t, w)-traceability codes
with polynomial complexity of encoding and decoding
(tracing traitors) procedures we employ the same idea as in
Ericson and Zinoviev paper [12] where constant weight codes
asymptotically better than the corresponding GV-bound were
constructed based on algebraic-geometry codes [13] as outer
codes and the old concatenation construction of Kautz and
Singleton paper [14].

Consider a Q = q2 = p2m-ary one-point algebraic-
geometry (AG) code W , see [15], of length N , dimension
K, code rate R = K/N and the minimal code distance

D = N(1−R− (q − 1)−1 + o(1)) (2)

We choose the following binary code C of length Q and
cardinality Q, which consists of codevectors a1, . . . , aQ each
of the Hamming weight 1, where the vector ai has the only
one in the i-th coordinate and other coordinates equal to zero.
Let us denote the elements of the finite field GF (Q) =
{α1, . . . , αQ}. Now, construct the concatenated code V by
replacing coordinates of a code vector of AG code on the
corresponding binary code vectors of the code C. The resulting
binary code V has the following parameters: length n = NQ,
distance d(V ) = 2D, cardinality M = QK and hence its rate
is

R(V ) = n−1 log2M = R
log2Q

Q

Moreover, the code V is a constant weight code of weight
w = N .

Theorem 1: For any rate

R ≤ R(t) = 1 + log2 t

8(t3 + t)2
(3)

there exists a family of good (t, w)-traceability codes of rate
at least R.

Proof. By (2) and Proposition 1 the code V is a (t, w)-
traceability code for all enough large N if

1−R− (q − 1)−1 > 1− t−2 (4)
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Let R = 1
2t2 and q be the minimal prime number or power of

prime s.t. q ≥ 2t2 + 2. Then

1−R−(q−1)−1 ≥ 1−( 1

2t2
+

1

2t2 + 1
) = 1−t−2+ 1

2t2(2t2 + 1)

and hence the inequality (4) holds for all N such that o(1)
in (2) is smaller than (2t2(2t2 + 1))−1. Now, let us estimate
the rate R(V ) of the code V . By Bertrand’s postulate q <
2(2t2 + 1), and, hence, q < 4(t2 + 1). Therefore

R(V ) = R
log2Q

Q
=

1

2t2
log2 q

2

q2
>

2 + log2(t
2 + 1)

16(t3 + t)2
> R(t)

B. Decoding (tracing) for KS-EZ construction

In this subsection we design tracing (decoding) algorithms
with decoding complexity polynomial in the code length for
the above constructed asymptotically good (t, w)-traceability
codes. Traditional decoding algorithms realizing bounded dis-
tance decoding of a concatenated code, like Forney’s algorithm
[16], do not fit as we need to correct the number of errors much
higher than the half of the code distance (moreover, we need
to correct the number of errors bigger than half of the code
length). This takes us to the concept of list decoding [17],
[19]. Instead of trying to deliver a single codeword, a list
decoder outputs a list of all codewords within distance larger
than half of the code distance of the received word, thus
offering a potential way to recover from errors beyond the
error correction bound of the code.

In hard-decision decoding the decoder estimates the sent
codeword symbols from the received word symbols. On the
other hand, soft-decision decoding applies to the cases where
the decoding process takes advantage of “side information”
generated by the receiver and instead of using the received
word symbols, the decoder uses probabilistic reliability infor-
mation about these received symbols.

Hard decision and soft decision list decoding algorithms
for AG codes are given in [17], [19]. The idea of the hard
decision decoding algorithm is to interpolate and find a bi-
variate polynomial. The factorization this polynomial gives the
estimated sent codewords. In the soft decision decoding case
the polynomial is forced to pass through i different points a
different number of ri times, where this ri is related to the
soft information gien by the decoder. See equation (5) below.

We shall use Guruswami-Sudan list decoding algorithm [17]
in a way somewhat similar as it was employed in [18] for the
family of good digital fingerprinting codes, see also [11] where
an analogous tracing algorithm was proposed for IPP codes.
Recall that for arbitrary non-negative integer “weights” rij
assigned to symbols of GF (Q) the Guruswami-Sudan (GS)
list soft-decoding algorithm [17], [19] returns all codewords
w ∈W that satisfy the following inequality

r(w) :=

N∑
i=1

ri,wi
≥

√
(N −D)

∑
i,j

r2ij , (5)

Let U ⊂ V be a coalition of at most t users and let UQ =
{u = (uQ1 , . . . , u

Q
N} ⊂ W be the corresponding set of Q-ary

vectors. Denote by UQ
i = {uQi : uQ ∈ UQ} the i-th projection

of the set UQ.
Consider a binary vector

s = (s11, . . . , s1Q, s21, . . . , s2Q, . . . , sN1, . . . , sNQ)

generated by a coalition U , i.e., s ≺
∨

u∈U u and wt(s) =
w′ ≥ w.
Substitute to each subblock s(i) = (si1, . . . , siQ) the corre-
sponding set Hi = {αj : j ∈ supp(s(i))} ⊂ UQ

i ⊂ GF (Q).
Let us define ri,j := 1 if αj ∈ Hi and zero otherwise. Then

r(w) :=

N∑
i=1

ri,wi = |{i : wi ∈ Hi}| ≤ |{i : wi ∈ UQ
i }|

since Hi ⊂ UQ
i . For the choosen values of R = (2t2)−1 and

Q the minimal code distance D of the outer code W is at
least N(1− t−2) for enough large N . Then, on the one hand,
for any w /∈ U

r(w) ≤
∑
u∈U
|{i : wi = ui}| < t×N/t2 = N/t (6)

On the other hand,∑
u∈U

r(u) ≥
N∑
i=1

|Hi| = wt(s) = w′ = λN, (7)

where 1 ≤ λ ≤ t, and hence

max
u∈U

r(u) ≥ t−1Nλ

It follows from (5) that the GS decoding algorithm outputs the
following list

L = {w ∈W : r(w) ≥ t−1N
√
λ},

which does not contain any w /∈ U , see (6), i.e., L ⊂ U , and
L is non empty because of (7).

Remark: Our contribution presents a “structured” model
of set systems just so we can apply well established ideas
of coding theory in the decoding process, in particular list
decoding techniques. In [21] hard decision list decoding is
used as the underlying routine in the tracing process.

In our case we have to deal with a concatenated construction
that demands to use soft-decision list decoding with the
challenge of having to assign the appropriate weights to each
symbol so as to be able to discern between guilty and innocent
users.

III. EXAMPLES

Consider KS-EZ construction for small t.
For t = 2 consider an AG-code W over GF (64), i.e., q = 8,
and with rate R < 1

4 −
1
7 = 3

28 . Then according to (2) and
Proposition 1 the corresponding concatenated code C is a
2-traceability code with total rate R(C) = R log2 64

64 . Hence
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for any rate R < 3
28

6
64 = 0.010... there exists a family

of 2-traceability codes with rate R and a tracing algorithm
of polynomial complexity. For comparison the best known
2-traceability codes have rate 0.018 [9] but their tracing
complexity is exponential in the code length.

For t = 3 consider an AG-code W over GF (256), i.e.,
q = 16, and with rate R < 1

9 −
1
15 = 2

45 . Then according
to (2) and Proposition 1 the corresponding concatenated code
C is a 3-traceability code with total rate R(C) = R log2 256

256 .
Hence for any rate R < 2

45
1
32 ≈ 0.0014 there exists a family

of 3-traceability codes with rate R and tracing algorithm
of polynomial complexity. For comparison the best known
3-traceability codes have rate 0.003 [9] but their tracing
complexity is exponential in the code length.

IV. CONCLUSION

For the first time, for any fixed number t of traitors, we
constructed tracing traitor schemes of set systems type with
non-vanishing rate and polynomial complexity in the tracing
process. One more advantage of such schemes is that they are
binary as opposed to IPP-codes that have to be nonbinary [2].
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