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Abstract: We consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic
Beam equations on T2 and we prove the existence of different types of solutions which
exchange energy between Fourier modes in certain time scales. This exchange can be
considered “chaotic-like” since either the choice of activated modes or the time spent in
each transfer can be chosen randomly. The key point of the construction of those orbits is
the existence of heteroclinic connections between invariant objects and the construction
of symbolic dynamics (a Smale horseshoe) for the Birkhoff Normal Form truncation of
those equations.
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1. Introduction

A fundamental question in nonlinear Hamiltonian Partial Differential Equations (PDEs)
on compact manifolds is to understand how solutions can exchange energy among
Fourier modes as time evolves. A way to capture such behaviors is to analyze the invari-
ant objects of the equation (or a “good approximation of it”), such as periodic orbits or
invariant tori, and to understand how they structure the global dynamics through their
stable and unstablemanifolds and their possible intersections. This “dynamical systems”
approach works very well, for instance, for PDEs on the torusTn . Such equations can be
seen as infinite dimensional systems of ODEs for the Fourier coefficients and classical
perturbative arguments can be adapted to the infinite dimensional context for the analysis
of stability and instability phenomena. This approach has been classically applied to the
analysis of stable motions, that is KAM Theory (the literature is huge, we refer to [4]
for an overview on the subject and to the reference therein). However, its application to
exchange of energy phenomena is much more recent.

In the last decade there has been a lot of activity in building exchange of energy be-
haviors in different Hamiltonian PDEs almost exclusively for the nonlinear Schrödinger
equation. They can be classified into two groups. The first one are the so-called beating
solutions [19–21,28,29,42]. Those are orbits that are essentially supported on a finite
numbers of modes and whose energy oscillates between those modes in a certain time
range.

The other group are those addressing the problem of Sobolev norm explosion. That
is, constructing orbits whose energy is transferred to increasingly higher modes as time
evolves [6,8,9,16,17,22–27,31,32,35,38,39]. Those are solutions whose dynamics is
essentially supported in a large number of modes and it is related to weak turbulence.
J. Bourgain considered this problem one of the key questions in Hamiltonian PDEs for
the XXI century [7].
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Most of these results rely on analyzing certain truncations of the Hamiltonian PDEs
(its first order Birkhoff normal form truncation) and building invariant objects for such
models. Note that these first order Birkhoff normal forms are typically non-integrable
Hamiltonian systems (at least in dimension greater or equal than 2)with very complicated
dynamics. Nevertheless, restricted to suitably chosen invariant subspaces those models
are integrable (they have “enough” first integrals in involution), and therefore one can
have a very precise knowledge of their orbits in such invariant subspaces. Most of the
results cited above strongly rely on this integrability on subspaces to construct unstable
motions and exchange of energy solutions. This is somewhat surprising from the point
of view of (finite dimensional) dynamical systems where usually unstable motions and
drifting orbits must rely on non-integrability and transverse homoclinic orbits.

Can one take advantage of the non-integrability and chaoticity of a normal form trun-
cation to construct new types of beating solutions? Can one exploit this chaoticity/non-
integrability to build new type of dynamics in Hamiltonian PDEs? This is the goal of
this paper. We consider three different PDEs, a nonlinear Wave equation, a nonlinear
Beam equation and the Hartree equation (see (1.1), (1.2) and (1.10) below) and we are
able to show the non-integrability and chaoticity (symbolic dynamics) of its Birkhoff
normal form. This allows us to obtain different types of exchange of energy behaviors
for the actual PDEs in some time scales. In particular,

• Solutions which exchange energy in a chaotic-like way between a given set of
modes. By chaotic-like we refer to orbits which oscillate between being supported
in two different sets of modes and the “oscillation times” can be chosen “randomly”,
see Theorem 1.3 below for the precise statement.
• Chaotic-like transfer of energy phenomenon: those orbits are essentially supported
in a finite number of modes and the support is changing as follows. At each transition
two modes get deactivated (their modulus becomes essentially constant) and we can
choose randomlywhich new twomodes are activated (theirmodulus starts oscillating)
among certain set. See Theorem 1.4 below for the precise statement.

These results provide different types of beating solutionswhich are significantly different
from the previous results [19,20,29]. The beating solutions in these papers exchange
energy periodically in time and they rely on integrability and existence of action-angle
variables.On the contrary, in the present paper the oscillations can be “randomly” chosen:
in the first one with respect to the time and in the second one with respect to the choice
of activated modes.

Our second result leads to transfer of energy. However, the transfer does not involve
arbitrarily high modes and therefore does not lead to explosion of Sobolev norms. The
methods in [8] for the construction of solutions exhibiting growth of the norms seem to
fit very well for the NLS model [22–27]. Nevertheless, it is not clear how to apply it to
other PDEs. We think that the present work could represent a first step to strengthen the
strategy in [8] so that is applicable to other PDEs by incorporating tools andmechanisms
inspired by the theory of Arnold diffusion. In Sect. 1.2 we relate our results to the
approach developed in [8].

The key point to obtain the results in this paper is to consider certain first order
truncations of the PDEs which can be treated as nearly integrable Hamiltonian sys-
tems. Then, one can apply classical methods in dynamical systems such as Melnikov
Theory, shadowing arguments (Lambda lemma), hyperbolic invariant sets and symbolic
dynamics.
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1.1. Main results. Consider the completely resonant cubic nonlinear Wave equation on
the 2-dimensional torus

utt −�u + u3 = 0 u = u(t, x), t ∈ R, x ∈ T
2 (1.1)

and the cubic nonlinear Beam equation

utt +�2u + u3 = 0 u = u(t, x), t ∈ R, x ∈ T
2. (1.2)

We prove the existence of special beating solutions for such PDEs, namely solutions
that exhibit transfer of energy between Fourier modes. Such solutions u(t, x) are mainly
Fourier supported on a finite set of 4-tuples of resonant modes

� := {n(r)j }r=1,...,N
j=1,...,4 ⊂ Z

2, (1.3)

with N ≥ 2, in the sense that

u(t, x) =
∑

j∈�
a j (t) e

i j ·x + R(t, x)

where R(t, x) is small in some Sobolev norm. The transfers of energy between modes
in � are chaotic-like, in the following sense. Either

(a) one can prescribe a finite sequence of times t1, . . . , tn and find a solution that exists
for long but finite time exhibiting transfers of energy among the modes in � at the
prescribed times t1, . . . , tn

or

(b) one can prescribe a sequence of resonant tuples {n(rn)j }n=1,...,k
j=1,...,4 ⊆ � and find a

solution and a sequence of times t1, . . . , tk such that at time zero many modes are
“switched off” (modulus of the modes almost constant) and at times tn the modes
(n(rn)1 , n(rn)2 , n(rn)3 , n(rn)4 ) are “switched on”, in the sense that they start to exchange
between them.

Those phenomena are consequence of the presence of (partially) hyperbolic, finite di-
mensional manifolds which are approximately invariant for the Eqs. (1.1), (1.2) and
possess stable and unstable invariant manifolds that intersect transversally within some
energy level.

We look for beating solutions in the subspace of functions Fourier supported on

Z
2
odd :=

{
( j (1), j (2)) ∈ Z

2 : j (1) odd , j (2) even
}
, (1.4)

which is invariant under the flow of the Eqs. (1.1), (1.2) (see [40]). We restrict the
equations to this subspace so that the origin becomes an elliptic fixed point and the
variational equation are

ü j + λ2j u j = 0 j ∈ Z
2
odd (1.5)

where λ j = | j | [for the Wave Eq. (1.1)] and λ j = | j |2 [for the Beam Eq. (1.2)]. Note
that, if one does not restrict to Z

2
odd, one has to deal with the harmonic 0 which is not

elliptic.
Restricted to Z

2
odd, the variational equations (1.5) are superposition of decoupled

harmonic oscillators, hence all solutions are periodic/quasi-periodic/almost-periodic in
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time and there is no transfer of energy between the linear modes when time evolves.
This implies that the existence of beating solutions (if any) depend on the presence
of the nonlinearities. To catch the nonlinear effects in a neighborhood of an elliptic
equilibrium we perform a Birkhoff normal form analysis. Namely we construct changes
of coordinates1 that transform the Hamiltonian of the Eqs. (1.1), (1.2) into a Hamiltonian
of the form

K = K (2) + K (4) +R, (1.6)

where K (i) are homogenous terms of degree i andR is a function that can be considered
as a small perturbation. Then, one can consider the truncated system

N := K (2) + K (4), (1.7)

called normal form [see (3.7) below for the explicit formulas], as amodelwhich describes
the effective dynamics of Eqs. (1.1), (1.2) for a certain range of times.

The normal form Hamiltonian N possesses many finite-dimensional, symplectic,
invariant subspaces of the form V� := {u j = 0 ∀ j /∈ �}, where � ⊂ Z

2
odd is a finite

set. We shall prove the following.

Theorem 1.1. Let N ≥ 2. There exist sets2 � ⊂ Z
2
odd of cardinality 4N such that V� is

invariant by the dynamics of N and the following holds.

(i) Let N = 2. Then, the flow �t associated to N in V� has the following property.
There exists a section � transverse to the flow �t such that the induced Poincaré
map

P : U = Ů ⊂ � → �

has an invariant set X ⊂ U which is homeomorphic to � × T
5 where � = N

Z is
the set of sequences of natural numbers. Moreover, the dynamics of P : X → X is
topologically conjugated to the following dynamics

P̃ : � × T
5 → � × T

5, P̃(ω, θ) = (σω, θ + f (ω))

where σ is the usual shift (σω)k = ωk+1 and f : � → R
5 is a continuous function.

Namely P has a Smale horseshoe of infinite symbols as a factor.
(ii) There exist N partially hyperbolic 2(N + 1)-dimensional tori T1, . . . ,TN invariant

for the restriction of the normal form Hamiltonian N at the subspace V� which
have the following property. Take arbitrarily small neighborhoods Vi of Ti and any
sequence {pi }i≥1 ⊂ N

N. Then, there exists an orbit u(t) and a sequence of times
{ti }i≥1 such that

u(ti ) ∈ Vpi .

1 It is well known that the existence of such changes of coordinates cannot be always guaranteed because
of the presence of small divisor problems and / or derivatives in the nonlinear terms. At this stage, one can
consider the normal form truncation as a formal “good first order” of the full equation. To show that is truly a
good first order in the regions of the phase space that we consider, we adopt the strategy of performing a weak
version of the Birkhoff normal form which does not remove all the non-resonant terms but a finite number of
them.

2 Actually there exist “many sets” with such properties. See Remark 1.2 below.
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Fig. 1. Invariant tori with their stable (green) and unstable (red) invariant manifolds. This transition chain of
tori (plus the Lambda lemma) gives the orbits of Item (ii) of Theorem 1.1 which visit the invariant tori with
any prescribed orbit

Remark 1.2. The set� ⊂ Z
2 is the union of N resonant tuples (with certain properties).

The “shape” of the resonant tuples inZ2 are different for the Beam andWave Equations.
For the Beam equation, as for the cubic nonlinear Schrödinger equation, are rectangles
with vertices in Z2. For theWave equation are modes n1, n2, n3, n4 ∈ Z

2, which satisfy

n1 − n2 + n3 − n4 = 0, |n1| − |n2| + |n3| − |n4| = 0.

Those tuples form a parallelogram inscribed on an ellipse with foci at F1 = 0 and
F2 = n1 + n2 and semi-major axis a = (|n1| + |n2|)/2.

Let us explain in which sense there are many sets � ⊂ Z
2 for which Theorem 1.1

(and also Theorems 1.3 and 1.4 below) are satisfied. Theorem 1.1 relies on proving the
transverse intersection of certain invariant manifolds. This transversality is proven by
perturbativemethods and, therefore, we needN |� to be close to integrable. For theWave
(1.1) and Beam (1.2) equations this relies on choosing appropriate sets �. The precise
statement goes as follows. Fix ε > 0 (which will measure the closeness to integrability).
Then, for any R � 1, one can choose the resonant tuples in the set� generically in the
annulus

R(1− ε) ≤ |n| ≤ R(1 + ε).

Generically means that one has to exclude the zero set of a finite number of algebraic
varieties (and the number of those is independent of ε and R).

The items (a) and (b) above are consequences respectively of items (i) and (ii) in
Theorem 1.1. Let us make some remark on the type of dynamics for the normal form
Hamiltonian N .

• Item (i) of Theorem 1.1 gives the existence of invariant sets for the Birkhoff normal
form truncation which possess chaotic dynamics. Such chaotic dynamics is obtained
through the classical Smale horseshoe dynamics for a suitable Poincaré map. This
invariant set is constructed in the neighborhood of homoclinic points to an invariant
tori orbit (which becomes a periodic orbit for a suitable symplectic reduction). The
(infinite) symbols codify the closeness to the invariant manifolds of the periodic orbit,
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and therefore the larger the symbol is the longer the return time to the section � is.
In particular, one can construct orbits which take longer and longer time to return�

for higher iterates.
Even if the theorem, as stated, gives the existence of one invariant set, one actually
can construct a Smale horseshoe at each energy level.
• Item (ii) of Theorem 1.1 gives orbits which visit (possibly infinitely many times)
a given set of invariant tori in any prescribed order. The construction of such orbits
follows the classical strategy of Arnold Diffusion [1]. That is, is a consequence of
the existence of a chain of invariant tori (again periodic orbits in a suitable symplec-
tic reduction) connected by transverse heteroclinic connections (see Fig. 1) plus a
classical shadowing argument (Lambda lemma, see for instance [14]).
This is radically different from the approach in [8,24]. In these papers, the authors
consider the normal form associated to the nonlinear cubic Schrödinger equation.
This normal form has “extra integrability”, due to the symmetries of the model,
and the considered heteroclinic orbits are not transverse. Therefore, the associated
shadowing arguments are more delicate. We refer to [10] for a thorough analysis of
non-transverse shadowing arguments. In particular, the authors of this paper show
that the number of dimensions needed for the shadowing depend on the number of
tori the orbits have to visit (what they called the dropping the dimensionmechanism).
As for item (i) one can obtain the explained behavior at each energy level. Indeed,
the invariant tori come in families parameterized by the energy level and therefore
one can obtain this shadowing behavior at each energy level as well.

Note that the knowledge of the orbits obtained in Theorem 1.1 is for all time. If one
adds the errors dropped from the original equation, that isR in (1.6), one can obtain orbits
for equations (1.1), (1.2) which follow the orbits of Theorem 1.1 for some time scales.
Next theorem gives solutions of Eqs. (1.1) and (1.2) which (approximately) behave as
those obtained in Item (i) of Theorem 1.1.

Theorem 1.3. Fix 0 < ε 
 1. Then for a large choice of sets � = {ni }8i=1 ⊂ Z
2 as in

(1.3) there exists T0 � 1 such that for all T ≥ T0 there exists M0 > 0 such that for all
M ≥ M0 there exists δ0 = δ0(M, ε,T) > 0 such that ∀δ ∈ (0, δ0) the following holds.

Choose any k ≥ 1 and any sequence {m j }kj=1 such that m j ≥ M0 and3
∑k

j=1m j ≤
M−k. Then, there exists a solution u(t, x) of (1.1), (1.2) for t ∈ [0, δ−2MT] of the form

u(t, x) = δ√
2

8∑

i=1

|ni |−κ/2
(
ani (t) e

ini ·x + ani (t) e
−ini ·x

)
+ R1(t, x)

where κ = 1 for the Wave equation (1.1) and κ = 2 for the Beam equation (1.2), and
supt∈[0,δ−2MT]‖R1‖Hs (T2) �s δ

3/2 for all s ≥ 0. The first order {ani }i=1...8 satisfies

|an1(t)|2 = |an3(t)|2 = 1− |an2(t)|2 = 1− |an4(t)|2,
|an5(t)|2 = |an7(t)|2 = 1− |an6(t)|2 = 1− |an8(t)|2,

and has the following behavior.

3 The condition
∑k

j=1 m j ≤ M − k is just to ensure that the sequence {t j }kj=1 defined below belongs to

the interval [0, δ−2MT].
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• First resonant tuple (Periodic transfer of energy): There exists a T-periodic func-
tion Q(t), independent of δ and satisfying min[0,T] Q(t) < ε and max[0,T] |Q(t)| >
1− ε, such that

|an1(t)|2 = Q(δ2t) + R2(t) with sup
t∈R

|R2(t)| ≤ ε.

• Second resonant tuple (Chaotic-like transfer of energy): There exists a sequence
of times {t j }kj=0 satisfying t0 = 0 and

t j+1 = t j + δ−2T
(
m j + θ j

)
with θ j ∈ (0, 1)

such that

|an5(t j )|2 =
1

2
.

Moreover, there exists another sequence {t̄ j } j=1...k satisfying t j < t̄ j < t j+1 such
that,

|an5(t)|2 >
1

2
for t ∈ (t j , t̄ j )

|an5(t)|2 <
1

2
for t ∈ (t̄ j , t j+1)

(1.8)

and

sup
t∈(t j ,t̄ j )

|an5(t)|2 ≥ 1− ε and inf
t∈(t̄ j ,t j+1)

|an5(t)|2 ≤ ε. (1.9)

Note that the first order {δani }i=1...8 are the trajectories obtained in Theorem 1.1-(i)
which belong to the horseshoe. This phenomenon is genuinely nonlinear since for the
linear equation the actions |ani (t)|2 = constant.

Thefirst resonant tuple has a periodic beatingbehavior similar to [20].On the contrary,
the behavior of the second resonant tuple is radically different. Themodulus of themodes
ani , i = 5, 6, 7, 8 “oscillate” from being O(ε) to being O(ε)-close to 1 (see Fig. 2).
However, the sequence of times {t j } in which all the modes in the tuple have the same
modulus, that is

|an5(t j )|2 = |an6(t j )|2 = |an7(t j )|2 = |an8(t j )|2 =
1

2
,

(and the modulus of an5 and an7 is increasing) can be chosen randomly as any (large
enough) integer multiple of T.

Finally, let us explain the role of the constant T in the theorem. To build the horseshoe
in Theorem 1.1, we apply a symplectic reduction to N |� [see (1.7)] which leads to a 2
degree of freedom Hamiltonian. For this Hamiltonian we construct a periodic orbit with
transverse invariant homoclinic orbits. The time T is the period of this periodic orbit and
can be taken arbitrarily big.

Now we state the second main result of this paper, which gives solutions of Eqs. 1.1
and 1.2 which (approximately) behave as those obtained in Item (ii) of Theorem 1.1.
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Fig. 2. An example of the evolution of the energy |an5 (t)|2 as time evolves. The energy is a multi-bump like
function. It assumes the value 1/2 at the “random” times t = t j and also at t = t̄ j . The randomness in the
t j ’s prescribes the separation of the bumps. The larger is the increment t j+1 − t j , the more separated are
the corresponding bumps. This shows that one can obtain very complicated energy transfer behaviors for the
second resonant tuple

Theorem 1.4. Let N ≥ 2, k � 1, 0 < ε 
 1. Then for a large choice of a set
� := {n(r)j }r=1,...,N

j=1,...,4 ⊂ Z
2 as in (1.3) there exist δ0 > 0, T > 0, such that for any

δ ∈ (0, δ0) and any sequence ω = (ω1, . . . , ωk), ωi ∈ {1, . . . , N }, there exists a
solution u(t, x) of the (1.1), (1.2) of the form

u(t, x) = δ√
2

∑

n∈�
|n|−κ/2

(
an(t) e

in·x + an(t) e
−in·x) + R3(t, x) t ∈ [0, δ−2T ]

where κ = 1 for the Wave Eq. (1.1) and κ = 2 for the Beam Eq. (1.2), supt∈[0,δ−2T ] ‖R3

(t, x)‖Hs (T2) �s δ3/2 for all s ≥ 0, and the first order {an}n∈�, has the following
behavior:

There exist some αp, βp satisfying

αp < βp < αp+1 and βp − αp � | ln ε|, p = 1, . . . , k

such that, if one splits the time interval as [0, δ−2T ] = I1∪J1,2∪I2∪J2,3∪· · ·∪Jk−1,k∪Ik
with

Ip = [δ−2αp, δ
−2βp], Jp,p+1 = [δ−2βp, δ

−2αp+1],
such that {an}n∈� satisfies:

• In the beating-time intervals Ip, there exists tp > 0 such that

sup
t∈Ip

∣∣∣|a
n
(ωp )
1

(t)|2 − Q(δ2t − tp)
∣∣∣ ≤ ε

sup
t∈Ii

|a
n(r)1

(t)|2 ≤ ε for r = 1, . . . , N , r �= ωp,

where Q(t) is the periodic function given by Theorem 1.3.
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• In the transition-time intervals Jp,p+1,

sup
t∈Jp,p+1

|a
n(r)1

(t)|2 ≥ 1− ε for r = 1, . . . , N

and |a
n(r)1

(t)|2 = |a
n(r)3

(t)|2 , |a
n(r)j

(t)|2 = 1−|a
n(r)1

(t)|2with j = 2, 4andr = 1, . . . , N.

The solutions obtained in this theoremare approximations of those obtained in Item (ii) of
Theorem 1.1 and possess two different regimes. The orbits of Theorem 1.1 are obtained
by shadowing a sequence of invariant tori (periodic orbits for a suitable symplectic
reduction) connected by transverse heteroclinic orbits. Then, what we call beating-time
intervals are the time intervals where the orbit is in a small neighborhood of each of
the periodic orbits. In this regime, (the moduli of) some modes oscillate periodically,
whereas the others are at rest. The transition-time intervals correspond to time intervals
in which the orbit is “traveling” along a heteroclinic orbit and is “far” from all periodic
orbits. In this regime, all modes undergo a drastic change to drift along the heteroclinic
connection (see Fig. 3).
Hartree equation. Similar results hold true also for the Hartree equation

iut = �u + (V � |u|2) u u = u(t, x), t ∈ R, x ∈ T
2 (1.10)

with a convolution potential V (x) =∑ j∈Z2 Vj ei j ·x such that

V : T2 → R, V (x) = V (−x) (1.11)

and assuming the following hypothesis. Once fixed the set � ⊂ Z
2, the Fourier coeffi-

cients Vj of the potential with j = n1 − n2 for some n1, n2 ∈ � satisfy

Vj = 1 + εγ j with ε 
 1. (1.12)

Assume that the coefficients γ j satisfy a non-degeneracy condition which is of codi-
mension 1 and take ε small enough. Then, the Hartree equation has solutions of the
form

u(t, x) = δ
∑

n∈�
an(t) e

in·x + R(t, x)

where the first order {an} and the remainder R satisfy the statements given either in
Theorem 1.3 (where R � R3) or 1.4 (where R � R4) .

Since the obtaining of such behaviors for the Hartree equation is the same as forWave
and Beam equations, in Sects. 3–7 we prove the results together for the three equations.
Comments to Theorems 1.3, 1.4

• Smale Horseshoes in PDEs: Theorem 1.1 provides a Smale Horseshoe for the
Birkhoff normal form. This invariant set is partially hyperbolic and partially elliptic
if considered in the whole infinite dimensional phase space. This is the reason why,
a priori, this invariant set is not persistent for the full Eqs. 1.1, 1.2, 1.10. As far as
the authors know, the existence of Smale horseshoes in Hamiltonian PDEs has been
mostly obtained by adding dissipation to the equation which make these sets become
fully hyperbolic [3,5,13,30,33].
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Fig. 3. An example of the evolution of |a( j)n1 (t)|2, j = 1, 2, 3 of a solution obtained by Theorem 1.4 as time
evolves. We consider N = 3 and the sequence of modes which are “activated” is ω = {1, 3, 2, 3, 1, 2 . . .}
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• Beating partially hyperbolic quasiperiodic tori: The Smale horseshoe obtained
in Theorem 1.1 possesses a dense set of periodic orbits. Even if the horseshoemay not
persist for the Eqs. 1.1, 1.2, 1.10, KAM Theory should give the persistence of these
periodic orbits. In [28], the authors prove the existence of beating KAM Tori. The
tori in [28] are elliptic whereas those coming from the horseshoe would be partially
elliptic and partially hyperbolic.
• Non-integrability of N |� in (1.7): Theorem 1.1 (and therefore Theorems 1.3
and 1.4) relies on the fact that N |� is not integrable and admits invariant tori with
transverse homoclinic orbits. On the other hand, the Birkhoff normal form truncation
associated to the cubic Nonlinear Schrödinger equation

iut = �u − |u|2u, x ∈ T
2 (1.13)

is such thatN |� is integrable. Therefore, the invariant manifolds of the invariant tori
coincide and one cannot construct the orbits given in Theorems 1.3 and 1.4 for this
equation (at least not with the tools used in the present paper).
• Unbounded nonlinearities and higher dimensions: The PDEs analyzed in this
paper are semilinear PDEs, namely they have bounded nonlinearities, on the two
dimensional torus. However we expect that our results could be extended (with op-
portune modifications) to models with unbounded nonlinearities and to higher di-
mensional tori. Usually the unboundedness of the nonlinearity creates problems with
the convergence of the normal form transformations. The same issue can arise if one
increases the dimension of the spatial domain due to the possible loss of derivatives
coming from the small divisors. The reduction to the resonant modelN |� is obtained
by means of a weak version of the Birkhoff normal form procedure, that is not af-
fected by the aforementioned problems of convergence. This method is described in
Sect. 3 and it is well established in the KAM theory for quasi-linear PDEs (see for
instance [2,12]).
• Defocusing and Focusing equations: To simplify the exposition, the theorems
above only refer to the defocusing Eqs. (1.1) and (1.2). However, it can be checked
that the sign of the nonlinearity does not play any role and therefore, Theorems 1.1, 1.3
and 1.4 also apply to the focusing equations

utt −�u − u3 = 0, utt +�2u − u3 = 0.

1.2. Transfer of energy and growth of Sobolev norms. The solutions of the Wave equa-
tion (1.1)/Beam equation (1.2)/Hartree equation (1.10) obtained in Theorem 1.4 undergo
certain transfer of energy between modes. Unfortunately, such transfer of energy does
not lead to growth of Sobolev norms [7,8,24].

We would like to devote this section to relate our results to that of [8]. In [8], the
authors obtain orbits undergoing growth of Sobolev norms for the defocusing nonlinear
Schrödinger equation on T2. One of the key points of their proof is to construct, for the
Birkhoff normal form truncation, a chain of invariant tori (periodic orbits in certain sym-
plectic reduction, named toy model) which are connected by non-transverse heteroclinic
orbits. To obtain such connections, they strongly rely on the following fact. Even if this
toy model is not integrable, it is integrable once restricted to certain invariant subspace
(what can be called two generations model following [8]). Then the orbits undergoing
growth of Sobolev norms arewell approximated by orbits which shadow (follow closely)
this chain of periodic orbits.
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If one wants to use their ideas to obtain similar behavior in other equations such as the
Wave (1.1), Beam (1.2) and Hartree (1.10) equations, one has to face several challenges.

First of all, in these equations, the two generations model is not integrable (for the
Hartree equation it is not for a generic potential).4 This is not surprising. Indeed, typically
(at least in finite dimensional Hamiltonian systems) unstable motion (Smale horseshoes,
Arnold diffusion) is related to non-integrability. Still, even if non-integrability should
“help ” to achieve growth of Sobolev norms it makes the analysis considerably more
difficult. The present paper is a first attempt to understand this regime (for the two
generations model).

The models we consider are carefully chosen so that they are close to integrable and
therefore can be analyzed through perturbative methods. Unfortunately, for the Wave
and Beam equation, to be close to integrable we have to choose the modes in�with very
similar modulus and therefore it seems difficult to use the analysis done in this paper
to construct orbits undergoing growth of Sobolev norms. For the Hartree equation, one
should expect that the ideas developed in this paper could lead to growth of Sobolev
norms for a generic potential satisfying (1.11), (1.12).

A second fundamental difference between NLS and the PDEs considered in this
paper is about the chain of tori connected by heteroclinic connections considered in [8].
Such structure is not structurally stable in the following sense: to have such heteroclinic
connections one certainly needs that the connected invariant tori belong to the same
level of energy (and to the samel level of other first integrals that the finite dimensional
reduction possesses). This does not happen to be the case in other equations besidesNLS.
Indeed, for the Hartree equation (1.10) with a generic potential V the tori considered
in [8] belong to different level of energy and the same happens for the Wave and Beam
equations for a generic choice of resonant tuples.

Therefore, to achieve growth of Sobolev norms for those equation one certainly needs
to consider other invariant objects. The tori considered in Theorem 1.1 are radically
different from those in [8]. These tori come in families of higher dimension which are
transverse to the first integrals. Moreover, they are indeed connected by heteroclinic
orbits. These connections are transverse and, therefore, they are robust. We believe that
such objects could play a role if one wants to implement [8] to other PDEs.

2. Heuristics and Description of the Paper

The general argument we use in the proofs of Theorems 1.3 and 1.4 follows some of the
ideas in the literature [8,22–24,27]. The steps are the following. First, a weak Birkhoff
normal form procedure simplifies the infinite dimensional Hamiltonian defined by the
PDE, removing some non-resonant terms. Second, the normal form is truncated. The
truncated normal form admits finite dimensional invariant subspaces. Third, a choice of
these subspaces ismade, defining a finite dimensional approximation of the PDE, that we
call resonant model. Some particular finite dimensional orbit of the finite dimensional
model is found. Fourth and final, a true solution of the original PDE, close to the finite
dimensional one for long enough time, is found.We will use this scheme, with particular
choices in each step, particularly when considering the finite dimensional model.

4 The Birkhoff Normal Form of the cubic NLS (1.13) restricted N disjoint resonant tuples is significantly
different from that of Eqs. (1.2), (1.1) and (1.10). Indeed, for NLS, using the gauge invariance, one can see
that the “restricted normal form” is the sum of N uncoupled integrable 4 degrees of freedom Hamiltonian
systems. On the contrary, for Eqs. (1.2), (1.1) and (1.10) (even if the Hartree equation does also have the gauge
invariance), the “restricted normal form” possesses couplings between modes of different disjoint resonant
tuples.
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In [8,27], in the third step, the particular orbit found in the resonant model is obtained
relying on the fact that the resonant model is integrable. More precisely, some invariant
manifolds of different hyperbolic objects, coincide. Our approach is essentially different,
because our resonant model is non-integrable in the sense that the invariant manifolds
of several invariant objects—fixed points or periodic orbits—intersect transversally. We
take advantage of the non-integrable dynamics of the finite dimensional model to obtain
solutions of the truncated normal form with prescribed behavior; indeed, non-integrable
dynamics is richer than the integrable one. More details are given below.

As a matter of fact, the proofs of Theorems 1.3 and 1.4 share all these common ingre-
dients and only differ in the finite dimensional phenomena arisen by non-integrability.

Let us give more details concerning our implementation of the strategy. We refer to
[18] for further details.

Step 1: Each of the PDEs under consideration has a Hamiltonian structure. Let us denote
by H the Hamiltonian. Given a complete (see Definition 3.3) finite subset � ⊂ Z

2

of resonant modes, to be chosen later, a weak normal form scheme is applied to the
Hamiltonian. This weak normal form only “removes” a finite number of monomials of
degree 4 of the Hamiltonian. Hence it is well defined (the normal form transformation
is defined by the flow of a system of ODEs). The monomials to be killed are related to
the set�. Although the normal form procedure is not complete and many non-resonant
terms of degree 4 are left untouched, for suitable � the truncated normal form admits a
finite dimensional invariant subspace supported on �. This is done in Sect. 3.

Once the Hamiltonian is written in the normal form coordinates, we consider the
truncated normal form, disregarding the terms of degree 6 or more. We call this trun-
cated normal form the resonant model.

Step 2: This step is the core of the paper and can be divided as follows.

• Construction of the Set � (Sect. 4): The set � is chosen in such a way that its
associated subspace ofmodes (seeV� in (3.11)) is invariant by the flowof the resonant
model, but of course satisfies other requirements. Its precise definition depends on the
PDE model we consider, but all three instances (Wave, Beam and Hartree equations)
of the set � share some common features. They have exactly 4N elements which,
using the terminology introduced in [8], encompass two generations (see [29] for
the analysis of transfer of energy for a different two generations model given by the
quintic NLS). The elements of the set � are organized in groups of four, pairwise
disjoint, each of them forming a parallelogram. The choice of the modes is such
that each individual parallelogram is invariant. It also happens that the dynamics of
a single parallelogram is integrable, that is, if the rest of the modes are at 0, the
dynamics of the four modes in a parallelogram is integrable. At this point is where
our choice of the modes differs from other examples in the literature.
• The dynamics of the finite dimensional model (Sects. 5, 6, 7): First, we choose our
modes in such a way that the dynamics of the resonant model is close to integrable,
where closeness to integrability is measured through some parameter ε. The nearly
integrability is obtained choosing properly the modes in�. The unperturbed system
(where ε = 0) possesses certain invariant objects, namely hyperbolic fixed points and
hyperbolic periodic orbits,whose invariantmanifolds formheteroclinic or homoclinic
separatrices. Our second (generic) condition on the modes is sufficient to ensure
that these heteroclinic or homoclinic manifolds split for small ε �= 0, giving rise to
horseshoes and instability phenomena fromwhich we deduce the existence of certain
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types of orbits. The splitting of these manifolds is measured by means of a suitable
set of Melnikov integrals [36].
There is a wide literature on the application of Melnikov Theory to construct ho-
moclinic solutions in PDEs (see, for instance [34,41,43]). However, note that in the
present paper we apply Melnikov Theory to a finite dimensional model, not to the
full PDE.
• The infinite symbols Smale horseshoe (Sect. 6): The orbits in Theorem 1.3 give rise
from a horseshoe of infinite symbols that can be constructed close to a hyperbolic
periodic orbit whose invariant manifolds intersect transversally. The construction of
this horseshoe follows the ideas in [37]. The horseshoe can be described as follows.
Let � = {1, 2, 3, . . . } be a denumerable set of symbols and

� = {s = (. . . , s1, s0, s1, . . . ) | si ∈ �, i ∈ N}, (2.1)

the space of bi-infinite sequences, with the product topology. Notice that, unlike
what happens when � is a finite set, � is not compact. The shift σ : � → � is
the homeomorphism on � defined by (σ (s))i = si−1. Following the construction of
Moser in [37], given a hyperbolic periodic orbit whose invariant manifolds intersect
transversally, it is possible to find a set of coordinates—one of the coordinates is time,
in T—, a suitable section S that defines a return map φ and a set Q in this section
with φ(Q) = Q, such that there exists a homeomorphism τ : � → Q satisfying
φ◦τ = τ ◦σ . The set Q is in fact the intersection of forward and backward images by
φ of a set of disjoint closed bands {V j , j ∈ N}, where the index j denotes precisely
the time between to consecutives passes through S and hence measures the distance
to one of the invariant manifolds of the set V j . In this way, V j tends to the invariant
manifold when j tends to infinity. The set Q is not compact because the return map
is not defined in the invariant manifolds.
The Moser [37] construction implies that the bigger si is [see (2.1)], the longer it
takes the orbit to come back to �. Since the sequence s can be taken randomly, the
return times as well.
• Shadowing of a sequence of periodic orbits (Sect. 7): the orbits in Theorem 1.4
travel along a chain of periodic orbits connected by transverse heteroclinic orbits,
following the diffusion mechanism described originally by Arnold [1]. This mech-
anism consists of a sequence - finite or infinite - of partially hyperbolic periodic
orbits5, {Ti }i∈I , I ⊂ N, such that the unstable manifold of Ti , Wu(Ti ), intersects
transversally the stable manifold of Ti+1, Ws(Ti+1). Here, since the system we are
considering is autonomous, transversally means transversality in the energy level,
which implies that the intersection of the manifolds is, locally, a single heteroclinic
orbit. If a nondegeneracy condition is met, this transversality is sufficient to have
a Lambda Lemma that implies that Wu(Ti+1) ⊂ Wu(Ti ) (see [15]), which in turn
implies that for any i, j ∈ I , i < j , Wu(T j ) ⊂ Wu(Ti ). One can then choose ar-
bitrary small neighborhoods of the tori Ti and orbits that visit these neighborhoods
according to an increasing sequence of times.
It is worth to remark that the orbits found in the resonant model do exist for any
positive time. In the case of the horseshoe with infinite symbols, one obtains orbits
that arrive closer and closer to the periodic orbit, in randomly chosen times. In the case
of the diffusion orbits, one obtain solutions that wander along the chain of periodic

5 These periodic orbits are not fully hyperbolic since the system is Hamiltonian: the tangent to the periodic
orbit and its conjugate direction are not hyperbolic.
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orbits for any positive time, and can be chosen to arrive closer and closer to each
periodic orbit.

Step 3:The last step of the proof consists in finding a true solution of eachPDEshadowing
for long enough time the chosen solution of the resonant model. This is accomplished by
a standardGronwall and bootstrap argument. This relies on theApproximation argument
given in Sect. 3 with the analysis of the dynamics of the Birkhoff normal form truncation
of Sects. 6, 7. In this final step is crucial that the Eqs. (1.1), (1.2) have been restricted to
Z
2
odd (see (1.4)) since this implies that the u = 0 is an elliptic critical point.

3. Weak Birkhoff Normal form

3.1. Hamiltonian formalism. In this section we show that the Hamiltonian PDEs (1.1),
(1.2) and (1.10) have a Hamiltonian of the same form in an appropriate set of coordi-
nates. We consider spaces of functions defined on T

2, hence it is convenient to use the
Fourier representation u(x) =∑ j∈Z2 u j ei j ·x .

Let us denote byP the phase space and� a symplectic form on it. The vector field XH
of a Hamiltonian H is uniquely determined by the formula dH(u)[·] = �(XH (u), ·).
Hamiltonian structure of equation (1.10) Let us considerP := H1(T2;C)×H1(T2;C)

equipped with the symplectic form� := idu ∧ dū = i
∑

j∈Z2 du j ∧ du j . If V satisfies
(1.11), the equation (1.10) is given by ∂t u = XH (u, u) where

H(u, ū) = 1

(2π)2

(∫

T2
|∇u|2 dx +

1

2

∫

T2
(V (x) � |u|2) |u|2 dx

)

=
∑

j∈Z2

| j |2|u j |2 +
∑

j1− j2+ j3− j4=0

Vj1− j2u j1 u j2 u j3 u j4 .
(3.1)

Hamiltonian structure of equations (1.1), (1.2) In the following we use the parameter
κ ∈ {1, 2} to treat both cases at the same time. More precisely, κ = 1 if we refer
to the Wave equation (1.1) or κ = 2 when we consider the Beam equation (1.2). By
setting v := u̇, we can express these equations as the following system of two first order
equations {

u̇ = v,

v̇ = (−1)κ+1�κu − u3.
(3.2)

We recall the subset Z2
odd := {( j (1), j (2)) ∈ Z

2 : j (1) odd , j (2) even}. The sub-
space

Uodd :=

⎧
⎪⎨

⎪⎩
(u, v) ∈ Hκ(T2;R)× L2(T2;R), u =

∑

j∈Z2
odd

u j e
i j ·x , v =

∑

j∈Z2
odd

v j e
i j ·x

⎫
⎪⎬

⎪⎭
(3.3)

is invariant for (3.2). Since (0, 0) /∈ Z
2
odd the change of variables �(u, v) = (�,�)

defined by

� := 1√
2

(
|D|κ/2u − i|D|−κ/2v

)
, � := 1√

2

(
|D|κ/2u + i|D|−κ/2v

)

|D| := (−�)1/2, (3.4)
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is well defined on Uodd and it transforms the system (3.2) into the following one

⎧
⎨

⎩
−i�̇ = |D|κ� + 1

4 |D|−κ/2
((|D|−κ/2

(
� +�

))3)

i�̇ = |D|κ� + 1
4 |D|−κ/2

((|D|−κ/2
(
� +�

))3)
.

(3.5)

The vector field in (3.5) is Hamiltonian with respect to the 2-form � := id� ∧ d� and
Hamiltonian

H(�,�) := 1

(2π)2

⎡

⎣
∫

T2
|D|κ� � dx +

1

4

∫

T2

(
|D|−κ/2

(
� +�√

2

))4

dx

⎤

⎦ .

By considering the Fourier expansion � = ∑
j∈Z2 a j ei j ·x , we can consider � =

i
∑

j∈Z2
odd

da j ∧ da j and

H =
∑

j∈Z2
odd

| j |κ a j a j +
1

16

∑

ji∈Z2
odd,

j1+ j2+ j3+ j4=0

(a j1 + a− j1)(a j2 + a− j2)(a j3 + a− j3)(a j4 + a− j4)

(| j1| | j2| | j3| | j4|)κ/2 .

(3.6)
We observe that the Hamiltonians (3.1) and (3.6) have the form6

H = H (2) + H (4) =
∑

j∈Z2∗

ω( j) a j a j +
∑

ji∈Z2∗,σi∈{±},
σ1 j1+σ2 j2+σ3 j3+σ4 j4=0

Cσ1σ2σ3σ4
j1 j2 j3 j4

aσ1j1 a
σ2
j2
aσ3j3 a

σ4
j4
,

(3.7)
where

• (Hartree): Z2∗ = Z
2, ω( j) = | j |2, and the coefficients Cσ1σ2σ3σ4

j1 j2 j3 j4
are defined as

C+−+−
j1 j2 j3 j4

= C−+−+
j1 j2 j3 j4

= Vj1− j2 , Cσ1σ2σ3σ4
j1 j2 j3 j4

= 0 otherwise. (3.8)

• (κ = 1 Wave, κ = 2 Beam): Z2∗ = Z
2
odd, ω( j) = | j |κ and, for ( j1, j2, j3, j4) such

that σ1 j1 + σ2 j2 + σ3 j3 + σ4 j4 = 0, we have

Cσ1σ2σ3σ4
j1 j2 j3 j4

= 1

16 (| j1|| j2|| j3|| j4|)κ/2
. (3.9)

We remark that [using (1.12) for the Hartree equation] the coefficients Cσ1σ2σ3σ4
j1 j2 j3 j4

are
such that

sup
j1, j2, j3, j4∈Z2∗

|Cσ1σ2σ3σ4
j1 j2 j3 j4

| ≤ 2. (3.10)

6 Here we use the standard notation a+j = a j , a
−
j = a− j .
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3.2. Weak Birkhoff normal form. In this section we apply a Birkhoff normal form argu-
ment to theHamiltonian (3.7).We consider the symplectic form� = i

∑
j∈Z2∗ da j∧da j .

We denote by adH (2) the adjoint action of the Hamiltonian H (2).
If F = ∑

σ1 j1+···+σn jn=0 F
σ1...σn
j1... jn

aσ1j1 . . . aσnjn is a homogenous, momentum preserving
Hamiltonian of degree n we have then

adH (2)[F] := {H (2), F} =
∑

σ1 j1+···+σn jn=0

(
n∑

i=1

σiω( ji )

)
Fσ1...σn
j1... jn

aσ1j1 . . . aσnjn .

We denote by �Ker(H (2)) the projection on the kernel of adH (2) .

Definition 3.1. We say that a n-tuple (σi , ji )ni=1 is a n-resonance if

n∑

i=1

σiω( ji ) = 0,
n∑

i=1

σi ji = 0.

Since there are no regularity issues in what follows we decide to work on the phase
space of analytic sequences. We fix ρ > 0 and define

Wρ :=
⎧
⎨

⎩a = (a j ) j∈Z2∗ ∈ �1 : ‖a‖ρ :=
∑

j∈Z2∗

|a j | eρ| j | < ∞
⎫
⎬

⎭ .

We denote by Bρ(δ) the open ball of radius δ > 0 centered at the origin of Wρ . We use
the notation A � B to denote A ≤ C B where C > 0 is a constant possibly depending
on the fixed ρ.

Let � be a finite subset of Z2∗. We consider the following splitting Wρ = V� ⊕ Z�

with

V� := V�,ρ = {a ∈ Wρ : a j = 0 if j /∈ �
}
, Z� := Z�,ρ = {a ∈ Wρ : a j = 0 if j ∈ �

}
.

(3.11)
We define

Sn,k :=
⎧
⎨

⎩(σi , ji )
n
i=1 :

n∑

i=1

σi ji = 0 such that the number of indices ji /∈ � is exactly k

⎫
⎬

⎭ .

Given a homogenous n-degree, momentum preserving Hamiltonian F =∑
σ1 j1+···+σn jn=0 F

σ1...σn
j1... jn

aσ1j1 . . . aσnjn , we denote by F (n,k) the projection of F onto the

monomials aσ1j1 . . . aσnjn with exactly k indices ji /∈ �. Thus F (n,k) is the part of the
Hamiltonian F which is Fourier supported on Sn,k .

We denote by

Sn,≤k := ∪k
i=1Sn,i , Sn,≥k := ∪n

i=kSn,i .

We refer to F (n,≤k) (and F (n,≥k)) the part of the Hamiltonian H which is Fourier sup-
ported on Sn,≤k (and Sn,≥k).
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Remark 3.2. Since we assume that � is finite, the preservation of momentum implies
that the Hamiltonians F (n,≤1) have compact Fourier support.

Definition 3.3. We say that a subset� ⊂ Z
2 is complete if the following holds: given a

4-resonance (σi , ji )4i=1 we have that if j1, j2, j3 ∈ � then j4 ∈ �.

Proposition 3.4. (Weak Birkhoff normal form) Fix ρ > 0. Let � ⊂ Z
2∗ be finite and

complete and consider the Hamiltonian H in (3.7). Then,

(i) There exists δ1 > 0 small such that ∀δ ∈ (0, δ1) there exists an analytic change of
coordinates � : Bρ(δ) ⊂ Wρ → Bρ(2δ) such that

H ◦ � = H (2) +�Ker(H (2))H
(4,0) + H (4,≥2) +R (3.12)

where R satisfies

‖XR(a)‖ρ � ‖a‖5ρ for all a ∈ Bρ(δ).

(ii) Moreover, the map � is close to the identity, i.e. ‖�(a) − a‖ρ � ‖a‖3ρ for all
a ∈ Bρ(δ).

Proof. Let us consider the 4-degree homogenous Hamiltonian

F =
∑

(σi , ji )∈S4,≤1,
σ1 j1+σ2 j2+σ3 j3+σ4 j4=0

Fσ1σ2σ3σ4
j1 j2 j3 j4

aσ1j1 a
σ2
j2
aσ3j3 a

σ4
j4

where

F
σ1σ2σ3σ4
j1 j2 j3 j4

=

⎧
⎪⎪⎨

⎪⎪⎩

−
iC

σ1σ2σ3σ4
j1 j2 j3 j4

σ1ω( j1) + σ2ω( j2) + σ3ω( j3) + σ4ω( j4)
σ1ω( j1) + σ2ω( j2) + σ3ω( j3) + σ4ω( j4) �= 0

0 σ1ω( j1) + σ2ω( j2) + σ3ω( j3) + σ4ω( j4) = 0.

(3.13)

The function F solves the homological equation

{H (2), F} + H (4,≤1) = �Ker(H (2))H
(4,≤1). (3.14)

By Remark 3.2 the vector field generated by F has just a finite number of non
zero components. Hence �t

F is the flow of a ODE with a smooth vector field. We call
� = (�t

F )|t=1 the time-one flow map of F .
By Remark 3.2 the denominators in (3.13) have a uniform lower bound, hence by

(3.10) the coefficients defined in (3.13) are uniformly bounded. Then by Young’s in-
equality it is easy to see that ‖XF (a)‖ρ � ‖a‖3ρ for all a ∈ Wρ .

This implies that for δ > 0 small enough ‖�t
F (a)‖ρ ≤ 2‖a‖ρ for all t ∈ [0, 1]. Thus

� maps Bρ(δ) to Bρ(2δ) and

‖�(a)− a‖ρ ≤ sup
s∈[0,1]

‖XF (�
s
F (a))‖ρ ≤ sup

s∈[0,1]
‖�s

F (a)‖3ρ � ‖a‖3ρ.

So we have proved item (ii). After the change of coordinates � the Hamiltonian (3.7)
transforms into
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H ◦ � = H + {H, F} +
∫ 1

0
(1− t){{H, F}, F} ◦�t

F dt

= H (2) +
(
H (4,≤1) + {H (2), F}

)
+ H (4,≥2) + {H (4), F} +

∫ 1

0
(1− t){{H, F}, F} ◦�t

F dt.

(3.14)= H (2) +�Ker(H (2)) H
(4,≤1) + H (4,≥2) + {H (4), F} +

∫ 1

0
(1− t){{H, F}, F} ◦�t

F dt.

Then, the completeness of � implies that

�Ker(H (2))H
(4,≤1) = �Ker(H (2))H

(4,0).

Moreover, we can takeR := {H (4), F}+∫ 10 (1− t){{H, F}, F}◦�t
F dt . We observe that

{H (4), F} is a homogenous Hamiltonian of degree 6 . Regarding the integral term, we
have that�t

F is smooth and {{H, F}, F} is the sum of two homogenous Hamiltonians of
degree at least 6, hence it is an analytic function on Bρ(δ) that can be Taylor expanded
at a = 0. The first term of the Taylor expansion of the vector field is a polynomial of
degree 5 and the remainder is smaller in a sufficiently small neighborhood of the origin.
Again, by the uniform boundness of the coefficients of H and F , one can obtain the
estimate in item (i) by using Young’s inequality. ��

Let us consider the time-dependent change of coordinates

�(t) : a j → a j = a j e
iω( j) t , a = (a j ) j∈Z2∗ ∈ Wρ. (3.15)

This changeof coordinates leaves resonantmonomials unchanged, that is�Ker(H (2))F◦
� = �Ker(H (2))F . Then, we have that

H ◦ � ◦� = HRes +R′(t), HRes := �Ker(H (2)) H
(4,0) +Q(t)

Q := H (4,≥2) ◦�(t), R′ = R ◦�(t).
(3.16)

Moreover, the functions Q and R′ satisfy

‖XQ(a)‖ρ � ‖a‖3ρ and ‖XR′(a)‖ρ � ‖a‖5ρ for all a ∈ Bρ(δ). (3.17)

Now, if one considers a complete set� (see Definition 3.3), the associated subspace
V� [see (3.11)] is left invariant by XHRes . Moreover, on V�, XHRes = X�Ker(H(2)) H

(4,0) .

This Hamiltonian is scaling invariant in the sense that if r(t) is a trajectory of this vector
field

r δ(t) = δr(δ2t) (3.18)

also is. Taking δ 
 1, in certain time scales, this trajectory r δ(t) stays close to the
trajectory of the Hamiltonian (3.16) with the same initial condition.

Proposition 3.5. Let T0 be a positive number and consider a solution r(t) of the Hamil-
tonian system HRes in (3.16) such that it is defined for t ∈ [0, T0] and r(0) ∈ V�.

Then there exists δ2 = δ2(T0) ≤ δ1 (where δ1 is given in Proposition 3.4) such that
the following holds: for all 0 < δ ≤ δ2 the rescaled solution r δ of the Hamiltonian HRes
given by (3.18) and the solution u(t) of the Hamiltonian system HRes +R′ with initial
condition u(0) = r δ(0) = δr(0) satisfy

‖r δ(t)− u(t)‖ρ � δ2 ∀t ∈ [0, δ−2T0]. (3.19)
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Proof. We define ξ := u − r δ . Then, ξ satisfies

ξ̇ = Z0(t) + Z1(t)ξ + Z21(t, ξ) + Z22(t, ξ)

where

Z0(t) := XR′(r δ(t)),

Z1(t) = DXHRes(r
δ(t)),

Z21(t, ξ) := XHRes(r
δ(t) + ξ(t))− XHRes(r

δ(t))− DXHRes(r
δ(t))ξ,

Z22(t, ξ) := XR′(r δ(t) + ξ(t))− XR′(r δ(t)).

By the estimate in item (i) of Proposition 3.4, the fact that HRes is a homogenous
Hamiltonian of degree 4 and (3.17) we have the following estimates

‖Z0(t)‖ρ � ‖r δ‖5ρ, ‖Z1(t)‖ρ � ‖r δ‖2ρ‖ξ‖ρ,
‖Z21(t, ξ)‖ρ � ‖r δ‖ρ‖ξ‖2ρ + ‖ξ‖3ρ, ‖Z22(t, ξ)‖ρ � ‖r δ‖4ρ‖ξ‖ρ.

(3.20)

Now we use a bootstrap argument to conclude the proof. We assume temporarily that
‖ξ(t)‖ � δ2 for t ∈ [0, δ−2T0]. We already know that this is true for t = 0 since
ξ(0) = 0. Then by Minkowsky inequality, the fact that ‖r δ‖ρ � δ and (3.20) we have
that

d

dt
‖ξ‖ρ ≤ ‖Z0(t)‖ρ+‖Z1(t)ξ‖ρ+‖Z21(t, ξ)‖ρ +‖Z22(t, ξ)‖ρ � δ5+δ2‖ξ‖ρ. (3.21)

Thus integrating (3.21) and by using Gronwall lemma we get

‖ξ(t)‖ρ � δ5t + δ7eδ
2t
∫ t

0
s e−δ2 s ds = δ5t + δ3eδ

2t (1− e−δ2t (1 + δ2t))

and since 0 < t ≤ δ−2T0 we have

‖ξ(t)‖ρ � δ3T0 + δ3eT0 .

Since T0 is independent from δ, we can choose δ small enough such that ‖ξ(t)‖ρ � δ5/2

for t ∈ [0, δ−2T0]. Since this bound is stronger than the bootstrap assumption we can
drop such hypothesis and the proof is concluded. ��

4. Reduction to the Resonant Model

4.1. Lambda set. We introduce a suitable finite and complete (see Definition 3.3) reso-
nant set of modes � ⊂ Z

2, whose construction is based on the ideas of [8]. This set is
constructed such that the associated subspace

V� := {a ∈ Wρ : a j = 0 ∀ j /∈ �} (4.1)

is invariant under the flow associated to the Hamiltonian HRes in (3.16). Later on we
study the dynamics of the Hamiltonian HRes restricted to initial data supported on V�.

First we introduce the set of resonant tuples for the nonlinear Beam equation (those
of the Hartree equation are a subset of it),



1248 F. Giuliani et al.

Abh :=
{
(n1, n2, n3, n4) ∈ (Z2)4 : n1 ± n2 ± n3 ± n4 = 0, |n1|2 ± |n2|2 ± |n3|2 ± |n4|2 = 0

}
, (4.2)

and a subset of it, which is going to be used to build the set �,

Ãbh :=
{
(n1, n2, n3, n4) ∈ (Z2)4 : n1 − n2 + n3 − n4 = 0, |n1|2 − |n2|2 + |n3|2 − |n4|2 = 0

}
. (4.3)

Analogously, one can define the resonant tuples for the Wave equation and the corre-
sponding associated subset

Aw := {(n1, n2, n3, n4) ∈ (Z2)4 : n1 ± n2 ± n3 ± n4 = 0, |n1| ± |n2| ± |n3| ± |n4| = 0},
Ãw := {(n1, n2, n3, n4) ∈ (Z2)4 : n1 − n2 + n3 − n4 = 0, |n1| − |n2| + |n3| − |n4| = 0}.

(4.4)

We consider sets�whosemodes form resonant tuples in Ãbh/ Ãw. One could choose
the resonant tuples in the bigger sets Abh/Aw. However, the particular form of the tuples
in Ãbh/ Ãw simplifies the analysis of the dynamics in V�. Indeed, the Hamiltonian HRes
restricted to V� will have first integrals which correspond to the mass associated to each
resonant tuple (see Sect. 4.3).

Let N ≥ 2be an integer, and let Abe either Abh or Aw (analogously be Ã either Ãbh or
Ãw). We define a set� ⊂ Z

2 which consists of two disjoint generations,� = �1 ∪�2,
|�1| = |�2| = 2N . Define a nuclear family to be a set (n1, n2, n3, n4) ∈ Ã whose
elements are ordered, such that n1 and n3 (known as the parents) belong to the first
generation �1, and n2 and n4 (known as the children) belong to the second genera-
tion �2. Note that if (n1, n2, n3, n4) is a nuclear family, then so are (n1, n4, n3, n2),
(n3, n2, n1, n4) and (n3, n4, n1, n2). These families are called trivial permutations of
the family (n1, n2, n3, n4). The first conditions to impose on the set � were already
imposed in the paper [8].

1� (Closure) If n1, n2, n3 ∈ � and there exists n ∈ Z
2 such that (n1, n2, n3, n) ∈ Ã

(or any permutation of it), then n ∈ �. In other words, if three members of a nuclear
family are in�, so is the fourth one. This is a rephrasing of the completeness condition
(see Definition 3.3).
2� (Existence and uniqueness of spouse and children) For any n1 ∈ �1, there exists
a unique nuclear family (n1, n2, n3, n4) (up to trivial permutations) such that n1 is a
parent of this family. In particular, each n1 ∈ �1 has a unique spouse n3 ∈ �1 and
has two unique children n2, n4 ∈ �2 (up to permutation).
3� (Existence and uniqueness of sibling and parents) For any n2 ∈ �2, there exists
a unique nuclear family (n1, n2, n3, n4) (up to trivial permutations) such that n2 is
a child of this family. In particular each n2 ∈ �2 has a unique sibling n4 ∈ �2 and
two unique parents n1, n3 ∈ �1 (up to permutation).
4� (Faithfulness) Apart from the nuclear families, � does not contain any other set
(n1, n2, n3, n4) ∈ A.

Note that the resonant tuples in � belong to Ã. However, condition 4� requires that no
other resonant tuples in the (larger set) A are possible in �.

In the next two propositions we construct a set � for the three considered PDEs. In
some of the cases we need further conditions. Recall that the Eqs. (1.1), (1.2) have been
restricted to Z

2
odd (see (1.4)) so that u = 0 is an elliptic critical point. Therefore, for

these equations the set � is constructed in Z
2
odd.
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Proposition 4.1. Let N ≥ 2 and take A = Abh. Then there exists a set � ⊂ Z
2, with

� = �1 ∪ �2 and |� j | = 2N, which satisfies properties 1�–4� and the following
additional property:

any nk, n′k, nh, n′h ∈ � such that nk �= nh and n′k �= n′h satisfy

nk − nh �= n′k − n′h . (4.5)

Proposition 4.2. Let N ≥ 2 and take A = Aw, Abh. Then there exists a set � ⊂ Z
2
odd,

with� = �1∪�2 and |� j | = 2N, which satisfies conditions 1�–4� and the following
additional condition. Take any n, n′ ∈ �, then

|n| �= |n′|. (4.6)

Moreover, if one takes 0 < ε 
 1, there exists R = R(ε) � 1 so that � can be
chosen to satisfy also

||n| − R| < Rε, for all n ∈ �. (4.7)

Let us make some comments on the extra conditions imposed on� in these proposi-
tions. Condition (4.6) below is required to apply Melnikov Theory in Sect. 5. Condition
(4.7) is used to obtain Hamiltonian systems on V� [see (4.1)] which are close to in-
tegrable for the Beam and Wave equations. For the Beam and Wave equation we also
require that the first component of the modes in � is odd. This is fundamental in the
approximation argument (Proposition 3.5) to avoid interactions with the mode n = 0
which is not elliptic.

We defer the proof of the above propositions to the Appendix 7.3.

Lemma 4.3. Consider the Hamiltonian (3.7) given by the Eqs. (1.10), (1.2), (1.1) and
the associated HRes in (3.16) and the set � obtained in Propositions 4.1 and 4.2. Then
V� is invariant and the restriction of HRes to V� [see (4.1)] has the following form

(HRes)|V� ({an}n∈�) = 3

8

∑

ji∈�,
j1− j2+ j3− j4=0,

| j1|κ−| j2|κ+| j3|κ−| j4|κ=0

C j1... j4 a j1 a j2 a j3 a j4

= 3

8

∑

n∈�
Cnnnn |an |4 + 3

4

∑

i �= j,ni ,n j∈�
Cni n j ni n j |ani |2 |an j |2

+
3

4

N∑

k=1

(Cn4k−3n4k−2n4k−1n4k + Cn4k−3n4kn4k−1n4k−2

+ Cn4k−1n4k−2n4k−3n4k + Cn4k−1n4kn4k−3n4k−2 )

× Re(an4k−3 an4k−2 an4k−1 an4k )

(4.8)

with C j1 j2 j3 j4 = C+−+−
j1 j2 j3 j4

[see (3.7), (3.8), (3.9)], namely

κ = 2, C j1 j2 j3 j4 = Vj1− j2 = 1 +O(ε) (Hartree)

κ = 1, C j1 j2 j3 j4 = 1

16
√| j1|| j2|| j3|| j4| =

1

R2 (1 +O(ε)) (Wave)

κ = 2, C j1 j2 j3 j4 = 1

16| j1|| j2|| j3|| j4| =
1

R4 (1 +O(ε)) (Beam).

Therefore, these coefficients satisfy C j1 j2 j3 j4 �= 0.
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Proof. The particular form of Hamiltonian (HRes)|V� is a direct consequence of the
Properties 1�–4� satisfied by the set� and the definition of HRes in (3.16). The definition
of the coefficients C j1 j2 j3 j4 is given in (3.8), (3.9) and their estimates are consequence
of (1.11), (1.12) and (4.7). ��

We use the symmetries of the Hamiltonian (4.8) to remove some of the monomials by
a gauge transformation. Indeed, since themassM :=∑n∈�|an|2 is a conserved quantity
for (HRes)|V� , we can consider the change of coordinates and time reparametrization

αn = an e
iGt and t = −(8/3)g τ with G = 3

4
gM, (4.9)

for some g ∈ R to be chosen. The new system is Hamiltonian with respect to

H̃Res({αn}n∈�)

:=
∑

n∈�
|αn |4 +

∑

n∈�
|αn |4

(
1− Cn n n n

g

)
+ 2

∑

ni ,n j∈�, i �= j

|αni |2 |αn j |2
(
1− Cni n j ni n j

g

)

− 2

g

N∑

k=1

(Cn4k−3n4k−2n4k−1n4k + Cn4k−3n4kn4k−1n4k−2

+ Cn4k−1n4k−2n4k−3n4k + Cn4k−1n4kn4k−3n4k−2 )

× Re(αn4k−3 αn4k−2 αn4k−1 αn4k ).

(4.10)

Choosing the constant g in (4.9) as

g = 1 (Hartree), g = 1

R2 (Wave) g = 1

R4 (Beam), (4.11)

then the Hamiltonian system (4.10) takes the following form

H̃Res(αn1 , . . . , αn2N ) =
4N∑

k=1

|αnk |4 + 2 ε
∑

1≤i, j≤4N
Ai, j |αni |2 |αn j |2

− 8
N∑

h=1

Ch Re(αn4h−3 αn4h−2 αn4h−1 αn4h ),

(4.12)

where A = (Ai, j ) ∈ R
4N×4N is a symmetric matrix given by

εA j, j := 1

2
− Cn jn j n j n j

2g
, εAi, j := 1− Cnin j ni n j

g
i �= j, (4.13)

and (Ch)h=1,...,N satisfies

Ch = 1 +O(ε), ∀ h = 1, . . . , N .

The equations of motion read as

i α̇nk =
⎛

⎝2|αnk |2 + 2ε
∑

1≤r≤2N
Ak,r |αnr |2

⎞

⎠ αnk − 8Ch αni αnl αn j , (4.14)

where k, i, l, j ∈ {4(h − 1) + 1, 4(h − 1) + 2, 4(h − 1) + 3, 4h} give the four modes
forming a resonant tuple, l + k is even (namely, following [8], nk and nl belong to the
same generation) and h ∈ {1, . . . , N }.
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4.2. Invariant subspaces andfirst integrals of the resonantmodel. The systemassociated
to Hamiltonian H̃Res in (4.12) has large dimension and it is not integrable. Nevertheless,
the properties of the set � and the particular form of the Hamiltonian H̃Res ensure that
the system associated to H̃Res has several invariant subspaces, where one can easily
analyze the dynamics. We devote this section to analyze these invariant subspaces and
the first integrals of H̃Res.

Let us split � both as � = �1 ∪�2 = R1 ∪ . . . ∪RN . The first splitting refers to
the two generations and the second refers to the N four–wave resonances used to define
� [see (4.2) and (4.4)].

Associated to this set we can consider the following invariant subspaces [recall (4.1)]

V�i =
{
α ∈ V� : α j = 0 for j �∈ �i

}

and, for {i1, . . . , ik} ⊂ {1, . . . , N }, 1 < k < N ,

Vi1,...,ik =
{
α ∈ V� : α j = 0 for j �∈ Ri1 ∪ . . . ∪Rik

}
.

One can easily check that all those subspaces are invariant under the flow associated to
Eq. (4.14). Let us study the corresponding dynamics.

For V�1 (and analogously for V�2 ) one obtains the equation

i α̇nk =
⎛

⎝2|αnk |2 + 2ε
∑

1≤r≤2N ,nr∈�1

Ak,r |αnr |2
⎞

⎠ αnk for αnk ∈ �1.

Therefore, on V�1 , |αnr |2 are constants of motion and the phase space is foliated by
invariant tori

TI1,...Ik =
{
α ∈ V�1 : |αnk | = Ik

}
where I j > 0, j = 1, . . . , k. (4.15)

It can be checked (see Sect. 4.3 below) that these invariant tori are hyperbolic and thus
have stable and unstable invariant manifolds.

The dynamics on Vi1,...,ik is given as well by Eq. (4.14) just considering the interac-
tions between the modes in the rectangles Ri1 , . . .Rik .

Hamiltonian H̃Res in (4.12) has the first integrals

S(k,+)i, j = |αn4(k−1)+i |2 + |αn4(k−1)+ j |2 i + j ≡ 1 (mod 2), i, j ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N },
S(k,−)
i, j = |αn4(k−1)+i |2 − |αn4(k−1)+ j |2 i + j ≡ 0 (mod 2), i, j ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N }.

(4.16)
These constants of motion are in involution. They are not functionally independent but
it can be easily checked that the subset of first integrals

S(k,−)
1,3 , S(k,−)

2,4 , S(k,+)3,4 , k ∈ {1, . . . , N } (4.17)

is functionally independent in the open set {αn �= 0 : n ∈ �} ⊂ V�. Certainly they are
not functionally independent on the invariant subspaces V�1 , V�2 (and in particular are
not functionally independent at the tori TI1,...Ik ).
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4.3. The symplectic reduction. We use the first integrals (4.17) to perform a symplectic
reduction to the Hamiltonian (4.12). It can be applied in the open set {αn �= 0 : n ∈
�} ⊂ V� where the first integrals are functionally independent. In this domain, all
modes are different from zero and thus one can consider symplectic polar coordinates
(θ, I ) ∈ T

4N × (0,+∞)4N , given by

αnk =
√
Ike

iθk . (4.18)

In these coordinates the Hamiltonian (4.12) takes the form

H(θ, I ) = 〈I, I 〉 + 2ε 〈AI, I 〉

− 8
N∑

h=1

Ch
√
I4(h−1)+1 I4(h−1)+2 I4(h−1)+3 I4h cos(θ4(h−1)+1 − θ4(h−1)+2

+ θ4(h−1)+3 − θ4h)
(4.19)

and the symplectic form �|V� becomes the standard one dθ ∧ d I = ∑4N
k=1 dθk ∧ d Ik .

The Hamiltonian system (4.19) has 4N degrees of freedom. We perform a symplectic
reduction that leads to an N degrees of freedom system. In particular first we consider
the restriction of (4.12) to

V :=
N⋂

k=1

{
S(k,−)
1,3 = S(k,−)

2,4 = 0
}
, (4.20)

and then we further reduce it to the manifold

W :=
N⋂

k=1

{
S(k,+)3,4 = 1

}
∩ V. (4.21)

We adopt the following notation: we denote by 0n the null matrix of dimension n × n
and by In the identity matrix of dimension n × n. We consider the symplectic linear
change of variable � : T4N × R

4N → T
4N × R

4N defined by

(
θ

I

)
= �

(
φ

J

)

with, for h = 0 . . . N − 1,

⎛

⎜⎜⎝

θ4h+1
θ4h+2
θ4h+3
θ4h+4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
−1 0 1 0
0 −1 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

φ4h+1
φ4h+2
φ4h+3
φ4h+4

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

I4h+1
I4h+2
I4h+3
I4h+4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

J4h+1
J4h+2
J4h+3
J4h+4

⎞

⎟⎟⎠ =: B̃

⎛

⎜⎜⎝

J4h+1
J4h+2
J4h+3
J4h+4

⎞

⎟⎟⎠ .

Weconsider the restriction of the newHamiltonian H ◦� at the invariant submanifold
V defined in (4.20), which corresponds, in the coordinates (4.18), to the subspace

{J4k+1 = J4k+2 = 0 : k = 0, . . . , N − 1}.
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The new Hamiltonian does not depend on the angles {φi }i∈{4k+1,4k+2:k=0,...,N−1} and it
reads as ndalign*

H
(
{φ4k+3, φ4k+4, J4k+3, J4k+4}N−1

k=0

)
= 2

N−1∑

h=0

4∑

k=3

J 24h+k

+ 2ε
∑

0≤h,h′≤N−1

∑

i=3,4
k=3,4

(BT AB)4h+i,4h′+k J4h+i J4h′+k

− 8
N−1∑

h=0

Ch+1 J4h+3 J4h+4 cos(φ4h+3 − φ4h+4),

where

B =

⎛

⎜⎜⎜⎜⎜⎜⎝

B̃ 04 · · · · · · 04
04 B̃ 04 · · · 04
... 04 B̃ 04 · · ·
...

...
. . .

. . .
...

04 · · · · · · · · · B̃

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ R

4N × 4N .

The second symplectic reduction is obtained by considering the symplectic linear change
of variable � : T2N × R

2N → T
2N × R

2N as

(
{φ4k+3}N−1

k=0 , {φ4k+4}N−1
k=0 , {J4k+3}N−1

k=0 , {J4k+4}N−1
k=0

)
= �({Kk }Nk=1, {K̃1}Nk=1, {ψk }Nk=1, {ψ̃1}Nk=1)

defined by

(
φ4k+3
φ4k+4

)
=
(
1 1
0 1

)(
ψk+1

ψ̃k+1

)
,

(
J4k+3
J4k+4

)
=
(

1 0
−1 1

)(
Kk+1

K̃k+1

)
, k = 0 . . . N−1.

After the reparametrization of time t �→ −4 t , the restriction of the transformed
Hamiltonian H ◦� to the subspace

W = V
N⋂

k=1

{S(k,+)3,4 = 1} =
N⋂

k=1

{K̃k = 1}

is given (up to constants) by

H(ψ1, . . . , ψN , K1, . . . , KN ) =
N∑

j=1

K j (1− K j )(1 + 2 cos(ψ j ))

+ ε

⎡

⎣
N∑

j=1

a j K j +
N∑

j=1

b j K
2
j +

N∑

i, j=1,i< j

di j Ki K j +
N∑

h=1

c j K j (1− K j ) cos(ψ j )

⎤

⎦

(4.22)
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where the coefficients a j , b j and d j can be written in terms of the entries of the matrix
A in (4.12) in the following way

a j := −
N∑

r=1

[
A( j,r)
1,2 + A( j,r)

1,4 + A( j,r)
2,3 + A( j,r)

3,4 − (A( j,r)
2,2 + A(r, j)

2,4 + A(r, j)
4,2 + A( j,r)

4,4
)]

b j := −
[
A( j, j)
1,1 + 2A( j, j)

1,3 + A( j, j)
3,3 − 2

(
A( j, j)
1,2 + A( j, j)

1,4 + A( j, j)
2,3 + A( j, j)

3,4
)
+ A( j, j)

2,2 + 2A( j, j)
2,4 + A( j, j)

4,4

]

di j := −
[
A(i, j)
1,1 + A(i, j)

1,3 + A(i, j)
3,1 + A(i, j)

3,3 + A(i, j)
2,2 + A(i, j)

2,4 + A(i, j)
4,2 + A(i, j)

4,4

−(A(i, j)
1,2 + A(i, j)

2,1 + A(i, j)
1,4 + A(i, j)

4,1 + A(i, j)
2,3 + A(i, j)

3,2 + A(i, j)
3,4 + A(i, j)

4,3
)]
,

(4.23)
with A(i, j)

n,m := A4(i−1)+n,4( j−1)+m , n,m ∈ {1, 2, 3, 4}, i, j ∈ {1, . . . , N } and

c j := 2

ε
(C j − 1). (4.24)

Recall that A is symmetric, hence di j = d ji .

Remark 4.4. We point out that the variables Ki in (4.22) reads, in the coordinates {α j } j
[see (4.9)] as

Ki := |αn4(i−1)+1 |2 = |αn4(i−1)+3 |2 = 1− |αn4(i−1)+2 |2 = 1− |αn4(i−1)+4 |2 ∀i = 1, . . . , N .

It can be easily seen that the hyperplanes {K j = 0}, {K j = 1} are invariant under the
Hamiltonian (4.22). Indeed one can understand the Hamiltonian (4.22) as defined on the
product sphere (S2)N by “blowing down” the sets {K j = 0}, {K j = 1} to a point in
each sphere. That is, one can consider local coordinates

x j =
√
2K j cos

ψ j

2
, y j =

√
2K j sin

ψ j

2
(4.25)

which blow down {K j = 0}. Then, the Hamiltonian (4.22) becomes

H(x1, . . . , xN , y1, . . . , yN ) = 1

2

N∑

j=1

(
3x2j − y2j

)
− 1

4

N∑

j=1

(
3x2j − y2j

) (
x2j + y2j

)

+ ε

[
1

2

N∑

j=1

a j

(
x2j + y2j

)
+
1

4

N∑

j=1

b j

(
x2j + y2j

)2

+
1

4

N∑

i, j=1,i< j

di j
(
x2i + y2i

) (
x2j + y2j

)

+
1

4

N∑

h=1

c j
(
x2j − y2j

) (
2− x2j − y2j

) ]
.

(4.26)
From the particular form of this Hamiltonian, it is clear that {x j = y j = 0} is invariant
under the associated flow. In particular the point

P− = {x j = 0, y j = 0, j = 1 . . . N
}
, (4.27)
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is a saddle (for small ε) with N dimensional stable and unstable manifolds. One can
analogously blow down {K j = 1} by considering the coordinates

x j =
√
2(1− K j ) cos

ψ j

2
, y j =

√
2(1− K j ) sin

ψ j

2

and one also obtains that, for ε small enough, P+ = {x j = 0, y j = 0, j = 1 . . . N }
is a saddle with N dimensional stable and unstable manifolds. This saddle is the “blow
down” of {K1 = . . . = KN = 1}.

5. Dynamics of the Resonant Model

The reduced Hamiltonian (4.22) for N = 2 is of the form

H(ε;ψ1, ψ2, K1, K2) =H0(ψ1, ψ2, K1, K2) + εH1(ψ1, ψ2, K1, K2)

H0(ψ1, ψ2, K1, K2) =H(1)
0 (ψ1, K1) +H(2)

0 (ψ2, K2)

H(1)
0 (ψ1, K1) = K1(1− K1)(1 + 2 cos(ψ1))

H(2)
0 (ψ2, K2) = K2(1− K2)(1 + 2 cos(ψ2))

H1(ψ1, ψ2, K1, K2) = a1K1 + b1K
2
1 + a2K2 + b2K

2
2 + c1K1(1− K1) cos(ψ1)

+ c2K2(1− K2) cos(ψ2) + d12K1K2.

(5.1)
Note that the only term which couples the two unperturbed Hamiltonians H(1)

0 , H(2)
0 is

d12K1K2. The Hamiltonian H is reversible with respect to the involution

ϒ(ψ1, ψ2, K1, K2) = (−ψ1,−ψ2, K1, K2). (5.2)

5.1. Unperturbed dynamics (ε = 0). For ε = 0, the Hamiltonian system H0 is the
product of the two uncoupled 1-d.o.f systems with Hamiltonian H(i)

0 , i = 1, 2 and

therefore it is integrable. We analyze the dynamics given byH(i)
0 . We analyze it only for

H(1)
0 since both Hamiltonians are equal.
The associated equations of motion are given by

�̇1 = (1− 2K1)(1 + 2 cos(ψ1))

K̇1 = 2 sin(ψ1) K1 (1− K1).

The sets {K1 = 0} and {K1 = 1} areH(1)
0 -invariant 1-dimensional tori which correspond

to the hyperbolic tori (4.15) after symplectic reduction and correspond to saddles in
proper “blow down” coordinates [see (4.25), (4.27)). The sets {K1 = 0} and {K1 = 1}
possess the hyperbolic equilibrium points (±�∗, 0), (±�∗, 1) with

�∗ = 2π/3. (5.3)

Such equilibria are hyperbolic with eigenvalues±√3. Their invariant manifolds outside
of {K1 = 0} and {K1 = 1} correspond to the invariant manifolds of the saddles P± in
(4.27).
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Fig. 4. Phase space of the Hamiltonian H(1)
0 in (5.1)

The tori {K1 = 0} and {K1 = 1} are on the same energy level H(1)
0 = 0 and the

saddles (±�∗, 0) and (±�∗, 1) are connected through the heteroclinic orbits

(ψ1(t), K1(t)) =
(
±�∗,

1

1 + e∓
√
3t

)

(see Fig. 4).
For 0 < K1 < 1, the dynamics of the HamiltonianH(1)

0 can be also analyzed easily.
Consider the “half” of the phase space (−2π/3, 2π/3) × (0, 1) ⊂ T × (0, 1) limited
by the heteroclinic orbits (the other “half” is symmetric). It has an elliptic points at
(ψ1, K1) = (0, 1/2) and the rest is foliated by periodic orbits

Ph := {H(1)
0 = h} with h ∈ (0, 3/4). (5.4)

When h → 0, the periodic orbits “tend” to the sequence of heteroclinics and K1 = 0, 1
and therefore their period Th → +∞.

Hence, the dynamics of the 2-dof HamiltonianH0 in (5.1) has the following features.
The invariant tori

T0 := {K1 = K2 = 0}, T1 := {K1 = K2 = 1} (5.5)

are two invariant Lagrangian tori for the system (5.1). They possess the equilibrium
points

e
(0)
+ := (�∗, �∗, 0, 0), e

(1)
+ := (�∗, �∗, 1, 1),

e
(1)
− := (−�∗,−�∗, 1, 1), e

(0)
− := (−�∗,−�∗, 0, 0) (5.6)

connected by the following heteroclinic manifolds

γ+(τ1, τ2) := (ψ+
1 (τ1), ψ

+
2 (τ2), K

+
1 (τ1), K

+
2 (τ2)) =

(
�∗, �∗,

1

1 + e−
√
3τ1

,
1

1 + e−
√
3τ2

)
,

γ−(τ1, τ2) := (ψ−
1 (τ1), ψ

−
2 (τ2), K

−
1 (τ1), K

−
2 (τ2)) =

(
−�∗,−�∗,

1

1 + e
√
3τ1

,
1

1 + e
√
3τ2

)
.

(5.7)
In particular γ+ connects the points e

(0)
+ , e(1)+ and γ− connects e(1)− with e(0)− . The trajec-

tories in the heteroclinic manifolds are just given by γ±(τ1 + t, τ2 + t), t ∈ R.
The 4-dimensional phase space of Hamiltonian H in (5.1) with ε = 0 has several

three-dimensional invariant subspaces setting either K1 or K2 equal to 0 or 1, and two
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dimensional invariant subspaces setting either (ψ1, K1) or (ψ2, K2) at one of the saddles.
Thus, one can define the hyperbolic periodic orbits (recall (5.4)]

Pσ,s
h := {(ψ1, ψ2, K1, K2) : (ψ1, K1) ∈ Ph, ψ2 = σ�∗, K2 = k}, σ = ±, s = 0, 1,

(5.8)

and one could define analogously the other ones placing them at the other saddles.
For ε = 0, the Hamiltonian system (5.1) possesses two 2-dimensional heteroclinic

manifolds Ws(e
(0)
+ ) = Wu(e

(1)
+ ), Wu(e

(0)
− ) = Ws(e

(1)
− ). They are certainly not robust

under perturbations. We show that, under a generic non-degeneracy condition, those
heteroclinic manifolds break down when 0 < ε 
 1 creating transverse intersections
between some of the stable and unstable invariant manifolds.

5.2. Non-integrable dynamics (ε > 0): 2 resonant tuples. For ε > 0, the tori T0 and
T1 in (5.5) are still invariant and they still possess saddles which are ε–close to the
unperturbed saddles e( j)± , j = 0, 1. These saddles have 2-dimensional stable and unstable
invariant manifolds.

Remark 5.1. Abusing notation, we also denote by e
( j)
± , j = 0, 1 the saddles of the

perturbed Hamiltonian (5.1) with 0 < ε 
 1, which are ε-close to those defined by
(5.6).

Theorem 5.2. Consider the Hamiltonian (5.1) and assume that

d12 �= 0 (see (5.1)). (5.9)

Then, there exists ε0 > 0 such that for all ε ∈ (0, ε0), the invariant manifolds Wu
ε (e

(0)
+ )

and Ws
ε (e

(0)
− ) of the saddles (5.6) of the Hamiltonian (5.1) intersect transversally along

an orbit (within the energy level).

Note that this theorem is not a classical perturbative result. Indeed, for ε = 0 the
saddles e(0)± did not have any connection since their invariant manifolds coincided with

those of e(1)± along heteroclinic connections. Therefore, the prove of Theorem 5.2 is not a
direct consequence ofMelnikov Theory (is not a theorem about persistence, is a theorem
about new heteroclinic connections). Thus, we prove this theorem in two steps. First in
Sect. 5.2.1 we apply Melnikov Theory to prove the existence of transverse (within the
energy level) heteroclinic connections between e

(0)
+ and e

(1)
+ (under certain conditions).

Then, in Sect. 5.2.2, we use this analysis to prove the existence of the connections given
in Theorem 5.2 through a suitable modification of Melnikov Theory.

5.2.1. Transversal heteroclinic orbits to saddles The first step to prove Theorem 5.2
is to prove the existence of heteroclinic intersections between the saddles e(0)± and e

(1)
± .

This step is certainly not necessary to obtain homoclinic intersections. Nevertheless,
it will make considerably easier the computation of the Melnikov function associated
to the homoclinic intersections. To obtain the mentioned heteroclinic intersections, one
certainly needs that the saddles belong to the same energy level, that is, H(e

(0)
± ) =

H(e
(1)
± ). By (5.1) this condition is equivalent to

a1 + b1 + a2 + b2 + d12 = 0. (5.10)
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Fig. 5. Transverse heteroclinic orbits for ε small enough

Proposition 5.3. The Hamiltonian (5.1) possesses four hyperbolic fixed points e(0)± , e(1)±
such that the following holds. If (5.10) is satisfied and

(a1 + b1)(a2 + b2) > 0, (5.11)

there exists ε0 > 0 such that for ε ∈ (0, ε0) the manifolds Wu
ε (e

(0)
+ ) and Ws

ε (e
(1)
+ )

intersect transversally along orbits (within the energy level). The same happens for
Ws

ε (e
(0)
− ) and Wu

ε (e
(1)
− ).

See in Fig. 5 an example of heteroclinic connections.We devote the rest of the section
to prove Proposition 5.3.

Proof of Proposition 5.3. Thanks to the symmetry (5.2) of the system (5.1), one of the
intersections implies the other one. We just deal with the first one.

Consider a compact subset K of R2. Let τ = (τ1, τ2) ∈ K and m > 0. We consider
the line

�(τ ) = {γ+(τ ) + r ∇H(1)
0 (γ+(τ )), r ∈ (−m,m)},

which passes through γ+(τ ) and it is orthogonal to {H(1)
0 = H(1)

0 (γ+(τ ))} at γ+(τ ).
Since the system has two degrees of freedom and energy conservation, it is enough
to measure the distance along this line. It would be equivalent to consider H(2)

0 . Since

γ+(τ ) ∈ Ws
0 (e

(1)
+ ) = Wu

0 (e
(0)
+ ), if we consider ε small enough we can ensure that

�(τ ) intersects transversally Ws
ε (e

(1)
+ ) and Wu

ε (e
(0)
+ ) at just one point, qsε = qsε (τ ) and

quε = quε (τ ) respectively. Then, the distance between the invariant manifolds in �(τ ) is
given by

d(τ ) :=
〈

∇H(1)
0 (γ+(τ ))

‖∇H(1)
0 (γ+(τ ))‖

, qsε (τ )− quε (τ )

〉
. (5.12)

Application of the classical Melnikov Theory gives the following result.

Lemma 5.4. The function d(τ ) introduced in (5.12) satisfies

d(τ ) = ε

‖∇H(1)
0 (γ+(τ ))‖

M+(τ ) +OC1(K)(ε
2), τ ∈ K,

where

M+(τ ) :=
∫

R

{H(1)
0 ,H1} ◦�t

H0
(γ+(τ )) dt =

∫

R

{H(1)
0 ,H1} ◦ (γ+(τ1 + t, τ2 + t)) dt

(5.13)
is the so-called Melnikov function (see [36]).
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Since the Hamiltonian system (5.1) is autonomous, the Melnikov function M+ de-
pends just on the one-dimensional variable τ1 − τ2. That is, there exists a function
M(0)

+ : R → R such that

M+(τ1, τ2) = M(0)
+ (τ1 − τ2).

ByLemma5.4,wewill deduceTheorem5.3 by proving that there exists a non-degenerate
zero of the function M(0)

+ in (5.13).
It is convenient to introduce the Melnikov potential L+ : R2 → R, since it is usually

easier to compute. It is defined, up to constants, as a primitive of the Melnikov function,
namely

∂τ1L+(τ ) = M+(τ ).

We have

L+(τ ) =
∫

R

H1 ◦�t
H0

(γ+(τ )) dt =
∫

R

H1 (γ+(τ1 + t, τ2 + t)) dt.

Recall that we are assuming (5.10), which impliesH1(e
(0)
+ ) = H1(e

(1)
+ ) = 0. Therefore,

the integrand decays exponentially to zero as t →±∞.
The Melnikov potential satisfies L+(τ ) = L(0)

+ (τ0) where τ0 := τ1 − τ2 and L(0)
+ is

called reduced Melnikov potential. Then,

∂τ0L
(0)
+ (τ0) = M(0)

+ (τ0).

Hence we shall look for non-degenerate critical points ofL(0)
+ , which correspond to non-

degenerate zeros ofM(0)
+ . The following lemma concludes the proof of Proposition 5.3.

Lemma 5.5. There exists a constant η̃ ∈ R such that the reduced Melnikov potential
L(0)
+ is given by

L(0)
+ (τ0) = τ0

(a1 + b1) e−
√
3τ0 + (a2 + b2)

1− e−
√
3τ0

+ η̃. (5.14)

Therefore, provided (5.11) is satisfied, it possesses a non-degenerate critical point.

Remark 5.6. Note thatϒγ+(τ ) = γ−(−τ ), i = 1, 2 [see (5.7)] whereϒ is the involution
introduced in (5.2).Then L+(τ ) = L−(−τ ) and L(0)

+ (τ0) = L(0)
− (−τ0) . Therefore, if

(5.11) holds, L(0)
− has a non-degenerate critical point.

Proof of Lemma 5.5. Using the definition of H0 in (5.1), (5.10), one can write L+ as

L+(τ ) = (a2 + b2)
∫

R

K +
1 (t + τ1)(1− K +

2 (t + τ2)) dt + (a1 + b1)
∫

R

K +
2 (t + τ2)(1− K +

1 (t + τ1)) dt + η̃

= (a2 + b2)
∫

R

K +
1 (s + τ0)(1− K +

2 (s)) ds + (a1 + b1)
∫

R

K +
2 (s)(1− K +

1 (s + τ0)) ds + η̃

=: L(0)
+ (τ0),

where τ0 = τ1 − τ2 and the constant η̃ ∈ R is given by

η̃ :=
∫

R

(b1K1(t)(K1(t)− 1) + b2K2(t)(K2(t)− 1)) dt

+
∫

R

(c1K1(t)(1− K1(t)) cos�∗ + c2K2(t)(1− K2(t)) cos�∗) dt.
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For i, j = 1, 2 we have [recall (5.7)]

∫

R

K +
i (t + τi )(1− K +

j (t + τ j )) dt =
∫

R

e−
√
3(t+τ j )

(1 + e−
√
3(t+τi ))(1 + e−

√
3(t+τ j ))

dt

= (τi − τ j )
1

1− e−
√
3(τi−τ j )

,

(5.15)

which gives (5.14). Therefore, we have that

lim
τ0→+∞ ∂τ0L

(0)
+ (τ0) = a2 + b2, lim

τ0→−∞ ∂τ0L
(0)
+ (τ0) = −(a1 + b1).

If (a1 + b1)(a2 + b2) > 0 (see (5.11)) the reduced Melnikov potential L(0)
+ has at least

one critical point. Moreover,

∂2τ0L
(0)
+ (τ0) = −(a1 + b1 + a2 + b2)

√
3

4

(
2−√

3τ0 coth

(√
3τ0
2

))
csch2

(√
3τ0
2

)
.

By (5.11) this function has constant sign since

2−√
3τ0 coth

(√
3τ0
2

)
< 0 ∀τ0 �= 0,

lim
τ0→0

(
2−√

3τ0 coth

(√
3τ0
2

))
csch2

(√
3τ0
2

)
= −2

3
.

Therefore L(0)
+ is either convex or concave (depending on the sign of a1 + b1 + a2 + b2)

and its critical points are non-degenerate. ��

5.2.2. Transversal homoclinic orbits to saddles: Proof of Theorem 5.2 We use the com-
putation of the heteroclinic Melnikov potential in Lemma 5.5 to prove the existence of
homoclinic transversal intersections given by Theorem 5.2.

Since the Hamiltonian (5.1) with ε = 0 does not have connections between e
(0)
± , we

cannot apply directly Melnikov Theory to obtain such connections for ε > 0. Instead,
we exploit the usual technique of considering a modified unperturbed Hamiltonian and
using two parameters ε and δ.

We consider the Hamiltonian

H = H0 + εH1, H0(ψ1, ψ2, K1, K2) = H(1)
0 +H(2)

0 ,

H(1)
0 (ψ1, ψ2, K1, K2) = K1(1− K1)(1 + 2 cos(ψ1))− δK 2

1 ,

H(2)
0 (ψ1, ψ2, K1, K2) = K2(1− K2)(1 + 2 cos(ψ2))− δK 2

2
(5.16)

and

H1(ψ1, ψ2, K1, K2) := d12 K1 K2 + a1K1 + (b1 + 1)K 2
1 + c1 K1(1− K1) cos(ψ1)

+ a2K2 + (b2 + 1)K 2
2 + c2 K2(1− K2) cos(ψ2).

(5.17)
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If one takes δ = ε, this Hamiltonian coincides with (5.1). Nevertheless, for now we
consider δ and ε independent parameters. Later one we will take δ = ε.

If δ = 0, then the dynamics of H0 is the same described in Sect. 5.1. If δ �= 0, the
tori defined in (5.5) are H0-invariant; moreover, they belong to different energy levels,
since

H0|T0 = 0, H0|T1 = −2δ.

The equilibrium points contained in T0 are the saddles e(0)± defined in (5.6). Now we

compute the heteroclinic manifold that connects (forward in time) e(0)+ with e
(0)
− (see

Fig. 6). Such orbit corresponds to a homoclinic to the saddle P− in (4.27) (expressed in
the “blow down” coordinates (4.25)).

Lemma 5.7. The saddles e(0)+ with e
(0)
− of Hamiltonian H0 in (5.16) are connected by a

two-dimensional heteroclinic manifold parameterized as

γ0(τ ) : = (γ
(1)
0 (τ1), γ

(2)
0 (τ2)) = (ψ

(0)
1 (τ1), ψ

(0)
2 (τ2), K

(0)
1 (τ1), K

(0)
2 (τ2)),

ψ
(0)
j (τ j ) : = 2 arctan(�(τ j )), K (0)

j (τ j ) = 1

1− δ
3 (1− 2 cosh(

√
3τ j ))

j = 1, 2,

(5.18)

where �(t) := −√3 tanh

(√
3

2
t

)
.

Proof. Using that H(1)
0 is zero when restricted to T0 we get

K1 = 1 + 2 cos(ψ1)

1 + 2 cos(ψ1) + δ
. (5.19)

When the angle ψ1 ∈ [−�∗, �∗] the numerator in (5.19) is positive. Hence K1 ∈ (0, 1)
if δ > 0. Plugging (5.19) in the equation for ψ1 we have

ψ̇1 = −(1 + 2 cos(ψ1)),

which leads to

ψ1(t) = 2 arctan(�(t)), �(t) = −√3 tanh

(√
3

2
t

)
. (5.20)

By using (5.19) and the trigonometric identity cos(2 arctan(x)) = (1− x2)/(1 + x2) we
have

K (0)
j (t) = 1

1− δ
3 (1− 2 cosh(

√
3t))

. (5.21)

Reasoning in the same way for (ψ2, K2) we get that the homoclinic orbit to T0 is given
by (5.18). ��
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Fig. 6. Phase space restricted to the (ψ1, K1)-coordinates for the Hamiltonian H in (5.16)–(5.17)

By reasoning as in the proof of Theorem 5.3 we have that the distance between the
manifolds in a suitable section is given by

d(τ ) = ε

‖∇H(1)
0 (γ0(τ ))‖

M0(τ ) +OC1(K)(ε
2), τ ∈ K, (5.22)

where the Melnikov function is given by

M0(τ ) =
∫

R

{H(1)
0 ,H1} ◦�t

H0
(γ0(τ )) dt. (5.23)

It can be easily checked that the OC1(K)(ε
2) are uniform for δ small enough.

The associated Melnikov potential is

L0(τ ) =
∫

R

H1 ◦�t
H0

(γ0(τ )) dt = d12

∫

R

K (0)
1 (t + τ1) K

(0)
2 (t + τ2) dt + η∗

where

η∗ =
∫

R

(
a1K

(0)
1 (t) + (b1 + 1)(K (0)

1 (t))2 + c1 K
(0)
1 (t)(1− K (0)

1 (t)) cosψ(0)
1 (t)

)
dt

+
∫

R

(
a2K

(0)
2 (t) + (b2 + 1)(K (0)

2 (t))2 + c2 K
(0)
2 (t)(1− K (0)

2 (t)) cosψ(0)
2 (t)

)
dt.

As before we consider the reduced Melnikov potential

L(0)
0 (τ0) = d12

∫

R

K (0)
1 (s + τ0) K

(0)
2 (s) ds + η∗. (5.24)

We want to deduce that L(0)
0 has non-degenerate critical points by using the informa-

tion on the Melnikov potentials (5.14) of the heteroclinic case.

Proposition 5.8. Fix an interval I ⊂ R. There exists δ0 > 0 such that ∀δ ∈ (0, δ0) there
exists a real number η and a constant ν0 > 0 such that, for τ0 ∈ I,

L(0)
0 (τ0) = η + d12 τ0 coth

(√
3τ0
2

)
+OC2(I)(δν0).

The proof of this proposition is deferred to Sect. 5.2.3. To complete the proof of
Theorem 5.2 it is enough use (5.22) and Proposition 5.8 and take δ = ε. Indeed, the
transverse homoclinic points are ε-close to the non-degenerate critical point for L(0)

0 .

By Proposition 5.8, L(0)
0 has a non-degenerate critical point εν0 -close to τ0 = 0.
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5.2.3. Proof of Proposition 5.8 Thanks to the exponential convergence of the homoclinic
orbit to the equilibrium points e(0)± we have that (recall (5.18))

∫

R

K (0)
j (t) dt < ∞ i = 1, 2.

We write L(0)
0 as

L(0)
0 (τ0) = −d12

∫

R

K (0)
1 (s + τ0) (1− K (0)

2 (s)) ds + η1, (5.25)

where

η1 = η∗ + d12

∫

R

K (0)
1 (s)ds.

Define the function

F(ψ1, ψ2, K1, K2) = K1(1− K2).

By (5.15), we have that

F+(τ1, τ2) =
∫

R

F(γ+(τ1 + t, τ2 + t))dt = (τ1 − τ2)
1

1− e−
√
3(τ1−τ2)

,

F−(τ1, τ2) =
∫

R

F(γ−(τ1 + t, τ2 + t))dt = −(τ1 − τ2)
1

1− e
√
3(τ1−τ2)

,

which is just the integral of the function F along the heteroclinic orbits γ± introduced
in (5.7). These functions satisfies F±(τ1, τ2) = F±(0, τ2 − τ1).

Since the homoclinic orbit (5.18) is “close” to the concatenation of γ+ and γ− in
(5.7), we show that there exists ν0 > 0 such that the integral in (5.25) satisfies

∫

R

K (0)
1 (s + τ0) (1− K (0)

2 (s)) ds = F+(0, τ0) + F−(0, τ0) +O
(
δν0
)

= τ0coth

(√
3τ0
2

)
+O

(
δν0
)
.

The estimate for the error is proved in the following lemma. To state it, we define

OF (τ ) :=
∫

R

[
F(γ0(τ1 + t, τ2 + t))− F(γ+(τ1 + t, τ2 + t))− F(γ−(τ1 + t, τ2 + t))

]
dt.

(5.26)

Lemma 5.9. Let K be a compact subset of R2. There exists δ0 > 0 small, such that
∀δ ∈ (0, δ0) and τ ∈ K there exists a positive constant ν0 ∈ (0, 1) such that the
following holds

‖OF‖C0(K) + ‖∂τ1OF‖C0(K) + ‖∂2τ1OF‖C0(K) � δν0 . (5.27)

This lemma implies Proposition 5.8. We devote the rest of this section to prove
Lemma 5.9.
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Proof of Lemma 5.9. We write the function OF in (5.26) as

OF (τ ) :=
∫

R

F(γ0(τ1 − p + t, τ2 − p + t)− F(γ+(τ1 + t,

τ2 + t)− F(γ−(τ1 − 2p + t, τ2 − 2p + t)) dt

where

p := 1√
3

∣∣∣∣ln
δ

3

∣∣∣∣ . (5.28)

Note that the shifts by the vector (p, p) do not alter the value of the integral. These
shifts are useful to bound the integrand. To obtain such estimates, we need the following
lemmas.

Lemma 5.10. Let σ1 ∈ (0, 1). Consider γ±, γ0 in (5.18), (5.7) and

I :=
(
− σ1√

3

∣∣∣∣ln
δ

3

∣∣∣∣ ,
σ1√
3

∣∣∣∣ln
δ

3

∣∣∣∣

)
. (5.29)

There exists a constant ν ∈ (0, 1) such that
∥∥∥K (0)

i (τi ∓ p + t)− K±
i (τi + t)

∥∥∥
C0(I×K)

� δν, i = 1, 2, (5.30)
∥∥∥sin

(
ψ

(0)
i (τi ∓ p + t)

)
− sin(ψ±

i (τ + t))
∥∥∥
C0(I×K)

� δν i = 1, 2. (5.31)

Proof. To simplify the notation let us consider i = 1. By (5.21) we have that

K (0)
1 (t ± p) = 1

1 + e±
√
3t − δ

3 + δ2

9 e
∓√3t

.

Thus for σ ∈ [−σ1, σ1],
∣∣∣∣K

(0)
1

(
σ√
3

∣∣∣∣ln
δ

3

∣∣∣∣± p

)
− K∓

1

(
σ√
3

∣∣∣∣ln
δ

3

∣∣∣∣

)∣∣∣∣ � max{δ, δ2−σ1}.

This gives the bounds (5.30). By using (5.20) and the trigonometric identity
sin(2 arctan(x)) = 2x/(1 + x2) we have

sin(ψ(0)
1 (t)) = −

√
3 sinh

(√
3t
)

2 cosh
(√

3t
)
− 1

= −
√
3

2
tanh(

√
3t)
(
1 +

1

2 cosh(
√
3t)− 1

)
.

Then, for t± = ±p +
σ√
3

∣∣∣∣ln
δ

3

∣∣∣∣ with σ ∈ [−σ1, σ1], we have

tanh(
√
3t±) = ±1 +O

(
δ2(1−σ1)

)
,

1

2 cosh(
√
3t±)− 1

= O
(
δ1−σ1

)
.

To prove (5.31) it is enough to use these estimates and (5.7), to obtain

sin(ψ(0)
1 (t±)) = ∓

√
3

2
+O

(
δ1−σ1

)
= sin(ψ∓

i (τi )) +O
(
δ1−σ1

)
.

��
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Lemma 5.11. There exists T > 0 independent of ε such that (see (5.7), (5.18))

‖γ+(τ1 + t, τ2 + t)− e
(0)
+ ‖C0(K) � e

√
3t for t < 0,

‖γ+(τ1 + t, τ2 + t)− e
(1)
+ ‖C0(K) � e−

√
3t for t > 0,

‖γ−(τ1 + t, τ2 + t)− e
(1)
− ‖C0(K) � e

√
3t for t < 0,

‖γ−(τ1 + t, τ2 + t)− e
(0)
− ‖C0(K) � e−

√
3t for t > 0,

‖γ0(τ1 − p + t, τ2 − p + t)− e
(0)
+ ‖C0(K) � e

√
3t for t < −T,

‖γ0(τ1 + p + t, τ2 + p + t)− e
(0)
− ‖C0(K) � e−

√
3t for t > T .

Proof. The lemma follows by straightforward estimates and the hyperbolicity of the
equilibria. ��

We split R =⋃5
k=1 Ik

I1 := (−∞,a), I2 := [a,b], I3 := [b,c], I4 := [c,d], I5 := (d,+∞)

with

a = − 3

4
√
3
|ln δ| , b = 3

4
√
3
|ln δ| , c = 2p− 3

4
√
3
|ln δ| , d = 2p +

3

4
√
3
|ln δ| .

We have

∫

R

[
F(γ (τ1 − p + t, τ2 − p + t))− F(γ+(τ1 + t, τ2 + t))

− F(γ−(τ1 − 2p + t, τ2 − 2p + t))
]
dt =

5∑

j=1

T j

where

T1 =
∫

I1

[
F(γ0(τ1 − p + t, τ2 − p + t))− F(γ+(τ1 + t, τ2 + t))

]
dt (5.32)

T2 =
∫

I2

[
F(γ0(τ1 − p + t, τ2 − p + t))− F(γ+(τ1 + t, τ2 + t))

]
dt (5.33)

T3 =
∫

I3
F(γ0(τ1 − p + t, τ2 − p + t)) dt −

∫ +∞

b
F(γ+(τ1 + t, τ2 + t)) dt (5.34)

−
∫ c

−∞
F(γ−(τ1 − 2p + t, τ2 − 2p + t)) dt

T4 =
∫

I4

[
F(γ0(τ1 − p + t, τ2 − p + t))− F(γ−(τ1 − 2p + t, τ2 − 2p + t))

]
dt

(5.35)

T5 =
∫

I5

[
F(γ0(τ1 − p + t, τ2 − p + t))− F(γ−(τ1 − 2p + t, τ2 − 2p + t))

]
dt.

(5.36)
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By the symmetry of the problem it is sufficient to provide bounds for |Ti |with i = 1, 2, 3.
The idea is to use the exponentially fast convergence of the orbits γ0, γ± to the saddles
(see Lemma 5.11) to get bounds on the integrals over the unbounded intervals and to
exploit the closeness of such orbits on the compact intervals using Lemma 5.10.

• Bound for T1 (see (5.32)): Let us call S := {γ0(τ1 − p + t, τ2 − p + t)}t∈I1 . S is

a compact subset of R2. Recalling that F(e(0)+ ) = 0, by Lemma 5.11 and the mean
value theorem we have that (recall (5.18))

∫

I1
|F(γ0(τ1 − p + t, τ2 − p + t))| dt =

∫

I1
|F(γ0(τ1 − p + t, τ2 − p + t))− F(e(0)+ )| dt

≤ ‖F‖C1(S)

∫

I1
‖γ0(τ1 − p + t, τ2 − p + t)− e

(0)
+ ‖ dt

� δ3/4.

(5.37)
By Lemma 5.11, the compactness of the orbit {γ+(τ1 + t, τ2 + t)}t∈I1 , F(e(0)+ ) = 0
one can reason in the same way to obtain the same bound for the term involving γ+.
• Bound for T2 (see (5.33)): We note that I2 is of the form (5.29). By using the
compactness of the orbits and the mean value theorem as in the previous step, we can
apply Lemma 5.10 and obtain

|T2| � δν |I2| � δν |ln δ| (5.38)

where ν ∈ (0, 1) is given by Lemma 5.10.
• Bound for T3 (see (5.34)):We use that F(1, 1) = 0. Let us denotem := −(b− p) =
c− p > 0 (see (5.28) for the definition of p). By translating the variable t we obtain

∫

I3
|F(γ0(τ1 − p + t, τ2 − p + t))| dt =

∫

I3
|F(γ0(τ1 − p + t, τ2 − p + t))− F(1, 1)| dt

=
∫ m

−m
|F(γ0(τ1 + t, τ2 + t))− F(1, 1)| dt

� ‖F‖C1(S)

2∑

i=1

∫ m

−m
|K (0)

i (t)− 1| dt.

Now, using (5.21), one can see that on the interval [−m,m], one has that |K (0)
i (t)−

1| � δ3/4, which implies
∫

I3
|F(γ0(τ1 − p + t, τ2 − p + t))| dt � δ3/4 |ln δ|.

By Lemma 5.11 we have
∫ ∞

b
|F(γ+(τ1 + t, τ2 + t))| dt � δ3/4

∫ c

−∞
|F(γ−(τ1 − 2p + t, τ2 − 2p + t))| dt =

∫ a

−∞
|F(γ−(τ1 + t, τ2 + t))| dt � δ3/4.

Hence,
|T3| � δ3/4 |ln δ|. (5.39)
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By (5.37), (5.38), (5.39) we have that

‖OF‖C0(A) � δν |ln δ|
(changing ν if necessary). Now we observe that (recall (5.1), (5.16))

∂τ1F(γ0(τ1 − p + t, τ2 − p + t)) = {F,H(1)
0 }(γ0(τ1 − p + t, τ2 − p + t))

∂τ1F(γ+(τ1 + t, τ2 + t)) = {F,H(1)
0 }(γ+(τ1 + t, τ2 + t)),

∂τ1F(γ−(τ1 − 2p + t, τ2 − 2p + t)) = {F,H(1)
0 }(γ−(τ1 − 2p + t, τ2 − 2p + t)).

By the particular form of the HamiltoniansH(1)
0 and H(1)

0 in (5.1), (5.16) one can check

that {F,H(1)
0 } = {F,H(1)

0 }. Let us call G := {F,H(1)
0 }. Clearly G(e

(0)
± ) = G(e

(1)
± ) = 0.

Now we can repeat the same strategy to get the bounds for the associated Ti . The only
difference is that when we compare the orbits γ0, γ± on compact intervals we need to
use also (5.31). Then we obtain ‖OG‖C0(K) � δν |ln δ| (recall (5.26)).

Regarding the second derivatives in τ1 we have

∂2τ1F(γ0(τ1 − p + t, τ2 − p + t)) = {G,H(1)
0 }(γ0(τ1 − p + t, τ2 − p + t))

∂2τ1F(γ+(τ1 + t, τ2 + t)) = {G,H(1)
0 }(γ+(τ1 + t, τ2 + t)),

∂2τ1F(γ−(τ1 − 2p + t, τ2 − 2p + t)) = {G,H(1)
0 }(γ−(τ1 − 2p + t, τ2 − 2p + t)).

We observe that on a compact set |{G,H(1)
0 }−{G,H(1)

0 }| � δ. Then we can consider the

function E := {G,H(1)
0 } and repeat the same arguments above to prove that ‖OE‖C0(K)

has a bound like (5.27). We conclude by noting that

‖OF‖C0(K) + ‖∂τ1OF‖C0(K) + ‖∂2τ1OF‖C0(K) � ‖OF‖C0(K)

+‖OG‖C0(K) + ‖OE‖C0(K).

��

5.3. Transversal homoclinic orbits to saddles: N resonant tuples. In this section we
prove the generalization of Theorem 5.2 for the case of multiple resonant tuples. To
break integrability we need to impose a non-degeneracy condition on the coefficients
di j in (4.23). To state it we introduce the matrix

D =

⎛

⎜⎜⎜⎜⎝

d1,N +
∑

j �=1 d1, j −d1,2 . . . −d1,N−1

−d2,1
. . .

...
...

...
...

. . . −dN−2,N−1
−dN−1,1 . . . −dN−1,N−2 dN−1,N +

∑
j �=N−1 dN−1, j

⎞

⎟⎟⎟⎟⎠
.

(5.40)

Proposition 5.12. Assume that the matrix D satisfies

detD �= 0. (5.41)

Then, there exists ε0 > 0 such that for all ε ∈ (0, ε0) the invariant manifolds W−
ε (e

(0)
− )

and W+
ε (e

(0)
+ ) of the saddles (5.43) of the Hamiltonian (5.42) intersect transversally

along an orbit (within the energy level).
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Remark 5.13. Note that condition (5.41) is satisfied for a generic choice of coefficients
di j . Indeed, the determinant of such matrix is a polynomial in the variables di j . Then, it
is enough to show that such polynomial is not identically zero. If one consider

di j =
{
1 if i = 1, . . . , N − 1, j = N ,

0 otherwise

the matrix (5.40) is a multiple of the identity. This means that at some point the polyno-
mial is not zero and therefore it is not-zero for almost every choice of di j . In Sect. 7.2, we
prove that condition (5.41) is satisfied for the resonant models associated to the Wave,
Beam and Hartree equations that we consider.

Proof. We proceed as for the case N = 2 in Sect. 5.2.2. That is, we introduce a second
parameter δ and we define the Hamiltonian H = ∑N

j=1H
( j)
0 + εH1 given by (recall

(4.23))

H( j)
0 (ψ j , K j ; δ) := K j (1− K j )(1 + 2 cos(ψ j ))− δ K 2

j ,

H1(ψ1, . . . , ψN , K1, . . . , KN ) :=
N∑

j=1

(
a j K j + (b j + 1)K 2

j + c j K j (1− K j ) cos(ψ j )
)

+
N∑

i, j=1,i< j

di j Ki K j .

(5.42)
If δ = ε, it coincides with (4.22).

We proceed as in the proof of Theorem 5.2. For ε = 0 the dynamics is the same
described in Sect. 5.2.2. In particular it is easy to see that, when ε = 0, one can consider
the two saddle points (recall that �∗ := 2π/3)

e
(0)
± := (±�∗, . . . ,±�∗, 0, . . . , 0) (5.43)

connected by the δ-dependent homoclinic manifolds (recall (5.20), (5.18))

γ0(τ ) := (ψ
(0)
1 (τ1), . . . , ψ

(0)
N (τN ), K

(0)
1 (τ1), . . . , K

(0)
N (τN )), τ = (τ1, . . . , τN ).

We define the associated Melnikov potential

L0,N (τ ) :=
∫

R

H1 ◦�t
H0

(γ0(τ )) dt =
N∑

i, j=1,i< j

di j

∫

R

K (0)
i (τi + t) K

(0)
j (τ j + t) dt + η∗,

(5.44)
where

η∗ :=
N∑

i=1

∫

R

ai K
(0)
i (t) + (bi + 1)(K (0)

i )2(t) + ci K
(0)
i (1− K (0)

i (t)) cosψ(0)
i (t) dt.

We note that such function is the sum of terms of the form (5.24). Thanks to the au-
tonomous nature of the system the potential, L0,N depends just on τ1− τN , . . . , τN−1−
τN . Thus one can consider the reduced Melnikov potential L(0)

0,N , which satisfies

L(0)
0,N (τ1 − τN , . . . , τN−1 − τN ) = L0,N (τ1, . . . , τN ).
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Classical Melnikov Theory ensures that non-degenerate critical points of this reduced
Melnikov potential gives rise to transversal (within the energy level) intersections be-
tween W−

ε (e
(0)
− ) and W+

ε (e
(0)
+ ).

Denoting τ̃ := (τ1 − τN , . . . , τN−1 − τN ), Proposition 5.8 implies that there exists
a constant η ∈ R such that

L(0)
0,N (τ̃ ) = η +

N−1∑

i, j=1,i< j

di j (τ̃i − τ̃ j ) coth

(√
3

2
(τ̃i − τ̃ j )

)
+

N−1∑

j=1

d jN τ̃ j coth

(√
3

2
τ̃ j

)
+OC2 (δν0 )

for some ν0 > 0. Since x coth((
√
3/2)x) is an even function, the origin (0, . . . , 0) ∈

R
N−1 is a critical point of the first order of L(0)

0,N (that is, dropping the errorsOC2(δν0)).

The Hessian matrix of the first order of L(0)
0,N at the origin is

Hess = 1√
3
D

whereD is the matrix introduced in (5.40). Then, condition (5.41) implies det Hess �= 0.
The non-degeneracy of the Hessian implies that the reducedMelnikov potentialL(0)

0,N
has a non-degenerate critical point δν0–close to τ̃ = 0. Then, taking δ = ε one can use
classical Melnikov Theory to ensure the existence of the transverse intersection between
invariant manifolds stated in Proposition 5.12. ��

6. Proof of Theorem 1.3

The goal of this section is to prove Theorem 1.3. The key point of the proof is to construct
symbolic dynamics (an infinite symbols Smale horseshoe) for the resonant model (5.1)
which has been derived from the equations (1.10), (1.1), (1.2). In Theorem 5.2 we have
constructed transverse homoclinic orbits to saddles for (5.1). It is well known that the
intersection of invariant manifolds of critical points in flows do not always lead to the
existence of symbolic dynamics (see, for instance, [11]). Therefore, the first step of
the proof is to obtain transverse homoclinic points to certain periodic orbits. This is
done in Sect. 6.1. Then, following [37], in Sect. 6.2 we construct an invariant set of (a
suitable Poincaré map of) the flow associated to the Hamiltonian (5.1) whose dynamics
is conjugated to a shift of infinite symbols (see Sect. 2). Finally in Sect. 6.3 we complete
the proofs of Theorem 1.3 by checking that the non-degeneracy conditions imposed
on (5.1) are satisfied for the resonant models obtained from the PDEs (1.1), (1.10) and
(1.2).

6.1. Transversality of invariant manifolds of periodic orbits. The main result in this
section is the following.

Proposition 6.1. Consider the Hamiltonian (5.1) and assume that (5.9) holds. Then
there exists ε0 > 0 such that for all ε ∈ (0, ε0) there exists h0 = h0(ε) > 0 such that
for all h ∈ (0, h0),

(i) The hyperbolic periodic orbits P±,0
h in (5.8) persist and have period Th. That is,

Hamiltonian (5.1) has hyperbolic periodic orbits P±,0
h,ε that areO(ε)–close to P±,0

h .
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(ii) The invariantmanifoldsWu(P+,0h,ε)andW
s(P−,0

h,ε ) intersect transversally alongorbits
(within the energy level).

Note that in the coordinates introduced in (4.25), the periodic orbits P+,0h,ε and P−,0
h,ε

blow down to the same periodic orbit, whichwe denote byP0h,ε. In the coordinates (4.25),

Proposition 6.1 can be restated as that the manifolds Wu(P0h,ε) and Ws(P0h,ε) intersect
transversally within the energy level.

Proof of Proposition 6.1. Toprove (i) ismore convenient to use the cartesian coordinates
{x j , y j } in (4.25) and therefore Hamiltonian H̃Res in (4.26) (with N = 2) to avoid the
blow up of K j = 0. Then, the invariant subspace {K2 = 0} corresponds to {x2 = y2 =
0}. The Hamiltonian on this invariant subspace is given by

H(x1, 0, y1, 0) =1

2

(
3x21 − y21

)
− 1

4

(
3x21 − y21

) (
x21 + y21

)

+ ε
[1
2
a1
(
x21 + y21

)
+
1

4
b1
(
x21 + y21

)2
+
1

4
c1
(
x21 + y21

) (
2− x21 − y21

) ]
.

This Hamiltonian is integrable both for ε = 0 and ε > 0 and has the saddle (0, 0) at
the energy level. Integrability and the particular form ofH implies that the energy levels
close to zero are given by periodic orbits. These periodic orbits are ε-close to those of
the unperturbed problem (see (5.1)).

To prove (ii) we proceed as in Sect. 5 by doing approximations of several Melnikov
functions and using an auxiliary parameter δ. We follow the notation of Sect. 5.2.2, In
particular, we consider the Hamiltonians H0, H1 in (5.16), which taking δ = ε also
define the Hamiltonian H.

By the particular form of Hamiltonian H( j)
0 , j = 1, 2 (see (5.16), it can be easily

checked that it has the saddles (±�∗, 0) (they correspond to x1 = y1 = 0 in the blow
down coordinates (4.25). These saddles are connected by the homoclinic orbits γ

( j)
0 ,

j = 1, 2, introduced in (5.18).
Let h > 0 small, then the Hamiltonian H0 possesses the hyperbolic periodic orbits

P±,0
δ,h =

{(
γ
(1)
δ,h (τ ),±�∗, 0

) : τ ∈ R

}
,

where γ (k)
δ,h is the time parametrization of the periodic orbit defined by {H(k)

0 = h} (see
Fig. 6). When ε = 0, the homoclinic manifold Wu

0 (P
+,0
δ,h ) ≡ Ws

0 (P
−,0
δ,h ) is parameterized

by
�δ,h,0(τ ) := (γ

(1)
δ,h (τ1), γ

(2)
0 (τ2)). (6.1)

Remark 6.2. Theperiodic orbitsP±,0
δ,h convergepointwise for anyfixed τ to (γ (1)

0 (τ ),±�∗, 0)
as h → 0. Similarly, for fixed τ , the parametrization �δ,h,0(τ ) converges to γ0(τ ) in
(5.18) as h → 0.

When ε > 0, the periodic orbits P±,0
δ,h persist . Direct application of Melnikov Theory,

as in Sect. 5, ensures the following. There exists δ0 > 0, ε0 > 0 small enough such
that for any δ ∈ (0, δ0) and ε ∈ (0, ε0) small enough, the distance function between
the invariant manifolds Wu(P+,0h,ε) and Ws(P−,0

h,ε ) in a well chosen transversal section is
given by

d(τ ) = ε
Mh(τ )

‖∇H(2)
0 (γ

(2)
0 (τ2))‖

+O
(
ε2
)
,
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where the error O(ε2) is uniform in δ and h andMh is the Melnikov function given by

Mh(τ1, τ2) =
∫

R

{
H(2)

0 ,H1

}
(�δ,h,0(τ1 + t, τ2 + t))dt. (6.2)

We note that as t →±∞ the K2-component of �δ,h,0(τ1 + t, τ2 + t) goes exponentially
fast to zero, then by a direct computation it is easy to see that

lim
τ2→±∞{H

(2)
0 ,H1}(γ (1)

δ,h (τ1), γ
(2)
0 (τ2)) = 0

with exponentially fast convergence and (6.2) iswell defined.Toobtain thenon-degeneracy
of the zeros of the Melnikov function, we compare (6.2) to the Melnikov function (5.23)
associated to the homoclinic orbits to the saddles e(0)± .

Let us consider the reducedMelnikov functionsM(0)
h (τ0) = Mh(τ1, τ2) andM(0)

0 (τ0) =
M0(τ1, τ2), where τ0 := τ1 − τ2 (recall (5.23)).

Lemma 6.3. Let K ⊂ R be a closed interval and let us define

Oh(τ0) := M(0)
0 (τ0)−M(0)

h (τ0).

There exists δ0 > 0 small such that ∀δ ∈ (0, δ0) there exist h0 = h0(δ), positive and
small, such that ∀h ∈ (0, h0) there exists ν∗ ∈ (0, 1) such that the following holds

‖Oh‖C0(K) + ‖∂τ0Oh‖C0(K) � δν∗ .

Proof. We consider the splitting

Oh(τ0) =
∫

|t |>c| ln δ|
{H(2)

0 ,H1}(γ0(t, τ0 + t))− {H(2)
0 ,H1}(�δ,h,0(t, τ0 + t)) dt (6.3)

+
∫

|t |≤c| ln δ|
{H(2)

0 ,H1}(γ0(t, τ0 + t))− {H(2)
0 ,H1}(�δ,h,0(t, τ0 + t)) dt,

(6.4)

where c is some positive constant. We observe that

{H(2)
0 ,H1}|{K1=0} = 0 and P±,0

δ,h ⊂ {K2 = 0}.
Then, by the exponential convergence of the flow to the hyperbolic saddles e±0 and the

hyperbolic periodic orbits P±,0
δ,h , the term on the r. h. s. of (6.3) is bounded by Cδd where

C,d > 0 are two constants independent of h. Let us call I := [−c|ln δ|,c|ln δ|]. By
Remark 6.2 we have

lim
h→0

sup
(τ0,t)∈K×I

|γ0(t, τ0 + t)− �δ,h,0(t, τ0 + t)| = lim
h→0

sup
(τ0,t)∈K×I

|(γ (1)
0 (t)− γ

(1)
δ,h (t), 0)| = 0.

Hence there exists h0 = h0(δ) > 0 such that if h ∈ (0, h0) then (6.4) is bounded, up
to constant factors, by δ. The derivative ∂τ0Oh has the expression (6.3), (6.4) with the
double Poisson {H(2)

0 , {H(2)
0 ,H1}} instead of {H(2)

0 ,H1}. Clearly it is still true that this
Poisson vanishes at {K2 = 0}. Then one can repeat the same argument to get a bound
as for Oh . ��
Lemma 6.3 and Proposition 5.8 imply that Mh has a non-degenerate zero. Then, pro-
ceeding as in Sect. 5.2.2 and taking ε = δ one obtains transverse heteroclinic orbits
between the periodic orbits P+,0h,ε and P

−,0
h,ε . This completes the proof of Proposition 6.1.

��
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Fig. 7. The periodic orbit in the (�1, K1)-plane, its invariant manifolds and the section Sh

6.2. Symbolic dynamics of infinite symbols. To construct symbolic dynamics for Hamil-
tonian (5.1) we consider a section transverse to the flow, within a given energy level,
and the associated Poincaré map.

We proceed as in [37]. Fix 0 < ε 
 1 and 0 < h 
 1. We build an invariant set
with points arbitrarily close to the transverse homoclinic orbit to the Th-periodic orbit
P0h,ε obtained in Proposition 6.1.

We define the section within the energy level {H = h},
Sh = {K2 = 1/2, ψ2 ∈ (−2π/3−m,−2π/3+m), H(�1, �2, K1, K2) = h}, (6.5)

for some small m > 0 (see Fig. 7). This section is transverse to the unperturbed flow
(ε = 0) and therefore also transverse, for ε > 0 small enough, to the perturbed one.
In particular, by Proposition 6.1, it contains points in Wu(P0h,ε) ∩ Ws(P0h,ε) (classical
perturbative arguments ensure that the perturbed invariant manifolds are O(ε) to the
unperturbed ones).

Denote by �t
H the flow associated to the Hamiltonian (5.1). For a point z ∈ Sh , we

define T (z) > 0 the first (forward) return time of the trajectory �t
H(z) to this section

whenever it is defined. For those points whose forward trajectory never hits again Sh we
can take T (z) = +∞. Note that this happens in particular for the points in Ws(P−,0

h,ε )

(note that by the perturbative results in Sect. 6.1 this intersection is not empty).
Then, we define the open set U ⊂ Sh as U = {z ∈ Sh : T (z) < +∞} and the

associated Poincaré map P : U ⊂ Sh → Sh defined by

P(z) := �
T (z)
H (z).

Proposition 6.4. (Existence of Horseshoe) Assume (5.9). Then there exists ε0 > 0 such
that ∀ε ∈ (0, ε0) the Poincaré map P possesses an invariant set Y ⊂ U whose dynamics
is conjugated to the infinite symbols shift. Namely, there exists a homeomorphism h :
� → Y , where

� = N
Z = {{ωk}k∈Z : ωk ∈ N} ,

such that P|Y = h ◦ σ ◦ h−1 where σ : � → � is the shift, that is

(σω)k = ωk+1, k ∈ Z.

Moreover, h−1 can be defined as follows. Fix z∗ ∈ Y and define ω∗ = h−1(z∗). Associ-
ated to z one can define the sequence of hitting times

t0 = 0, tk = T
(
Pk−1(z)

)
for k ≥ 1, tk = T

(
Pk(z)

)
for k ≤ −1.

Then, there exists C∗ ∈ N independent of z∗ such that

ω∗
k =

⌊
tk − tk−1

Th

⌋
− C∗ (6.6)

where Th is the period of the periodic orbit P±,0
h,ε .



Chaotic-Like Transfers of Energy in Hamiltonian PDEs 1273

This proposition gives symbolic dynamics for a Poincaré map associated to Hamil-
tonian (5.1). Note that it is constructed in a way that higher symbols in � imply longer
return times. In particular those can be unbounded. The proof of this proposition follows
the same lines as the construction of symbolic dynamics done by Moser in Chapter 3 of
[37].Note that the naturalC∗ in (6.6) is just to normalize and have as symbolsN (since the
horseshoe is build close the homoclinic orbit, the hitting times satisfy |tk − tk−1| � 1).

We remark that condition (5.9) is necessary, indeed the term that breaks the integra-
bility in the Hamiltonian (5.1) has the form d12 K1 K2 (see for instance (5.16), (5.17)).
Hence if the condition (5.9) does not hold then the Hamiltonian (5.1) is integrable.

6.3. Application to the Wave, Beam and Hartree equations. To proof Theorem 1.3 (and
also the result for the Hartree equation (1.10)) by applying Proposition 6.4, one needs
to check that the condition (5.9) is satisfied by the resonant models derived from the
Hartree, Beam and Wave equations. To thus end, recall the definitions (3.7), (3.8), (3.9)
and the symplectic reduction performed in Sect. 4.3. Next lemmas check condition (5.9)
under the hypotheses considered for these three equations.

Lemma 6.5. Let us consider Hamiltonian (5.1) associated to either the Wave equation
(1.1) or the Beam equation (1.2) and to a set � satisfying Proposition 4.2. Then, the
condition (5.9) is satisfied.

Lemma 6.6. Let us considerHamiltonian (5.1) associated to theHartree equation (1.10)
with a potential V as in (1.11) and to a set� satisfying Proposition 4.1Then for a generic
choice of the {γn}n∈�, the condition (5.9) is satisfied.

These lemmas, together with Proposition 6.4, complete the proof of Item (i) of The-
orem 1.1.

Proof of Lemma 6.5. Recall (4.11), (4.23), (4.13), (3.9). For the Wave and Beam equa-
tions (1.1), (1.2),

d12 = 3

32g

∑

1≤i≤4
5≤ j≤8

(−1)i+ j

|ni |κ |n j |κ = 3

32g

(
4∑

i=1

(−1)i

|ni |κ
)⎛

⎝
8∑

j=5

(−1) j

|n j |κ

⎞

⎠

where κ = 1 for the Wave equation and κ = 2 for the Beam equation.
We write d12 in a different form. To this end, we introduce the following notations.

For each finite set of indexes I = {i1, . . . , in} ⊂ {1, . . . , 8} and for any pair of positive
integers i1, i2 ∈ {1, . . . , 8}, we define

I∏
= 1∏n

k=1 |nik |κ
, �i1,i2 = |ni1 |κ − |ni2 |κ . (6.7)

Using the identities

i, j∏
−

i,k∏
=

i, j,k∏
�k, j ,

i, j,k∏
−

l, j,k∏
=

i, j,k,l∏
�l,i ,
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and the fact that the resonance relations (see (4.2), (4.4)) imply �1,2 = �4,3, �5,6 =
�8,7, one can see that

d12 = �2,1�6,5
(|n3|κ |n4|κ − |n1|κ |n2|κ

) (|n7|κ |n8|κ − |n5|κ |n6|κ
) 1,2,3,4,5,6,7,8∏

.

(6.8)
Therefore d12 vanishes if one of the following conditions holds

|n1| = |n2|, |n5| = |n6|, |n1||n2| = |n3||n4|, |n5||n6| = |n7||n8|. (6.9)

Remark 6.7. Wepoint out that the conditions (6.9) do not involve at the same timemodes
belonging to two different 4-tuple resonances.

Condition (4.6) implies that the two first conditions cannot be satisfied. We check now
that under the hypotheses of Proposition 4.2, one has

|n1||n2| �= |n3||n4| (6.10)

(the condition |n5||n6| �= |n7||n8| can be checked analogously).
We start with the Beam equation, that is κ = 2. Arguing by contradiction, assume

that n1, n2, n3, n4 satisfy |n1||n2| = |n3||n4|, (4.6) and the resonance condition

|n1|2 − |n2|2 = −|n3|2 + |n4|2 (6.11)

The resonance relation can be written as

(|n1| − |n2|)(|n1| + |n2|) = (|n4| − |n3|)(|n4| + |n3|)
Squaring each side, one has

(|n1|2 + |n2|2)2 − 4|n1|2|n2|2 = (|n3|2 + |n4|2)2 − 4|n3|2|n4|2.
Therefore, since we are assuming |n1||n2| = |n3||n4|, we get |n1|2 + |n2|2 = |n3|2 +
|n4|2, which combined with the resonance relation (6.11) leads to |n2|2 = |n3|2, which
contradicts assumption (4.6).

For the Wave equation (1.1), that is κ = 1, one can proceed analogously, arguing by
contradiction. Assume that n1, . . . , n4 satisfy (4.6), the resonance condition

|n1| − |n2| = −|n3| + |n4|
and |n1||n2| = |n3||n4|. Squaring the resonance condition and using this last assumption,
one has

|n1|2 + |n2|2 = |n3|2 + |n4|2.
Multiplying both sides by |n4|2 and using again |n1||n2| = |n3||n4| one obtains (|n1|2−
|n4|2)(|n4|2 − |n2|2) = 0, which contradicts (4.6). ��
Proof of Lemma 6.6. Recall (4.23), (4.13). For the Hartree equation (1.10), d12 is of the
form

d12 =
∑

k∈I
αkVk

where αk �= 0 and

I := {k ∈ Z
2 : k = ni − n j for some ni ∈ R1, n j ∈ R2}.

Weobserve that the cardinality of I is boundedby4N (4N−1)/2.Therefore, by condition
(4.5), d12 is a polynomial in the 4N (4N − 1)/2 variables γk , k ∈ I . Such polynomial is
not identically zero because if we set one of the γk’s equal to one and all the others at
zero then d12 �= 0. ��
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6.4. End of the proof of Theorem 1.3. Lemmas 6.5, 6.6 imply that condition (5.9) holds
and, therefore, Proposition 6.4 can be applied to the resonant models associated to the
Wave (1.1), Beam (1.2) and Hartree (1.10) equations. This proposition gives certain
orbits of these resonant models. These orbits will be the first order (up to changes of
coordinates) of orbits of equations (1.1), (1.2) and (1.10).

Fix 0 < ε 
 1 and 0 < h 
 1 and consider the periodic orbit P0h,ε given by
Proposition 6.1, which has period Th . By Proposition 6.4 there exist a set Y ⊂ Sh which
is an invariant hyperbolic set (a Smale horseshoe) for the Poincaré map associated to
the Hamiltonian H in (5.1). This set can be built arbitrarily close to homoclinic points
of P0h,ε. Fix ω ∈ � such that |ωk | ≥ M0 Th , where M0 satisfies M0 � log ε and Th is

the period of the periodic orbit P0h,ε. Then, Proposition 6.4 ensures that there exists an
orbit γ (t) of H with initial condition in Y ,

γ (t) := (�1(t),�2(t), K1(t), K2(t)), t ∈ [0, T ] for some T > 0,

which satisfies the following. There exists a sequence of times {tk}k∈Z satisfying (6.6)
such that γ (tk) ∈ Sh where Sh is the section defined in (6.5). Note that, by (6.6), the
times tk satisfy

tk+1 = tk + Th(ω
∗
k + C∗ + θk) for some θk ∈ (0, 1) and C∗ ∈ N.

By construction, there exists another sequence of times {t̄k}k∈Z with t̄k ∈ (tk, tk+1) such
that γ (t̄k) satisfies

K2(t̄k) = 1

2
,

∣∣∣∣�2(t̄k)− 2π

3

∣∣∣∣
 1.

The Smale horseshoe, can be built arbitrarily close to the invariant manifolds of P0h,ε
and therefore, one can ensure that there exist intervals

• Ik ⊂ (tk, tk+1) such that, for t ∈ Ik , γ (t) belongs to a ε-neighborhood of P0h,ε;
• Jk ⊂ (tk, tk) such that for t ∈ Jk the orbit γ (t) belongs to a O(ε)-neighborhood
of K2 = 1, since the homoclinic orbit obtained in Proposition 6.1 have pointsO(ε)-
close to K2 = 1.

This behavior implies estimates (1.8) and (1.9) in Theorem 1.3, once we undo the
symplectic reductions, the changes of coordinates and we add the error terms as it
is explained below.

By Proposition 6.1 the parameterization of the periodic orbit P0h,ε is ε-close to (5.8),
hence we have that

K1(t) = Q(t) + R̃2(t)

where Q(t) is the time parameterization of P0h,ε and thus is Th-periodic, and

supt∈[0,T ] |R̃2(t)| ≤ ε.
By the symplectic reduction performed in Sect. 4.3 there exists r(t) solution of HRes

in (3.16) with Fourier support � such that

|rn1(t)|2 = |K1(t)|2, |rn5(t)|2 = |K2(t)|2, for t ∈ [0, T ].
This can be seen using Remark 4.4, which gives also the behavior of the other actions.

Since the solutions of HRes are invariant under the scaling (3.18), we can consider
r δ(t) := δr(δ2t). Then, r δ(t) is also a solution of HRes for t ∈ [0, δ−2T ].
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Now it only remains to obtain an orbit for the Eqs. 1.1, 1.2 and 1.10 which is close
(up to certain changes of coordinates) to r δ(t). First step is to apply Proposition 3.5.
It ensures that there exists 0 < δ2 
 1 such that for all δ ∈ (0, δ2), there exists a
solution w(t) of H ◦ � ◦� = HRes +R′ such that w(t) = r δ(t) + R̃(t) with R̃(0) = 0,
‖R̃(t)‖ρ � δ2 for t ∈ [0, δ−2T ]. We note that, by Item (ii) of Proposition 3.4, the
Birkhoff map � is δ3-close to the identity. Finally the transformations (3.15) and (4.9)
preserve the modulus of the Fourier coefficients. The last change of coordinates that one
has to apply (for the Wave (1.1) and Beam (1.2) equations) is passing from complex
coordinates (3.4) to the original ones. We remark that by (4.6) if ni ∈ � then −ni /∈ �.
Thus

uni =
1√
2| j |�ni ni ∈ �.

7. Transfer of Beating Effects: Proof of Theorem 1.4

We devote this section to prove Theorem 1.4. First, in Sect. 7.1 we prove the transver-
sality of the stable and unstable invariant manifolds of different periodic orbits of the
Hamiltonian (4.22). As a consequence of this transversality, we construct orbits which
shadow these invariant manifolds for infinite time. Then, in Sect. 7.2 we prove that the
resonant models associated to the Wave, Beam and Hartree equations that we consider
fit into the framework of Sect. 7.1 and we complete the proof of Theorem 1.4.

7.1. Heteroclinic connections between periodic orbits and their shadowing. Reasoning
as in Proposition 6.1, the Hamiltonian H in (4.22) possesses hyperbolic periodic orbits
P±ε,h,k at the energy level h whose time parameterization is of the form

γ
±,p
ε,h,k(τk) = (�∗±,ε,1, . . . , �

∗±,ε,k−1, �
(h)
k (τk),�

∗±,ε,k+1, . . . , �
∗±,ε,N , 0, . . . , 0, K

(h)
k (τk), 0, . . . , 0)

where

�∗±,ε,1 = ±�∗ +O(ε)

(see (5.3)) and (�
(h)
k , K (h)

k ) is ε-close to the periodic orbit Ph (see (5.4)).
When ε = 0, the invariant manifolds Wu(P+0,h,k) and Ws(P−0,h,k) coincide.

Proposition 7.1. Take any i, j = 1, . . . , N, i �= j . Assume that the condition (5.41) is
satisfied (see (5.40), (4.23)). Then, there exists ε0 > 0 such that for ε ∈ (0, ε0) and
h0 > 0 such that for any h ∈ (0, h0), the manifolds Wu(P−ε,h,i ) and Ws(P+ε,h, j ) intersect
transversally within the energy level.

The transversality of the invariant manifolds allows to construct orbits which shadow
them. Note that in the coordinates introduced in (4.25), the periodic orbits P+0,h,k and

P−ε,h,k blowdown to the sameperiodic orbit,whichwedenote byP0,h,k . In the coordinates
(4.25), Proposition 7.1 can be restated as that the manifolds Wu(Pε,h,i ) and Ws(Pε,h, j )

intersect transversally along an orbit within the energy level.

Definition 7.2. We will say that a family of hyperbolic periodic orbits {P�}�∈N of a
system of differential equations, is a transition chain if Wu(P�) � Ws(P�+1), for all
� ∈ N.
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Note that Proposition 7.1 gives full transversality between the invariant manifolds on
the energy level. Thus, recalling that H(Pi� ) = h, from now on, we restrict the flow to
this energy level, which is a regular manifold.

Corollary 7.3. Let (i�)�∈N, with i� ∈ {1, . . . , N }, be any sequence. Then, if ε > 0 is
small enough, there exists h0 such that for any 0 < h < h0, {Pε,h,i�}�∈N is a transition
chain of Hamiltonian H on the manifold H = h.

Proposition 7.4. Let (i�)�∈N, with i� ∈ {1, . . . , N }, be any sequence. Assume that ε > 0
is small enough such that h0 in Corollary 7.3 exists. Let {Pε,h,i�}�∈N be a transition chain
of Hamiltonian H. Let (ν�)�∈N, with ν� > 0, be an arbitrary sequence. Let N� := {z |
d(z,Pε,h,i� ) < ν�}. Then, there exists a trajectory γ (t) of Hamiltonian H in (4.22) and
an increasing sequence (t�)�∈N of times such that γ (t�) ∈ N�, for all � ∈ N.

Proof. Since {Pε,h,i�}�∈N is a transition chain then the Inclination Lemma in [15] (The-

orem 4.5) ensures that Ws
ε (Pε,h,i� ) ⊆ ∪t≤0�t

H(Ws
ε (Pi�+1)) for all � ∈ N

7 .
Let x ∈ Ws

ε (Pi0). We can find a closed ball B0 centered at x such that

�
t0
H(B0) ⊂ N0 (7.1)

for some t0 > 0. By the inclination Lemma we have that Ws
ε (Pi1) ∩ B0 �= ∅. Hence we

can find a closed ball B1 centered at a point inWs
ε (Pi1)∩ B0 such that, besides satisfying

(7.1),
�

t1
H(B1) ⊂ N1

for some t1 > t0. Proceeding by induction we can construct a sequence of closed nested
balls Bi+1 ⊂ Bi ⊂ · · · ⊂ B0 and times ti+1 > ti > . . . > t0 such that

�
t j
H(Bi ) ⊂ N j , i ≥ j.

Since the balls are compact, the intersection ∩n≥0Bn is non-empty, and we can consider
γ (t) as an orbit with initial datum in that set. ��

7.1.1. Proof of Proposition 7.1 We proceed as in Sect. 5.2.2 by considering an auxil-
iary parameter δ and the Hamiltonian H = ∑N

j=1H
( j)
0 + εH1 defined in (5.42). The

Hamiltonian (5.42) has two saddle points,

e
(0)
±,ε = (�∗±,ε,1, . . . , �

∗±,ε,N , 0, . . . , 0),

which, for ε = 0 are e(0)± (see (5.43)). For ε = 0 and any δ > 0 small, they are connected
by the homoclinic manifolds

γ0(τ ) = (�
(0)
1 (τ1), . . . , �

(0)
N (τN ), K

(0)
1 (τ1), . . . , K

(0)
N (τN )), τ := (τ1, . . . , τN ),

(7.2)
where�(0)

j , K (0)
j , j = 1, . . . , N , have been introduced in (5.18). This parametrization of

the homoclinic manifold satisfies�t
H|ε=0γ0(τ ) = γ0(τ1 + t, . . . , τn + t). Fix 1 ≤ k ≤ N .

The set

πk = {(�1, . . . , �N , K1, . . . , KN ) : K� = 0, � �= k}
7 More precisely we apply Theorem 4.5 in [15]to the flow map f := �τ

H, where τ > 0 is chosen to be not
a multiple of any frequency of the periodic orbits Pε,h,i� . Note that the Inclination Lemma stated in [15] is
stated for the unstable manifold; in order to deduce the statement for the stable manifold it suffices to replace
f by f −1.
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is invariant by the flow of H for any ε and δ (this is properly seen in the coordinates
(4.25), since then πk corresponds to x� = y� = 0, � �= k, see (4.26)).

The dynamics on the πk plane is integrable and is given by the 1-d.o.f. Hamiltonian
H(k)

0 + εH1|πk . This Hamiltonian has two saddles (�∗±,ε,�, 0) ε-close to (±�∗, 0) =
(±2π/3, 0), at the zero energy level. For h > 0 small, the set {H(k)

0 + εH1|πk = h} is a
periodic orbit, whose period tends to infinity when h goes to 0. Let (�(h)

k (τk), K
(h)
k (τk))

be a time parametrization of this periodic orbit satisfying

lim
h→0

(�
(h)
k (0), K (h)

k (0)) = (�
(0)
k (0), K (0)

k (0)), (7.3)

where (�(0)
k , K (0)

k ) are components of the homoclinic manifold introduced in (7.2).
Then, theHamiltonianH possesses two hyperbolic periodic orbitsP±ε,h,k at the energy

level h, whose time parametrization is given by

γ
±,p
ε,h,k(τk) = (�∗±,ε,1, . . . , �

∗±,ε,k−1, �
(h)
k (τk),�

∗±,ε,k+1, . . . ,

�∗±,ε,N , 0, . . . , 0, K
(h)
k (τk), 0, . . . , 0). (7.4)

When ε = 0, the invariant manifolds Wu(P+0,h,k) and Ws(P−0,h,k) coincide. This homo-
clinic manifold can be parameterized as

γh,k(τ ) = (�
(0)
1 (τ1), . . . , �

(h)
k (τk), . . . , �

(0)
N (τN ), K (0)

1 (τ1), . . . , K
(h)
k (τk), . . . , K

(0)
N (τN )),

(7.5)
where (�(0)

k , K (0)
k ) are components of the homoclinic manifold introduced in (7.2).

Now, fix i, j ∈ {1, . . . , N }. For small ε > 0, the periodic orbits P−ε,h,i , P+ε,h, j and
their invariant manifolds,Ws(P+ε,h,i ) andW

u(P−ε,h, j ) persist slightly deformed.We show
now that the perturbation allows them to intersect.

In order to analyze the possible intersection, we introduce a N -dimensional section
in the following way. We define, taking into account (5.42),

H̃(k)
0 = H(k)

0 + εĤ(k)
0 , k = 1, . . . , N , (7.6)

where
Ĥ(k)

0 (ψk, Kk) = akKk + (bk − 1)K 2
k + ck Kk(1− Kk) cos(ψk)

only depends on (ψk, Kk). We have that H̃(k)
0 is integrable andH can be also written as

H =
N∑

k=1

H(k)
0 + εH1 =

N∑

k=1

H̃(k)
0 + εH̃1 (7.7)

where

H̃1(K1, . . . , Kn) =
N∑

k,�=1,k<�

dk�Kk K�. (7.8)

We consider the N -dimensional section

�(τ ) =
{
γ0(τ ) +

N∑

k=1

rk ∇H̃(k)
0 |γ0(τ ), r = (r1, . . . , rN ) ∈ (−m,m)N

}
(7.9)
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where γ0 is the homoclinic manifold introduced in (7.2). Observe that γ0(τ ), which is
N -dimensional, intersects transversally �(τ ) at r = 0. Then, for h small, γh,i and γh, j
(see (7.5)) intersect transversally �(0) at points ri and r j , close to γ0(τ ). Hence, for ε
small enough, the invariant manifoldsWu(P−ε,h,i ) andWs(P+ε,h, j ) intersect transversally
�(0) at points rε,i and rε, j close to ri and r j , respectively.

Letγ u
ε,h,i andγ

s
ε,h, j beparametrizations of theperturbed invariantmanifoldsWu(P−ε,h,i )

and Ws(P+ε,h, j ) such that γ u
ε,h,i (0) = rε,i , γ s

ε,h, j (0) = rε, j and �t
Hγ (τ1, . . . , τn) =

γ (τ1 + t, . . . , τN + t), for γ = γ u
ε,h,i , γ

s
ε,h, j , where �t

H is the flow of Hamiltonian H.
Up to a shift in the initial conditions in the periodic orbits, the parameterization of the
periodic orbits and the homoclinic manifold satisfy the following property: for any τ

there exists constants λ, K ,M > 0 such that

‖γ u
ε,h,k(τ1 + t, . . . , τN + t)− γ

−,p
ε,h,i (τi + t)‖ ≤Keλt for t ≤ M

‖γ s
ε,h,k(τ1 + t, . . . , τN + t)− γ

+,p
ε,h, j (τ j + t)‖ ≤Ke−λt for t ≥ M.

Let us remark that H|Wu(P−ε,h,i )
= H|Ws (P+ε,h, j )

= h. Therefore, to analyze their intersec-

tions it is enough tomeasure their distance along (N−1)-directions of those defining the
section � in (7.9). That is, the manifolds Wu(P−ε,h,i ) and Ws(P+ε,h, j ) intersect transver-
sally along an orbit at the non-degenerate zeros of the vector function (see (7.6))

dε,h(τ ) =

⎛

⎜⎜⎝

H̃(1)
0 (γ u

ε,h,i (τ ))− H̃(1)
0 (γ s

ε,h, j (τ ))

...

H̃(N−1)
0 (γ u

ε,h,i (τ ))− H̃(N−1)
0 (γ s

ε,h, j (τ ))

⎞

⎟⎟⎠ . (7.10)

Lemma 7.5. The function dε,h in (7.10) can be written as

dε,h(τ ) = d0,h + εMh(τ ) +O
(
ε2
)
, (7.11)

where the vector d0,h = (d10,h, . . . d
N−1
0,h )! is of the form

di0,h = h, d j
0,h = −h and dk0,h = 0 for k �= i, j

and Mh(τ ) = (M1
h(τ ), . . . ,M

N−1
h (τ ))!, with

Mk
h(τ ) :=

∫ 0

−∞
{H(k)

0 , H̃1} ◦ �t
H0

(γh,i (τ )) dt +
∫ ∞

0
{H(k)

0 , H̃1} ◦ �t
H0

(γh, j (τ )) dt.

Proof. We will compute the formula for H̃(k)
0 (γ u

ε,h,i (τ )), k = 1, . . . , N − 1, being the

derivation for the one of H̃(k)
0 (γ s

ε,h, j (τ )) analogous.
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We first observe that, since H|P−ε,h,i = h and H̃1 |P−ε,h,i = 0, H̃(k)
0 (γ

−,p
ε,h,i (τ )) = δikh,

being δik the Kronecker’s delta. Then, taking into account (7.7), it is immediate that

H̃(k)
0 (γ u

ε,h,i (τ )) = H̃(k)
0 (γ u

ε,h,i (τ ))− H̃(k)
0 (γ

−,p
ε,h,i (τ )) + δikh

=
∫ 0

−∞
d

dt
H̃(k)

0 ◦�t
Hγ u

ε,h,i (τ ) dt + δikh

= ε

∫ 0

−∞
{H̃(k)

0 , H̃1} ◦�t
H(γ u

ε,h,i (τ )) dt + δikh

= ε

∫ 0

−∞
{H̃(k)

0 , H̃1} ◦�t
H0

(γh,i (τ )) dt + δikh +O(ε2)

= ε

∫ 0

−∞
{H(k)

0 , H̃1} ◦�t
H0

(γh,i (τ )) dt + δikh +O(ε2),

where γh,i is defined in (7.5). ��
We observe that, since the components of d0,h are either 0 or±h, if we consider h 
 ε,
the main order of the difference in (7.11) is given by Mh(τ ). Thus we shall prove that
this function has a non-degenerate zero, so that we can conclude by the Implicit Function
Theorem that the manifolds Ws

ε (P
−
ε,h,i ) and Wu

ε (P
+
ε,h, j ) intersect transversally.

To do so, we introduce

M0(τ ) := (M1
0(τ ), . . . ,MN−1

0 (τ ))!, (7.12)

where

Mk
0(τ ) :=

∫ ∞

−∞
{H(k)

0 , H̃1} ◦ �t
H0

(γ0(τ )) dt,

where γ0 was introduced in (7.2) (see also (5.18)), which is the Melnikov function
associated to the homoclinic between e(0)± .We observe that the derivative of theMelnikov
potential (5.44) with respect to the variable τk−τN coincides with theMelnikov integral
Mk

0(τ ) in (7.12): Indeed, recall that the Melnikov Potential integral associated to (H1−
H̃1) is constant, and equivalently

Mk
0(τ ) =

∫ ∞

−∞
{H(k)

0 , H̃1} ◦ �t
H0

(γ0(τ )) dt =
∫ ∞

−∞
{H(k)

0 ,H1} ◦ �t
H0

(γ0(τ )) dt.

Then, by Proposition 5.12, if condition (5.41) is satisfied and ε > 0 is small enough,
M0(τ ) has a non-degenerate zero.

Lemma 7.6. Let ε > 0 and assume that the condition (5.41) in Proposition 5.12 is
satisfied. Then, there exists h0 such that for any 0 < h < h0, Mh(τ ) has a non-
degenerate zero.

This lemma implies Proposition 7.1; indeed, one can proceed as in Sect. 5.2.2 by
taking δ = ε and applying Implicit Function Theorem. We devote the rest of the Section
to prove Lemma 7.6.



Chaotic-Like Transfers of Energy in Hamiltonian PDEs 1281

Proof of Lemma 7.6. We have that, for any 1 ≤ k ≤ N − 1,
∫ 0

−∞
{H(k)

0 , H̃1} ◦ �t
H0

(γh,i (τ )) dt +
∫ ∞

0
{H(k)

0 , H̃1} ◦ �t
H0

(γh, j (τ )) dt −Mk
0(τ )

=
∫ 0

−∞

(
{H(k)

0 , H̃1} ◦ �t
H0

(γh,i (τ ))− {H(k)
0 , H̃1} ◦ �t

H0
(γ0(τ ))

)
dt

+
∫ ∞

0

(
{H(k)

0 , H̃1} ◦ �t
H0

(γh, j (τ ))− {H(k)
0 , H̃1} ◦ �t

H0
(γ0(τ ))

)
dt

= Ih,i (τ ) + Ih, j (τ ).

We prove that, for any compact set K ⊂ R
N , ‖Ih,k‖C1(K) tends to 0 as h → 0, for

k = i, j . We give the argument for Ih,i , being the one for Ih, j analogous. The claim
follows immediately from this convergence.

Let K ⊂ R
N be a compact set. If h is small enough, the parametrization γh,i is well

defined; since the period of the periodic orbit tends to infinity when h goes to 0, γh,i
intersects �(τ ) at a point close to r = 0, for all τ ∈ K.

For a given T > 0, we split the integral Ih,i as

Ih,i (τ ) =
∫ 0

−T

(
{H(k)

0 , H̃1} ◦ �t
H0

(γh,i (τ ))− {H(k)
0 , H̃1} ◦ �t

H0
(γ0(τ ))

)
dt

+
∫ −T

−∞

(
{H(k)

0 , H̃1} ◦ �t
H0

(γh,i (τ ))− {H(k)
0 , H̃1} ◦ �t

H0
(γ0(τ ))

)
dt.

(7.13)
From (5.42), (7.8)

{H(k)
0 , H̃1} = −2Kk(1− Kk) sinψk

∑

� �=k

d�,k K�. (7.14)

In particular,

{H(k)
0 , H̃1}|e(0)−

= {H(k)
0 , H̃1}|P−0,h,i = 0.

The hyperbolic character of the periodic orbits implies the existence of constantsC, λ >

0 such that, for � �= i and for all τ ∈ K,

|πK�
γh,i (τ )| ≤ Ce−λ(τ�+t), t ≥ 0.

Also, with the same C, λ > 0, for any 1 ≤ � ≤ N ,

|πK�
γ0(τ )| ≤ Ce−λ(τ�+t), t ≥ 0.

Hence, by (7.14), for any ν > 0, since K is compact, there exists T > 0 such that, for
any τ ∈ K,
∣∣∣∣
∫ −T

−∞
{H(k)

0 , H̃1} ◦ �t
H0

(γh,i (τ )) dt

∣∣∣∣ ,
∣∣∣∣
∫ −T

−∞
{H(k)

0 , H̃1} ◦ �t
H0

(γ0(τ )) dt

∣∣∣∣ ≤ ν.

To bound the other part of Ih,i in (7.13), we observe that, from (6.1),

γh,i (τ )− γ0(τ ) = (0, . . . , �(h)
i (τi )

−�
(0)
i (τi ), . . . , 0, 0, . . . , K

(h)
i (τi )− K (0)

i (τi ), . . . , 0).
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We remark that, as h goes to 0, the period of the periodic orbit P−0,h,i goes to ∞.
Then, the choice of the parametrization of the periodic orbit (7.3) implies that, taking h
small enough, limh→0(�

(h)
i (τi + t), K (h)

i (τi + t)) = (�
(0)
i (τi + t), K (0)

i (τi + t)), for all
(t, τ ) ∈ [−T, 0]×K and, furthermore, this convergence is theCk-norm on [−T, 0]×K.
In particular, this implies that, if h is small enough,

∣∣∣∣
∫ 0

−T

(
{H(k)

0 , H̃1} ◦ �t
H0

(γh,i (τ ))− {H(k)
0 , H̃1} ◦ �t

H0
(γ0(τ ))

)
dt

∣∣∣∣ < ν.

��

7.2. Application to the Wave, Beam and Hartree equations: Proof of Theorem 1.1-(ii).
Recall the matrix (5.40). We now check the condition (5.41) in Proposition 5.12 for the
resonant models associated to the equations (1.1), (1.2) and (1.10). For the Wave and
Beam equations this corresponds to choosing suitable sets � (actually a suitable modi-
fication of those obtained in Proposition 4.2). For the Hartree equation this corresponds
to imposing a non-degeneracy condition to the potential V .

Lemma 7.7. Let us consider either the Wave equation (1.1) or the Beam equation (1.2).
Then, there exists a set � ⊂ Z

2 satisfying Propositions (4.2) such that the associated
Hamiltonian (5.1) satisfies condition (5.41).

Lemma 7.8. Let us considerHamiltonian (5.1) associated to theHartree equation (1.10)
with a potential V as in (1.11) and to a set� satisfyingProposition4.1Then, for a generic
choice of the {γn}n∈�, the condition (5.41) is satisfied.

These two lemmas allow us to complete the proof of Item (ii) of Theorem 1.1

Proof of Item (ii) of Theorem 1.1. Lemmas 7.7 and Lemma 7.8 ensure that the non-
degeneracy condition (5.41) of Proposition 7.1. Therefore, any pair of periodic orbits
Pε,h,i , Pε,h, j have transverse heteroclinic connections. This implies that all infinite se-
quences of such periodic orbits form a transition chain in the sense of Definition 7.2.
Then, to complete the proof of Item (ii) of Theorem 1.1 it is enough to apply Proposi-
tion 7.4. ��

We devote the rest of this section to prove Lemmas 7.7 and 7.8. Lemma 7.8 is proved
following the same argument of the proof of Lemma 6.6. To the prove Lemma 7.7,
we consider a set �0 ⊂ Z

2 satisfying Proposition 4.2 and we modify it slightly. By
modification, we refer to construct a set � ∈ Q

2 arbitrarily close to �0 ⊂ Z
2 and then

to scale it so that the set belongs to Z
2.

Proof of Lemma 7.7. Let us call n(i)k := n4(i−1)+k for i = 1, . . . , N , k = 1, . . . , 4.
Recall the expression of the coefficients di j in (4.23). By using (4.13) and Lemma 4.3
we obtain

di j = 3

32g

∑

1≤r,s≤4

(−1)r+s

|n(i)r |κ |n( j)s |κ
, (7.15)

where κ = 1, 2 corresponds respectively to the Wave and Beam equations. We define
(recall formulas (6.7))

Pr = �
n(r)1 ,n(r)2

(|n(r)1 |κ |n(r)2 |κ − |n(r)3 |κ |n(r)4 |κ)
1,2,3,4∏

r

where
1,2,3,4∏

r

:= 1
∏4

i=1 |n(r)i |κ
.

(7.16)
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We remark that by the resonance relations (4.3) and (4.4) we have�
n(r)1 ,n(r)2

= �
n(r)4 ,n(r)3

.

Then we can express the right hand side of (7.15) in terms of the Pr ’s in the following
way:

di j = 3

32g
Pi Pj .

Then, the determinant of the matrix D in (5.40) is of the form

det(D) =
(

3

32g

)N−1
⎛

⎝
N−1∏

k=1

Pk

⎞

⎠ det

⎛

⎜⎜⎜⎜⎜⎝

PN +
∑

j �=1 Pj −P2 . . . −PN−1

−P1
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . . −PN−1
−P1 . . . −PN−2 PN +

∑
j �=N−1 Pj

⎞

⎟⎟⎟⎟⎟⎠
.

This determinant can be written as

det(D) =
(

3

32g

)N−1
(

N∏

k=1

Pk

)(
N∑

k=1

Pk

)N−2

. (7.17)

Indeed, it is enough to modify the matrix in two steps. First replace the last column by
the sum of all columns. Then, the last column is the vector with all components equal
to PN . Second, subtract the last row to the other rows. Then, it is very easy to obtain
(7.17).

Recall that in the proof of Lemma6.5we have shown that the sets� of Proposition 4.2
satisfy

|n(r)1 |κ |n(r)2 |κ − |n(r)3 |κ |n(r)4 |κ �= 0

(see (6.10)). Moreover, in Proposition 4.2 it shown that they also satisfy (4.6). These
three properties imply

Pk �= 0 for all k = 1, . . . , N (7.18)

Therefore, by (7.17), to prove det(D) �= 0, it only remains to check that

N∑

k=1

Pk �= 0. (7.19)

If the set � obtained in Proposition 4.2 satisfies this property, the proof is complete.
Now, we show that if the set � obtained in these propositions satisfies

∑N
k=1 Pk = 0,

one canmodify it slightly so that the newone satisfies (7.19). Assume thus that� satisfies∑N
k=1 Pk = 0 and (7.18). Then, we modify the first resonant tuple (n(1)1 , n(1)2 , n(1)3 , n(1)4 )

to obtain a set� ⊂ Q
2 which satisfies (7.19). We consider the family of resonant tuples

in Q2, given by

(λn(1)1 , λn(1)2 , λn(1)3 , λn(1)4 ), λ ∈ Q\{0}.
Then, by (7.16),

P1(λn
(1)
1 , λn(1)2 , λn(1)3 , λn(1)4 ) = λ−κ P1(n

(1)
1 , n(1)2 , n(1)3 , n(1)4 ).
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Then, since P1 �= 0, P1 is strictly decreasing in λ and therefore
∑N

k=1 Pk = 0 can only
happen for λ = 1. Thus, one can modify the first rectangle by taking λ ∈ Q arbitrarily
close to 1 and then blowing up the N rectangles so that the new rectangles belong to
Z
2. It is clear that with this modification (for λ close enough to 1) the properties in

Proposition 4.2 are still satisfied.

7.3. End of the proof of Theorem 1.4. Lemmas 7.7, 7.8 imply that the assumptions
required by Proposition 7.1 hold. Then we can use Proposition 7.4 to deduce dynamical
results on the resonant models of equations (1.1), (1.2) and (1.10).

Let us fix N ≥ 2, k � 1 and a sequence ω1, . . . , ωk with ωp ∈ {1, . . . , N } for
k = 1 . . . k. We apply Proposition 7.4 choosing ν� = ε for all � = 1, . . . , k. Then there
exist T > 0 and an orbit

γ (t) = (�1(t), . . . , �N (t), K1(t), . . . , KN (t)), t ∈ [0, T ]
of the HamiltonianH (see (4.22)) which has the following behavior: There exists some
αp, βp satisfying αp < βp < αp+1 such that, if one splits the time interval as [0, T ] =
I1 ∪ J1,2 ∪ I2 ∪ J2,3 ∪ · · · ∪ Jk−1,k ∪ Ik with

Ip = [αp, βp], Jp,p+1 = [δ−2βp, δ
−2αp+1],

the orbit γ (t) has two different regimes

• Beating regime: For t ∈ [αp, βp], γ (t) belongs to an ε-neighborhood of the periodic
orbit Pε,h,ωp . The orbit γ (t) spendsO(log ε)-time inside this neighborhood and then
it leaves it.
• Transition regime: For t ∈ (βp, αp+1), the orbit γ (t) shadows the heteroclinic
connection between two hyperbolic periodic orbits Pε,h,ωp and Pε,h,ωp+1 .

By (7.4), the time parameterization of the periodic orbit Pε,h,ωp satisfies

Kp(t) = Q(t), Ki (t) = 0 for i �= p,

where Q(t) is a periodic orbit. Then, the orbit γ (t) satisfies that for t ∈ [αp, βp]
|Kp(t)− Q(t − tp)| ≤ ε, |Ki (t)|2 ≤ ε ∀ i �= p,

for some tp > 0.
In the time interval (β�, α�+1), the travel along the heteroclinic connection implies that

all the actions |Ki |2 experience a change of orderO(1) (see the proof of Proposition 7.1).
By the symplectic reduction performed in Sect. 4.3 there exists r(t) solution of HRes

in (3.16) with Fourier support � such that the actions |r
n
(ωi )
1

|2 satisfy

|r
n
(ωi )
1

(t)|2 = |Ki (t)|2 for t ∈ [0, T ].

This can be seen using Remark 4.4, which gives also the behavior of the other actions.
Since the solutions of HRes are invariant under the scaling (3.18), we can consider

r δ(t) := δr(δ2t). Then, r δ(t) is also a solution of HRes for t ∈ [0, δ−2T ].
Now it only remains to obtain an orbit for the Eqs. 1.1, 1.2 and 1.10 which is close

(up to certain changes of coordinates) to r δ(t). First step is to apply Proposition 3.5.
It ensures that there exists 0 < δ2 
 1 such that for all δ ∈ (0, δ2), there exists a
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solution w(t) of H ◦ � ◦� = HRes +R′ such that w(t) = r δ(t) + R̃(t) with R̃(0) = 0,
‖R̃(t)‖ρ � δ2 for t ∈ [0, δ−2T ]. We note that, by Item (ii) of Proposition 3.4, the
Birkhoff map � is δ3-close to the identity. Finally the transformations (3.15) and (4.9)
preserve the modulus of the Fourier coefficients. The last change of coordinates that one
has to apply (for the Wave (1.1) and Beam (1.2) equations) is passing from complex
coordinates (3.4) to the original ones. We remark that by (4.6) if ni ∈ � then −ni /∈ �.
Thus

uni =
1√
2| j |�ni ni ∈ �.

��
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A the Set �: Proof of Propositions 4.1 and 4.2

The proofs of Propositions 4.1 and 4.2 are modifications of the proof of the construction
of the set � ⊂ Z

2 in [8]. Note that the resonances of the cubic nonlinear Schrödinger
equation considered in [8] are the tuples contained in Ãbh in (4.3). We summarize the
ideas in that paper and explain the main modifications.

In [8], the set � is first constructed in Q
2 and then scaled to Z

2. The placement of
the modes in Q

2 is done inductively: first one places the modes in �1, then those in
�2, checking at each placement that conditions 1�–4� are fulfilled. To this end, one
has to ensure that the imposed non-degeneracy conditions are open and dense inQ2 and
then for “most of the placements” are satisfied. More concretely, the placement goes as
follows

• First generation: In order to place the first generation we have to chose 2N points
in Q

2. We choose them inductively checking that they satisfy the non-degeneracy
conditions. Condition 2� and 3� are satisfied if all the points are chosen different and
1� will be satisfied by construction. The condition 4� is equivalent to check that each
new point does not make a right angle with two of the modes already placed. That

http://creativecommons.org/licenses/by/4.0/
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is, consider any segment whose endpoints are two points already chosen. Then, this
new point cannot belong either to a line orthogonal to this segment and containing
one of the points nor to the circle having this segment as a diameter.
• Second generation: The set�1 is divided into pairs of modes, which are the parents
of the N nuclear families. For each of these pairs n1, n3 ∈ �1 ⊂ Q

2, we place a
pair of points n2, n4 ∈ �2 in such a way that they form a rectangle with the other
pair. That is, we consider the circle having as a diameter the segment between n1
and n3. Then, the new modes n2,n4 have to be endpoints of another diameter of this
circle. To ensure that n2, n4 ∈ Q

2 it is enough to chose an angle between the two
diameters which has rational tangent. Note that those angles are dense. The choice is
done checking that the non-degeneracy conditions are verified 1�–4� following the
same arguments as for the first generation.

This placement is generic in the following sense

1. The first generation is placed generically in Q
2, that is anywhere except in the zero

set of one polynomial.
2. The placement angles θ for the second generation are any angle such that tan θ ∈ Q

except a finite number of values.

We use this scheme developed in [8] to prove Proposition 4.1.

Proof of Proposition 4.1. It is a direct consequence of the scheme developed in [8].
Indeed, the only extra condition added with respect to [8] is (4.5), which is certainly
satisfied by a generic placement inQ2. Indeed, in placing inductively the new points one
has only to avoid a finite number of points. ��
Proof of Proposition 4.2 (Beam case: A = Abh) The set � from Proposition 4.2 has
three differences with respect to the one in [8]: properties (4.6) and (4.7) and the fact
that the condition 4� requires that the modes in � do not satisfy any of the resonance
conditions in Abh\ Ãbh in (4.2)–(4.3). One can easily check that a generic placement
satisfies (4.6) and the 4� condition. Indeed, in placing the new modes one has to avoid
circles centered at zero with radius equal to the norm of the already placed modes and
the circles and hyperbolas defined by (4.2) when two modes are fixed.

To build a set � having property (4.7), we also follow the ideas in [8]. We first
construct a prototype embedding. That is a “bad” set �0 ∈ Q

2 which is the union of
N rectangles but which however does not satisfy the non-degeneracy conditions. For
instance, consider

�0 = ∪N
i=1Ri , Ri = {(±1, 0), (0,±1)}.

This embedding satisfies (4.7) but does not satisfy conditions 1� − 4� nor (4.6) (in
particular is not injective). However, by genericity one can chose points inQ2 which are
ε/4-close to those of�0 which define a set� satisfying that all points are different and
also conditions 1� − 4�.

Finally, one needs to apply a scaling and a translation to obtain a set� ⊂ Zodd ×Z.
Indeed, consider R � 1 such that R� ⊂ Z

2 and Rε � 1. Then, we define

�′ = 2R� + (1, 0)

Then, one can check that for n′ ∈ �′, which is of the form n′ = 2Rn+(1, 0)with n ∈ �,
taking R large enough,

∣∣|n′| − 2R
∣∣ = 2R

∣∣∣∣

∣∣∣∣n +

(
1

2R
, 0

)∣∣∣∣− 1

∣∣∣∣ ≤
Rε

2
+O(1) ≤ Rε.
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��
Proof of Proposition 4.2 (Wave case: A = Aw) To prove Proposition 4.2 one has to
take into account that the resonance condition for the Wave equation (1.1) given in
(4.4) is different from that of the cubic nonlinear Schrödinger, Hartree (1.10) and Beam
(1.2) equations (see (4.2)). Now four resonant modes (n1, n2, n3, n4) ∈ Aw form a
parallelogram whose vertices are on an ellipse with one focus at zero. Indeed, if one
fixes the modes n1 and n3, then n2, n4 must belong to the ellipse defined by

{
n ∈ Q

2 : |n| + |n − (n1 + n3)| = |n1| + |n3|
}
, (A.1)

that is, the ellipse with foci at 0 and n1 + n3 and such that the sum of distances from any
point of the ellipse to the two foci is given by |n1| + |n3|. Note that the case n1 = −n3
trivially corresponds to the circle with center 0 and radius |n1|.

We need to consider N ellipses of this type with dense rational points to apply the
genericity arguments as in the previous cases. The standard ellipse

x2

a2
+
y2

b2
= 1 (A.2)

has dense rational points provided a, b ∈ Q. To obtain ellipses of the form (A.1) from
(A.2) one needs to apply a translation (one could also apply a rotation, but there is no
need for it). To ensure that the transformed ellipse has dense rational points it is enough
to ensure that the foci of the standard ellipse (A.2) are rational. Assuming that a > b,
the foci are given by F± = (±c, 0) = (±√a2 − b2, 0).

Therefore, to build ellipses E j with dense rational points , j = 1 . . . N , it is enough to
consider N different rational Pythagorean triples {(a j , b j , c j )}Nj=1, that is a

2
j = b2j + c

2
j ,

a j , b j , c j ∈ Q, a j > b j . Then, one can apply a translation to place one of the foci at 0.
Let us denote by Fj the focus of the ellipse E j which is not at the origin.

Having fixed these ellipses, one can prove Proposition 4.2 following the scheme
of [8] explained above. One first places each pair of the first generation in one of the
ellipses. To place one pair E j it is enough to chose one rational point n j1 ∈ E j . Then,
the other mode is obtained through the equation

n j1 + n j3 = Fj (see (A.1)).

Since the ellipses have dense rational points, one can place the points such that the
conditions 2�−4� and (4.6) are satisfied as follows. Let us assume that we have placed
all modes of the first generation for the ellipses E j , j = 1 . . . j∗ − 1 and we want to
place the first generation modes in the ellipse E j∗ . We show that we only need to avoid
a finite number of points.

1. For property (4.6), we need to avoid the intersection points of E j∗ with all the circles
centered at the origin and radius equal to the norm of the already placed modes.

2. For properties 2�, 3�, we need to avoid the points at the intersection of E j∗ with the
other ellipses E j , j = 1 . . . j∗ − 1, j∗ + 1 . . . N .

3. For property 4�, one needs to avoid placing a mode such that with two previous
modes m,m′ and an extra mode may create a nuclear family. To this end we have to
avoid the following points:
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• Case (i)—m,m′ are non adjacent vertices of the parallelogram: One has to avoid
the intersection points between E j∗ and the ellipse defined by m,m′, that is

|n| + |n − (m + m′)| = |m| + |m′|
Note that this ellipse is different from E j∗ since by Item 2 above, m,m′ �∈ E j∗ .

• Case (ii)—m,m′ are adjacent vertices of the parallelogram: One has to avoid the
intersection points between E j∗ and the hyperbolas defined by m,m′, that is

|n| − |n − (m + m′)| = ±|m| ∓ |m′|.
• One can deal analogously with the conditions which arise from avoiding the

resonances conditions in Aw given by

n1 + n2 + n3 − n4 = 0, |n1| + |n2| + |n3| − |n4| = 0,

which either define ellipses or hyperbolas.
Note that the two new placed modes and one already placed mode cannot be part of
a nuclear family since the already placed mode does not belong to the ellipse defined
by the two new modes.

One can proceed analogously to place the second generation. Note that this construction
implies Property 1�.
To build a set � satisfying also condition (4.7) it is enough to chose the rational
Pythagorean triples {(a j , b j , c j )}Nj=1 such that |a j − 1|, |b j − 1|, c j 
 ε in such a
way that the ellipses are ε-close to the unit circle. Note that this is possible since, in
particular, rational Pythagorean triples are dense in the unit circle.
This construction gives a set� inZ2. Note that one cannot scale and translate to construct
a set� inZ2

odd as in the proof of Proposition 4.2 for the Beam case. Indeed, the resonance
condition (4.3) is not invariant by translation. Instead, we refine the construction of the
set � in Q2 by choosing more carefully the modes.
To this end, we recall that the rational modes on the unit circle are given by

z =
(
p1
q
,
p2
q

)
=
(
m2 − n2

m2 + n2
,

2mn

m2 + n2

)
, m, n ∈ Z.

If one choses m odd and n even one obtains a point z ∈ Q
2 whose denominator is odd

and their numerators are odd in the first component and even in the second component.
Certainly such points are dense in the unit circle. After a blow up by q (or any odd
multiple of it), one obtains a point in Z2

odd.
We show that one can construct a set � ⊂ Q

2 as just done keeping track of the rational
numbers to show that all of them can be chosen of the form

z =
(
odd

odd
,
even

odd

)
. (A.3)

Indeed, one can choose the ellipsesE j with rational Pythagorean triples {(a j , b j , c j )}Nj=1,
a j , b j , c j ∈ Q, such that a j , b j are of the form odd/odd and c j is even/odd. Then, the
rational points on the ellipse E j are of the form

z =
(
c j + a j

m2 − n2

m2 + n2
, b j

2mn

m2 + n2

)
, m, n ∈ Z.
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Choosing m odd and n even, one has a point z of the form (A.3). Since points of this
form are dense in E j one can proceed the construction such that all points in � ⊂ Q

2

are of the form (A.3).
Finally, it only remains to multiply by the least common divisor of all points in � to
obtain a set in Z

2
odd and the same happens by the multiplication by any odd multiple of

the least common divisor. ��
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