
      

 

 

 

MICROMOBILITY SAFETY 

APPLICATIONS USING AI 
 

 

A Degree Thesis 

Submitted to the Faculty of the 

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona 

Universitat Politècnica de Catalunya 

by 

Jaume Prats Cristià 

 

 

In partial fulfilment  

of the requirements for the degree in 

TELECOMMUNICATION TECHNOLOGIES AND  

SERVICES ENGINEERING 

 

 

Advisors: 

Josep Ramon Morros Rubió, Elisa Sayrol Clols 

 

Barcelona, June 2021  



 
 

1 
 

Abstract 

In recent years, population overcrowding in large cities has generated serious problems for 

urban transport, encouraging the use of new means of transportation such as micro-mobility 

vehicles. This thesis explores the possibilities of using computer vision techniques for the 

detection of pavement damages in bike lanes, thus reinforcing the safety of this type of vehicle.  

A damage detector is developed using a convolutional neural network. The project also 

provides a database of damages present in the bike lanes of the city of Barcelona.   



 
 

2 
 

Resum 

En els darrers anys, la massificació de la població a les grans ciutats ha generat greus 

problemes per al transport urbà, encoratjant l'ús de nous mitjans de transport com és el cas 

dels vehicles de micromobilitat. Aquesta tesi explora les possibilitats de les tècniques de visió 

per ordinador per la detecció de danys i desperfectes als carrils bici, reforçant d'aquesta 

manera la seguretat per aquest tipus de vehicles. Es desenvolupa un detector de danys 

utilitzant una xarxa neuronal convolucional. El projecte també aporta una base de dades de 

danys presents en els carrils bici de la ciutat de Barcelona. 

 

 

 

   



 
 

3 
 

Resumen 

En los últimos años, la masificación de la población en las grandes ciudades ha generado 

graves problemas para el transporte urbano, fomentando el uso de nuevos medios de 

transporte como es el caso de los vehículos de micromobilidad. Esta tesis explora las 

posibilidades del uso de técnicas de visión por ordenador para la detección de daños en los 

carriles bici, reforzando de esta forma la seguridad de este tipo de vehículos.  Se desarrolla un 

detector de daños usando una red neuronal convolucional. El proyecto también aporta una 

base de datos de daños presentes en los carriles bici de la ciudad de Barcelona.  

 

  



 
 

4 
 

Acknowledgments 

I would like to express my deep gratitude to Professor Josep Ramon Morros Rubió and 

Professor Elisa Sayrol Clols, my project supervisors, for their patient guidance, enthusiastic 

encouragement, and useful critiques of this thesis work. I would also like to especially thank 

Miquel Torrecilla Mercado, my project partner with whom I have managed to carry out this 

project, helping each other in the challenges that have arisen. 

Finally, I wish to thank my family and friends for their support and encouragement throughout 

this stage. 

  



 
 

5 
 

Revision history and approval record 

Revision Date Purpose 

0 27/05/2021 Document creation 

1 19/06/2021 Document revision 

   

   

   

 

 

DOCUMENT DISTRIBUTION LIST 

 Name  e-mail 

 Jaume Prats Cristià  jaume.prats.cristia@estudiantat.upc.edu 

 Josep Ramon Morros Rubió   ramon.morros@upc.edu 

 Elisa Sayrol Clols  elisa.sayrol@upc.edu 

  

  

  

 

 

 

Written by:  Reviewed and approved by: 

 

Date 19/06/2021 Date 21/06/2021 

Name Jaume Prats Cristià Name Josep Ramon Morros Rubió 

Elisa Sayrol Clols 

Position Project Author  Position Project Supervisor 



 
 

6 
 

Table of contents 

ABSTRACT .................................................................................................................................................................................. 1 

RESUM ......................................................................................................................................................................................... 2 

RESUMEN .................................................................................................................................................................................... 3 

ACKNOWLEDGMENTS ............................................................................................................................................................. 4 

REVISION HISTORY AND APPROVAL RECORD ................................................................................................................. 5 

TABLE OF CONTENTS .............................................................................................................................................................. 6 

LIST OF FIGURES ....................................................................................................................................................................... 7 

LIST OF TABLES ........................................................................................................................................................................ 8 

1. INTRODUCTION .............................................................................................................................................................. 9 

1.1. STATEMENT OF PURPOSE............................................................................................................................................................... 9 
1.2. REQUIREMENTS AND SPECIFICATIONS .......................................................................................................................................... 9 
1.3. METHODS AND PROCEDURES......................................................................................................................................................... 9 
1.4. WORK PLAN ................................................................................................................................................................................. 10 
1.5. DEVIATIONS ................................................................................................................................................................................. 12 

2. STATE OF THE ART ..................................................................................................................................................... 13 

2.1. ROAD DAMAGE DETECTION ........................................................................................................................................................ 13 
2.2. OBJECT DETECTION ..................................................................................................................................................................... 13 

2.2.1. Faster R-CNN [2] .......................................................................................................................................................... 14 
2.2.2. Cascade R-CNN [4] ...................................................................................................................................................... 14 
2.2.3. YOLO [5] ......................................................................................................................................................................... 15 

2.3. GLOBAL ROAD DAMAGE DETECTION CHALLENGE..................................................................................................................... 15 

3. METHODOLOGY ........................................................................................................................................................... 17 

3.1. DATABASE .................................................................................................................................................................................... 17 
3.1.1. RDD2020 Dataset ........................................................................................................................................................ 17 
3.1.2. BLDD Dataset ............................................................................................................................................................... 19 

3.2. DAMAGE DETECTION ................................................................................................................................................................... 20 
3.2.1. Model ............................................................................................................................................................................... 20 
3.2.2. Training .......................................................................................................................................................................... 20 
3.2.3. Pre-processing .............................................................................................................................................................. 21 
3.2.4. Data Augmentation .................................................................................................................................................... 21 

4. RESULTS ........................................................................................................................................................................ 24 

4.1. EXPERIMENTATION ...................................................................................................................................................................... 24 
4.2. METRICS ....................................................................................................................................................................................... 26 
4.3. RESULT ANALYSIS ........................................................................................................................................................................ 27 

4.3.1. Dataset balancing ....................................................................................................................................................... 27 
4.3.2. Data Augmentation .................................................................................................................................................... 29 
4.3.3. Test examples ............................................................................................................................................................... 31 

5. BUDGET ......................................................................................................................................................................... 34 

6. CONCLUSIONS AND FUTURE DEVELOPMENT ...................................................................................................... 35 

BIBLIOGRAPHY ...................................................................................................................................................................... 36 

ANNEX: ..................................................................................................................................................................................... 38 

 

  



 
 

7 
 

List of Figures 

Figure 1.1 - Gantt Diagram ......................................................................................................................................... 12 

Figure 2.1 - Illustration of the ARAN 9000 [3] ................................................................................................. 13 

Figure 2.2 - Faster R-CNN architecture ................................................................................................................ 14 

Figure 2.3 - YOLO diagram ......................................................................................................................................... 15 

Figure 3.1 - RDD2020 Statistics ............................................................................................................................... 17 

Figure 3.2 - RDD2020 -  D44 ...................................................................................................................................... 18 

Figure 3.3 - RDD2020 - D50 ....................................................................................................................................... 18 

Figure 3.4 - RDD2020 - D10 ....................................................................................................................................... 18 

Figure 3.5 - RDD2020 - D43 ....................................................................................................................................... 18 

Figure 3.6 - RDD2020 - D20 - D40 .......................................................................................................................... 18 

Figure 3.7 - RDD2020 - D00 ....................................................................................................................................... 18 

Figure 3.8 - RDD2020 train instances distribution ....................................................................................... 18 

Figure 3.9 - BLDD - from left to right, D40, D20, D00, D10 and D50 .................................................... 19 

Figure 3.10 - BLDD instances distribution ......................................................................................................... 19 

Figure 3.11 - Resize example ..................................................................................................................................... 21 

Figure 3.12 - Horizontal Flip...................................................................................................................................... 22 

Figure 3.13 - Motion Blur ............................................................................................................................................ 22 

Figure 3.14 - Rotation ................................................................................................................................................... 23 

Figure 3.15 - Brightness ............................................................................................................................................... 23 

Figure 3.16 - Cutout........................................................................................................................................................ 23 

Figure 3.17 - RGBShift / HueSaturationValue .................................................................................................. 23 

Figure 4.1 - bldd train instances distribution ................................................................................................... 24 

Figure 4.2 – bldd_bal train instances distribution ......................................................................................... 24 

Figure 4.3 - bldd_bal100 train instances distribution .................................................................................. 25 

Figure 4.4 - Dataset balancing - train loss .......................................................................................................... 27 

Figure 4.5 - Dataset balancing - validation mAP ............................................................................................. 28 

Figure 4.6 - Data Augmentation - train loss ....................................................................................................... 29 

Figure 4.7 - Data Augmentation - validation mAP .......................................................................................... 30 

Figure 4.8 - Test images ............................................................................................................................................... 32 

Figure 4.9 - Difficult test images .............................................................................................................................. 33 

 

  

file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119659
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119660
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119661
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119663
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119664
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119665
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119666
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119667
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119668
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119670
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119672
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119673
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119674
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119675
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119676
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119677
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119678
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119686
file://///Users/jaume/Documents/ETSETB/4B/TFG/Documents/Final%20Report/Degree_thesis.docx%23_Toc75119687


 
 

8 
 

List of Tables 

Table 1.1 - Work package 1 ........................................................................................................................................ 10 

Table 1.2 - Work package 2 ........................................................................................................................................ 10 

Table 1.3 - Work package 3 ........................................................................................................................................ 10 

Table 1.4 - Work package 4 ........................................................................................................................................ 10 

Table 1.5 - Work package 5 ........................................................................................................................................ 11 

Table 1.6 - Work package 6 ........................................................................................................................................ 11 

Table 1.7 - Work package 7 ........................................................................................................................................ 11 

Table 2.1 - GRDDC2020 Ranking ............................................................................................................................. 16 

Table 4.1 - Dataset balancing - test ........................................................................................................................ 28 

Table 4.2 – Data Augmentation - test .................................................................................................................... 30 

Table 5.1 - Budget ........................................................................................................................................................... 34 

 

 

  



 
 

9 
 

1. Introduction 

This thesis is an extension and continuation of a broad project proposed by professors Elisa 

Sayrol Clols and Josep Ramon Morros Rubió, intending to study and reinforce micro-mobility 

safety in cities. 

Even though this project has been carried out in parallel by two students, Miquel Torrecilla 

Mercado and myself Jaume Prats Cristià, this thesis only describes my contribution to the 

project. 

 

1.1. Statement of purpose 

Cities globally are grappling with the negative externalities of car travel and are therefore 

striving to move towards a more sustainable urban transportation system. The introduction 

and popularity of new personal transport modes, such as e-scooters and electric bicycles, 

could potentially accelerate this transition. 

Barcelona, as any large city, is adapting to this transformation by incorporating more and 

more bike lanes to the extensive network of more than 200km and with the filling of 

pioneering regulations for the regulation of micro-mobility such as this January 2021. 

This thesis focuses on the use of Computer Vision techniques for the detection of damages in 

bike lanes that may pose a threat to micro-mobility users. Information that could be used to 

warn the user or the city council to repair them. 

 

1.2. Requirements and specifications 

An important part of this project consists of the creation of a dataset of damages in the bike 

lanes of Barcelona. The goal is to capture and annotate about 300-400 images. 

Subsequently, this dataset will be used to train object detection models to be able to detect 

and classify the different types of road damages in the city. 

As the main objective of this project is to work as a proof of concept and evaluate the 

possibilities of Deep Learning techniques applied to detect bike lane damages, no further 

quantitative technical specifications were established to assess the requirements. 

 

1.3. Methods and procedures 

The database used in this thesis consists of two datasets, the first one from the Global Road 

Damage Detection Challenge 2020 [1], and the second one entirely crated in this project. As 

for the algorithm, a state-of-the-art object detection model has been used, the Faster R-CNN 

[2].  

 

 

 



 
 

10 
 

1.4. Work Plan 

The project breakdown structure consists of 7 work packages. 

Autonomous Learning  WP1 

Description: Learn about foundational topics in the field of Machine Learning and its 

evolution to Deep Learning for object detection. 

Dates: 
Start: 02/02/2021 

End: 02/03/2021 

Milestones: - 

Table 1.1 - Work package 1 

State of Art research WP2 

Description: Research on state of art road damage detection techniques. 

Dates: 
Start: 09/02/2021 

End: 02/03/2021 

Milestones: - 

Table 1.2 - Work package 2 

Documentation WP3 

Description: Write documentation on the work done throughout the project. 

Dates: 
Start: 23/02/2021 

End: 21/06/2021 

Milestones: Project Proposal (08/03/2021) 

Critical Review (14/04/2021) 

Final Report (21/06/2021) 

Table 1.3 - Work package 3 

Dataset WP4 

Description: Capture and label a collection of images of road defects and search on the 

internet for useful datasets. 

Dates: 
Start: 16/02/2021 

End: 08/06/2021 

Milestones: Dataset (08/06/2021) 

Table 1.4 - Work package 4 

 



 
 

11 
 

 

Model WP5 

Description: Search the internet for suitable models to use for our project. Compare the 

different models found and decide which one is best for our application. 

Finally, understand deeply the model chosen and learn how to train it and 

adapt it to our solution. 

Dates: 
Start: 02/03/2021 

End: 27/04/2021 

Milestones: - 

Table 1.5 - Work package 5 

 

Training WP6 

Description: Train the model with different combinations of the resulting datasets from 

WP3. 

Dates: 
Start: 02/02/2021 

End: 02/03/2021 

Milestones: - 

Table 1.6 - Work package 6 

 

Test & Evaluate WP7 

Description: Evaluate and test the algorithm to maximize its performance. Make possible 

adjustments and experiments to obtain final results. 

Dates: 
Start: 27/04/2021 

End: 15/06/2021 

Milestones: - 

Table 1.7 - Work package 7 



 
 

12 
 

 

Figure 1.1 - Gantt Diagram 

 

1.5. Deviations 

Initially, the creation of the dataset was proposed as a first step prior to the training and 

testing of the algorithm, but as a public dataset was found that met our initial needs the 

capture and labelling became a background work package. 

Overall no further substantial deviations from the proposed timeline have appeared. 

 

 

  



 
 

13 
 

2. State of the art 

As stated in the introduction, the project has been developed in parallel by two students, 

Miquel Torrecilla Mercado and myself. For this reason, this section has been written jointly 

and is shared in both theses. 

 

2.1. Road Damage Detection 

Road maintenance requires a periodic evaluation of their condition. This maintenance is 

carried out by different state agencies using road inspection vehicles with different sensors 

installed. They usually make use of three-dimensional (3D) cameras and cameras with lasers 

that capture the pavement surface with the highest possible resolution [3] (see Figure 2.1). 

However, these dedicated vehicles are usually very expensive and often unaffordable for local 

agencies with more limited budgets. In addition, most likely if they are vehicle-based they will 

not adapt to micro-mobility lanes. This leads to the requirement of low-cost methods capable 

of comprehensively surveying road surfaces, such as methods that can be implemented using 

Smartphones and object detection with Deep Learning techniques. 

2.2. Object Detection 

Computer vision is an interdisciplinary field that has been gaining huge amounts of traction in 

recent years and an integral part of it is object detection. Object detection is the task of 

detecting instances of objects of a certain class within an image, a challenge that in turn is 

made of two separate problems, knowing where the object is located within the image, and 

knowing what class of object it is. 

According to how they approach this task, the state-of-the-art methods can be categorized into 

two main types: one-stage detectors and two-stage detectors. 

Two-stage detectors use a Region Proposal Network (RPN) to generate a series of regions of 

interest (ROIs) and these are fed to a second module that classifies the image within each 

proposed region. One-stage detectors on the other hand try to solve both tasks in only one 

pass.  

In general, two-stage detectors prioritize detection accuracy and one-stage detectors focus 

more on inference speed for real-time use. 

Figure 2.1 - Illustration of the ARAN 9000 [3] 



 
 

14 
 

2.2.1. Faster R-CNN [2] 

Faster R-CNN is the third iteration of the R-CNN 

family, one of the most representative networks in 

two-stage detectors. R stands for regions and CNN 

stands for convolutional neural networks. The main 

objective of Faster R-CNN is to reduce computational 

expenses and to be able to work in real-time. 

In Faster R-CNN the image is provided as an input to a 

convolutional neural network which provides a 

convolutional feature map. Then, a separate network 

is used to predict the region proposals. The predicted 

region proposals are then reshaped and fed to a 

second module that classifies the image on each 

proposed region (see figure 2.2). 

 

 

 

2.2.2. Cascade R-CNN [4] 

Cascade R-CNN is an object detection architecture proposed by the University of California San 

Diego in 2017 to address problems with degrading performance with increased IoU 1 

thresholds. 

Usually, an object detector trained with a low IoU threshold produces noisy detections. 

However, if we try to increase the threshold to combat the noise, detection performance tends 

to degrade. This degradation is due to two main factors, overfitting during training by 

eliminating positive samples, and inference-time mismatch between IoUs for which detector 

is optimal and the inputs. 

Cascade R-CNN tries to solve this problem with a multistage extension of the R-CNN, where 

detector stages deeper in the architecture are sequentially more selective against false 

positives. The Cascade R-CNN stages are trained sequentially, using the output of one stage to 

train the next.  

When operating in this manner, the Cascade R-CNN consists of a sequence of detectors 

adapted to increasingly higher IoUs to beat the overfitting problem and be effectively trained. 

 

1 Intersection over Union (IoU) is known to be a good metric for measuring the overlap between the 
predicted and the actual bounding box of an object, it is just de division of the overlap by the union. In 
object detection, an IoU threshold is used to define positives and negatives. 

Figure 2.2 - Faster R-CNN architecture 



 
 

15 
 

2.2.3. YOLO [5] 

All of the previous object detection algorithms 

use regions to locate the object within the image. 

YOLO or You Only Look Once is an object 

detection algorithm much different that uses a 

single convolutional network to predict the 

bounding boxes and the class probabilities for 

these boxes. It works by taking an image and 

dividing it into grid cells, for every cell, several 

bounding boxes are predicted. Then, the 

algorithm adjusts and outputs a class probability 

for every bounding box (see figure 2.3). 

YOLO was first proposed in 2016 by Joseph 

Redmon and it was a milestone in object detection research due to its capability of detecting 

objects in real-time with better accuracy. 

Subsequently, Redmon evolved its algorithm with two new versions YOLOv2 and YOLOv3. 

However, in 2020, as YOLO became famous, Joseph Redmond announced that he stopped his 

research in computer vision due to several concerns regarding the potential negative impact 

of his work.  

Despite Redmon's withdrawal, it was not the end of YOLO, later in 2020 two new versions of 

YOLO have been released in parallel, YOLOv4 [6] by Alexey Bochkovskiy in Darknet, the 

original YOLO framework, and YOLOv5 [7] by Glenn Jocher a PyTorch implementation. 

 

2.3. Global Road Damage Detection Challenge 

The Global Road Damage Detection Challenge (GRDDC) [1] was created with the intention to 

improve state-of-the-art road damage detection using computer vision techniques. 

It was initiated by The University of Tokyo in 2018 in the IEEE Big Data Cup [8]. The first 

challenge had the intention to evaluate the contemporary detection methods. This lead to the 

creation of the actual challenge in the IEEE International Conference on Big Data'2018 in 

Seattle, USA. It was a success with the participation of 54 teams with several new methods and 

it became an annual event. 

After the first challenge, some Japanese cities started to use the proposed methods, providing 

the first feedback of the solutions which was not so good at the time. 

The two premises that make up the challenge are:  

• A dataset of road damages and, 

• an online competition. 

The dataset consists of about 26.000 labelled images from Japan, India and the Czech Republic. 

The two main challenges are the detection and the subsequent classification of the damages. 

 

 

Figure 2.3 - YOLO diagram 



 
 

16 
 

To evaluate the models proposed by the participants two criteria are set to define a hit or a 

miss detection: 

• The intersecting area divided by the union between the predicted and ground truth 

bounding box must be over 50% (IoU > 0.5). 

• The predicted category must match the ground truth category. 

With the described criteria the models are ranked by the resulting F-score in two test sets. 

Table 2.1 shows the best teams, models and scores from the 2020 edition: 

Rank Team Test1 F-score Test2 F-score Proposed solution 

1 
IMSC (USA - 

Jordan) 
0.6748 0.6662 

Ensemble Learning with 

Ultralytics-YOLO and Test 

Time Augmentation 

2 SIS Lab (USA) 0.6275 0.6358 
Ensemble model with 

YOLOv4 as base model. 

3 
DD-Vision 

(China) 
0.629 0.6219 

A Consistency Filtering 

Mechanism and model 

ensemble with Cascade R- 

CNN as the base model 

4 
Titan_mu 

(USA) 
0.5814 0.5751 

YOLO model trained on 

CSPDarknet53 backbone 

5 
Dongjuns 

(Denmark) 
0.5683 0.5710 YOLOv5x 

6 SUTPC (China) 0.5636 0.5707 
Ensemble (YOLOv4 + Faster-

RCNN) 

7 RICS (USA) 0.565 0.547 EfficientDet 

8 
AIRS-CSR 

(China) 
0.554 0.541 YOLOv4 

9 CS17 (Japan) 0.5413 0.5430 

Resnet-18 and Resnet-50 

backbones based Faster- 

RCNN two-stage detection 

architecture 

10 BDASL (USA) 0.5368 0.5426 

Multi-stage Faster R-CNN 

with Resnet-50 and Resnet-

101 backbones 

Table 2.1 - GRDDC2020 Ranking  



 
 

17 
 

3. Methodology 

3.1. Database 

The database of this project consists of two datasets. The first one is a public dataset from the 

Global Road Damage Detection Challenge 2020 [1], and the second one has been entirely 

created in this thesis. 

 

3.1.1. RDD2020 Dataset 

The Road Damage Detection 2020 Dataset [9] was the dataset used for the Global Road 

Damage Detection Challenge (GRDDC), a Big Data Cup organized as a part of the IEEE 

International Conference on Big Data'2020. 

The RDD2020 dataset contains 26.336 road images collected from India, Japan, and the Czech 

Republic with more than 31.000 instances of road damages. It is divided into a training set of 

21.041 images, and two test sets, test1 and test2 of 2.631 and 2.664 images, respectively (see 

figure 3.1). 

  

Figure 3.1 - RDD2020 Statistics 

The images were captured using vehicle-mounted smartphones, to make it useful for 

municipalities and road agencies to develop methods for low-cost monitoring of road 

pavement surface conditions. The instances of road damages are delimited with bounding 

boxes. These annotations are in XML files in PASCAL VOC [10] format. 

The dataset contains annotations for the following damage categories: 

• D00 - Longitudinal Crack 

• D10 - Transverse Crack 

• D20 - Alligator Crack 

• D40 - Pothole 

 

10506

1313 1314

7706

969 990

2829

349 360

0

2000

4000

6000

8000

10000

12000

Train Test1 Test2

Japan India Czech



 
 

18 
 

 

Japan images also contain three additional categories: 

• D43 - Cross Walk Blur 

• D44 - White Line Blur 

• D50 - Manhole 

In the figures below we can see an example of every category. 

 

The distribution of the different categories in the train set can be seen in figure 3.8. 

 

Figure 3.8 - RDD2020 train instances distribution 

4446

5627

6592

8381

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

D10

D40

D00

D20

Figure 3.6 - RDD2020 - D20 - D40 Figure 3.5 - RDD2020 - D43 Figure 3.7 - RDD2020 - D00 

Figure 3.2 - RDD2020 -  D44 Figure 3.4 - RDD2020 - D10 Figure 3.3 - RDD2020 - D50 



 
 

19 
 

3.1.2. BLDD Dataset 

The Bike Lane Damage Detection Dataset is a dataset created during the four months of this 

project. It contains 370 images of bike lanes from the Barcelona Metropolitan Area with 677 

instances of damages. The images have been captured using a smartphone camera simulating 

the perspective of a camera placed on a personal mobility vehicle or bicycle and annotated 

using an online annotation tool for object detection called MakeSense.AI [10]. 

The dataset contains annotations in PASCAL VOC [10] format of the five following classes: 

• D00 - Longitudinal Crack 

• D10 - Transverse Crack 

• D20 - Alligator Crack 

• D40 - Pothole 

• D50 - Manhole 

The main problem encountered when creating the dataset was the surprisingly small number 

of defects found in Barcelona's bike lane network. The city's cycle lanes are relatively new and 

even with more than 50km cycled it was difficult to find potholes (D40) or alligator cracking 

(D20), two defects that are usually present on roads but are very rare on bike lanes due to 

their lower degradation. 

 

Figure 3.10 - BLDD instances distribution 

As can be seen in Figure 3.10 the dataset is not balanced with two under-represented defect 

categories due to the challenge mentioned above. This will lead to different experiments to try 

to solve this problem. The BLDD dataset has been transferred to the university to be used in 

future research. The annotations can also be found in the public repository of the project: 

https://github.com/JaumePrats/BikeLaneDamageDetection. 

34

90

168

190

193

0 20 40 60 80 100 120 140 160 180 200

D20

D40

D50

D00

D10

Figure 3.9 - BLDD - from left to right, D40, D20, D00, D10 and D50 

https://github.com/JaumePrats/BikeLaneDamageDetection


 
 

20 
 

3.2. Damage Detection 

3.2.1. Model 

Object detection is a growing area of computer vision and there are currently several state-of-

the-art models to choose from for a project like this one. 

The first selection was mainly based on the models used by the best teams in the Global Road 

Damage Detection 2020. As can be seen in section 2.3, most of the participants that ended up 

in the first positions used Faster R-CNN, Cascade R-CNN, YOLO, or a combination of those. 

YOLO as explained in section 2.2.3 is a single-shot or one-stage detector which is great 

especially for achieving low inference times but can struggle when the training data is limited 

compared to the multi-stage ones. On the other hand, Faster R-CNN and Cascade R-CNN have 

lower inference speed but as they are multi-stage detectors will usually perform better with 

limited training data, which is the case of our dataset. 

After this initial evaluation, the models were initially trained with a small part of the RDD2020 

Dataset and the model that performed better was the Faster R-CNN followed by the Cascade 

R-CNN. It is for this reason that the network chosen to be used in this thesis is the Faster RCNN.  

The models used in this thesis have been previously trained by my project partner Miquel 

Torrecilla Mercado. In his thesis, he has trained and compared different object detectors 

(Faster R-CNN and Cascade R-CNN) with the RDD2020 dataset. The resulting weights from the 

Faster R-CNN are used as a basis to train the models in this thesis. 

3.2.2. Training 

The experiments and training of the models in this thesis are carried out using MMDetection 

[12], an open-source object detection toolbox based on PyTorch [13]. MMDetection features a 

model zoo that contains many state-of-the-art detectors and a modular design that meets the 

needs of the project. 

In MMDetection a model is defined by a configuration file and its parameters saved in a 

checkpoint file. 

A configuration file contains 4 basic components: 

• Model: Describes de detector model. 

• Schedule: Defines the train, validation, and test pipelines. 

• Dataset: Sets the dataset for training, validation, and test. 

• Runtime: Defines other parameters such as the learning rate, the number of epochs, 

or the validation interval. 

In this project, several configuration files have been created to conduct the experiments 

described in the results. All are based on the faster_rcnn_r50_caffe_fpn_mstrain_1x_coco, which 

uses a Faster R-CNN detector with an R50-FPN backbone.  

All the configuration files used in this thesis can be found in the public repository: 

https://github.com/JaumePrats/BikeLaneDamageDetection. 

As previously mentioned, the detectors used in this thesis have been previously trained with 

the RDD2020 Dataset, which is why the checkpoint file used in this thesis is the result of the 

training performed by my project partner Miquel Torrecilla Mercado. 

https://github.com/JaumePrats/BikeLaneDamageDetection


 
 

21 
 

3.2.3. Pre-processing  

Although most of the images from the BLDD Dataset have been captured using the same 

smartphone there are some images captured with other devices with different aspect ratios. 

Furthermore, in some experiments conducted the dataset has been combined with the dataset 

from Global Road Damage Detection Challenge, raising the need for pre-processing the images 

before training. 

To adapt all images to the same aspect ratio, all images have been resized to 600x600 adding 

black edges to fill the ratio (figure 3.11). In this way, the image size of the captured images is 

also reduced for smaller file sizes and faster training. 

In addition, the dataset annotations have been also converted from PASCAL VOC [10] to COCO 

[14] format to simplify the implementation in MMDetection. 

All the pre-processing mentioned has been conducted through Roboflow [15], an online 

platform for computer vision that allows the management of datasets. Working in this way, 

every time images were added to the dataset a new version was created and could be exported 

to the training environment. 

 

3.2.4. Data Augmentation 

Data Augmentation is a set of techniques used to increase the amount of data by adding slightly 

modified copies of already existing data or newly created synthetic data from existing data. 

Data augmentation is commonly used in deep learning for two main reasons. The first one is 

to counter the lack of training data, which is exactly the case of this thesis, the second one is 

that it avoids memorization preventing overfitting in training, creating a model that performs 

better in unseen samples. 

According to where the Data augmentation is conducted there are two methods: 

The first one is known as offline data augmentation which consists of performing all the 

necessary transformations beforehand, essentially increasing the size of your dataset by a 

factor equal to the number of transformations performed. 

The second one is known as online data augmentation or augmentation on the fly. In this 

method, the transformations are performed in mini-batches before feeding them to the model. 

Although this is usually preferred for larger datasets to avoid the increase in the dataset size, 

this is the method used in this thesis. 

 

Figure 3.11 - Resize example 



 
 

22 
 

 

An important aspect of data augmentation is the randomness of the augmentations, every 

transformation is applied with a probability, in this way every batch fed to the detector has 

substantially different transforms than the last one, preventing even more memorization by 

the model.  

To perform data augmentation MMDetection features some basic transformations that can be 

applied directly to the training pipeline but to explore more complex ones the Albumentations 

[15] library has been used. Albumentations is a Python library for image augmentation that 

can be used through the data pipelines in MMDetection. The augmentation pipeline used in 

the MMDetection configuration file can be seen in the Annex. 

Albumentations offers an extensive list of pixel-level and spatial-level transformations to 

apply to images, to select the chosen ones, research was done to determine their effects on 

training and whether they were applicable or made sense in our case.  

 

The data augmentation applied is the following: 

 

Horizontal Flip 

Flipping the images is useful to prevent that the 

model recognizes the objects in a particular 

orientation and also change the location of the 

objects in the image. In our case, just a horizontal flip 

is applied with a probability of 0.5 because a vertical 

flip does not make sense since the algorithm is not 

expected to see upside-down images for this 

application. 

 

Blur and Noise 

Many types of imperfections can make their way into 

an image: blur, noise, poor contrast, JPEG 

compression, and more. Among these, blur and noise 

have the most detrimental effect on neural networks 

[16]. In our application blur makes a lot of sense 

because the developed system is intended to be used 

with a moving camera placed on a micro-mobility 

vehicle. For this reason, the Albumentation 

transforms applied are GaussNoise to apply gaussian 

noise, and MovingBlur, which mimics the result of a 

moving image. 

 

 

 

 

Figure 3.12 - Horizontal Flip 

Figure 3.13 - Motion Blur 

 



 
 

23 
 

Rotation 

As stated above the intended application of the 

developed algorithm is to be placed in a moving 

vehicle, in this case, the images captured may be 

tilted. For this reason, rotation between -15 to 15 

degrees is applied to able the algorithm recognizes 

the damages in these circumstances. It is important 

to note that too much rotation may be detrimental 

because the model could confuse longitudinal (D00) 

and transversal (D10) cracks. 

 

Brightness 

To simulate different lighting conditions that the 

model may face in production use, a brightness 

augmentation has also been applied. 

 

 

 

CutOut 

In our application, some objects may be partially 

covered by other vehicles o elements in the bike line. 

To force the model to learn about the different parts 

of the objects detected a CutOut has been also 

implemented. Using the Cutout transform from 

Albumentations 8 25x25 squares are distributed 

randomly within the image. 

 

Color transformations 

Our dataset is mostly captured using the same 

device, to adapt the model to be able to work with 

images from other devices some color 

transformations have been also added. RGBShift to 

slightly shift values for each channel of the image and 

HueSaturationValue to change the hue, saturation, 

and value. 

 

 

 

  

Figure 3.14 - Rotation 

Figure 3.15 - Brightness 

Figure 3.16 - Cutout 

Figure 3.17 - RGBShift / HueSaturationValue 



 
 

24 
 

4. Results 

4.1. Experimentation 

A total of 5 experiments have been conducted to evaluate the model and the techniques 

applied during the training. To perform these experiments the BLDD Dataset has been divided 

between train (70%), validation (20%) and test (10%) sets. The resulting images for the train, 

validation and test set are 259, 74 and 37 respectively. 

 

E1 - BLDD Dataset (bldd) 
The first consists of training the detector with the dataset created in this thesis, BLDD Dataset, 

without any data augmentation techniques.  

It is important to note that the BLDD Dataset has two under-represented classes, resulting in 

an unbalanced training set (see figure 4.1). 

 

Figure 4.1 - bldd train instances distribution 

The results from this experiment are used to compare the effects of the techniques applied to 

the others. 

 

E2 - BLDD Dataset Balanced (bldd_bal) 

In the second experiment, the unbalanced problem has been addressed by adding images from 

the RDD2020 dataset to the training set (see figure 4.2). The images added are exclusively 

from the Czech Republic and Japan, as the Indian ones depict rural areas and are visually 

distinct from the ones from our dataset. A total of 153 images containing the two under-

represented classes were added to achieve the balance of the training set. The resulting 

training set is composed of 412 images with 909 instances. 

 

Figure 4.2 – bldd_bal train instances distribution 

0 20 40 60 80 100 120 140

D20

D40

D50

D10

D00

0 20 40 60 80 100 120 140 160 180 200 220 240

D50

D10

D00

D40

D20



 
 

25 
 

E3 - BLDD - RDD2020 (bldd_bal100) 

This experiment intends to evaluate the effect that incrementing the dataset size has on the 

performance of the detector. Taking the balanced training set from the last experiment as a 

basis, an additional 100 images from the RDD2020 dataset have been added. Resulting in a 

training set of 512 images and 1119 instances. The instances distribution in the train set can 

be seen in figure 4.3. 

 

Figure 4.3 - bldd_bal100 train instances distribution 

 

E4 - DA (bldd_da_pipeline) 

Unlike the experiments described above, in the following experiments, no modifications have 

been made to the initial dataset. These focus on the use of augmentation techniques during 

training.  

In this fourth experiment, the following transforms have been added to the augmentation 

pipeline:  

• Horizontal flip. 

• Motion blur. 

• Gaussian noise. 

• Rotation (between -15 and 15 degrees). 

• Brightness modification. 

• Cutout (8 squares of 25x25 pixels). 

• Color transform (RGBShift and HueSaturationValue) 

The training pipeline used in the configuration file is shown in the Annex.  

 

E4 - DA - Flip – Blur (bldd_da_flip bldd_da_blur) 

Finally, to further evaluate flip and blur augmentations, two more models have been trained. 

The first one, using only a horizontal flip transform in the augmentation pipeline. The second 

one using only a blur augmentation, the MotionBlur transform from Albumentation to be more 

precise. 

0 20 40 60 80 100 120 140 160 180 200 220 240

D00

D50

D10

D40

D20



 
 

26 
 

4.2. Metrics 

To analyze and compare the resulting detectors from every experiment the following metrics 

have been used. 

To determine the similarity between the predicted bounding boxes and the ones from the 

ground truth, we have measured the overlap between these two using the Intersection over 

Union (IoU). 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

 

In this way, we can define what constitutes a right prediction. If the predicted category 

matches the real one and the IoU is over 50%, we consider the prediction to be correct. 

To measure how accurate the predictions of the detectors are, we have used two well-known 

metrics, precision and recall. Basically, precision measures the percentage of correct positive 

predictions among all predictions made, and recall measures the percentage of correct 

positive predictions among all positive cases in reality. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
            𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑇𝑃: 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒    𝑇𝑁: 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒     𝐹𝑃: 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒     𝐹𝑁: 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

 

There is a tradeoff between these two measures, combining them we obtain the F-score: 

 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Lastly, an also common metric is used, Average Precision (AP). AP is defined as the area under 

the precision-recall curve. By averaging the AP for different classes, we get the Mean Average 

Precision (mAP) that has been used in validation. 

  



 
 

27 
 

4.3. Result analysis 

To analyze the results, we will use the metrics described to compare the performance of the 

detectors trained in each experiment. 

4.3.1. Dataset balancing 

First of all, we evaluate the effects of balancing the training set by adding images from the 

RDD2020.  

• bldd: training set from our dataset (Unbalanced). 

• bldd_bal: training set + 153 RDD2020 images (Balanced). 

• bldd_bal100: trained set + 253 RDD2020 images (Balanced). 

We start by comparing the training loss. In figure 4.4 we can notice that while in the first model 

the training loss goes flat around epoch 7, as we add more images to the training set the loss 

takes longer to stabilize. 

 

Figure 4.4 - Dataset balancing - train loss 

 

We continue by examining the validation. In figure 4.5 we can see how the mAP decreases as 

we add RDD2020 images to the training set. This contradicts what we might think beforehand, 

the more images the better the results. In this example, we see that this is not the case. 

Although the added images provide more defect samples to the training set, they are visually 

distinct from the ones in our dataset, resulting in a degradation of the mAP. However, the 

results are not clear, because in the second experiment, where we add 100 additional images 

from Japan, a slight increase in mAP can be observed. 

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12 14 16

lo
ss

epoch

bldd bldd_bal bldd_bal100



 
 

28 
 

 

Figure 4.5 - Dataset balancing - validation mAP 

Looking at the measures of precision and recall in the test set (table 4.1) we can further 

analyze what is going on. 

  bldd bldd_bal bldd_bal100 

D00 

Precision 0,478  0,474  0,500 

Recall 0,367  0,321  0,345 
F-score 0,415  0,383  0,408 

D10 

Precision 0,684  0,571  0,619 
Recall 0,481  0,462 0,481 

F-score 0,565  0,511  0,542 

D20 

Precision 0,750 0,750  0,500 
Recall 0,143 0,143  0,100 

F-score 0,240  0,240  0,167 

D40 
Precision 0,400  0,600 0,400 

Recall 1,000 1,000 1,000 
F-score 0,571  0,750 0,571 

D50 

Precision 0,625  0,818  0,818 

Recall 0,667  0,643  0,643 

F-score 0,645  0,720  0,720 

Table 4.1 - Dataset balancing - test 

At first glance, we can see that adding images does not improve, or even worsen, the metrics 

of the first three categories. These correspond to longitudinal crack (D00), transversal crack 

(D10), and alligator cracking (D20). A possible explanation could be that cracks found in bike 

lanes tend to be narrower and less deep than the ones present in the roads, due to the less 

deterioration and difference in the used pavement. This could be making the detector less able 

to generalize to detect the bike lane ones from the test set.  

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0 2 4 6 8 10 12 14 16

m
A

P

epoch

bldd bldd_bal bldd_bal100



 
 

29 
 

As for the D40 (pothole) category, we can observe that in the three cases recall equals 1, which 

means that the detector identifies every pothole sample in the test set correctly, however, it 

also mislabels other parts of the images as potholes, obtaining a much lower precision value. 

Finally, in the D50 category (manhole) we can see an increase in the F-score, given by a 

substantial increase in precision (0,8), indicating that the resulting detectors have identified 

correctly most of the instances. This is due to the following, in contrast to other categories, 

manhole samples from the RDD2020 dataset are almost identical to the ones from our dataset, 

which means that the samples added to the training set are consistent and produce this rise in 

precision. 

 

4.3.2. Data Augmentation 

In this section, we compare the results obtained in the conducted experimentation on data 

augmentation. 

Four different models were trained to test different data augmentation strategies: 

• bldd: Base model trained without any data augmentation technique as a reference. 

• bldd_da_pipeline: Model trained with a data augmentation pipeline with a variety of 

transformations: horizontal flip, blur, noise, rotation, brightness modification, cutout, 

and color transformation. 

• bldd_da_flip: Model trained using only horizontal flip in the augmentation pipeline. 

• bldd_da_blur: Model trained using the blur transform as the only data augmentation 

strategy. 

In contrast with the last set of experiments, in this case, the training loss plotted in figure 4.6 

does not present any significant changes between the models. 

 

Figure 4.6 - Data Augmentation - train loss 

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12 14 16

lo
ss

epoch

bldd bldd_da_pipeline bldd_da_flip bldd_da_blur



 
 

30 
 

In figure 4.7 we compare the obtained mAP during validation. We can notice that the model 

trained with all the transforms achieves the best mAP in validation, 0,69 the higher for all the 

trained models.  

 

Figure 4.7 - Data Augmentation - validation mAP 

To further analyze the differences between the models we compare the results obtained in the 

test set in table 4.2.  

  bldd bldd_da_pipeline  bldd_da_flip bldd_da_blur 

D00 

Precision 0,478  0,500  0,450  0,400 
Recall 0,367  0,321  0,333  0,296 

F-score 0,415  0,391  0,383  0,340 

D10 

Precision 0,684  0,474  0,652  0,652 

Recall 0,481  0,391  0,517  0,517 
F-score 0,565  0,429  0,577  0,577 

D20 
Precision 0,750  0,600 0,750  1,000 

Recall 0,143 0,143 0,143 0,143 
F-score 0,240  0,231  0,241  0,250 

D40 
Precision 0,400 0,400  0,500 0,400 

Recall 1,000 1,000 1,000 1,000 
F-score 0,571 0,571  0,667 0,571 

D50 

Precision 0,625  0,692  0,750  0,818 

Recall 0,667  0,643  0,643  0,429 

F-score 0,645  0,667  0,692  0,720 

Table 4.2 – Data Augmentation - test 

On one hand, we can observe that for the first two data augmentation models the results do 

not show any substantial improvement for the crack classes (D00, D10, D20), even for the D00 

we see a drop in precision and recall. On the other hand, a considerable rise in the precision 

of the D50 class (manhole) using flip and blur transforms. 

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0 2 4 6 8 10 12 14 16

m
A

P

epoch

bldd bldd_da_pipeline bldd_da_flip bldd_da_blur



 
 

31 
 

In this case, in contrast to the results obtained in validation, the model trained with the more 

complex augmentation pipeline performed substantially worse than the others. Only showing 

a slight improvement for the D50 category. 

A priori, we might think that augmentation techniques would lead to an improvement in 

detector performance. But clearly, the results do not match expectations. Apart from the D50 

class, the performance has not been affected much. Even when adding more transformations 

in the augmentation pipeline the results have been worse. 

It should be noted, however, that most of the images from the dataset, and therefore the ones 

from the test set, are captured using the same smartphone and perfectly static and level. This 

could be the reason why the data augmentation techniques explored have not produced a 

substantial improvement in the performance of the detectors. Nonetheless, these techniques 

could be beneficial in a real case scenario where the images are captured from a mounted 

camera in a micro-mobility vehicle. 

In general, we can say that the experiments conducted have not led to a substantial 

improvement in the performance of the detectors. In the first case, we have seen how adding 

images from the RDD2020 dataset has had a negative effect on the ability to generalize in the 

test images, especially for the crack categories. In the second case, the results obtained using 

flip or blur augmentation showed a slight improvement for some classes, however, the model 

trained with different augmentation transforms combined has obtained the worst results in 

the test set.  

Yet, there is one class that has behaved well in every experiment, D50 (manhole), for every 

method applied the precision in the test has been around or over 0,7, even 0,8 in some cases. 

Finally, we must say that in this thesis, the dataset used is very small, we are talking about 259 

train images, 74 for validation, and 37 in the test set. It is for this reason that the results 

obtained have some randomness preventing a conclusive analysis of the techniques applied 

and the subsequent draw of clear conclusions. 

 

4.3.3. Test examples 

Figure 4.5 shows some examples of the test set and the predicted results from the different 

detectors trained. In some cases, we can see how the detector placed more than one bounding 

box of the same category over the same damage. Even though this produces a false positive 

that lowers the precision, it is not particularly bad in our application since the algorithm still 

detects the presence of a defect. 

In figure 4.6 we can see some examples of difficult images from the test set. These examples 

are intended to emphasize that cracks are objects that do not have defined edges. This makes 

it difficult to delimit where they begin and where they end, a fact that in some cases has made 

annotation difficult and therefore their detection by the models. 

 

 

 

 

 



 
 

32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b
ld

d
_d

a_
b

lu
r 

b
ld

d
_d

a_
fl

ip
 

b
ld

d
_b

al
1

0
0

 
b

ld
d

_d
a_

p
ip

el
in

e 
b

ld
d

_b
al

 
b

ld
d

 

Figure 4.8 - Test images 



 
 

33 
 

  

Figure 4.9 - Difficult test images 



 
 

34 
 

5. Budget 

For the estimation of the budget of the project, a series of premises have been held: 

• The project has lasted 20 weeks, including the learning phase. About 25 hours per 

week have been employed to its development. 

• The worker's salary consists of 11 € per hour (an internship salary is considered). 

Consequently, the total salary rises to 5.500 €. 

• The project has been supervised by two professors from ETSETB. A price of 70 € per 

hour is assumed and 1 hour per week for each supervisor. Resulting in a total of 2.800 

€. 

• For the development of the project, the free basic plan of Google Colaboratory has been 

used, as well as a remote server provided by UPC's Image Processing Group. However, 

to estimate the cost, we assume the use of the paying plan of Google Colaboratory, 

which is around 9 € per month. Resulting in a total of 36€. 

• All licenses and software used are open source so no cost is added. 

 

Table 5.1 shows the total cost of the project.  

 

Concept Cost 

Salary 5.500,00 € 

Superviesion 2.800,00 €  

Development 36,00 € 

Licenses and software 0,00 € 

TOTAL 8.336,00 € 

Table 5.1 - Budget 

  



 
 

35 
 

6. Conclusions and future development  

The objective of this project was to develop a system to reinforce micro-mobility safety by 

detecting the damage on bike lanes. To achieve this goal, a dataset has been created and 

subsequently used to train an object detector, the Faster R-CNN. Afterward, a set of 

experiments has been conducted to explore different techniques used to improve the 

detection performance. 

We have seen how, even using a rather small data set, we have been able to satisfactorily detect 

the defects present in different images, achieving more than decent results. This could serve 

as the first step to further develop a system to detect and identify numerous types of bike lane 

damages and use the information to warn users or maintenance services. 

A relevant part of the project has consisted of the capture and posterior annotation of images 

to create the dataset. These resources can be used for future research to further develop the 

system and the field of damage detection in bike lanes.  

Going into more detail about the experiments performed, we have seen how consistency 

between train and test is important for performance, not always more images mean better 

results. As for data augmentation, the strategies applied may be useful for a production 

application of the detector but didn't show a substantial performance improvement.  

Still, the limited data has posed a challenge for the analysis of results. The small number of 

images in the validation and test set had led to inconclusive results about the effectiveness of 

the techniques applied. 

For this reason, future work would be to use K-Fold cross validation during training, in this 

way, we could evaluate the techniques used in a more deterministic manner. Another 

improving area would be the use of class weights during training to tackle dataset imbalance. 

As stated in the introduction, this thesis is to work as a proof of concept and evaluate the 

possibilities of Deep Learning techniques applied to bike lane damage detection. After the 

work performed, we can say without a doubt that the implementation of such a system could 

be used as part of a package to improve the safety of micro-mobility users in today's cities. For 

example, a collaborative application could be implemented that uses the images captured by 

different users to establish a classification of the state and deterioration of the different bike 

lanes in a city. 

 

  



 
 

36 
 

Bibliography 

 

[1]  "Global Road Damage Detection Challenge 2020," 2020. [Online]. Available: 

https://rdd2020.sekilab.global. 

[2]  S. Ren, K. He, R. Girshick and J. Sun, Faster R-CNN: Towards Real-Time Object Detection 

with Region Proposal Networks, arXiv:1506.01497, 2015.  

[3]  F. Naveed, "Application Of Deep Learning In Identifying Road Cracks," October 2019. 

[Online]. Available: https://towardsdatascience.com/application-of-deep-learning-in-

identifying-road-cracks-8153e50ce9e2. 

[4]  Z. Cai and N. Vasconcelos, Cascade R-CNN: Delving into High Quality Object Detection, 

arXiv:1712.00726, 2017.  

[5]  J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You Only Look Once: Unified, Real-Time 

Object Detection, arXiv:1506.02640, 2016.  

[6]  A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, YOLOv4: Optimal Speed and Accuracy of 

Object Detection, arXiv:2004.10934, 2020.  

[7]  G. Jocher, "ultralytics/yolov5," 2020. [Online]. Available: 

https://github.com/ultralytics/yolov5. 

[8]  "IEEE Big Data Cup," 2021. [Online]. Available: 

http://bigdataieee.org/BigData2021/CallBigDataCupChallenges.html. 

[9]  D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, H. Omata, T. Kashiyama, T. Seto, A. Mraz 

and Y. Sekimoto, "RDD2020: An Image Dataset for Smartphone-based Road Damage 

Detection and Classification," 2021. [Online]. Available: 

https://data.mendeley.com/datasets/5ty2wb6gvg/1. 

[10]  M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn and A. Zisserman, The PASCAL Visual 

Object Classes (VOC) Challenge, 

https://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf.  

[11]  P. Skalski, "Make Sense," [Online]. Available: https://www.makesense.ai. 

[12]  K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. 

Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai and J. Wang, 

MMDetection: Open MMLab Detection Toolbox and Benchmark, arXiv:1906.07155, 2019. 

  



 
 

37 
 

[13]  A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. 

Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani and 

S. Chilamkurthy, PyTorch: An Imperative Style, High-Performance Deep Learning Library, 

arXiv:1912.01703, 2019.  

[14]  T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, P. P. James Hays, D. Ramanan, C. 

L. Zitnick and P. Dollár, Microsoft COCO: Common Objects in Context, arXiv:1405.0312, 

2014.  

[15]  B. Dwyer, J. Nelson, J. Solawetz, A. Morrow, K. Williams, T. Hansen, M. Traore, R. Huerta, 

N. Kelley and S. Sahoo, "Roboflow," [Online]. Available: https://roboflow.com. 

[16]  A. Buslaev, A. Parinov, E. Khvedchenya, V. I. Iglovikov and A. A. Kalinin, Albumentations: 

fast and flexible image augmentations, arXiv:1809.06839, 2018.  

[17]  S. Dodge and L. Karam, Understanding How Image Quality Affects Deep Neural Networks, 

arXiv:1604.04004, 2016.  

 

 

 

 

  



 
 

38 
 

Annex: 

Data augmentation pipeline used (entire configuration file in the project repository: 

https://github.com/JaumePrats/BikeLaneDamageDetection ): 

albu_train_transforms = [ 

    dict( 

        type='HorizontalFlip', 

        p=0.5), 

    dict( 

        type='OneOf', 

        transforms=[ 

            dict( 

                type='MotionBlur', 

                blur_limit=(3,7), 

                p=1), 

            dict( 

                type='GaussNoise', 

                var_limit=(10.0, 60), 

                p=1), 

        ], 

        p=0.2), 

    dict( 

        type='Rotate', 

        limit=(-15, 15), 

        interpolation=1, 

        border_mode=0, 

        value=(0, 0, 0), 

        mask_value=None, 

        p=0.3), 

    dict( 

        type='RandomBrightness', 

        limit=[-0.2, 0.2], 

        p=0.2), 

    dict( 

        type='Cutout', 

        num_holes=8, 

        max_h_size=25, 

        max_w_size=25, 

        p=0.2), 

    dict( 

        type='OneOf', 

        transforms=[ 

            dict( 

                type='RGBShift', 

                r_shift_limit=10, 

                g_shift_limit=10, 

                b_shift_limit=10, 

                p=1.0), 

            dict( 

                type='HueSaturationValue', 

                hue_shift_limit=20, 

                sat_shift_limit=30, 

                val_shift_limit=20, 

                p=1.0) 

        ], 

        p=0.1), 

] 

 

train_pipeline = [ 

    ... 

    dict( 

        type='Albu', 

        transforms=albu_train_transforms, 

        bbox_params=dict( 

https://github.com/JaumePrats/BikeLaneDamageDetection


 
 

39 
 

            type='BboxParams', 

            format='coco', 

            label_fields=['gt_labels'], 

            min_visibility=0.0, 

            filter_lost_elements=True), 

        keymap={ 

            'img': 'image', 

            'gt_bboxes': 'bboxes' 

        }, 

        update_pad_shape=False, 

        skip_img_without_anno=True), 

    ... 

] 

 

 


