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Abstract: We study the output of a semiconductor laser with optical feedback operated in the low-
frequency fluctuations (LFFs) regime and subject to weak sinusoidal current modulation. In the
LFF regime, the laser intensity exhibits abrupt drops, after which it recovers gradually. Without
modulation, the drops occur at irregular times, while, with weak modulation, they can lock to the
external modulation and they can occur, depending on the parameters, every two or every three
modulation cycles. Here, we characterize experimentally the locking regions and use the well-
known Lang–Kobayashi model to simulate the intensity dynamics. We analyze the effects of several
parameters and find that the simulations are in good qualitative agreement with the experimental
observations.
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1. Introduction

Locking is a phenomenon that ubiquitously occurs in oscillators that are subject to
an external periodic forcing, and refers to the synchronization, or to the adjustment, of
the oscillator’s rhythm, to that of the external forcing. Locking has many applications, for
example, for cardiac re-synchronization after arrhythmia, for deep brain stimulation, jet lag
re-adjustment, etc. [1–3].

A semiconductor laser whose pump current is periodically modulated is a stochastic
nonlinear oscillator that can shows bistability and a chaotic output [4,5], and that allows
controlled experiments in order to understand how locking emerges and how it depends on
the parameters of the laser and of the external signal. With weak optical feedback, the laser
intensity shows feedback-induced fluctuations that, under appropriate conditions, can be
controlled by periodic current modulation. In particular, a weak modulation of the laser
current can control the low-frequency fluctuations (LFFs) that occur when the laser operates
near the threshold [4]. Without current modulation, the laser intensity shows irregular and
abrupt drops (that in the following we will refer to as spikes), while with current modulation,
under appropriate conditions, the spikes lock to the modulation (see Figure 1), and they
occur with a rhythm that depends on the frequency of the modulation [6–17].

In recent years, we have performed detailed experiments on the modulated LFF
dynamics, characterizing the temporal correlations in the spike times [18,19], the role of the
modulation waveform [20], and the degree of locking [21] and we compared the spiking
LFF dynamics with simulations of a weakly forced neuron [22]. We have also discovered
that weak sinusoidal modulation can generate time-crystal-like behavior [23,24] because it
can produce highly regular subharmonic locking, but not harmonic locking [25,26]. The lack
of harmonic locking under weak sinusoidal modulation could be understood when using
the well-known Lang–Kobayashi (LK) model [27] to simulate the intensity dynamics [28].
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The goal of this work is to perform an in-depth comparison of experimental observa-
tions and the predictions of the LK model. This paper is organized as follows. In Section 2,
we present the LK model, in Section 3 we describe the experimental setup and datasets, in
Section 4 we present the comparison of observations and simulations, and in Section 5, we
present the discussion and the conclusions.

Figure 1. Available online: examples (accessed on) of intensity time series recorded with different
modulation amplitudes. (a) Amod = 0%, (b) 0.73% (c) 1.22%, (d) 1.70%, and (e) 2.43% of the dc level
Idc = 26 mA. The modulation frequency is fmod = 44 MHz. The red dots indicate the detected
spike times.

2. Model

The Lang–Kobayashi rate equations describing a single-mode semiconductor laser
with weak optical feedback and sinusoidal pump current modulation are [26–28]:

Ė = k(1 + iα)(G− 1)E + ηE(t− τ)e−iω0τ +
√

Dξ, (1)

Ṅ = γN(µdc + amod sin(2π fmodt)− N − G|E|2). (2)

Here, E represents the slowly varying complex optical field (|E|2 is proportional to the
laser intensity) and N, the carrier density. η, τ, and ω0τ are the feedback strength, the delay
time, and the feedback phase, respectively; k = 1/(2τp) where τp is the photon lifetime,
γN = 1/τN where τN is the carrier lifetime, G = N/(1 + ε|E|2) is the gain and ε is the
gain saturation coefficient, α is the linewidth enhancement factor. ξ is a complex Gaussian
white noise that takes into account spontaneous emission and D is the strength of the noise.
µdc is the dc value of the pump current parameter, which is proportional to Idc/Ith,sol [29],
with Idc being the dc value of the pump current and Ith,sol the threshold current without
feedback. amod and fmod are the modulation amplitude and frequency, respectively.

The model equations were integrated with the same procedure and parameters as
in [26,28] that fit the experimental conditions: k = 300 ns−1, γN = 1 ns−1, α = 4, ε = 0.01,
η = 30 ns−1, τ = 5 ns, µdc = 0.99, and D = 10−5 ns−2. To detect the spike times, the
intensity time series, |E(t)|2, was band-pass filtered to simulate the finite bandwidth of the
experimental detection system, and was then normalized to zero mean and unit variance.
Then, a spike was detected whenever the intensity dropped below a threshold, Th = −1.1.
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To analyze the statistical characteristics of the spikes, for each set of parameters five
intensity time series were simulated, starting from random initial conditions and using
different noise seeds, and from them, after disregarding a transient time, the average
number of spikes, the average inter-spike interval (IS), and the average standard deviation
of the distribution of ISIs were calculated.

3. Experimental Setup and Datasets

The experimental setup and datasets were described in [20]. A diode laser with center
wavelength of 685 nm (Thorlabs HL6750MG, Newton, NJ, USA) was used, whose tempera-
ture and current were stabilized with an accuracy of 0.01 C and 0.01 mA, respectively. A
beam splitter sent 90% of the light reflected by a mirror back to the laser, and the other
10% to the detection system: a high-speed photo-detector (Thorlabs Det10A/M) connected
to an amplifier (Femto HSA-Y-2-40, Berlin, Germany) whose output was recorded with
a digital oscilloscope (Agilent Technologies Infiniium DSO9104A, 1 GHz bandwidth). A
500 MHz Bias-T in the laser mount was used to modulate the laser current with a periodic
signal generated by an arbitrary waveform generator (Agilent 81150A, Santa Clara, CA,
USA). The length of the external cavity was 70 cm, which gave a feedback delay time of
4.7 ns. The threshold current of the free-running laser was Ith,sol = 26.62 mA, and with
optical feedback, it was reduced to Ith = 24.70 mA (7.2% reduction). In the experiments,
three modulation parameters were varied, the dc value of the laser current, Idc, the am-
plitude, Amod, and frequency, fmod, of the driving signal, and for each set of parameters,
three modulation waveforms were used (pulse-down, pulse-up, and sinusoidal). Here, we
analyze the data recorded with sinusoidal modulation. Specifically, we analyze the ISIs
recorded with different Idc, Amod, and fmod.

4. Results

Figure 1 presents experimental intensity time series recorded without current modu-
lation (top panel) and with current modulation of increasing amplitude (panels b–e). We
see that for intermediate modulation amplitudes the spikes become periodic and a spike
occurs every three modulation cycles (locking 3:1). Model simulations that show good
agreement with these observations were presented in [26] (Figure 4).

To perform a systematic comparison of experiments and model simulations, we
analyze how the statistics of the ISIs depend on the amplitude and on the frequency of the
modulation. Specifically, we analyze the number of spikes, the mean ISI normalized to the
modulation period, Tmod, and the coefficient of variation, Cv, that measures the relative
width of the ISI distribution (Cv = σISI/〈ISI〉 where 〈ISI〉 and σISI are the mean and the
standard deviation of the ISI distribution). The results are presented in Figures 2 and 3, for
the experimental and the simulated data, respectively. We see a good qualitative agreement:
the number of spikes increases in the regions of locking, which are seen as a well-defined
cyan region (locking 2:1, 〈ISI〉 = 2Tmod) and a yellow region (locking 3:1, 〈ISI〉 = 3Tmod),
and in these regions Cv is small, revealing a narrow ISI distribution.

Figure 2. Analysis of the experimental inter-spike intervals (ISIs). (a): number of spikes (in color
code) vs. the modulation amplitude and frequency; (b): mean ISI normalized to the modulation
period (the red color represents 〈ISI〉/Tmod ≥ 5); (c) coefficient of variation. The dc value of the
pump current is as in Figure 1.
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Figure 3. As in Figure 2, but obtained from model simulations with µdc = 0.99, other parameters are
as indicated in the text.

Let us next compare the combined effect of varying the dc value of pump current and
the modulation amplitude, keeping the modulation frequency fixed. In Figures 4 and 5,
we present the analysis of experimental and simulated ISIs, respectively. In both figures,
from top to bottom, fmod = 26 MHz, 44 MHz, and 55 MHz. We again observe a very good
qualitative agreement between experiments and simulations. As Idc or µdc increase, we see
that the number of spikes increases (left column) and the mean ISI decreases (in the blue
regions, the mean ISI becomes equal to or smaller than the modulation period). However,
we see in the right column that the coefficient of variation increases with Idc or µdc, which
indicates that 1:1 locking is not achieved.

Figure 4. Experimental characterization of the locking region as a function of the modulation
amplitude and the dc value of the pump current, for different modulation frequencies. (a,d,g)
number of spikes; (b,e,h) 〈ISI〉/Tmod; (c,f,h) coefficient of variation. (a–c) fmod = 26 MHz; (d–f)
fmod =44 MHz; (g–i) fmod =55 MHz.

In Figure 4b, we note that for large enough Idc the mean ISI is approximately equal to
the modulation period, but there is no 1:1 locking because the ISI distribution is quite broad
(the coefficient of variation is≈ 0.5). One could wonder if for other modulation frequencies,
harmonic locking could be obtained. To address this point, we examine the statistics of the
ISIs as a function of the modulation amplitude and frequency. The results are presented
in Figure 6 (experimental data recorded with Idc = 27 mA) and in Figure 7 (simulated
data with µdc = 1.01). In Figure 6b, we see, for low modulation frequencies, a blue region
that indicates 〈ISI〉/Tmod ∼ 1, but in this region Cv is large (Cv ∼ 0.5). In Figure 7b, we
also see a blue region with similar characteristics. In contrast with the experiments, in the
simulation, 3:1 locking is not seen because the yellow region in Figure 7b is quite narrow,
and in this region, Cv is large.
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Figure 5. As Figure 4, but obtained from model simulations. First row, fmod = 26 MHz; second row,
fmod = 44 MHz; and third row, fmod = 55 MHz. We again see a tendency of the mean ISI to decrease
as the dc value of the pump current increases, but no 1:1 locking is obtained because in the region
where 〈ISI〉/Tmod ∼ 1, the width of the distribution of ISIs, measured by the coefficient of variation,
is quite large.

Figure 6. As Figure 2, but the dc value of the pump current is Idc = 27 mA. (a) number of spikes; (b)
〈ISI〉/Tmod; (c) coefficient of variation.

Figure 7. As Figure 3, but µdc = 1.01, other parameters are as indicated in the text.

5. Conclusions

We have studied the dynamics of a semiconductor laser with optical feedback and
current modulation, which operates in the LFF regime. We have analyzed how the number
of spikes and how the mean and the standard deviation of the ISI distribution vary with
the modulation parameters: the dc value, the amplitude, and the frequency. We have found
a very good agreement between experimental observations and the simulations of the LK
model. With increasing Idc, 〈ISI〉 tends to decrease, but, at least in the range of modulation
amplitudes studied here, no 1:1 locking was found. Harmonic locking can be observed with
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larger modulation amplitudes [28], but in that case the intensity dynamics are dominated
by the modulation and the feedback-induced spikes are rather small.

The main motivation of our study was to understand the locking phenomena of a
diode laser, from the point of view of nonlinear dynamics. In that sense, model simula-
tions have been performed to further understand why small-amplitude sinusoidal current
modulation does not produce harmonic locking. Since we have found well-defined regions
of subharmonic locking (exploring the parameters space pump current, modulation am-
plitude, and modulation frequency) our results may be of interest for applications that
use small-amplitude electric modulation to generate highly regular optical pulsing with a
repetition rate in the MHz range.

It will be interesting for future work to understand how the locking behavior depends
on the feedback strength, i.e., to characterize the transition from locked sinusoidal-like
oscillations (without optical feedback) to locked feedback-induced spikes. It will also be
interesting to analyze if the interplay of noise, delayed feedback, and current modulation
can produce locking regions where the spikes are emitted with a very regular timing.
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