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Preface  
 

 

The invention of the laser triggered the study of light-matter interactions. In turn, 
the advent of artificial structured materials on micro- and nanometer scales has 
become a fruitful playground to tailor the propagation and generation of light, 
even in exotic or counterintuitive ways, uncovering novel physical phenomena. In 
this thesis, we propose using artificial photonic materials and new schemes to 
control the spatiotemporal dynamics of broad area edge-emitting semiconductor 
lasers (EELs), as well as contributing to the control of the field dynamics by non-
Hermitian Photonics. 

Indeed, the new physics based on open-dissipative non-Hermitian systems is 
beyond the recent focus on optical systems holding modulations of the complex 
permittivity, field referred as non-Hermitian Photonics [El-G18]. As initially 
demonstrated in Quantum Mechanics, systems described by non-Hermitian 
Hamiltonians may still present real eigenvalues (energy) as conservative 
Hermitian systems. Moreover, they hold other unexpected physical behaviors 
derived from the asymmetric coupling between modes. In particular, this was 
first observed in systems invariant under Parity (P-) and Time (T-) symmetry ― 
referred to as PT-symmetric ― [Ben98]. Photonic Crystals (PhC) were the first 
pioneering artificial photonic materials. The periodic modulations of the index of 
refraction on the order of wavelength, tailor the temporal and spatial dispersion 
properties, therefore offering the ability to filter, localize and shape light [Yab87, 
Joh87]. It is interesting to note that while dissipation is an inherent property of 
all forms of matter, most of it was completely disregarded in all the initial works 
on periodic artificial media [Jao11]. However, soon attention was also paid to 
analogous, equally accessible artificial nanophotonic structures, where gain and 
losses are modulated on the wavelength scale [Sta09, Bot10].  

Finally, the interplay between real and imaginary components of permittivity 
came into play as optical systems with complex permittivity became flexible and 
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achievable classical analogs of such quantum systems to realize and explore the 
predicted novel effects. 

Therefore, the new platform of non-Hermitian Photonics, including the 
pioneering PhCs, has paved the way to experiment with fundamental concepts 
in physics which are easier to realize in optics; and to uncover effects in photonics 
that are universal of other kinds of waves beyond the domain of electromagnetic 
waves. Non-Hermitian Photonics presents a large variety of direct applications 
and is at the basis of emerging fields, summarized in Figure 1. 

 
Figure 1. An overview of the review based on non-Hermitian physics and PT symmetry 
(NHPT), graphic from [Gup20]. 

Besides, semiconductor lasers and in particular EELs, are replacing other laser 
sources due to their compactness, efficiency, affordable prices and performance, 
however, they suffer from a major drawback when the aperture of the laser is 
very broad as compared to the wavelength. In addition, as power increases, the 
quality of the emitted beam intrinsically deteriorates. Under these conditions, 
emission becomes highly multimode and unstable, limiting possible 
applications. Although different mechanisms have been proposed, obtaining a 
stable and bright emission without compromising their compact design remains 
a longstanding open question. This thesis aims at contributing to this goal and to 
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the field of non-Hermitian Photonics by proposing four compact schemes to 
improve the beam quality and stabilize the emission from EELs. 

The original work performed during my PhD along four years resulted in four 
published papers [Ahm18, Gaw20, Med20, Med21], the first one which I coauthor 
as a collaborator, and other three where I am the first author, and seven 
conference papers [Ahm18-2, Bot19, Bot19-2, Bot20, Med18, Med19, Med20-2]. 
Therefore, this PhD presents the results published on the four papers and seven 
conference proceedings, and it is organized as follows:  

Chapter 1 provides an overview of the general properties of edge-emitting (EE) 
light sources, considering amplifiers, lasers, and laser bars, which are studied and 
modeled throughout the thesis. We include the description of the main beam 
quality parameters and the state of the art of different physical models, divided 
into mean-field models and adiabatic models, depending on their main 
approximations. Moreover, we briefly summarize various existing proposals to 
improve the beam quality of EEL and EEL bars. Finally, we introduce the 
periodical modulations systems that can be used to filter and control light. 
Specifically, we present non-Hermitian PT-symmetric systems and their 
applications.  

In Chapter 2, and as a first step, we propose to use chirped PhCs for intracavity 
filtering the multimode emission of EELs. To numerically assess the filtering 
performance, we developed a full (2+1)-dimensional spatio-temporal model, 
including transverse and longitudinal dimensions plus time, to evolve the 
electric field and carriers. The effect is demonstrated numerically as well as 
experimentally. The good agreement of the predictions with actual experimental 
results demonstrates the proposal and validates the model used throughout the 
thesis, with corresponding modifications. 

In Chapter 3, we propose to impose intrinsic complex, refractive index and gain 
modulations within EELs and use the non-Hermitic potential to achieve spatial 
and temporal stabilization. The effect is demonstrated by the stability analysis on 
a simplified model and numerical simulations. 

Going one step further, in Chapter 4, we propose to divide the EEL cavity into 
two mirror-symmetric half-spaces holding PT-symmetry with opposite mode 
coupling directed toward the symmetry axis. With this geometry, we expect to 
obtain a two-fold benefit: on one hand, achieving a spatio-temporal stabilization 
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of the laser, and on the other, localizing the field generated all over the laser along 
the symmetry axis. We numerically demonstrate regimes of simultaneous 
localization and stabilization leading to an enhanced output and improved beam 
quality. 

Next, in Chapter 5, we extend the mirror-symmetric non-Hermitian coupling to 
an array of thin EELs (diode bar). While thinner lasers show a more stable 
emission, this is not a solution for EEL bars since new temporal and 
synchronization instabilities arise from the coupling between neighboring lasers, 
leading again to irregular spatiotemporal behaviors. Therefore, we extend the 
proposed mirror symmetric non-Hermitian configuration to couple individual 
EELs in the array by a lateral shift between the pump and index profiles. The 
localized and stable output beam may facilitate a direct coupling of these 
semiconductor lasers arrays to an optical fiber.  

Finally, Chapter 6 summarizes the results and presents the conclusions of the 
thesis and a discussion on future perspectives. 

 

 
 



 

 

 

Chapter 1 
Introduction 
 
1.1 Characteristics of edge-emitting light sources  

 1.1.1 Structure and properties  

 1.1.2 Modelling the dynamics of EELs 

1.2 Emission performance of EELs 

 1.2.1 Beam Quality assessment  

 1.2.2 Conventional techniques to improve the beam 

emission 

 1.2.3 Improving the performance of EEL bars 

1.3 Periodic systems beyond Photonic Crystals 

      1.3.1 Mode coupling in periodic Complex Crystals  

      1.3.2 Spatial effects in 2D PhCs 

1.3.3 Non-Hermitian Photonics 
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1.1 Characteristics of edge-emitting light sources 

Semiconductor optical devices, particularly amplifiers and lasers, are promising 

and reliable solid-state light sources due to their robustness, compactness, and 

high efficiency with various fields: photonics, engineering, biology, chemistry, 

and medicine. Applications range from pumping other solid-state lasers to 

optical data transmission, metrology, spectroscopy, laser material processing, 

and medical uses to free-space optical communications [Bar13]. However, 

despite their important advantages, they suffer from a significant drawback 

reducing their usage in either scientific or industrial applications: their 

multimode character and the spatio-temporal instabilities lead to a low spatial 

and temporal quality of the emitted beam [Hes95, Bur99, Raa02, Oht12, Agr13]. 

Many spatial modes are excited and present in the emission, especially in broad 

sources, due to the lack of an intrinsic mode selection mechanism. Furthermore, 

the strong nonlinearity of the active media, and the refractive index dependence 

on intensity, induce self-focusing effects that break the mode profile into multiple 

filaments. This drastically reduces the beam quality at high power emission and 

leads to spatial hole burning [Gol88, Die00, Rad11-2].  

In broad semiconductor light sources, the origin of spatio-temporal dynamics is 

largely caused by modulation instability which is at the basis of spontaneous 

spatial pattern formation in many spatially extended nonlinear systems. It 

responds to the instability of the homogeneous solution by spatial modulations, 

leading to the growth of spatial modes generating stable and unstable patterns 

in a route to spatio-temporal behaviors and chaotic pattern dynamics. Their 

relatively low beam quality results in a less than optimal brightness and large 

divergence, which, in particular, prevents focalization and an efficient coupling 

to laser fibers thus, as above said, restricting their usage for many applications. 

The beam quality also plays an important role when the emitted light is used to 

pump another laser, such as solid-state lasers and fiber lasers.  

1.1.1 Structure and properties  

The characteristic structure of a semiconductor light source consists of a planar 

configuration of a (generally) double-heterostructure formed by a forward-

biased heavily-doped p-n junction fabricated by two direct bandgap 

semiconductor materials (less current is the simple homojunction configuration). 

The main advantage of semiconductor optical sources is their high conversion 
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efficiency, precisely deriving from their planar configuration, enabling efficient 

access of the (electric current) pump to the whole volume of the active amplifying 

medium. Besides, other advantages are their compact design and affordable 

price. While homojunction lasers were reported back in the 60’s, the first 

heterojunction laser dates from 1970 [Alf01, Loc70]. Since then, a large variety of 

laser structures have been developed guided by the performance requirements 

of specific applications.  

Nowadays, a wide variety of semiconductor amplifiers and lasers can be found 

in the market. A semiconductor laser device may consist of a single emitter or 

contain multiple laser diodes. Wavelengths range from the ultraviolet, 

comprising all the visible spectrum, to infrared depending upon the bandgap 

energy, cavity length, and refractive index of the semiconductor, while the most 

common semiconductor lasers operate in the near-infrared. To achieve efficient 

recombination of electrons and holes, the carriers must be confined to the active 

layer [Yu96] which thickness (height) is around 100 nm. Within this layer occurs 

the radiative recombination of electrons and holes, being energy emitted as 

electromagnetic radiation.  

For the case of lasers, the heterojunction active media are inside an optical cavity 

formed by cleaving two opposite facets of the semiconductor wafer, see 

Fig.1.1(a). No external mirrors are required since cleaved facets, which may also 

be coated to adjust their reflectivity by using dielectric multilayers, provide 

enough optical feedback. The laser threshold is reached when the injected pump 

current reaches a critical value, or threshold intensity (on the order of 100-150 

mA), and gain overcomes cavity losses. Semiconductor laser sources do not 

employ any scheme for current confinement.  

The typical architecture of semiconductor diode laser is around 1-3 µm thick 

(height, being the active region on the order of 0.1 µm), the width ranges from 50 

μm to 400 μm (very large as compared to the emission wavelength, on the order 

of one micron) and 1-3 mm long. The emitting power ranges from hundreds of 

milliwatts [Gaw19] to tens of watts [Pas08], see Fig. 1.1 (a). While the most 

straightforward encapsulated semiconductor lasers show a circular geometry, 

see Fig. 1.1 (b) the first proposed semiconductor lasers had a narrow stripe 

geometry as in Figs. 1.1 (c) and (d), with an emitted power restricted to milliwatts, 

to prevent catastrophic optical damage. In Broad Area Semiconductor (BAS) light 

sources, also referred to as edge-emitting (EE) the output increases with the 

width. Due to the geometry, the highly multimodal emission occurs in the 
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horizontal axis, slow axis, which shows a small divergence. On the contrary, 

along the vertical direction, fast axis, the divergence is large due (on the order of 

tens of degrees) to the small size of the aperture of the order of few μm. Cause of 

this large divergence angle of the fast axis, the output light from the laser is 

generally collimated by placing a cylindrical lens of very short focal length at the 

output of the semiconductor material, also called Fast Axis Collimator (FAC). The 

emission in the slow axis strongly depends on the injection current since an 

increase of the injection current induces high-order mode oscillations, decreasing 

the beam quality. 

Despite the beam quality issues, the high degree of efficiency, coupled with low 

lasing thresholds, and tiny, compact physical dimensions, Figs. 1.1 (b) and (d), 

make these lasers attractive for most devices where efficient power and/or space 

constraints are vital [Li00].  

  

Figure 1.1. (a) Schematic illustration of single EEL. (b) Photography of an encapsulated diode 

laser (c) Schematic illustration of gain-guided EEL. (d) photography of gain-guided single EEL. 

(e) Schematic illustration of a bar of EELs. (f) Photography of a gain-guided bar of EELs. 

A power-scaling approach is used in EEL bars to further increase the optical 

power, which can emit output powers of the order of hundreds of watts, see Fig. 

1.1 (e) and (f). Diode laser bars (DLB) are linear arrangements of multiple broad 

area lasers mounted in a single package, usually consisting of 19 to 69 emitters 

along the slow axis, up to around 10 mm long. Each emitter has a well-defined 

width, and it is separated from the neighboring emitters by a distance called 

“pitch”. The ratio of emitter width to the pitch defines the fill factor. Along the 

vertical axis (fast axis) the beam may be considered a point source, and the pitch 

between the emitters is small enough to consider that the radiation pattern along 
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the slow axis is a single line source [Li07]. Output powers exceeding 700 W in a 

continuous-wave regime have been demonstrated with single diode laser bars 

[Liu14]. Finally, DLB form multi-bar modules, in which the bars are arranged in 

the form of a stack. 

 

Figure 1.2. (a) Photography of an EEL. (b) Near field normalized output intensity of an EEL 

[Gaw19]. (c) Far field normalized output intensity of an EEL. (d) Photography of an EEL bar. (e) 

Near field normalized output intensity of an EEL bar. (f) Far field normalized output intensity of 

a bar EEL [Yu16].  

Examples of the near field and far field emission from a single EEL and an EEL 

bar are provided in Fig. 1.2 We observe that the slow axis is highly multimode 

from a single emitter, eventually with an asymmetric beam profile, Fig. 1.2 (b). 

The far-field beam profile along the slow axis increases its width to support the 

larger number of modes, Fig. 1.2 (c). As for single EEL, the emission for EEL bars 

in the fast axis is nearly diffraction-limited, while in the slow axis, the beam 

quality is poor because of two reasons: the wide emitting aperture and the 

lightless areas between two adjacent emitters, see Figs. 1.2 (e) and (f).  

1.1.2 Modelling the dynamics of EELs 

As generally all lasers, semiconductor lasers comprise three principal elements: 

an optical cavity, an amplifying medium, and a pump mechanism. The optical 

cavity is generally created by two mirrors that provide longitudinal boundaries 

for light propagation. Two main types of optical cavities can be distinguished, 

ring and linear cavities. In the first, the electric field inside the cavity can be 
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described as a traveling wave, while in linear (Fabry–Perot resonators), the 

electric field is described as a standing wave, due to the interference between the 

forward and backward fields and requires accounting for both fields in the 

mathematical description. Lasers described in this thesis are of the second kind. 

The pump mechanism, being highly specific for each type of laser, has a common 

purpose: to create enough population inversion for lasing.  

The laser amplifying medium can be solid, liquid, gas, or plasma involving two, 

three or even four electronic levels. Still, the majority of cases are well described 

by a two-level approximation, while additional levels help to achieve the 

necessary population inversion.  

The wave equation is driven by the polarization of the medium and the Bloch-

equations describing the dynamics of atoms in the gain medium lead to the well-

known Maxwell-Bloch equations describing the laser dynamics. These relations 

are obtained from the laser theory, in the field of quantum optics and their 

derivation can be found in classic laser literature [Sie86, Sil96]. A didactic 

exposition of the semiclassical derivation of the Maxwell-Bloch equations can be 

found in [Val06]. The result is a relationship between the main physical 

magnitudes leading the laser dynamics, i.e. D, the population inversion of 

carriers o population difference in a two-level system, P, the polarization of the 

medium and E, the electromagnetic field classically described and driving the 

matter variables. Further, models of this spatially extended system should 

involve the longitudinal coordinate z, i.e. propagation direction of the field, plus 

one or two transverse coordinates and time. The model becomes a system of 

spatio-temporal partial derivatives of the three involved variables expanded in 

the 1D (mean-field models), 2D or 3D space and time. Therefore, the simplest 

approximation considers a uniform field in the whole cavity volume [Val06]. In 

this mean-field model, intertwined temporal dependences of variables can be 

expressed in a simple form: 
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These equations include the ratios between characteristic times of the three 

variables,   



‖

  is the ratio between the polarization characteristic time, 

, 

and the population inversion characteristic time, 
‖

, while  



k , where 

k  

is the characteristic time of the electric field decay due to cavity losses. Other 

parameters are the relative pump
0

r p p , where 
op is the threshold pump, 





 




 the detuning between atomic resonance, ω0 and the laser frequency, ω. 

When modeling we can disregard the specifics of the pump mechanism and 

describe it through the pump parameter. 

Laser dynamics strongly depends on the characteristic times of these three 

variables that can have different orders of magnitude depending on parameters 

of the gain medium and the cavity configuration.  The dynamics of Class A lasers, 

like gas and dye lasers, can be physically described by only one variable, the 

electromagnetic field, while population inversion and polarization show much 

smaller characteristic times than the field decay inside the cavity and are 

adiabatically eliminated.    

In Class B lasers, the population inversion reacts slowly compared to field 

evolution, i.e. its characteristic timescale is larger than the intensity attenuation 

by cavity losses, while the medium polarization has short characteristic times and 

can be adiabatically eliminated. Thus, the dynamical description of Class B lasers 

is generally based on the interaction of two physical variables, the 

electromagnetic field and the population inversion. The slow evolution of 

carriers implies a strong reduction of the spontaneous emission in front of the 

stimulated emission, and therefore much larger efficiencies and emitted power 

can be reached. However, the more variables the richer the temporal dynamics, 

appearing in Class B lasers Hopf bifurcations, self-sustained oscillations, pulsed 

emission and chaotic behaviors. Class B lasers cover solid state lasers and some 

molecular lasers, e.g. CO2 lasers. Semiconductor lasers and particularly EEL’s to 

which this PhD is dedicated also belong to Class B lasers. They are applied in 

fields like medicine, material processing, technology, and communications, and 

cover 90% of commercial lasers nowadays.  Finally, Class C lasers correspond to 

those with large characteristic times for the polarization, although they are less 

current and of smaller commercial interest.   

To summarize, EELs are solid state class B lasers based on a semiconductor p-n 

junction as active gain material located inside a resonant Fabry-Perot cavity, 

directly pumped by in injection electrical current. As above mentioned, the cavity 
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mirrors are generated by the semiconductor’s own front and back facets. For class 

B lasers, the polarization of the medium presents a much small characteristic 

time, it rapidly reaches a constant value and can be adiabatically eliminated from 

equations leading the field and carriers time evolution. Setting 0





P

t
, the system 

of equations of Eq. (1.1) becomes:  
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where the field is averaged in the whole laser cavity as it is depicted in Fig. 1.3(a). 

The final relation between these variables depends on the laser characteristics. 

Specifically, for semiconductor lasers, the pump is a forward bias applied voltage 

across the p-n junction. Qualitatively speaking, the carriers (electrons and holes) 

are injected into the active layer and change the active-layer dielectric constant 

(both the real and imaginary parts). This affects the propagation of the optical 

mode which in turn affects the carrier distribution through stimulated 

recombination. Further, in EEL the small thickness of the active zone in between 

the p-n junction allows reducing one spatial dimension, strongly simplifying the 

numerical simulation and reducing the required calculation time. 

Different models with more or less simplification have been presented, focused 

on the study of different characteristics of semiconductor lasers. Two main 

approximations are usually made, mean field approximations as the one 

explained above where variables are integrated in some or all spatial dimensions 

and in the other hand static models, where time is disregarded. Further 

simplifications can be done in specific semiconductor lasers as the adiabatic 

elimination of carriers. In the opposite direction, some reported models are more 

complex and include the majority of the aspects under study; however, they 

require complicated and time-consuming numerical methods [Rad11].   

A more accurate mean field model for a semiconductor laser can be found in 

[Spi98, Lug99]. In this case, the semiconductor laser is a Fabry–Perot short 

microresonator. Applying the mean field limit integrating variables in the 

longitudinal coordinate z, and assuming only one cavity mode, the temporal 

evolution of the electric field amplitude and the population inversion is explored. 

Figure 1.3. (b) schematically represents this model type only considering 
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transverse field distributions. In this case, the interdependence between the 

carrier density N normalized to its transparency value and field is described by: 
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where the parameter η accounts for the linear absorption of the material; Θ is the 

cavity detuning; EI is an external field injected into the cavity; C is the bistability 

parameter; γ is the nonradiative recombination rate of the carriers; B is the 

coefficient of the radiative recombination involving two carriers; J is the intensity 

of the pump current, normalized to its transparency value and D is the diffusion 

coefficient of the carriers. The transverse Laplacian operator 2 2 2 2 2


     x y  

describes the field diffraction along the cavity in the paraxial approximation 

where the transverse coordinates are scaled to the square root of the cavity 

diffraction length and time is scaled to the photon lifetime in the cavity. Finally, 

Θ = (h+i), where h is the linewidth enhancement factor. 

Other approximations model the longitudinal propagation of the 

electromagnetic field along semiconductor amplifiers in stationary regimes. For 

these models, the Slow Varying Envelope Approximation (SVEA) is usually 

considered where the electric field is written as ω ikz i tE(x,y,z,t) A(x,y,z,t)e where 

A is the amplitude envelope of the electric field, k is the wavevector, and w the 

angular frequency that are constants. The simple case of EEL semiconductor 

amplifiers describes carriers N and the paraxial propagation of the slowly 

varying amplitude A along z [Ult06]. The carrier rate equation includes 

semiconductor nonlinearities, carrier diffusion, and spontaneous and Auger 

recombination coefficients. A linear dependence of the induced refractive index 

and gain on the carrier density may be assumed: ∆ε ~ α(N’–N0’), where α is the 

gain parameter that includes scattering losses and N’ the cladding-layer 

absorption and N0’ is the transparency level. The normalized equations for the 

optical field A and N can be expressed as: 
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where h is the linewidth enhancement (Henry factor) [Hen82]. The nonradiative 

recombination time is scaled to unity. For simplicity, carrier diffusion along 

propagation direction z is neglected. The carrier density is normalized to the 

transparency value N0.  

Another attractive static model, including both the axial and the lateral effects in 

a gain-guided semiconductor laser, is found in ref. [Agr84], that neither considers 

temporal laser dynamics. The model describes forward and backward waves in 

paraxial propagation for a single lasing mode by applying an effective-index 

approximation. The equation can be expressed as:  
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where, 
0 0 0

1ε [ ( ) ] ( )fc
p pa RN

i g N a N i
k k k

    
     


, Γ is the confinement factor 

for an active layer of thickness d, ηα   and ηp are the background refractive indices 

of the active and passive layers, respectively, and ∆ε accounts for the passive-

layer absorption and local gain increases linearly with carriers,  ( )g N aN b . The 

gain parameter, afc, is the free-carrier-absorption coefficient, and αp is the passive-

layer absorption coefficient.  

The first term of ∆ε is related to the carrier-induced index reduction governed by 

the anti-guiding parameter R, the second term provides the gain after 

considering free carriers and material absorption, and the last term governs 

passive-layer absorption. The anti-guiding parameter R is known to play an 

essential role in gain-guided devices. Its value R = - (2k0/α) (dηα /dN) is related to 

the active layer index change, primarily due to the absorption-edge shift with the 

carrier density. 

For the carrier’s equation, e is the electron charge, J depends on N through the 

lateral variations of the Fermi voltage at the junction of the active and p layers, ħ 

is the normalized plank constant, and ω is the angular frequency. 

 However, a complete picture of the spatio-temporal evolution of field and 

carriers in the semiconductor laser would consider coupled equations for the 

optical field and carriers in the 3D space and time [Böh08]. Due to the long 

transients presented by the system, this complete model is inefficient for 
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studying the laser dynamics or laser operation dependence on the model 

parameters, and it is limited to describe stationary behaviors. In the next chapter, 

we introduce a model for the spatio-temporal integration of the semiconductor 

laser that allows studying the field distribution in the laser cavity and its 

temporal evolution, scheme in Fig. 1.3 (c), as well as scanning the laser 

parameters.  

 

Figure 1.3. Schemes of a laser modeled by numeric equations where the electric field is defined 

as (a) E(t), (b) E(x, t) and (c) E(x, z, t).  

 

1.2 Emission performance of EELs 

As discussed in the previous section, EELs present low brightness (parameter 

defined in the next section) —10 to 20 times worse than other high-power laser 

sources— due to their highly multimode emission in the slow axis. High 

brightness laser sources offer many benefits in terms of high beam quality, a 

longer field of focus and low divergence. There is a demand for high brightness 

diode lasers, particularly in the field of material processing and to pump other 

solid-state lasers.  

Different possible approaches for the stabilization of either a single 

semiconductor laser or an EEL bar have been proposed. However, obtaining a 

stable emission from high-power EELs sources has remained a longstanding 

open question. 

1.2.1 Beam Quality assessment 

We briefly introduce the general concepts for the characterization and 

assessment of such beam quality.  
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The laser beam quality is commonly defined in comparison to the features of a 

perfect Gaussian beam. The basic equation describing the propagation of 

monochromatic beams with arbitrary field amplitude is given by the Helmholtz 

equation. When the optical beam is highly directional or we want to study the 

beam propagation only at the vicinity of a specific direction, we apply the small-

angle or paraxial approximation to seek for simpler solutions. The Gaussian 

beam is, hence, the simplest solution to the paraxial wave equation describing 

the properties of the optical beam in the paraxial approximation. For a 

monochromatic Gaussian beam propagating along the z-direction, the complex 

field amplitude can be expressed as [Tei91]: 
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where w0 is the minimum beam radius, 2

0
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w z w z z  the beam waist, 

and, in turn, zR is the Rayleigh range, propagation distance along the propagation 

direction of a beam from the waist to the place where the area of the cross section is 

doubled, 
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phase term. 

The beam waist at 𝑧 = 0, w0, corresponds to the minimum beam radius, see Fig.1.4 

(b). At this plane the radius of curvature of the wave front, R(𝑧), is flat. As the 

beam propagates through space, the beam radius at any position 𝑧 along the 

beam is given by w(𝑧). The planar wavefronts of the Gaussian beam at the beam 

waist plane become curved as the beam propagates, acquiring parabolic profiles 

given by the radius of curvature R(𝑧), see Fig. 1.4 (a). The Rayleigh range is given 

by 𝑧𝑅, the beam radius at a distance 𝑧𝑅 from the beam waist is a factor √2 larger 

and the intensity at the axis is decreased by a factor of two. The distance along 

the propagation direction where the beam is most confined, defined by the planes 

𝑧 = ±𝑧𝑅 is called the confocal parameter of the Gaussian beam. The divergence 

angle in the far field (𝑧≫𝑧𝑅) is given by: 
0







w
The smaller the beam waist (w0), 

the shorter the Rayleigh range, and larger the divergence angle. So tightly 

focused Gaussian beams tend to diverge very fast in the far field.  
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Figure 1.4. (a) Comparison between the laser beam divergence of an actual beam (in red) and an 

ideal Gaussian beam (in green), the beam’s wavefront is planar in the near field near the beam 

waist and curved in the far field. (b) Experimental measurement of the beam width measured at 

different positions along the propagation direction (black dots) and fitted beam waist equation 

(in red) [Gaw19]. 

The Gaussian beam is not the only solution of the paraxial wave equation. Other 

high-order mode solutions can be expressed using Hermite-Gaussian modes 

(rectangular coordinates) or Laguerre-Gaussian mode (cylindrical coordinates). 

Actually, the beam emitted from semiconductor laser edge-emitting laser is 

highly multimode in the horizontal (slow axis); each mode being a quasi-

Gaussian mode. All these modes combine to form the multimode beam. As all 

the modes propagate, they grow in size and merge with other modes to form a 

line in the far field. Such beam cannot be well collimated neither focused down 

to a smaller spot. 

Gaussian beam emission is assessed by the parameter product (BPP). The BPP of 

a diffraction-limited beam is given by product of divergence angle and beam 

waist, BPP = w0. A lower BPP means a better beam quality. The BPP can be 

different, for non-diffraction limited beams, along vertical and horizontal 

directions and it is used to define the spatial quality of the beam. For 

semiconductor lasers, the BPP along the two axes is quite different, being low for 

fast axis and high for slow axis.  

Another parameter of interest is the beam quality factor, 2M , which is defined as 

the beam parameter product of the measured beam divided by the corresponding 

product for a diffraction-limited Gaussian beam. 
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For a diffraction-limited Gaussian beam, the beam parameter product is 

BPP=λ/π, which is close to 1. The minimum focusing spot size that can be 

achieved with a given laser beam for a given divergence depends on the beam’s   

factor. Lower   factors correspond with a tighter focus, a more efficient use of the 

power within the beam, and a higher potential effective power of the laser. 

Focusing laser beams tightly is particularly important, for example, when using 

lasers for imaging, since a smaller beam waist means higher power densities, as 

well as better resolution. 

For higher-order non-diffraction limited beams such as EELs, both the BBP and 

the 2M  factor can be significantly different in two perpendicular directions (x-

horizontal direction and y-vertical direction). Namely 2

x
M  and 2

y
M  are the factors 

the beam quality factor along horizontal (slow axis) and vertical direction (fast 

axis). Thus, the brightness for EELs is defined as the output power divided by 

both factors [Sum09]: 

2 2 2

x y

P
B

M M
                                                    (1.8) 

where P is the average power of the beam. The brightness can be enhanced either 

by increasing the optical power or by decreasing 2

x
M  and 2

y
M  values. In 

semiconductor lasers, due to low mode selectivity of Fabry-Perot cavity, it results 

in higher order transverse modes emission. For EELs having widths of several 

hundreds of microns, 2

x
M  is in the order of 100. The 2

x
M  can be decreased by 

reducing the far field divergence angle, and decreasing the width of the active 

region.  

1.2.2 Conventional techniques to improve the beam emission 

A direct way to clean up a beam is by removing the high-order modes. 

Conventionally, the simplest filtering scheme for noisy beams consists on a 

pinhole in the focal plane, see Fig. 1.5 (a). The resulting quality of the filtered 

beam depends on the incident beam and the diameter of the pinhole. The smaller 

the pinhole, the better the beam quality, however, this entails a severe reduction 

of the power.  

Various proposals have been presented to improve the spatial emission from 

broad EEL. One approach is to use optical injection to stabilize the intrinsic 

transverse instabilities [Pak17]. Other proposals use external resonators to 
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provide feedback, via 4f cavities with a spatial frequency filtering configuration 

or an unstable cavity with convex external mirrors to achieve a fundamental 

mode operation [Wol99, Wol00, Sal85], see Fig. 1.5 (b).  Another strategy is to 

introduce phase-conjugated feedbacks [DeT97]. In all these solutions, external 

elements compromise the device’s robustness while it becomes less compact, also 

power is lost, lowering the emitted brightness.  

Yet another possibility is a distributed feedback laser, a type of laser that has a 

structure that provides optical feedback. A longitudinal diffraction grating with 

periodic changes in refractive index can be used to cause reflection back into the 

cavity. The periodic change can be either in the real part of the refractive index, 

or in the imaginary part [Tur10]. Moreover, it has been shown that the periodic 

modulation of pump profile in the transverse and longitudinal directions can 

lead to spatial filtering and stabilization effects in EE amplifiers [Her12, Rad13], 

as seen in Fig. 1.5 (c). Possible stabilizations of EE sources under specific working 

conditions are proposed by introducing spatial [Kum14, Her12] or spatio-

temporal modulations [Hal62]. These schemes have a compact and efficient 

design to control spatio-temporal dynamics.  

 
Figure 1.5. Schemes of improving EEL beam emission: (a) external filtering scheme with a 

pinhole, (b) optical feedback [Wol99], (c) distributed feedback laser [Tur10] and (d) periodic 

modulation of the pump profile [Her12]. 
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1.2.3 Improving the performance of EEL bars 

Various beam shaping techniques have been presented to improve both the beam 

quality of every single emitter within the EELs bars, also reducing the lightless 

areas between two adjacent emitters. The introduction of an optimized beam 

transformation lens system can allow small focus diameter and improve its beam 

quality [Yu16], Fig. 1.6 (a). Other techniques include external phase masks to 

achieve a single-lobe spot [Ste07], or use holographic feedback [Iid98]. Another 

proposed concept was extending wavelength-multiplexing techniques with 

external cavities to spectrally superimpose the beams of a semiconductor array 

into one [Jec06], Fig. 1.6 (b). However, again external elements compromise the 

device’s robustness and compactness.  

A method that overcomes the problems associated with external feedback 

solutions, such as high order mode energy loss and energy efficiency proposed 

using notions of supersymmetry [Hok19], Fig. 1.6 (c), using a non-Hermitian 

potential in a different way as it is proposed in the present thesis. In P. 

Hokmabadi and coauthors proposal the main array is paired to a lossy super-

partner. Apart from the ground state, all high-order modes are coupled to the 

supersymmetric lossy array whose role is to suppress all undesired higher-order 

modes while simultaneously enhancing the gain seen by the fundamental 

supermode of the primary lattice. 

 

Figure 1.6. Schemes of improving EEL bar beam emission: (a) cylindrical tailored lens arrays 

[Yu16], (b) wavelength-multiplexing techniques [Jec06], and (c) supersymmetric EEL bar in the 

upper the gain array and lossy partner array are shown [Hok19]. 
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1.3 Periodic systems beyond Photonic Crystals 

The advent of artificially structured materials on micro- and nanometer scales 

has become a fruitful playground to uncover novel physical phenomena due to 

their ability to tailor the propagation and generation of light even in exotic or 

counterintuitive ways. In 1987 two papers published in the same Physical Review 

Letters volume by Eli Yablonovitch and Sajeev John, respectively showed that a 

modulation of the index of refraction on the wavelength scale could either inhibit 

the spontaneous emission or localize light [Bus98, Joa11]. Since then, periodic 

dielectric structures have been referred as Photonic Crystals (PhC), for their 

ability to modify the dispersion relation of photons similarly as a periodic 

potential in a semiconductor crystal determines the energy bands that affect the 

motion of electrons. Yet electrons follow Fermi-Dirac distribution while photons 

obey Bose-Einstein distribution. Hence, the analogy has limitations. In fact, PhCs 

were also initially known as photonic BandGap (BG) materials. Diverse 

applications of PhCs rapidly derived precisely from the modification of such 

temporal dispersion: frequency filtering ― also responsible of the structural color 

in nature in butterflies and weevils ―, optical demultiplexing, rainbow trapping 

in chirped structures ―with a varying period―, routing and bending light in 

PhCs waveguides or PhC fibers, light confinement or localization —as a defect in 

a PhC may be a completely shielded trap for light localization―, for energy 

harvesting in solar cells, or to enhance nonlinear phenomena [Sou12].  

However, soon attention was also paid to the ability of PhCs to modify not only 

to the temporal dispersion but also to shape the spatial dispersion leading to 

spatial effects ―in at least 2D architectures―. Therefore, PhCs allow beam 

shaping effects [Mai10], such as self-collimation and flat lensing due to negative 

diffraction or spatial filtering —this latest effect is used in Chapter 2 of this Thesis, 

as discussed below in more detail. 

Later, similar beam shaping effects were also demonstrated in seemingly 

analogous artificial materials, where not the real part but rather the imaginary 

part of the permittivity profile ―gain/loss profile― [Kum12]. However, pure 

dielectric PhCs and gain/loss structures are two limiting ideal situations and 

more interesting physics arises from the interplay of both modulations, real 

refractive index and gain/loss.  
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Other unusual, exotic and even counterintuitive phenomena are the cause of the 

recent focus on the more general class of periodic non-Hermitian optical systems 

holding modulations of the complex permittivity as described in section 1.3.1.  

Worth mentioning that since 1987, the technological available fabrication 

techniques have noticeably advanced. The tedious layer-by-layer construction of 

the first 3D woodpile PhC ―of only 1.25 periods ― lasted months, while with 

direct laser writing it is possible in minutes ― as it is the case with PhC used in 

Chapter 2 of this thesis [Gaw20] ― along with the flexibility to combine different 

materials. 

1.3.1 Mode coupling in periodic complex systems 

The simplest one-dimension (1D) realization of a PhCs is also known as a Bragg 

reflector ―consisting on a multilayered stack of alternating refractive index 

materials of widths λ/2ni, being λ the wavelength of light and ni; i=1,2 the 

refracting index of the two materials―. Alternatively, we may consider n(x) = n0 

+ n(x)= n0 + nRe cos(qx), a simple harmonic modulation index profile where q is the 

wavenumber (reciprocal lattice vector) of the modulation, see Figs. 1.7 (a).  

In such 1D dielectric arrangement, the formation of photonic bands can be 

straightforwardly explained in terms of destructive interferences within the 

material, due to the accumulated phase shift in the partial reflections from 

successive layers. Consequently, when light propagates perpendicular to the 

modulation, there is a continuous bandgap ―stopband― or range of light 

frequencies unable to propagate through the PhC, close to the resonance 

condition k = q/2. Therefore, light may be completely back reflected for a perfect 

infinite structure or, more precisely, decay exponentially for actual finite 

structure leading a strong reduction in transmission ―of orders of magnitude 

with just a few periods, depending on the index contrast. In other words, a PhCs 

modifies the density of states of light at every point within it, see Figs. 1.7 (a-c) 

[Bot09]. 

Analogous 1D periodic structures are Gain-Loss Modulated (GLM) materials, 

where the gain and loss are spatially modulated periodically on the wavelength 

scale, see Fig. 1.7 (d). Yet the refractive index is constant, assuming, for example 

a complex refractive index profile in the form: n(x) = n0 + i n(x)= n0 + i nIm sin(qx). 

The dispersion of such structures can be analyzed by an extended plane wave 

expansion for an infinite structure [Boy19], allowing for complex 
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eigenfrequencies, see Figs. 1.7 (b) and (e). The real part of the eigenvalue 

represents the frequency, while the imaginary part determines the temporal 

growth or decay of the corresponding mode. Close to resonance, k ≈ q/2, instead 

of opening a BG, modes pull each other and lock and the imaginary part becomes 

non-zero. As a result, the presence of a growing mode within this locked-

frequency range the presence of a growing mode leads to an enhanced 

transmission or anti-bandgap at resonance, see Figs. 1.7 (e) and (f) where we 

observe both a transmission and reflection enhancement.   

 

Figure 1.7. (a) Scheme of 1D PhC with a harmonic index modulation n(x) = 1 + 2 cos(qx). (b) 

Dispersion relation obtained by plane wave expansion for an infinitely extended structure; (c) 

numerical transmission, 𝑇, and reflection, 𝑅, as obtained by transfer matrix method for a five 

periods structure. (d) Scheme of 1D GLMM made of two different materials 𝑛1 = 1 + i 0.2 sin(qx). 
(e) Complex dispersion relation obtained by extended plane wave expansion for an infinite 

structure [Bot10]; (f) numerical transmission, 𝑇, and reflection, 𝑅, as obtained from a discretized 

multilayer structure by transfer matrix method, for ten bilayers.  

In 2D GLM structures, the directional gain leads to different interesting spatial 

effects such as spatial filtering self-collimation [Sta09], and flat lensing [Kum13]. 

Note that while the coupling mechanism in GLM materials differs from PhCs in 

both cases it is symmetric, meaning reflection does not depend on the 

propagation direction of light. 

 



30                                                                              Smart control of light in edge-emitting lasers 

 

Next, we analyze the situation when both refractive index and gain/loss 

modulations are present but not in phase but shifted a quarter of the wavelength 

of the modulation. When both modulations are balanced, such a system is a 

classic analog of a quantum system invariant under Parity (P-) and Time (T-) 

known as a PT-symmetric system [Ben98]. The simplest harmonic PT-symmetric 

complex index profile may be described as: n(x)= n0 + nRe cos(qx)+ i nIm sin(qx), with 

nRe=nIm. While such a system may be regarded as a superposition of a PhC and a 

GLM structure, a new exotic property of unidirectionality arises. That is to say, 

reflection from a finite PT-symmetric structure may not be symmetric close to 

resonance, being attenuated from one side while enhanced from the other side 

[Guo09, Lin11], while the transmission is constant, see Fig. 1.8. 

  

Figure 1.8. Unidirectional reflection, transmission and absorption from a simple discretized 

multilayered structure equivalent to the harmonic modulation:  n(x) = 1.1 + 0.1 eiqx as numerically 

obtained by the transfer matrix method. When (a) light is incident from the right, reflection, RR, 

is high; when light is incident from the left, reflection, RL, cancels at resonance, i.e, for light with 

a wavevector k = /c = 2q being q the wavenumber of the modulation. Note that transmission, T, 

is the constant irrespectively of the direction of the propagation of light. 

A simple explanation for the different behaviors of Figs. 1.7 and 1.8 may be 

provided inspecting the mode coupling. The simple PT-symmetric complex 

profile considered may be more conveniently expressed as n(x)= n0 + n e iqx where 

n is the amplitude of the complex index modulation. Clearly, such a modulation 

unidirectionally couples a wave with a wavevector 𝑘−  to 𝑘+= 𝑘−   + q. In the right 
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column of Fig. 1.8 (a), a left-propagating resonant wave, 𝑘−≈ −q/2, is coupled to 

 𝑘+ = 𝑘− + q ≈ q/2 and is thus Bragg-reflected to the right. On the contrary, the 

above-considered real-valued 1D PhC, Fig. 1.7 (a) with harmonic potential, 

n(x)=n0 + nRe cos(qx) = n0 + nRe/2 (eiqx + e-iqx) symmetrically couples, at resonance, 

 𝑘+ ≈ q/2 with 𝑘− ≈ −q/2. In fact, the wavenumber +q couples 𝑘−  to  𝑘+  , yet -q 

couples  𝑘+ to 𝑘− , as schematically illustrated in Fig. 1.7 (a). Exactly the same 

situation is found for the harmonic GLMM with complex profile 

n(x)=n0+nResin(qx) = n0 + nRe/2 (eiqx - e-iqx); also, in this case, the presence of both 

lattice vectors +q and +q warrants symmetric mode coupling, see Fig. 1.7 (d). In 

this way, the 1D PT-symmetric modulations given by PT-symmetric complex 

modulation break the symmetry of left-right wave coupling and propagation 

[Tur15].  

 

Fig. 1.9. (a) Spectral propagation of a Gaussian beam in a refractive index modulated EE amplifier. 

(b) Possible coupling of wavevector, �⃗� , with the modulation vector, 𝑞  for a PhC sinusoidal 

potential. (c) The sinusoidal periodic potential of the refractive index. (d) Spectral propagation of 

a Gaussian beam in a modulated gain EE amplifier. (e) Possible coupling of wavevector, �⃗� , with 

the modulation vector, 𝑞  for a gain sinusoidal potential. (f) The sinusoidal periodic potential of 

the gain/loss. (g) Spectral propagation of a Gaussian beam in a modulated complex index EE 
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amplifier.  (h) Possible coupling of wavevector, �⃗� , with the modulation vector, 𝑞 , for a shifted 

refractive index and gain sinusoidal potential. (i) Sinusoidal periodic potential of shifted 

refractive index and gain. Numerical simulations are performed using the model presented in 

Chapter 3 and adding the corresponding potential.  

Analogously, when light propagation direction is not transverse to the 

modulation of the periodic structure but longitudinal propagation the 

asymmetric structure may couple wavevector of light  �⃗�  with �⃗� ± 𝑞 , being 𝑞  the 

reciprocal lattice vector. In Fig. 1.9 we numerically propagate a Gaussian beam 

with a central wavevector �⃗�  and analyze the Fourier spectrum of the propagated 

beam, observing the energy transfer to neighboring modes. 

We can observe that either for a purely real-valued refractive index and for a 

purely imaginary gain/loss modulations the beam interacts with potential along 

the propagation and the energy couples the central mode  �⃗�  to higher-order 

harmonics of the modulation. As expected, in both cases, the spatial spectrum of 

the field shows the symmetric coupling between the modes, �⃗� ± 𝑞 , see 

Figs.1.9(a) and (d). For the PT-symmetry complex potential the field spectrum 

clearly indicates an asymmetric energy flow between the modes towards: �⃗� +

 𝑞 ,  �⃗� + 2 𝑞 ,  �⃗� + 3 𝑞 ,…  see Fig. 1.9 (g), as will be explained in more detail in 

Chapter 4, section 4.1. 

1.3.2 Spatial effects in 2D PhCs 

In turn, novel spatial propagation effects arise in artificially modulated photonic 

structures that engineer the spatial dispersion, see Fig. 1.10 (a). Indeed, periodic 

modulations of the complex refractive index can shape monochromatic beams. 

The distortion of the spatial dispersion accounts for the effect, and at least 2D 

architectures are required.  In free space, the isofrequency contours are perfect 

circles, and the concave curvature introduces a phase delay between wave 

components leading to a broadening of a propagating beam, yet when such 

curvature is flat, a beam can propagate without broadening (self-collimation), 

and concave isofrequency contours (negative diffraction) may lead to 

focalization after the accumulated space is compensated in free space, see 

Fig.1.10 (b) [Sta09, Bot10, Kum12, Kum13]. 

Among the beam shaping effects is the angular filter [Mai15]. While the 

celebrated BG in temporal dispersion may be used for frequency (chromatic 

filtering), spatial filtering is also possible thanks to the formation of angular BGs. 

For given propagation wavevectors and particular angles waves cannot 
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propagate, in other words, there is a stop band in the spatial dispersion domain, 

see Fig. 1.10 (c). The plane wave components that corresponds to this angular 

BGs may be reflected back in the Bragg regime (or deflected in Laue regime) and 

consequently removed from the angular spectrum of a forward propagating 

beam, see Fig. 1.10 (d). The use of PhC for filtering is becoming a known method 

in optics since proposed 15 years ago [Tan06, Tan07, Sta09, Ser09, Col10, Mai10, 

Mai15, Gai16].  

 

Figure 1.10. (a) Bands structure for TE (solid) and TM (dotted) polarizations determined as an 

eigenvalue problem ―for the frequency― of a 2D structure made of cylinders in a square lattice, 

by solving Maxwell’s equation with Bloch’s theorem ― solutions invariant under translation of 

a lattice vector ―, folded into the first Brillouin ―the shaded region indicated in the lower 

inset―. The capital letters represent the lattice directions. (b) First and second bands for TE 

polarization showing the BG for this polarization. (c) Isofrequency contours of the first band 

showing a change of curvature approaching the high symmetry point M. The red arrow 

corresponds to normal diffraction, the orange to self-collimation and the yellow to negative 

diffraction. The black arrows indicate the direction of the group velocity. (d) Isofrequency 

contours of the first band showing the angular BGs for the wavevector marked as the red arrow 

at the high symmetry point X. 

In 2D PhCs geometry of the fabricated structure is characterized by its 

longitudinal and transverse period and corresponding wavenumbers 𝑞∥ and 𝑞⊥. 
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In this kind of structures there is a coherent transport of radiation from the 

fundamental or zero component, �⃗� , to the diffracted component, �⃗� + 𝑞 . Therefore 

black line appears in transmission corresponding to the resonance condition kx 

/k0 = 𝑞∥  / 𝑞⊥ − 𝑞⊥/(2k0), Fig. 1.11 (a). [Mai10].  

 

Figure 1.11. (a) Schematic representation of experimental measurement, focused laser beam 

provides a wide range of angular 𝑘  components incident to the PhC. Some of the 𝑘  components 

are deflected to the diffraction maxima and the rest passes through unaffected. (b) Filtered beam 

spectrum. (c) Experimental horizontal cut obtained by numerical integration with the parameters: 

𝑚 = 2∙10−4, 𝑞⊥ = 0.25, 𝑞∥ = 0.035, and normalized propagation distance 𝑧 = 4⋅103, 𝑘𝑥 is normalized 

into 𝑘0 [Mai10].  

Figure 1.11 shows for a schematic representation of a single-pass spatial filtering. 

After the beam passes along the sample of Figs. 1.11 (a) and (c) it is possible to 

observe the black filtered parts of the spatial spectra, corresponding to the four 

crossing lines, Fig. 1.11 (b), each line corresponding to the coupling with a 

particular diffraction component. 

The angular position and width of the lines can be controlled by varying the 

parameters of the photonic structure. One interesting structure is chirped PhC, 

which are structures with gradually increased or decreased periods [Oue87]. 

Chirping can also be achieved by a slowly-varying the refractive index gradient 

[Lou05]. Since the BandGap (BG) frequency depends on the structure period, in 

a chirped PhC, where the period gradually varies, the BG frequency range moves 

along the structure, broadening the total BG. In Chapter 2, we propose using an 

analogous resonance condition for a chirped PhC for spatial filtering. 

1.3.3 Non-Hermitian Photonics 

The introduction of the concept of PT-symmetry has triggered an intense 

research activity leading to the development of the new field of non-Hermitian 

Photonics [Fen17]. First regarded as a curiosity in the frame of Quantum 
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Mechanics, as non-conservative systems that could still present real eigenvalues 

[Ben98]. PT-symmetric systems have found feasible realizations in the field of 

optics. The first experimental observation of passive PT-symmetry breaking in 

optics was reported by Guo et al. in 2009 [Guo09], demonstrating loss-induced 

optical transparency. Already in 2010, Rüter demonstrated asymmetric transport 

of light, including an active media. Spontaneous PT-symmetry breaking and 

oscillations that violate left-right symmetry were observed in coupled 

waveguides with gain and loss, see Fig. 1.12 (a). The concept was applied to large-

scale unidirectional lattices hinting that PT-symmetry could lead to a new 

generation of multifunctional optical devices and networks see Fig. 1.12 (b) 

[Reg12]. Since then, the field has been exponentially growing, coinciding with the 

advances in nanofabrication techniques. Simultaneously, other relevant 

experiments and proposals were reported, and other PT-symmetric optical 

structures and configurations were proposed [Lin11, Lon11, Fen12, Jia15]. Thus, 

optics has become the ideal playground to experiment and uncover the new 

physics of non-Hermitian systems, offering a novel tool to control and tailor light 

[Zia14, El-G18].  

 

In the more general case of non-Hermitian photonics, the interplay between real 

and imaginary parts of the potential may lead to exotic features arising from an 

unusual mode coupling symmetry breaking. Applications range from cloaking 

arbitrary objects [Lon11, Hay18, Hay18-2], to tailoring the filed flows in arbitrary 

dimensions. In fact, general non-Hermitian systems holding asymmetric wave 

flow may be designed with a generalized Hilbert Transform (HT), analogous to 

the Kramer’s Kronig relations that break the temporal symmetry, which is at the 

basis of causality [Ahm18-3]. Other fascinating and exotic proposals include 

optical isolators, optical modulators, optical switches, coherent perfect absorbers 

-antilasers-, optical diodes, sensors to new effects in topological photonics, and it 

is even possible to create non-casual systems by adding either nonlinearities or a 

magnetic response. 

Since light amplification, gain, and optical absorption, loss, are inherent 

properties of the lasers, they become an ideal platform to prove and study non-

Hermitic effects. In the early studies, effort was only put into lowering the 

dissipation to improve these devices’ performance. Recently, the new proposals 

in non-Hermitian optics provide a background to explore exotic regimes in laser 

systems. An interesting field of application is coupled micro-ring cavities, and 

microring lasers and laser arrays. A particular recent example reported by 
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Hodaei et al. two directly coupled identical microring-cavities presented were 

used to achieve a stable single–longitudinal mode operation, in Fig. 1.12 (d). In 

turn, it was demonstrated that a laser array system could significantly improve 

the lasing response and output beam quality. Hokmabadi et al. explored this 

possibility in a coupled microring system in which a standard laser array is 

coupled with its dissipative super partner array with unbroken supersymmetry, 

see Fig. 1.12 (e). Finally, some studies even study PT-symmetry exceptional 

points at higher orders. This is of high interest since it can enhance the sensitivity 

of resonant optical structures to an external perturbation, see Fig. 1.12 (f). In this 

line, Hodaei et al. presented a ternary PT-symmetric photonic laser molecule. 

 
Figure 1.12. Experimentally demonstrated optical PT-symmetric systems. (a) Gain-loss 

waveguides, with unidirectional light transport [Rüt10].  (b) PT-symmetric temporal lattice 

formed by two coupled fiber loops periodically switching between gain and loss [Reg12]. (c) 

Asymmetric behavior in a passive PT-symmetric organic thin-film metawaveguide [Jia15].   (d) 

PT-symmetric coupled whispering-gallery microresonators [Hod14]. (e) Non-Hermitian 

supersymmetry-based laser array depicting active main array (red), and super-partner array 

(purple) [Hok19]. (f) Ternary PT-symmetric photonic laser molecule where the middle 

microcavity is without gain/loss and the adjacent sites have balanced gain and loss [Hod17]. 

Nearly one century after the birth of Quantum Mechanics, the classical optical 

platform of non-Hermitian Photonics is deepening our understanding of 

fundamental quantum physics revolutionizing and extending quantum theories 

and facilitating technological breakthroughs for photonic applications [Fen17]. 
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This  PhD  aims  to  study  mechanisms  to  improve  the  performance  of  Edge 

Emitting (EE) amplifiers and lasers. For this purpose, we need a versatile model 

with sufficiently short integration times to model the spatio‐temporal dynamics 

of the system in its parameter space. Thus, in this Chapter we develop a specific 

new approach, including the spatial distribution and the temporal evolution of 

both fields and carriers that will be used throughout the thesis. 

The model  is used  to numerically demonstrate  the  intracavity  filtering of  the 

multimode emission of EE Lasers (EELs) with chirped Photonic Crystals (PhCs). 

The results of this Chapter are published in Ref. [Gaw20]. The reported excellent 

agreement  between predictions  and  experiments  confirms  both  the proposed 

filtering scheme and the model. 

 

2.1  Spatiotemporal models  for  edge‐emitting  amplifiers 

and lasers 

Chapter 1  summarizes existing models  for Edge‐Emitting  (EE)  semiconductor 

light sources, that is to say, amplifiers and lasers, available in the literature. There 

exist some complete models that consider detailed material features, however, 

they are generally limited by very long integration times preventing the study in 

the parameter space and optimization. As previously commented, actual models 

may be grouped  into mean‐field models and stationary models. The first ones 

describe  the  temporal  evolution  of  the  field  and  carriers while  they  do  not 

account for the spatial field distribution [Lug99]. On the other hand, stationary 

models consider the propagation of static beams along the semiconductor, while 

carrier and field dynamics are neglected [Ult06].  

We here present and develop a full (2+1)‐dimensional spatio‐temporal model for 

the electric field and carriers, including transverse and longitudinal dimensions 

plus  time.  The  starting  point  is  the  wave  equation  for  the  field  inside  the 

semiconductor and the carrier density dependence on the field [Agr84], and the 

main novelty is the proposed integration mechanism. Instead of simultaneously 

integrating  the  field and carriers  in  time  in the whole active medium, we  take 

advantage of the different characteristic temporal responses of the carriers and 

the  field  to  split  the  calculation  into  a  spatial  integration  of  the  field  and  a 

temporal  integration  of  carriers.  For  a  simple  pass  of  the  field  along  the 
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semiconductor, i.e. to model an EE amplifier, the temporal behavior of the system 

is just given by the carrier’s relaxation time, which is justified by the difference 

between both  temporal  responses. For  the  case of  lasers, we  assume  that  the 

cavity round trip time is short (on the order of ps) as compared to the carrier’s 

relaxation  time  (on  the order of ns). This means  that  the  time evolution of  the 

field  in one  roundtrip may be  calculated by  its propagation along  the  cavity, 

assuming  constant  carriers. Analogously,  the  temporal  integration  of  carriers 

assumes a constant field distribution due to its fast move towards the stationary 

state. 

In turn, we also propose a simplified mean‐field model that will also be used with 

some variations in Chapters 3, 4 and 5.  

2.1.1 Complete spatio‐temporal model  

A usual approach to model EE amplifiers and lasers is to consider rate equations 

for  the  active  material  layer  alone  by  introducing  the  field  equation  and 

appropriate boundary conditions. Then, the system is pumped by a forward bias 

applied voltage across  the p‐n  junction. The  carriers  (electrons and holes) are 

directly  injected  into  the  active  layer  and  change  the  active‐layer  dielectric 

constant (both the real and imaginary parts). This affects the propagation of the 

optical mode, altering the carrier distribution through stimulated recombination. 

The electrical and the optical parts are coupled, and a self‐consistent solution is 

required. The problem is hugely involved in its most general form, and several 

simplifying assumptions are usually made.  

The current  injection density,  J, crossing  the active  layer, enhances  the carrier 

density in the semiconductor. In turn, nonradiative transitions, characterized by 

their characteristic time and radiative stimulated emission and proportional to 

the existing total field intensity, reduce the carrier density. Spontaneous emission 

and Auger recombination are not considered in this model. Altogether with the 

carrier diffusion, it results in the carrier density rate equation: 

2 2( )

nr

g NN J N
A D N

t ed  


    
 

                                  (2.1) 

where e is the electron charge, d is the active layer thickness  the light angular 
frequency,  and  D  the  diffusion  coefficient 0 ( ) ( )g N a N N  is  the  local  gain, 
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considered linear, where a is the gain parameter and 
0N  is the carrier density to 

achieve transparency, i.e., the onset of population inversion.  

After  normalization  of  the  field  intensity 
2 2
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. The field propagation inside 

the active material satisfies Maxwell’s wave equation [Gum05]:    
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In  general,  the  total  field E(𝑟, 𝑡 )  is  a  superposition  of many  longitudinal  and 

transverse modes. Here, we only consider one longitudinal mode with frequency 

0  propagating with  small  aperture  angles  along  the  z‐axis. Given  the  small 

thickness of the active layer, the fast axis (y‐axis) field distribution corresponds 

to  the  fundamental  waveguide  mode.  Thus,  the  field  can  be  written  as 

0( , , ) ( , , ) i tx z t E x z t e E where  E  is  the  field  amplitude.  Introducing  the  field 

amplitude distribution in the wave equation and neglecting the temporal term
2

2t
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, much smaller than 0, we can write: 
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                                    (2.4) 

We consider  the paraxial approximation, bearing  in mind  that  the propagated 

light  takes  small  angles  in  amplifiers  and  lasers.  In  addition,  using 

0 0 ( , , ) ( , , ) in k zE x z t A x z t e  for  the  forward and backward wave, and being 
A  

the  field  envelopes,  the  k0 wavenumber  in  the  vacuum  and  0n  the  effective 

refractive index for the considered mode. We obtain the following expression for 

the field envelope of both counter‐propagating fields: 
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The complete spatial and temporal refractive index variations Δ
T
n are defined as 

deviations  from  the  effective  value  of  the  refractive  index
0n :

0 +Δ( , , ) ( , , )
T

n x z t n n x z t .  Index modulations will  be  generated  by  the  carrier 

distribution Δ
N
n  and by modifications of the laser structure ∆n. Only a fraction 

of the mode, characterized by the confinement factor  ,  lays within the active 

region with  refractive  index
a
n , while  the  rest  lies  in  the passive  surrounding 

medium  with  index
p
n .  The  modulations  of  the  complex  refractive  index 

generated  by  carriers  can  be  written  as: 

0
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k Δ
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         ,  where  the  first 

term inside brackets is the carrier‐induced index reduction associated with the 

anti‐guiding  parameter.  The  free‐carrier  absorption  coefficient  and 
p
 is  the 

passive medium absorption coefficient, see Ref. [Agr84] for more details.    

As explained, we profit from the fast field response compared to carrier response 

to disregard  the  field dynamics and always consider  the  field  in  its stationary 

state  0




A

t
.  

Splitting  the  system  calculation  in  a  spatial  integration  of  the  field  along  the 

cavity for a constant carrier distribution and a temporal integration of carriers for 

the  stationary  field. Thus,  the  field propagation equation  for  the  forward and 

backward field envelopes reads as: 
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is a parameter inversely proportional to the light‐matter interaction length and 

 0ʹ
fc

N n a a N  the normalized carrier distribution.  

The typical values for AlGaAs lasers are extracted from [Agw84]: 
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Finally,  the model  is  led  by  the  following  equations where we  dropped  all 

apostrophes ‐ ’ ‐ for simplicity:   
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          (2.8) 

According  to  the  previous  table,  the  coefficients  of  Eq.  (2.8)  take  values:               

σ=0.004, h = 1.2 and α=0.1 for the above table. 

 

Figure  2.1.  (a)  Electric  field  along  an  EE  amplifier  exhibiting  a  multimode  emission.  (b) 

Corresponding carrier’s density along the EE amplifier. (c) Temporal evolution of the electric field 

at the end of the EE amplifier (z = 3.5mm). Numerical simulations are performed with the model 

presented in Eq. (2.8) for the forward field.  

In  the  simplest  case,  may  we  consider  just  one  field,  namely  A+,  which 

corresponds  to  a  single  pass  EE  amplifier.  Therefore,  to  simulate  the  spatio‐

temporal behavior of an EE amplified we integrate Eq. (2.8) setting 0 A . The 

multimode emission of the amplified is evident from Fig. 2.1 (a), showing a field 

distribution along the amplified at the final propagated length, 3.5 mm, as well 

as  from  Fig.  2.1  (b)  displaying  the  corresponding  carriers’  distribution.  The 

temporal evolution shows the instabilization of the homogeneous field and the 
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transition  to  turbulence  by  the  accumulation  of  ever‐increasing  spatial 

frequencies.  In  addition,  a high  inhomogeneous  field  and  carrier distribution 

along  the  active media with many  field  filamentations  is present  at  the  final 

integration time.   

 The  total  field  intensity
2 22

A A A    is  considered  for  laser  integration, 

where the interference between the forward and backward fields is disregarded. 

It is justified due to the different amplitude values of forwarding and backward 

fields along the laser, creating low contrast fringes, as shown in Figs. 2.2 (a) and 

(b). In addition, the carrier diffusion is large enough to blur the fine interference 

structures  even  though both  fields  are  intertwined  through  the  field‐material 

interaction. The  integration of the full equations of the  laser also exhibits clear 

spatial inhomogeneities within the cavity, see Fig. 2.2 (c) and temporal instability 

of the output radiation, see Fig. 2.2 (d).  

 

Figure 2.2.  Intensity of the fields within the laser for: (a) forward field intensity, (b) backward 

field  intensity,  (c)  total  field,  and  (d)  temporal  evolution  of  the  output  intensity.  Integration 

parameters: p0 = 2.0, width = 400 μm, L = 1500 μm, α = 0.1 μm‐1, h = 2.0, s = 0.04 μm‐1, k0 = 2π μm‐1, 

D = 0.03 cm2/s , n = 3, rL =0.04 and r0 = 0.99. 

The boundary conditions along the propagation direction are straightforwardly 

determined  by  the  Fabry‐Perot  cavity mirrors  located  at  z  =  0  and  z  =  L  as: 

00 0( ) ( )A z r A z     and ( ) ( )
L

A z L r A z L    , where L  is  the  length  of  the 

laser and  r0/L are  the corresponding  reflection of  front/back mirrors at z = 0/L, 

respectively.  Boundary  conditions  in  the  transverse  direction  are  sometimes 
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considered to be periodic, although we generally apply an hypergaussian filter 

to obtain a finite window.  

As above mentioned, the roundtrip time of the cavity is assumed to be small as 

compared to the carrier’s relaxation time. The temporal evolution of the field in 

one  roundtrip  is  calculated  by  its  propagation  along  the  cavity,  assuming 

constant carriers. Thus, each iteration in the temporal integration is divided into 

two main parts,  the propagation of  the  forward and backward  field along  the 

laser cavity and the temporal integration of carrier density in time. 

The first  integration step considers constant carrier distribution and  integrates 

the forward field along the cavity in a split‐step form with two operators. The 

first one corresponding to the diffraction term is precisely integrated with Fourier 

space. The second operator corresponding to the rest of the equation is local and 

precisely  integrated  into  the  direct  space.  Finally,  the  front mirror  boundary 

conditions give values of the backward field at this mirror. Next, the backward 

field is incorporated in the same form up to the back mirror. Again, the boundary 

conditions give the forward field at this mirror. In the final integration step, the 

carriers’ distribution is again split into two parts. The first operator of the split‐

step method is the diffusive term integrated in the Fourier space. The rest of the 

equation is integrated in direct space, considering a constant total field intensity.  

2.1.2 Simplified adiabatic model 

In turn, the previous full model may be simplified in a mean‐field model. Such a 

simplified model can be semi‐analytically solved inside the laser cavity and has 

been used  to characterize  the  laser  threshold and LI‐curve when  the cavity or 

other parameters such as the reflectivity of the mirrors are varied. The model may 

be used to characterize the field along the cavity in an EEL when no transverse 

distributions of  field and carriers are considered as well as no modulations of 

index and pump: 
2
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With these simplifications, we can analytically find the adiabatic state of carriers: 
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 with the integral expression:   
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We integrate the fields along z with the corresponding boundary conditions of 

Fig. 2.3 (a) in an iterative process up to find the intensity profiles for the forward 

and backward fields.  

 

Figure 2.3. (a) Scheme of the cavity, boundary conditions and the forward and backward field 

envelope distributions within the unmodulated EEL. (b)/(c) Map of the intensity within the laser 

at z=L/output intensity; as a function of the power, p0, and the end mirror reflectivity rL . The red 

line indicates the laser threshold. The vertical green dashed line corresponds to the realistic case 

rL = 0.04. The integration parameters are: α = 0.1 μm‐1, h = 2.0, s = 0.01 μm‐1, qx = 0.5064 μm‐1, k0 = 

6.2832, D = 0.03 cm2/s, L = 320 μm. 

The intensity inside the laser is depicted in Fig. 2.3 (b), predicting that for high 

reflectivities the threshold decreases, and higher powers are obtained inside the 

laser, as is expected. On the other hand, in Fig. 2.3 (c), we could observe that the 

output  intensity  decrease  with  the  reflection,  as  is  predicted.  These  results 

confirm that the working regime for EEL is of low reflection, around 1‐10%.  

 

2.2 Intracavity spatial filtering 

As  introduced  in Chapter 1,  spatial  filtering  is a process  to  improve  the  laser 

beam  quality  by  removing  undesirable  modes.  In  high  power  EELs,  the 

nonlinearities in the active material can lead to the appearance of ripples or noise 

added  to  the smooth profile of  the beam. Moreover,  the beam passes  through 

different optical elements, and its wavefront is distorted due to different optical 

imperfections as inhomogeneities in the refractive index of the medium, dust and 

diffraction effects. These accumulated field inhomogeneities correspond to high 

spatial frequency content in the far‐field, see Fig. 2.4 (a). 
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Figure  2.4.  Intracavity  filtering  by  a  chirped PhC.  (a)  Scheme  of  an EEL  and  the multimode 

emission in the transverse direction (slow axis) (b) Compact intracavity filtering scheme with a 

chirped PhC located at the front facet of the EEL cavity intended to improve the performance, the 

transverse beam quality Mx2 factor and the brightness of the emission. 

The  simplest way  to  smooth  the  beam  profile  is  the  application  of  a  high‐

frequency filter. The filtering is easily achieved by inserting a pinhole (or a slit in 

the 1D case) in the Fourier plane located at the focal plane of a converging lens 

which acts by laterally blocking the beam, cutting off the highest frequencies and 

leaving the central part of the spectrum (low frequencies).  

Such spatial‐filtering technique could be implemented on the emitted radiation 

in a single transmission scheme, however, the resulting power reduction for such 

a  scheme  does  not  bring  any  enhancement  in  brightness. While  this  simple 

filtering  scheme  suppresses high‐order  transverse modes enhancing  the beam 

quality, it entails a profound reduction of the output power. Finally, the filtered 

frequency interval depends on the pinhole radius or slit aperture.  

The same filtering technique can be applied inside the laser cavity to remove the 

unsuitable high frequency modes and force the amplification of low transverse 

modes. The profile of the emitted beam is smoothed while the output power is 

not  drastically  reduced,  allowing  the  enhancement  of  the  emitted  beam 

brightness. 

Moreover,  the  conventional  filtering  technique  is  neither  convenient  for 

intracavity filtering in micro‐lasers such as microchips nor in EELs that usually 

have cavity lengths below the order of millimeters. An external coupled filtering 

cavity  is neither  a possibility  since  the bulky  size  of  the  lenses  and  the  filter 

length, may strongly reduce the device compactness. Thus, new compact filtering 

techniques should be applied. This is the case of PhCs that act in the frequency 

domain without the necessary achievement of the Fourier space. PhCs represent 

a  promising  solution  due  to  their  compact  nature  and  their well‐established 

filtering  effect  that  has  been  theoretically  studied  and  experimentally 

demonstrated [Mai10, Mai15]. In this chapter, the PhCs and in particular chirped 
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PhCs, are considered to be used as compact spatial  filters  inside  the cavity of 

EELs to improve the beam quality and maximize the brightness, see Fig. 2.4 (b).  

To design the proposed intracavity filtering scheme of high spatial frequencies, 

we first start by a study of the conventional spatial filtering using an intracavity 

slit positioned in the Fourier domain with the developed model. Later, the results 

are  experimentally  validated. Once we determine  the  optimal  slit width  that 

maximizes brightness, we numerically prove the performance of a chirped PhC 

emulating  the optimal slit. Then, we apply  the numerical predictions  to a real 

device  and  experimentally  corroborate  our  results.  Finally, we  propose  and 

prove some optimized filtering schemes.  

2.2.1 Numerical filtering design  

In  the model,  the slit  is added as a  transverse wavenumber cutoff  filter  in  the 

Fourier space, positioned close to the front mirror. Since the aim of this filtering 

technique  is  to  increase  the brightness when  filtering out  the most divergent 

modes, we define the relative brightness as B/Bo, the ratio between the brightness 

of the emitted beam with spatial filtering (either with a slit or with a PhC) and 

brightness without any filtering (Bo). 

We  assume  an  actual  EEL with  the  same  parameters  that will  later  be  used 

experimentally. The cutoff wavenumber that simulates the slit corresponds to a 

divergence from 70–10 mrad. For small slit widths, the higher‐order transverse 

modes are suppressed, in the limit, only the lowest‐order transverse modes are 

allowed  to  laser. However, when  the  aperture  is  too narrow,  brightness  also 

decreases.  As  expected,  the  slit  simultaneously  reduces  the  power  and  the 

transverse beam quality factor, Mx2 factor, which allows for enhancing the beam 

brightness. Figure 2.5 (a) shows the relative brightness scanning the width of the 

intracavity slit exhibiting a maximum enhancement for around 25 mrad aperture 

and pump three times above the threshold. 

 These numerical results may be compared to experimental measurements in Fig. 

2.5 (b). The details of the experimental external cavity configuration are described 

in detail in section 2.2.2. We observe the same trend, compared to the predictions 

in  Fig.  2.5  (a),  a  clear  3‐times  brightness  enhancement  is  found  for  similar 

apertures  and  normalized  pump  current.  Although  the  differences  may  be 

attributed to thermal guiding, losses, and other complex features not included in 

the model, the trend is similar for experimental and simulation results.  
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Figure 2.5. Relative brightness maps as a  function of  the  slit aperture and normalized pump 

current. The pump current is normalized to the threshold current, p0/pth. Comparison of the (a) 

numerical and (b) experimental results of relative brightness for a short EE laser with a length of 

1.5 mm. In red, cross‐sections close to p0/pth = 3 for different apertures. In black cross‐sections close 

to aperture = 25 mrad for different normalized currents. The integration parameters are the same 

as in Fig. 2.2.  

In  addition, we  also  explore  the  role  of  different  parameters  on  the  filtering 

performance, in particular, the effect of the reflectivity of the front mirror, while 

the rear mirror reflectivity is kept constant to unity. We consider three different 

reflectivities of the front mirror (4%, 6%, and 8%), limiting the reflectivity to 8% 

to avoid the possibility of causing catastrophic optical mirror damage at the front 

and rear facets of the laser.  

We now proceed  to  the design of  the  two‐dimensional  (2D) chirped PhC. We 

assume a 2D structure as the one used in Ref. [Gaw19], where the effect was only 

experimentally  demonstrated.  It  consists  of  an  index  modulation  crystal 

fabricated via a femtosecond laser writing technique in a bulk of the N‐BK7 glass 

substrate, characterized by  the  transverse and  longitudinal  lattice constants dx 

and dz, the latest changing linearly along the structure [Gai19].  
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The PhC  is characterized by a geometry  factor 
22
x

z

nd
Q

d
 , chirped along  the z‐

direction  in  the range of 1.10 < Q <1.60, and  the number of periods Np  in  the 

ranger of 20 < Np <120. The  transmission  function of  the  crystals  for different 

structures  is  calculated  for  different  geometrical  parameters,  starting  from 

technically  available  fabrication  values  leading  to  the  total  extinction  of  the 

higher‐order spatial modes while the central modes experience almost no losses. 

We  initially  assess  the  effect  of  such  a  crystal  by  applying  the  singe‐pass 

transmission of the crystal to a broad Gaussian pulse. The effects of increasing 

the  longitudinal  chirping  range  dQ  can  be  observed  in  Figs.  2.6  (a)  and  (b). 

Another possibility to increase the filtering efficiency is by increasing the number 

of periods  of  the  structure. As  the  number  of periods  increases,  the  filtering 

performance  increases  and  is  seen  in  the  transmitted  profiles  (blue),  see 

Figs.2.6(c) and (d).  

 

Figure 2.6. Comparison of  the  incident Gaussian profile and  the single‐pass  transmitted beam 

trough  a  chirped PhC. Dependence  on  the  chirp parameter  dQ  for  a  fixed number  of  layers 

Np=60 for the different chirp of the structure, central Q = 1.35 and: (a) dQ = 0.05. (b) dQ = 0.35. 
Dependence on the number of layers Np for a fixed interval Q = 1.35 and chirp parameter dQ = 

0.25 for: (c) Np = 20 and (d) Np = 120. 

The  filtering dips  in  the  angular  transmission get deeper with  increasing  the 

number  of periods. To  summarize, we  searched  for  a  numerically  optimized 
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structure which  filtering  function  emulated  the  optimized  slit.  The  PhC was 

optimized by adjusting the geometry factor, Q, the chirp dQ, and the number of 

longitudinal periods, Np. We note  that  the  filtering performance of  the PhC  is 

enhanced when placed inside the cavity. The PhC filtering improves the beam 

quality by  reducing  the  amplitude of  the high‐order mode  at  each  roundtrip 

while allowing  the amplification of  low‐order modes and  the enhancement of 

brightness.  

 

Figure  2.7.  (a)  Intracavity  filtering  performance  of  a  chirped  PhCs  as  compared  to  a  slit 

considering an optimized PhC with central Q = 1.14, dQ = 0.25, and Np = 73, showing the emitted 

beam with noo filter (in red), the output beam with a slit (green) and the PhC filtered beam (blue). 

(b) Relative  brightness  for  the  optimized  PhC  (light  blue  curve)  as  a  function  of  the  pump 

normalized  to  the pump  threshold.  (c)  Intracavity  filtering performance of a chirped PhCs as 

compared  to a slit considering a actual PhC with central Q = 1.35, dQ = 0.25, and Np = 60. (d) 

Comparison of  the  relative brightness  corresponding  to  the optimized  (light blue  curve) and 

actual PhC (dark blue curve) as a function of the normalized pump current. The lines are a guide 

for the eye. The other laser integration parameters are the same as in Fig. 2.2. 

We scan the PhC parameters to optimize the transmission function attaining the 

maximum relative brightness for Q centered at Q = 1.14, dQ = 0.25, and Np =73. 
In  Fig.  2.7  (a) we  observe  that  a more Gaussian‐like  and  narrow  far‐field  is 

achieved when using PhC as a filter as compared to an equivalent slit, see the 
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comparison of the transfer function of the PhC compared to the one of a slit.To 

characterize of filtering performance of the PhC we scan the relative brightness 

as a function of the pump currents and predict a significant enhancement of a 

factor of 2 at twice the threshold current, see Fig. 2.7 (b). 

No further enhancement is seen at higher pump currents due to thermal effects 

inside the cavity, restricting higher‐order modes filtering, see Ref. [Gaw20]. We 

repeat the same predictions using the transmission function of an actual chirped 

PhC, fabricated with the parameters central Q = 1.35, dQ = 0.25, and Np = 60, see 

Fig. 2.7 (c). The maximum enhancement of the relative brightness in this case is 

found to be on the order of 1.7, close to the previous pump current, see Fig. 2.7 

(d). 

2.2.2 Experimental demonstration 

Finally,  the  spatial‐filtering  performance  of  chirped  PhCs  in  EELs  was 

experimentally  explored  using  an  extended  cavity  scheme,  see  Fig.  2.8  (a) 

[Gaw20].  

The actual experimental  setup  consists of an anti‐reflection  (AR)  coated  laser, 

microcylindrical Fast Axis Collimator  (FAC),  two pairs of cylindrical  lenses  to 

create conjugate planes, and a feedback mirror (front mirror of the cavity). The 

front  facet  of  the  laser  is AR  coated  (R  <  0.01%), while  the  back  facet  has  a 

reflectivity  of  95%. The  active  length  of  the  laser diode  is  1.5 mm, while  the 

transverse width is 400 μm. The operating wavelength was 970 nm at a driving 

current of 3 A and the total emitted power of 1.24 W in continuous wave (CW) 

mode. 

The  high  divergence  emission  along  the  fast  axis  is  collimated  using  a  high 

Numerical Aperture  (NA) of 0.8 microcylindrical FAC microlens, with a  focal 

length of 590 μm. A double 4‐f plano‐convex cylindrical lens system, acting along 

the slow axis, creates two conjugate planes of the emitter facet plane, see Fig.  2.8 

(a). The lenses L1‐L2 and L3‐L4 are placed in a confocal arrangement forming the 

self‐imaging cavity, which returns the same field to the same position after one 

round trip. The focal length of lenses L1‐L4 is f = 50 mm, and all the lenses used 

are AR coated for near‐infrared wavelength. 

The improvement of the output laser beam is studied by measuring the power, 

the spectrum, the M2 factor, and the laser beam profiles of the near‐field, at plane 

B and  far‐field at  the Fourier plane, plane C,  see Fig. 2.8  (a). The  laser  cavity 
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mirror  is  located at  the second conjugate plane, at  the end of  the extended 4‐f 

cavity. The reflectivity of the used mirrors varies between 4% and 8% in one side 

and having an anti‐reflection (AR) coating on the other side.  

 

Figure 2.8. (a) Photograph of the experimental setup showing the EEL, 4 lenses of the double 4f 

lens system: L1, L2, L3, L4, the Fourier plane C and the conjugated plane B, and external cavity 

Mirror.  (b) Scheme of the spatial filtering using intracavity variable slit placed at the far‐field, 

plane C.  (c) Scheme of  the spatial  filtering  in extended cavity configuration using a PhC as a 

spatial filter at the near field, plane B. 

This setup allows for the characterization of spatial filtering effect using either 

the slit in the far‐field planes, Fig. 2.8 (b) or the chirped PhC, in plane B as in Figs. 

2.8 (c), in the same setup. The beam profiles at the output of the laser (near field) 

or at the focal plane of an external lens (far‐field) are recorded by imaging the 

profiles  into  a CCD  camera with proper magnification. The used PhC  had  a 

chirped structure with central Q = 1.35, dQ = 0.25, and Np = 60. 
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We simulated the  intracavity PhC spatial filtering considering a  laser with the 

same experimental conditions and using the actual transmission function of the 

crystal  in the numerical simulations. The beam profile predicted by the model 

with  and  without  the  intracavity  filtering  are  depicted  in  Fig.  2.9  (a).  A 

significative filtering was obtained while the profile of the emitted beam becomes 

smoother.   

 

Figure 2.9.   (a) Prediction of a monolithic  integrated PhC filtering scheme  in a compact cavity 

configuration. Effect of the chirped PhC spatial filtering on the far‐field profiles with (blue) and 

without (red) PhC. The  integration parameters are the same as in Figure 2.7. (b) Experimental 

results for an external cavity filtering at the Fourier plane.  

The experimental results show a good agreement for both far‐field distributions, 

with and without PhC, and with an analogous filtering results, see Fig. 2.9 (b). 

The improvement in the transmittance function was demonstrated with a clear 

correspondence between  experimental  and  the  corresponding numerical  field 

profiles, cutoff angles, and corresponding divergence. 

Besides,  the  output  power, M2 factor,  absolute  and  relative  brightness were 

measured in the experiments and compared with the accurate numerical analysis 

[Gaw20].  

The numerical analysis and the experiments confirm the possible integration of 

a chirped PhC inside the EEL cavity between the front and cavity mirrors, leading 

to the highly compact cavity configuration. 

2.2.3 Alternative filtering schemes 

The efficiency of spatial filtering using optimized PhCs can be further increased 

by  modifying  the  filtering  scheme.  The  ultimate  goal  is  a  monolithic 

implementation, as  schematically  illustrated  in Fig. 2.10  (a),  showing how  the 
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PhC structure could be integrated directly between the active medium and the 

front facet of the laser output cavity mirror. Alternatively, we also consider other 

possible configurations in which the PhC could be placed either at the rear facet, 

Fig. 2.10 (b), at both facets (rear and front), as shown in Fig. 2.10 (c). 

 

Figure 2.10.   Scheme of an  integrated compact cavity configuration, with  the filtering element 

(chirped PhC which could be  integrated at  the mirrors, FAC  lens…) at  (a) front  facet, (b) rear 

facet, and (c) both facets. (d) Optimized filtering performance as compared to the slit. The figure 

shows the relative brightness as a function of the slit aperture for a pump current of p0 = 2.5. The 

horizontal lines correspond to the chirped PhC filtering results for the proposed configurations: 

(a) in black, (b) in red, and (c) in blue. The integration parameters are the same as in Figure 2.7. 

We  numerically  simulate  these  three  different  geometries  for  the  same 

parameters as previously considered. The results are resumed in Fig. 2.10 (d). We 

can observe that schemes with spatial filtering at the rear mirror always show 

smaller relative brightness  than  those with spatial  filtering at  the  front mirror, 

while  simultaneous  filtering  at  both  mirrors  achieves  the  highest  relative 

brightness. Slightly smaller values are attained for the optimized PhC located at 

the  front  and  rear mirror while  simultaneous PhCs  at both mirrors  reach  the 

maximum relative brightness enhancement even higher than the slit case. These 

results  indicate the way to achieve better optimization of our filtering scheme, 

even if new ways to implement this geometry experimentally must be conceived 

and analyzed in detail to check its availability. The successful implementation of 

the  filtering  PhCs  in  this  scheme  could  lead  to  a  very  compact  device with 

optimized beam quality. 

 



Chapter 2.Intracavity filtering Edge‐Emitting Lasers                                                               55 

 

 

2.3 Conclusions 

To conclude, we demonstrate the spatial intracavity filtering by a chirped PhC, 

both theoretically and experimentally. Predictions are based on a complete (2+1)‐

dimensional  space‐temporal  model,  including  transverse  and  longitudinal 

spatial  degrees  of  freedom  and  temporal  evolution  of  the  electric  field  and 

carriers. We  predict  a  brightness  enhancement  by  a  factor  of  2.5,  using  an 

optimized chirped PhC placed on both the front and rear facets of the laser. The 

effect may be even higher than the filtering performance of a slit.  

Experiments  were  performed  in  an  extended  cavity  configuration  using  an 

intracavity 2D chirped PhC at the near‐field plane and comparing it to a variable 

width  slit  in  the  far‐field plane, determining  a  reduction of  the beam quality 

parameter M2 by a factor of 1.8, bringing along a brightness increase by a factor 

of  1.3.  The  experimental  results  are  in  good  agreement  with  the  numerical 

simulations, considering the transmission of the actual PhC used in experiments. 

Further  improvement may be achieved by exploring different  spatial‐filtering 

schemes using the PhC by placing it at both mirrors. These findings demonstrate 

that intracavity PhC filtering may render EELs bright light sources while keeping 

their  compactness. Worth noting  that  the good agreement between numerical 

predictions and experiments confirms the validity of the model. 
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3.1 Spatial stabilization by complex modulations 

As commented in Chapter 1, section 1.2.2, it was proved that intrinsic 
modulations of the pump profile allow managing the dispersion to improve the 
spatial structure of the emitted beam in edge-emitting (EE) amplifiers and lasers. 
In a linear amplification regime, such a modulation leads to the spatial filtering 
of the output radiations [Her12, Rad13]. Nevertheless, the situation is more 
involved in highly non-linear regimes due to the appearance of modulation 
instability (MI), which may be affected by refractive index and pump 
modulations [Vla06]. In a more recent study, a spatio-temporal modulation in the 
potential was proposed to control the modulation instability in EE amplifiers 
[Kum14], as well as in a broader class of spatially extended non-linear dynamical 
systems [Kum15]. However, MI is only partially suppressed for pump-
modulated EE amplifiers and is limited to small linewidth enhancement factors 
(Henry factor). Thus, this solution is not completed, and it only works in 
particular regimes of parameters. The periodic modulation of the pump reduces 
or even removes the instabilities of the short-wave region although long-wave 
instabilities remain, preventing the complete stabilization of the EE amplifier. 
The total stabilization of the system can be reached reducing the width of the 
amplifier forbidding the existence of long waves.  

This Chapter presents an efficient and compact scheme to obtain a stable and 
high-quality output from EE light sources by tailoring its dispersion. We propose 
introducing a periodic in-phase modulation of the refractive index and the pump 
(gain-loss) profiles, in transverse and longitudinal directions (2D space). In 
particular, we numerically show the stabilization performance of the proposed 
mechanism applied to EE amplifier sources. The results of this chapter were 
published in [Ahm18] and [Med18]. 

 

3.2 Modulated edge-emitting amplifiers 

Pump modulations can stabilize edge-emitting amplifiers for small enough 
values of the linewidth enhancement factor, h, as demonstrated in [Kum15]. 
However, it may not be sufficient to stabilize highly non-linear regimes that 
appear for large values of h or high pump values. The principal reason is that 
pump modulations induce in turn refractive index modulations, which may 
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increase the resultant instabilities. These handicaps can be overcome by 
simultaneously modulating pump and refractive index profiles. 

Specifically, we aim at stabilizing the long-wave transversal MI remaining when 
only pump modulations are introduced. With this purpose, we modulate the 
potential in two directions, the transversal and longitudinal directions, with 
respective modulation wavenumbers qx and qz. A mutual resonance between the 
transverse and the longitudinal harmonics is expected to strongly modify the 
spatial dispersion and the corresponding stability of the system.  

This Chapter uses the spatio-temporal model presented in Chapter 2, section 
2.1.1, adding a modulation on the refractive index, m2(x,z), and on the pump, 
m1(x,z). The paraxial model describing the dynamics of electric field amplitude 
(A) and carrier density (N) for the proposed doubly modulated EEL source may 
be expressed as:  

α
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The parameter values considered along this Chapter largely coincide with the 
ones presented in Chapter 2. The in-phase spatial modulations of pump and 
refractive index share the same spatial profile m1,2(x,z) = m1,2cos(qxx)cos(qzz), with 
amplitudes 𝑚1 for pump and 𝑚2 for refractive index and with 𝑞𝑥 transverse and 
𝑞𝑧 longitudinal wavenumbers. The spatial modulations are assumed in the 
transverse and longitudinal directions on small spatial scales, i.e., where |q𝑥| >> 
k0 and |qz| >> λ, where λ is the typical growth rate of the unstable transverse 
wavevectors. The modulation geometry may be characterized by the geometrical 
parameter Q = 2nk0qz/qx2 relating both wavenumbers q𝑥 = 2𝜋/ d⊥ and qz= 2𝜋/d∥  
being d⊥ and d∥ the transverse and longitudinal period of the modulation, 
respectively. Close to the resonance condition, Q ≈ 1, it is possible to suppress the 
region of unstable wavevectors that precede the chaotic dynamics and therefore 
stable stationary states are achieved [Sta06]. In addition, to suppress long-wave 
instability modulation, the modulation wavenumber qx should be similar to the 
most unstable wavenumber kx of the system. 
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3.2.1 Characterization of the instabilities 

Firstly, we consider unmodulated EE amplifier sources showing typical spatio-
temporal chaotic behavior and the corresponding broad spatial spectrum, see 
Fig. 3.1. The width of the field spectrum indicates the range of the unstable 
wavenumber, contributing to chaotic dynamics, which is around 2 μm-1. In order 
to perform an experimentally intended simulation, we assume realistic 
parameters compared with the model [Agr84] previously presented in Chapter 
2, section 2.2.1. The pump is taken above the threshold, and carrier relaxation 
rate, 𝛾, is normalized to the nonradiative characteristic relaxation time (𝜏𝑟 = 2 ns), 
with a typical normalized value of 0.01.  

 

Figure 3.1. (a) Scheme of the unmodulated EE amplifier. Direct numerical integration results: 
when no modulation is applied 𝑚1 = 𝑚2 = 0. (b) Field distribution, and (c) spatial spectrum, 𝑘x, 
inside the semiconductor after a long integration time. The simulation parameters are w = 140 
μm, L = 6.4 mm, n = 3.3, D = 0.15 cm2/s, h = 2, α = 0.1 μm-1, s = 0.03 μm-1, γ = 0.01, p = 1.21 A. 

The model of Eq. (3.1) allows analyzing the spatio-temporal dynamics of the 
system schematically shown in Fig. 3.1 (a). The integration of the system with a 
homogeneous input beam with small amplitude white noise typically shows a 
nonstationary and highly inhomogeneous field distribution in transverse and 
longitudinal directions arising from spatio-temporal instabilities. Increasing the 
pump parameter, the system usually reaches turbulent behaviors for a large 
range of parameters through the well-known MI, i.e. the instabilization of the 
homogeneous solution for an interval of transverse wavenumbers, see Figs. 3.1 
(b) and (c).  

However, other particular solutions can be observed, for instance 
nonhomogeneous stable stationary solutions that can even be spatially non-
periodic, i.e. spatially chaotic, for long enough amplifiers, see Fig. 3.2.  
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Figure 3.2. Direct numerical integration results: for the unmodulated case 𝑚1 = 𝑚2 = 0; Temporal 
evolution of (a) field and (b) spectrum at the end of the semiconductor. (c) Field envelope 
temporal evolution at points a, b, c indicated in (a). The simulation parameters are the same as 
Fig. 3.1. 

Similar solutions with different stable profiles have been obtained by changing 
the small amplitude noise added to the input beam. These particular solutions 
become stable in temporal propagation, indicating a large enough basin of 
attraction in the phase space. We plotted the evolution of the field at three spatial 
points marked as (I, II, III), Fig. 3.2 (c). The temporal evolution shows stability in 
all points for times over 40 ms. 

Note that only the incident field at z = 0 is fixed while the EE amplifier 
intrinsically involves the spatial propagation of the field and carriers in the 
longitudinal direction as well as their temporal evolution. Thus, we can 
differentiate spatial and temporal instabilities for the stationary states of the 
amplified beam. In this particular case, the homogeneous incident field becomes 
unstable along propagation through a MI, reaching chaotic distributions in the 
transverse space for large enough z values while they remain stable in time. 

Another parameter that has a direct impact on temporal stability is the pump. As 
expected, the temporal instability increases with the pump value. This spatially 
non-periodic stable solution becomes unstable for a threshold pump value, 
temporal instabilities arise, and smooth periodic temporal oscillations appear, 
see the dark blue line in Fig. 3.3 (a). As can be observed in Fig. 3.3 (b), oscillations 
appear all over the stationary pattern. Finally, for larger values of the pump, the 
system turns into turbulent temporal behavior, see the black line in Fig. 3.3 (a).  

The more unstable the temporal behavior, the more complex the stabilization 
becomes, and higher values of modulation amplitudes may be required. In this 
direction, Chapter 4 proposes a novel stabilization method for highly unstable 
systems beyond the achievements of the presented in-phase modulations in this 
Chapter.  
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Figure 3.3. (a) Temporal instability of a spatially non-periodic solution for the unmodulated 
amplifier case. Temporal evolution for three different pumps 1.21, in light blue (stable), 1.23, dark 
blue (periodic), and 1.25 in black (chaotic). The simulation parameters are the same as Fig. 3.1. 

3.2.2 Pump modulations 

In this section, we shortly present some results of partial stabilization of the EE 
amplifier obtained with only pump modulations, schematically represented in 
Fig. 3.4 (a). 

  

Figure 3.4. (a) Scheme of the amplifier and direct numerical integration results for the pump 
modulated case with parameters 𝑚1= 0.35; 𝑚2 = 0, qx = 2.85 μm-1 and qz = 0.196 μm-1. (b) Field 
distribution and a zoomed-in view of it depicted in the inset, and (c) transverse spatial spectrum 
inside the semiconductor after a long integration time. The rest of the simulation parameters are 
the same as Fig. 3.1.  
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This chapter introduces various schemes of refractive index and effective gain-

loss modulations based on PT-symmetry to stabilize and improve the spatial 

quality and temporal stability of Edge-emitting (EE) light sources, EE amplifiers, 

and EE Lasers (EELs).  The main goal is to manage the dynamics of field and 

carriers to enhance the performance of EE light sources by using non-Hermitian 

modulations with local mirror-symmetric (PT-axisymmetric) configurations. The 

results presented here were published in Ref. [Med20]. 

 

4.1 Light propagation in PT-symmetric potentials 

As presented in former chapters, a major drawback of semiconductor light 

sources and particularly EE light sources is the relatively low spatial and 

temporal quality of the emitted beam. Modulation Instability (MI) is the 

fundamental phenomenon that induces the mentioned spatio-temporal 

instabilities, which leads to complex dynamics and filamentation, i.e., a 

disruption of the smoothly distributed field into multiple filaments. Such 

complex dynamics limit the applications of EE light sources [Hes95, Bes66].  

As presented in Chapter 1, section 1.2.2, the introduction of 2D spatial 

modulations in the refractive index [Her12, Rad13] or the pump profile [Kum14] 

can help to stabilize EE amplifiers and vertical emitting semiconductor laser 

sources [Ahm15]; also, a spatio-temporal modulation can control modulation 

instability [Kum15]. Besides, as demonstrated in Chapter 3 for EE amplifiers, in-

phase 2D refractive index and pump spatial modulations lead to a substantial 

improvement of the spatial quality and temporal stability of the emitted beam 

[Kum14, Ahm18].  

Finally, as described in Chapter 1, section 1.3.3 non-Hermitian Photonics and 

particularly PT-symmetric potentials are an interesting new platform for the 

control of light. Indeed, the asymmetric coupling may lead to a field 

directionality and promote light concentration and stabilization in vertical 

emitting semiconductor laser sources [Ahm16].  

The simplest PT-symmetric periodic potential may be expressed as: 

               𝑉(�⃗⃗� ) = 𝑚𝑅𝑒𝑐𝑜𝑠(�⃗⃗� �⃗⃗� )+ 𝑖𝑚𝐼𝑚𝑠𝑖𝑛(�⃗⃗� �⃗⃗� ) = 𝑚+𝑒𝑖�⃗⃗� �⃗⃗� + 𝑚−𝑒−𝑖�⃗⃗� �⃗⃗�                             (4.1) 
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where ,
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    , and 2 /q    is the modulus of the 

modulation wavenumber 𝑞  , being   the spatial period. The induced 

asymmetry can be shown by integration of the field paraxial propagation in a 2D 

space, introducing this modulated potential as the complex refractive.  

We here consider a simple potential in the transverse direction, ( )V x : 
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where the product ( )V x A  expresses the field-medium interaction. Such spatial 

modulations of the medium introduce couplings between plane wave 

components of the beam, coupling the modes 𝑘,⃗⃗⃗   �⃗� +𝑞 , and �⃗� − 𝑞  . Note that this is 

straightforward from the expression of the potential in an exponential form, see 

Eq. (4.1). Thus, the amplitudes of the exponents, m


 and m


, may induce 

asymmetric mode coupling through the field-medium interaction. The maximal 

asymmetry arises when ones of such amplitudes cancel, that is to say, when the 

real and imaginary components of the potential are balanced. This condition 

corresponds to the PT-symmetry breaking point, and corresponds 
Re Im

m m  

[Ben98].  

The case m m
 
  leads to symmetric mode coupling, see Fig. 4.1 (a), and has 

been previously studied in Chapter 3.  When either of these constants vanishes, 

the PT-symmetric potential coupled with the central mode �⃗� , only to either �⃗� +𝑞  

or �⃗� − 𝑞  , see Fig. 4.1 (b). Finally, the non-Hermitian potential can induce a non-

isotropic or local asymmetry. As was proposed in Ref.  [Ahm16], instead of 

presenting the same asymmetric coupling homogeneously on a global scale as in 

Figs. 4.1 (b), the PT-symmetry condition can be spatially dependent, we then refer 

to it as a local PT-symmetry. In the simplest case, we consider a mirror-symmetric 

potential with a central symmetry axis, and with opposed directionality in the 

two half-spaces that is expected to create either a field localization on-axis or an 

outwards energy flow from it, see Fig. 4.1 (c) and (d) [Ahm18-3]. Such PT-

axisymmetric potential with unidirectional mode coupling at each half space 

could be used, as proposed later in this chapter, to regularize the spatio-temporal 

dynamics of EELs by localizing the field while improving stability.  
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For a physical picture to understand the induced coupling asymmetry, just 

remember that the field is generated in positive gain areas (grey profiles in Fig. 

4.1 schemes), and it tends to have large index areas (blue profiles) in propagation.    

 

Figure 4.1. Gaussian beam propagating in a harmonic non-Hermitian media. From bottom to top: 

schemes of the transverse potential (blue indicates index and grey indicates gain); arrows 

indicating enhanced coupling direction; beam propagation by paraxial approximation Eq. (4.2), 

with the corresponding potential; output beam profiles in direct and in frequency space for: (a) 

index (or gain) modulation; (b) global PT-symmetric potential; (c) local axisymmetric potential 

with an inward mode coupling; (d) local axisymmetric potential with an outward mode coupling. 

We preliminary analyze the effect of both global and local PT-symmetric 

potentials on EE amplifiers. Once the regularization scheme is proven in EE 
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amplifiers, we proceed to analyze the management of the emitted radiation from 

EELs. 

 

4.2 Edge-emitting amplifiers with global and local PT-

symmetry 

The introduction of a non-Hermitian potential in an EE amplifier may be 

achieved by variations of the etch depth in the epitaxial layer structure (inducing 

index modulations), while spatially structuring the electrodes may be used to 

modulate the current injection density, leading to carrier density modulations. 

Despite electrodes may present a stepwise profile, the induced spatial 

modulations of the injection current will be strongly smoothed due to the carrier 

diffusion. Therefore, for simplicity, we assume harmonic transverse modulations 

of the pump Δp(x,z) = m1 sin(qxx+Φ) where the spatial transverse wavevector is

2 /
x

q d


 , being 𝑑⊥the transverse period (in the order of microns), and m1 is the 

amplitude of the pump modulation. 

Note that such a pump modulation may, in turn, induce refractive index 

modulation through the Henry factor of the semiconductor, h. This induced 

modulation of the refractive index is in-phase with the gain-loss modulation.  

Then, in order to obtain the desired spatially shifted modulation of gain and the 

refractive index, we assume a sinusoidal refractive index modulation expressed 

as: Δn(x,z) = m2 cos (qxx) + m3 sin(qxx). The first term is intended to render the 

refractive index in quadrature with the induced gain-loss modulation and the 

second term counterbalances the extra modulation induced by the Henry factor. 

The desired refractive index and gain-loss amplitudes, as well as the desired 

spatial shift or dephasing, are obtained by adjusting the set of modulation 

amplitudes (m1, m2 and m3).  The described modulations create a global PT-

symmetric potential, see Fig. 4.2 (a), exhibiting the same mode coupling 

directionality character in the whole space. Such potential is included in the EE 

amplifier equations already presented in Eq. (2.7), in the following form:     
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being n the direct refractive index modulation in the field equation also 

intended to compensate the index modulations indirectly induced by the pump 

modulation, p in the carrier’s equation. 

The propagation of an incident plane wave (with perfectly periodic boundary 

conditions) through the global PT-symmetric amplifier leads to the tilted field 

pattern reported in Fig. 4.2 (b). The corresponding spectrum clearly shows the 

coupling of the central wavevector of the incident field to positive transverse 

components of the wavevector, see Fig. 4.2 (c). 

 

Figure 4.2. (a-c) Global PT-symmetric potential and (d-f) Local PT-symmetric (PT-axisymmetric) 

potential. (a)/(d) Scheme of the refractive index (blue) and pump (grey) effective modulation.  

(b)/(e) Intensity distribution within the amplifier for an incident plane wave propagated along z, 

for a sufficiently long integration time. (c)/(f) The corresponding transverse spectrum. The 

integration parameters are:  m1 = 0.5, m2 = 0.06, m3 = -0.03, Φ = 0 and p0 = 1.23. 

We now consider a PT-axisymmetric potential with a central symmetry axis at     

x = 0, dividing the system into two half-spaces, both holding PT-symmetry but 

directed in opposite senses. We assume a symmetric harmonic transverse 

modulation of the pump and the refractive index, respectively, in the form: 
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The general phase Φ, appearing in all modulations, controls the character of the 

central axis. The resulting potential is schematically presented in Fig. 4.2 (d). Such 

potential is expected to couple light asymmetrically in the transverse direction, 

promoting the inward coupling, enhancing and localizing light at the symmetry 

axis. Figure 4.2 (e) shows the resulting field distribution along the propagated 

direction for a large enough integration time and using an hypergaussian pump 

profile as boundary conditions in the transverse direction. We observe that the 

corresponding spectrum does not broaden as in the previous case but remains 

almost constant, see Fig. 4.2 (f). 

 
Figure 4.3. Unmodulated EE amplifier: (a) spatial intensity distribution and (b) temporal 

evolution of the output intensity for p0 = 1.23 (arbitrary units). (c) (I) Output intensity profile and 

(II) its logarithm for a sufficient integration time. Modulated EE amplifier: (d) spatial intensity 

distribution, and (e) temporal evolution of the output intensity for p0 = 1.23 (arbitrary units). (f) (I) 

Output intensity profile and (II) its logarithm for long enough temporal integration. Integration 

parameters:  m1 = 0.5, m2=0.021 and m3 = -0.029, Φ = 0 and p0 = 1.23. 

The benefits of the proposed PT-axisymmetric scheme are evident when 

comparing the emitted beam with and without modulation. The spatio-temporal 

integration of the unmodulated EE amplifier shows both inhomogeneous spatial 

field distributions and unstable temporal behaviors, see Figs. 4.3 (a) and (b). The 

radiated emission may be regularized by introducing the mentioned pump and 



102                                                                            Smart control of light in edge-emitting lasers 

 

refractive index periodic modulations inducing the local PT-symmetric profile. 

The light intensity is spatially localized and enhanced at the symmetry center, 

resulting into a bright and narrow emission, Fig. 4.3 (d). In addition to spatial 

regularization, the field becomes temporally stable, Fig. 4.3 (e). Consequently, the 

PT-axisymmetric potential directly impacts both spatial and temporal stability 

while improving the beam quality. In Fig. 4.3 (c), we can observe a transverse cut 

of the intensity profile, clearly inhomogeneous. In addition, the logarithm of the 

field intensity is almost constant along the transverse spatial coordinate  

On the other hand, when an inward PT-axisymmetric potential is applied, the 

light is localized into a narrow beam, as energy increases exponentially in the 

central region, the logarithm of the field intensity shows a constant slope, see 

Fig.4.3(f).  

The aforementioned effect caused by the local PT-symmetry directly impacts the 

performance of the proposed EE amplifier. The field becomes temporally stable 

and is spatially regularized. We explore the parameter space of the amplitudes 

of the modulations of the index m2 and m3, for a fixed value of the pump 

modulation amplitude, m1, and a fixed phase, Φ = 0.  

 

Figure. 4.4. (a) Axial concentration factor map in (m2, m3) parameter space for m1 = 0.5 and Φ = 0. 

(b) Transverse cuts of the intensity distributions, at z = L, normalized to the mean intensity, for 

three representative points of the map, corresponding to: (I) PT-axisymmetric distribution 

leading to inward mode coupling, m2 = 0.021 and m3 = -0.033; (II), symmetric mode coupling, in 

phase gain and index modulation m2 = 0 and m3 = -0.033; (III) local PT-symmetric distribution 

leading to outwards mode coupling m2 = -0.021 and m3 = -0.029.  

Depending on the sign of the product m1·m2, we may expect regions of inward or 

outward mode coupling. The inward coupling (found for m1·m2 > 0) leads to an 

accumulation of the field around the center. For m2 = 0, index and gain 

modulations are in phase, inducing a symmetric coupling and the observed field 

is homogeneously distributed. The outward coupling (m1·m2 < 0) leads to a 
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reduction of concentration in the center. Such light localization may be evaluated 

by a figure of merit, or field concentration factor, defined as the intensity at the 

center divided by the averaged intensity: 0( )c I x I  . Indeed, for m1 > 0, we 

observe the maximum confinement for positive values of m2 and negative values 

of m3, while the concentration factor for m2 < 0 is very small, consistent with the 

outward coupling. We assume a fixed value for the pump modulation amplitude, 

a fixed phase and explore the parameter space of the index modulations 

amplitudes m2 and m3, see Fig. 4.4 (a). The three above described possible 

situations regarding the transverse light localization are presented in Fig. 4.4 (b). 

For a positive value of m3, positive, zero and negative values of m2 and are 

respectively associated with inward, neutral and outward enhancement of the 

coupling.  

For the case of the amplifier, we do not study the effect of the phase, Φ, that 

defines the character of the central axis, which may however play a more 

important role in EELs. 

 

4.3 Edge-emitting lasers with local PT-symmetry 

After validating the proposal in an EE amplifier, the next step is to introduce the 

PT-axisymmetric potential into an EEL. To model the laser, we may use the same 

rate equations, however accounting for both the forward and the backward fields 

and the corresponding longitudinal boundary conditions. The model used is the 

one presented in Eq. (2.7), in Chapter 2 section 2.1.2:         
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                   (4.5)                                                                                                                  

 where k0 is the wave vector, n the refractive index, s is a parameter inversely 

proportional to the light-matter interaction length, h the Henry factor (linewidth 

enhancement factor of the semiconductor), α corresponds to losses, γ is the 

carrier’s relaxation rate, p0 the pump, and D is the carrier diffusion. The boundary 

conditions are straightforwardly determined by the Fabry-Perot cavity mirrors 

located at z = 0 and z = L and are 
0

0 0( ) ( )A z r A z    and ( ) ( )LA z L r A z L   

where L is the length of the laser and r0/L are the corresponding reflection of the 
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edge mirrors at z = 0/L, respectively. As in the previous section, we include the 

periodic modulations in the index and pump profiles aiming at generating 

spatially shifted effective pump and index profiles with either PT-symmetry with 

a global or a local character. To generate a global PT-symmetry, we consider the 

simplest sinusoidal modulation for the pump and refractive index, as described 

in Eq (4.4). However, for the desired local PT-symmetric potential, we consider 

instead: 

 

   
1

2 3

( , )  

( , )   cos sin

x

x x

p x z m sin q x

n x z m q x m q x

  

    
       (4.6)    

which depending on the three modulation amplitudes, namely (m1, m2, m3), may 

create a PT-axisymmetric potential. In this case, the potential parameters under 

study are four, the three modulations amplitudes (m1, m2, m3) and the phase, Φ, 

controlling the character of the center.  

4.3.1 Study of the field localization  

The emitted power in EELs is proportional to the pump (current density) and 

width of the laser. The spatio-temporal dynamics of the laser depend on these 

two main parameters. For either large pump values or broad widths, the output 

power of the laser increases while higher transverse modes appear in the field 

distribution inside the laser, and the laser emission becomes inhomogeneous and 

turbulent. 

 

Figure. 4.5 (a) Inhomogeneous spatial intensity distribution inside the laser cavity and unstable 

laser emission for the unmodulated case. (b) Calculated output power (in black) of the 

unmodulated EEL as a function of the laser width (in arb. units) and corresponding quality factor 
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M2 (in blue). (c) Spatial intensity distributions for the widths: (I) 15 μm; (II) 45 μm, (III) 75 μm, 

(IV) 300 μm.  

We now apply the modulations described by Eq. (4.6). The idea is to reduce this 

inhomogeneity created by the apparition of new modes, filamentation and 

modulation instabilities (MI) by applying an axisymmetric PT-symmetry 

potential into lasers. A two-fold benefit is expected when axial PT-symmetric 

potentials are introduced, a bright emission in a narrow and intense output beam 

of high beam quality and the achievement of temporal stability. Both are 

consequences of the field localization at axis, i.e. the light generated in the whole 

laser width is directed to axis by the asymmetric coupling. The axial localization 

restricts transverse spatial modulations and associated spatio-temporal 

instabilities, see Fig. 4.6 (a). The narrow axial beam has a Gaussian-like shape 

with high beam quality (small M2 values) and brightness, see the inset in Fig. 4.6 

(b). 

 

Figure 4.6. (a) Localized intensity inside the laser cavity and stable laser emission showing the 

central narrow and bright emitted beam for the EEL with axial PT-symmetric index and pump 

modulations with m1 = 0.5, m2 = 0.0048 and m3 = -0.0143, p0 = 1.23, Φ = π/4, 𝑟0 = 0.99,  𝑟𝐿 =

0.9  𝑎𝑛𝑑 𝛾 = 0.005 .(b) Concentration as a function of the laser width w and insets: scheme of a 

modulated EEL in index and pump and output beam profile.  

We again evaluate the field concentration as the ratio between intensity at the 

axis and mean intensity, see Fig. 4.6 (b). This concentration increases linearly with 

the laser width following a constant and large slope. The intensity in the axis 

increases while the average intensity remains small up to the width value 

corresponding to the threshold. The slope is reduced for width values above 

threshold because the laser is lasing in the whole width and the average intensity 
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increases. As an interesting application, this light concentration may enable a 

direct coupling to an attached optical fiber without focusing lenses and 

associated energy losses.  

4.3.2 Optimization of the modulation parameters  

Finally, we study the performance of the EEL by scanning the parameter space 

as we did for the previously studied EE amplifier holding the same local PT-

symmetry.  

 

Figure. 4.7. (a) Index (blue) and gain (gray) PT modulation and typical localized spatial intensity 

distribution for the modulated EEL laser with axial PT-symmetry, (c) axial concentration factor 
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and (e) temporal stability map: amplitude of the temporal intensity oscillations mapped for m1 = 

0.5 in the (m2, m3) parameter space for and global dephase Φ = 0. The same for a global dephase 

Φ = π/4 plotted in (b), (d) and (f), respectively.  

As expected, for an EEL, the character of the central defect controlled by the 

phase Φ, becomes more critical. It may be attributed to the system feedback 

imposed by the cavity. The optimum situation for field concentration is Φ = π/4, 

since gain-maxima are located closer to the center, while an index relative 

maximum is still present at x = 0, preserving the index guiding effect. Thus, the 

field concentration reaches maximum values, and the stable regions become 

larger for Φ = π/4, compare Figs. 4.7 (c) and (d). This optimal value for the global 

phase can be attributed to the positive values of both gain and refractive index at 

axis while index or gain becomes zero for Φ = 0 or Φ =π/2, see profiles in Figs. 

4.7 (a) and (b).  

In turn, the required amplitudes of both m2 and m3 are smaller than the required 

for spatio-temporal stabilization of a standard EE amplifier. The reduction in 

these values is attributed to the long effective cavity length, on the order of 102·L 

for the considered reflectivities. We also obtain a minimum of the required 

modulation amplitudes and a maximum enhancement and concentration for the 

optimal phase value Φ = π/4, see Fig. 4.7 (b). Larger modulations of the complex 

refractive index (larger values of m2 and m3) are needed for Φ = 0 and Φ = π/2, 

presented in Fig. 4.7 (a), to obtain a similar effective inward coupling, note that 

for Φ = π/4 the area of maximal axial concentration, mapped on Fig. 4.7 (d), is 

slightly shifted to smaller amplitude values as compared to Fig. 4.7 (c). 

4.3.3 General laser performance 

The general performance of the EEL can be analyzed in different working 

conditions by considering the homogeneous input pump, p0, and the pump’s 

modulation amplitude, m1, keeping the index modulation amplitudes, m2 and m3 

optimized and proportional to m1. As might be expected, increasing m1, the lasing 

threshold of the central area decreases, see Fig. 4.8 (a).  

For small pump powers, lasing is mainly restricted to the central area with a high-

intensity concentration factor, see Fig. 4.8 (b). A bright and narrow beam is 

generated below the homogeneous laser threshold (p0 = 1.2) for sufficiently high 

modulation amplitudes. For p0 > 1.2, amplification occurs in all the active material 

while localization persists, see the slope change of dotted lines in Fig. 4.8 (c). The 

average generated intensity increases with the pump, almost independent of the 
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potential amplitude, either for the unmodulated or modulated EEL, see the solid 

curves in Fig. 4.8 (c).  

 

 

Figure 4.8. (a) Intensity at x = 0, I0, as a function of the pump, p0, and the pump modulation 

amplitude m1, assuming the optimized corresponding values for the index modulations 

amplitudes m2 and m3. (b) Intensity concentration, c = I0/<I(x)>. (c) Central intensity I0 (dashed 

curves) and mean intensity <I(x)> (solid curves) for different values of the pump p0, as a function 

of m1. The unmodulated case (black curve) is depicted for comparison. (d) Central intensity for p0 

= 1.23 showing a transition around m1 = 0.2 with different transverse mode localization profiles, 

when integration is performed increasing/decreasing the m1 value. All other parameters are the 

same as in Fig. 4.4, except 𝑟𝐿 = 0.04. 

We note that for small modulation amplitudes of the local PT-symmetric 

potentials, the peak intensity I0 grows faster, increasing the pump while having 

less concentration. This is attributed to the existence of different transverse 

profiles, we observe wide/narrow peaks for small/large values of m1, see Fig. 4.8 

(d).  

Moreover, the lasing threshold curve in Fig. 4.8 (a) shows different clear slopes 

in the p0-m1 plane for both peak transverse profiles. The transition between these 

profiles does neither show hysteresis nor bistability, see Fig. 4.8 (d). We note that 

these calculations are performed for a set of parameters restricted to realistic 

values.  
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A final interesting idea to further improve the laser emission is to replace the 

conventional multilayer mirror with constant reflectivity with a Gaussian mirror. 

Gaussian mirrors, also known as VRM (variable reflecting mirrors), are 

characterized by a reflection function that slopes from the center of the optic in a 

Gaussian distribution, see Fig 4.9 (b) for the designed wavelength instead of a 

constant reflection, as in Fig. 4.9 (a).  

In this way, the mirror contributes to enhancing the localization of light. 

Moreover, inspecting the stabilization effects, we observe that introducing the 

GM the emitted beam presents smaller modulation amplitudes m2 and m3, note 

that the scales in Figs. 4.9 (a) and (b) are different.  

 
Figure 4.9. Temporal stability maps of the EEL: amplitude of the temporal intensity oscillations 

as a function of the amplitudes of the PT-axisymmetric potential, namely m2 and m3, for two 

different situations: (a) constant-reflectivity conventional multilayer mirror (b) Gaussian mirror. 

The insets show the reflectance curves as a function of the radial position. 

 

4.4 Conclusions 

To conclude, we show a feasible and compact scheme to control and stabilize the 

spatio-temporal dynamics of EELs. The proposal is based on the ability of non-

Hermitian potentials with given local symmetries to manage the flow of light 

based on asymmetric mode coupling. We impose a pump modulation with a 

central symmetry axis which induces in-phase gain and refractive index 

modulations due to the Henry factor. Both modulations are, in turn, spatially 

shifted by an appropriate index profile that divides the modified EEL into two 

mirror-symmetric half-spaces holding PT-symmetry with opposite mode 

coupling. Such local non-Hermitian potential induces an inward mode coupling, 

accumulating the light generated from the entire active layer at the central 

symmetry axis, ensuring spatial regularization and temporal stability. By an 
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exhaustive exploration of the modulation parameters, we significantly improve 

the intensity concentration, stability, and brightness of the emitted beam. This 

approach produces a twofold benefit: light localization into a narrow-beam 

emission and the control over the spatio-temporal dynamics, improving the laser 

performance. 
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Abstract- It was recently shown that arbitrary non-Hermitian optical potentials based on local 

Parity-Time (PT-) symmetry may control the flow of light, due to the asymmetric mode coupling. 

We propose periodic non-Hermitian potentials to efficiently regularize the complex spatial 

dynamics of broad-area semiconductor (BAS) lasers and Vertical-Cavity Surface-Emitting Lasers 

(VCSELs). Light generated from the entire active layer is concentrated on the structure axis, 

confined in an intense central narrow beam opening the path to design compact, bright broad-area 

lasers.  

 

Semiconductor lasers are compact and efficient coherent light sources yet being generally unstable due to the 

due their large aspect ratio and to the lack of a transverse mode control mechanism. Spatial random fluctuations 

and spatiotemporal instabilities degrade the spatial beam quality and laser coherence [1]. This intrinsic instability 

gives rise to different nonlinear modal interactions such as filamentation, and hole burning limiting possible 

applications. Common techniques to control the complex dynamics of BAS and VCSELs semiconductor lasers 

generally compromise their compactness while reducing the power conversion efficiency,  

The present paper proposes a novel solution to the need for a more general physical mechanism to stabilize 

the complex spatial dynamics in semiconductor lasers while improving the beam quality emission. In recent 

years, non-Hermitian spatially modulated materials have provided a flexible platform to manipulate the light 

wave dynamics. Simultaneous refractive index and pump modulations have already shown the capability to 

suppress spatial instabilities in nonlinear optical systems, particularly in BAS and VECSEL devices [2]. A 

particularly remarkable class of such materials is the one globally holding Parity-Time (PT-) symmetry [3], 

which may be regarded as particular class of non-Hermitian systems fulfilling spatial Kramers-Kronig relation 

[4]. One of the most interesting features of such materials is the unidirectional light transport arising from the 

unidirectional mode coupling. In turn, it was shown that local PT-symmetry may lead to light localization and 

enhancement at a selected point or complex potential may be specially designed using a local Hilbert transform, 

to control flow of light favoring arbitrary vector fields directionality using periodic, quasiperiodic or random 

background potentials [5]. 

We show how axisymmetric non-Hermitian potentials efficiently regularize VCSELs radiation achieving a 

stable bright emission, see Figs 1.a-e. Dephased periodic (radial) refractive index and gain-loss modulations 

accumulate the generated light from the entire active layer and concentrate it around the structure axis to emit 

narrow beams. We perform a comprehensive analysis to explore the maximum central intensity enhancement 

and concentration regimes. We observe such lasers can be operated in stationary or pulsating oscillatory regime 

depending on the relative amplitude and phase of the index and gain-loss modulations. The results indicate the 



effect occurs coinciding when the coupling between transverse modes is inwards yet not fulfilling perfect 

PT-symmetry. We also apply an analogous scheme to control and improve the spatiotemporal dynamics in BAS 

lasers, see Figs.1f-i. The BAS proposed modulation devides the structure in two half-spaces with two symmetric 

PT-symmetric potentials, by introducing a modulation both in the pump and refractive index. The generated light 

is directed towards the symmetry axis when to form a narrow and bright emitted beam.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 (a)/b) Complex irregular/bight and narrow beam emission form conventional/structured broad-area VCSELs; (blue, nR: index, red, 

nI: gain-loss); (c) central intensity enhancement C=[I(r=0).Area]/∫I(r)dr; (d) axial concentration factor in parameter space (nI, ϕ); (e) 

intensity profile and corresponding axial cross-section in stationary state. The inset illustrates the transverse field flow around the center, 

showing the unidirectional inward radial coupling. (f)/(g) Complex irregular/bright and narrow emission from conventional/structured 

BAS lasers; (h) intensity distribution within the BAS laser; (i) temporal evolution of the output intensity profile of the modulated BAS 

laser. The insets show the same intensity profiles for an unmodulated BAS laser. 

 

   The reported field regularization effect is universal and analogous field concentration, the study uncovers 

rich possibilities for various configurations which could be extended beyond periodic non-Hermitian potentials 

assuming different random, quasiperiodic complex profiles of the background potential. We expect the proposed 

mechanism to be applicable to regularize the radiation from actual broad aperture lasers and microlasers.  
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5.1 Symmetric and asymmetric coupling between 
lasers 
As presented in Chapter 1 section 1.1.1, the low beam quality is an essential 
drawback for the applications of Edge-Emitting Lasers (EELs) and EEL bars, 
mainly due to the high M2 values that difficult the coupling to optical fibers. 
Indeed, this is of even higher importance for bar modules pumping a fiber laser. 
In this case, the pumping beam quality determines the number of modes 
coupled inside the active fiber of a given size and numerical aperture. The 
proposal presented in this chapter allows to obtain stable emission from EEL 
sources and the direct coupling to an optical fiber without any additional 
optical component, which should enormously enhance the coupling efficiency. 

To attain this goal, the broad EEL is split in an array of thinner lasers with a 
non-Hermitian coupling to obtain stable emission from the EEL array and 
improve its beam quality and energy distribution within the laser array. The 
light generated in every single semiconductor laser is expected to be spatially 
redistributed and temporally stabilized via the non-Hermitian coupling 
between neighboring lasers. The non-Hermitian coupling is induced by a 
particular transverse shift, s, between the gain profile (pump) and index profile 
(stripes). All the results presented in this Chapter are published in Ref. [Med21]. 

However, splitting a broad EEL source in an array of thinner lasers, each one 
operating with a monomode stable emission when isolated, is not a solution 
since new temporal and synchronization instabilities arise from the coupling 
between neighboring lasers, leading again to irregular spatio-temporal 
behaviors. Thus, we propose a non-Hermitian asymmetric coupling between 
EELs composing the array to stabilize and redistribute the light emission 
increasing the quality of the emitted beam.  

For this purpose, we should first identify the onset of spatio-temporal 
instabilities for a single laser source, in other words, for which parameters the 
emission is monomode and temporally stable. Secondly, we should characterize 
the non-Hermitian coupling between two neighboring lasers and the different 
dynamical phenomena arising from the coupling of an increasing number of 
neighboring lasers. Finally, we apply a mirror-symmetric non-Hermitian 
configuration to generate a central localization of the field generated in the 
whole array. 
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5.1.1 Model for semiconductor laser arrays 
To model the spatial redistribution and temporal stabilization of the field in 
coupled EELs, we use the model previously presented in Chapter 2, section 2.1: 
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            (5.1) 

The considered parameters are the same presented in Chapter 2 Eq. (2.7) and in 
the following calculations, the transverse and longitudinal spatial coordinates 
are in units of the wavelength.  

Finally, the transverse profiles of the refractive index Δn(x) account for the 
individual laser stripes and the pump, Δp(x), for the spatial profile of the 
electrodes. Both profiles have the same shape, satisfying    ( ) ( )n x n p x s p  
where s is the shift between them and induce the real and imaginary parts of 
the non-Hermitian potential, which, properly designed, may lead to an 
asymmetric field coupling, see Fig. 5.1 (a) for a schematic representation of the 
presented laser architecture. To avoid discontinuities in the derivatives of these 
modulations, the two spatial transverse profiles are mathematically described 
as consecutive sharp sigmoids.  

5.1.2 Characterization of a single EEL 
First, we numerically study a single EEL through the model described in 
Eq.(5.1), to determine its dynamics for different working conditions. As it is 
well known, a laser width reduction acts as a mode selection mechanism and as 
a result, the broad and strongly multimode semiconductor emission turns into a 
monomode emission regime.  

The width of a single EEL is scanned to analyze the emitted field profile seeking 
for the onset of the laser monomode emission. Figure 5.1 (b) shows the total 
emitted output power from a single EEL for widths ranging from 2.5 µm to 50 
µm. It can be compared with the analytical maximum width for a monomode 
emission, determined by 2 maxw n n .The general operating parameters 
chosen in Fig. 5.1 correspond to 4 µm, in good agreement with the integrated 
beam profiles. In turn, we calculate the beam quality factor, M2, as the ratio 
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between the Beam Parameter Product (BPP) of a real beam and a Gaussian 

beam, which can be numerically evaluated as: 2 
  

 

π 
λ

actual beam

Gaussian beam

BPP wM
BPP

, where w 

and   are the beam width in near-field and far-field, see Chapter 1 section 1.2.1 
for more details.  

 

Figure 5.1. (a) Scheme of a broad single EEL where the index and pump profiles coincide, w is 
the width and L the length of the laser, and scheme of a laser array of thinner EELs separated a 
distance d with non-Hermitian coupling. (b) The output power of the EEL as a function of the 
laser width (in black) and M2 (in blue) numerically obtained from Eq. (5.1); (c) Temporal 
evolution of the transverse intensity profile within the laser for w = 2.5 µm and different pumps, 
normalized to the emission threshold pth: I p = 1.1 pth, II p = 1.8 pth, III p = 1.9 pth, and bifurcation 
diagram showing the maximum and minimum values of the oscillating output power as a 
function of the pump; pH indicates the onset of the instability.  

The M2 strongly increases with the laser’s width as the laser becomes more 
multimode and inhomogeneous as has been already discussed in Chapter 4, see 
Fig. 5.1 (b).  

However, while a narrow width in a semiconductor laser indeed acts as a 
transverse mode selection mechanism, it does not warrant its temporal stability. 
The temporal behavior is observed in Fig. 5.1 (c), where the temporal stability of 
a monomode laser of w = 2.5 m is scanned as the pump function. The results 
show a Hopf bifurcation arising at a particular pump, referred to as the Hopf 
pump, pH. For pump values above this threshold, the laser, remaining 
monomode becomes temporally unstable, see the insets of Fig. 5.1 (c). The 
smooth oscillations observed just after the Hopf bifurcation present periods of 
about 20 roundtrips and are only visible in the small pump interval shown in 
the figure, while for larger pump values, sharp peaks with an almost zero 
background appear. When scanning the pump upwards, pulses rapidly 
increase in amplitude. 



Chapter 5. Spatio-temporal stabilization of mirror-symmetric array of EEL                           147 

 

We further analyze the effect of adding a displacement between the pump and 
the refractive index profiles. We observe that around s=0.35 µm all the energy 
created in the laser is lost, see Fig. 5.2 (a). A physical insight to this effect is 
found calculating the transverse spatial tilt of the electric field phase within the 
laser. It indicates a transverse shift of light propagating along the laser and 
coming out from the laser stripe, Fig. 5.2 (b). As expected, such phase is 
symmetric and flat in the laser center for a symmetric coupling. The phase slope 
increases with the asymmetry parameter s, indicating more tilt in the field 
propagation and more energy transfer to the neighboring laser, as seen in Fig. 
5.2 (c). Thus, an s shift between profiles will clearly induce a directionality in 
the coupling between lasers.  

 

Figure 5.2. (a) Loss of output power for a single laser when the transverse shift s between pump 
and index profiles increases. Pump and index profiles in red and blue, respectively. (b) Field 
phase for s = 0 µm (dashed purple curve) and for s = 0.15 µm (dashed green curve), and (c) field 
phase slope d/dx at the central point of the laser as a function of s.  The integration parameters 
are: L= 500, α = 0.1, h = 2.0, σ = 0.06, D = 0.03 and γ = 0.005, and the units in the graphs 
correspond to  = 1m, n0 = 3.5 and n = 0.06. 

5.1.3 Symmetric and asymmetric coupling for two EELs 
Once the main dynamics and parameters of a single laser are determined, we 
analyze the effect of the coupling between lasers on the spatiotemporal 
dynamics. Such coupling depends on the distance between neighboring lasers 
and the displacement between the laser profile and the pump, as schematically 
shown in Fig. 5.2 (b). We first analyze the coupling between two identical lasers 
with the same intrinsic parameters and where the index and the pump profiles 
perfectly coincide (s = 0 µm) and are, therefore, symmetrically coupled. While 
the standing-alone laser has a spatially and temporally stable emission for a 
given set of parameters, as the distance between coupled lasers decreases ―the 
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coupling strength increases― both lasers become temporally unstable, Fig. 5.3 
(b).  

Spatial asymmetries are evident in every snapshot of the numerically calculated 
intensity distribution of two close EEL sources, see Fig. 5.3 (a) and (b). This 
effect is due to the symmetric interchange of energy between both lasers. Next, 
we slightly shift the index profile of both lasers with respect to the gain profiles 
to induce a mirror-symmetric coupling. As expected, the light generated in one 
laser is partially transferred to the other one, see Fig. 5.3 (c). The energy is 
directed due to the asymmetric coupling and both lasers become temporally 
stable, as shown in the temporal evolution of the intensity transverse profile in 
Fig. 5.3 (d). This temporal stabilization tendency increasing the coupling 
asymmetry agrees with the general behavior of coupled non-linear oscillators, 
generally showing less complex dynamics for unidirectional than for 
bidirectional couplings.   

 

Figure 5.3.  (a)/(c)/(e) Snapshots of the spatial intensity distribution after sufficient integration 
time for two symmetrically/asymmetrically/single transverse shift coupled lasers, and (b)/(d)/(f) 
temporal evolution of the intensity at z = L for two symmetrically/asymmetrically/single 
transverse shift coupled lasers with w = 2.5 µm, separated a center-to-center distance d = 3 µm 
and for s = 0.25 µm. Insets show the transverse pump profile ∆p (white profile) and the index 
profile ∆n (blue curve), and they coincide in (a). 

We can observe that while the energy is enhanced in one laser, some energy is 
leaked in the other laser due to the asymmetric configuration, asymmetrically 
coupled out from the laser. We previously analyzed this effect considering a 
single laser, as observed in Fig. 5.1 (a). Therefore, the energy transfer can be 
optimized by considering a single transverse shift, i.e., no shift for the laser to 
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which the energy is transferred, Fig. 5.3 (e) and (f). We can compare this last 
configuration with the double transverse shift configuration inspected in Fig. 
5.3 (c).  

The performance of the proposed asymmetric coupling is assessed by the 
asymmetric energy enhancement and temporal stability of the attained regimes. 
We calculate the enhancement as the relative intensity of the laser to which the 
energy is accumulated, i.e., the ratio of the temporally averaged intensity of the 
enhanced laser, for s ≠ 0 µm, versus the unshifted case, s = 0 µm. We explore the 
parameter space of the distance between lasers, d, and asymmetry shift 
parameter, s (spatial shift between the pump and the refractive index profiles) 
for a fixed pump value. The results are summarized in Figs. 5.4 (a).  

 
Figure 5.4. (a) Intensity enhancement factor of the amplified laser depending on the distance 
between lasers, d, and spatial shift, s. (b) Temporal instability map. The relative amplitude of the 
temporal oscillations (normalized to the average amplitude). (c) Temporal evolution of the 
intensity at z = L for three different distances d. (d) Comparison of the output power for two 
coupled lasers with asymmetric lateral coupling with single (black) and double transverse shift 
(green) as a function of s. All the integration parameters are the same as in Fig. 5.1, except p0 = 
2.5. 

A monotonous field enhancement is expected by increasing the shift parameter 
s. However, we observe that the effect reaches a maximum around a given shift 
value, namely s ≈ 0.25 µm. This behavior for high values of s may be attributed 
to the asymmetric configuration of both lasers, which also induces an 
asymmetric leaking of energy opposite the other laser’s direction. Therefore, 
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such leaked energy is lost, and the net gain for the whole system is reduced, 
being the largest relative intensity of the enhanced factor around 2. Moreover, 
such enhancement increases for a smaller distance, d.  

In addition, the temporal stability of the emission may be evaluated by 
mapping the amplitude of the temporal oscillations of the enhanced laser also 
in the distance-shift, (d,s), parameter space, see Fig. 5.4 (b). Temporal 
instabilities arise for small d and s values, i.e., when the distance between lasers 
or coupling asymmetry decrease. For center-to-center distances close to the 
laser width, the emission is unstable for all values of s. On the contrary, stability 
is found either increasing the coupling asymmetry for a given laser distance or, 
trivially, at more considerable distances between lasers, Fig. 5.4 (c). 
Interestingly, inspecting Fig. 5.4 (a) and (b), we observe a range of parameters 
around the maximum relative intensity region that coincides with a temporally 
stable behavior. 

The double-shifted configuration achieves a maximum output power for an s 
value of about 0.25 µm and decreases due to the energy leakage. In contrast, the 
single-shifted case keeps increasing with s, observed in Fig. 5.4 (d). Temporal 
instabilities also disappear for the single shift case increasing s parameter, and 
the amplitude of the temporal oscillations shows a similar (d,s) dependence. The 
spatial intensity distribution and the temporal evolution for the single shift 
configuration are provided in Figs. 5.3 (e) and (f) showing more than twice the 
emission of the double shifted scheme of Fig. 5.3 (c) and (d). 

 

5.2 Axisymmetric inward coupling between EELs 
The next step is to consider a simple array architecture formed by three coupled 
lasers with a mirror-symmetric coupling with a central symmetry axis. That is 
to say, two symmetric lasers holding asymmetric shifts between gain and index 
profiles and a central one with no shift. The coupling is expected to increase for 
such a configuration as the distance decreases, eventually reaching a temporally 
stable regime as light is localized inwards, i.e. to the axis.  

The numerical results for the three coupled lasers are summarized in Fig. 5.5. It 
can be observed that when symmetrically coupled, all three lasers are 
temporally unstable as intensity maxima switches from one laser to another see 
Figs. 5.5 (c) and (d). On the contrary, as the non-Hermitian potential is 
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introduced through an inward symmetric shift to the axis of the index profile, 
the generated light tends towards the central laser, and all lasers become stable, 
see Fig. 5.5 (e) and (f). We note that the fulfilled redistribution and spatial 
stabilization lead to enhanced intensities compared with the two-laser case in 
this scenario.  

The performance of the proposed mirror-symmetric lasers triad is evaluated by 
the relative intensity of the central laser, i.e., the intensity of the enhanced laser, 
for s ≠ 0, versus the unshifted case, s = 0. Comparing Fig. 5.5 (a) and Fig. 5.4 (a), 
we observe the maximum intensity for a somewhat larger value of d. Besides, a 
larger enhancement ratio is reached as energy is coupled from the two 
neighboring lasers. 

 
Figure 5.5. (a) The relative intensity and (b) amplitude of the temporal oscillations depending 
on the distance between lasers, d, and spatial shift, s. (c)/(e) Snapshots of the spatial intensity 
distribution of the intensity for a triad of lasers with symmetric/inward-axisymmetric coupling 
after sufficient integration time and (d)/(f) temporal evolution of the intensity at z = L for three 
lasers with symmetric/inward-axisymmetric coupling with w = 2.5 µm, separated a center-to-
center distance d = 3.0 m and for s = 0.25 m. Insets show the transverse pump profile p (red 
curve) and the index profile n (blue curve). All the integration parameters are the same as in 
Fig. 5.2. 

The emission’s temporal stability is evaluated by mapping the temporal 
oscillations of the central laser in the distance-shift parameter space (d, s) for a 
fixed pump value. The results show a maximum energy localization range for 
small distances around 3.5 µm, and shift parameter 0.15 ≤ s ≤ 0.25. Precisely this 
set of parameters coincides with temporal stability, assessed by mapping the 
temporal oscillations of the central laser. If we inspect Figs. 5.5 (a) and (b), we 
assert that temporal stability is achieved for a simultaneous light localization. In 
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this case, temporal stability reappears at larger distances for significant values 
of the shift parameter.  

 

5.3 Axisymmetric array of EELs with inward 
coupling  
An EEL array composed of many lasers with an axisymmetric inward coupling 
can be created by combining the asymmetric lateral coupling studied for two 
lasers and the axisymmetric inward coupling presented for three lasers. The 
proposed scheme is a laser without any shift between index and pump profiles 
located on a central axis and the rest of lasers presenting index profiles shifted 
to the axis with respect to pump profiles. The proposed scheme is depicted in 
Fig. 5.1 (a). The array is divided into two half-spaces with a symmetric spatial 
shift between gain and transverse index profiles, arranged such that the index 
lays closer to the symmetry axis and the central laser holding no displacement. 
Thus, we expect light generated within the array to be directed to the axis due 
to the asymmetric coupling, localizing the energy and improving the beam 
quality.  

5.3.1 Axisymmetric multiple laser array  
The emission of the laser array with and without non-Hermitian coupling is 
compared in Fig. 5.6, for 7 and 13 laser arrays.  

Arrays with symmetric couplings, s = 0 µm, show inhomogeneous field 
distributions and complex temporal evolutions. The field distributions of the 
two configurations after long integration times can be observed in Figs. 5.6 (a) 
and (c). The same laser arrays with axial non-Hermitian modulations show 
regular emissions. The light is directed towards the central laser, reaching a 
Gaussian-like envelope in the transverse profile and increasing the array’s beam 
quality. Figures 5.6 (b) and (d) show such stable distributions for a 
displacement of s=0.25µm. 
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Figure 5.6. Spatial distribution of the intensity for 7/13 laser arrays after sufficient integration 
time for (a)/(c) a symmetric coupling and (b)/(d) an axial non-Hermitian coupling with s = 0.25 
m. All lasers have a w = 2.5 µm, separated with a center-to-center distance d = 3.0 m. Insets 
show the transverse pump profile p (red curve) and the index profile n (blue curve), they 
coincide in (a).  

This transverse non-Hermitian coupling presents a twofold benefit: the 
stabilization of the emission of the laser array, and an increase of the output 
intensity of the central laser along with an increase of the beam quality. The 
output intensity of the central laser depends linearly on the number of lasers 
due to the accumulation of the energy generated by all lasers in the central part 
of the array, see Fig. 5.7 (b). The beam quality, displayed by the M2 parameter 
defined in Chapter 1, is used to compare three cases, see Fig. 5.7 (c). The array 
with symmetric coupling between lasers (black line), the same array with an 
axisymmetric inward coupling (blue line), and a single broad laser with a width 
equivalent to the active width of the array (red line). In the broad laser case, M2 
increases exponentially with the laser width as new modes appear, and the 
laser becomes highly inhomogeneous.  

The beam quality is clearly improved by splitting the active area in many lasers 
with symmetric coupling, the values of M2 increase linearly with the number of 
lasers. More interesting is the case of inward asymmetric coupling, which 
highly increases the beam quality and strongly smooths its dependence on the 
number of lasers. Both improvements together demonstrate the proposal’s 
viability and allow a direct coupling into the fiber by just using the light 
emitted by the central laser.  
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Figure 5.7. (a) Scheme of the array of coupled lasers directly coupled to an optical fiber. (b) 
Output power dependence on the number of laser lasers (num) for the axisymmetric inward 
coupling scheme. (c) Dependence of M2 with the number of lasers (num), for three different 
cases, in red a broad EEL of equivalent width, in black the array of lasers with symmetric 
coupling, and in blue the array of lasers with axisymmetric inward coupling.  

5.3.1 Asymmetric multiple laser array with punctual and 
non-diffractive model 
The presented results provide proof of the working principle and a 
comprehensive understanding of the asymmetric coupling of the proposed 
scheme. Next, the same concept is extended to EEL bars composed of many 
lasers. For this purpose, we develop a simplified model, accounting for the 
longitudinal propagation, temporal evolution, and coupling between lasers but 

disregarding diffraction, 
2

2




A
x

= 0, and carrier diffusion, 2 0N , so considering a 

transverse mean field for each laser (no transversal modes). The simplified 
model aims to show the concept of EEL bars and to characterize the asymmetric 
coupling with a large number of lasers. The model describes the forward and 
backward field of every single laser of the array, namely 

jA , as monomode 
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where, m are complex numbers standing for the coupling parameter from the 
lasers at positions j+1 and j-1, respectively, and the spatial and temporal 
coordinates and all parameters are normalized as in Eq. (5.1). In the simplest 
case, the system with a non-Hermitian modulation in one dimension may be 
described by a complex harmonic potential in the form: 
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     (5.3)  

where d is the distance between lasers and rm  and im are the amplitudes of the 
real and imaginary part of the non-Hermitian potential. Therefore, from 
Eq.(5.2), we may express the coupling between neighboring lasers as deriving 
from this simple harmonic complex potential as
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 being mm the coupling strength. In this 

model, we can define different types of coupling between two lasers depending 
on rm , im , and the phase, Φ. For Φ = ± /2, the coupling is perfectly symmetric, 
while for Φ = 0, the coupling becomes PT-symmetric. We assume rm  = im  = 1, 
the PT-symmetry breaking point for simplicity, which entails no restriction but 
assuming the maximally asymmetric situation.  

The system described by Eq. (5.2) is integrated with boundary conditions given 
by the two mirrors of the Fabry-Perot cavity as for the complete model 
described by Eq. (5.1). To compare the results of this simplified model to the full 
model, we find equivalences between parameters comparing behaviors. We 
first determine the pump threshold pth and the onset of temporal stability, Hopf 
bifurcation pH, for a single laser to locate equivalent pump values, see Fig.5.8 
(a). The temporal instability onset corresponds to smooth oscillations of small 
amplitude, just for a pump interval above the bifurcation, abruptly changing to 
a pulsed regime with short and bright pulses, starting from almost zero 
constant output power, as observed with the complete model in Fig. 5.1 (c).  

To provide a comparison between the coupling parameters of the simplified 
model, namely just mm and Φ, coupling strength and phase shift, with the 
parameters of the full model, d and s, distance between lasers and shift between 
the gain and index profiles, we consider two coupled lasers and map the 
amplitude of the temporal oscillations of the field amplitude of the laser to 
which the energy is transferred. Despite the relationship between parameters of 
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spatial modulation in both models is nontrivial, we can infer a logarithmic 
relationship between mm and the laser distance d as far as the coupling strength 
should decrease exponentially with the laser separation given by (d-w). This 
relationship is verified by directly comparing the temporal instability in both 
models shown in Fig. 5.8 (b). The phase shift between the real and imaginary 
components of the coupling, π/2 - Φ is proportional to the spatial shift s. The 
other parameters: , h, α, γ and p0 are the same as in Eq. (5.1).  

Inspecting the comparison in Fig. 5.8 (b), we conclude that for a symmetric 
coupling, hence Φ = /2, instabilities arise for values of the coupling strength 
between lasers, mm, above 10-6 equivalent to no asymmetric shift, s = 0 µm and 
distances d larger than 5.0 µm in the full model. Moreover, for coupling 
strengths of 10-4 and a symmetric coupling, the simplified model shows 
behaviors analogous to the ones found with the complete model for distances 
between lasers d = 3.0-3.5 m, and no asymmetric shift. As expected, the laser is 
temporally stable at the symmetry breaking point, hence for Φ = 0. However, 
the transition to stabilization is reached for much larger values of Φ, about Φ ≈ 
/3, which compares the two models, turns out to be analogous to an 
asymmetric shift about s ≈ 0.3 µm. Thus, both models agree that it is 
unnecessary to reach the PT-symmetry breaking point, and just a small shift, s, 
or, equivalently, a small phase shift (/2 - Φ) is enough to attain stabilization.  

Apart from achieving temporal stabilization, the proposed scheme is intended 
to localize the output beam profile to enable the direct coupling of the light 
generated from the entire bar directly into an optical fiber. This can eventually 
avoid any optical elements and minimize losses, as depicted in Fig. 5.7 (a). 

To confirm the effect in a laser array, we use both the complete and the 
simplified model to numerically calculate the spatial redistribution of the 
generated light, the localization, and the light enhancement at the central laser, 
for arrays of many lasers, schematically shown in the inset of Fig. 5.8 (c). We 
consider an array formed by num lasers and increase num up to 21 in the 
simplified model ―for being a typical number of lasers for an actual laser bar. 
Using Eq. (5.2), we assume Φ = 0, and consider two different coupling factors 
corresponding to a strong (mm = 10-3) and weak (mm = 10-5) coupling. For strong 
coupling, due to the field localization induced by the asymmetric inward 
coupling, the output power of the central laser increases with the number of 
lasers, see Fig. 5.8 (c). However, for a small coupling, the output intensity of the 
center remains almost constant.  
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Figure 5.8. (a) LI-curve for a single laser numerically obtained integrating the simplified model, 
described by Eq. (5.2). The inset shows the LI-curve obtained by the complete model, Eq. (5.1), 
for comparison. (b) Temporal instability map. The relative amplitude of the temporal 
oscillations (normalized to the average amplitude) for two coupled lasers obtained with the 
simplified model, depending on coupling magnitude, mm, and phase, Φ, between coupling 
coefficients. The inset compares to the complete model, amplitude of the temporal instability 
depending on the distance between lasers, d, and the transverse shift coefficient, s. The 
integration parameters for the simplified model are the same as in Fig. 5.2 and mm = 5·10-3, Φ = 0. 
(c) Intensity of the central laser (j = 0) of an array made up of an increasing number of lasers 
(num), calculated using the simplified model, Eq. (5.2), with inward axisymmetric coupling, for 
two different coupling strengths:  mm = 10-3 (in blue) and mm = 10-5 (in black). The inset displays 
the proposed scheme for the j = -(num-1)/2…0…(num-1)/2 lasers with shifted electrodes. (d) 
Emitted intensity distribution in logarithmic scale as a function of the coupling strength, mm, 
and the laser position j, for an array made of num = 21 lasers. In the inset: the emitted intensity 
distribution in log scale of the 21 coupled lasers for mm = 2·10-3., equivalent to (d), highlights the 
laser emission distribution within the array for three particular analog coupling strengths. 

Using Eq. (5.2), we assume Φ = 0, and consider two different coupling factors 
corresponding to a strong (mm = 10-3) and weak (mm = 10-5) coupling. For strong 
coupling, due to the field localization induced by the asymmetric inward 
coupling, the output power of the central laser increases with the number of 
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lasers, see Fig. 5.8 (c). However, for a small coupling, the output intensity of the 
center remains almost constant.  

For a given laser array, the intensity distribution can be evaluated as a function 
of the coupling parameter, see Fig. 5.8 (d). This figure shows the increase in 
energy concentration towards the central laser rapidly increasing with the 
coupling parameter mm above a given threshold (mm = 10-3). The peak at the 
central laser is due to the addition of fields coming from both sides. While these 
results prove the working principle of the proposal, we note that a more 
realistic approach intended to design an experiment should certainly include 
diffraction and inhomogeneous losses due to the fiber coupling, reducing the 
field localization. 

Finally, to provide a deeper analytic insight, we consider a stationary and 
punctual model, i.e. assuming null spatial and temporal derivatives in Eq. (5.2) 
and just with inward axisymmetric coupling. The amplitude solution for the 
uncoupled lasers at each edge coincides with the standing alone laser: 
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 , from which, we induce the amplitudes of all lasers of the 
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This simple analytic estimation of the central laser intensity and energy 
distribution on the array shows a good agreement with the numerical 
integration of the forward and backward fields in Eq. (5.2) for the num 
asymmetrically coupled cavities. Despite the simplicity of the punctual model, 
comparing Fig. 5.8 (d) with the inset, we observe an analogous trend, yet in the 
punctual model, the pump is assumed to be just above the lasing threshold. 
Both results show a similar dependence on the number of lasers and coupling 
strength, and for the particular case of num = 21, both energy distribution 
patterns strongly change their profiles for the same critical value of mm, about 
mm = 10-3.  
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From Eq. (5.4), we can induce that for a weak coupling strength mm, the gain 
enhancement in laser j given by the asymmetric coupling from the neighboring 
laser j+1 (or j-1) is small, and the laser losses 𝛼 limits the field amplitude Aj 
remaining constant along the array, from the edge lasers to the central laser, 

with an intensity value about the standing alone laser
 02
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α
α

p
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contrast, for large mm values, the asymmetric coupling strongly enhances gain, 
and the cascade effect from edges to the central laser is the cause of the energy 
localization with a sharp profile. Thus, considering amplitude values much 

larger than the pump value, the multiplying factor becomes 
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which we can infer the threshold coupling strength for a sharp profile in the 
energy distribution, 310  mthm for the considered parameters, in good 
agreement with numeric simulations.  

 

5.4 Conclusions 
In summary, we present a physical mechanism for the temporal stabilization 
and localization of the emission of a coupled array of EELs or an EEL bar. The 
scheme is based on a non-Hermitian coupling between neighboring lasers with 
a global mirror-symmetric geometry. While the monomode emission of a single 
laser is assured by reducing its width, spatio-temporal instabilities may still 
arise from the coupling between lasers in an array. Such temporal instabilities 
are molded by a non-Hermitian coupling that may be simply introduced by a 
lateral shift between the pump and index profile, technically by a spatial shift 
between the individual laser stripe and corresponding electrode. While 
temporally stabilizing the emission, such asymmetric coupling also 
redistributes and localizes energy close to the central symmetry axis. 

 

The proposed stabilization scheme is analyzed by a complete spatio-temporal 
model, including transverse and longitudinal spatial degrees of freedom and 
the temporal evolution of the electric fields and carriers. Furthermore, we 
perform a comprehensive numerical analysis in terms of the design parameters, 
namely the distance between lasers and non-Hermitian shift observing regimes 
of simultaneous temporal stabilizations and light localization. In turn, the 
proposal’s validity is also demonstrated for an array with a large number of 
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lasers using a simplified model where the coupling between neighboring laser 
cavities accounts for the transverse space.  

A non-Hermitian architecture for stable EEL bars is demonstrated, leading to a 
brighter output beam, yet the field concentration is expected to facilitate a direct 
coupling of these semiconductor laser arrays to an optical fiber. 

  



Chapter 5. Spatio-temporal stabilization of mirror-symmetric array of EEL                           161 

 

 

 
Publication XI 

 

 
 
 
 
 
 
 
 
 
 
 

J. M. Pardell, R.Herrero, M. Botey, and K. Staliunas, “Non-Hermitian 
arrangement for stable semiconductor laser,” Optics Express 29(15), 23997-
24009 (2021).  



Research Article Vol. 29, No. 15 / 19 July 2021 / Optics Express 23997

Non-Hermitian arrangement for stable
semiconductor laser arrays

J. MEDINA PARDELL,1,* R. HERRERO,1 M. BOTEY,1 AND K.
STALIUNAS1,2

1Departament de Física, Universitat Politècnica de Catalunya (UPC), Colom 11, E-08222 Terrassa,
Barcelona, Catalonia, Spain
2Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010
Barcelona, Catalonia, Spain
*judith.medina@upc.edu

Abstract: We propose and explore a physical mechanism for the stabilization of the complex
spatiotemporal dynamics in arrays (bars) of broad area laser diodes taking advantage of the
symmetry breaking in non-Hermitian potentials. We show that such stabilization can be achieved
by specific pump and index profiles leading to a PT-symmetric coupling between nearest
neighboring lasers within the semiconductor bar. A numerical analysis is performed using
a complete (2+ 1)-dimensional space-temporal model, including transverse and longitudinal
spatial degrees of freedom and temporal evolution of the electric field and carriers. We show
regimes of temporal stabilization and light emission spatial redistribution and enhancement. We
also consider a simplified (1+ 1)-dimensional model for an array of lasers holding the proposed
non-Hermitian coupling with a global axisymmetric geometry. We numerically demonstrate
a two-fold benefit: the control over the temporal dynamics over the EELs bar and the field
concentration on the central lasers leading to a brighter output beam, facilitating a direct coupling
to an optical fiber.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Diode lasers systems, either in the form of a single Edge-Emitting Laser (EEL), in the form of
arrays of lasers (lasers bars), or as stacks of EEL bars, are replacing other lasers sources due
to their compactness, affordable prices and high performance. However, they present a major
drawback, the laser spatiotemporal instability and divergence which, particularly, prevents them
to efficiently couple to optical fibers. Spatiotemporal complex dynamics is commonly observed
in spatially extended, dissipative systems which are driven by an external pump. Board area
diode lasers are no exception and are plagued by self-focusing filamentation instabilities and
complex dynamical behaviors [1,2,3]. Moreover, in EELs bars, the coupling between neighboring
EELs contributes to increase such spatiotemporal instabilities [4,5,6,7]. The consequence is the
onset of chaotic and turbulent regimes produced by spatial and temporal instabilities such as the
modulation instability and Hopf bifurcations. Yet, different proposals to reduce or to eliminate
these instabilities for a single laser relay on external cavities or elements, therefore compromising
the compactness of the laser [8,9,10]; this is also the case for bars of EEL lasers [11,12,13,14].
Besides, a complex optical setup made up of: a fast-axis collimator, a slow-axis collimator
and a focusing lens, is commonly used to improve efficient coupling into multimode fibers.
Usually, the intrinsic turbulent behavior enlarges the smallest possible focal point and limits the
coupling to thin monomode fibers [15]. Possible approaches on the regularization of a single
semiconductor laser are based on intracavity filtering [16,17] or on spatial gain profile to mitigate
semiconductor lasers instabilities by the introduction of intrinsic complex modulations within
the laser [18,19,20]. But obtaining a stable emission from EELs bars remains a longstanding
open question, and there is a need for a compact stabilization scheme.

#425860 https://doi.org/10.1364/OE.425860
Journal © 2021 Received 14 Apr 2021; revised 9 Jun 2021; accepted 28 Jun 2021; published 14 Jul 2021

https://orcid.org/0000-0002-0539-9538
https://doi.org/10.1364/OA_License_v1#VOR-OA


Research Article Vol. 29, No. 15 / 19 July 2021 / Optics Express 23998

Recently, the interplay between gain and index modulation has emerged as a fruitful new
research area in photonics. Initially introduced as a curiosity in quantum mechanics [21],
parity-time (PT-) symmetry, found experimental realizations in the field of photonics in artificial
materials with spatial distributions of real and complex permittivities, showing the ability of
molding the flow of light [22,23,24,25,26]. The attentions to those systems that while being
non-conservative could still hold real energy eigenvalues, derives from the unusual, even counter
intuitive properties they hold arising from an asymmetric coupling of modes. Beyond the
particular class of open non-conservative systems holding PT-symmetry however, there is a larger
class of non-conservative as non-Hermitian Hamiltonians [27]. Indeed complex Non-Hermitian
photonics has led to technologically accessible novel effects, from transparency and invisibility
[28,29] to light transport [30] including various applications in laser science [31,32]. In particular,
the new concepts of non-Hermitian photonics have successfully been applied to the control of the
dynamics of broad semiconductor lasers [33,34], and arrays of vertical emitting semiconductor
lasers or a ring array of semiconductor lasers [35,36].

Our proposal is intended to obtain a stable emission from an array of EELs and the improvement
of its beam quality and energy distribution within the laser array. Altogether allows the direct
coupling to fiber or optical guide without any optical component that should strongly enhance
the coupling efficiency. The light generated in every single semiconductor laser is expected
to be spatially redistributed and temporally stabilized via non-Hermitian coupling between
neighboring lasers induced by a particular gain (pump) and index modulation (stripes) of the
structure. The system is described by a complete (2+ 1)-dimensional space-temporal model,
including transverse and longitudinal spatial directions and temporal evolution of the electric
field and carriers.

We first identify the onset of spatiotemporal instabilities for a single laser source, the regime
of temporally stable and monomode emission severely restricts the power of the laser source.
However, splitting a broad EEL source in an array of stable, thinner lasers with stable emission
parameters, is not a solution, since new temporal and synchronization instabilities arise from the
coupling between neighboring lasers leading again to irregular spatiotemporal behaviors. Thus,
we propose a non-Hermitian asymmetric coupling between EELs within the array for stabilization
and redistribution of the light emission. This emission improvement is first demonstrated for the
simple two coupled laser system. We determine the stabilization performance as a function of
the shift between the pumped region and laser stripes and the distance between the two lasers.
Next, we analyze a system formed by three lasers holding a global mirror symmetry to induce an
inward coupling in the laser array. In the following, a simplified (1+ 1)-dimensional model is
used to extend the study to a full EEL bar formed by an array of many lasers. The simulations
show both temporal stabilization and simultaneous spatial redistribution, i.e. localization, of the
generated light.

2. Model for semiconductor laser arrays

In order to model the spatial redistribution and temporal stabilization of coupled EEL sources,
we use a well-established model including the spatiotemporal evolution of the electromagnetic
field and carrier density inside the cavity [20]. EELs are usually described either by stationary
models [37] or dynamical models of the mean field [38]. Here, the complete dynamical model is
used for the forward and backward fields propagating within the cavity and the carrier density. It
was recently used to demonstrate spatial filtering of broad EEL sources [17]. Since the round-trip
time of the cavity (on the order of ps) is small compared to the carrier’s relaxation time (on
the order of ns), the temporal evolution of the field in one roundtrip may be calculated by its
propagation along the cavity assuming constant carriers. Applying the slowly varying envelope
approximation, the forward and backward envelopes of the electric field, A± are integrated along
the EEL followed by the second step, the temporal integration of carriers considering a constant
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field. We neglect the frequency dependence of material gain, spatial hole burning of carriers,
and heating-induced changes of model parameters since we assume we do not reach high powers
[39,40]. Overall, this results in the following non-linear system of three coupled equations:

±
∂A±

∂z
=

i
2k0n

∂2A±

∂x2 + σ[(1 − ih)N − (1 + α)]A± + i∆n(x)k0A±

∂N
∂t
= γ(−N − (N − 1)(|A+ |2 + |A− |2)2 + p0 + ∆p(x) + D∇2N)

(1)

where k0 is the wavevector, n is the effective refractive index, σ is a parameter inversely
proportional to the light matter interaction length, h is the Henry factor or linewidth enhancement
factor of the semiconductor, α corresponds to losses, p0 is the pump, D is the carrier diffusion
coefficient and γ is the inverse of carriers’ relaxation time, τnr. In our calculations the transverse
and longitudinal spatial coordinates are in units of the wavelength, time is normalized to the
roundtrip time; N is normalized to N0 (the carrier’s density to achieve transparency) and the
electric field envelope is normalized to aτnr

ℏω being a the gain parameter, ω the angular frequency
of light. Polarization of the material is eliminated in Eq. (1) as the semiconductor laser is
considered a class B laser and the fine longitudinal interference between the forward and backward
fields, considered to be blurred by the carrier diffusion, is disregarded. Finally, the transverse
modulations of the refractive index ∆n(x) account for the individual laser stripes; and the pump,
∆p(x-s), where s is a spatial shift the spatial profile of the electrodes. Both modulations, ∆n(x)
and ∆p(x-s), induce the real and imaginary parts of the non-Hermitian potential, which, properly
designed, may lead to an asymmetric field coupling. See Fig. 1(a) for a schematic representation
of the laser architecture. In order to avoid discontinuities in the derivatives of these modulations,
the two spatial transverse profiles are mathematically described as consecutive sharp sigmoids.

In the proposed scheme, the two profiles, ∆n(x) and ∆p(x), can be slightly spatially shifted
a distance s, one with respect to another, and it is precisely this interplay between index and
gain profiles that is expected to induce a non-Hermitian potential and asymmetric coupling
between neighboring lasers. The boundary conditions are straightforwardly determined by
the Fabry-Perot cavity mirrors located at z= 0 and z=L are A+(z = 0) = r0A−(z = 0) and
A−(z = L) = rLA+(z = L), where L is the length of the laser and r0/L are the corresponding
reflection of the edge mirrors at z= 0/L, respectively.

First, we numerically study the spatiotemporal behavior of a single EEL source through the
system model in Eq. (1) to determine its dynamics for different working conditions. As it is well
known, decreasing the laser width acts as a mode selection mechanism when light is confined and
a the broad and strongly multimode semiconductor emission turns into a monomode emission
regime. However, to achieve a brighter source it is not enough to split a broad EEL source
into an array of spatially stable thin EELs by patterning longitudinal separation slits between
them. It is also necessary to engineer the coupling between lasers within the array to obtain
stability and improve the quality of the emission, see Fig. 1(a). Numerical simulations supporting
this idea are provided in Fig. 1(b), showing the total emitted output power of a single EEL for
widths, w, ranging from 2.5 µm to 50 µm, and analyzing the field profile within the laser while
decreasing width seeking for the onset of the monomode emission. The maximum width for a
monomode emission determined by wmax = λ/

√
2n∆n (corresponding to 4 µm for the general

operational parameters chosen in Fig. 1) is in good agreement with the integrated beam profiles.
In turn, we calculate the beam quality factor, M2 as the ratio between the Beam Parameter
Product (BPP) of a real beam and a Gaussian beam, which can be numerically evaluated as:
M2 = BPPactual beam

BPPGaussian beam
= πwθ

λ
, where w is the near-field width, and where the divergence, θ, is

obtained from the far field, provided in the inset of Fig. 1(b). Indeed, the transvers cuts for the
laser profiles provided in Fig. 1(b), also evidence how M2 strongly increases with the laser’s
width as the laser becomes more multimode and inhomogeneous, see However, while a short
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Fig. 1. (a) Scheme of a broad single EEL where the index and pump profiles coincide with
no spatial shift (s= 0µm), where w is the laser width and L the length, and scheme of a laser
array made of single lasers with s ≠ 0, separated a distance d. (b) Calculated output of the
EEL as a function of the laser width, as obtained from Eq. (1); inset: M2 dependence on
the laser width for a given pump p0= 2.5. The lateral subplots depict the spatial intensity
distributions for different widths of the pump: I 50 µm, II 12.5µm, III 7.5µm, IV 2.5µm
determined by dashed lines on each plot; grey area: analytical range of monomode emission.
(c) Temporal evolution of the transverse intensity profile within the laser for w= 2.5 µm and
different pumps, normalized to the emission threshold pth: IV p= 1.1 pth, V p= 1.8 pth, VI
p= 1.9 pth, and numerical Light-Intensity output power, LI-curve, as a function of the pump;
pH indicates the onset of the instability. The integration parameters are: L= 500, α= 0.1,
h= 2.0, σ= 0.06, D= 0.03 and γ = 0.005, and the units in the graphs correspond to λ= 1µm,
with n0 = 3.5 and ∆n= 0.06.

width in a semiconductor laser indeed acts as a transverse mode selection mechanism it does not
warrant its temporal stability. This can be observed in Fig. 1(c), where the temporal stability of a
monomode laser —namely, w= 2.5 µm— is scanned as a function of the pump. The results show
a Hopf bifurcation arising at a particular pump, referred as the Hopf pump, pH , and for pump
values above this threshold the laser becomes temporally unstable as it is evident comparing
the temporal evolution of the spatial distribution transverse profile for two given pump values
below and above pH , sharing however monomode spatial distribution along the laser. The smooth
oscillations observed just after the Hopf bifurcation present periods about 20 roundtrips and
are only visible in the small pump interval shown in the figure, while for larger pump values
sharp peaks with an almost zero background appear. Scanning the pump upwards, pulses rapidly
increase in amplitude while becoming shorter, with a time duration of few roundtrips, and
reducing their frequency.

3. Symmetric and asymmetric coupling

Once the main dynamics and parameters of a single laser are determined we proceed to analyze
the effect of the coupling between lasers on the dynamics. Such coupling depends on the distance
between neighboring lasers and can be further engineered by introducing a displacement between
the laser profile and the pump, as schematically shown in Fig. 1(a). We first analyze the coupling
between two identical lasers with the same intrinsic parameters and where the index and the
pump profiles perfectly coincide, and are, therefore, symmetrically coupled. While the two
standing alone lasers may have a spatially and temporally stable emission, as the distance between
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them decreases —the coupling strength increases— and keeping the rest of parameters, both
lasers become temporally unstable. Spatial asymmetries are evident in every snapshot of the
numerically calculated intensity distribution of two close EEL sources, see Fig. 2(a). Besides,
the temporal evolution of the transverse profile of the intensity at any position of the cavity length
is aperiodic, see Fig. 2(b). Next, we slightly shift the index profile of both lasers with respect to
the gain profiles to induce a mirror-symmetric coupling. As expected, the light generated in one
laser is partially transferred to the other one, see Fig. 2(c). As an important consequence, when
the energy is redistributed due to the asymmetric coupling, both lasers become temporally stable,
as shown in the temporal evolution of the intensity transverse profile in Fig. 2(d). This temporal
stabilization tendency is in agreement with the general behavior of coupled nonlinear oscillators
generally showing less complex dynamics for unidirectional than for bidirectional couplings.

Fig. 2. (a)/(c) Snapshots of the spatial intensity distribution after sufficient integration time
for two symmetrically/asymmetrically coupled lasers, and (b)/(d) temporal evolution of
the intensity at z=L for two symmetrically/asymmetrically coupled lasers with w= 2.5µm,
separated a center-to-center distance d= 3 µm and for s= 0.25 µm. Insets show the transverse
pump profile ∆p (red curve) and the index profile ∆n (blue curve), and they coincide in (a).
(e) Intensity enhancement factor of the amplified laser depending on the distance between
lasers, d, and spatial shift, s. (f) Temporal instability map. Relative amplitude of the temporal
oscillations (normalized to the average amplitude) All the integration parameters are the
same as in Fig. 1, and p0= 2.5.

The performance of the proposed asymmetric coupling is assessed by the asymmetric energy
enhancement and temporal stability of the attained regimes. We calculate the enhancement as the
relative intensity of the laser to which the energy is accumulated, i.e. as the ratio of the temporally
averaged intensity of the enhanced laser, for s ≠ 0, versus the unshifted case, s= 0. We explore
the parameter space of the distance between lasers, d, and asymmetry shift parameter, s (spatial
shift between the pump and the refractive index profiles) for a fixed value of the pump. The
results are summarized in Fig. 2(e). While a larger enhancement could be expected by increasing
the shift parameter s. However, we observe that the emission decreases for a maximum around
a given shift value, namely s ≈ 0.25 µm. This decrease may be attributed to the asymmetric
configuration of both lasers which also induces an asymmetric leaking of energy opposite to
the direction of the other laser. Such leaked energy is therefore lost, and the net gain for the
whole system is reduced; being the largest relative intensity of the enhanced factor around about
2. Moreover, such enhancement increases for a smaller distance, d. In addition, the temporal
stability of the emission may be evaluated by mapping the amplitude of the temporal oscillations
of the enhanced laser also in the distance-shift, (d,s), parameter space. Temporal instabilities arise
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for small d and s values, i.e. when the distance between lasers or coupling asymmetry decrease.
For center-to-center distances close to the laser width the emission is found to be unstable for all
values of s. On the contrary, stability is found either increasing the coupling asymmetry for a
given laser distance, as also, trivially, at larger distances between lasers. Interestingly, inspecting
Figs. 2(e) and 2(f), we observe that there is a range of parameters around the maximum relative
intensity region which coincides with a temporally stable behavior.

As above mentioned, while the energy is enhanced in one laser, some energy is in turn leaked
due to the asymmetric configuration, asymmetrically coupled out from the laser. We further
analyze this effect considering a single laser. We observe that around s= 0.35 µm all the energy
created in the laser is lost, see Fig. 3(a). A physical insight to this effect is found calculating the
transverse spatial tilt of the phase of the electric field within the laser that indicates a transverse
shift of light propagating along the laser and out from the laser stripe, see Fig. 3(b). As it may be
expected, such phase if completely symmetric for s=0, while the averaged phase slope inside
the laser, directly increases with the asymmetry parameter s, see Fig. 3(c), indicating a linear
increase of the transverse transfer of energy with s.

Fig. 3. (a) Loss of output power for one laser when s increases, being s the transverse shift
between ∆n and ∆p, in blue and red in the inset. (b) Field phase for s= 0 µm (dashed purple
curve) and for s= 0.15 µm (dashed green curve). The blue and red solid lines represent
∆n and ∆p for the second case. (c) Field phase slope at the central point of the laser as a
function of s. (d) Comparison of the output power for two coupled lasers with asymmetric
lateral coupling with single (black) and double transverse shift (green) as a function of s. (e)
Snapshot of the spatial intensity distribution after sufficient integration time and (f) temporal
evolution of the intensity for two coupled lasers with single transverse shift corresponding to
the black curve for s= 0.4 µm. All the integration parameters are the same as in Fig. 2.

Therefore, the effect is optimized by considering a single transverse shift, i.e. no shift for the
laser to which the energy is transferred. We compare this last configuration with the double
transverse shift configuration inspected in Fig. 2 for a distance of 3 µm between the two lasers,
see Fig. 3(d). The double shifted configuration achieves a maximum of output power for an s
value about 0.25 µm and decrease due to the energy leakage while the single shifted case keeps
increasing with s. Temporal instabilities also disappear for the single shift case increasing s
parameter and the amplitude of the temporal oscillations shows a similar (d, s) dependence
of Fig. 2(f). The spatial intensity distribution and the temporal evolution for the single shift
configuration are provided in Figs. 3(e) and 3(f) showing more than twice the emission of the
double shifted scheme of Fig. 2(c).
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4. Axisymmetric inward coupling of EELs

As observed, the asymmetric coupling leads to simultaneous enhancement and temporal stabiliza-
tion of the emitted field and the effect is optimized when the enhanced laser has no asymmetric
shift. Therefore, the next step is considering a simple array architecture formed by three coupled
lasers with asymmetric coupling but with a central symmetry axis [33]. That is to say, two
symmetric lasers holding asymmetric shift between gain and index profiles and a central one with
no shift. For such configuration, the coupling is expected to increase as the distance decreases
eventually also reaching a temporally stable regime as light is localized inwards.

The numerical results for the three coupled lasers are summarized on Fig. 4. It can be observed
that when symmetrically coupled, all three lasers are temporally unstable as intensity switches
from one laser to another see Figs. 4(a) and 4(b). On the contrary, as the non-Hermitian inward
potential is introduced, by means of the inward asymmetric shift of the index profile versus the
gain profile, the generated light tends towards the central laser and all lasers become stable,
see Figs. 4(c) and 4(d). We note that in this scenario, the fulfilled redistribution and spatial
stabilization leads to enhanced intensities as compared with the two-laser case.

Fig. 4. (a)/(c) Snapshots of the spatial intensity distribution of the intensity for a triad of
lasers with symmetric/inward-axisymmetric coupling after sufficient integration time and
(b)/(d) temporal evolution of the intensity at z=L for three lasers with symmetric/inward-
axisymmetric coupling with w= 2.5 µm, separated a center-to-center distance d= 3.0 µm
and for s= 0.25 µm. Insets show the transverse pump profile ∆p (red curve) and the index
profile ∆n (blue curve), and they coincide in (a). (e) Relative intensity and (f) amplitude of
the temporal oscillations depending on the distance between lasers, d, and spatial shift, s.
All the integration parameters are the same as in Fig. 2.

The performance of the proposed mirror symmetric lasers triad is evaluated by the relative
intensity of the central laser, i.e. intensity of the enhanced laser, for s ≠ 0, versus the unshifted
case, s= 0. Comparing Fig. 4(e) and Fig. 3(e), we observe the maximum intensity for a somewhat
larger value of d. Besides, a larger enhancement ratio is reached, as energy is coupled from the
two neighboring lasers. The temporal stability of the emission is here evaluated by mapping the
temporal oscillations of the central laser also in the distance-shift parameter space, (d, s), for
a fixed pump value. The results, summarized in Fig. 4(f), show a range of maximum energy
localization, for small distances around 3.5 µm, and shift parameter 0.15 ≤ s ≤ 0.25. Precisely
these set of parameters coincides with temporal stability, assessed by mapping the temporal
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oscillations of the central laser. Inspecting Figs. 4(e) and 4(f), we assert that temporal stability is
achieved for a simultaneous light localization. In this case, temporal stability reappears at larger
distances for significant values of the shift parameter.

5. EEL array with axisymmetric inward coupling

The results presented in the previous section provide a proof of principle along with a compre-
hensive understanding of the asymmetric coupling of the proposed scheme. Next such results are
extended to an EEL array or an EEL bar composed of many lasers.

The proposed scheme is depicted in Fig. 5(c), the array is divided into two half-spaces with
symmetric spatial shift between gain and index transverse profiles, arranged such that the index
lays closer to the symmetry axis and the central laser holding no displacement. Thus, we expect
light generated within the array to be directed inwards due to the asymmetric coupling.

Fig. 5. (a) LI-curve for a single laser numerically obtained integrating the simplified
model, described by Eq. (2). The inset shows the LI-curve obtained by the complete model,
Eq. (1), for comparison. (b) Temporal instability map. Relative amplitude of the temporal
oscillations (normalized to the average amplitude) for two coupled lasers obtained with the
simplified model, depending on coupling magnitude, mm, and phase shift, π/2-Φ, between
coupling coefficients. The inset provides a comparison to the complete model, amplitude of
the temporal instability depending on the transverse shift coefficient, s. All the integration
parameters are the same as in Fig. 2. (c) Scheme of the array of coupled lasers directly
coupled to an optical fiber. The integration parameters for the simplified model are the same
as in Fig. 2. with mm= 5·10−3 andΦ= 0.

We develop a simplified model, accounting for the longitudinal propagation, temporal evolution
and coupling between lasers but disregarding diffraction, ∂2A

∂x2 , and carriers diffusion, ∇2N = 0, so
considering a transverse mean field for each laser (no transversal modes). The simplified model
is aimed at showing the concept on EEL bars, and to characterize the asymmetric coupling with
a large number of lasers. The model describes the forward and backward field of every single
laser of the array, namely A±

j , as monomode lasers in the transverse direction, only coupled to the
two neighboring lasers, as:

∂A±
j

∂z
= σ[(1 − ih)N − (1 + α)]A±

j +m−A±
j−1+m+A±

j+1

∂Nj

∂t
= γ(−N − (N − 1)(|A+ |2 + |A− |2) + p0) , for j = −

num − 1
2

, . . . ,
num − 1

2

(2)

where, m+/− are complex numbers standing for the coupling parameter from the lasers at positions
j+1 and j-1, respectively, and the spatial and temporal coordinates and all parameters are normal-
ized as in Eq. (1). In the simplest case, a periodic non-Hermitic potential in one-dimension may
be approximated by a complex harmonic form:V(x) = mm

[︂
mr cos

(︂
2π
d x

)︂
+ imi sin

(︂
2π
d x + Φ

)︂]︂
=
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mm

[︂
m+e+i 2π

d x + m−e−i 2π
d x

]︂
, where d is the distance between lasers and mr and mi the amplitudes

of the real and imaginary part of the non-Hermitian potential. Therefore, from Eq. (2) we may
express the coupling between neighboring laser as deriving from this simple harmonic complex
potential as m± = mm

[︁ (︁mr±mi
2

)︁
cosΦ + imisinΦ

]︁
being mm the coupling strength. In this model

we can define different types of coupling between two lasers depending on the values of mr, mi
and the phase,Φ. ForΦ=±π/2, the coupling is perfectly symmetric while forΦ= 0, the coupling
becomes PT-symmetric. In turn, and for simplicity we assume mr=mi= 1, the PT-symmetry
breaking point, which entails no restriction but assuming the maximally asymmetric situation.
Despite the relationship between parameters of spatial modulation in both models is nontrivial,
we can infer a logarithmic relationship between mm and the laser distance d as far as the coupling
strength should decrease exponentially with the laser separation given by (d-w). This relationship
is verified by direct comparison of the temporal instability in both models shown in Fig. 5(b). The
phase shift between the real and imaginary components of the coupling, π/2-Φ is proportional to
the spatial shift s. The other parameters:σ, h, α, γ and p0 are the same as in Eq. (1).

The system of Eq. (2) is integrated with boundary conditions given by the two mirrors of the
Fabry-Perot cavity as for the complete model described by Eq. (1). In order to compare the
results of this simplified model to the complete model, we find equivalences between parameters
comparing behaviors. We first determine the pump threshold pth and the onset of temporal
instability, Hopf bifurcation pH , for a single laser to locate equivalent pump values, see Fig. 5(a).
The temporal instability onset corresponds to smooth oscillations of small amplitude, just for a
pump interval above the bifurcation, abruptly changing to a pulsed regime with short and bright
pulses, starting from almost zero constant output power, as observed with the complete model in
Fig. 1(c). In order to provide a comparison between the coupling parameters of the simplified
model, namely just mm andΦ, coupling strength and phase shift, with the parameters of the full
model, d and s, distance between lasers and shift between the gain and index profiles, we consider
two coupled lasers and map the amplitude of the temporal oscillations of the field amplitude of
the laser to which the energy is transferred. Inspecting the comparison in Fig. 5(b) we conclude
that for a symmetric coupling, henceΦ=π/2, instabilities arise for values of the coupling strength
between lasers, mm, above 10−6 equivalent to no asymmetric shift, s= 0 and distances d larger
than 5.0 µm in the full model. Moreover, for coupling strengths of 10−4 and a symmetric coupling
the simplified model shows behaviors analogous to a distance between lasers d = 3.0-3.5 µm, and
no asymmetric shift. As expected, the laser is temporally stable at the symmetry breaking point,
hence forΦ= 0, although the transition to stabilization is reached for much larger values ofΦ,
aboutΦ ≈ π/3, which comparing the two models, turns out to be analogous to an asymmetric shift
about s ≈ 0.3 µm. Thus, both models agree that it is not necessary to reach totally asymmetric
unidirectional couplings, but just a small shift, s, or, equivalently, a small phase shift (π/2 -Φ) to
attain stabilization. Apart from achieving temporal stabilization the proposed scheme is intended
to localize the output beam profile to enable the direct coupling of the light generated from the
entire bar directly into an optical fiber, eventually avoiding any optical elements and minimizing
losses as depicted in Fig. 5(c).

To confirm the effect in a laser array we use both, the complete and the simplified model to
numerically calculate the spatial redistribution of the generated light, the localization and the
light enhancement at the central laser, for arrays of many lasers, schematically shown in the
inset of Fig. 6(b). We use Eq. (1) to evaluate the decrease of the beam quality factor M2, for
arrays up to 13 lasers, see Fig. 6(a), due to the stripping (black line) and the non-Hermitian
potential effect (blue line) with respect a single broad laser with the same pumped area (orange
line). We consider an array formed by num lasers and increase num up to 21 in the simplified
model, for being a sensible number of lasers for an actual laser bar. Using Eq. (2), we assume
Φ= 0, and consider two different coupling factors corresponding to a strong (mm = 10−3) and
weak (mm = 10−5) coupling. For a strong coupling, as a consequence of the field localization
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induced by the asymmetric inward coupling, the output power of the central laser increases with
the number of lasers, see Fig. 6(a). Yet, for a small coupling the output intensity of the central
remains almost constant. For a given laser array the intensity distribution, at each laser position,
can be evaluated as a function of the coupling parameter, see Fig. 6(b) showing the increase of
the energy concentration towards the central laser rapidly increasing with the coupling parameter
mm above a given threshold (mm = 10−3). The peak at the central laser is due to the addition of
fields coming from both sides. While these results proof the working principle of the proposal
we note that a more realistic approach indented to design an experiment should certainly include
diffraction and inhomogeneous losses reducing the field localization.

Fig. 6. (a) M2 value dependence on the number of lasers for a symmetric array of lasers
(s= 0 µm, black), a non-Hermitian array of lasers (s= 0.25 µm, blue) and a single broad
EEL with equivalent pumped area (red). (b) Intensity of the central laser, |A0 |

2, for arrays of
num lasers with inward axisymmetric coupling, for the simplified model, Eq. (2), and for
two different coupling strengths: mm = 10−3 (blue) and for mm = 10−5 (black). The inset
displays the proposed scheme for num lasers, j= -(num-1)/2. . . 0. . . (num-1)/2, with shifted
gain and index profiles. (c) Emitted intensity distribution for an array made of num= 21
lasers as a function of the coupling strength, mm,. Intensity of laser j relative to the laser at
edge (j=10) in logarithmic scale. In the inset the equivalent emitted intensity distribution for
the punctual laser model of Eq. (3).

Finally, in order to provide a deeper analytic insight, we consider a stationary and punctual
model, i.e. assuming null spatial and temporal derivatives in Eq. (2) and just with inward
axisymmetric coupling. The amplitude solution for the uncoupled lasers at each edge coincides
with the standing alone laser: |A|2 = p0−(1+α)

α
, from which, we induce the amplitudes of all lasers

of the array, from the edges to the central laser, resulting in:

σ

[︄
(1 − ih)

p0 + |Aj |
2

1 + |Aj |
2 − (1 + α)

]︄
Aj + m−

j Aj+1 + m+j Aj−1 = 0 , for j = −
num − 1

2
, . . . ,

num − 1
2

m−
−j=m+j =0, m−

j =m+−j=mm for j ≥ 0.
(3)

This simple estimation of the central laser intensity and energy distribution on the array really
shows a good agreement with the numerical integration of the forward and backward fields in
Eq. (2) for the num asymmetrically coupled cavities. In spite of the simplicity of the punctual
model, comparing Figs. 6(a) and 6(b) with 6(c), we observe an analogous trend, yet in Fig. 6(c)
the pump is assumed to be just above the lasing threshold. Both results show a similar dependence
on the number of lasers and coupling strength, and for the particular case of num= 21, both
energy distribution patterns strongly change their profiles for the same critical value of mm, about
mm = 10−3.

We can simply deduce from Eq. (3) that for a weak coupling strength mm, the gain enhancement
in laser j given by the asymmetric coupling from the neighboring laser j+1 (or j-1) is small and
the laser losses α limits the field amplitude Aj remaining constant along the array, from the edge
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lasers to the central laser, with an intensity value about the standing alone laser |Aj |
2 ≈

p0−(1+α)
α

.
In contrast, for large mm values, the asymmetric coupling strongly enhances gain, and the cascade
effect from edges to the central laser is the cause of the energy localization with a sharp profile.
Considering amplitude values much larger than the pump value, the multiplying factor becomes

A±|j|
A ±|j+1|

=
mm
σα from which we can infer the threshold coupling strength for a sharp profile in the

energy distribution, mmth = σα = 10−3 for the considered parameters, in good agreement with
numeric simulations.

6. Conclusions

In summary, we propose a physical mechanism for the temporal stabilization and localization of
the emission of a coupled array of EELs or an EEL bar. The scheme is based on a non-Hermitian
coupling between neighboring lasers with a global mirror-symmetric geometry. While the
monomode emission of a single laser is assured by reducing its width, spatiotemporal instabilities
may still arise from the coupling between lasers in an array. Such temporal instabilities are
molded by a non-Hermitian coupling that may be simply introduced by a lateral shift between
the pump and index profile, technically by a spatial shift between the individual laser stripe and
corresponding electrode. Such asymmetric coupling, while temporally stabilizing the emission
also redistributes and localizes energy close to the central symmetry axis.

The proposed stabilization scheme is analyzed by a complete spatiotemporal model, including
transverse and longitudinal spatial degrees of freedom and the temporal evolution of the electric
fields and carriers. We perform a comprehensive numerical analysis in terms of the design
parameters, namely the distance between lasers and non-Hermitian shift observing regimes of
simultaneous temporal stabilizations and light localization. In turn, the validity of the proposal is
also demonstrated for an array with a large number of lasers using a simplified model where the
transverse space is accounted by the coupling between neighboring laser cavities.

The proposed non-Hermitian architecture for stable EEL bars is demonstrated leading to a
brighter output beam, yet the field concentration is expected to facilitate a direct coupling of
these semiconductor lasers arrays to an optical fiber.
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6.1 Conclusions 

In this thesis, we present four different approaches for a smart control of light in 
semiconductor laser sources, aiming to improve their fundamental 
characteristics, particularly the spatio-temporal stability and beam quality of the 
emitted beam, without compromising their compact design. 

In Chapter 2, we demonstrate spatial filtering in edge-emitting lasers (EELs) both 
theoretically and experimentally, using an intracavity chirped PhC. Predictions 
are based on a complete (2+1)-dimensional space-temporal model, including 
transverse and longitudinal spatial degrees of freedom and temporal evolution 
of the electric field and carriers. We predict a brightness enhancement by a factor 
of 2.5, using an optimized chirped PhC placed on both the front and rear facets 
of the laser. The effect may be even higher than the filtering performance of a slit. 
Experiments were performed in an extended cavity configuration using an 
intracavity 2D chirped PhC at the near-field plane and comparing it to a variable 
width slit in the far-field plane, determining a reduction of the beam quality 
parameter M2 by a factor of 1.8, bringing along a brightness increase by a factor 
of 1.3.  The experimental results are in good agreement with the numerical 
simulations which predict a brightness increase of 1.7, considering the 
transmission of the actual PhC used in experiments. 

Further improvement may be achieved by exploring different spatial-filtering 
schemes. In particular, we predict a significant brightness enhancement, using an 
optimized chirped PhC placed at both the front and rear facets of the laser. These 
findings demonstrate that intracavity PhC filtering may render edge-emitting 
lasers bright light sources while keeping their compactness. Worth noting that 
the good agreement between numerical predictions and experiments provides 
confirmation of the validity of the model.  

In Chapter 3, we propose using a non-Hermitian potential, with simultaneous 2D 
modulations of the pump and the refractive index as an effective scheme to 
stabilize edge-emitting laser sources, lasers and amplifiers, both in space and 
time. The proposed configuration can eliminate the modulation instability (MI) 
in highly non-linear regimes with appropriate parameters. We perform 
numerical simulations on the full model considering field and carriers with 
realistic parameters. The results predict that the doubly-modulated configuration 
can completely suppress modulation instability in non-linear regimes and offer 
a flexible control on spatio-temporal dynamics of EELs. The parameter space is 
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explored to determine the MI-free regions, showing that the best stabilization 
occurs around the resonance of both modulations. Moreover, we perform an 
analysis of the stabilization performance of the device in terms of the linewidth 
enhancement factor and the pump parameter for the doubly modulated EEL with 
a simplified paraxial model. The proposal could be implemented with existing 
nanofabrication techniques, being moreover compact, contrary to other 
approaches to improve the emission from edge-emitting laser sources. 

Chapter 4 provides a feasible and compact scheme to control and stabilize the 
spatio-temporal dynamics of EELs. The proposal is based on the ability of non-
Hermitian potentials with given local symmetries to manage the flow of light, 
based on asymmetric mode coupling. We impose a pump modulation, with a 
central symmetry axis which induces in-phase gain and refractive index 
modulations due to the Henry factor. Both modulations are, in turn, spatially 
shifted by an appropriate index profile that divides the modified EEL into two 
mirror-symmetric half-spaces holding PT-symmetry with opposite mode 
coupling. Such local non-Hermitian potential induces an inward mode coupling, 
accumulating the light generated from the entire active layer at the central 
symmetry axis, ensuring spatial regularization and temporal stability. By an 
exhaustive exploration of the modulation parameters, we show a significant 
improvement of the intensity concentration, stability, and brightness of the 
emitted beam. This approach produces a twofold benefit: light localization into a 
narrow-beam emission and the control over the spatio-temporal dynamics, 
improving the laser performance. 

Finally, in Chapter 5, we present a physical mechanism for the temporal 
stabilization and localization of the emission of a coupled array of EELs (EEL 
bars). The scheme is based on a non-Hermitian coupling between neighboring 
lasers with a global axisymmetric geometry. While the monomode emission of a 
single laser is assured by reducing its width, spatio-temporal instabilities may 
still arise from the coupling between lasers in an array. Such temporal 
instabilities are molded by a non-Hermitian coupling that may be simply 
introduced by a lateral shift between the pump and index profile, namely a 
spatial shift between the individual laser stripe and the corresponding electrode. 
Such asymmetric coupling, while temporally stabilizing the emission, also 
redistributes and localizes energy close to the central symmetry axis. 

The proposed stabilization scheme is first analyzed by the complete spatio-
temporal model presented in Chapter 2. We perform a comprehensive numerical 
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analysis in terms of the design parameters, namely the distance between lasers 
and non-Hermitian shift observing regimes of simultaneous temporal 
stabilizations and light localization. In turn, the validity of the proposal is also 
demonstrated for an array with a large number of lasers using a simplified model 
where the transverse space is accounted by the coupling between neighboring 
laser cavities.  

The proposed non-Hermitian architecture for stable EEL bars is demonstrated, 
leading to a brighter output beam, yet the field concentration is expected to 
facilitate a direct coupling of semiconductor laser sources to an optical fiber. 

Therefore, the main results of this thesis show that: (I) intracavity filtering by an 
optimized chirped PhC may increase the brightness of an EEL over a factor of 2, 
when the PhC is placed on both the front and rear facets of the laser; (II) non-
Hermitian intrinsic periodic potentials, with in-phase index and gain/loss 
modulations, may suppress modulation instability in EELs and semiconductor 
amplifiers; (III) a mirror-symmetric non-Hermitian potential applied within an 
EEL can lead to a simultaneous spatio-temporal stabilization while the field is 
enhanced and concentrated; and (IV) an analogous geometric scheme may be 
applied to an EEL bar, by spatially shifting the gain profile to induce asymmetric 
coupling between neighboring lasers, leading to stabilization and spatial 
redistribution of the emitted light, favoring direct coupling to optical fibers. 

 

6.2 Future Perspectives 

The first scheme presented in this thesis demonstrates intracavity filtering in a 
single EEL using a Photonic Crystal. After the theoretical and experimental 
demonstration of the proof of principle of the proposal and the brightness 
enhancement in a single EEL, the DONLL group started collaborating with 
Monocrom Company, aiming to implement intracavity PhC filtering into EEL 
bars. Therefore, the implementation of the proposal is actually a real ongoing 
project. 

The other three proposals of the thesis are devoted to the theoretical and 
numerical study of the ability of non-Hermitian potentials to tailor the spatio-
temporal dynamics of EELs, both to stabilize and improve the beam quality by 
controlling the light flow. These schemes aim to provide a basis for developing 
new techniques and methods in the novel platform of non-Hermitian Photonics. 
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Indeed, this topic is demonstrated on real physical systems, specifically on edge-
emitting amplifiers, lasers and lasers bars. Therefore, the next natural step is to 
experimentally apply the proposal in actual devices.  Regarding the advances in 
nanotechnology fabrication techniques, we expect to soon see an experimental 
confirmation, in collaboration with experimental groups. 

Besides, the demonstrated ability of non-Hermitian potentials to control the field 
flows is an exciting step forward that may be explored beyond the field of optics, 
i.e., in other physical systems that present energy dissipation. Thus, this may be 
explored in fields ranging from plasmonics, acoustics, or even the control of 
turbulence. In particular, the DONLL group is exploring the control of turbulent 
states in the general model of the Complex Ginzburg-Landau Equation (CGLE) 
framework. 

In conclusion, we expect that the present thesis results may contribute or directly 
lead to future new prospects in controlling light flows by non-Hermitian systems, 
with different technological applications. 
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