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Abstract

Oftalmological images have shown promising results in diagnostic imaging in
recent years. In this work, 2D OCTA cuts as well as 3D OCTA images and the
radiomic features extracted therefrom will be analyzed using machine learning
techniques to support diagnostic decision making in diabetes mellitus and dia-
betic retinopathy. For this purpose, a cross-sectional analysis of these medical
images collected in a large scale prospective OCTA trial cohort and their re-
spective radiomic features is performed and evaluated with classification models
such as Logistic Regression, LDA, Linear SVC and RBF SVC for the respective
classification problem (presence of DM and DR). 808 eyes from 404 patients
were studied, of which 660 eyes belonged to diabetes mellitus patients and 148
eyes from healthy control eyes. The diagnosis of DM resulted in an AUC value
of almost 0.8 with 2D OCTA cuts and 0.7 with 3D OCTA images by only con-
sidering the radiomic features. With the addition of clinical data, these values
improve slightly.

For the diagnosis of DR, 461 eyes with DM but without DR and 199 with DR
were available. Again, with the addition of clinical data, these values improve
slightly. AUC values of just below 0.7 for 2D cuts and slightly lower values for
3D images were obtained. Similar to before, the results improve after adding
the clinical data. Now, however, percentally stronger than before.

Radiomic techniques applied to OCTA images have shown accurate classifi-
cation of DM and DR patients. The combination of retinal images and clinical
data superior performance than induvidual tests only.
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1 Introduction

1 Introduction
Diabetes Mellitus (DM) is a metabolic disease of inadequate control of blood
glucose levels, hyperglycemia [4]. DM is called the epidemic of the century [5]
as it affects about 400 million people of working age (20-64 years) worldwide [6]
with an increasing trend. While in 2019 Europe has a prevalence of 8,9 %, in
2030 this is already estimated to be 9,8 % and 10,3 % in 2045 [7]. There exist
different classes of DM including Type 1, Type 2, gestational diabetes and other
types, however, this work will focus exclusively on Type 1 Diabetes (T1D).

Diabetic Retinopathy (DR) is a complication of DM, that causes visual impair-
ment and blindness by damaging the retina of the eye. Clasically the diagnosis
of DR is clinical, by direct fundus examination in the slitlamp or by direct
ophthalmoscopy. Recently, significant advances have been done in the retinal
imaging field, and the detection of DR in fundus retinographies has gained rele-
vance in the context of DR screening programs. Optical Coherence Tomography
Angiography (OCTA) is a new, non-invasive imaging technique that generates
volumetric angiography images of the retina [2]. The analysis of OCTA images
and in particular the quantification of OCTA-derived parameters such as vessel
density, perfusion density or foveal avascular zone technique has been proven
effective to detect DR in DM patients [8]. This thesis will only be based in the
diagnosis of DR on OCTA images.

This paper aims to analyse the diagnosis of DR in Type 1 Diabetic patients using
radiomics applied to OCTA 3D images. The dataset being analysed is provided
by the Ophthalmology department and the Diabetes Unit of Hospital Clínic and
originates from a previous exploratory study of diabetic type 1 patients [8].

1.1 Background
As already mentioned in the beginning, this work will only focus on Type 1 DM
patients. This type of DM, previously referred to as “juvenile diabetes“, affects
younger patients, with greater life expectancy and higher proportion of DR
than type 2 DM, that is more common in the general population. Although T1D
patients constitute only 5-10 % of of all people having diabetes [9], the increasing
prevalence of T1D should not be underestimated. A recently published 25-year
study shows that the incidence of type 1 diabetes is increasing by 3,4 % per
year across Europe [10].

Patients with chronic hyperglycemia of diabetes suffer long-term damages as
macrovascular-related stroke, ischemic heart disease, and peripheral artery dis-
ease and/or microvascular-related retinopathy, neuropathy, and nephropathy
[11]. Microvascular complications of DM are the leading cause of new-onset
blindness and vision loss among working-age adults [12]. DR is the most fre-
quent diabetic eye disease and a major complication of DM. It causes visual
impairment and blindness. From 1990 to 2010, DR patients registered an in-
crease of 27 % in blindness and 64 % in visual impairment (10).

DR can be divided into various stages. The international classification [13]
considers five stages: 1) No DR, 2) mild non-proliferative diabetic retinopathy
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1.2 Related Work 1 Introduction

(NPDR), 3) moderate NPDR, 4) severe NPDR, and 5) proliferative diabetic
retinopathy (PDR). In NPDR vascular neoplasms do not yet occur. It can be
recognised by vascular bulges in the capillaries, deposits of fats from the blood
plasma (so-called "hard exudates") or also frequent haemorrhages in the retina,
depending on which sub-stage is present here. PDR is characterised by new
formation of pathological blood vessels in the retina and vitreous humor (11).

The diagnosis of DR is clinical and is established by direct fundus examina-
tion by the eye doctor. Recently, non-invasive retinal imaging techniques such
as fundus photographs Figure 4a), Optical Coherence Tomography (OCT) Fig-
ure 4b), or OCTA Figure 4c-d) can be used as a rapid and non-invasive screening
method.

However, early detection is important. Even if a patient has good vision both
subjectively and objectively, DR may already be present. The sooner DR is
diagnosed and appropriate therapy is started, the greater the chances of success
in maintaining a visual acuity that is still considered worth living with as DR
blindness is irreversible. It has been shown that if annual retinal examinations
are performed with, for example, fundus digital photography, blindness caused
by DR can be reduced by more than 95 % [14].

DR screening can be performed by a variety of health professionals, including
ophthalmologists, optometrists, general physicians, screening technicians and
clinical photographers [15]. Although there seems to be a wide choice here, it
should not be disregarded that there is a growing shortage of retina specialists
and trained human graders in many countries. Add to this demographic change
and increasing prevalence of DR patients, and image analysis becomes more
and more costly and time consuming. For these reasons, research on artificial
intelligence and autonomous diagnosis is increasing, since unmanned automated
applications systems will be inevitable in the near future.

Deep learning and Machine Learning has already shown promising results in
diagnostics in various fields such as image recognition, speech recognition and
natural language processing. Especially in the health care sector, the applica-
tion is growing rapidly. In ophthalmology, the first autonomous and assisted
analysis of retinal photos was documented in 1990 [16]. More existing research
in computational analysis in DR with radiomics is explored in more detail in
the following sub-chapter Related Work.

1.2 Related Work
Most studies focus mostly on one sub-disease such as diabetic retinopathy, di-
abetic macular edema, cataracts, and glaucoma [12]. Further distinctions are
rare, although important, especially for small subgroups that branch off from the
main groups. Are there general differences between small groups and the overall
result or is it not necessary to examine them separately? As already mentioned
in the introduction, there are subgroups of diabetic types. Since only 5-10 %
of diabetic patients have Type 1 diabetes, a subdivision is often suppressed in
studies and publications or only Type 2 diabetes patients were considered. It is
extremely important to study them separately, as the diagnosis of eye diseases
in T1D patients is much more difficult than in T2D patients. And because they
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1.3 Objective 1 Introduction

make up such a low percentage, their possible poor diagnostic classifications are
lost in the shuffle.

Since this thesis specialises in evaluation with radiomics features 3, the following
section examines existing research and publications on radiomics in ophthalmol-
ogy.

It can already be pointed out that radiomics has not yet been applied much in
retinal images and there are few publications on it. Radiomics has its origins in
radiology and oncology [17], where it has already found numerous applications
since 2014 [18]. For retinal images only following papers are available:

In "Automatic Diabetic Foot Prediction Through Fundus Images by Radiomics
Features" [19] the application is only directed on the disease Diabetic Foot by
examining fundus images of the patients for Diabetic Foot prediction.

In "The development of an ophthalmologic imaging CADe structured report for
retinal image radiomics research" [20] as well only fundus images are considered
but it is not only focused on a particular disease, rather it addresses ophthalmic
images in general.

"Discovery Radiomics With CLEAR-DR: Interpretable Computer Aided Diag-
nosis of Diabetic Retinopathy" [21] comes closest to this work, focusing on DR,
but here as well only fundus images were used. CLEAR-DR stands for CLass-
Enhanced Attentive Response Discovery Radiomic which is the basis for their
radiomics-driven computer aided diagnosis (CAD). They have developed a sys-
tem that is not only a decision support system for DR, but also indicates in the
retinal images which are the decisive points for those decisions.

1.3 Objective
After giving an overview of the fact that very little research exists in the field
of radiomics on DR and that radiomics has so far only been applied to fundus
images in the ophthalmic field, the aims of this work will now be outlined.

• Gaining an understanding of OCTA images, their formation and the gen-
eration of 2D slices and 3D images

• Introduction to radiomics and its features

• Analyzing the obtained radiomic features with machine learning algo-
rithms and creating a robust feature extraction scheme for DM and DR
classification. The same as well for the combination of radiomic features
and clinical data

• Understanding and comparing of results from OCTA 2D cuts and 3D as
well as gaining insights in the relationship with Clinical Data

• Comparing these results with previous work using radiomics applied to
fundus retinographies, single OCT sections and single OCTA images
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1.4 Roadmap 1 Introduction

1.4 Roadmap
The structure of the document will be as follows: after providing context in
the introduction and presenting the aims of this work, the second chapter 2
will go into more detail about the given dataset and provide details about the
retinal images. In order to analyse the data images, certain radiomics values
are extracted out of them. These are explained in chapter 3. This is followed
by the fundamentals (chapter 4) and the methods (chapter 5) and finally the
results (chapter 6) and their conclusions (chapter 7) are presented in the very
last part.

Ann Christin Rathert 4 October 24, 2021



2 Retinal Images

2 Retinal Images
Since the analysis in this paper is based exclusively on OCTA images, these will
be considered in more detail in the present chapter.

OCTA images are a relatively new technology that has only been commercially
available since 2014 [22]. Although OCTA has been analysed in many publica-
tions, there are still very few studies that evaluate its clinical utility [23]. This
may be either because this imaging technique is one of the newest, or because
of disadvantages such as susceptibility to artefacts that can occur during image
acquisition [24]. Also, as will be explained below, the imaging time is longer,
resulting in slower processing and storage times, and OCTA cannot visualise
dye leakage, which is an indicator of inflammatory vascular pathologies.

Nevertheless, artefacts in the image capture can be prevented [22] and significant
advantages bring new perspectives to conventional methods. Among these ad-
vantages, a better visualisation of the deep capillary plexus and choroid stands
out [25], a depth-resolved in-vivo visualisation of the retinal microvessels. In ad-
dition, no time-consuming dye injection is necessary. This is not only in favour
of the patient, who saves the medication of contrast dye and possible allergic
reactions, but also provides higher contrast images. This leads to generally more
defined vessels in the image.

Figure 1: Scanning protocol for OCTA [1, 2]. a) OCT-scans on x- and y-axis to
determine depth of vascular structure, b) top view, in which OCTA is marked
by the blue arrows. The background is a fundus image, c)

Prior to OCTA, as briefly mentioned in the introduction, fundus imaging and
OCT were the primary image technologies for visualising retinal vessels. In
Figure 3 these are listed for comparison. Fundus images are two-dimensional
views of the retinal vasculature, where Fundus literally stands for the back-part,
so central retina, optic disc and macula are imaged. OCT is a three-dimensional
cross-sectional imaging of the macula. In general, it can be said that OCTA is
an extension of OCT. This is visualised in a straightforward manner in Figure
Figure 1. Initially, OCT scans are made on the x- and y-axis, whereby several
images are taken at the same point. In OCTAs, the z-axis is included, which
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2.1 OCTA scans 2 Retinal Images

(a) Superficial (b) Deep

Figure 2: Different layers of OCTAs indicated by the purple outline of the
corresponding OCT section: a) Superficial b) Deep [3]

enables clinicians to determine the depth of vascular structure. The innovation
in OCTA therefore is the use of motion contrast to detect blood flow within a
few snapshots. Similar to a flip book, a sequence of individual images is strung
together as a continuous movement. With in this work’s datasets available 3x3-
mm scans, there are 4 images strung together, with the 6x6-mm images there
are two 4. In general 3x3-mm images capture an area of 3x3mm, while the
6x6-mm images capture a wider area of the macula.

OCTA thus takes so-called A-scans at the same point of the retina, which suc-
ceed at short intervals, called interscan times, in order to detect the changes in
the OCT reflection signal due to the flow through the blood vessels [26]. The su-
perficial and deep capillary plexus of the retina can be visualized separately (see
Figure 2) and these settings can also be modified to further segment the retinal
vasculature to focus on other layers where previously invisible pathologies may
also be present.

2.1 OCTA scans
Since in the previous work on this matter presented by Laura Carrera Escalé
in collaboration with Dr. Javier Zarranz-Ventura, Anass Benali, Ruben Mar-
tin, Enrique Romero Merino and Alfredo Vellido Alcacena, the complete set
of retinal images including fundus, OCT and enface 2D frontal OCTA images
in the superficial and deep capillary plexi, divided into 3x3-mm and 6x6-mm
respectively were studied, this work is specifically dedicated to OCTA using the
flow OCTA cube data and structural OCTA cube data.

However, the retinal images used in this work are not the standard enface 2D
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2.1 OCTA scans 2 Retinal Images

(a) Fundus (b) OCT

(c) OCTA 3x3-mm Deep (d) OCTA 3x3-mm Superficial

(e) OCTA 6x6-mm Deep (f) OCTA 6x6-mm Superficial

Figure 3: Image types: a) Fundus photography: provides an image that shows
the "back" (fundus) of the eye, which includes the central retina, the macula
and the optic nerve head, b) OCT: a non-invasive, rapid imaging technique that
can depict cross-sectional structures of the retina to picture optical scattering of
different retinal layers, c), d), e), f) Enface 2D OCTA images: Motion contrast
images with those obtained from multiple B-scans at the same location to obtain
a deep-resolution image of the retinal vessels. Images of the superficial and deep
retinal layers can be obtained
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2.2 OCTA 3D 2 Retinal Images

frontal OCTA images as shown in Figure 3, instead cuts or sections of the 3D
OCTAs cubes, displayed as flow OCTA cube data and structural OCTA cube
data are used. For this purpose, the raw data storage file was converted in such
a way that 2D slices are obtained from the binary file of the raws disk image.
To do this, the OCT file converter by Mark Graham [27] was rewritten and
adapted to OCTA.

The present data set of OCTAs is extracted from the AngioPlex (TM) system
with a Cirrus HD-OCT5000 device. This is important to note as there are dif-
ferences in acquisition output depending on which device and associated device
hardware and software is used [23].

With the OMAG algorithm of the Cirrus device, a scan speed of 68000 A-scan/s
is measured. The imaging depth is 2mm and as mentioned previously, there is
a scan area of 3x3-mm and 6x6-mm [28]. For the A-scan count, there are 245
scans for 3x3-mm and 350 for 6x6-mm. As can also be seen in Figure 4, there
are four repeated B-scan counts for 3x3-mm and two for 6x6-mm. Figure 4
shows one slice out of 245 scans for the 3x3-mm images and one out of 350 for
the 6x6-mm images. This means that per patient and per eye there are 245
images each of superficial and deep captures with a volume of 3x3-mm and 350
images each for superficial and deep captures with a 6x6-mm frame. In total,
1190 images per patient and per eye are considered for 2D imaging.

How this large amount of data is processed will be explained in more detail in
the following chapters.

2.2 OCTA 3D
Before the methodology of the data analysis is presented, there is the second
image acquisition to introduce. With the 2D slices obtained with the OCT-
Converter, it was possible to convert them a second time with the help of a
specialized program. Another time this program is initially designed for radi-
ological and oncological medical images, but this can just as well be supplied
with retinal images.

3D Slicer is a free and open source software package commonly used for medical,
biomedical, and related imaging research [29]. 3D Slicer has a large amount of
functionalities and also of additional extensions. However, these will not be
considered further here. For this work, 3D Slicer was used exclusively for the
creation of 3-dimensional Nrrd files. Nrrd stands for "nearly raw raster data"
and was created for scientific visualization and image processing applications
[30].

Figure 6 shows the display of the 3D Slicer program for the left eye of patient
one, with the resulting Nrrd file which is depicted in the upper right corner.
These are stored and created for each eye of the patients, for later analysis.
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(a) Flow cube OCTA 3x3-mm

(b) Structural OCTA 3x3-mm

(c) Flow cube OCTA 3x3-mm (d) Structural OCTA 6x6-mm

Figure 4: Image types of Dataset
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3 Radiomics

Figure 5: 3D Slicer Output with the original input in the upper left corner. Here
there is a slider that makes it possible to scroll through either 245 or 350 images,
depending on which area size is selected. At the bottom left, this creates the
on top view, while at the bottom right, a side view is displayed. The Volume
Rendering option results in the 3D view, as shown above right.

3 Radiomics
As already briefly touched upon in the previous chapters, the method of ra-
diomics comes from the radiological and oncological medical fields and is also
most widely used in these [17]. Magnetic resonance imaging (MRI), computed
tomography (CT) and positron emission tomography (PET) are most commonly
used in the latter [31]. It is generally assumed that there is far more information
in medical images than can be seen by experts in image analysis with the bare
eye, even if they are specially trained to observe such images [32]. This will
be achieved by extracting mathematical extractions from spatial distributions
of signal intensities and pixel relationships. The data obtained is then used
as information in analysis methods from artificial intelligence [31]. Thus, an
improvement of image analysis is created by an automated extraction of large
amounts of quantitative features. These features are subdivided into 7 main
categories [33]:

• First Order Features
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3 Radiomics

• Shape Features 2D/3D

• Gray Level Co-occurrence Matrix (GLCM) Features

• Gray Level Size Zone Matrix (GLSZM) Features

• Gray Level Run Length Matrix (GLRLM) Features

• Neighbouring Gray Tone Difference Matrix (NGTDM) Features

• Gray Level Dependence Matrix (GLDM) Features

The respective extracted features of this work are listed in Table 3. More infor-
mation can be found on the Radiomics documentation website [33].
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4 Fundamentals

4 Fundamentals
In this chapter, fundamental knowledge is introduced that is used throughout
the following chapters and will be essential to understand the methods and
evaluations described there.

4.1 Data Splitting
Splitting data into training- and testingdataset is a technique which evaluates
the performance of a machine learning algorithm.

A dataset is split into two subsets, the first subset being the training dataset
used to fit the model. The second subset, the test dataset, acts as a collection
of data points that evaluate whether the previously trained model generalizes
well to new, and previously unknown, data. Thus, the goal is to estimate the
performance of the machine learning model on new data, that has not been used
to train the model. By creating different samples for training and testing, it is
possible to evaluate the performance of the model.

A very common problem that occurs when training a model is overfitting. It
occurs when a model performs very well with the training data, but does not
generalize well to new, unknown data points. This may be due to noise and
details of the training data being adopted and their concepts learned to an
extent that they negatively affect the model’s performance on new data. The
more complex a model is, the more likely it is to overfit.

When a dataset is split into one set of training data and one set of validation
data, the performance metrics of the models are highly reliant on these two sets,
as they are trained and evaluated only once. Thus the performance depends
on that one evaluation and may perform very differently when trained and
evaluated on different subsets.

A method to avoid this, is presented in the following subsection.

4.2 Cross-Validation
Since there is never enough data to train a model on, k-fold cross validation
introduces a method that makes it possible to validate models multiple times
with different subsets.

This is done by splitting the data into k subsets along with repeating the so-
called holdout method k times. This means that in each round, one of the k
subsets is used as the test set and the other k − 1 subsets are combined to
form the training set. Finally, the performance is averaged over the multiple
evaluations of all k trials, giving the overall model effectiveness.

A special case is stratified k-fold cross validation. Here, an unbalanced data
set is present, so care is taken to include approximately the same percentage of
samples of each target class in each fold.

To get more out of models, it is possible to tune hyperparameters, which can
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Figure 6: Radiomics procedure

be set before training a Machine Learning model. As there is no one-size-fits-
all solution for finding optimum hyperparameters, these must be tested and
optimized manually.

4.3 Nested Cross-Validation
Nested Cross-Validation, as the name suggests, nests cross-validation and hyper-
parameter tuning for trying to overcome the problem of overfitting the training
dataset. This is done by running a double loop, an outer and an inner Cross-
Validation, where the outer loop will serve the assessing in quality of the model
and the inner loop will serve for the parameter selection. If the outer loop is
repeated five times, five different test sets will be generated. For each of these
iterations, the outer train set will be split into four inner folds, if the inner loop
is repeated four times. With having five outer folds and four inner folds, the
total number of trained models will be 20.

4.4 Classification Model
A classification model tries to draw some conclusion from the input values given
for training. The goal of classification is to accurately predict the target class
for each case in the data.

The performance of a classification model is primarily dependent on the nature
of the data. Given that the available dataset carries multiple predictors and that
the complexity is high, it is difficult to select one single algorithm that would
always work out well. Therefore, the usual practice is to try multiple models
and figure out the suitable one. For this experiment, three Machine Learning
algorithms that are widely known for classification problems were considered.
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4.4.1 Logistic Regression

Logistic Regression utilizes the power of regression to do classification to model
binary dependent variables. Unlike regression which uses the method of Least
Squares, the model uses Maximum Likelihood to fit a sigmoid-curve on the
target variable distribution. It has a strong power of explainability of several
independent variables on a single outcome variable.

4.4.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a robust, supervised classification method
that attempts to model differences among samples assigned to certain groups.
A linear discrimination function represents a hyperplane in the feature space to
distinguish the classes with the aim to maximize the ratio of the between-group
variance and the within-group variance. LDA is a simple and as well effective
method for classifiaction.

4.4.3 Support Vector Machine

Support Vector Machine (SVM) is a linear or non-linear classifier based on the
kernel which is used. It represents the training data as points in a space sepa-
rated into categories in such a way that a wide area around the class boundaries
remains free of points. It is a so-called Large Marging Classifier. If a linear
kernel is used, the classifier and hence the prediction boundary are linear. For
separating two classes, a line is drawn in a manner that achieves a maximum
marging. This line is drawn at equal distance from both groups. An additional
two lines are drawn on both sides, which are called support vectors. SVMs learn
from the support vectors, unlike other machine learning models that learn from
the true and false data. For non-linear problems, the kernel trick is used. A
kernel is a function that takes the original non-linear problem and transforms it
into a linear one within the higher-dimensional space. In this work the Radial
Basis Function (RBF) Kernel was applied. It is the most generalized form of
kernelization and shows similarities to the Gaussian distribution. SVM is very
effective in high dimensional spaces.

4.5 Evaluation Metrics for Classification
Evaluation metrics are essential when evaluating the performance of a model.
Several of these should be considered, as it is possible for a model to perform
well on one measurement of an evaluation metric but poorly on another.

4.5.1 Confusion Matrix

For the evaluation of classification task results, a contingency table, or also
called confusion matrix, is used to represent the number of correctly and falsely
predicted samples per class.

Four possible outcomes could occur while performing classification predictions:
true positive (TP), true negative (TN), false positive (FP) and false negative
(FN), for which TP means, that the model correctly predicts the positive class
and TN the model correctly predicts the negative class. FP is an outcome with
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incorrectly predicted positive class and simultaneously TN is an outcome where
the model incorrectly predicts the negative class.

4.5.2 ROC Curve

A ROC curve (Receiver Operating Characteristic curve) is a graph showing the
performance of a classification model by distinguishing between true positive
and negative outcome. This is achieved by plotting sensitivity, the probability
of predicting a real positive will be a positive, against 1-specificity, the probabil-
ity of predicting a real negative will be a positive. Thus it is a way to visualize
the tradeoff between these two using different decision thresholds, meaning a
threshold for deciding whether a prediction is labeled "true" or "false". In-
creasing the threshold will generally increase the precision, but a decrease in
recall.

The best decision rule is high on sensitivity (true positive rate) and low on
1-specificity (false positive rate).

4.5.3 AUC

AUC is the area under the ROC curve and a metric used to summarize the
ROC curve by using a single number. AUC has a range of [0,1]. The greater
the value, the better is the performance of the model.
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Figure 7: Workflow

5 Methodology

5.1 Experimental Design
Now that the basic concepts of retinal images and radiomics have been intro-
duced, the actual aim of this work can be laid out, which is to analyze the ability
of different characteristics to predict DM on the one hand, and to predict DR
when DM is present on the other hand.

For this purpose, the data set consisting of clinical data and radiomic features,
has to be filtered using the exclusion and inclusion criterion as explained in
subsection 5.2.

The radiomic features extracted for 2D and 3D imagery respectively to 3x3-mm
and 6x6-mm structural as well as flow cube images have to be aggregated for
the 2D imagery. This is done by building the mean from the 245 images of the
3x3-mm images and the 350 6x6-mm images for each eye and each patient.

Using the mutual information technique explained above, a first feature sam-
pling is performed. This is continued with an iterative process in which the bet-
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ter parameters are identified. Next, the backward elimination wrapper method
is used to eliminate features that are irrelevant or contribute only insignificantly
to the model.

Finally, the model is trained, evaluated and tested with a double-cross valida-
tion.

The entire process will be further explained in the following by first reviewing
the dataset in more detail and then continuing with the implementation and
execution.

5.2 Dataset Description
The present data set, generated by the Diabetes Unit of Hospital Clinic, arose
from an exploratory study of a cohort of type 1 DM patients [8, 34].

Included are 596 patients who have different pathologies and thus can be subdi-
vided into certain classifications. As exposed in the introduction, there are two
subcategories of DR: non-proliferative diabetic retinopathy (NPDR) and prolif-
erative diabetic retinopathy (PDR). The former is further subdivided into mild,
moderate and severe. However, also included in this study are patients who
may indeed have Type 1 diabetes, but fortunately have not yet been diagnosed
with DR. Also, in order not to classify later on only between DR and No DR,
control patients are included who do not suffer from T1D and therefore neither
from DR. For a better overview see Table 2.

0 Controls
1 No DR
2 Mild
3 Moderat
4 Severe
5 Proliferative DR

Table 2: Group characteristics of study participants

As mentioned previously, not only one classification is considered, but two binary
classification problems are analyzed in this work:

• First, the discrimination between the control group [0] against the patients
with T1D [1,2,3,4,5].

• Secondly, the discrimination between T1D patients without DR [1] and
those with DR [2,3,4,5].

In addition to the retinal images for each eye of the patients, a series of medical
records and clinical history were also collected in the dataset generated by the
Diabetes Unit of Hospital Clínic. The most interesting data for discrimination
are gender, time from T1D diagnosis, age, Body Mass Index (BMI), and smoking
status. In this regard, it should be noted that this combination of clinical data
and medical data is a positive rarity in existing publications.
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Table 3: Distribution of eyes before and after exclusion criteria

In consultation with the supervising ophthalmologist, a medical exclusion cri-
terion is to be set as a filter. Patients who have already received treatment
or surgery are sorted out, as these could distort the outcome. This filter as a
medical exclusion criterion is based on a previous study [8], and examines those
variables that are also present in the clinical data. Also a quality exclusion
criteria is applied, which excludes images with artifacts, segmentation errors or
a signal strength index below seven.

Figure 8: Distribution of Classes

After applying these filters of medical exclusion criteria and quality exclusion
criteria, a total of 362 eyes were excluded Figure 8.

The dataset is further looked at when classifying DR with two different test
scenarios. Once, all eyes are included in the model so that training can be done
with a larger data set. Another time, only one eye is included in the model.
This is done according to the following principle: if a patient has eyes with 2
different class labels, i.e. if he has DR on one eye and not on the other, the eye
with the worse classification is always included in the data set, the better eye is
thrown out. However, if the patient’s eyes have the same classification, one of
the eyes is randomly eliminated.
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5.3 Implementation
In the implementation section, the tools required are presented and more insight
is given into Data Partitioning, Data Preparation and Data Selection.

5.3.1 Tools

The main programming language of this work is Python 3.8. Python offers the
ability to import third-party packages to use implementations.

The main libraries used in this work are listed as follows:

• sklearn - to create and train models

• pandas and numpy - for simple data manipulation

• Pyradiomics - to extract radiomic features

• sklearn - to build machine learning models

• matplotlib and seaborn - for visualization tasks

As already mentioned in section 2 the OCT converter as well as 3D-Slicer were
used for image generation of structural and flow cube OCTA images as well as
for the creation of 3D Nrrd files.

5.3.2 Data Partitioning

After the presented exclusion and inclusion criteria in subsection 5.2 have been
applied, it is necessary to divide the data set into training and test data, prevent-
ing overfitting. This is done for each classification problem, model and feature
subset. It ensures that the test data is used exclusively for the evaluation of the
model performance.

5.3.3 Data Preparation

Following the Data Partitioning, the preprocessing of the data is applied. Miss-
ing data entries for the clinical data occur which are either filled with the median
if less than 50 % are affected by the entries, or the respective column is taken out
if more than 50 % of the data are impacted. Categorical variables are coded with
one-hot encoding by transforming the contained n values into n variables and
numerical attributes are normalized with the MinMaxScaler to values between
zero and one.

5.3.4 Data Selection

Several filter feature-selection methods are performed to ensure the use of the
most significant variables for the model. These are performed for each classifi-
cation task (DM and DR) as well as for each image type.

First, a feature sampling is performed using the Mutual Information Metric.
Mutual information is an entropy measure between two random variables and
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quantifies the amount of information that one variable gains from the other. If
it is equal to 0, then the two variables being tested are independent of each
other. With the mutual information, 30 features with the highest MI values
are pre-selected. This is done by using a 10-fold cross validation for keeping
robustness.

This is followed by an iterative finding of the best fit parameters for the given
dataset, on which a backward elimination method is applied to remove irrelevant
features for the future model. A stratified double cross validation with 5 outer
and 4 inner Cross Validations is carried out with a total of 20 iterations.

Hyperparameters used for Logistic Regression varies from C = 10−3 to C = 103,
for Linear SVC and RBF SFC from C = 101 to C = 104 and γ = 10−4 to
γ = 101.

Also with the stratified double cross validation a derivation of the Area under
the Curce (AUC) value for each split is created and to compare the different
models and feature subset performance.

5.3.5 Image Data Preprocessing

After examining and pre-processing the clinical data, the image data is also
treated. A distinction is made in each case for the different image types.

Since in the timelapse images of Flow Cube OCTA and Structural OCTA, at-
tention must be paid to even the smallest differences between the scans of the
overall image. Firstly the image size is retained and secondly further image pre-
processing is dispensed with. The images are already in grayscale and random
noise may be difficult to distinguish from captured point clouds in the OCTA
images.

For the 3-dimensional images, the respective cuts were already cropped (Fig-
ure 9) before the conversion to 3D, for the simple reason that the amount of data
was already very large and the computational effort of the feature extractions
would otherwise have been immense.
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(a) Flow cube OCTA 3x3-mm - Original

(b) Cropped (c) 3D output

Figure 9: Image preprocessing for 3D creation

6 Results
The following chapter will be divided into the two classification problems, which
have already been defined. Considered is the discrimination between the con-
trol group [0] against the patients with T1D [1,2,3,4,5] and the discrimination
between T1D patients without DR [1] and those with DR [2,3,4,5].

For this purpose, the AUC values has been extracted from each double cross
validation split and were plotted for the respective image types which are then
compared against the different classification models including Logistic Regres-
sion, LDA, Linear SVM, RBF SVC.

6.0.1 Discriminating DM with 2D OCTA

Starting with the 2D OCTA images (Figure 10), which are divided into Flow
Cube and Structural, each available for the section of a 3x3-mm area and 6x6-
mm area and analysed with radiomic features, there are first of all quiet similar
results between the different classification models.

First of all, it is clear to see that for all 4 classification problems, the 3x3-mm
image of the flow cube OCTA is the worst, showing an AUC value just above 0.7.
For the same image type, but with a 6x6-mm shot, an AUC value of 0.8 is almost
achieved and thus stands out strongly from the 3x3-mm. The 6x6-mm image of
the flow cube OCTA also achieves a better result for the classification problems
Linear SVM and RBF SVC compared to the structural images. In general, these
differ only slightly from each other, but the similarities are stronger for Linear
SVM and RBF SVC than for Logistic Regression and LDA.
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Figure 10: 2D: Discriminating DM with radiomic features

With the clinical data now considered in addition to the radiomic features, a
model is built from both. The results seen in Figure 11 are obtained.

As was the case with the radiomic features, Flow Cube OCTA 3x3-mm also
performs the worst here, although this time the difference from the other image
types is not too great. At least the lower quartile is above an AUC value of
0.7. Whereas the 6x6-mm image of the same image type could still shine in the
radiomic features for the classification problems Linear SVM and RBF SVC,
these now perform second worst for all the classification problems. The first
and second place are shared by the structural image types.

In general, it can be said that Flow Cube images offer stronger performance in
discriminating DM than the Structural images for all the models considered. In
the Logistic Regression and LDA models, the closer 3x3-mm images seem to
perform better than the wider images of the 6x6-mm area images for both Flow
cube and Structural images. However, this cannot be confirmed with the Linear
SVM and RBF SVC models, where there are no fixed cutoffs. The 6x6-mm
image performs better in the Linear SVM and RBF SVC models and conversely
3x3-mm performs better in Logistic Regression and LDA. Structural OCTA
6x6-mm almost reaches an AUC value of 0.88 with the upper quartile.

6.0.2 Discriminating DR with 2D OCTA

For the discrimination of DR, both the dataset containing both eyes of the
patient and the dataset containing the worse eye of the patient were included.
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Figure 11: 2D: Discriminating DM with radiomic features and clinical data

Starting with the larger dataset containing all eyes with the corresponding ra-
diomic features, a contrasting result is obtained as with the discrimination of
DM.

While in the discrimination of DM the flow cube OCTA 3x3-mm performed
best, the discrimination of DR shows the exact opposite with regard to the flow
cube OCTA 3x3-mm images. These perform best in all models. With logistic
regression and LDA, these AUC values can also be significantly differentiated
from the other image types.

However, the maximum value is below 0.8 with the upper quartile of the OCTA
3x3-mm images. Overall, the results are all somewhat higher than an AUC
value of 0.6. It is striking that the other image types are all very close to each
other and, with the exception of Structural OCTA 6x6-mm, have a very low
interquartile range.

If clinical data is now added to the radiomic features, improvements in the AUC
values are obtained for all image types, but especially for the structural OCTA
images (Figure 13). These previously performed worst, but now show the best
results, so that an AUC value of just under 0.875 can be achieved.

In addition to the full data set with all eyes, it is now investigated whether there
is a difference if only one eye of the respective patient is included (Figure 14).

In general, one can say that the results are very similar to the results of the
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Figure 12: 2D: Discriminating DR with radiomic features

Figure 13: 2D: Discriminating DR with radiomic features and clinical data
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entire data set. It is noticeable that the interquartile range is smaller and thus
the results are more robust when only one eye is considered. For example, it
can be seen that in the RBF SVC model, the image type of structural 6x6-
mm performs worse than structural 3x3-mm, where in the larger data set the
interquartile range was too wide such that a distinction these was not possible.

Figure 14: 2D: Discriminating DR with radiomic features with dataset contain-
ing only one eye per patient
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Figure 15: radiomic features and clinical data

6.0.3 Discriminating DM with 3D OCTA

After the 2D OCTA images have been analyzed, next steps are the 3D OCTA
images. For this, the 3D-Nrrd images were analyzed and likewise divided into
flow cube OCTA 3x3-mm and 6x6-mm as well as structural OCTA 3x3-mm and
6x6-mm.

First considered is again the first classification problem, which deals with the
prediction of DM.

In this one, a very strong separation into two groups can be recognized, namely
the flow cube and structural OCTA images (Figure 16). The former are clearly
set apart from the structural OCTA images and thus achieve an AUC value of
almost 0.75 with the 3x3-mm images. The 6x6-mm images reach a value just
above 0.7. This is valid for all 4 classification problems. The structural images
do not reach the 0.6 limit of AUC value and stay just above an AUC of over 0.5.
One can see a slight difference between the first two models Logistic Regression
and LDA and the last two models linear SVC and RBF SVC. The latter have
slightly worse values than the former.

After including the clinical data (Figure 17), there is also an improvement again
for overall models. The flow cube images now perform with an AUC value of
just over 0.8, the structural images with an AUC value of 0.75. For the flow
cube images, the interquartile ranges have become slightly wider than in the
models without the clinical data; for the structural images, they have remained
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Figure 16: 3D: Discriminating DM with radiomic features

about the same.

6.0.4 Discriminating DR with 3D OCTA

The second classification problem, which deals exclusively with DM patients and
which tests whether DR is present or not, shows similar results for all models
(Figure 18). Flow cube OCTA 3x3-mm performs best, with AUC values of 0.6-
0.7. This is followed by 6x6-mm images, and structural images bring up the
rear.

These results are increasing by considering also the clinical data (??). A median
AUC value of 0.84 is obtained with the Flow Cube OCTA 3x3-mm for the
Logistic Regression and LDA models. With linear SVC and RBF SVC, generally
wider interquartile ranges are observed. This is true for all image types. The
smallest AUC value for the median is approx. 0.8 and is recorded by the Flow
Cube OCTA 6x6-mm.

Now looking again at the data set which contains only one eye of each patient.

For the models that only contain the radiomic features (Figure 20), the images
are again set off as flow cube OCTA 3x3-mm and achieve a slightly better value
than the data set with 2 eyes. With flow cube OCTA 3x3-mm, a very robust
value close to the 0.8 AUC limit is achieved. However, this robustness only
applies to flow cube OCTA 3x3-mm. The other image types are all at the same
values at first and their robustness is no longer particularly stable as it was the

Ann Christin Rathert 28 October 24, 2021



6 Results

Figure 17: 3D: Discriminating DM with radiomic features and clinical data

Figure 18: 3D: Discriminating DR with radiomic features
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Figure 19: 3D: Discriminating DR with radiomic features and clinical data

case for the structural OCTA images.

For the results where the clinical data have been added, it is first noticeable that
all models are very close to each other (Figure 21). However, this could also
be visually deceptive, as the interquartile ranges are generally very wide. The
medians of the models with only one eye are all above 0.8, but do not exceed
the 0.85 limit, as is the case with the models with both eyes. Here, a median of
0.84 is obtained for the Flow Cube OCTA 3x3-mm images.
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Figure 20: 3D: Discriminating DR with radiomic features with dataset contain-
ing just one eye

6.1 Evaluation
Overall, it can be said that surprisingly good results have been achieved for
the classification of DM, as well as for DR. This can also be confirmed for the
different image types of 2D and 3D images.

For the discrimination of DM, a median of 0.85 AUC value was achieved with the
2D cuts of the OCTA images. Here, the structural images performed particularly
well. The flow cube images have an AUC value of just under 0.8.

With the 3D images, an AUC of slightly above 0.8 is achieved. These are paired
with the flow cube OCTA 3x3-mm images and the structural OCTA 6x6-mm
images. In contrast, the Flow cube OCTA 6x6-mm and Structural OCTA 3x3-
mm images bring up the rear with values up to 0.75.

In the second classification problem, it is not quite so easy to make a clear
distinction between the 2D and 3D images. A median AUC value of 0.825 is
recorded for the 2D images. This was, for example, 0.84 for the 3D images
with Flow Cube 3x3-mm, but also just over 0.8 with Flow Cube 6x6-mm. All
examinations are close to each other.

Overall, it can be said that both 2D and 3D OCTA images achieved better
results with the addition of the clinical data, even if the robustness decreased
somewhat.
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Figure 21: 3D: Discriminating DR with radiomic features and clinical data with
dataset containing just one eye

Without the clinical data, however, quite high values are still observed. For
example, AUC values of over 0.7 are obtained for discrimination of DM and
values just below 0.7 for discrimination of DR.

Regarding the respective image types, it can be said that for the classification
problem of DM the flow cube OCTA 3x3-mm performed by far, as well as
structural 6x6-mm, for DR it is the flow cube OCTAs 3x3-mm and 6x6-mm.

Furthermore, when examining two different data sets, once with only one eye
per patient, the other time with both, a small deterioration can be found in the
smaller data set.
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7 Conclusion
It can only be repeated that the 2D images and 3D images showed remarkably
good results.

The fact that 2D images perform better than 3D images is astonishing, since
the mean was ultimately formed via the 245 or 350 2D OCTA images and it was
to be assumed that important information could be narrowed down. However,
depending on the image area, the 2D images contain either 2 or 4 images that
were taken at the same location in a few seconds one after the other. This means
that the blood flow can also be mapped in one image.

When comparing the discriminations of DM and DR, it was also noticeable that
different image types grouped together performed better than others. Thus,
the flow cube images with the respective areas of 3x3-mm and 6x6-mm were
able to find the best predictions for the classification problem of DR. For the
classification problem of DM, however, this cannot be grouped according to the
recorded area or image type, rather they cross each other. Flow cube OCTA
3x3-mm and structural OCTA 6x6-mm achieved the best predictions.

Finally, with the addition of variables such as gender, BMI index, smoking
status, etc., all results improve a little. The combination of retinal images and
clinical data is the key to achieving this.

7.1 Related Work
Since the previous work on this matter presented by Laura Carrera Escalé in
collaboration with Dr. Javier Zarranz-Ventura, Anass Benali, Ruben Martin,
Enrique Romero Merino and Alfredo Vellido Alcacena, focused on the set of
retinal images including fundus, OCT and enface 2D frontal OCTA images in
the superficial and deep capillary plexi, a comparison to these is given in the
following. Primarily the results of the enface 2D frontal OCTA images are
considered, since these have the same origin as the images studied in this work.

Again, a distinction is made between the classification problems of DM and DR.
For the discrimination of DM, the related work showed an AUC of just below
0.7 for all 4 models, varying between 0.7 and 0.6 for logistic regression, LDA
and Linear SVM, but an interquartile range of 0.35 to 0.65 for RBF SVC. These
values are exceeded once with the 2D cuts and their values up to 0.8 easily and
also for the corresponding 3D images this is the case, even though the values
here were somewhat lower.

For the classification problem of DR, the enface 2D frontal OCTA images achieve
surprisingly high and robust values with AUC values up to 0.8.

This cannot be matched by the 2D cuts, which are almost all below 0.7, with
the exception of flow cube OCTA 3x3-mm, which achieve a higher value of 0.75.
For 3D images, the value of 0.7 cannot be surpassed either.
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7.2 Improvements
It certainly would be of interest to see if there is an improvement in the val-
ues if image cropping were not applied to the 3D OCTA images. Since time
was limited and the computing power had already been high enough with the
preprocessed images, the image cropping step could not be avoided of this work.

As already explained, this work arose from a project in which several students
and supervisors worked on the same data set. Different techniques were applied
to this data set. Anass Benali, for example, worked thoroughly on image pre-
processing [35]. The images used were all adjusted by segmentation, rotation,
curvature and skewness. Here again, it would not have been possible in the time
available to apply these preprocessing steps to the 245 or 350 images per eye.

7.3 Future work
As briefly noted in the Introduction, an interpretable Computer Aided Diagnosis
of Diabetic Retinopathy already exists. In [21], however, this has so far only
been verified with fundus images. In the work of Laura Carrera Escalé it is
confirmed that fundus images are by far the worst performers compared to
OCT and OCTA images. For this reason it would be interesting to create an
interpretable Computer Aided Diagnosis of Diabetic Retinopathy also for OCTA
images and their variants. This will also make it easier to introduce Computer
Aided Diagnosis into practical use when it comes to medical professionals using
computer aided diagnosis in the future. It can be used to understand why the
program predicts a particular diagnosis. As already experimented in [21], the
area that is to justify the made diagnosis is directly marked in the input itself.
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DM Diabetes Mellitus.
DR Diabetic Retinopathy.

LDA Linear Discriminant Analysis.

NPDR Non-proliferative diabetic retinopathy.
Nrrd Nearly raw raster data.

OCT Optical Coherence Tomography.
OCTA Optical Coherence Tomography Angiography.

PDR Proliferative diabetic retinopathy.

RBF Radial Basis Function.

SVM Support Vector Machine.

T1D Type 1 Diabetes.
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