
Implementation of a data
warehouse on the cloud

Lucas Cajal Treviño

Bachelor Thesis
Specialization in Computing

Director: José Luis Sánchez Ros
Ponent: Elvira Pino Blanco

GEP Tutor: Joan Sarda Ferrer

January 19, 2022

Acknowledgement

I would like to thank everyone at ServiZurich who has helped in the making
of this project, specially my director José Luis, and my colleague and also
roommate Arnau Soler, who has been a huge help in the final stages of the
project.

També vull donar les gràcies a la Judit, per haver-me donat sempre un suport
incondicional i haver estat al meu costat, sempre d’una forma tan especial.

A mi familia, que siempre me ha apoyado y ha aguantado mis monólogos en
las comidas de fin de semana, a pesar de no entender demasiado lo que les
explicaba.

Y por último a Roberto, a quien me hubiese gustado poder enseñar este
proyecto y que estuviese aqúı para verme acabar la carrera. Te echamos de
menos, kabron.

Abstract

This project is centered around the creation of a system capable of extract-
ing open data from a variety of public sources, that will be loaded into the
company’s data infrastructure. This infrastructure will analyze and process
the data, structuring it to make it easily usable by the company’s users and
applications. One of these applications will be centered on the usage of data
containing geographic information, and it will be implemented as a part of
this project.

The final objective is the creation from start to end of a process capable of
extracting data from sources external to the company, add it to the company’s
data infrastructure, and presenting them to a final user via an application that
has filtering and visualization functionalities of data based on its geographic
location.

1

Resumen

Este proyecto se centra en la creación de un sistema capaz de extraer datos
abiertos de una variedad de fuentes públicas, que serán cargados dentro de la
infraestructura de datos de la empresa. Esta infraestructura analizará y proce-
sará los datos, estructurándolos de forma que sean fácilmente utilizables por
usuarios y aplicaciones de la empresa. Una de estas aplicaciones estará basada
en el uso de datos que contienen información geográfica, i será implementada
como parte de este proyecto.

El objetivo final es crear un proceso de inicio a fin capaz de extraer datos de
fuentes externas a la organización, añadirlas a la infraestructura de datos de la
empresa, y que estos datos puedan ser presentados a un usuario final mediante
una aplicación con funcionalidades de filtración y visualización de datos según
su ubicación geográfica.

2

Resum

Aquest projecte se centra en la creació d’un sistema capaç d’extreure dades
obertes d’una varietat de fonts públiques, que seran carregades dins la in-
fraestructura de dades de l’empresa. Aquesta infraestructura analitzarà i pro-
cessarà les dades, estructurant-les de forma que siguin fàcilment usables per
usuaris i aplicacions de l’empresa. Una d’aquestes aplicacions es basarà en l’ús
de dades que contenen informació geogràfica, i serà implementada com a part
d’aquest projecte.

L’objectiu final és crear un procés d’inici a fi capaç d’extreure dades de fonts
externes a l’organització, afegir-les a la infraestructura de dades de l’empresa
i que aquestes dades puguin ser presentades a un usuari final mitjançant una
aplicació amb funcionalitats de filtratge i visualització de dades segons la seva
ubicació geogràfica.

3

Contents

1 Context and scope 10

1.1 Context . 10

1.1.1 Introduction . 10

1.1.2 Terms and concepts . 10

1.1.3 Problem to be resolved 12

1.1.4 Stakeholders . 12

1.2 Justification . 13

1.2.1 Previous studies . 13

1.2.2 Solution justification . 13

1.3 Scope . 14

1.3.1 Objectives . 14

1.3.2 Laws and regulations . 15

1.3.3 Potential obstacles and risks 15

1.4 Methodology and rigor . 15

1.4.1 Methodology . 15

1.4.2 Rigor . 16

2 Planning 16

2.1 Task definition . 17

2.1.1 PM. Project management (160h) 17

2.1.2 ED. External Data Hub (230h) 18

2.1.3 DA. GeoIntel (210h) . 19

2.2 Time planning . 20

2.2.1 Time estimates summary 20

4

2.2.2 Gantt chart . 22

2.3 Resources . 23

2.3.1 Project management . 23

2.3.2 Code development . 23

2.3.3 Human resources . 24

2.3.4 Other resources . 25

2.4 Risk management . 25

2.4.1 Change of requirements 25

2.4.2 Dependency on other teams 26

2.4.3 Support required by other team 26

2.4.4 Security related holds 27

3 Budget 27

3.1 Human resources . 27

3.2 Development costs . 28

3.3 Other costs . 30

3.4 Budget deviations . 31

3.4.1 Contingency . 31

3.4.2 Incidental costs . 31

3.5 Final budget . 31

3.6 Management control . 32

4 High level architecture 33

4.1 External Data Hub . 33

4.2 GeoIntel . 34

4.3 DevOps . 35

5

5 External Data Hub 36

5.1 Ingestors . 36

5.2 External data landing storage 38

5.3 Dataset locator . 38

5.3.1 Geospatial data extraction 39

5.3.2 Geospatial data generation 40

5.3.3 Geospatial data extraction evaluation 45

6 GeoIntel 47

6.1 Cosmos Database . 47

6.2 PostgreSQL with PostGIS . 47

6.3 API . 48

6.3.1 Geocoding . 48

6.3.2 Data access . 49

6.4 Data viewing web app . 50

7 DevOps pipelines 52

7.1 Azure Functions . 52

7.2 App Service . 52

8 Project review 53

8.1 Encountered issues . 53

8.1.1 Azure functions limitations 53

8.1.2 Container Registry Firewall 53

8.1.3 Geospatial database . 54

8.1.4 Integration with ZIH . 55

8.1.5 Reduction of developers 55

6

8.2 Planning changes . 56

8.3 Task completion . 56

8.3.1 ED. External data hub 56

8.3.2 DA. GeoIntel . 59

8.3.3 Final Gantt chart . 60

8.4 Final cost . 61

8.4.1 Human resources . 61

8.4.2 Development costs . 62

8.4.3 Other costs . 64

8.4.4 Summary . 64

8.5 Sustainability report . 65

8.5.1 Environmental impact 65

8.5.2 Economic impact . 66

8.5.3 Social impact . 67

8.6 Relationship with the degree 68

8.6.1 Justification of the specialty and related subjects 68

8.6.2 Technical skills . 68

9 Conclusions 69

10 Nomenclature 70

7

List of Tables

1 Summary of tasks. 21

2 Tasks cost estimation . 29

3 Azure cost estimation . 29

4 Generic hourly costs . 30

5 Incidental costs . 32

6 Final budget . 32

7 Geospatial data generation tests 46

8 Dataset table structure . 47

9 Polygons table structure . 47

10 Task completion status. 57

11 Tasks final worked hours by data engineers 61

12 Tasks cost . 62

13 Azure resources monthly costs 63

14 Final budget . 64

8

List of Figures

1 Gantt chart . 22

2 External Data Hub architecture 34

3 GeoIntel architecture . 35

4 DevOps architecture . 36

5 Fan-out/fan-in durable function pattern 37

6 Geometry dissolving . 39

7 Extracted geodata . 40

8 Geocoded location entities . 41

9 Geocoded location entities (close-up) 42

10 Bounding polygon for cluster 43

11 Extracted geodata and generated geodata (bounding polygon) . 43

12 Generated geodata . 45

13 Extracted and generated geodata 45

14 Geocoding illustration . 49

15 GeoIntel web main page . 50

16 GeoIntel web heatmap view . 51

17 GeoIntel web heatmap and cluster view 51

18 Final Gantt chart . 60

19 Azure portal cost report . 63

9

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

1 Context and scope

1.1 Context

1.1.1 Introduction

Today, the world is driven by data. But the amount of available data dramat-
ically exceeds the amount of used data. Almost every human activity which
involves the usage of a digital device generates some kind of data: from GPS
coordinates to the heart rate of a person. Everything is logged and stored, even
when not used for any particular purpose. And this trend just keeps grow-
ing, as companies and public institutions realize the power and importance of
data, and as a consequence install more sensors on devices, add data-collection
features to software or organize data-collection campaigns.

A clear problem arises: how can we keep up with the increasing availability
of data in order to be able to analyze it and use it with ease? How can we
collect all this data, which is located in many sources, and be able to use it,
considering it comes in different formats and structures? How can we classify
it by subject, when most datasets do not have a description, or it is located in
many places (the source’s website, inside a README file, etc.)? Clearly, doing
all of this manually is an impossible task. We need a way to automate the
process of extracting data, classifying it and transforming it to a standardized
format to allow its ease of use.

An example of this problem can be found in the insurance company Zurich.
Being the 76th largest company in the world [1] and having presence in 215
countries and territories [2], the amount of data the company possesses is
enormous. But with the company being so large, every business unit has
its own collected data, stored in its own servers, and as a result there is no
standardization between regions and business areas, preventing the sharing of
data across business regions and limiting the potential usage of the available
data. Most of the data usage is ad-hoc for specific use cases and very little
reusability is achieved, even inside the same business unit. Additionally, data
preparation is a costly process, and it is sometimes being performed several
times for the same data (or of similar nature) for different use cases.

1.1.2 Terms and concepts

Before starting the definition of the project, some background on terms and
concepts related to it must be given in order to properly understand the work.

1 Context and scope Page 10

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Cloud computing: The increasingly famous term of cloud computing [3]
refers to the usage of computing services, mainly storage and computing power,
over the internet, without active management of the used resources by the user.

DevOps: They are a set of practices that aim to shorten and automate the
development cycle of software, by integrating automated testing, continuous
integration and deployment (CI/CD) of the product and other practices [4].

Data Warehouse: Data warehouses [5] are a type of data management
systems that take data from a wide range of sources and stores it in a common
format for later access. They process data in three different stages to achieve
this:

• Data ingestion: The first step is extracting the data from the corre-
sponding source and storing it in a landing database as is.

• Data transformation: Data then needs to be transformed to standard-
ize its format. Every source and dataset has a different structure, and
this needs to be changed to have a common format for all the ingested
data.

• Data loading: Once the data has been transformed, it needs to be
stored in a final trusted database where all cleaned data is available.
This is where the data will be taken from by the end user.

Geospatial data: Geospatial data is data that has an explicit or implicit
relationship with locations on the Earth.

Coordinate reference system (CRS): A coordinate or spatial reference
system is a coordinate based system used to locate points and other geograph-
ical features in a geographic space. The WGS84 standard [6] defines the Earth
surface as an ellipsoid. It is the most common standard in geospatial systems,
and most common coordinate reference systems are based on it. It is the stan-
dard that will be used for geospatial operations in this project. Specifically,
the following spatial reference systems will be used:

• EPSG 4326 [7]: This spatial reference system simply adds units to the
WGS84 standard (the terms WGS84 and EPSG:4326 are commonly used
in the same way), so it represents a curved surface, and uses degrees as
units (latitude and longitude). The origin is the point where the equator
and prime meridian (Greenwich) cross.

1 Context and scope Page 11

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

• EPSG 3857 [8]: This CRS is a projection of WGS84 into a flat surface.
Its units are meters, and as with the previous CRS is centered where the
equator and Greenwich meridian cross.

1.1.3 Problem to be resolved

This project aims to provide a solution to that problem. The goal is to imple-
ment a system capable of extracting data from multiple sources, both internal
company sources and external public (or paid) sources, classifying the data
by topic and location and transforming it to have a standard format for all
datasets. There is also the need of providing a convenient way of accessing
the data, so that it can be used by every business unit around the world.

1.1.4 Stakeholders

Before detailing the stakeholders of this project, some context on how the
internal structure of Zurich works is needed. Inside the Zurich ecosystem,
there is a subsidiary company named ServiZurich [9] in charge of developing
technology products for the parent company. It works as an internal consulting
firm, where the clients are Zurich’s business units and regions. This subsidiary
is where the product will be developed.

Context provided, the main stakeholders of this project are:

ServiZurich’s EDAA team: Inside ServiZurich, the team responsible for
developing the product is the Enterprise Data Analytics and Architecture
(EDAA) team. It will be divided into different task groups, each one in charge
of developing a specific part of the product: from internal or external data ex-
traction to data transformation and availability. I will be part of the team in
charge of developing methods for obtaining external data, classifying obtained
datasets by location and subject, and finally implementing a system to provide
access to the final transformed data for the clients.

Project manager: The project manager will be the one in charge of spec-
ifying the objectives which need to be met, list the features the product will
have and supervising the development. This figure will also be in charge of
meeting with the ServiZurich’s clients, which are the different Zurich business
units, in order to sell the product to them and accommodate it to their needs.

1 Context and scope Page 12

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Zurich business units: Inside the Zurich Insurance company, all different
business units around the globe will benefit from the use of this product. It
will allow them to properly organize their own data and give them access to
a huge collection of new datasets, both from other business units and from
external sources.

Zurich clients: The last group which will be affected by the product are
the Zurich clients, both companies and individuals. Although unknowingly,
they will benefit from the data-driven decisions taken by Zurich and will have
access to a better offering of insurance products.

1.2 Justification

1.2.1 Previous studies

Many companies and organizations have implemented similar solutions for
this problem. There are public data portals and standards which aim to be a
centralized source for public data (also known as OpenData), such as Kaggle
[10] or CKAN servers [11], but these are limited to publicly available data and
contain only a small portion of it.

Having said this, the usage of data warehouses is becoming increasingly pop-
ular, as companies and institutions realize the importance of data for their
operations, and as a result many studies have been done on the topic. This
means that, even though it will not be possible to investigate similar imple-
mentations of the product that is going to be developed, extensive public
research has been done on the topic, and it can be used as a baseline for a
good design. The specifics of the implementation will have to be done from
scratch, but the design of each component of the product and the approaches
used for their implementation will be based on previously done research.

1.2.2 Solution justification

The main reasons for developing the product internally are the usage of inter-
nal company data and the need to adapt the solution to the specific needs of
Zurich Insurance. Although the general scheme of the product could be used
for many cases, the company has very specific requirements regarding how the
data must be collected, transformed and accessed. And due to the presence of
internal data, both from the company and it’s clients, we have to implement a
system that has never been implemented before (as this is the first time Zurich
will have a product like this) and that will not be used outside the company
itself. This is why the project will be implemented from scratch.

1 Context and scope Page 13

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

1.3 Scope

As mentioned earlier, the project will be implemented by different teams, each
one in charge of several components of the product. The scope of this thesis
is implementing the ingestion of external data, classifying it based on subject
and location and setting up a system that enables easy access to the final
transformed data. The transformation and standardization of the data is part
of the product, but out of the scope of this thesis.

1.3.1 Objectives

We will divide the requirements by project component:

External Data Hub

• Automated ingestion: Ensure a periodical and automated ingestion
of data from the different sources.

• Data updating: Ensure the ingestion of new versions of already in-
gested datasets when an update is available.

• No data duplication: Avoid duplication of data that has been already
ingested.

• Classification: Analyzing the data to classify it by location and subject.

• Data reuse: Allow for the reuse of data, both within the same business
unit and globally.

• Achieve global data licensing: Allow for a global acquisition of li-
censed data in order to reduce costs.

• Easy source addition: The ingestion framework must allow an easy
and fast addition of new sources.

Data access

• Low-level API: Create an API to provide access to the data using
multiple methods.

• High-level interface: Implement an interface that, using the previ-
ously mentioned API, can be used to navigate through the data and
view it using multiple filters.

• Holistic view: Create a holistic view on data already available in
Zurich.

1 Context and scope Page 14

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

1.3.2 Laws and regulations

Something that needs to be considered is the legislation regarding data-protection
of different countries. When loading data into the ZIH, an anonymization
process should be executed to meet the required privacy standards, while also
maintaining the usability of the data. For the scope of this project, all data
that is being used is limited to open data sources, which can be freely accessed
and used. Future scenarios that might make use of data that has special reg-
ulations will be exclusively managed by the ZIH, which takes cares of data
anonymization and data protection policy, and therefore it is out of the scope
of this thesis.

Regarding the licensing of used tools, the code and libraries that are being used
are all under an open source license. Bibliography and material consulted is
duly referenced in each section.

1.3.3 Potential obstacles and risks

The three main potential obstacles are:

• Change of requirements: A substantial change in the requirements
of the clients that forces a redesign of the product’s architecture.

• Dependency on other teams: As the project is divided in components
that will be developed by different teams, it is very likely that at some
point one of the teams takes longer than expected to finish a task and
this propagates to other teams which have dependencies on that task.

• Support required by other team: Each team will be in charge of a
different task, but it is possible that tasks need to be reassigned in order
to balance the workload between teams, or a team requires support to
develop some components.

• Security related holds: Security is a critical aspect of the product.
Each component, tool, and resource used must meet strict security stan-
dards, which in some cases might slow down the development time for
certain components.

1.4 Methodology and rigor

1.4.1 Methodology

As the product is made up of differentiated components, a modular design will
be created. This will allow for easy development of each component without

1 Context and scope Page 15

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

having strong dependencies on other components, and will allow teams to work
on tasks in parallel. As a consequence, if one of the tasks gets stopped for any
reason, the team can immediately jump to a different task until the issues are
resolved and minimize the risk of being in stand by due to a hard stop.

From a more practical standpoint, during the development of the project, the
main tool that will be used is Microsoft’s Azure platform [12]. The product
will be implemented using the available services inside the platform, and Azure
DevOps [13] will be used to organize the project, plan required tasks and
implement a continuous integration and continuous deployment (CI/CD) [14]
[15] infrastructure using Azure Repos [16] and Pipelines [17]. This will allow
having an initial minimal working version of the product, which can be used
as a proof of concept (POC) to showcase and sell the product to the clients,
and allowing for an incremental upgrade in the quality of the deployed service.

1.4.2 Rigor

The use of Azure DevOps will allow for an easy planning of the steps to be
taken, the precise monitoring of the tasks, their progress, and the completion
rate, with the use of the Boards [18] tool. Other tools that will be used are
Azure Repos, which will be used for version control [19], and then combined
with Pipelines to allow the implementation of automated testing and code
quality checks inside the previously mentioned CI/CD infrastructure.

Weekly meetings with the Project Manager will be done to periodically review
the state of the development and the quality of the work being done, and a
strict monitoring of both development time and costs will take place to quickly
detect deviations in the estimations made in this document.

2 Planning

The start date of the project is September 16th, 2021. and the end date varies
depending on the assigned day for the oral presentation, being the earliest
possible one on January 24th, 2022. This accounts for a total of 86 working
days, distributed in 18 weeks. The amount of hours of work per day will be 7
hours: 6 of them spent working at ServiZurich and an extra hour of personal
work. This accounts for a total estimate of 602 total hours spent in the project,
516 of them working for the company and the other remaining 86 hours being
for personal work.

The project will be developed using an Agile [20] methodology, more specifi-
cally Scrum [21].

2 Planning Page 16

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

2.1 Task definition

We will divide tasks into groups, the first one being the project management
and the other two based on the two main features of the product to be imple-
mented: the external data hub and the GeoIntel application.

2.1.1 PM. Project management (160h)

• PM1. Defining the project’s scope (15h): Definition of the project’s
scope and objectives, contextualizing it and providing a justification for
its development. This initial writing phase will take approximately 15
hours of work, including both the writing of the document and the later
correction of the document based on feedback.

• PM2. Project planning (15h): Definition and description of the
tasks, and estimation of the time of completion of each one. Planning
of the steps to be taken to complete the project. This task can only
start once the project definition (task PM1) has finished. They are both
very similar tasks, and therefore have been assigned the same amount of
time.

• PM3. Budget and sustainability report (15h): A study and es-
timation of the project’s cost must be evaluated to create a budget. A
report has to be written as well to analyze and document the project’s
sustainability. To start this task, it is necessary to complete the project
planning (task PM2), in order to calculate costs based on the needed
resources. As with the previous two tasks, the amount of hours assigned
is also 15, based on the similarity between them.

• PM4. Final project documentation (60h): On the project’s com-
pletion, all the previously mentioned documents must be combined,
alongside with the documentation of the project itself, and correct any
previous mistakes. To complete the document, task PM3 must be fin-
ished, as the final document will contain all the previously written infor-
mation. This is the heavy writing task, as it comprises documenting the
whole project, correcting mistakes and checking grammar and format.
As this is a long and tedious task, a generous amount of 60 hours has
been assigned to it.

• PM5. Meetings (55h): Every week there will be a set of meetings to
control the development of the product. They will be divided into 15
minute daily meetings with the developers from Monday to Thursday
and a weekly 1.5 hours team meeting with the project manager to ana-
lyze the work in progress, monitor the work being done and adapting to

2 Planning Page 17

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

potentially changing or new requirements. As the project will be devel-
oped during 18 weeks, this accounts for a total of 45 hours in meetings.
An extra 10 hours will be added to account for the meetings with the
thesis supervisor and other unplanned meetings.

2.1.2 ED. External Data Hub (230h)

• ED1. Research available sources (20h): For the external ingestion
of data, we will first need to make some research on open available
sources from which we can obtain our data. This includes both ensuring
the quality of the source and studying possible ingestion methods, such
as web scraping [22] or usage of a source’s API. This will be a slow,
manual and tedious task, and will take an estimated 20 hours of work.

• ED2. Ingestor framework design (20h): Create an ingestion frame-
work from which each data ingestor will be implemented. The behavior
of each ingestor can only differ when obtaining the data, the rest of the
process (input, data storing, exceptions, etc.) must be the same for all
of them. This task will not only require a thorough thought process
to design a robust and usable framework, but also an investigation of
the possible tools to be used for each component of the framework. A
total of 20 hours have been assigned to it to ensure that a good design
is created.

• ED3. DevOps (50h): Set up a CI/CD infrastructure to automatically
test and deploy code. Every service must be saved in Azure Repos
[16], and with the help of Azure Pipelines [17] the quality of the code
must be checked with the help of Pylint [23], it has to be automatically
tested using unit tests [24], a Docker [25] image has to be generated and
pushed to an Azure Container Registry [26] and finally deployed to the
corresponding resource in the cloud. This way all the process can be
automated for all the services to be deployed. This can only be done
once the ingestion framework has been designed, so task ED2 must be
completed before starting. A total of 50 hours has been assigned to it,
because a lot of effort must be put into it in order to later save time
when developing the project component’s, as it will end up automating
a lot of manual tasks.

• ED4. Ingestors (70h): An ingestor must be implemented for each
source type, implementing the proper ways to extract the data from
the corresponding source inside the ingestor framework. To develop the
ingestors it is necessary to have completed the previously needed research
on sources (task ED1), and the automated testing and deployment of
the code has to be in place (task ED3). Although the boilerplate code
for every ingestor will be the same, the data extraction algorithm will

2 Planning Page 18

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

change for every source. Therefore, every ingestor will have a different
implementation and will take between 10 and 20 hours to code. As we
will have multiple ingestors, the total expected development time is of
70 hours (between 4 and 7 different ingestors).

• ED5. Dataset classification (60h): A method for classifying datasets
by subject must be implemented. This will require some research and
trials to determine the best approach to do so. The initial approach
will be investigating the use of machine learning [27] classification mod-
els [28] using natural language processing [29] to classify each dataset.
As with the ingestors, the infrastructure to automatically test and de-
ploy the code (task ED3) has to be working before starting this task.
Regarding the time estimations, finding a good machine learning classi-
fication model is a slow task, and therefore 60 hours of work have been
calculated.

• ED6. Automation of ingestors (10h): Once the data ingestion plat-
form is set up, automatic event-based triggers will be implemented to
automate the download of new available datasets and update already
downloaded ones. This is the final step in the External Data Hub com-
ponent, and can only be executed with tasks ED4 and ED5 completed.
This final task is a simple task, and it will take about 10 hours.

2.1.3 DA. GeoIntel (210h)

• DA1. Geocoding (20h): In order to access the data by location, a
method for geocoding [30] addresses will be required. This will mean
developing a tool capable of both parsing coordinates in multiple for-
mats and translating an address to its corresponding coordinates. The
geocoding component is a simple but critical component of the Data
viewer. It is expected to take about 10 hours to develop it and another
10 hours to thoroughly test it, accounting for a total of 20 hours.

• DA2. Auxiliary datasets (10h): In order to visualize the data and
filtering it, a few manually selected datasets will be required. The main
one will be a dataset containing addresses information from all around
the globe, in order to visualize the data in a map, filtering datasets by
location, etc. Other auxiliary datasets can be added in the future, such
as population information. This task will be a fast one, as it will involve
searching for a few datasets only. However, this search will be done
manually, and the validation of the reliability of the data is critical to
ensure a correct API functionality. It will take about 10 hours.

2 Planning Page 19

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

• DA3. API development (100h): An API will be implemented to
access all the information. This API will be the way of accessing the
datasets, filtering them by location, time stamp, type of data, etc. To
implement the API, both tasks DA1 and DA2 must be completed in order
to allow data queries by the API. It also has a finish to finish dependency
with the viewing website (DA4), as both tasks depend on each other:
the website needs a functional API to access data, and the API needs
all the routing of the website correctly implemented. This will be the
main task in the data accessing component. The API is the backbone of
user interaction with the product, and many functionalities and services
must be implemented. Therefore, 100 hours have been assigned to its
development.

• DA4. Data viewing website (80h): A more user-friendly way of
accessing the data will be developed as a web app. This app will have an
interactive map and a menu to search and visualize data, and it will use
calls to the previously mentioned API to access the data. As mentioned
in the previous task, it has a finish to finish dependency with task DA3.
Regarding the time estimation, a total of 100 hours might seem too high,
but the team has very little experience with front-end developing and
therefore a slower than usual development time is expected.

2.2 Time planning

2.2.1 Time estimates summary

Having defined the dependencies between tasks and their estimated time of
completion in section 2.1, a summary of the tasks can be found in table 1,
where they are listed with their identifier, name, expected completion time
and the dependencies between them.

2 Planning Page 20

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

ID Task Name Time (h) Dependencies

PM Project management 160 -

PM1 Defining the project’s scope 15 -
PM2 Project planning 15 PM1
PM3 Budget and sustainability report 15 PM2
PM4 Final project documentation 60 PM3
PM5 Meetings 55 -

ED External Data Hub 230 PM

ED1 Research available sources 20 -
ED2 Ingestor framework design 20 -
ED3 DevOps 50 ED2
ED4 Ingestors 70 ED1, ED3
ED5 Dataset classification 60 ED3
ED6 Automation of ingestors 10 ED4, ED5

DA GeoIntel 210 PM

DA1 Geocoding 20 -
DA2 Auxiliary datasets 10 -
DA3 API development 100 DA1, DA2
DA4 Data viewing website 80 DA3

Source: Own creation.

Table 1: Summary of tasks.

As explained in section 1, the two main task groups (External Data Hub and
GeoIntel) are completely independent of each other, and therefore can be done
in parallel. And the project management tasks need to take place alongside
the development of the product, as meetings will control the execution of other
tasks and adapt the strategy to accommodate changes, and the documentation
of components will be done on the fly every time there is a new component
finished. This allows for a high concurrency of task execution, as it can be
seen in figure 1.

2 Planning Page 21

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

2.2.2 Gantt chart

Current Week

Weeks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Project Management

Defining the project’s scope

Project planning

Budget and sustainability report

Final project documentation

Meetings

External Data Hub

Ingestor framework design

DevOps

Dataset classification

Research avaliable sources

Ingestors

Automation of ingestors

GeoIntel

Geocoding

Auxiliary datasets

API development

Data viewing website

Source: Own creation.

Figure 1: Gantt chart

2 Planning Page 22

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

2.3 Resources

2.3.1 Project management

• Microsoft Teams: We will use Microsoft Teams to communicate with
the development team and the project manager, both through chat and
remote meetings.

• Outlook: Alongside Teams, we will use Outlook for email communica-
tions.

• Overleaf : The online LaTeX text editor Overleaf will be used to write
all the project’s documents.

• Microsoft Azure DevOps: Microsoft’s Azure DevOps, more specifi-
cally the Boards [18] resource, will be used to organize tasks and monitor
the project’s development, using the scrum [21] methodology.

2.3.2 Code development

• Microsoft Azure: The cloud computing service provided by Microsoft,
Azure, will be the main platform for the deployment of the product.
We will use many resources from the ones available. The following list
contains the main components selected for use in the planning phase,
however more resources might be added in the future:

– Azure Functions: They will be the main workers for the project.
Both serverless and stateless Azure Functions and state preserving
Durable Functions [31] will be used to implement the Ingestors, the
API backend and other critical components of the project.

– Azure App Service: The App Service resource will be the tool
used to implement both the API routing and the data visualizer as
a website.

– Postgres SQL database: With the help of the PostGIS [32] ex-
tension, it will be used to allow the API to run location queries and
retrieve data based on geospatial information.

– Cosmos database: This NoSQL [33] database will have the final
cleaned data and from it the API will query the desired datasets.

– Azure Blob Storage: It will be used as the storing place for the
raw ingested data.

– Azure ML: The dataset classifier will use this resource to deploy
classification [28] models.

– Azure Maps: It will be used for the Geocoding [30] phase

2 Planning Page 23

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

– Azure Container Registry: Here is where the Docker images of
different components will be stored, and later retrieved by each re-
source to create the running container for each specific component.

– Azure KeyVault: It will be used to store critical application pa-
rameters, such as passwords, access tokens or API keys.

• Microsoft Azure DevOps: The DevOps platform created by Mi-
crosoft will be used for version control and setting up the CI/CD in-
frastructures for the project’s components, using Azure Repos [16] and
Azure Pipelines [17].

• Postman: The Postman API platform [34] will be used as a testing
tool during development. It will mainly help for making queries to Azure
Functions, APIs, etc., both when testing locally as when testing deployed
components of the product.

• Microsoft Visual Studio Code: The IDE we will use is VS Code.
The reason for this could be simply that it is the one we like the most,
but in this case it will also be very helpful because we are working with
Microsoft products, and it has a very good integration with Azure.

• Docker: The Docker tool will be used to create virtualized environments
for each product component, in order to easily define each component’s
running environment and simplify the deployment process.

• Swagger/OpenAPI: When creating the API, it will be critical to
clearly define its structure and document its usage. For this, we will
use Swagger [35], a tool that uses either the JSON [36] or YAML [37]
format to define APIs.

2.3.3 Human resources

• Product Manager: It is indispensable to have a product manager
to coordinate the developer teams, communicate with the clients and
supervise the product’s development.

• Developer teams: Two main development teams will be required to
implement the project. These can be further divided into smaller teams
as needed to adapt to the project’s requirements.

• Infrastructure support: An extra team of people is required to man-
age the infrastructure used by the developers. This team will be in
charge of managing security, creating the needed Azure resources and
providing support to the developer teams.

2 Planning Page 24

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

2.3.4 Other resources

• Laptops: Each person involved in the project will need a laptop to work
on the project. Although computers with good performance are nice to
have, they are not strictly required, as all heavy processing will be done
on the cloud using the Azure Platform.

• Internet connection: It is critical to have a good and safe internet
connection, as all work will be done remotely. Both for the project
management and product development, almost all tools are online, so a
secure and stable network is indispensable.

• Computer peripherals: To allow for a comfortable workflow and
therefore improve the productivity of workers, peripherals such as chairs,
mouses, monitors or headsets must be provided to all workers to create
a practical working environment.

2.4 Risk management

During the development of the project, many factors can affect its execution
and slow down the development process. These factors have been listed in the
context and scope chapter, under section 1.3.3. After a study of each one of
them, a few solutions have been proposed to mitigate their negative effects:

2.4.1 Change of requirements

In case the client requests a significant change in the requirements, the prod-
uct’s architecture will need a redesign.

• Risk: Low.

• Mitigation: The Project Manager will be in constant touch with the
client to make sure that their requirements are in sync with the design
of the product, and to improve the reusability of already developed code
in case this scenario happens, a highly modular architecture will be put
in place, in a way that the components have a low dependency on other
parts of the project and can be easily adapted to the new architecture
without having to reimplement their core functionality.

• Solution and consequences: If the architecture needs to be changed,
extra working time for all people involved will be mandatory, and there-
fore increase the cost of human resources. The used Azure services will
also change, and therefore the development costs. However, it cannot be

2 Planning Page 25

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

predicted in what way, as they can either increase or decrease, depending
on what changes are made to the architecture.

2.4.2 Dependency on other teams

It is very likely that at some point in the development process, a task is halted
as a consequence of a dependency on another team’s work.

• Risk: High.

• Mitigation: To lower the consequences of this scenario, the same modu-
lar architecture mentioned before will be helpful, as the low dependency
between components will minimize the risk of this happening. Further-
more, tasks related to code development will always be prioritized over
other tasks: this will ensure that tasks that can be affected by this risk
are done earlier, and therefore the risk is reduced, and that when this
scenario does happen, other tasks that are not related to code develop-
ment will be available to be worked on while waiting for the other team
to finish their work.

• Solution and consequences: If the developers find themselves com-
pletely halted, they will be reassigned to help the teams that are slowing
down the development to try to speed up the completion of their pend-
ing tasks. This will translate in extra working hours and an increase of
human resources costs, and will increase the total development time.

2.4.3 Support required by other team

In case other teams require assistance to develop their products as a result of
workload imbalance between teams,

• Risk: Medium.

• Mitigation: The organization of weekly meetings with the whole team
will ensure that everyone is in sync with the work being done by every
team and allow for a smoother transition of members between tasks,
should the scenario arise.

• Solution and consequences: It will be critical to have a quick adap-
tation process in order to effectively jump to help in the development of
a completely different component. Extra meeting time will be required
to completely understand the details of what the other team is work-
ing on, and the cost of human resources will increase as a consequence.

2 Planning Page 26

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Also, the time spent helping the other team will be time lost, and the
product’s development will slow down.

2.4.4 Security related holds

In all enterprise products, security is a highly important aspect. This is why
the security of the project’s infrastructure will be constantly reviewed. As a
result, it is possible that a component needs to be reimplemented if a vulner-
ability is found. This will mean an increase of the development time.

• Risk: Medium.

• Mitigation: To avoid having to redesign the infrastructure or reim-
plement a component in order to meet security standards, it will be
mandatory to have it in mind at all times. This means that, specially
when starting new tasks, security aspects will not be ignored and, before
using a new tool, a proper safe environment with secure access will be
set up with the help of the IT administrator. Not only will it minimize
this risk, but also ensure that the product is secure.

• Solution and consequences: In case a vulnerability is found, changes
to the code and the infrastructure will have to take place. This will
mean extra working hours for the developers and the IT manager, and
possibly having to set up new Azure services (such as VPNs or firewalls).
So we will see an increase in human resources and development costs.

3 Budget

In average, a year has 250 workdays. With 8 daily work hours, this accounts
for a total of 2000 work hours for each year. We will use this information to
calculate the hourly cost of each item.

3.1 Human resources

For the components of the product in scope of this thesis, a total of 6 workers
will be needed: a project manager that leads and organizes the project, an
IT manager in charge of providing support with the cloud infrastructure and
security and 3 developers, which will be data engineers. The estimated total
cost of each role is the following:

• Project manager (3.348 e): In Spain, a project manager has a gross
income of about 46.000 eper year [38]. This amounts to an hourly gross

3 Budget Page 27

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

wage of 23 e, which translates to a cost of 31 eafter including the social
security costs. The average time spent on the project by the project
manager each week is of 6 hours. Having a total of 18 weeks for the
development of the product, the total workload in hours for the project
manager is of 108 hours. This translates to a total cost of 3.348 e.

• IT manager (892 e): In the case of IT managers, the annual gross
income in Spain is 33.300 e[39]. The equivalent hourly gross wage is
16,5 e, which after including the social security turns into 22,3 e. The
expected worked time for the IT manager is of 40 hours, taking into
account the time consumed setting up all the needed cloud resources and
the time spent providing support to the developer team when needed.
The total cost of the IT manager will be 892 e.

• Data engineers (30.556 e): Lastly, a data engineer working in Spain
has a mean income of 31.000 eper year [40]. Calculated hourly, this
represents a gross wage of 15,5 e, or 20,9 ewith the social security
accounted for. For the development of this project a total of 3 developers
will be required, with two of them working 5 daily hours in this project,
and the third one (me, the author of this thesis) working 7 daily hours
on the project. This accounts for a total of 17 daily hours of developer’s
work. Having 86 work days assigned to the project, the total amount of
worked hours by the developers will be 1.462 hours. As a total, the cost
of the developing team will be of 30.556 e.

These are the costs of the human resources by role, but in order to properly
monitor the deviations in budget, they need to be translated to costs of each
task. For that purpose, table 2 lists every task with the estimated hours of
work of each person for that task, and shows the cost associated to it.

After adding up the cost of the three roles participating in the project, the
total cost of the human resources is of 34.795,8 e. This is the total personnel
costs per activity (PCA).

3.2 Development costs

The cost of the tools used for the development of the product are basically
the costs of running the infrastructure on Azure. We will use Azure’s Price
Calculator [41], a tool provided by Microsoft, to estimate the costs of using the
cloud service. After listing all the resources in section 2.3.2, the expected cost
per month returned by the calculator is of 1.354,33$ (see table 3), which in
euros translates to 1.171,35 e. As the project development will take 4 months,
the final cost will be of 4.685,4 e.

It is important to note that the Azure costs are closely related to its usage.

3 Budget Page 28

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Tasks Hours worked by role

ID Cost (e)
P.M.
31e/h

I.T.
22,3e/h

D.E.1
20,9e/h

D.E.2
20,9e/h

D.E.3 (me)
20,9e/h

PM 8.329,3 88 15 46 46 160

PM1 499,5 6 15
PM2 541,3 6 1 1 15
PM3 499,5 6 15
PM4 1.874 20 60
PM5 4.915 50 15 45 45 55

ED 14.135,5 20 25 195 195 230

ED1 1.254 20 20 20
ED2 2.097 20 10 20 20 20
ED3 2.842,5 15 35 35 50
ED4 4.389 70 70 70
ED5 2.926 40 40 60
ED6 627 10 10 10

DA 12.331 190 190 210

DA1 418 20
DA2 627 10 10 10
DA3 6.270 100 100 100
DA4 5.016 80 80 80

TOTAL 34.795,8 108 40 431 431 600

Source: Own creation.

Table 2: Tasks cost estimation

Service type Estimated monthly cost

Storage Accounts $101,48
Azure Functions $0,00
Azure Database for PostgreSQL $634,12
Azure Cosmos DB $375,40
Key Vault $0,03
Azure Machine Learning $198,56
App Service $13,14
Azure Maps $0,00
Container Registry $31,60

Total $1.354,33

Source: Azure Price Calculator [41].

Table 3: Azure cost estimation

This means that the costs shown here are calculated from the development
view, as they reflect the expected usage during the implementation of the
project. There is a real possibility that, during development, the client re-

3 Budget Page 29

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

quests to put in production one or more completed components of the prod-
uct, and therefore scale up the usage and costs of resources. This will not be
reflected here, as it is not a development-related costs, but rather a production
cost that will be assumed by the requesting client.

3.3 Other costs

Here we will list all the remaining generic costs of the project. As a result of
the COVID-19 pandemic, every worker of the company is working remotely, so
the entirety of the product will be developed by workers working from home.
This means that costs related to the usage of an office will not be considered,
but other costs associated with working remotely do. It is estimated that the
hourly cost of each worker working from home, regardless of their position, is
divided into these categories:

• Laptop (0,15 e/h): The current laptop provided to all workers by the
company is a Dell Latitude 5401. The cost of this model when bought
new was approximately 1.200e[42]. The laptops given by the company
to the workers are renewed every 4 years, and are therefore used for 8.000
hours. The hourly cost of the laptop is of 0,15 e.

• Peripherals (0.0305 e/h): Workers also need to be provided with
peripherals to be able to work with comfort and be productive. They
will need to be provided with headsets to participate in meetings, a
mouse to use the laptop with more ease, and a chair and desktop to
have an office space. Although workers might already have some or all
of these peripherals as their personal property, the company must cover
these costs as they are all work-related tools. Table 4 provides a quick
summary of the cost of each of these peripherals:

Price (e) Life expectancy (years) Hourly cost (e)
Headset 25 3 0,0042

Mouse 15 4 0,0019

Chair [43] 120 4 0,015

Table [44] 150 8 0,0094

Source: Own creation.

Table 4: Generic hourly costs

The total cost per hour of these peripherals is 0.0305 e.

• Internet (0,24 e/h): A good internet connection is a basic requirement
for remote work. The average monthly cost of fiber optic internet in
Spain is of 40 e, 480 eeach year. The proportional hourly cost (with 8
daily worked hours) is of 0,24 e.

3 Budget Page 30

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

• Electricity and gas (0,045 e/h): The last expense related to telework
is the consumption of electricity and gas (heating during winter). Their
estimated yearly cost due to remote work is of 90 e[45], which translates
to 0,045 eper worked hour.

Adding all these costs together, for each worker the company has to spend an
extra 0,4655 efor each worked hour. Going back to the work hours estimated
for each role in the human resources costs (section 3.1), the total expected
worked hours for all collaborators are 1610 hours. Therefore, the final generic
cost for this project adds up to 749,45 e.

With the development costs and the remaining costs related to workspace
tools calculated, the final generic costs (GC) can be obtained by adding them,
which results in a total of 5434.85 e.

3.4 Budget deviations

3.4.1 Contingency

There is a clear risk of having a deviation in the project’s budget. External
factors can affect the development time, or a simply incorrect estimation of
the difficulty or cost of a task can end up in higher costs than expected.
To account for this phenomenon, a contingency fund will be put in place to
provide a safety monetary margin and avoid over costs. This contingency will
be the 15% of the estimated PCA and GC, which accounts for a total of 6.035
e.

3.4.2 Incidental costs

In section 2.4, we defined a list of risks that can affect the project. These risks
can result in an increment of the cost of the project, and need to be taken
into account. Table 5 shows a summary of these risks, their estimated cost,
the risk of them occurring and the expected final cost.

3.5 Final budget

Having listed and estimated every cost related to the project, including con-
tingency and incidental costs, the final budget can be laid out. Table 6 shows
the summary of all costs and the final project cost.

3 Budget Page 31

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Incident Estimated cost (e) Risk (%) Cost (e)
Change of requirements 7.000 20 1.400

Dependency on other teams 1.500 70 1.050

Support required by other team 1.000 40 400

Security related holds 2.000 50 1.000

Total 11.500 - 3.850

Source: Own creation.

Table 5: Incidental costs

Activity Cost (e)
PCA 34.795,8

GC 5.434,85

Total costs (CPA + GC) 40.230,65

Contingency 6.035

Incidents 3.850

TOTAL 50.115,65

Source: Own creation.

Table 6: Final budget

3.6 Management control

Having created a budget, it is crucial to keep track of the real costs of the
project as it is implemented, in order to check if it differs from the budget and
by how much. Keeping track of where deviations of the budget occur, and
their magnitude, is a task that needs to be constantly done, specially after
finishing each task.

Each cost group (human resources, development costs and other costs) will be
monitored differently, in order to properly identify their potential deviations
correctly based on the individual characteristics of each cost group.

• Human resources: The costs derived from the human resources are
strictly limited to the hours worked by each member of the project’s
development. Therefore, we will keep track of the exact hours worked
by each individual and use the following formula to calculate the cost
deviations:

Cost deviation =
∑

w∈workers

(wworked hours−westimated hours)∗whourly cost

(1)

• Development costs: The development costs can be very easily moni-
tored. The Azure portal has a detailed monitoring tool that will do the

3 Budget Page 32

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

work, so the only thing that will have to be done is checking the costs
shown by this tool periodically. The formula used will be:

Cost deviation =
∑

t∈dev tools

treal cost − testimated cost (2)

• Other costs: Almost all of these costs are fixed. The costs of the pe-
ripherals, laptops, tables, and others will not change, because if one of
them needs to be replaced it can be done without affecting the budget,
as the company already expects to replace these elements periodically.
The only cost that can change will be the compensations for working
from home. If there is a relevant fluctuation in the price of energy, the
compensation for workers might need to be reviewed, and the devia-
tion in the cost monitored. The general formula used to monitor these
deviations will be:

Cost deviation =
∑

c∈other costs

creal cost − cestimated cost (3)

A periodic review of the deviation of costs will be made, and with the closure
of the development of the project a detailed report of cost deviations will be
written to show where they have occurred and their magnitude.

4 High level architecture

The first phase of the project is designing the architecture. The goal is to
design a first solid version with the core components of the product, which will
evolve as the development advances. It is important to design an architecture
with decoupled components, that way the introduced changes and addition of
new components will have a minimal impact on the already developed software.

The architectures of each of the two components developed as part of this thesis
will be designed and explained separately, as they are not directly connected.
However, data extracted by the EDH can we later used by the GeoIntel app.

4.1 External Data Hub

The External Data Hub will have a set of ingestion algorithms that will ex-
tract data from external (not company-related) data sources. An ingestor
will be developed for each source type, allowing for the usage of a common
configurable ingestor for different data sources that share the same extraction
method. An example is the CKAN extractor, which consists of a configurable
ingestor that can extract any type of data hosted in CKAN servers. These

4 High level architecture Page 33

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

ingestors will be developed as Azure Functions, which will be periodically time
triggered. They will ingest the data and store it unprocessed in a landing data
storage. This data will then be processed by another Azure Function that will
be in charge of loading it into the Zurich Information Hub. Figure 2 shows
the different components of the EDH and how are they related between them.

Source: Own creation.

Figure 2: External Data Hub architecture

4.2 GeoIntel

The GeoIntel application will start by loading processed geospatial data from
the Zurich Information Hub. The data will be divided in two databases: a
Cosmos DB and a PostgreSQL DB with the geospatial PostGIS extension in-
stalled. For each dataset, the Cosmos DB will store all the data except the
geospatial information, and will load into PostgreSQL the geospatial informa-
tion alongside an ID acting as a foreign key, using either an azure function or
a stored procedure (not designed yet).

These databases will be the source of data for the GeoIntel API. This API is
the backbone of the service, and will be implemented using an Azure Function.
This API will be defined with a swagger file, following the OpenAPI speci-
fication. The end user will be able to use this API directly, but a web app
will also be created for a more user-friendly experience. This website will be
implemented using the Flask [46] web framework, and deployed to an Azure
App Service.

A representation of the GeoIntel architecture can be seen in Figure 3.

4 High level architecture Page 34

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Source: Own creation.

Figure 3: GeoIntel architecture

4.3 DevOps

Finally, a crucial step of the project is working with a CI/CD [14] infrastruc-
ture. Software needs to be deployed iteratively as the development advances,
and once a first minimal version of the components is working, they must be
always ready to be used, as the project manager will be showing it to current
and potential customers. Updates and enhancement of the components will
be progressively deployed as they are implemented.

As mentioned in section 1.4.1, several tools from the Azure DevOps [13] plat-
form will be used for this purpose. Figure 4 shows the general architecture of
this infrastructure.

The developed code will be saved and versioned with the help of repositories
[16]. These repositories will have several branches for development, and a
main branch that will be where the currently deployed code is. Whenever a
new version of the main branch is detected, a pipeline [17] will be launched.
This pipeline will perform a quality check of the code and run automated tests
to ensure the correctness of the new code. If all checks pass, it will create a
docker image and publish it to a container registry [26] hosted in Azure. As
a final step, the corresponding Azure service will pull the new docker image
and run it in a container.

4 High level architecture Page 35

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Source: Own creation.

Figure 4: DevOps architecture

5 External Data Hub

5.1 Ingestors

The ingestors are the main component of the External Data Hub. They are
in charge of extracting data from external sources and storing it inside the
company’s infrastructure, so that it can be accessed and used by business
units and company’s applications.

The implementation is done with Azure Functions written in Python 3, and
although each ingestor has some specifics to it, they all share a common struc-
ture. All ingestors have two types of triggers: a time trigger and an HTTP
request trigger. This way, data is extracted periodically in order to fetch up-
dates, and can also be triggered manually when needed via the HTTP trigger.

Once triggered, the function starts its execution. It connects to the corre-
sponding data source, using credentials stored in the product’s key vault (if
they are necessary), and then uploads the extracted data to the External Data
Landing storage.

• CKAN: CKAN is a type of open data server standard used by many
companies and public organizations to publish their data openly to the
public. The ingestor takes advantage of this open standard and there-
fore can ingest any data source that is hosted in a CKAN server. It is
therefore a very powerful tool, as it is not source specific. Examples of
organizations that use this standard are the humanitarian data exchange
[47] or governments like the United Kingdom or Australia. Therefore,

5 External Data Hub Page 36

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

with this single ingestor we can ingest thousands of dataset collections.

As the content of these servers can be very large, a traditional durable
function cannot be used for the ingestion. They have an execution time
limit, so ingestion of large amounts of data is not possible. To get around
this, Azure Durable Functions will be used. These allow for stateful
execution and are not limited in execution time. They also allow for the
implementation of several application patterns.

For this particular scenario, we will use the fan-out/fan-in pattern [48].
It consists in having an orchestrator that receives the input and generates
a list of tasks to be executed, which are then processed by workers in
parallel. The orchestrator then collects the results from the workers,
aggregates them if necessary, and returns a response (figure 5).

Source: Microsoft Docs. Durable Functions overview [48].

Figure 5: Fan-out/fan-in durable function pattern

This pattern does not only achieve parallel execution, it also simplifies
the required code. The orchestrator will be triggered with an HTTP
request, that will contain in its body the URL for the target server for
the ingestion a and a list of datasets from the CKAN server to ingest. An
example for the ingestion of a single dataset from the United Kingdom
Government’s open data CKAN server :

If the dataset list is empty, all datasets in the server will be ingested.
The orchestrator will then generate an activity for each dataset that must
be ingested, and wait for the completion of all the ingestion processes,
which, as said before, will be executed concurrently.

• Contify: This ingestor uses the Contify News API [49] to extract data
related to a given set of companies around the world. More specifically,
it retrieves daily updates of news related to these companies. It is a more

5 External Data Hub Page 37

https://ckan.publishing.service.gov.uk/dataset/
https://ckan.publishing.service.gov.uk/dataset/

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

specific ingestor than CKAN, so fewer datasets will be ingested with it,
but the data obtained will be highly valuable for the company.

A list of companies and entities of interest for the company will be used
to configure the ingestor. For every company that is in this list when the
ingestion is triggered, its related news and events will be ingested from
Contify and stored in the EDH landing storage as a JSON file. This list
is mutable as the companies of interest for Zurich change over time. The
ingestor will read it as its configuration and ingest the desired data, so
no changes will need to be made to the product if the list changes, as
the code will adapt automatically to it.

More ingestors will be added in the future, as new types of open data sources
are required by the company. This can be easily done without affecting other
ingestors or components of the EDH, and using the same code structure used
by the above listed ingestors, with just an adaptation to the specific data
source.

5.2 External data landing storage

The external data landing storage is where raw ingested data is placed before
being sent to the ZIH for processing. It is saved in a blob storage, where
a specific container for the landing data zone has been created (the storage
has other containers that are automatically created and used by other Azure
services, such as Durable Functions [31]).

Each ingested dataset is stored inside a specific path of the form:
externaldata-landing/<data-source-name>/<dataset-name>/<files>.

5.3 Dataset locator

Due to a change in the client’s requirements, the dataset classification compo-
nent has been changed to the dataset locator. Instead of classifying datasets
into predefined categories, geospatial information will be extracted from them.
More information on this requirement change can be found in section 8.2.

The data ingested will be analyzed by the dataset locator component to try
to extract location information from the dataset, and therefore being able
to store it in a geospatial database and use it in the GeoIntel product. If
the dataset contains geospatial data, it will be processed and transformed to
adapt it to the requirements of the geospatial database. More precisely, all
available geospatial data will be combined into a single geometry object, which
will be then used as the location of the dataset in the geospatial database.

5 External Data Hub Page 38

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

However, this will be made just to geolocate the dataset, and its contents will
not be modified, and therefore the original individual geometry objects will
continue being present in the dataset. For datasets that do not contain any
explicit geospatial data, the dataset locator will try to generate it based on
the contents of the dataset.

The dataset location function is divided into these two categories: geospatial
data extraction and geospatial data generation. For the explanation of this
application, the 0.1% annual probability extents dataset is used as an exam-
ple. It has been obtained with the CKAN ingestor from the United Kingdom
Government’s open data CKAN server . The results are plotted with the help
of Folium [50], a Python map visualization library based on Leaflet.js [51].

5.3.1 Geospatial data extraction

Geospatial data (1.1.2) can be represented in a variety of file formats, such as
GeoJSON [52], Google Keyhole Markup Language [53] or Shapefile [54], among
others. The geospatial data extraction process consists in going through all the
files inside the dataset and trying to load them into GeoPandas [55], which is an
extension of Python’s [56] data analysis library that adds support for geospa-
tial data. All files that contain geospatial data are loaded using GeoPandas
into a geospatial data frame, which is a regular data frame with a column
containing geospatial data. The rest of files are ignored.

Once loaded as a data frame, all the contained geometries within the datasets
are aggregated, as the goal of this functionality is extracting a summary of
the contained geodata, not the whole available geodata. As an example, a
geometry containing the polygons of all European countries can be dissolved
into a single polygon of all Europe. Figure 6 shows a representation of this
process. This step also in reducing the complexity of the computations for the
function, as the granularity of the geometries is reduced.

Source: EarthDatasSience.org. GIS in Python [57].

Figure 6: Geometry dissolving

Then, the geodata from each file has to be standardized into a common CRS

5 External Data Hub Page 39

https://spatialdata-cbmdc.hub.arcgis.com/datasets/2e861e4c76c54a12b775bb969a071f84_24/explore
https://ckan.publishing.service.gov.uk/dataset/0-1-annual-probability-extents
https://ckan.publishing.service.gov.uk/dataset/0-1-annual-probability-extents

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

1.1.2, which will be EPSG:4326, and then a union of all the data is performed.
This results in a single geospatial object, representing the union of all geome-
tries present in the dataset. It is returned using the GeoJSON [52] standard.

In figure 7 the plotted GeoJSON generated for the example dataset can be
seen.

Source: Own creation.

Figure 7: Extracted geodata

5.3.2 Geospatial data generation

When a dataset does not contain explicit geospatial data in it, this function-
ality will attempt to extract implicit geodata from the dataset and generate a
GeoJSON that geolocates the data.

For this task, a NLP [29] technique called Named-entity recognition [58] is
used. It consists in using language models to extract key entities from a text,
which are classified into categories. These entities can be a person, location,
organization, etc. For this application, only entities that are categorized as
locations are used. These are extracted from the text and then geocoded, and
the resulting coordinates are used to generate the geospatial information that
locates the dataset.

The first required step is extracting raw text from the data. For this, the tool
used is Textract [59], which is a Python module that extracts raw text from
a wide variety of file formats, even images and audio files. This allows the
function to read almost any file format that contains text in it.

5 External Data Hub Page 40

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Once the text has been obtained from the file, the NER process starts. This is
done using the spaCy [60] library, which is an NLP engine for Python. It has
multiple language models available, and the one that is used for this task is the
xx ent wiki sm [61] model, because it is a multi-language model with very
good NER capabilities. The datasets that will be analyzed by the application
can come in many languages, so it is important to choose a multi-language
NLP model. Using the NER feature, location entities will be retrieved from
the dataset’s extracted text.

Once the list of extracted locations is created, they are geocoded with the
help of the GeoIntel API, using its geocoding functionality 6.3.1. As the list
may contain repeated entities, a single geocoding call is made for each unique
entity. However, the count of appearances of each entity in the dataset is
kept, as it represents its weight in the dataset’s locations set. In figure 8 the
geocoded entities extracted from the example dataset are plotted.

Source: Own creation.

Figure 8: Geocoded location entities

The extracted locations are potentially spread across a large area of a country
and even the world. In order to reduce the area covered by the locations and
obtain the most probable location of the dataset, clustering is used. It is im-
portant to note that, as said earlier, the count of appearances of each location
in the dataset’s text is highly relevant, as the clustering method not only uses
the unique locations found, but the total amount of locations, including re-
peated ones. This ensures that a location that is present multiple times in the
dataset’s text has more weight in the clustering algorithm than a single iso-
lated location. The OPTICS algorithm [62] is the used method to find clusters
in our locations. It is an algorithm that finds density-based clusters in spatial

5 External Data Hub Page 41

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

data. It’s based on DBSCAN, but it is better suited for this application as,
unlike DBSCAN, it works with data of varying density, which is the case for
this scenario. The OPTICS algorithm is executed using the implementation
available in the Scikit-learn package [63]. Once the algorithm has executed,
the biggest cluster is selected, that is, the cluster with the most amount of
locations in it, points not belonging to it are discarded. Figure 9 shows the
plotted locations for the biggest cluster found for the example dataset.

Source: Own creation.

Figure 9: Geocoded location entities (close-up)

The locations in the biggest cluster are considered as the final locations that
geolocate the dataset. However, they are specific points, as the geolocation
function returns a single point in Earth’s surface, but the reality is that a
dataset will contain data of an area, not specific points inside this area. There-
fore, some geospatial transformations need to be done to the set of locations
to generate an area that covers them and their surroundings.

Using GeoPandas [55] and Shapely [64] (a Python library that is used by
GeoPandas to perform geospatial operations), a bounding polygon for the
locations is generated. A bounding polygon is the smallest possible polygon
that covers all the points, where each of its vertices is a point belonging to
the set being covered. Figure 10 shows the bounding polygon found for the
example dataset.

However, this polygon is the smallest possible polygon that covers all the
points, and therefore only covers the area between all the points, but areas
that are very close to the vertices of the polygon but don’t fall inside it are
not considered as part of the dataset. To illustrate this, it can be seen in

5 External Data Hub Page 42

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Source: Own creation.

Figure 10: Bounding polygon for cluster

figure 10 that the generated polygon covers a very small area of the city, and
when comparing this polygon to the one extracted for the same dataset by the
geospatial data extractor (figure 11), they barely overlap.

Source: Own creation.

Figure 11: Extracted geodata and generated geodata (bounding polygon)

Furthermore, imagine the case where the set of unique geocoded locations are

5 External Data Hub Page 43

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

just one or two points. This would mean that the bounding polygon would be
a single point or a straight line, and therefore cover no area at all. It is clear
that a method must be implemented to transform this polygon into a bigger
area that solves the previously mentioned issues.

The solution is the usage of the buffering technique. It is a geospatial operation
that, given a geometry object, it generates a buffer polygon around it to a
specified distance [65]. For this scenario, the distance for the buffering has to
be proportional to the bounding polygon size.

In order to determine the size of the polygon, the maximum distance between
two of its vertices is used. To measure these distances, the Haversine formula
[66] is used as a metric, as it is required to account for the curved surface of
the Earth. This formula states that the distance D between two coordinate
points (Xlat, Xlon), (Ylat, Ylon) on Earth’s sphere, is the result of:

a = sin2(
Xlat − Ylat

2
) + cos(Xlat) · cos(Ylat) · sin2(

Xlon − Ylon
2

)

c = 2 · atan2(
√
a,
√
1− a)

D = R · c

where R is the radius of the Earth. As the units for the EPSG:3857 [8] CRS are
meters, we will also use meters for the Haversine formula, and therefore R =
6.371.000. As there are n2 pairs of vertices in the polygon, the computation of
the maximum distance between two of its vertices has a complexity of O(n2).

Having calculated the size of the polygon, the final value set for the buffering
distance is proportional to this distance and with an extra factor that increases
the buffering in proportion to the amount of points in it, as a single point
location would produce a point as a bounding polygon, which has a distance
value of zero and therefore no buffering would be applied to it. In figure 12
the buffered polygon for the example dataset is shown, and figure 13 shows
the comparison of the final generated geodata with the extracted data.

Compared with figure 11, the improvement can be clearly seen, as the inter-
secting area between the generated and extracted polygons is much greater.

The resulting polygon from the buffering step is the geospatial information
that is assigned to the dataset. As with the geodata extraction method, it is
returned using the GeoJSON standard.

5 External Data Hub Page 44

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Source: Own creation.

Figure 12: Generated geodata

Source: Own creation.

Figure 13: Extracted and generated geodata

5.3.3 Geospatial data extraction evaluation

Methodology For the geodata generation function, it is crucial to test
its performance. The methodology used consists in iterating over ingested
datasets from the United Kingdom Government’s open data CKAN server

5 External Data Hub Page 45

https://ckan.publishing.service.gov.uk/dataset/

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

and running the geodata extraction method. Then, for each dataset that
contains geospatial information, the geodata generation method is executed
as well, and the geometries returned by the two methods are compared. If
they intersect, it is considered as a match. The formula used to evaluate the
performance will be:

|{En ∩Gn ̸= ∅}|
|{En ̸= ∅}|

(4)

where, for each dataset n, En is its extracted geometry and Gn its generated
geometry. Furthermore, all datasets for which their extracted and generated
geometries do not intersect are classified in two groups: datasets with gen-
erated empty geometries and datasets with non-empty generated geometries,
which is in fact a classification between datasets with incorrect generated ge-
ometries and datasets with no generated geometries. This allows for a distinc-
tion between incorrect geodata generations and empty generated geometries.
It is important to note that the NLP processing of the dataset does not extract
information from the geospatial files. All the information used to generate the
geodata comes from the text contained within the dataset.

Results A total of 44.022 datasets have been used for the test, from which
1.865 had geospatial data in them. For datasets having geospatial data, the
generator correctly generated a geometry for 1.464 of them, and failed to do
so for 401 . For the failed cases, 365 of them were incorrect generations, and
the remaining 36 were the consequence of the generator not being able to find
a location and generating an empty geometry as a result. Table 7 shows a
summary of these results.

Total datasets

44.022

Without geodata With geodata

42.157 1.865

Correctly generated Incorrectly generated
1.464 401

Wrong
generated
geometry

Empty
generated
geometry

365 36

Source: Own creation.

Table 7: Geospatial data generation tests

Using formula 4 (and converting it to a percentage), we obtain a total of
78,5% correctly generated geometries by the dataset locator. This is a very

5 External Data Hub Page 46

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

good result that allows for the usage of the dataset locator component in the
ingestion pipeline to geolocate datasets which do not contain any geospatial
information in them.

6 GeoIntel

6.1 Cosmos Database

The data loaded from the ZIH is stored in a Cosmos DB. Each dataset has its
own container (similar to a table in a relational database), where every data
point is stored as a document. Each document is represented with the JSON
format, and even though it is likely that documents within a same collection
have the same fields, they represent unstructured data and therefore can have
varying structures. It is important to note that the ID of each document
is the same ID used in the geospatial database for the geospatial data of
the document, and can therefore be used as a foreign key between the two
databases.

6.2 PostgreSQL with PostGIS

A PostgreSQL database with the PostGIS extension is used to store the
geospatial data of each dataset and to perform geospatial operations. This
database has a table for each dataset, which contains the geospatial informa-
tion of the dataset, the date (if available) of the represented data and an ID
referencing the corresponding cosmos document (table 8). The database also
has some extra auxiliary tables containing needed geospatial information to
perform geospatial queries. They contain geometries (formed by polygons and
multi polygons) representing countries, districts and neighborhoods (table 9).

Column name Type

ID text (UUID)

date text (UTC)

location geography

Source: Own creation.

Table 8: Dataset table structure

Column name Type

name text

location geography

Source: Own creation.

Table 9: Polygons table structure

The PostGIS extension has two geospatial data types: geometry and geogra-
phy. As their names indicate, the first type is used to work in a geometric
space, while the geography type is used to work in the geographic space, that
is, the surface of the Earth. As we are working with geospatial data, we will
use the geography type. If we used geometry, the data stored would not be

6 GeoIntel Page 47

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

represented accurately and geospatial operations would produce incorrect re-
sults, as we would be treating Earth’s surface as a flat surface and not a curved
one. Surely, this will upset some flat earthers.

Being able to run queries as fast as possible is mandatory, as the users will
expect an immediate response from the API or the web app. To achieve this,
indexation [67] is being used. In the case of the dataset tables, an index is
constructed on both the date and location columns, with the goal of speeding
up geospatial queries and also the filtering of data based on date. Indexation
of the polygons in the auxiliary datasets is also being done to complete the
indexation of all geospatial data in the PostgreSQL DB and therefore ensure
maximum speed.

The indexation of geospatial information works differently from generic index-
ation. Instead of using hierarchical trees based on the values being indexed,
the bounding boxes of geospatial objects are calculated and then indexed.
When a geospatial operation or query is performed by the database, it is first
run against the indexed bounding boxes, and then against just the geometric
features that are covered by the matching bounding box [68].

6.3 API

The API is the backbone of GeoIntel and the main feature of the product.
It is seen as the main point of interest for clients and also serves data to the
viewing website.

The API is implemented using an Azure function written in Python 3. It has
several functions that have a variety of functionalities, which fetch data from
the Geospatial databases and external geocoding APIs. The main functions
provided by the API are:

6.3.1 Geocoding

This function provides the API with a geocoding functionality. It takes raw
text as input, and the function returns a specific location (as coordinates)
inferred from that text. It first checks if the inputted text are coordinates, in
any notation. If they are, it parses them. Otherwise, the function analyzes
the text to extract location information and then calls several geocoding APIs
(such as Azure Maps, TomTom or OpenStreetMap) to geocode the addresses.
The function can use a defined bounding box to reduce its search. If specified,
all geocoded coordinates that fall outside this bounding box are discarded
before moving to the next step.

6 GeoIntel Page 48

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Source: Own creation.

Figure 14: Geocoding illustration

Once addresses are geocoded, the OPTICS [62] clustering algorithm is used,
just like for the geodata extraction process (5.3.1). The biggest cluster is
selected, and the most representative point of the set is returned as the final
geocoded location. This is the closest point to the centroid of the set. Figure
14 shows a representation of this process.

6.3.2 Data access

• Data search: This function returns GeoIntel data based on the given
search parameters: a query with location information, date ranges for
the search, the search area and wanted datasets. It returns all found
data points matching the search criteria.

• Data point information: This function returns all available informa-
tion of a specific data point, given its ID. It directly accesses the Cosmos
DB and returns the corresponding document.

• Dataset listing: This simple function returns the list of available
datasets in the GeoIntel app.

More functionality will be incrementally added to the API in the future as
development evolves and more client requirements are given.

The credentials and access tokens for both the GeoIntel databases and external
geocoding APIs are stored securely in an Azure Key Vault as secrets. The

6 GeoIntel Page 49

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

API accesses the Key Vault when needed to fetch the credentials, so nothing
is stored inside the Function App itself, ensuring secret confidentiality and
security.

6.4 Data viewing web app

Source: GeoIntel app.

Figure 15: GeoIntel web main page

The data viewing app is implemented with the Flask [46] python web frame-
work. It uses the JavaScript Leaflet [51] library to create an interactive map
that displays the GeoIntel data retrieved via the API. The app is a simple
querying and viewing tool: it has a side panel and a map (figure 15).

The side panel is used to make a search of GeoIntel data, and once a search
has been made it is used to select the desired visualization methods and to
download the obtained data. On the other side, the map is used to visualize
the data and interact with it. It has two viewing methods: a heatmap and
point clusters. As figure 17 shows, they can be overlapped, and with the
cluster view the user can select a specific data point and view the information
associated to it.

All the data accessed and viewed through the website can also be downloaded
from the menu. This grants that less technically skilled users can interact with
the data with an easy-to-use and intuitive portal, being able to view it directly
on the app and then downloading the data segments they are interested in
without having to interact with the API at all. And the data downloaded has
the same format as the one served by the API, so if the user wants to interact

6 GeoIntel Page 50

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Source: GeoIntel app.

Figure 16: GeoIntel web heatmap view

Source: GeoIntel app.

Figure 17: GeoIntel web heatmap and cluster view

with it or process it with a different application, it can do so as well, still
without the need to interact with the API to obtain it.

6 GeoIntel Page 51

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

7 DevOps pipelines

The usage of pipelines allows the team to implement a CI/CD infrastructure.
A pipeline is needed for each type of service that has to be deployed, but a
single pipeline design is used for deployments of the same type. This common
pipeline is configurable with parameters in order to control the specifics of
each component. As we are developing code for two types of Azure services,
two pipelines have been designed.

7.1 Azure Functions

The deployment of azure functions has four stages:

1. Validation and testing: The first stage is running quality checks and
validations on the code, and then running automated tests. An envi-
ronment with all the required libraries (such as Pylint and Pytest) is
created, and then the code is checked, validated and tested.

2. Publishing artifact: Once the code has passed the previous stage, an
artifact is created with the component’s code.

3. Dockerization: Then, docker is installed and a docker image of the
azure function is created.

4. Deployment: As a final step, the docker image is pushed to an Azure
Container Registry and deployed to the corresponding Azure Function.

7.2 App Service

For the app service, the deployment is a simplification of the function deploy-
ment:

1. Dockerization: Docker is installed and a docker image of the app ser-
vice is created.

2. Deployment: The docker image is pushed to an Azure Container Reg-
istry.

3. App restart: Once the new image has been pushed, the app service is
restarted. After the restart, it automatically runs a container from the
latest pushed image.

7 DevOps pipelines Page 52

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

8 Project review

This section contains a summary of the development lifecycle of the project.

8.1 Encountered issues

During development, a few issues have come up. Fortunately, the planning
and risk management done in the early stages of the project have minimized
the impact of these problems, resulting in no significant impact on the devel-
opment. The problems that were encountered are listed and below, grouped
by category.

8.1.1 Azure functions limitations

During the implementation of the CKAN ingestor, limitations of the serverless
mode of azure functions became apparent. For big data sources containing
large amounts of data, the required time to ingest all the data exceeded the
capabilities of stateless azure functions. This forced a change in how ingestors
were implemented, and the solution was to still use the Functions service but
with the durable functions [31] extension. They allow writing stateful functions
in a serverless environment, and as a consequence can ingest large amounts of
data in a single run without any time limitations.

8.1.2 Container Registry Firewall

In the previously explained DevOps architecture, the usage of a container
registry to store docker images was explained. But the connection to this con-
tainer registry raised some security related issues. When the CI/CD pipeline
was developed and working, the platform team detected that the container
registry was openly connected to the internet, which is a major security prob-
lem. A firewall was put in place, limiting access to other Azure services and
connections through selected virtual networks.

This caused a connection error between the agent executing the pipeline. The
DevOps agents are hosted in a Microsoft server, so they are not inside the
company’s network. Therefore, it could not push the docker image to the
container. As a result, for two weeks, azure functions and the data viewer
could not be deployed to Azure. Services could still be developed and tested
locally as individual components, but the CI/CD infrastructure was stopped,
so the progress being made was not being reflected in the deployed product,
so the product manager was not able to showcase the product to clients for

8 Project review Page 53

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

this time period. The issue was finally solved by adding extra steps in the
pipeline to modify the firewall rules and temporarily whitelist the agent’s IP
while the image was being pushed, and then reverting the changes to keep the
firewall secure.

8.1.3 Geospatial database

The usage of a geospatial database has proven to be a more complex part of
the project than expected. The initial architecture design was made with no
sufficient knowledge on geospatial data and databases, and as a result it has
been redesigned during development as a reaction to the found limitations.
The three approaches that have been used are:

• PostgreSQL with PostGIS: The initial architecture used a single
database, and PostgreSQL was the chosen one. Using the PostGIS ex-
tension, geospatial queries were performed to retrieve the data. How-
ever, the large amount of data that was being stored in the database
significantly slowed down the performance of these queries. Also, as
PostgreSQL is a relational database, we were not able to take advantage
of unstructured data.

• Cosmos DB: The next idea was to use Cosmos DB to store the data,
and keep PostGIS for just the geospatial information and operations.
But when researching information on how to use cosmos, we found that
it was compatible with geospatial data and queries. Although its ca-
pabilities are significantly more limited than the ones in PostGIS, it
was estimated that they were sufficient for our use cases: point, poly-
gon and multi polygon data types to represent our geospatial data,
ST DISTANCE and ST WITHIN functions to make geospatial queries,
and possibility of indexing geospatial data to ensure fast querying. As
a result, the decision to use just cosmos was made, as it resulted in a
simpler architecture.

But after a while, some previously unknown limitations started to pop
up. Cosmos DB has a document size limit of 2 MB, and also a polygon
size limit of 4096 points. This meant that polygons of certain complexity
could not be used. Various alternatives were discussed, such as simpli-
fying the affected polygons or partitioning them into smaller ones and
then combining their results. But they were all complex solutions that
would slow down development time and produce a much more complex
code.

• PostgreSQL with PostGIS + Cosmos DB (current): The final
chosen architecture makes use of the two databases. The idea is to
combine the powerful geospatial capabilities of PostGIS (which are also

8 Project review Page 54

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

faster than in Cosmos DB) with the speed and ability to use unstructured
data of cosmos. The geospatial information of the data will be stored in
the PostgreSQL database, alongside a unique identifier referencing the
cosmos document that contains the data. The reduction of data stored
in PostgreSQL (and the usage of indexing) dramatically improves the
speed of geospatial queries, and then retrieving the data from cosmos is
almost instant.

8.1.4 Integration with ZIH

The Zurich Information Hub is a highly demanded product of the company,
and although it is already usable it is in constant development and its inte-
gration with other products is still a complex process. There are currently
other products being developed by the company that make use of the ZIH
and have a higher priority than this project, and therefore the developers
in charge of integrating the ZIH with other products are focused on other
projects. Fortunately, the two components of this project can be developed
and tested separately without the need of using the ZIH, and therefore this is
not a development issue. It will only become a problem when moving from the
development to the production stage, which is out of the scope of this thesis.

8.1.5 Reduction of developers

During the intermediate stages of the project, one of the products being devel-
oped by Zurich needed extra developers in order to meet the delivery deadline.
As a consequence, the first week of October, the company relocated one of the
developers working on this project to another team. Furthermore, three weeks
later another developer left the company, so the team was reduced to a single
developer. This continued for all of November, and it wasn’t until the end
of November that a new developer joined the team as a reinforcement. This
means that the planned team size of three developers only existed during the
first three weeks of the project, and for a full month all the development was
done by a single developer. Furthermore, the onboarding of the new developer
at the end of the project required extra meeting time to do a comprehensive
onboarding.

The reduction in developers translated into a longer developing time for the
project or a reduction of its size. The chosen solution was to reduce the amount
of implemented ingestors for the data hub. A more detailed explanation can
be found in section 8.3.1. Also, the impact of this issue on the cost of the
project is detailed in sections 8.4.1 and 8.4.3.

8 Project review Page 55

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

8.2 Planning changes

During the development of the EDH, one of the business requirements changed.
The classification of datasets had to be substituted with a geodata extraction
process. The goal was to easily detect datasets that contained geospatial data
in order to use them with ease in the GeoIntel product, and, for datasets
that do not contain geospatial data, attempt to create a process capable of
generating it based on the contents of the dataset. A more detailed explanation
of this new component can be found in section 5.3.

This change in the requirements has been reflected by changing task ED5
from dataset classification to dataset geolocation. This new task is sim-
ilar to the initially designed process, as it also takes a dataset and tries to
generate new information from its contents, and then load it into the ZIH
alongside the original data. So the only change that will be necessary is the
internal algorithm of the component, and the architecture of the EDH will re-
main untouched, thanks to its modular structure. This change of requirements
occurred before starting the development of the dataset classification compo-
nent, and therefore did not impact in any negative way the development, and
no previously done work had to be discarded.

8.3 Task completion

For the tasks defined in section 2.1, table 10 shows their final status.

Also, the updated Gantt chart can be seen in figure 18, where the final timeline
of the project can be viewed.

For tasks related to the product implementation, a more detailed explana-
tion will be given. Tasks under the project management category will not be
commented, as they are

8.3.1 ED. External data hub

• ED1. Research available sources: The research of sources was a
simple but tedious task. Not only sources had to be listed, also the type
of datasets they provided, the value these datasets can provide to the
company and the requirements of each source to allow its ingestion. The
task was considered completed after three weeks of its start, once a set
of source types was selected. However, this list ended up being reduced
to just two data source types.

• ED2. Ingestor framework design: The design of the framework

8 Project review Page 56

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

ID Task Name Status

PM Project management Completed

PM1 Defining the project’s scope Completed
PM2 Project planning Completed
PM3 Budget and sustainability report Completed
PM4 Final project documentation Completed
PM5 Meetings Completed

ED External data hub Simplified

ED1 Research available sources Completed
ED2 Ingestor framework design Completed
ED3 DevOps Completed
ED4 Ingestors Simplified
ED5 Dataset geolocation Completed
ED6 Automation of ingestors Completed

DA GeoIntel Completed

DA1 Geocoding Completed
DA2 Auxiliary datasets Completed
DA3 API development Completed
DA4 Data viewing website Completed

Source: Own creation.

Table 10: Task completion status.

was a process of first understanding the different services available in
Azure and how they could be used, and then choosing how the ingestors
would be implemented, where would the extracted data be stored and
designing the architecture to connect all of these elements, keeping in
mind at all times the goal of simplifying the ingestor addition process
for future implementations. The task took one week more than expected
and was finished on time.

• ED3. DevOps: The DevOps architecture has been properly imple-
mented and has provided the software development process with a robust
CI/CD infrastructure. This has impacted the overall development of the
product, as tests and deployments have been completely automated from
the beginning, allowing the team to focus on the development and bug
fixing.

8 Project review Page 57

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

The usage of pipelines proved to be more difficult than expected for
people not familiar with them, and therefore the task took a week longer
than expected to be completed, but was finished before the deadline.

• ED4. Ingestors: This task’s magnitude has been reduced in order to
adapt to the reduction of developers. The decision made was to imple-
ment just two carefully chosen ingestors to provide a base functionality
to the product that could be used by the company and serve as a good
example for the future addition of new ingestors.

The decision to implement the ingestors for the Contify API and CKAN
servers was based on business use cases. The data provided by Contify
is highly valuable for the company and was needed in the data science
department. And the CKAN ingestor provides an ingestion function ca-
pable of obtaining data from an extremely wide variety of sources, and
the internal structure of the extracted datasets is completely unspecified.
This is ideal for testing other components of the product, such as the
dataset geolocator, which is intended to work with any type of dataset.
Simply put, the Contify ingestor provides the extraction of a very spe-
cific set of information from a single source that is highly valuable for
the company, and the CKAN ingestor provides a generalized ingestion
method that can be used for many data sources and can therefore ingest
a huge amount of datasets for the company.

As a bonus, the Contify ingestor uses a regular Azure Function, while
the CKAN one uses a Durable Function, so they serve as examples for
the two possible implementations for future addition of new ingestors.

The work on this task started on time, and thanks to its reduction in
complexity it was finished a week earlier than expected and three weeks
before the initial deadline.

• ED5. Dataset geolocation: The component has been fully imple-
mented and deployed. The implemented Azure Function is able to pro-
cess a given dataset and extract an aggregation of all the geodata con-
tained in it. If the dataset does not contain any geospatial data, the
function tries to extract location entities from the contents of its files
and generates a polygon based on them.

The task was not initially planned, but based on the planned timeline
for the task being replaced by it, it started with a two-week delay, which
was caused by the redefinition of the task to adapt it to the business
requirements and the reduction of developers in the team, as the focus
was set on the ingestors. It also took an extra week to be developed
than the expected for the original dataset classification task. The result
is a completion one week later than the deadline for the original task.

• ED6. Automation of ingestors : The two implemented ingestors
(CKAN and Contify) have been deployed and a daily time trigger ex-
ecutes them. Every morning, new datasets and updates on previously

8 Project review Page 58

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

ingested data are available in the EDH landing storage (5.2). This task
started a week later than expected due to a delay in the implementation
of the dataset locator, but was completed on time.

8.3.2 DA. GeoIntel

• DA1. Geocoding: The geocoding functionality has been successfully
implemented. Although it as taken a week more than planned to be
implemented, the task has been completed before the deadline and with
very satisfactory results.

• DA2. Auxiliary datasets: Auxiliary geospatial datasets have been
easily found and uploaded to the geospatial database. This has been a
straightforward and simple task and has taken the expected time to be
completed.

• DA3. API development: The first release of the API is deployed.
It has the needed endpoints needed by the viewing website, alongside
with other endpoints that can be used by clients to access the data
in a variety of ways, being able to retrieve filtered data and statistics.
The API properly connects to the two available databases (geospatial
PostgreSQL and Cosmos DB) and depending on the request being served
it fetches information in either one of these databases or both if needed.
Response times are fast, except for queries that return a big amount of
data, which take longer to be downloaded by the requesting client.

The development of the API has taken a longer than expected time to
fully implement, with a 3-week difference with the planned time estimate.
But as the deadline for this task had a 3-week margin from the estimated
time, the task has been completed on time.

• DA4. Data viewing website: The website has the main features
working, with a fully interactive map and search menu. Response times
are fast, and the portal can be used not only as a graphical user interface
for using the API, it also serves as a geodata viewing portal. It serves as
a very good example of how the GeoIntel API can be used to implement
geospatial applications that use data available in the ZIH. The task has
finished on par with the API development, as expected. This is a week
later than expected, but on schedule.

8 Project review Page 59

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

8.3.3 Final Gantt chart

Project deadline

Weeks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Project Management

Defining the project’s scope

Project planning

Budget and sustainability report

Final project documentation

Meetings

External Data Hub

Ingestor framework design

DevOps

Dataset geolocation

Research avaliable sources

Ingestors

Automation of ingestors

GeoIntel

Geocoding

Auxiliary datasets

API development

Data viewing website

Source: Own creation.

Figure 18: Final Gantt chart

8 Project review Page 60

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

8.4 Final cost

8.4.1 Human resources

The cost of human resources has seen an important deviation, as a consequence
of the reduction in the amount of developers working on the project (issue
8.1.5). The total number of hours worked has been reduced, and most of
this reduction comes from the simplification of task ED4. In table 11 are
detailed the final worked hours by each data engineer on each task, alongside
the final deviation in worked hours that tasks have suffered. The worked hours
of the product manager and the IT manager are not listed because they have
matched the planned ones.

Tasks Hours worked by developer Deviation

ID
D.E.1

20,9e/h
D.E.2

20,9e/h
D.E.4

20,9e/h
D.E.3 (me)
20,9e/h

Total
hours

PM 21 29 35 160 -7

PM1 15 0
PM2 1 1 15 0
PM3 15 0
PM4 60 0
PM5 20 28 35 55 -7

ED 40 90 50 305 -115

ED1 20 20 20 0
ED2 20 20 20 0
ED3 50 70 0
ED4 20 80 -110
ED5 20 100 0
ED6 10 15 -5

DA 10 40 210 290 -20

DA1 20 0
DA2 10 10 10 0
DA3 30 80 160 -10
DA4 130 100 -10

Total 71 159 295 755 -142

Source: Own creation.

Table 11: Tasks final worked hours by data engineers

8 Project review Page 61

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

With the deviations in worked hours for each task, the deviation of their cost
in human resources. As the deviations occurred within the same role, the
deviations in the tasks costs can be calculated by multiplying the deviation in
hours by the hourly wage of the data engineers. Table 12 shows the final cost
for each task and the respective deviation. The total final cost, 31.828 e,
is the final personnel costs per activity (PCA), and the deviation (calculated
with formula 1) is of - 2.967,8 e.

Tasks
ID

Estimated cost (e) Real cost (e) Deviation (e)

PM 8.329,3 8.183 - 146,3

PM1 499,5 499,5 0
PM2 541,3 541,3 0
PM3 499,5 499,5 0
PM4 1.874 1.874 0
PM5 4.915 4.768,7 - 146,3

ED 14.135,5 11.732 - 2.403,5

ED1 1.254 1.254 0
ED2 2.097 2.097 0
ED3 2.842,5 2.842,5 0
ED4 4.389 2.090 - 2.299
ED5 2.926 2.926 0
ED6 627 522,5 - 104,5

DA 12.331 11.913 - 418

DA1 418 418 0
DA2 627 627 0
DA3 6.270 6.061 - 209
DA4 5.016 4.807 - 209

Total 34.795,8 31.828 - 2.967,8

Source: Own creation.

Table 12: Tasks cost

8.4.2 Development costs

To obtain the development costs, the cost report generated by the Azure portal
has been used. This tool simplifies the analysis of costs and provides a clear
and interactive dashboard (image 19) where the user can review the costs of
the used Azure services over a specified period of time.

Using this tool, the cost of each azure resource used over the development
period of this thesis has been checked, and the average monthly costs can ve

8 Project review Page 62

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

Source: Azure portal.

Figure 19: Azure portal cost report

viewed in table 13, alongside the originally projected costs and the deviation
between them. The values shown in the Azure portal are given in dollars, and
when converting them to euros we obtain a total final cost of 3.819,22 e,
with a deviation that is calculated with formula 2 and amounts to - 866,18
e.

Service type Estimated cost ($) Real cost ($) Deviation ($)
Storage Account 101,48 4,45 - 97,03

Azure Functions 0,00 0,5 + 0,5

Azure PostgreSQL 634,12 509,4 - 124,72

Azure Cosmos DB 375,4 388,41 + 13,01

Key Vault 0,03 0,01 - 0,02

Azure ML 198,56 0 - 198,56

App Service 13,14 85,74 + 72,6

Azure Maps 0 0 0

Container Registry 31,6 43,5 + 11,9

Virtual Network - 57,11 + 57,11

Threat protection - 7,57 + 7,57

Log analytics - 7,27 + 7,27

Total 1.354,33 1.103,96 - 250,37

Source: Azure Portal Cost analysis.

Table 13: Azure resources monthly costs

The biggest deviation can be seen in the Azure ML service, as it has not

8 Project review Page 63

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

been used. The other major deviations are seen in the Storage Account and
PostgreSQL geospatial database. The reason for this is that the amount of
ingested data has been less than expected, as a direct consequence of issue
8.1.5. Less ingestors means less ingested data. Lastly, the App service used
for the data viewing webpage has had a big positive difference between the
budgeted and real cost. This is probably due to an underestimation of the
Azure Price Calculator, as the deployed web app consumes more resources
than the average web app due to the large amounts of data passing through
it and being displayed in the interactive map. Finally, a few extra security
related resources that were not budgeted but have been put in place by the
IT manager have increased the final development costs.

8.4.3 Other costs

The rest of the costs have not changed significantly during the development
of the project, as it was expected. The only change that has occurred is
a consequence of the reduction of hours worked by developers, explained in
section 8.4.1, and has to do with the peripheral usage. In section 3.3 it was
estimated that the cost of these peripherals is 0,4655 efor each worked hour.
Using formula 3, the cost has gone down by 66,10 e. The final cost is 683,35
e.

Adding the development costs and other costs, the final generic costs (GC)
end up being 4.502,57 e.

8.4.4 Summary

In table 14 can be seen the comparison of the budget with the final cost.

Activity Budget (e) Cost Deviation (e) Deviation (%)

PCA 34.795,8 31.828 - 2.967,8 - 8,53

GC 5.434,85 4.502,57 - 932,28 - 17,15

Total costs 40.230,65 36.330,57 -3.900,08 - 9,69

Contingency 6.035 0 - 6.035 - 100

Incidents 3.850 0 - 3.850 - 100

TOTAL 50.115,65 36.330,57 -13.785,08 - 27,51

Source: Own creation.

Table 14: Final budget

Although at a first glance the deviations seem big, looking at the individual
numbers things make more sense. First, the contingency and incidents budgets
have not been used, as no incident has occurred that has forced to make use of

8 Project review Page 64

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

them. Therefore, if we remove these two items from the equation and look at
the PCA and GC costs, the deviation is much lower (- 9,69 %). As explained in
previous sections, the reduction of the development team has reduced both the
costs of human resources and the development costs for some storage related
Azure services. These, together with the discarding of the Azure ML service,
account for the majority of the reduction of the costs.

As an overall view, the reduction in the project cost can be seen as a success,
and not only for the obvious reason of costing less money than budgeted. The
contingency and incidents budget items have not been needed, as no major
issues have occurred during the project. Also, the only important issue faced
has decreased cost proportionally to the decrease in implemented ingestors,
all without having a major impact in the usability of the developed products.
Therefore, it can be concluded that the deviations are not the result of an
overestimation of the budget, but a consequence of the reduction of the team
size.

8.5 Sustainability report

Examining the sustainability of this project is a very important task. Exam-
ining how every project done and their results its results will impact the world
is a must, and the social, economic and environmental implications have to
be analyzed. This also applies to this project. It is important to be conscious
of how it will impact society, and the environmental implications it might
have, as this is a shared responsibility for every member of society. This sus-
tainability report examines the project’s environmental, economic and social
implications.

8.5.1 Environmental impact

The environmental impact of this project will come from energy usage and
the carbon footprint of the used hardware components. As components are
developed and deployed, their needed resources will be allocated, so they will
only be consumed when needed. Also, the project will not only benefit from
the environmental advantages of using any cloud platform (detailed in the next
question), but also from choosing a service that is committed to reducing its
environmental footprint [69].

There are many implementations of systems that do a similar task as the
one that this project aims to implement. Although the specifics of how they
are implemented (and therefore their environmental impact) is often not pub-
licly available information, there are two main approaches to implement the
project: creating an on-premise infrastructure by the company, or using a

8 Project review Page 65

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

cloud platform. The best approach from an environmental standpoint is us-
ing the cloud platform [70], as it ensures that the resources used are just the
currently needed ones, and also ensures the reuse of hardware components,
as they are shared among all cloud users. This is why the decision to use
Azure’s cloud service instead of setting up an on-premise infrastructure is a
good decision from an environmental point of view.

Looking at the individual components being used, the tasks that do the ma-
jority of the processing are deployed in Azure Functions, which due to their
serverless nature consume much less energy than regular served-based applica-
tions [71]. The other major energy-consuming components of this project are
related to data storage. Storing data on the cloud consumes much more energy
than storing in local hard drives [72], but this is the only possible approach for
this product, as the files need to be available for all business units around the
globe. Using storage solutions provided by cloud services is a better solution
from an environmental standpoint than using a dedicated storage facility set
up by the company, as, although the datacenters used by cloud providers are
major carbon emitting facilities, they are designed to be as efficient as possi-
ble, and are often located near clean energy sources from where they obtain
their energy. Furthermore, the ZIH is a centralized place intended to store
all the company’s data. This centralization avoids having duplicate data in
different business units, so the total amount of data stored, and the emissions
produced by it, are reduced to the possible minimum.

As a result, the project will end up reducing the carbon footprint of the com-
pany, as data will be unified in a single location, removing duplicates within
the company and moving it from local storing sites to more efficient cloud data
centers. It will be crucial to ensure that all business units move their data to
the ZIH, and start to get more data through it, as if they fail to do so the
environmental impact will increase.

8.5.2 Economic impact

Before starting the implementation of the project, an estimation of its costs,
both human and material, have been analyzed and documented in section 3.
Once the development has concluded, the final costs have also been studied
and are listed in section 8.4. There, the details on the final costs and their
deviations from the budget are analyzed.

As with the environmental implications, the usage of a cloud platform instead
of an on-premise infrastructure results in economic benefits. If a cloud service
was not used, all hardware components used for this project would need to be
bought at full price, and an important part of them would not be used again
once the product stopped being used. Using a cloud service ensures that

8 Project review Page 66

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

costs are strictly related to the usage of resources, and therefore provides for
a significant cost reduction in the implementation and usage of the product.
Also, once the project is completed, many tasks that were previously done
manually will be automated, and therefore many human resources that are
now being wasted on these tasks will now see their productivity increased and
will be able to focus on higher value tasks. Therefore, the project will not
translate in a cost reduction of human resources, but rather a boost in their
productivity and profits of the company without increasing the spending. The
usage of shared data among all business units will reduce the costs of obtaining
this data, as the avoidance of duplicates will mean that costs of generating or
extracting data are generated only once, and that licensing for paid data is
paid only once and used by the whole company.

8.5.3 Social impact

As mentioned in section 1, there was an urgent need to develop this product, as
it dramatically improves the knowledge of business units inside the company,
reduces the amount of tasks that are now done manually and improves the
productivity of their workers. Making data more accessible also opens up a
wide range of opportunities to develop new products and improve business
procedures in the future.

With the development of this product, users will be able to effectively find
and analyze data that is currently being wasted or ignored. Customers of the
company will see how the product will improve, having a better personaliza-
tion of their insurances, offering better prices and better coverage for their
specific needs. The only possible negative impact that the product can have
on costumers is the increase in the price of the products they use, or the
degradation of its quality, caused by the use of biased data that discriminates
a certain user group. This is not a direct consequence of this particular prod-
uct, but a possible scenario that commonly occurs when using data driven
business decision taking. The upside is that the opposite effect can happen:
the usage of data can remove human bias from the decisions taken and reduce
inequality. Therefore, the company’s data science department will have to do
an exhaustive job in analyzing the data and models used to avoid using biased
solutions.

For the people involved in its development, the project has made a big im-
pact in our professional development, as we have used technologies that were
not familiar to us, exploring solutions based on a cloud infrastructure and
implementing information extraction methods for geodata that had to be de-
signed and developed from scratch by the team. The project has been a very
enriching experience overall.

8 Project review Page 67

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

8.6 Relationship with the degree

8.6.1 Justification of the specialty and related subjects

The implementation of this project builds on a lot of knowledge acquired from
the computing specialty. Its main focus resides in the retrieval and processing
of large quantities of data, alongside with the extraction of information from
it. The knowledge and experience gained from the Data Mining (MD), Ma-
chine Learning (APA) and specially Massive Information Search and Analysis
(CAIM) subjects have been very helpful to develop this thesis. Also, concepts
learned in Programming Languages (LP) and Algorithmics (A) have been help-
ful to develop efficient algorithms and complex data structures.

But not only knowledge from the computing specialization has been helpful.
Both relational and non-relational databases have been used for the project,
for which experience from Databases (BD) has been useful. And thanks to
the Parallelism (PAR) subject, parallel computing has been successfully used
in the scenarios where it could be applied to speed up processing time.

8.6.2 Technical skills

• CCO 1.3 (in depth): An in depth analysis of possible solutions using
Azure Services has been done for the project. A robust architecture has
been designed using the most appropriate resources, such as databases
with different paradigms and capabilities, serverless computation and
other components, where these components interact with each other in-
side a highly modular design.

• CCO 2.1 (enough): A fully automatized end to end system has been
developed for the automatic ingestion, processing and visualization of
data, removing any need for human interaction during the process.

• CCO 2.2 (slightly): The system properly analyzes the information and
automatically generates or extracts geospatial information to categorize
its contents in a location-based visual representation.

• CCO 2.3 (slightly): The data viewing website serves as an environ-
ment where data containing geospatial information can be viewed and
interacted with.

• CCO 2.4 (enough): One of the implemented components of this
project has been a function capable of extracting geospatial informa-
tion from datasets, or generating it with the use of NER if no explicit
geospatial information exists in the data.

8 Project review Page 68

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

• CCO 2.5 (in depth): An application in charge of the massive ingestion
of open data has been designed and developed.

• CCO 3.2 (slightly): The programmed behavior of components de-
ployed as different types of services, each one having specific running
environments and capabilities, has been done keeping in mind the hard-
ware behind them to obtain efficiently executed algorithms.

9 Conclusions

The project has been a success. A fully working end to end data processing
pipeline has been deployed, where open data sources external to the company
are ingested by the External Data Hub 5, saved to a landing storage and
then processed by the Dataset Locator 5.3 to extract geospatial information
from them. If no geodata is found within the dataset, the function is able
to generate it using NER and generating a geometry, with a success rate of
78,5 % 5.3.3. This data is then sent to the Zurich Information Hub, where
it is transformed and published for availability of use for Zurich employees
and applications. One of these applications has been fully implemented. It
serves as a geodata serving app, implemented both with an API that can be
used by technically skilled users to build new applications on top of it, and
an interactive portal where users can view, filter and download the data in a
responsive and intuitive environment.

All the development process has been backed by a good DevOps architecture
that automatically tests and deploys new features using a CI/CD infrastruc-
ture, allowing developers to focus on the development and removing human
error from the process. The whole system is built with a modular architec-
ture that allows for a very easy extension of the system: new ingestors can be
easily added, the components are decoupled and easily modifiable and all of
them can be connected to new applications. All of this in a robust and secure
infrastructure.

Business requirements have been met, and the system is fully usable. The
only major issue that has affected the project 8.1.5 has not impacted the final
result in a meaningful way, thanks to a good planning and execution. It also
has not negatively impacted the cost of the project 8.4.

9 Conclusions Page 69

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

10 Nomenclature

• Continuous integration and continuous deployment (CI/CD):
Automatic testing and deployment of developed software elements as
they are implemented. An automated pipeline is in charge of testing the
developed code and deploying it, removing the need for manual interac-
tion with the process.

• Coordinate reference system (CRS): Coordinate based system used
to locate points and other geographical features in a geographic space.
In this thesis, this space is Earth’s surface.

• External Data Hub (EDH): Product developed in this thesis for
Zurich, that aims to create a platform for open data ingestion.

• Geocoding: Process of converting a free text address to its correspond-
ing coordinates.

• Geodata: Data containing geospatial information. Also referred to as
geospatial data.

• GeoJSON: Open standard format based on the JSON format for rep-
resenting geographical features along with non-spatial attributes.

• Hypertext Transfer Protocol (HTTP): Application-layer protocol
for transmitting hypermedia documents. Used mainly for communica-
tion between web browsers and web servers.

• Ingestor: Component of the External Data Hub that extracts data
from an open data source to a storage owned by the company.

• JavaScript Object Notation (JSON): Open standard format that
uses human-readable text to store and transmit data objects consisting
of attribute–value pairs and arrays.

• Named entity recognition (NER): Subfield of natural language pro-
cessing and information extraction that aims to recognize entities in free
text. Entities can be locations, famous people, historic events, etc.

• Natural language processing (NLP): Field in artificial intelligence
that aims to create tools, such as language models, that can be used by
computers to analyze and use text as humans do.

• Pipeline: Automatically triggered and programmable process used to
test code, check its quality and interact with cloud resources.

• Zurich Information Hub (ZIH): Product of Zurich designed to cen-
tralize all data that is possessed by the company, used to process, anonymize
and transform ingested data.

10 Nomenclature Page 70

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

References

[1] Andrea Murphy et al. The Global 2000 2021. May 2021. url: https:
//www.forbes.com/lists/global2000.

[2] A global insurer — Zurich Insurance. url: https://www.zurich.com/
en/about-us/a-global-insurer.

[3] What Is Cloud Computing? A Beginner’s Guide — Microsoft Azure.
url: https://azure.microsoft.com/en-us/overview/what-is-
cloud-computing/.

[4] What is DevOps? — Atlassian. url: https://www.atlassian.com/
devops.

[5] What Is a Data Warehouse — Oracle. url: https://www.oracle.com/
database/what-is-a-data-warehouse/.

[6] World Geodetic System 1984 (WGS84) - Qinsy. url: https://confluence.
qps.nl/qinsy/latest/en/world-geodetic-system-1984-wgs84-

182618391.html.

[7] WGS 84 - WGS84 - World Geodetic System 1984, used in GPS - EPSG:4326.
url: https://epsg.io/4326.

[8] WGS 84 / Pseudo-Mercator - Spherical Mercator, Google Maps, Open-
StreetMap, Bing, ArcGIS, ESRI - EPSG:3857. url: https://epsg.io/
3857.

[9] ServiZurich — Home. url: https://bcntdc.zurich.com/en/about.

[10] Kaggle: Your Machine Learning and Data Science Community. url:
https://www.kaggle.com/.

[11] CKAN - The open source data management system. url: https://
ckan.org/.

[12] Cloud Computing Services — Microsoft Azure. url: https://azure.
microsoft.com/en-us/.

[13] Azure DevOps Services — Microsoft Azure. url: https : / / azure .

microsoft.com/en-us/services/devops/.

[14] Isaac Sacolick. What is CI/CD? Continuous integration and continuous
delivery explained — InfoWorld. url: https://www.infoworld.com/
article/3271126/what-is-cicd-continuous-integration-and-

continuous-delivery-explained.html.

[15] CI/CD for Azure Web Apps - Azure Solution Ideas — Microsoft Docs.
url: https://docs.microsoft.com/en-us/azure/architecture/
solution-ideas/articles/azure-devops-continuous-integration-

and-continuous-deployment-for-azure-web-apps.

[16] Azure Repos – Git Repositories — Microsoft Azure. url: https://
azure.microsoft.com/en-us/services/devops/repos/.

References Page 71

https://www.forbes.com/lists/global2000
https://www.forbes.com/lists/global2000
https://www.zurich.com/en/about-us/a-global-insurer
https://www.zurich.com/en/about-us/a-global-insurer
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://www.atlassian.com/devops
https://www.atlassian.com/devops
https://www.oracle.com/database/what-is-a-data-warehouse/
https://www.oracle.com/database/what-is-a-data-warehouse/
https://confluence.qps.nl/qinsy/latest/en/world-geodetic-system-1984-wgs84-182618391.html
https://confluence.qps.nl/qinsy/latest/en/world-geodetic-system-1984-wgs84-182618391.html
https://confluence.qps.nl/qinsy/latest/en/world-geodetic-system-1984-wgs84-182618391.html
https://epsg.io/4326
https://epsg.io/3857
https://epsg.io/3857
https://bcntdc.zurich.com/en/about
https://www.kaggle.com/
https://ckan.org/
https://ckan.org/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps
https://azure.microsoft.com/en-us/services/devops/repos/
https://azure.microsoft.com/en-us/services/devops/repos/

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

[17] Azure Pipelines — Microsoft Azure. url: https://azure.microsoft.
com/en-us/services/devops/pipelines/.

[18] Azure Boards — Microsoft Azure. url: https://azure.microsoft.
com/en-us/services/devops/boards/.

[19] Chuck Gehman. What Is Version Control? Git Version Control? — Per-
force. url: https://www.perforce.com/blog/vcs/what-is-version-
control.

[20] What is Agile? — Atlassian. url: https://www.atlassian.com/agile.

[21] What is Scrum? url: https://www.scrum.org/resources/what-is-
scrum.

[22] Colm Kenny.What Is Web Scraping And How Does It Work? — Zyte.com.
url: https://www.zyte.com/learn/what-is-web-scraping/.

[23] Pylint - code analysis for Python — www.pylint.org. url: https://
pylint.org/.

[24] Thomas Hamilton. Unit Testing Tutorial: What is, Types, Tools & Test
EXAMPLE. Sept. 2021. url: https://www.guru99.com/unit-testing-
guide.html.

[25] Empowering App Development for Developers — Docker. url: https:
//www.docker.com/.

[26] Azure Container Registry documentation — Microsoft Docs. url: https:
//docs.microsoft.com/en-us/azure/container-registry/.

[27] What is Machine Learning? — IBM. url: https://www.ibm.com/
cloud/learn/machine-learning.

[28] Classification In Machine Learning — Classification Algorithms — Edureka.
url: https://www.edureka.co/blog/classification-in-machine-
learning/.

[29] What is Natural Language Processing? — IBM. url: https://www.
ibm.com/cloud/learn/natural-language-processing.

[30] What is geocoding?—ArcMap — Documentation. url: https://desktop.
arcgis.com/en/arcmap/latest/manage-data/geocoding/what-is-

geocoding.htm.

[31] Durable Functions Overview - Azure — Microsoft Docs. url: https:
//docs.microsoft.com/en-us/azure/azure-functions/durable/

durable-functions-overview?tabs=csharp.

[32] PostGIS — Spatial and Geographic Objects for PostgreSQL. url: https:
//postgis.net/.

[33] NoSQL Databases – What They Are and Why You Need One. url:
https://www.couchbase.com/resources/why-nosql.

[34] Postman API Platform — Sign Up for Free. url: https : / / www .

postman.com/.

References Page 72

https://azure.microsoft.com/en-us/services/devops/pipelines/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://azure.microsoft.com/en-us/services/devops/boards/
https://azure.microsoft.com/en-us/services/devops/boards/
https://www.perforce.com/blog/vcs/what-is-version-control
https://www.perforce.com/blog/vcs/what-is-version-control
https://www.atlassian.com/agile
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://www.zyte.com/learn/what-is-web-scraping/
https://pylint.org/
https://pylint.org/
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/unit-testing-guide.html
https://www.docker.com/
https://www.docker.com/
https://docs.microsoft.com/en-us/azure/container-registry/
https://docs.microsoft.com/en-us/azure/container-registry/
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://www.edureka.co/blog/classification-in-machine-learning/
https://www.edureka.co/blog/classification-in-machine-learning/
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/what-is-geocoding.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/what-is-geocoding.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/what-is-geocoding.htm
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://postgis.net/
https://postgis.net/
https://www.couchbase.com/resources/why-nosql
https://www.postman.com/
https://www.postman.com/

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

[35] API Documentation & Design Tools for Teams — Swagger. url: https:
//swagger.io/.

[36] JSON. url: https://www.json.org/json-en.html.

[37] YAML Tutorial: Everything You Need to Get Started in Minutes —
Cloudbees Blog. url: https : / / www . cloudbees . com / blog / yaml -

tutorial-everything-you-need-get-started.

[38] Earning Power. Project Management Salary Survey Eleventh Edition.
Project Management Institute, 2020, pp. 251–257. url: https://www.
pmi . org/ - /media / pmi / documents / public / pdf / learning / pmi -

salary- survey- 11th- edition- report.pdf?v=b8dbbec0- 0048-

4b6d-99ca-389b36cad726.

[39] Salario de un IT manager en España. url: https://es.indeed.com/
career/it-manager/salaries.

[40] Salario de un Data engineer en España. url: https://es.indeed.com/
career/data-engineer/salaries.

[41] Calculadora de precios — Microsoft Azure. url: https : / / azure .

microsoft.com/es-es/pricing/calculator/.

[42] DELL Latitude 5401 Specs, Reviews & Prices — Techlitic.com. url:
https://techlitic.com/laptops/dell-latitude-5401/.

[43] Sillas de Escritorio - Compra Online - IKEA. url: https://www.ikea.
com/es/es/cat/sillas-escritorio-20652/.

[44] Escritorios y Mesas de Ordenador - Compra Online - IKEA. url: https:
//www.ikea.com/es/es/cat/escritorios-hogar-20651/.

[45] Esto es lo que pagas de luz de más por trabajar desde casa. url: https:
//www.eleconomista.es/economia/noticias/11285906/06/21/

Este-es-el-coste-de-la-electricidad-por-trabajar-desde-

casa.html.

[46] Welcome to Flask — Flask Documentation (2.0.x). url: https : / /

flask.palletsprojects.com/en/2.0.x/.

[47] Welcome - Humanitarian Data Exchange. url: https://data.humdata.
org/.

[48] Fan-out/fan-in scenarios in Durable Functions - Azure — Microsoft
Docs. url: https://docs.microsoft.com/en- us/azure/azure-
functions/durable/durable-functions-cloud-backup?tabs=python.

[49] News API - Custom News Feed API for Business News — Contify. url:
https://www.contify.com/news-feed-api/.

[50] Folium — Folium 0.12.1 documentation. url: https://python-visualization.
github.io/folium/.

[51] Leaflet - a JavaScript library for interactive maps. url: https : / /

leafletjs.com/.

References Page 73

https://swagger.io/
https://swagger.io/
https://www.json.org/json-en.html
https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/pmi-salary-survey-11th-edition-report.pdf?v=b8dbbec0-0048-4b6d-99ca-389b36cad726
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/pmi-salary-survey-11th-edition-report.pdf?v=b8dbbec0-0048-4b6d-99ca-389b36cad726
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/pmi-salary-survey-11th-edition-report.pdf?v=b8dbbec0-0048-4b6d-99ca-389b36cad726
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/pmi-salary-survey-11th-edition-report.pdf?v=b8dbbec0-0048-4b6d-99ca-389b36cad726
https://es.indeed.com/career/it-manager/salaries
https://es.indeed.com/career/it-manager/salaries
https://es.indeed.com/career/data-engineer/salaries
https://es.indeed.com/career/data-engineer/salaries
https://azure.microsoft.com/es-es/pricing/calculator/
https://azure.microsoft.com/es-es/pricing/calculator/
https://techlitic.com/laptops/dell-latitude-5401/
https://www.ikea.com/es/es/cat/sillas-escritorio-20652/
https://www.ikea.com/es/es/cat/sillas-escritorio-20652/
https://www.ikea.com/es/es/cat/escritorios-hogar-20651/
https://www.ikea.com/es/es/cat/escritorios-hogar-20651/
https://www.eleconomista.es/economia/noticias/11285906/06/21/Este-es-el-coste-de-la-electricidad-por-trabajar-desde-casa.html
https://www.eleconomista.es/economia/noticias/11285906/06/21/Este-es-el-coste-de-la-electricidad-por-trabajar-desde-casa.html
https://www.eleconomista.es/economia/noticias/11285906/06/21/Este-es-el-coste-de-la-electricidad-por-trabajar-desde-casa.html
https://www.eleconomista.es/economia/noticias/11285906/06/21/Este-es-el-coste-de-la-electricidad-por-trabajar-desde-casa.html
https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/
https://data.humdata.org/
https://data.humdata.org/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-cloud-backup?tabs=python
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-cloud-backup?tabs=python
https://www.contify.com/news-feed-api/
https://python-visualization.github.io/folium/
https://python-visualization.github.io/folium/
https://leafletjs.com/
https://leafletjs.com/

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

[52] GeoJSON. url: https://geojson.org/.

[53] Keyhole Markup Language — Google Developers. url: https : / /

developers.google.com/kml.

[54] Shapefiles—ArcGIS Online Help — Documentation. url: https://doc.
arcgis.com/en/arcgis-online/reference/shapefiles.htm.

[55] GeoPandas documentation. url: https://geopandas.org/en/stable/.

[56] Pandas - Python Data Analysis Library. url: https://pandas.pydata.
org/.

[57] How to Dissolve Polygons Using Geopandas: GIS in Python — Earth
Data Science - Earth Lab. url: https://www.earthdatascience.
org/workshops/gis-open-source-python/dissolve-polygons-in-

python-geopandas-shapely/.

[58] What is named entity recognition (NER) and how can I use it? — by
Christopher Marshall — super.AI — Medium. url: https://medium.
com/mysuperai/what- is- named- entity- recognition- ner- and-

how-can-i-use-it-2b68cf6f545d.

[59] Textract — textract 1.6.1 documentation. url: https://textract.
readthedocs.io/en/stable/.

[60] spaCy · Industrial-strength Natural Language Processing in Python. url:
https://spacy.io/.

[61] Multi-language · spaCy Models Documentation. url: https://spacy.
io/models/xx#xx_ent_wiki_sm.

[62] OPTICS algorithm - Wikipedia. url: https://en.wikipedia.org/
wiki/OPTICS_algorithm.

[63] sklearn.cluster.OPTICS — scikit-learn 1.0.2 documentation. url: https:
//scikit-learn.org/stable/modules/generated/sklearn.cluster.

OPTICS.html.

[64] The Shapely User Manual — Shapely 1.8.0 documentation. url: https:
//shapely.readthedocs.io/en/stable/manual.html.

[65] Buffer (Analysis)—ArcGIS Pro — Documentation. url: https://pro.
arcgis.com/en/pro-app/2.8/tool-reference/analysis/buffer.

htm.

[66] Haversine formula - Calculate geographic distance on earth. url: https:
//www.igismap.com/haversine-formula-calculate-geographic-

distance-earth/.

[67] PostgreSQL: Documentation: 9.1: Index Types. url: https://www.
postgresql.org/docs/9.1/indexes-types.html.

[68] 15. Spatial Indexing — Introduction to PostGIS. url: http://postgis.
net/workshops/postgis-intro/indexing.html.

References Page 74

https://geojson.org/
https://developers.google.com/kml
https://developers.google.com/kml
https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm
https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm
https://geopandas.org/en/stable/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.earthdatascience.org/workshops/gis-open-source-python/dissolve-polygons-in-python-geopandas-shapely/
https://www.earthdatascience.org/workshops/gis-open-source-python/dissolve-polygons-in-python-geopandas-shapely/
https://www.earthdatascience.org/workshops/gis-open-source-python/dissolve-polygons-in-python-geopandas-shapely/
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d
https://textract.readthedocs.io/en/stable/
https://textract.readthedocs.io/en/stable/
https://spacy.io/
https://spacy.io/models/xx#xx_ent_wiki_sm
https://spacy.io/models/xx#xx_ent_wiki_sm
https://en.wikipedia.org/wiki/OPTICS_algorithm
https://en.wikipedia.org/wiki/OPTICS_algorithm
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html
https://shapely.readthedocs.io/en/stable/manual.html
https://shapely.readthedocs.io/en/stable/manual.html
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/analysis/buffer.htm
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/analysis/buffer.htm
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/analysis/buffer.htm
https://www.igismap.com/haversine-formula-calculate-geographic-distance-earth/
https://www.igismap.com/haversine-formula-calculate-geographic-distance-earth/
https://www.igismap.com/haversine-formula-calculate-geographic-distance-earth/
https://www.postgresql.org/docs/9.1/indexes-types.html
https://www.postgresql.org/docs/9.1/indexes-types.html
http://postgis.net/workshops/postgis-intro/indexing.html
http://postgis.net/workshops/postgis-intro/indexing.html

Implementation of a datawarehouse on the cloud Lucas Cajal Treviño

[69] Azure Sustainability—Sustainable Technologies — Microsoft Azure. url:
https://azure.microsoft.com/en-us/global-infrastructure/

sustainability/#environmental-impact.

[70] The carbon benefits of cloud computing. Microsoft, WSP, 2020. url:
https://www.microsoft.com/en-us/download/confirmation.aspx?

id=56950.

[71] Adopting Azure serverless architectures to help reduce CO2 emissions
– Part 1 - Sustainable Software. url: https://devblogs.microsoft.
com/sustainable-software/adopting-azure-serverless-architectures-

to-help-reduce-co2-emissions-part-1/?WT.mc_id=green-8664-

cxa.

[72] Carbon and the Cloud. Hard facts about data storage. — by Stanford
Magazine — Stanford Magazine — Medium. url: https://medium.
com/stanford-magazine/carbon-and-the-cloud-d6f481b79dfe.

References Page 75

https://azure.microsoft.com/en-us/global-infrastructure/sustainability/#environmental-impact
https://azure.microsoft.com/en-us/global-infrastructure/sustainability/#environmental-impact
https://www.microsoft.com/en-us/download/confirmation.aspx?id=56950
https://www.microsoft.com/en-us/download/confirmation.aspx?id=56950
https://devblogs.microsoft.com/sustainable-software/adopting-azure-serverless-architectures-to-help-reduce-co2-emissions-part-1/?WT.mc_id=green-8664-cxa
https://devblogs.microsoft.com/sustainable-software/adopting-azure-serverless-architectures-to-help-reduce-co2-emissions-part-1/?WT.mc_id=green-8664-cxa
https://devblogs.microsoft.com/sustainable-software/adopting-azure-serverless-architectures-to-help-reduce-co2-emissions-part-1/?WT.mc_id=green-8664-cxa
https://devblogs.microsoft.com/sustainable-software/adopting-azure-serverless-architectures-to-help-reduce-co2-emissions-part-1/?WT.mc_id=green-8664-cxa
https://medium.com/stanford-magazine/carbon-and-the-cloud-d6f481b79dfe
https://medium.com/stanford-magazine/carbon-and-the-cloud-d6f481b79dfe

	Context and scope
	Context
	Introduction
	Terms and concepts
	Problem to be resolved
	Stakeholders

	Justification
	Previous studies
	Solution justification

	Scope
	Objectives
	Laws and regulations
	Potential obstacles and risks

	Methodology and rigor
	Methodology
	Rigor

	Planning
	Task definition
	PM. Project management (160h)
	ED. External Data Hub (230h)
	DA. GeoIntel (210h)

	Time planning
	Time estimates summary
	Gantt chart

	Resources
	Project management
	Code development
	Human resources
	Other resources

	Risk management
	Change of requirements
	Dependency on other teams
	Support required by other team
	Security related holds

	Budget
	Human resources
	Development costs
	Other costs
	Budget deviations
	Contingency
	Incidental costs

	Final budget
	Management control

	High level architecture
	External Data Hub
	GeoIntel
	DevOps

	External Data Hub
	Ingestors
	External data landing storage
	Dataset locator
	Geospatial data extraction
	Geospatial data generation
	Geospatial data extraction evaluation

	GeoIntel
	Cosmos Database
	PostgreSQL with PostGIS
	API
	Geocoding
	Data access

	Data viewing web app

	DevOps pipelines
	Azure Functions
	App Service

	Project review
	Encountered issues
	Azure functions limitations
	Container Registry Firewall
	Geospatial database
	Integration with ZIH
	Reduction of developers

	Planning changes
	Task completion
	ED. External data hub
	DA. GeoIntel
	Final Gantt chart

	Final cost
	Human resources
	Development costs
	Other costs
	Summary

	Sustainability report
	Environmental impact
	Economic impact
	Social impact

	Relationship with the degree
	Justification of the specialty and related subjects
	Technical skills

	Conclusions
	Nomenclature

