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Abstract. Cavitating vortex shedding is a flow phenomenon commonly encountered behind bluff 
bodies in hydraulic machinery and systems and the generated vapor bubbles significantly change 
the dynamic behavior of the vortices. In addition, the collapses of the cavities become a source of 
unwanted effects such as vibration, noise and material erosion. In this study, the numerical results 
of the cavitating vortex shedding behind a circular cylinder at low Reynolds number have been 
compared and analyzed using different mass transfer rate values between the vapor and the liquid 
water phases. For that, the transport equation for the vapor volume fraction coupled with the explicit 
source term based on the simplification of the Rayleigh-Plesset equation has been solved. 
Commonly, this explicit source term that accounts for the mass transfer rate is driven by a function 
of the pressure difference, the vapor volume fraction and several empirical factors. To understand 
the effects of this rate, its value has been gradually increased from its default value up to the infinite 
when the equilibrium assumption for the barotropic flow is satisfied. The obtained results show that 
as the rate is increased, higher gradients of the vapor volume fraction and of the pressure near the 
interface between the vapor and the liquid phases are predicted. However, the frequency of the 
vortex shedding is slightly affected by the increase of the mass transfer rate. 

1. Introduction  
The cavitating vortex shedding behind a circular cylinder is one of the most canonical cases encountered in 
the hydraulic systems. When the vaporous cavities appear, the dynamic behavior of the vortices tends to 
change dramatically. Nowadays, the numerical methods have become a reliable and efficient tool to analyze 
and predict this complex dynamic behavior. 

To numerically simulate such cavitating flows, two different assumptions are taken for the mass transfer 
between the liquid and the vapor: (i) the equilibrium flow assumption, which defines the pressure-density 
trajectory following a unique barotropic law [1]; (ii) the finite mass transfer rate assumption, which can be 
realized by the additional vapor volume fraction equation with a finite mass transfer source term [2]. And 
the difference between the two assumptions tends to be mimicked if the finite mass transfer rate increases 
to the infinity [1]. Schenke et al [3] also pointed out that the equilibrium assumption can be realized by 
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multiplying the finite source term and the pressure time derivative. Through numerical transient results of 
the Rayleigh bubble collapse with different condensation rates, they concluded that a lower condensation 
rate tends to drive the inertial flow across the condensation interface, while a higher condensation rate tends 
to lead the condensation interface move ahead of the inertial flow. Besides the condensation rate, the 
vaporization rate is also an important factor for the simulation of cavitation. Most of the research suggests 
that a higher value of the vaporization rate produces more accurate results, for example, the work of 
Ghahramani et al [4] showed that the vaporization rate coefficient should be “as high as possible without 
compromising numerical stability”.  

However, until now, the selection of the finite mass transfer rates has mainly relied on the researchers’ 
experience. Therefore, in the current study, we have firstly derived the criteria to estimate the possible limits 
of the time step and of the vaporization and condensation empirical coefficients in the finite mass transfer 
rate cavitation model, for instance, the Zwart-Gerber-Belamri (ZGB) cavitation model. Then, the cavitating 
vortex shedding behind a circular cylinder has been used as a canonical case to compare numerically the 
effects of selecting different mass transfer rate conditions. Base on the results, we have investigated the 
effects of the mass transfer rate on the dynamic behavior of cavitating vortex shedding flows as well as on 
the unsteady pressure field.  

2. Methodology and validation 

2. 1 The criteria of finite mass transfer rate cavitation model 
As previously mentioned, the selection of the finite mass transfer rate or the corresponding empirical 
coefficient lacks clear recommendations based on experimental and numerical evidence. Until now, none 
criteria or specific guide is available for the selection of these coefficients. Following the idea of Schenke 
et al [3], the equilibrium flow assumption, in which the finite mass transfer rate tends to infinity, has been 
considered in order to derive a criteria for selecting these coefficients and/or the time step size for the 
numerical simulation of cavitation vortex shedding. 

The vapor volume fraction transport equation accounting for the finite mass transfer rate is expressed 
as: 

𝜕𝜕(𝜌𝜌𝑉𝑉𝛼𝛼)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝜌𝜌𝑉𝑉𝛼𝛼𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= �̇�𝑅   or    𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝛼𝛼𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= �̇�𝑅
𝜌𝜌𝑉𝑉

     (1) 

where 𝛼𝛼 is the vapor volume fraction; the 𝜌𝜌𝑉𝑉  is the vapor density and the mass transfer source term �̇�𝑅 
accounts for the mass transfer rate between the liquid and vapor. 

The mixture density is given by 𝜌𝜌 = 𝜌𝜌𝑉𝑉𝛼𝛼 + 𝜌𝜌𝐿𝐿(1 − 𝛼𝛼), where the 𝜌𝜌𝐿𝐿 is the liquid density. Thus the mass 
conservation equation can be expressed as: 

𝜕𝜕(𝜌𝜌)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝜌𝜌𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0      (2) 
Combining equations (1) and (2), the following expression is established: 

d𝛼𝛼
d𝜕𝜕

= 𝜌𝜌
𝜌𝜌𝑉𝑉𝜌𝜌𝐿𝐿

�̇�𝑅         (3) 

For the equilibrium flow assumption, the time derivative �d𝛼𝛼
d𝜕𝜕
� satisfies: 

�d𝛼𝛼
d𝜕𝜕
� = � 1

𝑑𝑑𝜕𝜕
�       (4) 

While for the finite mass transfer rate assumption, the time derivative �d𝛼𝛼
d𝜕𝜕
� is controlled by the following 

condition:  
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�d𝛼𝛼
d𝜕𝜕
� ≤ � 1

𝑑𝑑𝜕𝜕
�       (5) 

Here, �̇�𝑅 is modelled by the Zwart-Gerber-Belamri cavitation model:  

�̇�𝑅 =

⎩
⎨

⎧ 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑
3𝛼𝛼𝜌𝜌𝑉𝑉
𝑅𝑅𝐵𝐵

�2
3

(𝑝𝑝−𝑝𝑝V)
𝜌𝜌𝐿𝐿

,𝑝𝑝 > 𝑝𝑝V

−𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝
3𝜌𝜌𝑉𝑉(1−𝛼𝛼)𝛼𝛼nuc

𝑅𝑅𝐵𝐵
�2
3

(𝑝𝑝V−𝑝𝑝)
𝜌𝜌𝐿𝐿

,𝑝𝑝 < 𝑝𝑝V

     (6) 

where 𝑝𝑝V is the saturated vapor pressure and equal to 2340 Pa, 𝑅𝑅𝐵𝐵 is the bubble radius equal to 10−6 m, 
𝛼𝛼nuc is the nucleation site of the volume fraction equal to 5 × 10−4, and the default empirical condensation 
and vaporization coefficients, 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 and 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝, are equal to 0.01 and 50.0, respectively. 

Assuming that the minimal pressure 𝑝𝑝 is equal to 0 (note that any value below 0 is non-physical) and 
that the vapor volume fraction is in the interval [0,1] and substituting 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝  from equation (3) into the 
inequality equation (5) we obtain: 

�d𝛼𝛼
d𝜕𝜕
� = 𝜌𝜌

𝜌𝜌𝐿𝐿
𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝

3(1−𝛼𝛼)𝛼𝛼nuc
𝑅𝑅𝐵𝐵

�2
3

(𝑝𝑝V)
𝜌𝜌𝐿𝐿

≤ � 1
𝑑𝑑𝜕𝜕
�     (7) 

Therefore, the condition for 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 is governed by: 

� 𝜌𝜌
𝜌𝜌𝐿𝐿
𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝

3(1−𝛼𝛼)𝛼𝛼nuc
𝑅𝑅𝐵𝐵

�2
3

(𝑝𝑝V)
𝜌𝜌𝐿𝐿
�  𝑑𝑑𝑑𝑑 ≤ 1     (8) 

Meanwhile, for the given 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝, the time step, 𝑑𝑑𝑑𝑑, satisfies the following condition: 

𝑑𝑑𝑑𝑑 ≤ 1 � 𝜌𝜌
𝜌𝜌𝐿𝐿
𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝

3(1−𝛼𝛼)𝛼𝛼nuc
𝑅𝑅𝐵𝐵

�2
3

(𝑝𝑝V)
𝜌𝜌𝐿𝐿
��      (9.a) 

Furthermore, for the given 𝑑𝑑𝑑𝑑, 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 satisfies the following criteria: 
𝜌𝜌
𝜌𝜌𝐿𝐿
𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝

3(1−𝛼𝛼)𝛼𝛼nuc
𝑅𝑅𝐵𝐵

�2
3

(𝑝𝑝V)
𝜌𝜌𝐿𝐿

≤ � 1
𝑑𝑑𝜕𝜕
�    or   𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 ≤ � 1

𝑑𝑑𝜕𝜕
� � 𝜌𝜌

𝜌𝜌𝐿𝐿

3(1−𝛼𝛼)𝛼𝛼nuc
𝑅𝑅𝐵𝐵

�2
3

(𝑝𝑝V)
𝜌𝜌𝐿𝐿
��    (9.b) 

Similarly, the local pressure, 𝑝𝑝, can be written as: 
(𝑝𝑝−𝑝𝑝V)
𝜌𝜌𝐿𝐿

= 1
2
𝜎𝜎𝑙𝑙𝑐𝑐𝑐𝑐𝑣𝑣𝑙𝑙𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟2      (10) 

where 𝜎𝜎𝑙𝑙𝑐𝑐𝑐𝑐𝑣𝑣𝑙𝑙 = (𝑝𝑝−𝑝𝑝V)
1
2𝜌𝜌𝐿𝐿𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟

2. 

Thus, the constrains for the condensation rate are controlled by: 

𝑑𝑑𝑑𝑑 ≤ 1 � 𝜌𝜌
𝜌𝜌𝐿𝐿
𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑

3𝛼𝛼
𝑅𝑅𝐵𝐵
�1
3
𝜎𝜎𝑙𝑙𝑐𝑐𝑐𝑐𝑣𝑣𝑙𝑙𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟��                               (11.a) 

   𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 ≤ � 1
𝑑𝑑𝜕𝜕
� � 𝜌𝜌

𝜌𝜌𝐿𝐿

3𝛼𝛼
𝑅𝑅𝐵𝐵
�1
3
𝜎𝜎𝑙𝑙𝑐𝑐𝑐𝑐𝑣𝑣𝑙𝑙𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟��      (11.b) 

In conclusion, the 𝑑𝑑𝑑𝑑 for simulating the mass transfer rate with the Zwart-Gerber-Belamri cavitation 
model should satisfy the following condition: 
 

𝑑𝑑𝑑𝑑 ≤ Min �1 � 𝜌𝜌
𝜌𝜌𝐿𝐿
𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝

3(1−𝛼𝛼)𝛼𝛼nuc
𝑅𝑅𝐵𝐵

�2
3

(𝑝𝑝V)
𝜌𝜌𝐿𝐿
�� , 1 � 𝜌𝜌

𝜌𝜌𝐿𝐿
𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑

3𝛼𝛼
𝑅𝑅𝐵𝐵
�1
3
𝜎𝜎𝑙𝑙𝑐𝑐𝑐𝑐𝑣𝑣𝑙𝑙𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟�� �   (12) 

Also, 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝, and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 should meet the following conditions: 
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⎩
⎪
⎨

⎪
⎧ 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 ≤ � 1

𝑑𝑑𝜕𝜕
� � 𝜌𝜌

𝜌𝜌𝐿𝐿

3(1−𝛼𝛼)𝛼𝛼nuc
𝑅𝑅𝐵𝐵

�2
3

(𝑝𝑝V)
𝜌𝜌𝐿𝐿
��

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 ≤ � 1
𝑑𝑑𝜕𝜕
� � 𝜌𝜌

𝜌𝜌𝐿𝐿

3𝛼𝛼
𝑅𝑅𝐵𝐵
�1
3
𝜎𝜎𝑙𝑙𝑐𝑐𝑐𝑐𝑣𝑣𝑙𝑙𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟��

     (13) 

 

Equations (12) and (13) show that there is strong link between the time step, 𝑑𝑑𝑑𝑑, and the mass transfer 
rates that depend on the vaporization and condensation coefficients, 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑. Regardless of the local 
pressure, 𝑝𝑝, the upper limit of 𝑑𝑑𝑑𝑑 is inversely proportional to the mass transfer rate. While, for a given 𝑑𝑑𝑑𝑑, 
𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 are also limited by the inverse value of 𝑑𝑑𝑑𝑑. So, these expressions can be used to select an 
adequate combination of 𝑑𝑑𝑑𝑑, 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 for the numerical simulation of cavitation. It should be noticed 
that the minimum value of 𝑝𝑝  can dramatically change the relationship among these variables. If the 
minimum value of 𝑝𝑝 is close to the vapor pressure, 𝑝𝑝V, the upper limit of 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 can increase to the infinity 
which corresponds to the equilibrium assumption. However, such strong volume fraction variation 
provoked by a very tiny pressure change may tend to induce numerical instabilities. Therefore, the 
determination of the minimum 𝑝𝑝 allowed in the simulations still needs further investigations. 

2. 2 Mesh topology and numerical setup 
A two-dimensional computational domain has been used as shown in figure 1a. We have placed a circular 
cylinder with diameter D as the cavitating source in the center of the circular computational domain with 
diameter 100D . Details of the structured mesh close to the circular cylinder surface with different 
resolutions are shown in Figure 1b, 1c and 1d. A uniform inflow with 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 10 m/s has been set at the 
inlet boundary to guarantee a Reynolds number, Re = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝐷𝐷 𝜐𝜐⁄  , equal to 200. A static pressure boundary 
condition , 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟, has been applied at the outlet surface based on the corresponding cavitation number, 𝜎𝜎 =
(𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟−𝑝𝑝V)
1
2𝜌𝜌𝐿𝐿𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟

2 . Besides the aforementioned mixture mass conservation equation and the vapor volume fraction 

transport equation, the laminar model has been used for solving the flow field. 

After the physical model and boundary conditions are established, the governed equations are discretized 
to obtained the numerical solution of the cavitating vortex shedding flow. In spatial discretization, the 
second-order upwind scheme has been applied to approximate the flux of the flow quantities. In temporal 
discretization, the second-order implicit scheme has been used. 

2. 3 Validation of single phase numerical results 
To validate the unsteady results of a single phase flow obtained from the numerical setup, the Strouhal 
number, 𝑆𝑆𝑑𝑑 = 𝑓𝑓𝐷𝐷 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟⁄  has been used, where 𝑓𝑓 is the vortex shedding frequency. For that, the St calculated 
with the aforementioned three meshes with different refinement levels have been compared with those 
values obtained by Seo et al [5] to assess the sensitivity of the mesh resolution. As shown in table 1, the 
deviation between the numerical results and the referred results is about 2.1 % when the fine mesh is used. 
The sensitivity to the size of the time step on the transient numerical results has also been evaluated. In 
table 2, the 𝑆𝑆𝑑𝑑 obtained with different time steps are presented and compared with the reference values. It 
can be seen that the deviation between the numerical results and the referred one increases with the decrease 
of the time step size. However, the differences among all the considered time step sizes are negligible. 
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Therefore, to guarantee a good balance between the numerical convergence requirements and the 
computational cost, a time step of 10−7s has been used in the present work. 
 
 

 
(a) 

   
(b)                                                  (c)                                                 (d)  

Figure 1. Complete computational domain (a) and zooms around the cylinder surface for the coarse mesh 
(b); the medium mesh (c) and the fine mesh (d). 

Table 1. Sensitivity of the mesh resolution on the transient numerical results. 

Mesh 𝑆𝑆𝑑𝑑𝑐𝑐𝑢𝑢𝑛𝑛 𝑆𝑆𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 from Seo et al [5] Deviation (%) 

Coarse 0.377 
0.380 

0.7 
Medium 0.386 1.6 

Fine 0.388 2.1 
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Table 2. Sensitivity of the time step on the transient numerical results 

Time step [10−7s] 𝑆𝑆𝑑𝑑𝑐𝑐𝑢𝑢𝑛𝑛 𝑆𝑆𝑑𝑑𝑟𝑟𝑥𝑥𝑝𝑝 from Seo et al [5] Deviation [%] 

2 0.385 
0.380 

1.3 
1 0.388 2.1 

0.5 0.389 2.4 

3. Results and discussion  
As aforementioned in section 2, it has been concluded that the selection of the ZGB cavitation mass 
transfer rate is dependent on the time step. The constants 𝑅𝑅𝐵𝐵 and 𝛼𝛼nuc have been taken with their default 
values and from equations (12) and (13) the following conditions are obtained that permit to specify the 
time step duration and the ZGB vaporization and condensation empirical coefficients: 

𝑑𝑑𝑑𝑑 ≤ Min �1 �2 ∙ 103𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝�⁄ , 1 �8 ∙ 105𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑�
1
3
𝜎𝜎𝑙𝑙𝑐𝑐𝑐𝑐𝑣𝑣𝑙𝑙𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟�� �   (14) 

Here, taken for simplicity 𝜎𝜎𝑙𝑙𝑐𝑐𝑐𝑐𝑣𝑣𝑙𝑙 = 3, then: 

 

�
𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 ≤ � 1

𝑑𝑑𝜕𝜕
� {2 ∙ 103}�

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 ≤ � 1
𝑑𝑑𝜕𝜕
� �8 ∙ 105𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟��

     (15) 

 

and, for 𝑑𝑑𝑑𝑑 = 10−7s, Equation 15 gives the limits to select 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 and  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑: 

𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 ≤ 5 ∙ 103;  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 ≤ 1      (16) 

3. 1 Effect of the mass transfer rate on the vortex shedding dynamic behavior 
Here, the dynamic behavior of cavitating vortex shedding behind the circular cylinder for different values 
of 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 are compared. In table 3, it can be observed that, the obtained Strouhal number 𝑆𝑆𝑑𝑑, decreases as 
the vaporization coefficient 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 increases. Also, figures 2 and 3 present the time history of the lift, 𝐶𝐶𝐿𝐿, 
and drag, 𝐶𝐶𝐷𝐷, coefficients for flow conditions at cavitation number 𝜎𝜎 = 1.0. As expected, the results 
indicate that the forces acting on the surface of the circular cylinder increase significantly as 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 
decreases.  

When 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 is equal to 5000, which corresponds to the maximum value indicated by the condition in 
equation (16), the dynamic behavior of the cavitating vortex shedding has been compared for different 
values of 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 as well. The time histories of 𝐶𝐶𝐿𝐿 and 𝐶𝐶𝐷𝐷 at 𝜎𝜎 = 1.0 are presented in figures 4 and 5 where 
it can be seen that the maximum forces acting on the surface of the circular cylinder increase as 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 
increases. Meanwhile, as shown in table 6, it is observed that the higher values of 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 provoke an increase 
of 𝑆𝑆𝑑𝑑.  
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At 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 1.0, it is noted that an impulsive force exist both in the time history of 𝐶𝐶𝐿𝐿  and 𝐶𝐶𝐷𝐷 . The 
occurrence of this impulsive force is due to the pressure pulse provoked by the collapse of a vapor cavity 
inside the wake of the vortex. Therefore, the generation mechanism of the pressure pulse will be further 
discussed in the next section. 
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Figure 2. 𝐶𝐶𝐿𝐿 evolution for different 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝.                   Figure 3. 𝐶𝐶𝐷𝐷 evolution for different 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝. 

Table 3 Effect of the vaporization rate on the 𝑆𝑆𝑑𝑑 value. 

𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑  𝑆𝑆𝑑𝑑𝑐𝑐𝑢𝑢𝑛𝑛 𝑆𝑆𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 from Seo et al [5] Deviation [%] 

5 0.001 0.335 

0.320 

4.7 
50 0.001 0.321 0.3 

500 0.001 0.315 1.6 
5000 0.001 0.313 2.2 
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Figure 4. 𝐶𝐶𝐿𝐿 evolution for different 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑.               Figure 5. 𝐶𝐶𝐷𝐷 evolution for different 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑. 
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Table 4. Effect of condensation rate on 𝑆𝑆𝑑𝑑. 

𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑  𝑆𝑆𝑑𝑑𝑐𝑐𝑢𝑢𝑛𝑛 𝑆𝑆𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 from Seo et al [5] Deviation 
[%] 

5000 0.001 0.313 

0.320 

2.2 
5000 0.01 0.314 1.9 
5000 0.1 0.328 2.5 
5000 1 0.339 5.9 

3. 2 Effect of mass transfer rate on the pressure field 
The extreme levels of the pressure field obtained with the numerical solvers deserve to be analyzed. Most 
commercial solvers take the minimum absolute pressure value within the cavitation flow equal to the 
vapor pressure by default. The consequence of clipping the absolute pressure filed is that some results 
may be misinterpreted. To overcome this problem, the evolution of the minimum and maximum values of 
the non-clipped absolute pressure have been investigated in relation to the mass transfer rate and these 
values for different 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 have been plotted in figure 6. It can be noted that the minimum local pressure 
increases as 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 increases while  the maximum local pressure is kept almost constant as 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 increases. It 
can also be seen that nonphysical negative absolute pressures are only obtained for  𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 = 5000 when 
the minimum local pressure is above 0. 

In figure 7, the pressure and vapor fraction have been plotted at the instant when the minimum pressure 
occurs that is located nearby the cavitation inception area and marked with a blue dot. This position seems 
not to change with the variation of 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝. The increase of forces acting on the cylinder surface due to the 
decrease of 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 can be explained by the fact that more negative pressure values are predicted for smaller 
values of of 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝.  

The effects of 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑  on the extreme values of the pressure field have been investigated while 
maintaining the minimum pressure above 0 by forcing 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 = 5000. The minimum and maximum values 
of the absolute pressure at different 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑  values have been plotted in Figure 8. It is observed that the 
minimum local pressure slightly decreases as 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 increases while the maximum local pressure slightly 
increases as 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑  increases and that its value is almost equal to the reference pressure 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟  if 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑  is 
smaller than 0.1. Then, a sharp growth of the maximum local pressure is produced at 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 1.0. 
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Figure 6. Minimum (a) and maximum (b) values of the local pressure for different 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝. 

 

 

 
 

  

(a)  𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 = 50 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 0.001 (b)  𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 = 5000 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 0.001 

 

Figure 7. Absolute pressure and vapor fraction for different 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝. 

In figure 9, the contours of the pressure and vapor volume fraction at  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑   equal to 0.1 and 1.0 are 
compared. The local maximum pressure, marked with a red dot, is located at two different positions. For 
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𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 0.1, it is located at the stagnation point in front of the cylinder surface. However, at 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑=1.0 the 
maximum value is located inside the collapsing vapor vortex. Furthermore, a shock wave pattern is 
observed around the collapsing cavity suggesting that the large condensation rate causes a dramatic local 
pressure rise similar to the expected behavior after a cavity collapse. However, to determine the physical 
meaning of this pressure impulse for the high condensation rate requires a further study. 
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Figure 8.  Minimum (a) and maximum (b) of the local pressure for different 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑. 

 

 

 
 

  

(a) 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 = 5000 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 0.1 (b)  𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 = 5000 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 1.0 

Figure 9. Absolute pressure and vapor fraction for different 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑. 

 



 

11 

 

4.  Conclusions 
To achieve the equilibrium flow assumption in cavitation simulations, it would be necessary to increase 
the mass transfer rate up to its upper limit. However, it can be demonstrated that the selection of the time 
step also imposes restrictions to the possible range of values for this rate. Therefore, a preliminary study 
has served to derive the limits of the vaporization and condensation mass transfer rates when the 
minimum absolute local pressure is assumed to be zero. Then, the dynamic behavior and the main 
properties of the canonical cavitating vortex shedding flow behind a circular cylinder have been 
numerically calculated and compared for different mass transfer rates. It has been found that the vortex 
shedding frequency tends to decrease as the vaporization coefficient 𝐹𝐹𝑣𝑣𝑣𝑣𝑝𝑝 increases. On the other hand, 
the increase of 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 provokes an increase of vortex shedding frequency. By observing the non-clipped 
absolute pressure filed at different mass transfer rates, it has been confirmed that a high value of the 
vaporization rate can increase the minimum pressure of the flow up to the vapor pressure value and thus 
resemble more the expected physical cavitation flow behavior. Contrarily, the change of the vaporization 
rate has less influence on the predicted maximum pressure levels. Moreover, the maximum pressure is 
mainly influenced by the condensation rate and its value sharply increases for 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 1.0 when a strong 
pressure rise is predicted at the instant when the vortex cavity collapse takes place. Meanwhile the 
minimum pressure value is less affected by the change of condensation rate. 
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