

 B
A

C
H

E
L

O
R

’S
 F

IN
A

L
 T

H
E

S
IS

Study for the numerical resolution of
conservation equations of mass,
momentum and energy and a first
approach to large problems using
computational performance
enhancement techniques

Author:

Pau Romeu Llordella

Director / Co-director:

Carlos David Pérez Segarra

Asensio Oliva Llena

Àdel Alsalti Baldellou

Degree:

Bachelor’s Degree in Aerospace Technologies

Engineering

Examination session:

Spring, 2021

Document:

Report

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 3 Bachelor’s final thesis

Abstract

The conservation equations of mass, momentum and energy are of great importance in

comprehending a physical system. From these equations derives, for example, the Navier

Stokes system, one of the most studied in the field of physics to determine the motion and

properties of any fluid.

The great complexity of these systems of non-linear partial differential equations and the

lack of analytical solutions has forced scientists and engineers to focus their study using

numerical methods. That is, to convert a physical reality of a continuous environment into

a discrete system that can be efficiently processed by a computer.

The first part of this project presents a set of academic thermophysical problems of heat

transfer and pressure and velocity distribution in a fluid. The equations governing these

properties, including Navier-Stokes equations, are discretised to be implemented in C++

programs. The results obtained are analysed, contrasted and verified by making use of the

existing literature.

The second half of the thesis presents an approach towards solving larger and more

complex problems that can describe reality more accurately. Scenarios where the

discretisation meshes are of such magnitude that a computer cannot process the result in

an acceptable period of time. In these cases, it is necessary to be aware of how calculations

are carried out by a computer in order to maximise the use of its resources. Some of the

optimisation techniques used today are discussed and the performance improvement in

solving real problems is evaluated.

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 4 Bachelor’s final thesis

Resum

Les equacions de conservació de la massa, quantitat de moviment i energia són de gran

importància a l’hora de comprendre un sistema físic. D’aquestes equacions en deriva, per

exemple, el sistema de Navier-Stokes, un dels més estudiats en el camp de la física per

entendre el comportament de qualsevol fluid.

La gran complexitat d’aquests sistemes d’equacions en derivades parcials no lineals i la falta

de solucions analítiques ha obligat a científics i enginyers a enfocar el seu estudi fent ús de

mètodes numèrics. És a dir, convertir una realitat física de medi continu en un sistema

discret que pot ser processat eficientment per un ordinador.

En la primera part d’aquest projecte es presenten un seguit de problemes termofísics

acadèmics de transmissió de calor i distribucions de pressions i velocitat en un fluid. Les

equacions que regeixen el comportament d’aquestes propietats, incloent les equacions de

Navier-Stokes, són discretitzades per ser implementades en programes de C++. Els resultats

obtinguts són analitzats, contrastats i verificats.

El segon bloc del treball presenta un enfocament cap a la resolució de problemes molt més

grans i complexos. Escenaris on les discretitzacions són de tal magnitud que un ordinador

no pot processar el resultat en un període de temps acceptable. En aquests casos cal

conèixer el funcionament del càlcul en un ordinador per poder maximitzar l’ús dels seus

recursos. Es presenten algunes de les tècniques d’optimització emprades avui en dia i es

valora la millora de rendiment en resolucions de problemes reals.

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 5 Bachelor’s final thesis

I declare that,

the work in this Degree Thesis is completely my own work,

no part of this Degree Thesis is taken from other people’s work without giving them credit,

all references have been clearly cited,

I am authorised to make use of the research group related information I am providing in

this document.

I understand that an infringement of this declaration leaves me subject to the foreseen

disciplinary action by the Universitat Politècnica de Catalunya – BarcelonaTECH.

Pau Romeu Llordella September 28, 2021

Study: Study for the numerical resolution of conservation equations of mass,

momentum and energy and a first approach to large problems using computational

performance enhancement techniques

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 6 Bachelor’s final thesis

List of contents

1 Project introduction 12

1.1 Aim 13

1.2 Scope 13

1.3 Basic requirements 13

1.4 Background and justification 14

 State of the art 14

1.5 Project structure 15

2 Theoretical approach 16

2.1 Governing equations 17

 Mass conservation equation 18

 Momentum conservation equation 18

 Navier-Stokes equations 19

 Heat conduction equation 20

 Convection-diffusion equation 20

2.2 Numerical methods 22

 Finite Volume Method 22

 Discretisation of the domain 22

 Time schemes of resolution 24

 System of linear equations 25

 Solvers 26

3 Heat conduction 29

3.1 Heat conduction equations 30

 One-dimensional steady problem 30

 General case 31

3.2 Four materials conduction problem 32

 Boundary conditions 32

 Discretisation of the problem 33

 Results 35

 Code verification 37

3.3 Conclusions 38

4 Convection-Diffusion 39

4.1 Convection-diffusion equations 40

 Steady one-dimensional convection and diffusion 40

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 7 Bachelor’s final thesis

 General case 42

4.2 1D convection-diffusion flow 44

 The exact solution 44

 Numerical schemes comparison 45

 Conclusion and analysis of the different schemes 46

4.3 Diagonal flow 47

 Resolution equations 47

 Results 48

 False diffusion for high Peclet 49

 Natural convection 50

4.4 Smith-Hutton problem 51

 Resolution equations 52

 Results 52

4.5 Conclusions 54

5 Navier-Stokes 55

5.1 Fractional Step Method 56

 Helmholtz-Hodge theorem into NS equations 56

 Staggered meshes 58

 FSM discretised equations 59

5.2 Lid-driven cavity 62

 Boundary conditions 62

 Results 63

 Verification 64

 Mesh size analysis 65

 Time to reach steady state 66

5.3 Conclusions 68

6 Towards larger real problems 69

6.1 Larger problems 70

6.2 Scientific computing performance 72

 Processor speed 72

 CPU memory access 73

 Low arithmetic intensity and slow memory access 74

 Basic arithmetic operations 75

6.3 Sparse Matrices 77

 Justification 77

 Data storage 77

 Graph representation 80

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 8 Bachelor’s final thesis

6.4 Optimisation by bandwidth minimisation 81

 Cache-based performance in SpMV 81

 Reverse Cuthill-McKee algorithm 83

 Finding a starting vertex 85

6.5 Performance analysis 89

 Code implementation 89

 Studied sparse matrices 91

 Results 93

6.6 Conclusions 97

6.7 Next steps towards parallelisation 98

7 Conclusions and future work 99

7.1 Project conclusions 100

7.2 Future work 101

Environmental and social impact 102

References 103

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 9 Bachelor’s final thesis

List of figures

Figure 1. Nomenclature of the relative position of the nodes 23

Figure 2. One-dimensional centred-nodes scheme 24

Figure 3. One-dimensional centred-faces scheme 24

Figure 4. Time schemes comparison 25

Figure 5. Centred-faces discretisation step by step 25

Figure 6. Heat conduction 1D discretisation 30

Figure 7. Heat conduction 2D discretisation 31

Figure 8. General scheme of the problem 32

Figure 9. Centred-nodes body discretisation 33

Figure 10. Top nodes scheme 33

Figure 11. Bottom nodes scheme 34

Figure 12. Left nodes scheme 34

Figure 13. Right nodes scheme 34

Figure 14. Evolution of the temperature in the two nodes 35

Figure 15. Evolution of the temperature map over time 36

Figure 16. Temperature map for t = 5000s by CTTC 37

Figure 17. Temperature map for 0-dimensional analysis 38

Figure 18. One-dimensional control volume dimensions 40

Figure 19. Two-dimensional control volume dimensions 42

Figure 20. One-dimensional flow scheme 44

Figure 21. One-dimensional convection-diffusion problem solution for different P values 44

Figure 22. Comparison of convection-diffusion resolution schemes 45

Figure 23. Diagonal flow scheme 47

Figure 24. Temperature field distribution for a general diagonal flow problem 48

Figure 25. Mesh size comparison for infinite Peclet number 49

Figure 26. Temperature distribution for y = 1m for different mesh sizes 50

Figure 27. Temperature field for null velocity 50

Figure 28. Smith-Hutton problem representation 51

Figure 29. Temperature field for a dominant diffusion in solenoidal flow 52

Figure 30. Temperature field for a dominant advection in solenoidal flow 53

Figure 31. One-dimensional finite volumes discretisation 58

Figure 32. One-dimensional unrealistic scenario 58

Figure 33. Main (blue) and staggered (green and brown) meshes 58

Figure 34. Velocities in the stagg-x mesh 59

Figure 35. Velocity and pressure field distribution in staggered and main mesh 61

Figure 36. Geometry of the lid-driven cavity 62

Figure 37. Velocity modulus field comparison for different Re values 63

Figure 38. Streamlines comparison for different Re values 64

file:///C:/Users/34683/Desktop/TFG/Report/Report.docx%23_Toc83669863

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 10 Bachelor’s final thesis

Figure 39. Horizontal and vertical central line velocity profile 64

Figure 40. Comparison of the velocity profiles for different number of nodes 65

Figure 41. Time to reach steady time as a function of Re 66

Figure 42. Computation time and time to reach steady state 67

Figure 43. CFD surface mesh of an aircraft and its plane of symmetry 70

Figure 44. FLOPS performed by the most powerful supercomputer each year from 1993 to 2020 72

Figure 45. Simplified scheme of CPU access to memory 73

Figure 46. Processor vs memory performance gap 74

Figure 47. Example of sparse matrix 78

Figure 48. Dense matrix memory distribution 78

Figure 49. CO memory distribution 79

Figure 50. CSR memory distribution 79

Figure 51. Example sparse matrix turned into a graph 80

Figure 52. Scheme of a sparse matrix-vector multiplication 81

Figure 53. SpMV kernel memory access 82

Figure 54. Scheme of the Reverse Cuthill-McKee algorithm 83

Figure 55. Reordering of the graph nodes using RCM 84

Figure 56. Resulting reordered graph 84

Figure 57. Matrix bandwidth comparison before and after reordering 85

Figure 58. Level structure of the example graph rooted at node 1 87

Figure 59. Scheme of the algorithm to find a pseudo-peripheral node in a graph 87

Figure 60. Example of the application of the algorithm for finding a pseudo-peripheral node 88

Figure 61. Implementation of a graph as an array of adjacency lists 90

Figure 62. Spy graph for the 9 studied sparse matrices 92

Figure 63. RCM (left) and randomly (right) reordered sparse matrices 93

Figure 64. Relative computing time comparison 94

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 11 Bachelor’s final thesis

List of tables

Table 1. Parameters to replace in convection-diffusion equation 21

Table 2. Root-mean-square error for different resolution schemes 32

Table 3. Values of Peclet’s function for different schemes 41

Table 4. Root-mean-square error for different resolution schemes 46

Table 5. Numerical values for Diagonal Flow Problem 47

Table 6. Wall velocities for lid-driven cavity 62

Table 7. Memory specs for AMD Ryzen 7 5800H processor 73

Table 8. Sparse matrices used to test the performance improvement 92

Table 9. Relative computing time depending on the reordering 94

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 12 Bachelor’s final thesis

1
Project introduction

This first section presents the points on which the

project is based. It introduces the objectives, the scope

and the requirements to be met. The motivation for

this work and the current state of the art are also

presented.

Project introduction Universitat Politècnica de Catalunya
Aim ESEIAAT, Terrassa

Pau Romeu Llordella 13 Bachelor’s final thesis

1.1 Aim

The aim of this project is to approach the use of numerical methods to solve the governing

equations of heat transfer and computational fluid dynamics (CFD). The purpose is to study

and program C++ codes to solve concrete cases involving the resolution of the equations of

conservation of mass, momentum and energy.

In a second part, the focus is on the computational techniques used. Different optimisation

strategies required when working with real and complex CFD projects where high

computational power is required are studied. Different performance-enhancing algorithms

are presented and tested with real matrices obtained from real problems.

1.2 Scope

To achieve the aims of the project, the following list presents the activities that need to be

carried out. They may be thought of as a to-do list.

• Present and study the analytical expressions that describe the conservation

equations.

• Discretise analytical equations so they can be solved numerically.

• Develop C++ program to numerically solve the following problems:

o Heat conduction between solid bodies.

o Convection – diffusion effect in fluids

o Laminar Navier-Stokes equations in a cavity

• Verify and validate all the programs developed making use of literature and results

from other researches.

• Present how scientific problem solving is approached from the perspective of the

computer and what are the problems that affect its performance.

• Describe and implement in C++ performance-enhancing algorithms

• Test the efficiency of the studied methods and verify that the computation time is

reduced.

1.3 Basic requirements

The requirements describe the actions, processes and results the project needs to meet. For

the case that concerns this project, the requirements are both for the solutions acquired and

for the quality. Not only must the project achieve the appropriate results, but they must also

be presented, discussed and concluded correctly. The requirements can be stated as follows.

• Functional solver of unsteady 2D heat conduction problems. The project

delivery must include a numerical solver implemented in C++ language. Although

the solver is presented for a specific problem case, it must be easily adapted to solve

any kind of heat conduction problem in two-dimensions under unsteady conditions

Project introduction Universitat Politècnica de Catalunya
Background and justification ESEIAAT, Terrassa

Pau Romeu Llordella 14 Bachelor’s final thesis

• Functional solver of unsteady 2D convection-diffusion problems. Similar to the

first requirement, a convection-diffusion problems C++ solver must be created. The

program has to be capable of solving different problems with little changes in the

initial conditions code.

• Functional solver of Navier-Stokes (NS) simple flow problems. A NS problems

solver using the Fractional Step Method is being developed. This method is being

applied to the lid driven cavity problem, a common case to start approaching NS

numerical resolution.

• Program to study computational performance upgrade. A C++ program has to

be created to test the effectiveness of the studied optimisation methods and to check

if they reduce the computation time of real problems.

• Good programming practices. The C++ program codes developed are all of self-

creation and they must be easily readable, modular and reusable. Furthermore, the

use of object-oriented programming practices is required.

• Verification and validation. The solvers developed must be both verified and

validated. The verification is done through tests to prove that the program meets

the requirements it had. The validation must certify that the developed test

accomplishes the expectations of the project from a more general point of view.

• Conclusions. The presentation of some results without their corresponding

conclusions cannot be accepted.

1.4 Background and justification

The realization of this project may be perceived as a continuity of the Gases Dynamics and

Heat and Mass Transfer subject of the bachelor’s degree. This subject is a first approach to

the study of the three main methods of heat and mass transfer: conduction, convection and

radiation. As it is a huge field of engineering and physics, only a small part can be studied

during the course of the subject.

Therefore, this project is a great opportunity to continue focusing and studying this branch

of science and engineering. More specifically, it is an introduction to the computational

numerical methods for solving physical and thermodynamical problems using a wide

variety of resolution schemes.

It is also intended to reflect a keen interest in the computational techniques that are used to

solve such problems. This study provides an introduction to real optimisation methods used

in the world of high-performance computing.

 State of the art

During the last decades, the evolution of the engineering world has been closely related to

the exponential growth of computing power. Although not many years ago having access to

a computer (with extremely poor resources) was only possible for a few people, in these

years almost everyone has access to high-performance computers, smartphones and high-

speed Internet.

Project introduction Universitat Politècnica de Catalunya
Project structure ESEIAAT, Terrassa

Pau Romeu Llordella 15 Bachelor’s final thesis

These enormous advances in computing power have made it possible to achieve solutions

to many scientific or engineering problems whose analytical solutions have yet to be found

and may never be reached. In the old days, this type of problems could only be tackled with

experimentation, which used to be a very expensive and inaccurate way of arriving at an

approximate solution to a problem.

This project focuses on the study of heat transfer and fluid dynamics. These fields are some

of the main beneficiaries of computing power. Analytical solutions are rarely found in this

branch or can simply be used to find approximate solutions. Therefore, developing,

understanding or optimising the algorithms used to solve problems is of great importance.

An appropriate example is the Navier-Stokes Equations. These nonlinear partial differential

equations that describes the motion of fluids do not yet have an accepted analytical solution.

Due to the great importance that these equations have in the field of fluid dynamics,

numerical and computational methods have become a fundamental part of the study. Such

has been its importance that has given rise to the recognition of a new discipline: the

computational fluid dynamics, also known as CFD [1].

Researchers working in the field of CFD thus face two major challenges. On the one hand, as

its name suggests, its object of study is fluid dynamics and its aim is to understand, predict

and calculate how a fluid behaves. On the other hand, they have to adapt their studies to the

current computing paradigm. For today's scientists and engineers, it is essential to know

how the calculation process works on a computer.

Although computers have evolved exponentially over the last decades, so have the

requirements of the studies that are carried out using this tool. Many problems studied

today are of large magnitude and require a great deal of computational power. Hence,

improving the hardware is not enough and the software needs to be adapted by means of

optimisation techniques. Understanding how the CPU works, optimising the use of memory

access or parallelising the solving code are some of the strategies that make it possible to

deal with large problems.

1.5 Project structure

The first thing presented in the project, in Section 2, is a theoretical introduction on which

the problems solved in this report are based. Section 3 deals with numerical methods

applied to heat conduction while Section 4 focuses on the equations describing the

convection-diffusion of a property in a fluid.

Section 5 introduces the Navier Stokes solution using the Fractional Step Method to solve

the lid-driven cavity problem. Section 6 aims to focus on how larger real-world problems

would be treated, where importance has to be given to computational optimisation

techniques. Finally, in Section 7, the conclusions and the remaining work to be done are

exposed.

Theoretical approach Universitat Politècnica de Catalunya
Project structure ESEIAAT, Terrassa

Pau Romeu Llordella 16 Bachelor’s final thesis

2
Theoretical approach

The objective of this section is to present the

theoretical background of this project. The

conservation equations of mass and momentum are

presented. The Navier Stokes system is obtained from

the momentum formulation. Heat conduction and

convection-diffusion are studied as part of the energy

conservation equation.

Numerical methods are introduced in a general way.

The schemes, the types of discretisation and the

different solvers used in the problems of this work are

presented.

Theoretical approach Universitat Politècnica de Catalunya
Governing equations ESEIAAT, Terrassa

Pau Romeu Llordella 17 Bachelor’s final thesis

2.1 Governing equations

In the field of fluid mechanics, the conservation equations determine the state and motion

of the properties of matter. The governing principles are the laws of conservation of mass,

momentum and energy. The latter can also be understood as the first law of

thermodynamics. Furthermore, although it cannot be considered as a conservation law, the

second law of thermodynamics must also be taken into account as a constraint. [2]

The three conservation laws mentioned above are a consequence of the Reynolds

Transport Theorem. This theorem makes it possible to study the velocity of change of a

fluid property by studying the flow through a control volume.

To present the Reynolds theorem, any specific scalar property per unit mass 𝜙 is assumed.

Therefore, the quantity of this property Φ in a volume 𝑉𝑡 at a time 𝑡 is:

Φ(t) = ∫ 𝜌𝜙d𝑉

𝑉𝑡

 (2.1)

Now it can be studied how the property changes as it is derived with respect to time. Note

that since the property not only depends on time but also depends on its position, the

material derivative is used.

 DΦ

D𝑡
=
𝜕Φ

𝜕𝑡
+ �⃗� · ∇Φ = ∫

𝜕(𝜌𝜙)

𝜕𝑡
 d𝑉

𝑉𝑡

+∫ ∇ · (𝜌𝜙�⃗�) d𝑉
𝑉𝑡

 (2.2)

Thus, using the divergence theorem to obtain a surface integral, the final form of the

Reynolds transport theorem is obtained.

 d

d𝑡
∫ 𝜌𝜙 d𝑉
𝑉𝑡

= ∫
𝜕(𝜌𝜙)

𝜕𝑡
d𝑉

𝑉𝑡

+∮ (𝜌𝜙)�⃗� · �⃗⃗� d𝑆
𝑆𝑡

 (2.3)

This equation should be interpreted as follows:

Variation per time unit of
the content of property Φ

in control volume 𝑉𝑡
=

Variation due to the
change of the content of

property Φ in the particles
inside the volume 𝑉𝑡

+

Variation due to the net
convective flow of Φ

through the surface of the
control volume 𝑆𝑡

From this principle, all conservation laws can be deduced. This can be achieved by changing

the generic property Φ by the one that defines each equation. In the following pages of this

report, conservation equations will be deduced and discussed.

The equations are presented in differential and integral formulation, since both

nomenclatures are sometimes useful. While the first one provides great information about

the problem and only requires the boundary conditions, the other usually require

hypothesis or simplifications but is easier to be solved both analytically and numerically [3].

The first can be understood as the formal definition and the second as the applied. In this

report the equations of mass and momentum are presented and discussed from the integral

to the differential formulation.

Theoretical approach Universitat Politècnica de Catalunya
Governing equations ESEIAAT, Terrassa

Pau Romeu Llordella 18 Bachelor’s final thesis

 Mass conservation equation

The mass conservation is the most elementary conservation equation. It is also known as

the continuity equation. Starting from the integral form of the Reynolds equation, the

property Φ becomes the mass 𝑚 and, therefore, the specific property is 𝜙 = 1. Since the

system volume is defined as a fixed identity system, the overall mass will not change during

time. A static control volume is also assumed. [3]

∫

𝜕𝜌

𝜕𝑡
 d𝑉

𝑉𝑡

+∮ 𝜌�⃗� · �⃗⃗� dS
𝑆𝑡

= 0 (2.4)

To obtain the differential form of the equation a Cartesian coordinate system is being used

where the volume differential is formed by d𝑉 = d𝑥d𝑦d𝑧. Thus, a cube with six faces is

studied. The mass inside this cube is defined as follows:

 𝜕(𝜌d𝑉)

𝜕𝑡
+
𝜕�̇�𝑥
𝜕𝑥

d𝑥 +
𝜕�̇�𝑦

𝜕𝑦
d𝑦 +

𝜕�̇�𝑧
𝜕𝑧

d𝑧 = 0 (2.5)

Assuming that the flow rate �̇�𝑥 in the face 𝑥 is defined as �̇�𝑥 = 𝜌𝑢d𝑦d𝑧 where 𝑢 is the flow

velocity through 𝑥 face (and being equal for faces 𝑦 (𝑣) and 𝑧 (𝑤)). The equation evolves to:

 𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
+
𝜕(𝜌𝑤)

𝜕𝑧
= 0 (2.6)

Finally, this equation can also be rearranged as:

 𝜕𝜌

𝜕𝑡
+ ∇(𝜌�⃗�) = 0 (2.7)

 Momentum conservation equation

The momentum conservation equation combines the Reynolds theory with Newton’s

second law of motion. In this case, the property Φ becomes momentum 𝑚�⃗�. On one hand,

the derivative of the momentum is equal to the sum of the forces of the system. On the other

hand, it can also be treated with the transport theorem with 𝜙 = �⃗�. Therefore,

∑𝐹𝑠𝑦𝑠 = ∫

𝜕(�⃗�𝜌)

𝜕𝑡
 d𝑉

𝑉𝑡

+∮ �⃗�𝜌�⃗� · �⃗⃗� d𝑆
𝑆𝑡

 (2.8)

The interpretation of this equation indicates that the sum of forces acting on a system 𝐹𝑠𝑦𝑠

is equal to the velocity of accumulation of momentum within the control volume plus the

net flux of momentum across the boundaries.

Let’s first focus on the forces that may act on the system. Following the structure of the

Reynolds theorem, they can be divided into mass (or volumetric) forces and surface forces.

To simplify the problem, other forces such as the electromagnetic forces are not taken into

account.

 ∑�⃗�𝑠𝑦𝑠 =∑�⃗�𝑚𝑎𝑠𝑠 +∑�⃗�𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (2.9)

Theoretical approach Universitat Politècnica de Catalunya
Governing equations ESEIAAT, Terrassa

Pau Romeu Llordella 19 Bachelor’s final thesis

Thus, the only mass force that affects the control volume is the caused by gravity.

∑�⃗�𝑚𝑎𝑠𝑠 = ∫ 𝜌�⃗� d𝑉

𝑉𝑡

 (2.10)

The surface forces can be divided into pressure forces and viscous forces. The first are

applied the opposite direction to the normal vector �⃗⃗� of the entire surface of the control

volume.

∑�⃗�𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = −∮ 𝑝�⃗⃗� d𝑆

𝑆𝑡

 (2.11)

Viscous or shear forces are applied both normal and tangential to the surface. Thus, to be

fully taken into account the stress tensor 𝜏 is used.

∑�⃗�𝑠ℎ𝑒𝑎𝑟 = ∮ 𝜏

𝑆𝑡

· �⃗⃗� d𝑆 (2.12)

Therefore, combining the expressions of the forces with Equation (2.8), the equation in

integral form of momentum can be expressed as follows:

∫ 𝜌�⃗� d𝑉
𝑉𝑡

−∮ 𝑝�⃗⃗� d𝑆
𝑆𝑡

+∮ 𝜏
𝑆𝑡

· �⃗⃗� d𝑆 =
𝜕

𝜕𝑡
∫ 𝜌�⃗� d𝑉
𝑉𝑡

+∮ �⃗�𝜌�⃗��⃗⃗� d𝑆
𝑆𝑡

 (2.13)

Applying the divergence theorem to the surface integrals, using the continuity Equation

(2.7) and manipulating the mathematical expressions, the equation in differential

formulation in obtained.

𝜌
D�⃗�

D𝑡
= −∇𝑝 + 𝜌�⃗� + ∇ · 𝜏 (2.14)

This result is of great importance in the field of fluid mechanics and is known as the Cauchy

equation. In fact, by developing the shear forces term, one can easily obtain the Navier

Stokes equations, the governing and most used equations in the area of computational fluid

dynamics [2].

 Navier-Stokes equations

Assuming an incompressible flow for a Newtonian fluid, and by means of the Stokes’s stress

constitutive equation, the shear forces term may be expressed as ∇𝜏 = 𝜇∇2�⃗� where 𝜇 is the

dynamic viscosity. In a simplified form, where density and viscosity are considered as

constant values (𝜌0 and 𝜇0 respectively), the following expression obtained from Equation

(2.14) describes the incompressible Navier-Stokes equations [3].

𝜌0
𝜕�⃗�

𝜕𝑡
+ 𝜌0∇ · (�⃗��⃗�) = 𝜇0∇

2�⃗� − ∇𝑝 + 𝜌0�⃗� (2.15)

The terms to the left of the equality represent the material derivative of the velocity. The

first is the variation with respect to time. The second is the convective term and is the most

conflicting when solving the system of equations due to its non-linearity. It can be

Theoretical approach Universitat Politècnica de Catalunya
Governing equations ESEIAAT, Terrassa

Pau Romeu Llordella 20 Bachelor’s final thesis

understood intuitively as the difficulty in finding the velocity lies in the fact that it transports

itself.

The sum of forces is shown on the right-hand side. The first term is the one coming from the

viscous forces and is understood as the diffusive term which does not depend on the velocity

directly but on its variation. The other two elements show the pressure gradient and the

effect of the mass forces due to the acceleration of the velocity.

 Heat conduction equation

Heat conduction is the heat transfer method that occurs in a physical environment due to

the existence of a gradient of temperature. It is presented in this section as one of the main

terms of the energy conservation equation along with the convection-diffusion one. The rest

of the energy equation is not presented as it has no relevance to the report.

Any material has a thermal conductivity 𝜆 associated. This coefficient expresses the ability

to transfer heat by conduction. Higher values indicate more capacity to conduct. Solid

materials are the best conductors while gases have much lower 𝜆 coefficients. The

conductivity coefficient also depends on the temperature [4]. However, it will be considered

as constant for simplification.

For any isotropic material the following equation describes the phenomenon.

 𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
=
𝑞�̇�
𝜆
+ ∇2𝑇

(2.16)

Note that, to simplify the study, the material density 𝜌 and the thermal conductivity 𝜆 are

considered constant. The specific heat capacity 𝐶𝑝 and 𝐶𝑣 are considered equals and the

internal energy is given as d𝑢 = 𝐶𝑝d𝑇.

The first term of the equation describes the temporary evolution of the temperature. In

steady problems it becomes null.

The second term represents the internal heat sources 𝑞�̇� , the heat generated inside the

control volume. Again, in simple problems where there are no internal sources, this term

will be neglected.

Finally, the last term stands for the Fourier’s thermal conduction law. This equation relates

the heat flow with the negative local temperature gradient as it can be seen here.

 �⃗� = −𝜆∇𝑇 (2.17)

 Convection-diffusion equation

The convection-diffusion equations describe different phenomena involving the transport

of a property in a physical system. Following on from heat transfer, the equations can study

how temperature is distributed in a moving fluid. Convection-diffusion can also be derived

in the Navier-Stokes equations when the transported property is the velocity. For now, the

equations are presented for a generic scalar field property 𝜙 [5].

Theoretical approach Universitat Politècnica de Catalunya
Governing equations ESEIAAT, Terrassa

Pau Romeu Llordella 21 Bachelor’s final thesis

 𝜕𝜌𝜙

𝜕𝑡
= ∇ · (Γ ∇𝜙) − ∇ · (𝜌�⃗�𝜙) + 𝑆 (2.18)

The first term represents the accumulation of 𝜙 through time. It is equal to the difference

between the diffusion and the convection term plus a parameter 𝑆 depending on what

property 𝜙 is being studied.

The diffusion term ∇ · (Γ ∇𝜙) describes the motion through gradients of 𝜙. Depending on

the specific meaning of 𝜙 , it can represent heat flux, viscous stress, chemical species

diffusion flux from higher to lower concentrations, etc. Γ is the diffusion factor and may

intensify or decrease the phenomenon as a function of its value.

The convection term ∇ · (𝜌�⃗�𝜙) presents the net convective flow of 𝜙 . Note that forced

convection and constant physical properties are supposed and, therefore, the velocity field

does not depend on 𝜙 . It is also assumed incompressible flow such that the continuity

Equation (2.7) is supposed to be as follows.

 ∇ · �⃗� = 0 (2.19)

Table 1 obtained from [6] lists the appropriate parameters in order to reproduce the

governing equations.

Although the calculation will be performed in a generalist way, the main objective of this

report is to study the heat transfer in order to find the resulting temperature field.

Therefore, the concrete cases will be performed with the last equation.

Equation 𝜙 Γ 𝑆

Continuity 1 0 0

Momentum in x direction u 𝜇 −𝜕𝑝𝑑/𝜕𝑥

Energy (constant 𝑐𝑃) T 𝜆/𝑐𝑃 Φ/𝑐𝑃

Table 1. Parameters to replace in convection-diffusion equation

As a last theoretical note, it is essential to present the Peclet number 𝑃. This is the ratio

between advection and diffusion.

𝑃 =

|�⃗�|𝜌𝐿

Γ
 (2.20)

where 𝐿 is the characteristic length.

Thus, for great values of the Peclet number, advection will prevail, while for lower values

the phenomenon of diffusion will gain importance.

Theoretical approach Universitat Politècnica de Catalunya
Numerical methods ESEIAAT, Terrassa

Pau Romeu Llordella 22 Bachelor’s final thesis

2.2 Numerical methods

Numerical methods are a major branch of mathematics that has gained great importance

with the development of computers. In scientific and engineering studies they are of great

use in solving problems that otherwise could not be solved.

Mathematical models describing physical phenomena usually use continuous variables. A

computer needs to work with discrete representations of information because calculations

using continuous variables are much less efficient. Numerical methods aim to adapt a

continuous variable model to a discrete variable model.

In this way, computational power can be used in conjunction with numerical methods to

solve problems whose analytical solution is not known or which are too large to be dealt

with manually [7].

 Finite Volume Method

There are different types of numerical analysis methods to represent physical problems.

Among the best known are the Finite Element Method, the Finite Volume Method and the

Finite Difference Method.

The Finite Volume Method (FVM) is the one studied and applied to the problems posed in

this report. Currently, it is one of the most widely used methods for CFD studies and

simulations that require large regular meshes.

This method consists of imposing flow balances on control volumes by means of surface

integrals [8]. This is a very efficient model on structured and rectangular meshes that can

easily be implemented and is one of the most intuitive ones.

As a weakness, it can be more difficult to design a scheme to obtain a sufficiently high

accuracy than, for instance, using finite elements. However, the robustness of the method

and the relative simplicity of the problems presented in this paper make it a convenient

method.

 Discretisation of the domain

The first step in applying the finite volume method is to divide the study body into small

portions. Each portion is a control volume with an associated node. Each node represents

the value of a thermophysical property (e.g., temperature, pressure, ...) at that point in space.

The property value can be considered to be the average of the whole control volume [9].

Algebraic equations are used to define the relationships between adjacent nodes. In this

project, the nodes belonging to the boundary of the domain have known properties imposed

by the boundary conditions.

The number of nodes required to solve the problem adequately is not a fixed or standard

value. On the one hand, a large number of nodes allows more accurate solutions to be

reached but with a higher computational cost, especially in terms of solving time. On the

other hand, a small number of nodes can give rise to solutions that are too roughly

Theoretical approach Universitat Politècnica de Catalunya
Numerical methods ESEIAAT, Terrassa

Pau Romeu Llordella 23 Bachelor’s final thesis

approximated. One of the objectives of this project is to determine in each case what is the

optimal number of nodes to balance the performance and the quality of the solution.

This paper deals with problems in one and two dimensions. For two dimensions, the control

volume becomes the surface. Below is part of a regular mesh used in this type of problem.

In the centre, the studied node P is shown. To refer to neighbour nodes, cardinal coordinates

are used: north (N), south (𝑆), east (E) or west (W).

Figure 1. Nomenclature of the relative position of the nodes

The objective is to obtain the value of a property of node Φ𝑃 as a function of its neighbouring

nodes with an equation of the following form.

 𝑎𝑃Φ𝑃 = 𝑎𝐸Φ𝐸 + 𝑎𝑊Φ𝑊 + 𝑎𝑁Φ𝑁 + 𝑎𝑆Φ𝑆 + 𝑏𝑃 (2.21)

This is achieved by approximating the equations with partial derivatives describing a

certain physical phenomenon to algebraic equations using FDM. The coefficients

accompanying the property of each node 𝑎𝐼 and the independent term 𝑏𝑃 are obtained in

different ways depending on the physical problem. In this project, the coefficients for each

type of problem will be presented.

Once this equation has been found for each of the 𝑁 nodes of the domain, a system of

algebraic equations with N variables and N equations is available. This system is easily

solved by a computer using one of the solvers explained in the section 0.

Returning to the geometry of the problem, there are two different ways to discretise the

problem when distributing the set of nodes and control volumes. Although the internal

nodes are treated in the same way, it affects the treatment of the nodes close to the

boundary.

The two methods are node-centred and face-centred. The choice of one method or the other

is arbitrary. Thus, in this project are presented and studied both: the heat conduction

problems with node-centred discretisation and the convection-diffusion problems with

face-centred discretisation.

2.2.2.1 Centred-nodes

The domain is divided into 𝑁𝐶𝑉 control volumes of equal size and a node is placed in the

centre of each. In addition, a node is added to each of the boundary walls. Thus, there are a

total of 𝑁𝑉𝐶 + 2 nodes. Note that the nodes on the boundary do not have an associated

control volume. Figure 2presents the corresponding scheme

Theoretical approach Universitat Politècnica de Catalunya
Numerical methods ESEIAAT, Terrassa

Pau Romeu Llordella 24 Bachelor’s final thesis

2.2.2.2 Centred-faces

The domain is divided into 𝑁𝑁 nodes from one boundary to the opposite one. The faces of

the control volumes are traced between the nodes. This way, there are 𝑁𝑁 + 1 control

volumes.

In this case, boundary nodes do have an associated control volume although, in regular

meshes, their volume is half that of the internal CVs.

Figure 2. One-dimensional centred-nodes scheme

Figure 3. One-dimensional centred-faces scheme

 Time schemes of resolution

When dealing with transient problems in numerical methods, it is common to work with

variables of two different time instants in the same equation. For example, the property in

a point of a solid body at instant 𝑡𝑛+1 depends on the value of this same property at 𝑡𝑛.

This kind of problems are approached by solving all variables for 𝑡 = 𝑡1 before starting to

calculate the value of the property at the immediately following time step 𝑡 = 𝑡1 + Δ𝑡. Thus,

in each time iteration the unknowns are Φ𝑛+1 while Φ𝑛 are assumed to be known.

There are three different methods presented by Patankar in [5] to deal with unsteady

problems: explicit, fully implicit and Crank-Nicholson. A one-dimensional problem where

the property Φ𝑃
𝑛+1 is unknown is taken as example.

• Explicit method. This scheme assumes that the property Φ𝑃
𝑛 for a point 𝑃 maintains

its value during the entire time step except just at 𝑡 = 𝑡 + Δ𝑡.This means that Φ𝑃
𝑛+1

is not depending on their neighbours Φ𝐸
𝑛+1 and Φ𝑊

𝑛+1 but only on the already known

variables Φ𝑃
𝑛 , Φ𝐸

𝑛 and Φ𝑊
𝑛 . This way, Φ𝑃

𝑛+1 can be explicitly and no systems of

equations need to be solved.

 𝑎𝑃Φ𝑃
𝑛+1 = 𝑎𝐸Φ𝐸

𝑛 + 𝑎𝑊Φ𝑊
𝑛 + 𝑏𝑃 (2.22)

This method, however, presents a severe constraint. The coefficient 𝑏𝑃 depending

on Φ𝑃
𝑛 could become negative. This situation must be avoided or physically

unrealistic results could be achieved. Therefore, the time step Δt is restricted to this

condition leading to require much most time steps than probably desired.

• Fully implicit method. Any method that in order to found Φ𝑃
𝑛+1 requires the

properties of its neighbours at 𝑡𝑛 and 𝑡𝑛+1 is implicit. If it only demands Φ𝐸
𝑛+1 and

Φ𝑊
𝑛+1, then is fully implicit. This is the only unconditionally stable method not only

mathematically but also physically. The expression of Φ𝑃
𝑛+1 is as follows.

 𝑎𝑃Φ𝑃
𝑛+1 = 𝑎𝐸Φ𝐸

𝑛+1 + 𝑎𝑊Φ𝑊
𝑛+1 + 𝑏𝑃 (2.23)

Now, a system of equations has to be solved. Note that 𝑏𝑃 still depends only on

known values.

Theoretical approach Universitat Politècnica de Catalunya
Numerical methods ESEIAAT, Terrassa

Pau Romeu Llordella 25 Bachelor’s final thesis

• Crank Nicholson method. This scheme assumes that Φ𝑃
𝑛 lineally varies from 𝑡𝑛 to

𝑡𝑛+1 . For small time steps, CN is more accurate than a fully implicit method.

However, implies more complex notation.

𝑎𝑃Φ𝑃
𝑛+1 =

1

2
(𝑎𝐸Φ𝐸

𝑛 + 𝑎𝐸Φ𝐸
𝑛+1𝑎𝑊Φ𝑊

𝑛 + 𝑎𝑊Φ𝑊
𝑛+1) + 𝑏𝑃 (2.24)

A general expression depending on a factor f can describe the general equation of Φ𝑃
𝑛+1. In

this way, 𝑓 = 0 stands for the explicit scheme, 𝑓 = 0.5 represents the Crank-Nicholson

method and 𝑓 = 1 leads to a fully implicit scheme.

 𝑎𝑃Φ𝑃
𝑛+1 = 𝑎𝐸[𝑓Φ𝐸

𝑛+1 + (1 − 𝑓)Φ𝐸
𝑛] + 𝑎𝑊[𝑓Φ𝑊

𝑛+1 + (1 − 𝑓)Φ𝑊
𝑛] + 𝑏𝑃 (2.25)

The following figure adapted from [5] illustrates the evolution of the property over the time

step.

Figure 4. Time schemes comparison

 System of linear equations

As already mentioned, the aim of discretising the domain and applying the Finite Volumes

Method is to convert a continuous variable equation to a system of linear algebraic

equations. This system is made up of as many equations as nodes have been studied.

 An example is given below. A domain of square geometry is assumed and is discretised by

means of the face-centred scheme with a total of 9 nodes. The nodes have been numbered

from 1 to 9 from left to right and from top to bottom.

Figure 5. Centred-faces discretisation step by step

Now, nine equations of the same form as Equation (2.21) can be obtained. In this case, not

all nodes have four neighbouring nodes. For example, node 1 is neighbouring node 2 on the

east and node 4 on the south. Therefore, the equation defining the property Φ1 will only

Theoretical approach Universitat Politècnica de Catalunya
Numerical methods ESEIAAT, Terrassa

Pau Romeu Llordella 26 Bachelor’s final thesis

depend on two adjacent nodes. The same applies to the rest of the nodes. If these equations

are arranged in matrix form, the following expression is obtained [5].

(

𝑎𝑃1 𝑎𝐸1 0 𝑎𝑆1 0 0 0 0 0

𝑎𝑊2 𝑎𝑃2 𝑎𝐸2 0 𝑎𝑆2 0 0 0 0

0 𝑎𝑊3 𝑎𝑃3 0 0 𝑎𝑆3 0 0 0

𝑎𝑁4 0 0 𝑎𝑃4 𝑎𝐸4 0 𝑎𝑆4 0 0

0 𝑎𝑁5 0 𝑎𝑊5 𝑎𝑃5 𝑎𝐸5 0 𝑎𝑆5 0

0 0 𝑎𝑁6 0 𝑎𝑊6 𝑎𝑃6 0 0 𝑎𝑆6

0 0 0 𝑎𝑁7 0 0 𝑎𝑃7 𝑎𝐸7 0

0 0 0 0 𝑎𝑁8 0 𝑎𝑊8 𝑎𝑃8 𝑎𝐸8

0 0 0 0 0 𝑎𝑁9 0 𝑎𝑊9 𝑎𝑃9)

(

Φ𝑃1

Φ𝑃2

Φ𝑃3

Φ𝑃4

Φ𝑃5

Φ𝑃6

Φ𝑃7

Φ𝑃8

Φ𝑃9)

=

(

𝑏𝑃1

𝑏𝑃2

𝑏𝑃3

𝑏𝑃4

𝑏𝑃5

𝑏𝑃6

𝑏𝑃7

𝑏𝑃8

𝑏𝑃9)

 (2.26)

This matrix format is a good way to synthesise the problem and is useful for solving it using

some solvers. However, in the problem solving of this project, a separate matrix has been

used for each coefficient and the value is referenced in the equations according to the

relative position of rows and columns.

(

𝑎𝑃1 𝑎𝑃2 𝑎𝑃3

𝑎𝑃4 𝑎𝑃5 𝑎𝑃6

𝑎𝑃7 𝑎𝑃8 𝑎𝑃9

);(

𝑎𝐸1 𝑎𝐸2 𝑎𝐸3

𝑎𝐸4 𝑎𝐸5 𝑎𝐸6

𝑎𝐸7 𝑎𝐸8 𝑎𝐸9

);… ;(

𝑏𝑃1 𝑏𝑃2 𝑏𝑃3

𝑏𝑃4 𝑏𝑃5 𝑏𝑃6

𝑏𝑃7 𝑏𝑃8 𝑏𝑃9

) (2.27)

This format is more intuitive for code development as the matrix follows the format of the

discretisation geometry.

 Solvers

A linear equation system solver is an algorithm whose objective is to find the result of the

unknown variables of the system. There is a wide variety of solvers that use all kinds of

resolution methods. The equation to be solved has the same form as Equation (2.26).

 𝐴Φ = 𝐵 (2.28)

The analytical solution to this system is easily obtained by using the inverse of the 𝐴 matrix.

 Φ = 𝐴−1𝐵 (2.29)

However, performing this operation is a process that is too costly in terms of computing

time. This is where the different strategies come in to attempt to solve this system with

maximum efficiency.

Linear equation system solvers can be divided into two main groups.

• Direct solvers. These are algorithms that allow the exact solution of the system to

be found by means of algebraic manipulations of the expressions. They are very fast

and efficient but are difficult to implement and have severe limitations in problems

that do not meet very specific conditions.

Theoretical approach Universitat Politècnica de Catalunya
Numerical methods ESEIAAT, Terrassa

Pau Romeu Llordella 27 Bachelor’s final thesis

• Iterative solvers. These algorithms obtain an approximation of the solution through

a process of iterations in the equations of the system. They start from an arbitrary

initial value of the unknown values to calculate the result of these same variables.

The process is repeated until an acceptable approximation is reached, which will

never be exact. However, they are easy to implement and useful for very large

matrices. The time required to solve will depend on the desired accuracy of the

solution, which is usually measured by a convergence factor 𝛿.

The solvers used in this project are presented below.

2.2.5.1 TDMA

The tri-diagonal matrix algorithm (TDMA) is a direct solver algorithm [10].

It can be easily applied by running through the 𝑁 equations that make up the system twice.

First, from equation 0 to 𝑁, the vectors 𝑃 and 𝑄 are found.

𝑃𝑖 =

𝑎𝐸𝑖
𝑎𝑃𝑖 − 𝑎𝑊𝑖𝑃𝑖−1

 𝑄𝑖 =
𝑏𝑃𝑖 + 𝑎𝑊𝑖𝑄𝑖−1

𝑎𝑃𝑖 − 𝑎𝑊𝑖𝑃𝑖−1
 (2.30)

Then, running through the equations from N to 0, the results of the Φvariables are obtained.

 Φ𝑖 = 𝑃𝑖Φ𝑖+1 + 𝑄𝑖 (2.31)

This algorithm presents an exceptional ease of implementation and speed of computation.

However, since this direct solver can only be used in tridiagonal matrices, in practice it can

only be used on its own in very simple cases. In this project, it is only used to solve one-

dimensional problems.

2.2.5.2 Gauss-Seidel

The Gauss-Seidel algorithm is an iterative method for solving linear systems. It can be

applied to all types of diagonally dominant matrices [11] (the sum of the elements of a row

is less than or equal to the diagonal element) or to symmetric and positive definite matrices.

The algorithm starts from an arbitrary initial Φ0 value. The program runs through the

equations from 0 to N calculating the values of Φ1 using the value of Φ1 for the variables

already calculated and Φ0 for those still unknown. The process is repeated until

convergence. The following expression defines the computation of Φ𝑛+1 in each iteration.

Φ𝑖
𝑛+1 =

1

𝑎𝑖𝑖
(𝑏𝑖 +∑𝑎𝑖𝑗Φ𝑗

𝑛+1

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗Φ𝑗
𝑛

𝑁

𝑗=𝑖+1

) (2.32)

This is a good method for solving large matrices that are not tri-diagonal and cannot use

TDMA. However, it is slow. In this project it is used for solving two-dimensional problem

systems.

2.2.5.3 Line-by-line

The line-by-line solver is an iterative solver that uses a direct solver for row and column

resolution. In particular, it uses part of the Gauss-Seidel and TDMA solver.

Theoretical approach Universitat Politècnica de Catalunya
Numerical methods ESEIAAT, Terrassa

Pau Romeu Llordella 28 Bachelor’s final thesis

It is useful for solving problems whose coefficient matrix A is diagonally dominant. For

example, a two-dimensional physical problem with a structured mesh, where the property

of each node depends on a maximum of 4 neighbouring nodes (N, W, S, E). The objective is

to convert A into a tri-diagonal matrix.

This can be achieved by solving the problem first row by row and then column by column.

In this way, neighbouring nodes that are not in the row or column become part of the

independent term of the equation.

The equation to solve row-by-row is as follows.

 𝑎𝑃Φ𝑃
𝑛+1 = 𝑎𝐸Φ𝐸

𝑛+1 + 𝑎𝑊Φ𝑊
𝑛+1 + 𝑏𝑃 → 𝑏𝑃 = 𝑏𝑃0 + 𝑎𝑆Φ𝑆

𝑛 + 𝑎𝑁Φ𝑁
𝑛 (2.33)

And the equation column-by-column:

 𝑎𝑃Φ𝑃
𝑛+1 = 𝑎𝑁Φ𝑁

𝑛+1 + 𝑎𝑆Φ𝑆
𝑛+1 + 𝑏𝑃 → 𝑏𝑃 = 𝑏𝑃0 + 𝑎𝐸Φ𝐸

𝑛 + 𝑎𝑊Φ𝑊
𝑛 (2.34)

In other words, a two-dimensional problem is converted to a one-dimensional problem.

This process is repeated until convergence is reached.

This solver, although a bit more complicated to implement than the Gauss-Seidel solver, is

usually more efficient and faster. In this project it will also be used for solving two-

dimensional problems.

Heat conduction Universitat Politècnica de Catalunya
Numerical methods ESEIAAT, Terrassa

Pau Romeu Llordella 29 Bachelor’s final thesis

3
Heat conduction

This part of the project includes the discretisation of

the heat conduction equation introduced in its

analytical form in the previous section. The numerical

methods described are applied to a problem where the

temperature field in a solid made up of different

materials has to be determined. It is a two-dimensional

and transient problem.

Heat conduction Universitat Politècnica de Catalunya
Heat conduction equations ESEIAAT, Terrassa

Pau Romeu Llordella 30 Bachelor’s final thesis

3.1 Heat conduction equations

The purpose of solving the heat conduction equation is to determine the temperature field

of the element under study. That is, solving the problem consists of solving a system of

equations where the unknowns are the value of the temperature at each point of the body.

To achieve this objective, the body is discretised into nodes and control volumes as

explained in the previous section. Thus, the set of equations to be solved will be formed by

linear combinations of temperatures between related nodes accompanied by coefficients

that incorporate the physical properties of the problem.

 One-dimensional steady problem

A first simple case as an example is being presented. A steady problem in one dimension. In

this case, it is studied any node 𝑃 that has as neighbors a node 𝑊 to its left and node 𝐸 to its

right. Therefore, the temperature of node 𝑃 will only depend on the temperature of nodes

𝐸 and 𝑊 as follows.

Figure 6. Heat conduction 1D discretisation

 𝑎𝑃𝑇𝑃 = 𝑎𝐸𝑇𝐸 + 𝑎𝑊𝑇𝑊 + 𝑏𝑃 (3.1)

Where 𝑎𝐸 and 𝑎𝑊 are the coefficients of the nodes E and W respectively and 𝑏𝑝 is the

independent term of the equation. Now it is necessary to relate the coefficients to the

physical properties of the heat transfer problem. The heat conduction can be expressed like

the following [5].

−𝜆𝑤

𝑇𝑃 − 𝑇𝑊
𝑑𝑃𝑊

𝑆𝑤 + 𝜆𝑒
𝑇𝐸 − 𝑇𝑃
𝑑𝑃𝐸

𝑆𝑒 + 𝑞𝑣𝑉𝑃 = 0
(3.2)

Here the volume of the control volume is 𝑉𝑃, the heat intern sources are 𝑞𝑣, the surfaces

between nodes are 𝑆𝑖 and 𝑑𝑃𝐼 represents the distance between the node 𝑃 and node 𝐼. Also

note that 𝜆𝑖 represents the heat conduction of the material found between the node 𝑃 and

the node 𝐼. This last parameter is computed as the harmonic mean of 𝜆𝐼 and 𝜆𝑃 like follows.

𝜆𝑖 =

2𝜆𝐼𝜆𝑃
𝜆𝐼 + 𝜆𝑃

(3.3)

Once the physical terms have been clarified, the expression can be rearranged to have the

same form as Equation (3.1).

(
𝜆𝑤𝑆𝑤
𝑑𝑃𝑊

+
𝜆𝑒𝑆𝑒
𝑑𝑃𝐸

)𝑇𝑃 = (
𝜆𝑤𝑆𝑤
𝑑𝑃𝑊

)𝑇𝑊 + (
𝜆𝑒𝑆𝑒
𝑑𝑃𝐸

)𝑇𝐸 + (𝑞𝑣𝑉𝑃)
(3.4)

Here the coefficients are clearly distinguishable. They can be expressed as:

𝑎𝑃 =

𝜆𝑤𝑆𝑤
𝑑𝑃𝑊

+
𝜆𝑒𝑆𝑒
𝑑𝑃𝐸

 𝑎𝑊 =
𝜆𝑤𝑆𝑤
𝑑𝑃𝑊

 𝑎𝐸 =
𝜆𝑒𝑆𝑒
𝑑𝑃𝐸

 𝑏𝑃 = 𝑞𝑣𝑉𝑃
(3.5)

Heat conduction Universitat Politècnica de Catalunya
Heat conduction equations ESEIAAT, Terrassa

Pau Romeu Llordella 31 Bachelor’s final thesis

 General case

After a first simpler case, a general case can be studied

more easily. That is, with more than one dimension and

in a transient regime. In this case, a two-dimensional

case is presented. However, it could be applied in the

same way to 3D bodies.

One starts again from the heat conduction equation

applied to any 𝑃 node. Now, together with the

neighbours on the 𝑊 and 𝐸 sides, the one on the top 𝑁

and the one on the bottom 𝑆 are added. In addition, the

temperature of the node 𝑃 one instant of time before

the one studied at time 𝑇𝑃
0 is also taken into account.

This temperature is known.

Figure 7. Heat conduction 2D
discretisation

At this point, to formulate the equations it is necessary to decide the type of resolution

scheme to be used: explicit, implicit or Crank-Nicolson. The general form of the problem is

as follows.

 𝜌𝑃𝑉𝑃𝑐𝑝𝑃
(𝑇𝑃 − 𝑇𝑃

0) = 𝛽∑�̇�Δ𝑡 + (1 − 𝛽)�̇�0Δ𝑡 (3.6)

Depending on the method chosen, the value of 𝛽 will be 0, 0.5 or 1. In this case, in order to

work with an unconditionally stable method and with a simple notation, the implicit method

will be used. That is, 𝛽 = 1. In addition, it is assumed that there are no internal heat sources.

Thus, developing the heat summation of the previous equation we arrive at:

∑�̇� = −𝜆𝑤

𝑇𝑃 − 𝑇𝑊
𝑑𝑃𝑊

𝑆𝑤 + 𝜆𝑒
𝑇𝐸 − 𝑇𝑃
𝑑𝑃𝐸

𝑆𝑒 − 𝜆𝑠
𝑇𝑃 − 𝑇𝑆
𝑑𝑃𝑆

𝑆𝑠 + 𝜆𝑛
𝑇𝑁 − 𝑇𝑃
𝑑𝑃𝑁

𝑆𝑛
(3.7)

And therefore, the equation to be solved is as follows.

∑�̇� =

𝜌𝑃𝑉𝑃𝑐𝑝𝑃
(𝑇𝑃 − 𝑇𝑃

0)

Δ𝑡

(3.8)

Following the same steps than the previous section, the heat equation has this form:

 𝑎𝑃𝑇𝑃 = 𝑎𝐸𝑇𝐸 + 𝑎𝑊𝑇𝑊 + 𝑎𝑆𝑇𝑆 + 𝑎𝑁𝑇𝑁 + 𝑏𝑃 (3.9)

And the coefficients are the following.

𝑎𝑊 =

𝜆𝑤𝑆𝑤
𝑑𝑃𝑊

 𝑎𝐸 =
𝜆𝑒𝑆𝑒
𝑑𝑃𝐸

 𝑎𝑆 =
𝜆𝑠𝑆𝑠
𝑑𝑃𝑆

 𝑎𝑁 =
𝜆𝑛𝑆𝑛
𝑑𝑃𝑁

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 +
𝜌𝑃𝑉𝑃𝑐𝑝𝑃
Δ𝑡

 𝑏𝑃 =
𝜌𝑃𝑉𝑃𝑐𝑝𝑃
Δ𝑡

𝑇𝑃
0

(3.10)

This system is obtained for each instant of time at which the solution is required to be

known. The coefficients matrix is always diagonally dominant. Therefore, either the Gauss-

Seidel solver or line-by-line can be used.

Heat conduction Universitat Politècnica de Catalunya
Four materials conduction problem ESEIAAT, Terrassa

Pau Romeu Llordella 32 Bachelor’s final thesis

3.2 Four materials conduction problem

This study aims to document the solution of a heat conduction problem through a solid

made of four different materials. The boundary conditions evolve with time and this implies

the use of a transient treatment.

The solid to be studied is made up of four materials. This solid can be assumed to be a prism

with a depth large enough to allow the problem to be dealt in two dimensions. Thus, the

object of the study is the section of the prism. Figure 8 shows a scale diagram of the problem

to be studied.

Figure 8. General scheme of the problem

At instant 𝑡 = 0, the whole solid is at an initial temperature of 𝑇0 = 8℃. The study consists

of determining the temperature map for any given instant of time and position during the

course of the problem.

The materials that constitute the solid are distributed as can be seen in Figure X. Each

material has different physical properties. To simplify the problem, it is assumed that the

properties of the materials do not vary with temperature and are thus constant over time.

The table below shows the properties of each material.

 𝜌 [𝑘𝑔/𝑚3] 𝑐𝑝 [𝐽/𝑘𝑔𝐾] 𝜆 [𝑊/𝑚𝐾]

Material 1 1500.0 750.0 170.0

Material 2 1600.0 770.0 140.0

Material 3 1900.0 810.0 200.0

Material 4 2500.0 930.0 140.0

Table 2. Root-mean-square error for different resolution schemes

 Boundary conditions

This section presents the boundary conditions of the solid object of study. Each wall of the

solid is faced with different conditions. The top, bottom, left and right walls are considered

by referring to the relative position of the wall to the solid from the reader's point of view.

Thus,

Heat conduction Universitat Politècnica de Catalunya
Four materials conduction problem ESEIAAT, Terrassa

Pau Romeu Llordella 33 Bachelor’s final thesis

• Bottom. The lower wall is isothermal at temperature 𝑇 = 23.0℃.

• Top. The upper wall absorbs (from outside to inside) a heat flow 𝑞𝑓𝑙𝑜𝑤 = 60.0 𝑊/𝑚.

• Left. The left wall is in contact with a fluid at 𝑇𝑔 = 33.0℃ and with a heat transfer

coefficient 𝛼𝑔 = 9.00𝑊/𝑚
2𝐾.

• Right. The right wall is isothermal at temperature 𝑇 = 8.0 + 0.005𝑡 ℃ where 𝑡 is the

time expressed in seconds.

 Discretisation of the problem

In order to solve the problem numerically, it is necessary to discretize the domain of study

as explained above. In this case, a discretisation of centred nodes is used. The solid has been

divided in such a way that the boundaries of the control volumes coincide with the

boundaries of the materials. Once all the sections are divided, a node is placed at the centre

of each volume and at the contour surfaces of the solid. A schematic is shown.

Figure 9. Centred-nodes body discretisation

The aim of discretising the solid is to apply an energy balance at each node to know its

temperature at the instant of time studied. The internal nodes have an associated control

volume while the wall nodes do not and are studied by applying the boundary conditions.

Now, the latter are presented, since the former have already been introduced in the

previous theoretical development. An implicit treatment is used (𝛽 = 1).

3.2.2.1 Top nodes

The nodes at the top wall of the solid are studied according to the heat boundary condition.

In this case, there is a constant heat flow 𝑞𝑓𝑙𝑜𝑤 from the outside to the inside of the solid.

Figure 10. Top nodes scheme

 ∑𝑄𝑛+1 = 0

−𝜆𝑠
𝑇𝑃
𝑛+1 − 𝑇𝑆

𝑛+1

𝑑𝑃𝑆
− �̇�𝑓𝑙𝑜𝑤 = 0

𝑎𝑃𝑇𝑃
𝑛+1 = 𝑎𝑆𝑇𝑆

𝑛+1 + 𝑏𝑃

(3.11)

𝑎𝑆 =

𝜆𝑆
𝑑𝑃𝑆

 𝑎𝑃 = 𝑎𝑆 𝑏𝑃 = −�̇�𝑓𝑙𝑜𝑤 (3.12)

Heat conduction Universitat Politècnica de Catalunya
Four materials conduction problem ESEIAAT, Terrassa

Pau Romeu Llordella 34 Bachelor’s final thesis

3.2.2.2 Bottom nodes

The lowest wall is isotherm and therefore the temperature of the nodes is the temperature

of the wall. Thus, no energy balance is required and coefficients are only used to impose the

desired temperature.

Figure 11. Bottom nodes scheme

 𝑇𝑃
𝑛+1 = 𝑇𝑏𝑜𝑡𝑡𝑜𝑚

𝑎𝑃𝑇𝑃
𝑛+1 = 𝑏𝑃

(3.13)

 𝑎𝑃 = 1 𝑏𝑃 = 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 (3.14)

3.2.2.3 Left nodes

Left nodes remain in contact with a fluid at a known temperature 𝑇𝑔 and with a heat transfer

coefficient 𝛼𝑔. This way, one imposes that the convection heat is equal to the conduction

heat as boundary condition.

Figure 12. Left nodes scheme

 ∑𝑄𝑛+1 = 0

𝛼𝑔(𝑇𝑔 − 𝑇𝑃
𝑛+1) + 𝜆𝐸

𝑇𝐸
𝑛+1 − 𝑇𝑃

𝑛+1

𝑑𝑃𝐸
= 0

(3.15)

𝑎𝑃𝑇𝑃
𝑛+1 = 𝑎𝐸𝑇𝐸

𝑛+1 + 𝑏𝑃

𝑎𝐸 =

𝜆𝐸
𝑑𝑃𝐸

 𝑎𝑃 = 𝑎𝐸 + 𝛼𝑔 𝑏𝑃 = 𝛼𝑔𝑇𝑔 (3.16)

3.2.2.4 Right nodes

Finally, right wall is also considered as isotherm. However, in this case the wall temperature

varies as a function of time according to the expression 𝑇𝑟𝑖𝑔ℎ𝑡(𝑡) = 8.0 + 0.005𝑡 ℃. Thus,

node will acquire the same temperature.

Figure 13. Right nodes scheme

 𝑇𝑃
𝑛+1 = 𝑇𝑟𝑖𝑔ℎ𝑡

𝑛+1

𝑎𝑃𝑇𝑃
𝑛+1 = 𝑏𝑃

(3.17)

 𝑎𝑃 = 1 𝑏𝑃 = 𝑇𝑟𝑖𝑔ℎ𝑡
𝑛+1 (3.18)

Heat conduction Universitat Politècnica de Catalunya
Four materials conduction problem ESEIAAT, Terrassa

Pau Romeu Llordella 35 Bachelor’s final thesis

3.2.2.5 Internal nodes between materials

When the control volume of a node is in contact with a control volume corresponding to a

different material, special treatment is required with respect to the other internal nodes.

Although the equations are the same, the 𝜆 coefficient changes.

For example, if a node P is a neighbour with a node K and they have a different associated

material, the heat flux �̇�𝑃𝐾 is evaluated with the harmonic mean of the respective

coefficients.

𝜆𝑃𝐾 =

𝑑𝑃𝐾
𝑑𝑃𝑘
𝜆𝑃

+
𝑑𝑘𝐾
𝜆𝐾

 (3.19)

 Results

The time domain is defined between 𝑡 = 0 and 𝑡 = 10000𝑠 . During this time, the only

boundary condition that varies is the temperature of the right wall, which evolves from 𝑇 =

8℃ to 𝑇 = 58℃ linearly. Here, the evolution of the temperature with respect to time is

studied for two different points of the domain.

𝑃1(𝑥, 𝑦) = (0.65; 0.56) 𝑃2(𝑥, 𝑦) = (0.74; 0.72)

The following figure presents the evolution of these two points. 𝑃1 is represented in blue

and 𝑃2 in red.

Figure 14. Evolution of the temperature in the two nodes

At first glance, the result is consistent. Both nodes have an initial temperature 𝑇0 = 8℃

which has been imposed on the whole solid. As time goes on, the temperature increases

almost linearly, that is because the nodes are close to the wall that varies the temperature.

These results have been verified using those obtained by the Heat and Mass Transfer

Technological Centre (CTTC) at UPC [12].

The following is a global representation of the solution to the problem. The temperature

maps are presented every Δ𝑡 = 1250𝑠. For 𝑡 = 0, all the nodes of the solid are at 𝑇0 = 8℃

and, therefore, the block is isothermal. It starts to be plotted for 𝑡 = 1250𝑠.

Heat conduction Universitat Politècnica de Catalunya
Four materials conduction problem ESEIAAT, Terrassa

Pau Romeu Llordella 36 Bachelor’s final thesis

𝑡 = 1250𝑠

𝑡 = 2500𝑠

𝑡 = 3750𝑠

𝑡 = 5000𝑠

𝑡 = 6250𝑠

𝑡 = 7500𝑠

𝑡 = 8750𝑠

𝑡 = 10000𝑠

 Figure 15. Evolution of the temperature map over time

Heat conduction Universitat Politècnica de Catalunya
Four materials conduction problem ESEIAAT, Terrassa

Pau Romeu Llordella 37 Bachelor’s final thesis

The results obtained are consistent with the expected solution. As a first conclusion, it is

observed that the isothermal walls have a stronger influence on the temperature

distribution, i.e. the right and bottom wall.

At initial instants (𝑡 ≤ 1250𝑠) where a large part of the solid and the right wall still has a

temperature close to 𝑇0, a strong gradient is created close to the low wall.

After a while, for 2500𝑠 < 𝑡 < 3750𝑠, practically all the solid is at the same temperature.

That is because for this period of time 𝑇𝑟𝑖𝑔ℎ𝑡 is very close to 𝑇𝑏𝑜𝑡𝑡𝑜𝑚.

From this moment on, 𝑇𝑟𝑖𝑔ℎ𝑡 becomes higher than 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 and a gradient appears between

these two walls. At points close to the shared corner the gradient is especially steep.

 Code verification

A fundamental aspect to take into account when carrying out a programme that solves a

problem numerically is to carry out its verification and validation. That is to say, to check

that the program works correctly.

A first verification has already been performed on Figure 15 in the image for 𝑡 = 5000𝑠. It

can be noticed that the map obtained is practically identical to the one obtained by the CTTC

[12] shown below.

Figure 16. Temperature map for t = 5000s by CTTC

Another possible way to verify a code is through 0-dimensional analysis. That is, imposing

an isothermal initial temperature map at 𝑇 = 𝑇𝑣𝑒𝑟 and imposing the same temperature

boundary conditions. Thus, both walls are isothermal at 𝑇𝑤𝑎𝑙𝑙 = 𝑇𝑣𝑒𝑟, the fluid on the left

wall also at 𝑇𝑔 = 𝑇𝑣𝑒𝑟 and the top wall adiabatic (�̇�𝑓𝑙𝑜𝑤 = 0). If, as time evolves, the body

temperature is maintained, the verification criterion is fulfilled. In the following figure, the

body is shown for 𝑡 = 10000𝑠 and 𝑇𝑣𝑒𝑟 = 20℃.

Heat conduction Universitat Politècnica de Catalunya
Conclusions ESEIAAT, Terrassa

Pau Romeu Llordella 38 Bachelor’s final thesis

Figure 17. Temperature map for 0-dimensional analysis

Indeed, the whole body is at the same temperature after a considerable time.

Although these checks are necessary, they are not sufficient to prove that a code is correct.

However, they do make it possible to state with some certainty that the results are close to

reality.

3.3 Conclusions

The resolution of this first problem is a great introduction to numerical methods applied to

a physical system. The four materials problem involves a two-dimensional, non-stationary

treatment of the heat conduction equation with all kinds of boundary conditions and

differences in the properties of the materials within the domain.

The first step is to discretise the heat conduction equations using the finite volume method.

A fully implicit time scheme has been used to make the problem unconditionally stable. This

has meant having to solve the system of equations presented for each time instant. As many

systems have been solved as time increments up to the time of resolution.

A very important point is the treatment of boundary conditions. It has been explained how

these constraints are translated into the composition of the system of equations.

Furthermore, a strategic discretisation has been made to match the boundaries of the

materials with those of the control volumes. In this way, the treatment of the volume

properties has been made much simpler. The only property that has been taken into account

in the material change has been the heat conduction coefficient using the harmonic mean.

Verification of the code is absolutely necessary to validate its use. In cases where the

analytical or experimental solution is unknown, which in fact is the vast majority of

numerically solved problems, it is difficult to perform such verification. In this case a

solution verified by another author is provided and the result obtained with the developed

code is practically identical. Therefore, it is assumed that the C++ program is validated. In

cases where such a check is not possible, the code can be checked modularly with known

solutions from other problems.

Convection-Diffusion Universitat Politècnica de Catalunya
Conclusions ESEIAAT, Terrassa

Pau Romeu Llordella 39 Bachelor’s final thesis

4
Convection-Diffusion

In this case, the methodology of numerical methods is

applied to discretise the equations describing the

convection-diffusion property of a fluid. In this report

the resolution of these equations is focused on

temperature fields. However, it is a great introduction

to the Navier-Stokes equations when the property

transported in the fluid is the velocity as will be treated

in the following chapter.

A trivial one-dimensional stationary problem is

presented to introduce and evaluate different

numerical schemes. Next, two similar two-dimensional

problems are presented to apply the equations to more

complex cases.

Convection-Diffusion Universitat Politècnica de Catalunya
Convection-diffusion equations ESEIAAT, Terrassa

Pau Romeu Llordella 40 Bachelor’s final thesis

4.1 Convection-diffusion equations

The equations describing the convection-diffusion phenomenon of a property 𝜙 can be

discretised in much the same way as the heat conduction equations. Again, the objective is

to find a system of linear equations where the unknowns are the quantity of 𝜙 at each node.

In this case, Patankar’s discretisation is being used described in [5].

 Steady one-dimensional convection and diffusion

Again, the simplest problem for numerical discretisation is the steady, one-dimensional

problem. Assuming incompressible flow and no external sources 𝑆. The governing equation

is the following.

 d

d𝑥
(𝜌𝑢𝜙) =

d

d𝑥
(Γ
d𝜙

d𝑥
) (4.1)

Using the useful term 𝐽 = 𝜌𝑢𝜙 − Γ
d𝜙

d𝑥
 both convection and diffusion can be expressed as:

 d𝐽

d𝑥
= 0 (4.2)

Integrating over the same control volume used to define the one-dimensional heat

conduction discretisation,

Figure 18. One-dimensional control volume dimensions

the result obtained is the following:

 𝐽𝑒 − 𝐽𝑤 = 0

(𝜌𝑢)𝑒𝜙𝑒 − (𝜌𝑢)𝑤𝜙𝑤 = (
Γ𝑒
𝛿𝑥𝑒

) (𝜙𝐸 − 𝜙𝑃) − (
Γ𝑤
𝛿𝑥𝑤

) (𝜙𝑃 − 𝜙𝑊)
(4.3)

In order to simplify the expression, let’s use 𝐹 = 𝜌𝑢 and 𝐷 = Γ/𝛿𝑥:

 𝐹𝑒𝜙𝑒 − 𝐹𝑤𝜙𝑤 = 𝐷𝑒(𝜙𝐸 − 𝜙𝑃) − 𝐷𝑤(𝜙𝑃 − 𝜙𝑊) (4.4)

The main problem with this equation, compared to the conduction equation, is the need to

work with the boundary value of the variable being searched (𝜙𝑒 and 𝜙𝑤). While for known

values such as Γ𝑒 this is not an inconvenient since the harmonic mean can be used, it can be

problematic when it affects the main variable. This is where various resolution schemes

come into play.

At first, the easiest solution may appear to be to make use of a simple average. Then, for

example, 𝜙𝑒 would become 𝜙𝑒 = 1/2 (𝜙𝐸 + 𝜙𝑃). This is a second order scheme known as

Central Difference Scheme (CDS). However, this method is highly inaccurate and may tend

to physically unrealistic values.

Convection-Diffusion Universitat Politècnica de Catalunya
Convection-diffusion equations ESEIAAT, Terrassa

Pau Romeu Llordella 41 Bachelor’s final thesis

Another intuitive method is the first order Upwind Difference Scheme (UDS). In this case, as

a function of the flow directions, 𝜙𝑒 would become 𝜙𝑒 = 𝜙𝐸 for 𝐹𝑒 < 0 or 𝜙𝑒 = 𝜙𝑃 for 𝐹𝑒 >

0. This way, the Equation (4.4) would become

 𝑎𝑃𝜙𝑃 = 𝑎𝐸𝜙𝐸 + 𝑎𝑊𝜙𝑊 (4.5)

where

 𝑎𝐸 = 𝐷𝑒 + ⟦−𝐹𝑒 , 0⟧ 𝑎𝑊 = 𝐷𝑤 + ⟦𝐹𝑤, 0⟧ 𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + (𝐹𝑒 − 𝐹𝑤) (4.6)

Here, the operator ⟦𝐴, 𝐵⟧ is used to denote the greater of A and B.

Even though this method does not tend to unrealistic values such as CDS, the results can

also be too inaccurate. In order to obtain better solutions, some other methods are being

presented. To keep simplifying expressions, the Peclet number 𝑃 is used.

𝑃 =

𝐹

𝐷
=
𝜌𝑢𝛿𝑥

Γ
 (4.7)

Now, a general discretised equation that is used by several schemes can be reached using a

function of Peclet 𝐴(|𝑃|).

 𝑎𝑃𝜙𝑃 = 𝑎𝐸𝜙𝐸 + 𝑎𝑊𝜙𝑊 (4.8)

where

 𝑎𝐸 = 𝐷𝑒𝐴(|𝑃𝑒|) + ⟦−𝐹𝑒 , 0⟧

𝑎𝑊 = 𝐷𝑤𝐴(|𝑃𝑤|) + ⟦𝐹𝑤, 0⟧

𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + (𝐹𝑒 − 𝐹𝑤)

(4.9)

Depending on the chosen scheme, the 𝐴(|𝑃|) function will take one of the following values:

Scheme 𝐴(|𝑃|)

Central difference 1 − |𝑃|/2

Upwind difference 1

Hybrid difference ⟦0,1 − |𝑃|/2⟧

Power law difference ⟦0, (1 − 0.1|𝑃|)5 ⟧

Exponential (exact) |𝑃|/[exp(|𝑃|) − 1]

Table 3. Values of Peclet’s function for different schemes

The schemes that have not yet been explained and are listed in the table are defined below.

• Hybrid Difference Scheme (HDS): This second order scheme is a combination

between CDS for low velocities and UDS for high values of velocity.

• Power Law Difference Scheme (PLDS): It is a second order scheme that calculates

the value of the boundary variable with a polynomial of fifth degree that is an

approximation of the analytical solution.

• Exponential Difference Scheme (EDS): It is a second order scheme that provides the

exact result of the problem. However, this scheme can only be used for one-

dimensional, null source term and steady problems.

Convection-Diffusion Universitat Politècnica de Catalunya
Convection-diffusion equations ESEIAAT, Terrassa

Pau Romeu Llordella 42 Bachelor’s final thesis

Apart from EDS, all the other schemes listed above can also be used to solve general

transient and multidimensional problems. All of them are being utilized and compared in

this report.

 General case

To obtain the general discretised equations, one starts from the concepts explained for the

one-dimensional case. Now the problem is transient and is presented in two dimensions.

Using Cartesian coordinates the velocity field becomes �⃗� = 𝑓(𝑢, 𝑣) . Therefore, the

convection-diffusion equation is the following.

 𝜕(𝜌𝜙)

𝜕𝑡
= −

𝜕𝐽𝑥
𝜕𝑥
−
𝜕𝐽𝑦

𝜕𝑦
+ 𝑆 (4.10)

Where 𝐽𝑥 and 𝐽𝑦 are the convection-diffusion fluxes in each direction.

𝐽𝑥 = 𝜌𝑢𝜙 − Γ

𝜕𝜙

𝜕𝑥
 𝐽𝑦 = 𝜌𝑣𝜙 − Γ

𝜕𝜙

𝜕𝑦
 (4.11)

The following figure illustrates a generic two-dimensional control volume.

Figure 19. Two-dimensional control volume dimensions

Integrating over the control volume shown in Figure 19, this expression is reached.

 (𝜌𝑃𝜙𝑃 − 𝜌𝑃
0𝜙𝑃

0)Δ𝑥Δ𝑦

Δ𝑡
= −𝐽𝑒 + 𝐽𝑤 − 𝐽𝑛 + 𝐽𝑠 + 𝑆𝑃Δ𝑥Δ𝑦 (4.12)

In a similar way, the continuity equation can also be integrated over the same volume.

 (𝜌𝑃 − 𝜌𝑃
0)Δ𝑥Δ𝑦

Δ𝑡
+ 𝐹𝑒 − 𝐹𝑤 + 𝐹𝑛 − 𝐹𝑠 = 0 (4.13)

where

 𝐹𝑒 = (𝜌𝑢)𝑒Δ𝑦 𝐹𝑤 = (𝜌𝑢)𝑤Δ𝑦 𝐹𝑛 = (𝜌𝑣)𝑛Δ𝑥 𝐹𝑠 = (𝜌𝑣)𝑠Δx (4.14)

Multiplying Equation (4.13) by ϕP and subtracting it from Equation (4.12), one obtains:

(𝜙𝑃 − 𝜙𝑃

0)
𝜌𝑃
0Δ𝑥Δ𝑦

Δ𝑡
+ (𝐽𝑒 − 𝐹𝑒𝜙𝑃) − (𝐽𝑤 − 𝐹𝑤𝜙𝑃) + (𝐽𝑛 − 𝐹𝑛𝜙𝑃)

− (𝐽𝑠 − 𝐹𝑠𝜙𝑃) = 𝑆𝑃Δ𝑥Δ𝑦

(4.15)

Convection-Diffusion Universitat Politècnica de Catalunya
Convection-diffusion equations ESEIAAT, Terrassa

Pau Romeu Llordella 43 Bachelor’s final thesis

Following a similar procedure than the one-dimensional method, the final discretisation

equation is obtained. As before, the coefficients will depend on the resolution scheme

chosen. Also note that a fully implicit methodology is used to study the transient problem.

 𝑎𝑃𝜙𝑃 = 𝑎𝐸𝜙𝐸 + 𝑎𝑊𝜙𝑊 + 𝑎𝑁𝜙𝑁 + 𝑎𝑆𝜙𝑆 + 𝑏𝑃 (4.16)

The coefficients can be evaluated as:

 𝑎𝐸 = 𝐷𝑒𝐴(|𝑃𝑒|) + ⟦−𝐹𝑒 , 0⟧

𝑎𝑊 = 𝐷𝑤𝐴(|𝑃𝑤|) + ⟦𝐹𝑤, 0⟧

𝑎𝑁 = 𝐷𝑛𝐴(|𝑃𝑛|) + ⟦−𝐹𝑛, 0⟧

𝑎𝑆 = 𝐷𝑠𝐴(|𝑃𝑠|) + ⟦𝐹𝑠, 0⟧

𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 +
𝜌𝑃
0Δ𝑥Δ𝑦

Δ𝑡

𝑏𝑃 = (𝑆𝑃 +
𝜌𝑃
0

Δ𝑡
)Δ𝑥Δ𝑦

(4.17)

where

𝐷𝑒 =

Γ𝑒Δ𝑦

𝛿𝑥𝑒
 𝐷𝑤 =

Γ𝑤Δ𝑦

𝛿𝑥𝑤
 𝐷𝑛 =

Γ𝑛Δ𝑥

𝛿𝑦𝑛
 𝐷𝑠 =

Γ𝑠Δx

𝛿𝑦𝑠
 (4.18)

Table 3 presents the values of 𝐴(|𝑃|) for each resolution scheme.

Convection-Diffusion Universitat Politècnica de Catalunya
1D convection-diffusion flow ESEIAAT, Terrassa

Pau Romeu Llordella 44 Bachelor’s final thesis

4.2 1D convection-diffusion flow

This is the first convection-diffusion problem. It considers a one-dimensional flow moving

from point 𝑋0 to point 𝑋1 at different temperatures. The velocity, density and diffusion

factor are considered constant.

Figure 20. One-dimensional flow scheme

The numerical solution of this problem may seem to be of no importance since the exact

analytical solution of the problem is known. The following expressions describes how the

temperature evolves along the x-axis.

𝑇(𝑥) = 𝑇0 + (𝑇1 − 𝑇0)

exp(𝑃𝑥/𝐿) − 1

exp(𝑃) − 1
 (4.19)

Where 𝑃 is the Peclet number defined as 𝑃 = 𝜌𝑢𝐿/Γ.

In fact, since the exact solution is available, it is the ideal case to validate, verify and evaluate

the different numerical methods presented in Table 3 used to solve this kind of problems.

 The exact solution

The analytical solution of this trivial problem is also useful helping to understand how the

temperature distribution is affected by changes in the defining variables. As seen in

Equation (4.19), the temperature distribution only depends on one parameter: the Peclet

number.

Below are shown the different solutions obtained for different Peclet numbers. The distance

between the two points is considered to be 𝐿 = 1𝑚 and the boundary temperatures are

𝑇0 = 0℃ and 𝑇1 = 100℃.

Figure 21. One-dimensional convection-diffusion problem solution for different P values

Convection-Diffusion Universitat Politècnica de Catalunya
1D convection-diffusion flow ESEIAAT, Terrassa

Pau Romeu Llordella 45 Bachelor’s final thesis

For low absolute values of P the diffusion phenomenon is stronger than the advection

produced by the velocity and the temperature transition is quite uniform. Indeed, for P=0,

where the velocity can be considered to be null, the temperature evolution is completely

linear.

In contrast, for more extreme values of 𝑃, the advection effect becomes much more relevant.

In this case, the prevailing temperature in the domain becomes that of the point from which

the flow originates. For example, for 𝑃 = 10, where the velocity flow is positive (from point

𝑋0 to 𝑋1), the temperature remains almost constant at 𝑇0 until past the middle of the x-axis

where it starts to increase sharply to 𝑇1.

 Numerical schemes comparison

Once the analytical problem is solved, one can proceed to the solution of the problem by

means of the four presented schemes: Upwind (UDS), Central difference (CDS), Hybrid

(HDS) and Power law (PLDS). The main objective is to find out the best performing scheme

so it can be used for the following problems.

In order to carry out the study, the problem will be solved for 𝑃 = 30 as the different

methods diverge and vary between them in greater proportion for higher values of 𝑃. In

addition, the aim is to observe how the different methods evolve as a function of the number

of nodes. Thus, discretisations of 10, 20, and 40 nodes are used.

The results obtained are presented below together with the analytical solution in dashed

line. The analytical solution has been computed using the Peclet’s Function formulation

presented above. This way, the temperature has been calculated node-by-node and not as a

continuous function for a better comparison. Also note that the domain is the same than

before (from 𝑥 = 0𝑚 to 𝑥 = 1𝑚 and from 𝑇0 = 0℃ to 𝑇1 = 100℃) but the plot is zoomed in

the critical part of the curve where the temperature varies more sharply.

Figure 22. Comparison of convection-diffusion resolution schemes

It can be observed that the results are significantly different for each scheme. However,

there is a common factor in all of them: the more nodes are used, the more they converge

Convection-Diffusion Universitat Politècnica de Catalunya
1D convection-diffusion flow ESEIAAT, Terrassa

Pau Romeu Llordella 46 Bachelor’s final thesis

and tend to the analytical solution. This table presents the root-mean-square error for each

scheme with regard to the analytical solution so that the differences can be quantified.

Number of

x-nodes

RMS error in relation to analytical solution

UDS CDS HDS PLDS

10 2.5539 1.9915 0.4763 0.0330

20 1.8069 0.5740 0.5740 0.0409

40 1.0685 0.1510 0.1510 0.0187

Table 4. Root-mean-square error for different resolution schemes

 Conclusion and analysis of the different schemes

Major conclusions can be drawn from both the error values and the graphical plots for each

type of scheme.

• The Upwind difference scheme (UDS) presents a physically realistic but also very

inaccurate results. This scheme is the one more different and distant from the

analytical solution where the number of nodes is increased and presents the largest

errors. Therefore, it is not considered a recommended method for complex or

detailed cases.

• The Central difference scheme (CDS) provides the most surprising result. For a

temperature distribution between 0℃ and 100℃ there is one node with a lower

temperature than the minimum (𝑇𝑖 ≈ −20℃). In fact, this is the main issue of this

method, although for an increase of nodes the results may seem accurate, there is a

danger of obtaining completely physically unrealistic results. Thus, this method is

not recommended either, especially if few nodes are used.

• The Hybrid difference scheme (HDS) is a reliable and realistic method. The solution

obtained is satisfactory for both few and many nodes. An important point to note is

that for the solutions with 20 and 40 nodes the solution is identical to the result

obtained by CDS. This result is completely reasonable since the hybrid method uses

the same formulation as the central difference method for low local Peclet numbers

or, in other words, for low 𝛿𝑥 . This way, it achieves CDS accuracy but avoids

physically impossible results.

• The Power law difference scheme (PLDS) clearly achieves the best results. Even

with the minimum number of nodes, the solution is practically identical to the

analytical expression. The errors obtained are an order of magnitude lower than any

other scheme. This is due to the fifth-degree polynomial which closely matches the

exponential evolution of temperature that this method uses.

Hence, the conclusion is clear. The scheme to be used to solve the rest of the convection-

diffusion problems must be PLDS. It is not only the most accurate but also does not require

extra computational resources.

Convection-Diffusion Universitat Politècnica de Catalunya
Diagonal flow ESEIAAT, Terrassa

Pau Romeu Llordella 47 Bachelor’s final thesis

4.3 Diagonal flow

The first two-dimensional convection-diffusion problem is the study of a diagonal flow

within a rectangular control volume.

Figure 23. Diagonal flow scheme

The direction of the flow is parallel to the diagonal of the rectangle going from bottom left

to top right. Therefore, the value of the angle 𝛼 is the one that satisfies this condition. The

velocity field is uniform throughout the control volume and constant in time. The velocity

vector �⃗� can be stated as follows.

 �⃗� = [𝑉0 cos(α) , 𝑉0 sin(𝛼)] (4.20)

The boundary conditions are simple: all walls have an imposed value of the generic property

𝜙. The walls above the diagonal (left and top) have a value 𝜙 = 𝜙1 while those below (right

and bottom) satisfy that 𝜙 = 𝜙2.

To solve a problem numerically the variables must have numerical values. Thus, the

convection-diffusion equation is being applied to the energy conservation equation and the

generic property 𝜙 becomes temperature 𝑇. All numerical values used in this problem are

proposed below.

𝑇1 = 100.0℃ 𝑋 = 3.0𝑚 𝑉0 = 10𝑚/𝑠 Γ = 10 𝑘𝑔/𝑚𝑠

𝑇2 = 0.0℃ 𝑌 = 2.0𝑚 𝛼 = 33.69° 𝜌 = 1.225 𝑘𝑔/𝑚3

Table 5. Numerical values for Diagonal Flow Problem

 Resolution equations

This is a two-dimensional convection-diffusion problem so the general discretised equation

obtained in (4.16) is used. However, note that this a steady state problem without any

internal source. Hence, the general equation of an internal node is considerably reduced.

The Power Law Difference Scheme is used since it is the most accurate scheme that has been

studied. Therefore, the value of 𝐴(|𝑃|) must be replaced by the one described in Table 3.

The resulting equation for a generic internal node is the following.

 𝑎𝑃𝑇𝑃 = 𝑎𝐸𝑇𝐸 + 𝑎𝑊𝑇𝑊 + 𝑎𝑁𝑇𝑁 + 𝑎𝑆𝑇𝑆 (4.21)

The coefficients can be evaluated as:

Convection-Diffusion Universitat Politècnica de Catalunya
Diagonal flow ESEIAAT, Terrassa

Pau Romeu Llordella 48 Bachelor’s final thesis

 𝑎𝐸 = 𝐷𝑒⟦0, (1 − 0.1|𝑃𝑒|)
5 ⟧ + ⟦−𝐹𝑒 , 0⟧

𝑎𝑊 = 𝐷𝑤⟦0, (1 − 0.1|𝑃𝑤|)
5 ⟧ + ⟦𝐹𝑤 , 0⟧

𝑎𝑁 = 𝐷𝑛⟦0, (1 − 0.1|𝑃𝑛|)
5 ⟧ + ⟦−𝐹𝑛, 0⟧

𝑎𝑆 = 𝐷𝑠⟦0, (1 − 0.1|𝑃𝑠|)
5 ⟧ + ⟦𝐹𝑠, 0⟧

𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆

(4.22)

4.3.1.1 Wall nodes

The value of temperature at the wall nodes 𝑇𝑃 is imposed. Thus, the equation to be

introduced in the program is reduced to 𝑎𝑃𝑇𝑃 = 𝑏𝑃 where:

 𝑏𝑃 = 𝑇𝑤𝑎𝑙𝑙 𝑎𝑃 = 1 (4.23)

 Results

Once the coefficients that are constant over time have been calculated, a line-by-line solver

is used to solve the problem.

The most relevant numerical data is the mesh size. For this case a mesh of 180 × 120 nodes

has been chosen following the proportions of the rectangle. In this way, all the control

volumes are squared, slightly simplifying the calculations, For the convergence factor 𝛿 =

0.001 is used.

The first result presented is for the most general case. It assumes the physical data

presented in the introduction of the problem. This data permits to work with a Peclet

number close to one. Thus, advection and diffusion effects act in the same proportion.

Figure 24. Temperature field distribution for a general diagonal flow problem

Two clear regions can be observed in the rectangle. The temperature of the one above the

diagonal significantly tends to the wall temperature (𝑇1 = 0℃) and so does the temperature

for the inferior region, tends to 𝑇2 = 100℃.

Another aspect to be noted is how the transition between regions evolves in the diagonal.

While in the lower left points the transition is abrupt, in the higher right points the diffusion

is easily observed.

Convection-Diffusion Universitat Politècnica de Catalunya
Diagonal flow ESEIAAT, Terrassa

Pau Romeu Llordella 49 Bachelor’s final thesis

 False diffusion for high Peclet

In convection-diffusion problems there are two extreme cases: those in which Peclet

number tends to infinity (the is only advection) and those in which it is zero (only diffusion).

In this case, the influence of mesh size for 𝑃 = ∞ is being studied.

The false diffusion phenomenon appears in the numerical solution of convection-diffusion

equations. It is due to the approximation made to the convection term typically when

upwind scheme is used. It is a drawback to be taken into account when solving this type of

problem as it can lead to erroneous results.

The analytical (and intuitive) solution of the problem states that all points above the

diagonal will be at temperature 𝑇1 while all points below will be at temperature 𝑇2. Results

for the diagonal flow problem with 𝑃 = ∞ with different mesh densities are presented.

Figure 25. Mesh size comparison for infinite Peclet number

It can be clearly observed how that in the first figure (30 × 20 mesh) the diffusion

phenomenon is much more noticeable than in the last one (600 × 400 mesh). What is really

appreciated is a false diffusion caused by the truncation errors when the result is computed

numerically since they are all representing the same physical problem.

To make these results even clearer, Figure 26 plots the temperature of each of each of these

results for the straight line 𝑦 = 1𝑚. It can be noticed that at the central point all the curves

are at the average temperature (𝑇𝑚 = 50℃). However, while the temperature of the meshes

with many nodes tends to wall temperatures quickly, the curve for the less dense meshes

recovers much more slowly.

Convection-Diffusion Universitat Politècnica de Catalunya
Diagonal flow ESEIAAT, Terrassa

Pau Romeu Llordella 50 Bachelor’s final thesis

This result highlights the importance of using a properly sized mesh. Even though this case

is particularly critical due to its parameters of boundary conditions, it demonstrates that

choosing too few nodes may result in a gain in computational speed but can also lead to

incorrect or inaccurate results. This is why verification and validation processes are so

important.

Figure 26. Temperature distribution for y = 1m for different mesh sizes

 Natural convection

Finally, the result for the natural convection problem is presented. In this case, the flow

velocity is zero (𝑉0 = 0). Thus, the Peclet number is also null (𝑃 = 0).

Figure 27. Temperature field for null velocity

The lack of velocity permits a much smoother temperature transition between the walls.

The most important conclusion of this problem is the requirement of good judgment needed

to choose the numerical parameters when solving this type of problem. It has been clearly

demonstrated how the choice of an incorrect mesh density leads to results that are far from

reality.

It has also been shown in a two-dimensional case how the Peclet number affects the

problem in the two most extreme cases, 𝑃 = 0 and 𝑃 = ∞ . It must be noted how the

behavior of temperature and heat is completely different.

Convection-Diffusion Universitat Politècnica de Catalunya
Smith-Hutton problem ESEIAAT, Terrassa

Pau Romeu Llordella 51 Bachelor’s final thesis

4.4 Smith-Hutton problem

The last convection-diffusion problem is the study of a solenoidal flow. This exercise is also

known as the Smith-Hutton problem, since it was developed by these two authors in order

to study the performance of different numerical methods [13].

The domain of study is again rectangular and is steady with respect to time. Inside the

control volume, where the third dimension can be neglected, the velocity field if given by

the following expression.

 �⃗�(𝑥, 𝑦) = [2𝑦(1 − 𝑥2),−2𝑥(1 − 𝑦2)] (4.24)

The following figure illustrates the physical dimensions of the problem and the behaviour

of the flow described by the expression.

Figure 28. Smith-Hutton problem representation

Boundary conditions can be divided into three main parts. The side (𝑥 = ±1𝑚) and top (𝑦 =

1𝑚) walls follow the below expression which is designed to impose a temperature value

very close to zero.

 𝑇𝑤 = 1 − tanh [𝛼] (4.25)

The bottom horizontal wall (𝑦 = 0) is divided into the two remaining parts: the inlet for 𝑥 <

0𝑚 and the outlet for 𝑥 > 0𝑚 . The expression for the inlet describes a temperature

variation in the horizontal direction such that at the left end the temperature has a value

tending to zero while in the center it tends to 𝑇 = 2℃. In addition, the objective of using

this equation is that the temperature change occurs abruptly for 𝑥 = −0.5𝑚.

 𝑇𝑖𝑛𝑙𝑒𝑡 = 1 + tanh [(2𝑥 + 1)𝛼] (4.26)

The outlet wall (𝑦 = 0𝑚 and 𝑥 > 0𝑚) is considered adiabatic, therefore the expression is

 𝜕𝑇𝑜𝑢𝑡𝑙𝑒𝑡
𝜕𝑦

= 0 (4.27)

In fact, the boundary conditions presented by Smith-Hutton were using a generic unknown

𝜙 . However, as has already been discussed in other sections, the use of a real physical

incognita such as temperature is preferable when solving and interpreting the problem.

Apart from this, the only numerical value required is the factor 𝛼 = 10 and the relation 𝜌/Γ

that will be the only variable of the problem.

Convection-Diffusion Universitat Politècnica de Catalunya
Smith-Hutton problem ESEIAAT, Terrassa

Pau Romeu Llordella 52 Bachelor’s final thesis

 Resolution equations

The distribution of the mesh nodes is absolutely the same as in the diagonal flow problem.

Thus, the equations describing the temperature of the internal nodes is identical to the one

described in Section 4.3.1. Again, the Power Law Difference Scheme is being employed for

the resolution.

4.4.1.1 Side and top walls

The temperature remains constant both in time and position for these nodes. Therefore, the

expression of the coefficients gets reduced to:

 𝑎𝑃 = 1 𝑏𝑃 = 𝑇𝑤 = 1 − tanh [𝛼] (4.28)

4.4.1.2 Inlet

The temperature of the inlet is also imposed but its value depends on the x-axis position.

 𝑎𝑃 = 1 𝑏𝑃 = 𝑇𝑖𝑛𝑙𝑒𝑡(𝑥𝑃) = 1 + tanh [(2𝑥𝑃 + 1)𝛼] (4.29)

4.4.1.3 Outlet

The outlet zone of the domain is considered adiabatic in the vertical direction. Therefore, all

the coefficients will be the same than the ones for internal nodes except for the 𝑎𝑆 coefficient

which describes the effect of the outside temperature. As there is no heat flux,

 𝑎𝑆 = 0 (4.30)

 Results

As mentioned above, once all constraints have been imposed, the only factor that varies the

result of the temperature field is the 𝜌/Γ ratio. This relation is equivalent to the Peclet

number but, however, in this problem it is preferable the use of the ratio due to the

geometry of the velocity field.

The first result is presented here for 𝜌/Γ = 10. A 100 × 50 nodes mesh has been employed

respecting the proportions of the domain with a convergence factor 𝛿 = 0.0001.

Figure 29. Temperature field for a dominant diffusion in solenoidal flow

Convection-Diffusion Universitat Politècnica de Catalunya
Smith-Hutton problem ESEIAAT, Terrassa

Pau Romeu Llordella 53 Bachelor’s final thesis

With this temperature distribution, the tendency of the flow to rotate can be observer since

a circular shape can be perceived. Nodes near the side and top walls have a temperature

that distinctly tends to that of wall 𝑇𝑤𝑎𝑙𝑙 = 0℃.

As is evident, the inlet exhibits the imposed distribution: starting from 𝑥 =

−1𝑚,temperature tends to zero up to 𝑥 = −0.5𝑚 and tends to 2℃ up to 𝑥 = 0. However,

the behavior in the outlet is clearly different. Temperature decays smoothly and

progressively. No symmetry is observed on the horizontal axis where it could be expected.

It must be noted that the ratio 𝜌/Γ utilized is relatively low and, thus, diffusion dominates

over advection. The case shown now below is for a ratio one hundred times higher. In this

case, it is assumed that advection gains a very important role. The same numerical

parameters for mesh and convergence have been used.

Figure 30. Temperature field for a dominant advection in solenoidal flow

The differences are quite visible. In this solution one can observe a semi circumference

centred at origin with a unitary radius where a strong temperature gradient appears in

radial direction. Inside the semicircle almost all node temperatures tend to 2℃ while

outside they tend to 0℃ (wall temperature).

In this case, a radial symmetry and an axial symmetry to the 𝑥 = 0𝑚 axis is observed.

However, the temperature gradient becomes weaker as it moves away from its origin at the

inlet. This is due to the effect of diffusion, which, although much reduced, still affects the

temperature distribution.

The relevance of the relationship between convection and advection is again emphasized.

Although they are two concepts that are usually studied together, the fact that one is

imposed on the other completely affects the result.

The objective of the Smith-Hutton case was to compare different numerical resolution

methods in a problem “academically” perfect like this one. Therefore, they do not present a

single result with which to compare the one obtained in this paper. However, it can be stated

that the results obtained are very similar and consistent with those expected.

Convection-Diffusion Universitat Politècnica de Catalunya
Conclusions ESEIAAT, Terrassa

Pau Romeu Llordella 54 Bachelor’s final thesis

4.5 Conclusions

The convection-diffusion equations describe how the quantity of a property is transmitted

within a physical system by convection and diffusion. The property being treated can be

represented either by a scalar field, as would be the case for temperature distributions, or

by a vector field, such as velocity.

In this section, the discretised equations have been presented using Patankar's

nomenclature for any scalar property. The problems consisted of solving the temperature

field in a stationary fluid flow.

The one-dimensional problem has made it possible to verify part of the code used to solve

the other two, as its analytical solution is known. In addition, different first and second order

numerical discretisation schemes have been compared in order to work with the one that

has given the best results.

The diagonal flow and Smith-Hutton problems have produced the expected results. In these

problems, the importance of choosing the right mesh size has been emphasised, as it has

been observed that the diffusion effect is highly sensitive to the used accuracy.

It has also been observed that the lack of a conductive term in the treatment of the

temperature of a fluid results in a natural convection phenomenon. In this case, the results

obtained are very similar to those of heat conduction in solids.

Now the next challenge is to study the convection-diffusion equations when the transported

variable is the velocity. In this section, the temperature field has been solved assuming that

the velocity field is imposed and does not vary. When attempting to solve the velocity field,

one tries to find a variable that is transported by itself. This is where the Navier-Stokes

equations appear and where their great difficulty in being solved lies.

Navier-Stokes Universitat Politècnica de Catalunya
Conclusions ESEIAAT, Terrassa

Pau Romeu Llordella 55 Bachelor’s final thesis

5
Navier-Stokes

Navier-Stokes is a system of non-linear partial

differential equations describing the motion of a fluid.

Its analytical solution has not yet been obtained due to

its complexity. It is therefore the focus of all CFD

research.

There are several methods for approaching the

numerical solution of these equations. The Fractional

Step Method is presented in this report. It is an

algorithm to solve the equations for incompressible

flows that has demonstrated high performance and

simplicity of implementation.

The scheme of resolution is applied to the lid-driven

cavity problem. A canonical case for which the results

are known and which is therefore of great use in

verifying the code.

Navier-Stokes Universitat Politècnica de Catalunya
Fractional Step Method ESEIAAT, Terrassa

Pau Romeu Llordella 56 Bachelor’s final thesis

5.1 Fractional Step Method

There exist many numerical methods to solve or simulate the Navier Stoke equations. When

it comes to solving the incompressible problem, the Fractional Step Method (FSM) is one of

the best performing in spite of its simplicity when applied.

The FSM uses a projection of the velocity field onto a divergence-free space. The objective

is to obtain a velocity predictor as an approximation of the solution of the momentum

equations. This predictor is found using the Helmholtz-Hodge theorem without taking into

account the pressure gradient and therefore cannot satisfy the incompressibility constraint

at the next time level. The Poisson equation solves this problem by determining the

minimum perturbation that will make the velocity predictor incompressible.

 Helmholtz-Hodge theorem into NS equations

First of all, the governing equations are presented for incompressible Newtonian fluids. This

equation has been previously discussed in Equation (2.15).

 𝜕�⃗�

𝜕𝑡
=
1

𝑅𝑒
∇2�⃗� − (�⃗� ⋅ ∇)�⃗� − ∇𝑝 (5.1)

 ∇ ⋅ �⃗� = 0 (5.2)

where 𝑅𝑒 is the Reynolds number 𝑅𝑒 = 𝜌𝑉0𝐿/𝜇 using characteristic length 𝐿 and velocity

𝑉0. By putting together the convective and diffusive terms from Equation (5.1) one obtains:

𝑅(�⃗�) =

1

𝑅𝑒
∇2�⃗� − (�⃗� ⋅ ∇)�⃗� (5.3)

Now, Equations (5.1) and (5.2) can be integrated over time as follows.

∫

𝜕�⃗�

𝜕𝑡

𝑡𝑛+1

𝑡𝑛
d𝑡 = ∫ 𝑅(�⃗�)d𝑡

𝑡𝑛+1

𝑡𝑛
−∫ ∇𝑝d𝑡

𝑡𝑛+1

𝑡𝑛
 (5.4)

∫ ∇ ⋅ �⃗�
𝑡𝑛+1

𝑡𝑛
d𝑡 = 0 (5.5)

The 𝑅(�⃗�) term is being integrated using a fully explicit second-order Adams-Bashforth

scheme.

𝑅𝑛+1 2⁄ (�⃗�) =

3

2
𝑅(�⃗�𝑛) −

1

2
𝑅(�⃗�𝑛−1) (5.6)

For the time derivative term, a simple central difference scheme is employed and for the

pressure term a Euler scheme is used. The incompressibility constraint is integrated using

an implicit scheme. The following result is obtained.

 �⃗�𝑛+1 − �⃗�𝑛

Δ𝑡
=
3

2
𝑅(�⃗�𝑛) −

1

2
𝑅(�⃗�𝑛−1) − ∇𝑝𝑛+1 (5.7)

 ∇ ⋅ �⃗�𝑛+1 = 0 (5.8)

Navier-Stokes Universitat Politècnica de Catalunya
Fractional Step Method ESEIAAT, Terrassa

Pau Romeu Llordella 57 Bachelor’s final thesis

This is where the FSM projection come into play. This method is based on the Helmoltz-

Hodge theorem which is, in a slightly simplified version, defined as follows [12]: A given

vector field 𝜔 , defined in a bounded domain Ω with smooth boundary 𝜕Ω , is uniquely

decomposed in a pure gradient field and a divergence-free vector parallel to 𝜕Ω.

 �⃗⃗⃗� = �⃗� + ∇𝜑 (5.9)

where

 ∇ ⋅ �⃗� = 0 �⃗� ∈ Ω

�⃗� ⋅ �⃗⃗� = 0 �⃗� ∈ 𝜕Ω
(5.10)

For the case concerning this report, the projected vector �⃗⃗⃗� is the velocity predictor �⃗�𝑃. It

becomes the combination of the divergence-free velocity vector �⃗�𝑛+1 and the gradient of a

scalar field ∇�̃�.

 �⃗�𝑃 = �⃗�𝑛+1 + ∇�̃� (5.11)

In this equation �̃� stands for pseudo-pressure as �̃� = Δ𝑡𝑝𝑛+1 . Since the flow is

incompressible, the H-H theorem is satisfied as ∇ ⋅ �⃗�𝑛+1 = 0. By substituting �⃗�𝑛+1 obtained

in Equation (5.11) into Equation (5.7) the following result is obtained where the pressure

terms disappear.

�⃗�𝑃 = �⃗�𝑛 + Δ𝑡 (

3

2
𝑅(�⃗�𝑛) −

1

2
𝑅(�⃗�𝑛−1)) (5.12)

This result has a great relevance, because it allows to find �⃗�𝑃 without the need to solve any

system because it is the only unknown.

Finally, by deriving the Equation (5.11) the Poisson equation to find pressure is achieved.

 ∆�̃� = ∇ ⋅ �⃗�𝑃 (5.13)

Once both �⃗�𝑃 and �̃� are reached, the actual velocity field �⃗�𝑛+1 can be find taking pressure

gradient correction into account using Equation (5.11) again.

�⃗�𝑛+1 = �⃗�𝑃 + ∇�̃� (5.14)

To solve the problem, these steps will be followed:

1. Compute 𝑅(�⃗�𝑛) using Equation (5.3)

2. Evaluate �⃗�𝑃 from Equation (5.12)

3. Compute ∇ ⋅ �⃗�𝑃and solve the discrete Poisson Equation (5.13)

4. Get the velocity field �⃗�𝑛+1 using Equation (5.14)

It must be noted that the only step that require to solve a system is the third with the

resolution of the Poisson equation. All the other formulation is fully explicit. Therefore, is of

great importance to solve efficiently the Poisson equation.

Navier-Stokes Universitat Politècnica de Catalunya
Fractional Step Method ESEIAAT, Terrassa

Pau Romeu Llordella 58 Bachelor’s final thesis

 Staggered meshes

There is a problem in calculating the velocity field �⃗�𝑛+1 in the fourth step presented. Let’s

assume the following one-dimensional scenario where finite volumes at node 𝑃 have been

applied.

Figure 31. One-dimensional finite volumes discretisation

The following expression shows how the velocity coordinate 𝑢𝑛+1 on the x-axis is

computed.

𝑢𝑛+1 = 𝑢𝑃 −

Δ𝑡

𝜌
(
𝑝𝐸
𝑛+1 − 𝑝𝑊

𝑛+1

2Δ𝑥
) (5.15)

It can be noticed how the discretisation of ∇�̃�𝑛+1 does not depend on the pressure 𝑝𝑃
𝑛+1 at

node P. This setting can lead to totally unrealistic results such as the one presented in the

following figure [14].

Figure 32. One-dimensional unrealistic scenario

𝑝𝑊𝑊
𝑛+1 = 100

𝑝𝑊
𝑛+1 = 0

𝑝𝑃
𝑛+1 = 100

𝑝𝐸
𝑛+1 = 0

𝑝𝐸𝐸
𝑛+1 = 100

Although this result is not physically possible, it fulfils the condition∇𝑝𝑛+1 = 0. Thus, a

better strategy is required to address the problem of finding �⃗�𝑛+1. This inconvenience is

known as the checkerboard problem and it is here where staggered meshes come into play.

Staggered meshes are widely used to solve academic problems since they perform quite

well and are easy to implement on structured meshes. These meshes add new nodes to the

control volume walls of the main mesh as shown in the following illustration.

Figure 33. Main (blue) and staggered (green and brown) meshes

In this way, the pressure field will be evaluated in the main mesh while velocity field will

make use of the staggered meshes. The x component of velocity is computed in the brown

mesh while the green mesh is for the y component. The steps to be followed to solve this

problem by means of this method are described in the following section.

Navier-Stokes Universitat Politècnica de Catalunya
Fractional Step Method ESEIAAT, Terrassa

Pau Romeu Llordella 59 Bachelor’s final thesis

 FSM discretised equations

Following the steps described in Section 5.1.1, the first thing to do is to find 𝑅(�⃗�𝑛). Thus,

Equation (5.3) is integrated into the control volume Ω𝑥𝑃 and Ω𝑦𝑃 for each direction of the

staggered meshes.

 𝑅(𝑢)Ω𝑥𝑃 = −(�̇�𝑒𝑢𝑒 − �̇�𝑤𝑢𝑤 + �̇�𝑛𝑢𝑛 − �̇�𝑠𝑢𝑠)

+ (𝜇𝑒
𝑢𝐸 − 𝑢𝑃
𝑑𝐸𝑃

𝑆𝑒 − 𝜇𝑤
𝑢𝑃 − 𝑢𝑊
𝑑𝑊𝑃

𝑆𝑤 + 𝜇𝑛
𝑢𝑁 − 𝑢𝑃
𝑑𝑁𝑃

𝑆𝑛 − 𝜇𝑠
𝑢𝑃 − 𝑢𝑆
𝑑𝑆𝑃

𝑆𝑠)
(5.16)

 𝑅(𝑣)Ω𝑦𝑃 = −(�̇�𝑒𝑣𝑒 − �̇�𝑤𝑣𝑤 + �̇�𝑛𝑣𝑛 − �̇�𝑠𝑣𝑠)

+ (𝜇𝑒
𝑣𝐸 − 𝑣𝑃
𝑑𝐸𝑃

𝑆𝑒 − 𝜇𝑤
𝑣𝑃 − 𝑣𝑊
𝑑𝑊𝑃

𝑆𝑤 + 𝜇𝑛
𝑣𝑁 − 𝑣𝑃
𝑑𝑁𝑃

𝑆𝑛 − 𝜇𝑠
𝑣𝑃 − 𝑣𝑆
𝑑𝑆𝑃

𝑆𝑠)
(5.17)

where

 �̇�𝑒 = (𝜌𝑢)𝑒𝑆𝑒 �̇�𝑛 = (𝜌𝑢)𝑛𝑆𝑛 �̇�𝑤 = (𝜌𝑢)𝑤𝑆𝑤 �̇�𝑠 = (𝜌𝑢)𝑠𝑆𝑠 (5.18)

Here, the first question that arises is how the volumetric flow rate and the transport

property can be evaluated. In other words, and focusing on the x-axis direction, which

values of (𝜌𝑢)𝑖 and 𝑢𝑖 are to be taken for the calculation? The following figure obtained and

modified from [14] presents a scheme where these variables are represented.

Figure 34. Velocities in the stagg-x mesh

The velocity through all the walls 𝑢𝑖 is being evaluated as it was for the convection-diffusion

equations. Several schemes can be used such as UDS or CDS for low-order schemes or QUICK

or SMART for high-order schemes.

For the direction parallel to the studied axis, in this case the horizontal direction parallel to

the x-axis, the mass flow rate can be calculated by averaging through the nodes as follows.

�̇�𝑒 =

(𝜌𝑢)𝐸 + (𝜌𝑢)𝑃
2

𝑆𝑒 (5.19)

Note that the same formulation can be extrapolated to compute �̇�𝑤. For the nodes above

and below, the vertical component of the velocity in the staggered mesh will be used and

the mass flow will have this form. Again, this is equivalent for �̇�𝑠.

 �̇�𝑛 = (𝜌𝑣)𝐴𝑆𝐴𝑛 + (𝜌𝑣)𝐵𝑆𝐵𝑛 (5.20)

All these procedures can also be easily extrapolated to y-axis and therefore the explanation

is omitted.

Navier-Stokes Universitat Politècnica de Catalunya
Fractional Step Method ESEIAAT, Terrassa

Pau Romeu Llordella 60 Bachelor’s final thesis

Once 𝑅(𝑢) and 𝑅(𝑣) are reached, the following step is to obtain the velocity predictors for

both axes. This can be done by integrating in the staggered meshes the Equation (5.12). The

resulting expressions for each direction are here presented.

𝑢𝑃 = 𝑢𝑛 +

Δ𝑡

𝜌
(
3

2
𝑅(𝑢𝑛) −

1

2
𝑅(𝑢𝑛−1)) (5.21)

𝑣𝑃 = 𝑣𝑛 +

Δ𝑡

𝜌
(
3

2
𝑅(𝑣𝑛) −

1

2
𝑅(𝑣𝑛−1)) (5.22)

Next, the objective is to evaluate the pressure field. As it has been already stated, in this case

the main grid will be employed. Thus, the Poisson Equation (5.13) is discretised by

integrating over the control volume of the main grid Ω. This expression is obtained.

 𝑝𝐸
𝑛+1 − 𝑝𝑃

𝑛+1

𝑑𝐸𝑃
𝑆𝑒 −

𝑝𝑃
𝑛+1 − 𝑝𝑊

𝑛+1

𝑑𝑊𝑃
𝑆𝑤 +

𝑝𝑁
𝑛+1 − 𝑝𝑃

𝑛+1

𝑑𝑁𝑃
𝑆𝑛 −

𝑝𝑃
𝑛+1 − 𝑝𝑆

𝑛+1

𝑑𝑆𝑃
𝑆𝑠

=
1

Δ𝑡
((𝜌𝑢𝑃)𝑒𝑆𝑒 − (𝜌𝑢

𝑃)𝑤𝑆𝑤 + (𝜌𝑢
𝑃)𝑛𝑆𝑛 − (𝜌𝑢

𝑃)𝑠𝑆𝑠)

(5.23)

To find the pressure at each node one uses the structure of coefficients applied before to

calculate temperatures. Therefore, Equation (5.23) becomes:

 𝑎𝑃𝑝𝑃
𝑛+1 = 𝑎𝐸𝑝𝐸

𝑛+1 + 𝑎𝑊𝑝𝑊
𝑛+1 + 𝑎𝑁𝑝𝑁

𝑛+1 + 𝑎𝑆𝑝𝑆
𝑛+1 + 𝑏𝑃 (5.24)

where

𝑎𝐸 =

𝑆𝑒
𝑑𝐸𝑃

 𝑎𝑊 =
𝑆𝑤
𝑑𝑊𝑃

 𝑎𝑁 =
𝑆𝑛
𝑑𝑁𝑃

 𝑎𝑆 =
𝑆𝑠
𝑑𝑆𝑃

 𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆

𝑏𝑃 = −
1

Δ𝑡
((𝜌𝑢𝑃)𝑒𝑆𝑒 − (𝜌𝑢

𝑃)𝑤𝑆𝑤 + (𝜌𝑢
𝑃)𝑛𝑆𝑛 − (𝜌𝑢

𝑃)𝑠𝑆𝑠)

(5.25)

This linear system may be solved with any of the already known methods such as Gauss-

Seidel or line-by-line solvers. It can be observed that in a fixed and constant mesh, the only

term that is updated at each iteration is 𝑏𝑃 .

After obtaining the value of the pressure 𝑝𝑛+1, the velocity field �⃗�𝑛+1can be obtained by

Equation (5.15) making use of the velocity predictor.

𝑢𝑃
𝑛+1 = 𝑢𝑃

𝑃 −
Δ𝑡

𝜌

𝑝𝐵
𝑛+1 − 𝑝𝐴

𝑛+1

𝑑𝐵𝐴
 (5.26)

𝑣𝑃
𝑛+1 = 𝑣𝑃

𝑃 −
Δ𝑡

𝜌

𝑝𝐵
𝑛+1 − 𝑝𝐴

𝑛+1

𝑑𝐵𝐴
 (5.27)

As already mentioned, the velocity is calculated at the nodes of the staggered mesh. The

pressure, on the other hand, has been computed at the nodes of the main mesh. Thus, the

suffixes 𝑝𝐴
𝑛+1 and 𝑝𝐵

𝑛+1 denote that the nodes of the main grid are located on the walls of the

control volumes if the staggered mesh. This can be observed in the following illustration

obtained and modified from [14]. In this way, the checkerboard problem is avoided.

Navier-Stokes Universitat Politècnica de Catalunya
Fractional Step Method ESEIAAT, Terrassa

Pau Romeu Llordella 61 Bachelor’s final thesis

Figure 35. Velocity and pressure field distribution in staggered and main mesh

Finally, as the type of problem posed is transient in time, it requires choosing an increment

of time Δ𝑡 for the time iterations until reaching steady state. For the solution to converge,

since an explicit scheme is being used, Trias and Lehmkuhl state that it is necessary to use

the following formulation in [15].

Δ𝑡𝑐 = min(0.35

𝛥𝑥

|𝑣|
)

Δ𝑡𝑑 = min (0.20
𝜌Δ𝑥2

𝜇
)

Δ𝑡 = min (Δ𝑡𝑐 , Δ𝑡𝑑)

(5.28)

Navier-Stokes Universitat Politècnica de Catalunya
Lid-driven cavity ESEIAAT, Terrassa

Pau Romeu Llordella 62 Bachelor’s final thesis

5.2 Lid-driven cavity

The most widely used problem for the validation of a solution code for Navier Stokes

equations is the one presented in this section. The lid-driven cavity problem consists of a

square cavity with three rigid walls and a lid moving in a tangential direction to the fluid at

a unit velocity. The object of study is the velocity and pressure fields create in the internal

viscous and incompressible fluid flow.

Figure 36. Geometry of the lid-driven cavity

Under initial conditions, both the velocity and pressure fields are considered to be zero.

Starting from this point, the evolution of the fluid flow is studied as time elapses. The study

is developed using different values of the Reynolds number.

 Boundary conditions

The wall velocity values are defined in this table

Top wall 𝑢 = 1𝑚/𝑠 𝑣 = 0

Left, right and bottom wall 𝑢 = 0 𝑣 = 0

Table 6. Wall velocities for lid-driven cavity

The prescribed velocity must be taken into account both when calculating the actual speed

field �⃗�𝑛 and when using the velocity predictor �⃗�𝑃. Thus, if the velocity in the next time step

�⃗�𝑛+1 is known like in this case, the predictor at a node 𝑃 becomes:

 �⃗�𝑃
𝑃 = �⃗�𝑃

𝑛+1 (5.29)

As the cavity is considered to be rigid-walled, the pressure derivative is zero in the direction

normal to each wall.

 𝜕𝑝

𝜕𝑛
= 0 (5.30)

Therefore, the most external nodes of the main grid – which are no on the wall of the control

volume – will have zero coefficient 𝑎𝑖 when solving Poisson’s equation. In this case, the

coefficient 𝑎𝑖 refers to the direction in which the wall of the control volume is located.

Navier-Stokes Universitat Politècnica de Catalunya
Lid-driven cavity ESEIAAT, Terrassa

Pau Romeu Llordella 63 Bachelor’s final thesis

 Results

The code used to solve the lid-driven cavity problem is an implementation of the Fractional

Step Method. Results have been obtained for different Reynolds numbers and, in this

section, are compared for 𝑅𝑒 = 100, 𝑅𝑒 = 1000 and 𝑅𝑒 = 10000.

The square domain of the problem has been discretised with a staggered-mesh with 𝑁 =

𝑁𝑥 = 𝑁𝑦 = 300 nodes in the main grid. Thus, the stagg-x and stagg-y meshes have a total of

𝑁𝑠 = 𝑁 + 2 = 302 nodes in each direction. In order to obtain an acceptable accuracy in the

results, a convergence factor 𝛿𝑃 = 10
−5 has been used for the resolution of the Poisson

equation and 𝛿𝑡 = 10
−6 for the time convergence of the velocity.

The goal of the problem is to find the steady velocity field that is generated from the initial

conditions. To reach such a steady state, a different time is required for each Reynolds

number as will be shown in a later section. Below, the steady state velocity modulus field at

each respective 𝑡 = 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 is shown.

Figure 37. Velocity modulus field comparison for different Re values

A clear difference can be observed between the results according to the Reynolds number.

For 𝑅𝑒 = 100, the velocity gradients are not so steep and more points in the domain are

close to the maximum velocity. For higher Reynolds the gradient with the upper wall

moving is much higher. In addition, a circular flow around the central coordinate can be

appreciated.

An important point to note is that the Fractional Step Method performs better for low 𝑅𝑒 as

it is difficult to deal with turbulent flow. Thus, while for 𝑅𝑒 = 100 the result is accurate, for

𝑅𝑒 = 10000 the results may not be that reliable. For even higher values, the result would

hardly converge and its accuracy would be even lower.

The appearance of turbulent flow is preceded by the presence of vortices in the fluid flow.

In the three cases presented, a clockwise vorticity clearly appears due to the condition of

movement of the upper wall. However, as the Reynolds number increases, a higher number

of other vortices appear. The streamline representation of the three cases is shown below,

where it can be seen qualitatively.

0 0 2 0 0 0 1

 m

0

0 2

0

0

0

1

 m

 elocity field for Re

0

0 2

0

0

0

1

A

s
o
lu
te
 v
e
lo
c
it

 m

/s

0 0 2 0 0 0 1

 m

0

0 2

0

0

0

1

 m

 elocity field for Re

0

0 2

0

0

0

1

A

s
o
lu
te
 v
e
lo
c
it

 m

/s

0 0 2 0 0 0 1

 m

0

0 2

0

0

0

1

 m

 elocity field for Re

0

0 2

0

0

0

1

A

s
o
lu
te
 v
e
lo
c
it

 m

/s

Navier-Stokes Universitat Politècnica de Catalunya
Lid-driven cavity ESEIAAT, Terrassa

Pau Romeu Llordella 64 Bachelor’s final thesis

Figure 38. Streamlines comparison for different Re values

In all cases, it can be seen that in the lower corners there are vortices with a rotation in the

opposite direction to the main vortex. Their vorticity increases with the Reynolds number.

In addition, the rotation axis of the main vortex is also displaced and tends to the centre of

the square domain.

 Verification

One of the reasons for studying the lid-driven cavity problem is because it is considered a

canonical case with available results for code verification. In this section, a comparison is

made between the expected results and those obtained.

The reference results are those of the benchmark in [16]. The authors of the study present

a table with velocity values. The values of the u component for the central vertical line (𝑥 =

0.5) and of the v component for the horizontal line (𝑦 = 0.5) are given. The following figure

shows the benchmark data using squares and the curve obtained by the programme. The

horizontal component of the velocity is shown in blue and the vertical component in orange.

The mesh size and convergence factors are the same as in the previous section.

Figure 39. Horizontal and vertical central line velocity profile

At first sight, the results are satisfactory and sufficiently close to what was expected. For

𝑅𝑒 = 100 and 𝑅𝑒 = 1000 the curve follows the benchmark points quite accurately. The

0 0 2 0 0 0 1

 m

0

0 2

0

0

0

1

 m

Streamlines for Re

0 0 2 0 0 0 1

 m

0

0 2

0

0

0

1

 m

Streamlines for Re

0 0 2 0 0 0 1

 m

0

0 2

0

0

0

1

 m

Streamlines for Re

0 0 2 0 0 0 1

Position m

-0

-0

-0 2

0

0 2

0

0

0

1

v

m
/s

 elocity profile for Re

u cds

u m

v cds

v m

0 0 2 0 0 0 1

Position m

-0

-0

-0 2

0

0 2

0

0

0

1

v

m
/s

 elocity profile for Re

0 0 2 0 0 0 1

Position m

-0

-0

-0 2

0

0 2

0

0

0

1

v

m
/s

 elocity profile for Re

Navier-Stokes Universitat Politècnica de Catalunya
Lid-driven cavity ESEIAAT, Terrassa

Pau Romeu Llordella 65 Bachelor’s final thesis

points furthest away from the solution correspond to the most extreme values, at the

relative maximum and minimum of the curve.

For 𝑅𝑒 = 10000, however, the results are not as good. In this case, the error with respect to

the benchmark points is higher. In any case, an acceptable behaviour can be appreciated

that does follow the correct tendency. The lack of precision of these results is analysed in

the following section.

 Mesh size analysis

The mesh size is a key factor when it comes to obtaining an accurate result. In addition,

mesh refinement becomes more important as the Reynolds number increases, as the

gradients in the properties become larger. Too large control volumes can lead to a too

coarse approximation of the result.

On the other hand, obtaining the result for a high Reynolds number involves many iterations

until the steady time is reached. This fact implies that a large number of nodes means a long

compilation time. This is the reason why a maximum mesh size of 300 × 300 has been used

in this project.

The following shows, for 𝑅𝑒 = 1000, how the number of nodes used affects the accuracy of

the result. The same graph is used as in the previous section, but the meshes with a smaller

number of nodes are presented in lighter colours. The convergence factors have remained

constant for all computations.

Figure 40. Comparison of the velocity profiles for different number of nodes

Clearly, the result is closer to the benchmark as the mesh size increases. Also, note that for

meshes with few nodes, although the shape of the curve is similar, the values of the result

tend to have a lower absolute value. This is the reason why in the solution with the

maximum number of nodes the values with a higher relative error are those corresponding

to the relative maximum and minimum. In this way, the most extreme values could be

obtained by further increasing the mesh size.

0 0 2 0 0 0 1

Position m

-0

-0

-0 2

0

0 2

0

0

0

1

v
 m

/s

 elocity profile for Re

u 20x20

u 0x 0

u 00x 00

u m

v 20x20

v 0x 0

v 00x 00

v m

Navier-Stokes Universitat Politècnica de Catalunya
Lid-driven cavity ESEIAAT, Terrassa

Pau Romeu Llordella 66 Bachelor’s final thesis

This result also justifies the solution presented for 𝑅𝑒 = 10000 in Figure 39. As is the case

here for mesh sizes that are too small, the absolute value of the curve points is smaller than

those of the benchmark in the whole domain. Therefore, it can be deduced that a mesh with

a larger number of modes is required to obtain a higher accuracy.

An alternative to increasing the number of mesh nodes with the corresponding increase in

computational time is to use another type of mesh. The results presented use a uniform grid

where all control volumes have the same size. A good solution would be to find an

alternative mesh that concentrates the control volumes where the flow behaviour is most

critical.

Some authors propose a non-uniform mesh with hyperbolic node concentration [14]. In this

way, by means of a stretching factor, a higher concentration of nodes close to the walls is

imposed. As can be seen in the representations of the velocity modulus and streamlines, the

largest gradients and jumps in the property values take place at the walls of the domain and,

more specifically, at the corners. Therefore, this would be a suitable solution that would

allow more accurate results to be obtained with the same mesh size.

 Time to reach steady state

The lid-driven cavity problem starts from an initial state where for t = 0 the velocity field is

0 throughout the domain. As soon as the top wall starts to move, so does the flow directly

in contact, thus creating a non-zero velocity field over the whole domain. The boundary

conditions remain constant with respect to time, so the initially accelerated fluid tends to a

steady state.

In the case of the programme used, the stationary time can be defined as the instant of time

when the difference of the value of the velocity at any point in the domain with respect to

the value at the same point at an earlier instant is less than the convergence factor 𝛿𝑡 . In

other words, max (|�⃗�𝑛+1(𝑥, 𝑦) − �⃗�𝑛(𝑥, 𝑦)|) < 𝛿𝑡.

A larger change with respect to the initial conditions implies a longer time to reach steady

state. Therefore, for higher Reynolds numbers, 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 is greater. Below is shown the steady

state time for different Reynolds numbers.

Figure 41. Time to reach steady time as a function of Re

0 1000 2000 000 000 000 000 000 000 000 10000

Re

0

 0

100

1 0

200

2 0

 00

 0

t
s
te
a
d

s

Time to reach steady state vs Re

Navier-Stokes Universitat Politècnica de Catalunya
Lid-driven cavity ESEIAAT, Terrassa

Pau Romeu Llordella 67 Bachelor’s final thesis

These results have been obtained for a uniform mesh with 𝑁 = 300 nodes in each direction.

It can be observed that the time increase is more abrupt as the Reynolds number increases.

Therefore, this method, apart from giving inaccurate results for high 𝑅𝑒 values, also

requires many time increments to reach a solution.

Moreover, the Reynolds number is not the only parameter that affects 𝑡𝑠𝑡𝑒𝑎𝑑𝑦. In this case,

we compare how 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 evolves as a function of the number of mesh nodes in each

direction. 𝑅𝑒 = 100 is taken in all cases. The time taken by the computer to calculate the

results is also presented.

Figure 42. Computation time and time to reach steady state

The conclusion is clear, on the one hand the number of nodes 𝑁 is inversely proportional to

𝑡𝑠𝑡𝑒𝑎𝑑𝑦. On the other hand, as the number of nodes 𝑁 increases, computing time 𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

increases exponentially.

0 20 0 0 0 100

10

11

12

1

1

1

1

1

t
s
te
a
d

 s

0

 0

100

1 0

200

t
c
o
m
p
u
ta
tio

n

s

Time to reach steady state vs N

Navier-Stokes Universitat Politècnica de Catalunya
Conclusions ESEIAAT, Terrassa

Pau Romeu Llordella 68 Bachelor’s final thesis

5.3 Conclusions

The aim of this section is to become aware of the great complexity involved in solving the

Navier-Stokes equations numerically. Although it is one of the fundamental equations for

current fluid mechanics, there is still no known analytical solution. Thus, the numerical

solution of these equations is currently the object of study in the field of Computational Fluid

Dynamics.

The approach used to tackle a first Navier-Stokes problem is the Fractional Step Method. It

is a technique for the solution of the unsteady and incompressible equations. Its great

performance and the code simplicity are some of the main reasons to use this method.

The discretisation of the problem by means of the Finite Volume Method has required a new

concept: the staggered meshes. This kind of meshes where each property of the fluid is

studied in different positions is required in order to avoid the pressure checkerboard

problem. An issue that may lead to converged velocity fields for unphysical pressure

distributions. The implementation of a problem using a staggered mesh had been a new

challenge with regard to previous problems.

The described algorithm has been applied to the lid-driven cavity problem. This is a very

popular and typical case when starting to work with the Navier-Stokes equations because

of its simplicity and because the results obtained by other authors are known. In this way,

the code used can be validated.

The verification carried out on the developed code has been satisfactory. Better results have

been observed for low Reynolds numbers. For very high Reynolds numbers the result is not

as close to the benchmark values although a correct tendency to approach it is observed.

This error is due to an insufficient number of nodes and accuracy factor to obtain a

satisfactory solution due to the long computational times that higher values entail.

In fact, the times involved in solving the problem have been studied in the last section. From

a physical point of view, the time required to reach steady state starting from the initial

conditions has been studied. It has been shown that this time increases in large proportions

as the Reynolds number increases. However, for the same Reynolds number, it decreases as

the accuracy of the mesh increases.

From a computational perspective, an increase in accuracy, which translates into larger

meshes or smaller convergence factors, implies a large increase in computational time. The

large number of iterations, the big size of the objects used and the quality of the code are

determining factors in trying to reduce this time.

Thus, it is concluded that solving the Navier-Stokes equations is very expensive to solve

both in terms of time and computational energy. This is one of the great challenges facing

scientists and engineers working in the field of CFD where solving times for much more

complex problems can take hours, days or even weeks.

Towards larger real problems Universitat Politècnica de Catalunya
Conclusions ESEIAAT, Terrassa

Pau Romeu Llordella 69 Bachelor’s final thesis

6
Towards larger real problems

The exercises studied in this project are of great

academic value in introducing the key concepts for the

numerical solution of physical problems. However,

they are ideal cases that can be solved with small

meshes and low amounts of data requiring relatively

little computational power. This last section of the

report aims to introduce the new kind of

computational approach required for the larger, real

problems.

The limitations of current hardware are presented

along with various techniques that scientists and

engineers use to optimise computational resources.

One of the main objectives of large simulations is to

reduce the time required to compute them. This last

section presents some of the most used algorithms to

achieve so.

Towards larger real problems Universitat Politècnica de Catalunya
Larger problems ESEIAAT, Terrassa

Pau Romeu Llordella 70 Bachelor’s final thesis

6.1 Larger problems

The problems presented in this report aim to study a physical problem that cannot be solved

analytically due to its magnitude. To tackle the problem, numerical methods that discretise

the domain of study into a large number of small control volumes are used, which can be

easily studied by a computer. Although the nature of the studied cases is different, in all of

them a more precise solution is obtained when more elements are used for the

discretisation.

However, making use of more elements or greater meshes comes with a high computational

cost. As presented in Figure 42, the computing time required to achieve an accurate solution

gets sharply increased as the number of elements grows.

The problems treated in this report need relatively small meshes due to their ideal nature.

Nevertheless, more complex real and three-dimensional cases would require huge amounts

of computing time if they were solved the same way it has been done in this report. The time

to reach an acceptable solution could get increased to hours, days or even months.

Furthermore, the required memory to allocate all the data could be much bigger than the

available in a personal computer.

For example, in case of studying the lid-driven cavity problem again, but now using three

dimensions, the mesh requirements would become much higher. It is not just enough to add

one dimension to the mesh to obtain a mesh of 𝑁3 elements instead of 𝑁2 , but the

appearance of the turbulence phenomenon requires a much greater refinement. In other

words, if in the ideal 2D case studied the Reynolds number was already of great importance

when choosing the mesh size, it is now a critical factor.

Moreover, if one works with real geometry, far from the ideal cases where regular meshes

are enough, the computational requirement is even higher. Figure 43 obtained from [17] is

a great example of how a massive mesh look like in real CFD problems. The authors required

a high-resolution grid of approximately 10.8 million cells to numerically solve the Navier-

Stokes equation in all the domain.

Figure 43. CFD surface mesh of an aircraft and its plane of symmetry

Towards larger real problems Universitat Politècnica de Catalunya
Larger problems ESEIAAT, Terrassa

Pau Romeu Llordella 71 Bachelor’s final thesis

Of course, such problems can only be solved by using computers with high computing

power. Nowadays, however, it is not enough to dispose of the most powerful and modern

hardware. It is equally or even more important to make use of ingenious techniques to

optimise computing time through the programmed solving code used.

In fact, the study of these new optimisation methods has given rise to what could be

considered new disciplines of research such as high-performance computing or

computational science and engineering.

This last section of the report aims to give a first approach to these disciplines and

techniques so necessary in modern day problems.

First, the most critical elements concerning computational time in the field of physical

problem solving are identified. It is also presented how the computer processor deals with

these crucial elements. Then, different methods are presented to improve CPU

performance, from the use of sparse matrices to the reordering of these to obtain better

efficiency in certain operations.

Finally, the strategies are tested by conducting operations and measuring the calculation

time on a problem coefficients matrix of this report and on much larger ones obtained from

a repository. The results are commented and conclusions are reached.

Towards larger real problems Universitat Politècnica de Catalunya
Scientific computing performance ESEIAAT, Terrassa

Pau Romeu Llordella 72 Bachelor’s final thesis

6.2 Scientific computing performance

The computer CPU is the unit responsible for performing basic arithmetic, controlling the

equipment and handling input and output operations specified by program instructions.

This is the main element to take into account when studying the time and performance

behaviour in dealing with the numerical resolution of large problems.

It is important to note that other technologies are currently being used to obtain high

computing power, such as GPUs or processors using different architectures. However, these

are outside the scope of this report.

A CPU has a large number of characteristics that define the performance and processing rate

it is capable of providing. Determining factors are the clock speed or the type of processor

used, the number of cores available or the size of the cache memory.

In terms of scientific computing, high performance is provided by the speed of the processor

and memory access. Parallel programming is also one of the greatest allies but is out of the

scope of this project.

 Processor speed

The effective processor speed can be adequately measured by estimating the floating-point

operations per second (𝐹𝐿𝑂𝑃𝑆). This measure is one of the most representative in this kind

of computation because practically all the operations required are of floating type. Other

measures such as processor instructions per second would not be as accurate.

Modern supercomputers in 2021 measure they speed with a magnitude in the order of

petaflops, i.e. around 1015 floating-point operations per seconds [18]. In ordinary personal

computers the velocity is around 1012𝐹𝐿𝑂𝑃𝑆. In fact, the improvement of this technology

has been exponential over the last few years as can be seen in the following graph obtained

from [19].

Figure 44. FLOPS performed by the most powerful supercomputer each year from 1993 to 2020

Towards larger real problems Universitat Politècnica de Catalunya
Scientific computing performance ESEIAAT, Terrassa

Pau Romeu Llordella 73 Bachelor’s final thesis

 CPU memory access

Even though processor speed is a determinant factor when it comes to defining the

performance of a calculation, memory accesses usually become the main issue to be

considered.

The following scheme obtained from [20] and adapted represents in simplified form the

memory hierarchy that the CPU can access to obtain the required data for the computation.

Figure 45. Simplified scheme of CPU access to memory

The processor can either get data from fast or slow memory. In this case, fast memory refers

to L1 and L2 cache memory. In contrast, the main memory is considered the slow one and

as can be seen in the scheme requires from 10 to 100 times more to achieve a hit.

The capacity of these three memories is inversely proportional to their speed. In 2021, for

ordinary computer devices, the L1 cache has a memory of hundreds of kB, the L2 a few MB

and the RAM memories have a magnitude of GBs. For instance, and to use real data, the

computer used to solve the problems in this report uses an AMD Ryzen 7 5800H processor

with 3,20GHz speed and the following memory specifications.

Memory Size

L1 cache 512 𝑘𝐵

L2 cache 4 𝑀𝐵

RAM 16 𝐺𝐵

Table 7. Memory specs for AMD Ryzen 7 5800H processor

Ideally, all memory in the computer should be as fast as the L1 cache, so that a large amount

of data can be fit into and accessed from this memory. However, this is not the case in reality.

Fast memories are expensive and consume large amounts of power.

The aim of the memory hierarchy presented is to combine the amount of data that slower

memories can store with the speed of the cache memory. To achieve this, the CPU allocates

the data being used by the running program from the main memory to the cache. Therefore,

most of the accesses of the CPU to memory take place in the cache.

Towards larger real problems Universitat Politècnica de Catalunya
Scientific computing performance ESEIAAT, Terrassa

Pau Romeu Llordella 74 Bachelor’s final thesis

When the processor requires and gets one element from the cache memory, a cache hit

occurs. As seen in Figure 45, from 1 to 15 processor cycles are required for a cache hit,

depending on the cache level.

Instead, if the element required to perform a calculation is not available in the cache when

the processor demands it, a cache miss results. Main memory must then be accessed with

the corresponding delay in the computation. Figure 45 quantifies this delay. A RAM cache

hit requires between 100 and 250 processor cycles. In contrast to the L1 cache, it is a

hundred times slower.

Indeed, this is a common problem in large real problems, as the matrices and vectors used

are too massive to be allocated in the cache. Thus, the RAM memory accesses are higher

than desired and computation time is greatly increased.

 Low arithmetic intensity and slow memory access

Arithmetic intensity describes the relation between the floating-point operations realised

in a piece of code and the amount of memory accesses required. Its units are 𝐹𝐿𝑂𝑃/𝐵𝑦𝑡𝑒

and it is a reliable measure for quantifying where the focus is on importance, processor

speed or memory access [21].

The problems dealt with in this report have a low arithmetic intensity. In the resolution

loops, the vast majority of operations require new data from memory. Moreover, the

operations performed are very basic and have a low computational cost as they are simple

linear combinations.

Indeed, many of the problems addressed in computational science and engineering are of

this nature. They are known as memory-bound problems. The term makes reference to those

problems or functions where the resolution time is mostly determined by the amount of

memory accesses to handle the required data [22]. The opposite to this situation is given by

a CPU-bound problem, where the bottleneck is given by the number of basic operations.

Another reason for the crucial importance of memory access when looking at performance

is the hardware technology limitations. While in last years CPUs have improved

exponentially in computational speed as can be seen in Figure 44, memory access time has

hardly decreased in recent years. Figure 46 obtained from [23] shows a clear comparison

of the evolution of both technologies from the 1980s to 2010.

Figure 46. Processor vs memory performance gap

Towards larger real problems Universitat Politècnica de Catalunya
Scientific computing performance ESEIAAT, Terrassa

Pau Romeu Llordella 75 Bachelor’s final thesis

In the figure, performance makes reference to access speed for memory and FLOPS for the

processor. While microprocessor industry has focused on improving speed, the memory

field has concentrated on increasing storage capacity. This division of objectives has led to

an exponentially growing gap between these two technologies when it comes to time of

execution.

These two reasons are why RAM access by the CPU is a critical step in increasing computing

time. The following section aims to present which typical scientific computing operations

have the greatest impact on poor performance due to memory accesses.

 Basic arithmetic operations

Modern computers have great computing power when it comes to linear algebraic

operations. As has been presented throughout this report, the vast majority of scientific

problems and physical systems that are studied are represented by a continuous

environment. However, by making use of discretisation techniques, a continuous system of

equations is converted into a discrete system.

This way, systems with complex mathematical operations can be reduced to schemes with

the most basic arithmetic operations that can easily and quickly be solved by a computer.

The CPU can promptly compute these as computational kernels.

For example, the Navier Stokes system of equations is one of the most widely studied and

used in the field of computational fluid dynamics. These equations clearly describe a

continuous environment. It can be expressed as follows as already been presented.

 𝜕�⃗�

𝜕𝑡
+ (�⃗� ⋅ ∇)�⃗� =

1

𝑅𝑒
∇2�⃗� − ∇𝑝 (6.1)

Many authors have proposed a discretisation for this function. One of the most commonly

used and convenient when it comes to being solved numerically is the vector matrix

notation. That is, to convert all operators. into operations between vectors and matrices.

For example, the discretisation of the Navier Stokes equations on an arbitrary collocated

mesh using finite-volume method proposed by Trias in [24] is presented below. Forgetting

the physical sense, elements in upper case represent matrices and in lower case represent

vectors.

𝛀
d�⃗�𝑐
d𝑡
+ 𝑪(�⃗�𝑠)�⃗�𝑐 +𝑫�⃗�𝑐 +𝛀𝑮𝑐�⃗�𝑐 = 0𝑐 (6.2)

Now this system is expressed by making use of only three simple operations: linear

combinations, dot product of vectors and matrix-vector multiplication. Note how relatively

complex operators such as the divergence of the velocity or the pressure term ∇𝑝 have

become simple matrix-vector multiplications, 𝑫�⃗⃗�𝑐 and 𝑮𝑐�⃗�𝑐 respectively.

In fact, all the cases treated in this document have been approached by solving a linear

system of equations expressed using matrix-vector notation 𝐴𝑥 = 𝑏. This kind of systems

are commonly solved with solvers that make use of these same three operations. As seen,

final coefficient matrices have a great number of zeros which make them ideal to be treated

Towards larger real problems Universitat Politècnica de Catalunya
Scientific computing performance ESEIAAT, Terrassa

Pau Romeu Llordella 76 Bachelor’s final thesis

as sparse matrices. This concept is treated in detail in Section 6.3. For now, it can simply be

stated that the multiplication between a matrix with a large number of zeros within its

values and a vector is a SpMV (sparse matrix-vector multiplication) computational kernel

[25].

For example, the Conjugate Gradient is a commonly used iterative solver which makes use

of the following computational kernels:

• Dot product (DOT)

• Vector linear combination (AXPY)

• Sparse matrix vector multiplication (SpMV)

In the idealized pseudo-code for Conjugate Gradient presented in [26], three AXPY, two DOT

and one SpMV are performed in each iteration. While AXPY and DOT have a computational

complexity of 𝑂(𝑛), the SpMV complexity is bounded by 𝑂(𝑛 × 𝑛𝑛𝑧). Therefore, most of the

time in each iteration is spent on the resolution of the latter kernel although it is solved only

once.

Furthermore, the SpMV is clearly the most memory-bound kernel among the three. While

for non-parallel DOT and AXPY the required data is accessed contiguously in memory, the

SpMV vector values are not accessed in the same order as they are in memory. As previously

discussed, this situation leads to a poor CPU and cache performance requiring even more

computational time. The reason for this phenomenon in the SpMV calculation is fully

explained in Section 6.4.1.

Concluding, the SpMV is one of the most commonly used and critical operations at same

time in many scientific algorithms. The following sections discuss the reasons and how to

focus on improving its performance. First, however, the sparse matrices are presented in

detail so that the following steps can be better comprehended.

Towards larger real problems Universitat Politècnica de Catalunya
Sparse Matrices ESEIAAT, Terrassa

Pau Romeu Llordella 77 Bachelor’s final thesis

6.3 Sparse Matrices

A sparse matrix is a matrix containing a low proportion of non-zero elements. In a computer,

these matrices can be treated differently by more efficient techniques that take advantage

of the number of zeros present. [27]

 Justification

Many problems in the field of science and technology end up making use of matrices to be

solved by computation. In fact, this project is a clear example of the intensive use of matrices

for this very reason.

A shared characteristic in all the problems is that the matrices contain a large relative

number of zeros and the significant values are a minority.

For example, in the lid driven cavity problem, the algorithm used must solve a Poisson

system of equations to solve the pressure field. In this case, the non-zero values of the matrix

are those describing the pressure at the nodes. Taking into account that a structured and

regular grid has been used, a node only depends on a maximum of four neighbouring nodes.

When implementing the matrix of the pressure system to be solved, this means that in each

row there will be a maximum of five non-zero elements. In other words, a 300 × 300 nodes

mesh is equivalent to obtaining a matrix where less than 1.67% of the elements are non-

zero.

Although there is no exact criterion, a matrix is considered to be of sparse type when the

non-zero elements do not exceed 10%. [27]

There are a large number of disciplines related to science and engineering that make use of

sparse matrices. Some examples are the study of structures, electromagnetic fields,

electrical circuits, graphs, etc. All kinds of sparse matrices can be found in [28], a repository

created by the University of Florida.

A sparse matrix can be defined by various criteria such as the level of its sparsity,

bandwidth, symmetry, etc. Depending on the characteristics of the sparse matrices,

different algorithms can be used to treat and manipulate them and not all of them will be

suitable [29]. However, there is one obvious advantage that all sparse matrices share over

dense matrices: the space required in computer memory to store their content is much

smaller.

 Data storage

In a sparse matrix the only significant values for the problem to be solved are those other

than zero. In this way, a large memory saving can be produced by storing only these values.

Below there is a matrix of size 9 × 9 which will be treated as an example of a sparse matrix

to represent memory allocation. Non-zero values are represented by a letter while zero

values are shown with an empty white position.

Towards larger real problems Universitat Politècnica de Catalunya
Sparse Matrices ESEIAAT, Terrassa

Pau Romeu Llordella 78 Bachelor’s final thesis

Figure 47. Example of sparse matrix

This square matrix contains a total of 81 values of which 29 are non-zero (𝑛𝑛𝑧 = 29). Note

that the percentage of non-zero values is higher than desired for a sparse matrix but is

useful for the examples in this report.

If the matrix was treated as a dense matrix, the storage in the computer's memory would

occur as shown in the following scheme.

Figure 48. Dense matrix memory distribution

The computer's memory is buffered linearly. Therefore, although in this case it is a two-

dimensional matrix, the values are stored one after the other row by row. To access a

particular value in the array, one must know the memory address of the first element and

the relative position of the searched element within the matrix [30].

For example, it is assumed that one wants to access the value J of the matrix at position (3,

7). In this case, you must access the memory address of 𝐴(0,0) and add to it the relative

address value of the searched position.

 dir(𝐽) = dir(𝐴) + 𝑡𝑠 (𝑁𝑖𝐽 + 𝑗𝐽) (6.3)

Here the relative direction is determined by the number of rows 𝑖𝐽 multiplied by the number

of elements in a row 𝑁 plus the number of columns 𝑗𝐽 . The value obtained must be

multiplied by the space required in memory 𝑡𝑠 according to the type of variable used. In

case of integer variables it is usually 4 bytes while for double type variables a minimum of

8 bytes are required [31].

This type of memory access requires all the elements of the matrix to be stored in memory

in order to preserve the relative position. Thus, the amount of memory used is equal to

𝑁 × 𝑁. In matrices where a large number of their values are irrelevant (such as zeros in

sparse matrices), this results in a large amount of wasted memory.

Two methods of storing sparse matrices in a space-saving manner are presented below.

Both methods store only non-zero values. However, in this way the possibility to find the

position of the values by means of the relative direction discussed in this section is lost.

Therefore, it is required to store the indices of each value.

Towards larger real problems Universitat Politècnica de Catalunya
Sparse Matrices ESEIAAT, Terrassa

Pau Romeu Llordella 79 Bachelor’s final thesis

6.3.2.1 Coordinate Ordered

The Coordinate Ordered method stores non-zero values in a vector of size equal to the

number of non-zeros (𝑛𝑛𝑧). In turn, it uses two vectors of the same size to store the row and

column index [32].

The following diagram presents the memory allocation for the sparse matrix in Figure 47.

The first two vectors refer to the position in the row and column. The last one stores the

value. The relative address within the memory is shown above the arrays in light grey.

Figure 49. CO memory distribution

Storing an array using this scheme occupies a total of 3 × 𝑛𝑛𝑧 memory locations. This is why

it is only used for sparse matrices, as the method is efficient as long as the space required is

much smaller than with classical ordering. That is to say,

 3 × 𝑛𝑛𝑧 ≪ 𝑁 × 𝑁 (6.4)

6.3.2.2 Compressed Sparse Row

Compressed Sparse Row is a method that uses even less memory space than Coordinate

Ordered. In this case, the value vector also only stores the non-zero values. However, the

index vectors consist of a row offset vector and a column vector.

The column vector still represents the position of the column where the searched value is

located and its size is 𝑛𝑛𝑧 . However, the row offset array indicates the position of the

column vector at which a row change occurs. Thus, the row offset vector has a size of 𝑁 + 1

[33]. It can be illustrated by the saving scheme using the previous matrix.

Figure 50. CSR memory distribution

It can be seen by the use of the colours which values are part of each row and how the row

offset points to the start of a new row.

This method makes use of 2 × 𝑛𝑛𝑧 + 𝑁 + 1 memory locations. When the sparse matrix

definition is met, it is almost always more efficient than the Coordinate Ordered method.

Towards larger real problems Universitat Politècnica de Catalunya
Sparse Matrices ESEIAAT, Terrassa

Pau Romeu Llordella 80 Bachelor’s final thesis

Therefore, it is the most widely used method in this field and is the one that will be used in

this report.

 Graph representation

The main purpose of using the sparse format to work with matrices with a large number of

zeros is to save computer memory space. However, there are also a variety of algorithms

that take advantage of the format to optimise the calculations to be performed with these

matrices.

At this point, the graph as a memory representation format is a particularly useful tool. A

sparse matrix can be represented as a graph on which algorithms can be applied more easily

[20].

This project deals with symmetric sparse matrices in order to simplify the study.

Furthermore, the emphasis is on the structure of the matrix rather than on the value of the

non-zero elements. Therefore, following the example presented above, the sparse matrix is

converted to a graph in this way.

Figure 51. Example sparse matrix turned into a graph

Each node in the graph represents a row or a column - which are equal due to the symmetry

of the matrix. The edges between nodes stands for the position of the non-zero values within

the sparse matrix. For example, the first row has non-zero values in columns 1, 2, 7 and 8.

Therefore, node 1 is connected to all these nodes. Note that as all rows are connected to

each equivalent column, all nodes would have an edge from and to them that is omitted.

If non-zero values were required in the graph, the edge weight would contain the value of

that position in the matrix. Similarly, if the matrix was not symmetric, a directed graph

should be used and the edges weight would be different depending on their direction.

Towards larger real problems Universitat Politècnica de Catalunya
Optimisation by bandwidth minimisation ESEIAAT, Terrassa

Pau Romeu Llordella 81 Bachelor’s final thesis

6.4 Optimisation by bandwidth minimisation

Most computer operations and algorithms using sparse matrices are most efficient when

they have their non-zero elements close to the diagonal. This property is defined by the

matrix semibandwidth 𝛽 which for a symmetric matrix 𝐴 of dimension 𝑁 × 𝑁 is given as

follows [34].

 𝛽(𝐴) = max {|𝑖 − 𝑗| ∶ 𝑎𝑖𝑗 ≠ 0} (6.5)

The following section describes why it is of interest that the matrices used in computational

operations have a minimum 𝛽 . Then, a method to reduce the matrix bandwidth by

permutations of the matrix is presented.

 Cache-based performance in SpMV

The sparse matrix-vector multiplication is the most critical kernel operation when CPU

requires to access memory presented in this report. Apart from dealing with the largest data

structures (a matrix and a vector), it can have very poor cache-based performance.

However, by reducing the bandwidth of the sparse matrix the computing time of this

operation can be greatly reduced. This section explains the reasons for this poor

performance and how reducing the bandwidth of the matrix can solve it quite well.

The result of a matrix-vector multiplication is a vector �⃗� = 𝐴�⃗�. The 𝑖-th component of the

destination vector �⃗� is the result of the dot product between each 𝑖 row of the matrix 𝐴 and

the source vector �⃗�. The following scheme illustrates this procedure for a multiplication

between the example sparse matrix in the seventh row and a dense vector [32].

Figure 52. Scheme of a sparse matrix-vector multiplication

The logical implementation of a SpMV operation is to iterate the sparse matrix row-by-row.

In each iteration, all the non-zero values of the row and the correspondent vector values are

accessed. Then, the dot product can be easily performed and assigned to the component of

the destination vector.

The illustration below obtained from [25] describes the process that takes places when

SpMV kernel is calculated. In this case, as usual, the Compressed Sparse Row (CSR) is used

as a method of storing the sparse matrix.

The row pointer indicates the row on which the operation is performed. Each 𝑛𝑧 value is

multiplied by a value from the source vector allocated at the position denoted by the 𝑛𝑧

Towards larger real problems Universitat Politècnica de Catalunya
Optimisation by bandwidth minimisation ESEIAAT, Terrassa

Pau Romeu Llordella 82 Bachelor’s final thesis

column index. All these products are summed and loaded into the destination vector at the

corresponding position of the current row pointer.

Figure 53. SpMV kernel memory access

As mentioned, non-zero values of the sparse matrix are consecutively allocated in arrays.

Following the procedure just exposed, these elements are accessed by the CPU in the same

order they are found in memory when SpMV is being calculated. Therefore, the required

data of the matrix is almost always available in cache memory and the ratio of cache misses

to cache hits is low.

The elements of the vector are also allocated contiguously in memory. However, in this case

they are not accessed in the same order as in memory. In each iteration, the accessed values

of the vector are the ones in the position of the columns where non-zero values of the matrix

are located, indicated by the nz column indices.

For example, in the last row of the matrix in Figure 52 the 𝑛𝑧 values of the sparse matrix are

found in the first and last column. Even though the values of the matrix are placed

contiguously in memory, the vector will be accessed at its first and last position. If the vector

is relatively large, a cache miss is likely to occur.

Note that, due to sparsity of the matrix, very few elements of the vector are required at each

iteration. Thus, the probability of experiencing a cache miss increases depending on the

distance between the values being accessed. This distance is shortened when bandwidth of

the matrix is minimised since the values of columns 𝑗 gets closer to the value of the row 𝑖.

As a consequence, the accessed vector values also decrease their distance between them.

Concluding, to reduce the bandwidth of a sparse matrix from a SpMV can considerably

enhance the performance of the kernel operation. This improvement only has an effect on

the memory access time of the source vector as the rest of the values are already accessed

in the order in which they are found. Still, in cases where the vector (and thus the matrix) is

very large, the efficiency gain is very noticeable as demonstrated in the last part of this

section.

Once the benefits of sparse matrix bandwidth reduction have been presented, an algorithm

for achieving this goal is presented.

Towards larger real problems Universitat Politècnica de Catalunya
Optimisation by bandwidth minimisation ESEIAAT, Terrassa

Pau Romeu Llordella 83 Bachelor’s final thesis

 Reverse Cuthill-McKee algorithm

The Cuthill-McKee algorithm was proposed by the authors of the same name in [35] in 1969.

This method reduces the bandwidth of a symmetric sparse matrix through permutations.

The great usefulness of this algorithm has led many authors to propose modifications to

improve its efficiency. Among the most popular is the contribution of Alan George and

Joseph Liu in [36] where they propose the Reverse Cuthill-McKee (RCM) algorithm. In this

case the order of the result for the original one is simply inverted to improve the

performance. This is the algorithm discussed in this report.

Although it is implemented to reorder sparse matrices, it is executed in its transformation

to an equivalent graph.

The aim of the scheme is to renumber the nodes of the graph so that neighbouring nodes

have a close numbering. That is, to make the columns 𝑗 contained in a row 𝑖 have 𝑗 values

close to 𝑖. Obviously, this would lead to a reduction of the matrix bandwidth.

The following scheme represents the algorithm used to achieve such an objective [29].

Figure 54. Scheme of the Reverse Cuthill-McKee algorithm

Note that the last step is the only difference between RCM and the original Cuthill-McKee

algorithm, where the numbering is reordered. It is also important to highlight that in case

the studied graph was disconnected, the algorithm would be applied to each of the

connected parts of the graph.

The presented scheme makes use of an arbitrary initial node. In the next section a method

for finding the best initial node for optimal reordering is presented.

6.4.2.1 RCM applied to the example

To observe the operation and results of the RCM method, it is applied to the example used

in the previous sections.

The original sparse matrix, which has already been converted to a network, is used as a

starting point. In this case, node 5 is chosen as the initial node using the method explained

in section 6.4.3. However, for the example presented, it is not necessary to know how the

initial node has been chosen. In fact, RCM could be used with any initial node.

Towards larger real problems Universitat Politècnica de Catalunya
Optimisation by bandwidth minimisation ESEIAAT, Terrassa

Pau Romeu Llordella 84 Bachelor’s final thesis

The method used to apply RCM is presented below. Starting with the first node, a queue of

nodes is created in ascending order of degree. These nodes will be the next to be numbered.

As they are numbered, they create their queue of neighbours. This procedure can be seen in

the second and third column of the presented table. The first column simply sets out the

relationship to the current inverted ordering.

 Current
order

New
order

Queue

9 5 6, 9

8 6

7 9 2

6 2 4, 1

5 4

4 1 8, 7

3 8

2 7 3

1 3

Figure 55. Reordering of the graph nodes using RCM

Once the new reordering has been obtained, the new labelling is simply applied to a graph

of the same form. It is important to note that the only thing that changes is the ordering, as

the connections remain the same. That is, no connections can appear or disappear between

rows and columns of the represented matrix. In the case of the example, the new graph is as

follows.

Figure 56. Resulting reordered graph

With the new ordering, it can be appreciated how neighbour nodes are assigned a close

numbering.

In order to verify the results obtained, graph bandwidth may be calculated. In a graph 𝐺

with 𝑁 vertices 𝑣𝑖 with distinct labels 𝑖 where 𝐸 is the edge set of the graph, the bandwidth

𝛽𝐺 can be defined as follows [37].

 𝛽𝐺(𝐺) = max {|𝑖 − 𝑗| ∶ (𝑣𝑖, 𝑣𝑗) ∈ 𝐸} (6.6)

Note that the graph bandwidth is exactly equivalent to the matrix semibandwidth presented

in (6.5). Therefore, for a matrix 𝐴 and its equivalent graph 𝐺𝐴 bandwidths must be equal

𝛽(𝐴) = 𝛽𝐺(𝐺𝐴).

Towards larger real problems Universitat Politècnica de Catalunya
Optimisation by bandwidth minimisation ESEIAAT, Terrassa

Pau Romeu Llordella 85 Bachelor’s final thesis

For the example in this report, on one hand it can be seen at first sight that for the original

graph 𝐺0 the bandwidth is 𝛽𝐺(𝐺0) = 7 because the furthest neighbouring nodes are 1 and 8

or 2 and 9. On the other hand, the reordered graph 𝐺𝑟 presents 𝛽𝐺(𝐺𝑟) = 2 as there is no

pair of nodes with a labelled value difference greater than or equal to 3. Thus, graph

bandwidth clearly has been reduced.

Finally, it is the turn to reconvert the obtained graph to a sparse matrix again. As already

mentioned, the use of graphs is very useful for reordering algorithms, but the sparse format

is preferable when it comes to operating with the matrix. So, below, the original starting

matrix on the left is presented together with the reordered one on the right. Diagonal

bandwidth has been represented using a red line.

Figure 57. Matrix bandwidth comparison before and after reordering

At this point, the reduction in matrix bandwidth can be seen even more clearly. While in the

first matrix the values are randomly sorted, the new one presents the non-zeros as close to

the diagonal as possible.

Again, bandwidth can be calculated just by observing the scheme. For the first matrix, the

distance between the diagonal and the furthest element is 𝛽(𝐴0) = 7 while for the

reordered one the semibandwidth is 𝛽(𝐴𝑟) = 2. Naturally, the same values are obtained

than the ones calculated for the graphs.

 Finding a starting vertex

The RCM algorithm requires an input node to create the reordering. This section presents

an approach for deciding potential optimal starting nodes. It is presented in a separate

section because it is an independent method from RCM that can be used by other reordering

algorithms or even in other types of graph problems due to its great usefulness.

6.4.3.1 Pseudo-peripheral nodes

The optimal initial node for RCM is the one that produces a reordering with the lowest

matrix bandwidth. This can be understood as looking for the pair of nodes separated by a

maximum distance.

These nodes should be at opposite ends of the reordering and therefore be the beginning

and the end of the new numbering. The ones that satisfy this condition are known as

peripheral nodes. A mathematical description of this type of node is provided below in order

to facilitate the understanding of the algorithm.

Towards larger real problems Universitat Politècnica de Catalunya
Optimisation by bandwidth minimisation ESEIAAT, Terrassa

Pau Romeu Llordella 86 Bachelor’s final thesis

Using the terminology of [38], consider a connected graph 𝐺(𝑋, 𝐸) where 𝑋 defines the

groups of nodes and 𝐸 the group of edges. The distance between two nodes 𝑑(𝑥, 𝑦) in 𝐺 is

measured by the minimum number of nodes through which it is required to pass to get from

one to the other.

Thus, the eccentricity ℓ(𝑥) of a node 𝑥 is the highest minimum distance to another node.

 ℓ(𝑥) = max {𝑑(𝑥, 𝑦) ∶ 𝑦 ∈ 𝑋} (6.7)

The diameter of 𝐺 is given by the highest eccentricity between all the nodes.

𝛿(𝐺) = max {ℓ(𝑥) ∶ 𝑥 ∈ 𝑋}

This way, a peripheral node is a node 𝑥 ∈ 𝑋 whose eccentricity is equal to the diameter of

the graph ℓ(𝑥) = 𝛿(𝐺).

Finding a peripheral node is a classic problem in graph theory. However, the computing

effort required is very high due to its elevated computational complexity. That is the reason

why George and Liu proposed a much simpler algorithm to find a pseudo-peripheral node

in [29].

A pseudo-peripheral node resulting from such an algorithm has a high eccentricity within

the network. Although its eccentricity does not have to be equal to the diameter of the graph,

experience shows that it is still a very good starting node for RCM. Moreover, avoiding such

computational effort is much more desirable.

The algorithm makes use of the rooted level structure of a graph. In the following, this

concept is presented using the same example as before.

6.4.3.2 Rooted level structure

The rooted level structure of a graph is an arrangement of its nodes based on a tree-like

structure proposed by Arany et al. in [39].

To structure the graph by means of this method, an initial node 𝑥 ∈ 𝑋 is chosen. This node

is the root node 𝑟 and it is the only node in the first level of the structure 𝐿0(𝑥) = {𝑥}. The

next level contains the direct neighbours of the first node 𝐴𝑑𝑗(𝑥) and it can be expressed as

𝐿1(𝑥) = 𝐴𝑑𝑗(𝐿0(𝑥)) . The next levels contain the adjacent nodes of the previous level

following the same procedure. However, nodes that has been already put in a previous level

are not included again. The expression below describes a generic level.

 𝐿𝑖(𝑥) = 𝐴𝑑𝑗(𝐿𝑖−1(𝑥)) − 𝐿𝑖−2 (6.8)

By using this structure, the last level of a node x is 𝐿ℓ(𝑥) where ℓ(𝑥) is the previously defined

eccentricity of the node. Therefore, the level rooted structure ℒ rooted at 𝑥 is defined as

follows.

 ℒ(𝑥) = {𝐿0(𝑥), 𝐿1(𝑥),… , 𝐿ℓ(𝑥)(𝑥)} (6.9)

The eccentricity of 𝑥 can be understood as the length of ℒ(𝑥).

For a better understanding of the concepts just exposed, they are now applied to the

example of this section. The following scheme presents the root level structure of the graph

Towards larger real problems Universitat Politècnica de Catalunya
Optimisation by bandwidth minimisation ESEIAAT, Terrassa

Pau Romeu Llordella 87 Bachelor’s final thesis

presented in Figure 51 rooted at node 1. Note that it is exactly the same graph than before

but its nodes have been visually redistributed to present the level structure.

Figure 58. Level structure of the example graph rooted at node 1

The procedure is simple, the direct neighbours of 1 are nodes 2, 8 and 7; therefore, these

make up level 1. The rest of the levels are equally conformed. Since the eccentricity of node

1 is ℓ(𝑥1) = 3, the root level structure has 3 levels.

Note that in this case, node 1 is clearly not a peripheral node. The three nodes with

maximum eccentricity are nodes 3, 5 and 6 with ℓ(𝑥3) = ℓ(𝑥5) = ℓ(𝑥6) = 5. Therefore, the

graph diameter is 𝛿(𝐺) = 5. In this case, due to the simplicity of the graph, these results can

be found visually. However, this is clearly not an option for huge systems like the ones used

these days. For these cases, it is required to make use of algorithms such as the one

presented.

6.4.3.3 Algorithm to find a pseudo-peripheral node

After the relevant background notes on graph theory, the algorithm for finding a pseudo-

peripheral node that is suitable to be an initial node in RCM can be presented.

The algorithm consists of constructing level structures rooted at different nodes and

comparing their eccentricity. The objective is to find a node with high eccentricity. In this

case, the starting root node is completely arbitrary.

Figure 59. Scheme of the algorithm to find a pseudo-peripheral node in a graph

In the experiments conducted by the authors with all types of matrices, the algorithm never

required more than two iterations to find a pseudo-peripheral node. This makes it a fast and

effective algorithm for finding such nodes.

Towards larger real problems Universitat Politècnica de Catalunya
Optimisation by bandwidth minimisation ESEIAAT, Terrassa

Pau Romeu Llordella 88 Bachelor’s final thesis

The algorithm is now applied to the example graph.

Figure 60. Example of the application of the algorithm for finding a pseudo-peripheral node

Again, node 1 is chosen as the root. The root level structure is constructed and the nodes in

the last level are 𝐿3(𝑥1) = {𝑥5, 𝑥6}. Both have the same degree, so node 5 is arbitrarily

chosen. Thus, a new level structure rooted at node 5 is created

The eccentricity of the new node is greater than the eccentricity of the root ℓ(𝑥5) > ℓ(𝑥1)

so the end condition is not satisfied and the loop starts again. Now, the length of the

structure is ℓ(𝑥5) = 5 . Node 3 is the only node remaining in this last level. The level

structure is constructed for node 3 and its eccentricity is the same than the eccentricity of

node 5.

The process ends and, therefore, node 3 is a pseudo-peripheral node. As the length is the

same, nodes 5 and 6 would also be feasible pseudo-peripheral nodes. Node 5 has been

chosen as initial node in RCM example in Figure 55.

Towards larger real problems Universitat Politècnica de Catalunya
Performance analysis ESEIAAT, Terrassa

Pau Romeu Llordella 89 Bachelor’s final thesis

6.5 Performance analysis

The objective of this section is to study the magnitude of improvement in computational

performance that occurs when applying the algorithms and techniques presented in this

report.

C++ and MATLAB code is used to test the performance of the SpMV computational kernel

on different matrices. The aim of the test is to measure the time it takes to calculate the

operation before and after a rearrangement using the Reverse Cuthill-Mckee algorithm.

The sparse matrices used to carry out the experiment are obtained from The SuiteSparse

Matrix Collection in [28]. This repository contains sparse matrices of any kind and nature.

They are the result of problems of different nature (heat and temperature, Navier-Stokes,

electromagnetism, graph problems, etc.). This demonstrates the great usefulness of these

optimisation techniques in all kinds of fields.

First, the most important elements of the code that has been programmed to carry out the

experimentation are presented. Then, the matrices used and their characteristics are

presented. The method used to carry out the test and the results of the computation times

are presented. Finally, the results are analysed and the pertinent conclusions are drawn.

 Code implementation

The C++ program developed to perform the experiment includes the following steps.

1. A sparse matrix is imported from the repository into a SparseMatrix object.

2. The sparse matrix is turned into a graph as a Graph object.

3. A pseudo-peripheral vertex of this graph is found.

4. The RCM is applied to the graph using as starting node the pseudo-peripheral vertex.

5. A new order is obtained as an array of integers.

6. A new sparse matrix is created by reordering the original one using the RCM order.

7. A new sparse matrix is created by reordering the original one using random order.

8. SpMV kernel is performed in the original and randomly and RCM reordered

matrices while time of computation is being measured.

9. Temporal data is exported to MATLAB so it can be represented.

The following sections describe the self-created most important classes and methods used

to implement the main program just described.

6.5.1.1 Sparse Matrix

The class SparseMatrix has been created to represent a sparse matrix. It allocates the non-

zero values of symmetric sparse matrices making use of the CSR storage method. Thus, this

class has three main attributes.

• row_off. Array of integers that stores the offset of each row. It has the length of 𝑁,

the number of rows and columns of the matrix.

• col. Array of integers that stores the index of the column where non-zero values are

allocated. Its length is 𝑛𝑛𝑧, the number of non-zeros.

Towards larger real problems Universitat Politècnica de Catalunya
Performance analysis ESEIAAT, Terrassa

Pau Romeu Llordella 90 Bachelor’s final thesis

• val. Array of doubles that allocates the non-zero values of the sparse matrix. Its

length is also 𝑛𝑛𝑧.

This class also have other attributes and methods. For example, a special class constructor

has been required to import sparse matrices from the repository using a .mtx format.

6.5.1.2 Graph

In order to apply the reordering to the sparse matrices using RCM, a class Graph is also

created. An array of adjacency lists is used to represent a graph in the program as the main

attribute of the class. The adjacency list of a node 𝑥 ∈ 𝑋 of a graph 𝐺 is a list containing all

its direct neighbour nodes. There are as many adjacency lists as there are nodes in the graph,

so the length of the array is 𝑁. Figure 61 presents an example to expose the concept and the

storage method used in the program. This data structure has been obtained and partially

modified from [36].

Figure 61. Implementation of a graph as an array of adjacency lists

The sparse matrix of the left is turned into the graph at the centre as explained in Section

6.3.3. Note that, in this case, the values of the edges representing the value between the

nodes are shown.

Unsorted lists are used to obtain the adjacency list of each node. In this case, there exists an

array of length 𝑁 = 5 with five unsorted lists. Each element of the unsorted list is a C++

struct that contains the number of the node (presented in the figure in a white background),

the correspondent value (presented in blue) and a pointer to the following struct (shown in

purple). In the last element of each unsorted list, the pointer is set to null (represented by

an X).

For example, row 1 (or column, as the matrix is symmetric) is represented by node 1. As in

the first row of the sparse matrix there are values in the columns 1, 3 and 5, these are the

resulting neighbour nodes as can be appreciated. The unsorted list of the node 1 is the first

element of the array of unsorted lists. Thus, the struct referring to the node 1 is the first

element of this unsorted list. This struct contains the number of the node 1, its own value 𝐴

and a pointer to the struct of node 3. The struct of the third node points to the struct of node

5. As there are no more neighbour nodes of the first, this last struct points to null. The same

procedure is applied to the other four nodes.

The constructor of this class requires an object of the SparseMatrix as input as it has been

developed for the sole purpose of representing sparse matrices.

Towards larger real problems Universitat Politècnica de Catalunya
Performance analysis ESEIAAT, Terrassa

Pau Romeu Llordella 91 Bachelor’s final thesis

6.5.1.3 Algorithms

Two main algorithms have been programmed to reorder the sparse matrices.

• pseudo_peripheral_vertex(Graph g). This method is the implementation of

the algorithm discussed in Section 6.4.3.3. The function receives a graph as input

and returns the number (int) of a pseudo-peripheral vertex. This node is the starting

node of the RCM algorithm.

• order_RCM(Graph g, int starting_node). The function implements the

Reverse Cuthill Mckee algorithm to reorder the input graph. The algorithm makes

use of the starting node obtained in the previous algorithm. It returns an array of

integers of length 𝑁 with the new order.

Moreover, other subroutines required to perform the algorithms have been needed. For

example, a function that finds the degree of each node or a function to reorder a sparse

matrix with the node.

6.5.1.4 SpMV

The SpMV is a computational kernel. Its implementation depends on the kind of storage of

the sparse matrix. In this case, as CSR is the method used, the operation can be performed

the following way in a C++ program [32].

for (int i = 0; i < N; i++){

 y[i] = 0.0;

 for (int j = row_off[i]; j < row_off[i + 1]; j++)

 y[i] += val[j] * v[col[j]];

}

In this algorithm, row_off, val and col are the attribute arrays of a SparseMatrix object,

v stands for the source vector and y for the destination one. The logic of this method is the

described in Section 6.4.1.

 Studied sparse matrices

The aim of this last part of the report is to test the performance improvement that occurs

when applying reordering algorithms to different types of sparse matrices. To do so, a SpMV

operation 𝑦 = 𝐴𝑥 is realized if different matrices.

The sparse matrices 𝐴 used to carry out the experiment are actual matrices obtained from

The SuiteSparse Matrix Collection in [28]. These matrices are the result of any kind of

problem, from CFD to electromagnetics or graph problems. This fact also demonstrates the

great usefulness of these optimisation techniques.

The table below presents the list of the nine matrices chosen. The name of the matrices is

the one extracted from the repository and it is the way they are being referenced in this

report. All matrices are symmetric and have only one strongly connected component.

Towards larger real problems Universitat Politècnica de Catalunya
Performance analysis ESEIAAT, Terrassa

Pau Romeu Llordella 92 Bachelor’s final thesis

From left to right, 𝑁 stands for the number of rows and columns, 𝑛𝑛𝑧 denotes the number

of non-zeros, and 𝑛𝑛𝑧/𝑟𝑜𝑤 represents the average number of non-zeros in each row or

column. The matrices are ordered according 𝑛𝑛𝑧.

Sparse matrix name 𝑁 (· 104) 𝑛𝑛𝑧 (· 106) 𝑛𝑛𝑧/𝑟𝑜𝑤

p_driven_cav 0.25 0.0124 4.96

Pres_Poisson 1.48 0.7158 48.36

2cubes_sphere 10.15 1.6473 16.23

poisson3Db 8.56 2.3749 27.74

cfd2 12.34 3.0854 25.00

ecology1 100.00 4.8825 4.88

netherlands_osm 221.67 4.9960 2.25

adaptive 681.57 27.2486 4.00

road_usa 2394.73 57.7086 2.41

Table 8. Sparse matrices used to test the performance improvement

The first matrix p_driven_cav is the only one that has not been obtained from the repository.

This is the coefficients matrix obtained from the Poisson’s problem for the pressure in the

lid driven cavity case (Section 5.2) for a regular 50 × 50 mesh. This way, it can also be

studied how an ideal case responds to an optimisation algorithm.

Finally, in order to have a proper perspective of the results obtained, the spy plot of the nine

matrices is presented in Figure 62. The spy plot is a representation of the location of the

non-zero values in a sparse matrix. It is of great utility in qualitatively evaluating the nature

of the sparse matrix. The symmetry, the sparsity and the approximate matrix bandwidth

can be clearly appreciated.

Figure 62. Spy graph for the 9 studied sparse matrices

Towards larger real problems Universitat Politècnica de Catalunya
Performance analysis ESEIAAT, Terrassa

Pau Romeu Llordella 93 Bachelor’s final thesis

 Results

To measure the reduction of time after the RCM optimisation, the matrices have been tested

in three different forms.

• Original matrix. The test has been performed directly on the matrix obtained from

the repository.

• RCM reordered matrix. RCM algorithm has been applied to each matrix in the

manner exposed in this report (Section 6.4.2) and then tested.

• Randomly sorted matrix. A random order has been generated and applied to the

tested original matrix.

Figure 63 illustrate the appearance of the sparse matrices after RCM and random reordering

by using spy plot again.

For the RCM reordered matrices, all matrix bandwidths have been clearly reduced, as all

values are concentrated near the diagonal. Obviously, this reordering has a greater impact

in matrices that had its non-zero values more dispersed such as road_usa or adaptive. Other

matrices like cfd2 or netherlands_osm remain almost the same as their bandwidth was

already narrow. Finally, some bandwidths cannot be reduced like others due to the nature

of the problem as in poisson3Db.

In contrast, the randomly sorted matrices have increased the matrix bandwidth to the

maximum. With the exception of the first one, the values are so widely dispersed that no

shape is visible in the spy plot. This rearrangement only makes sense for the purpose of the

comparative study as it cannot be efficient in any case.

Of course, the matrices maintain their initial descriptive characteristics as 𝑁 or 𝑛𝑛𝑧. They

also remain symmetric.

Figure 63. RCM (left) and randomly (right) reordered sparse matrices

Towards larger real problems Universitat Politècnica de Catalunya
Performance analysis ESEIAAT, Terrassa

Pau Romeu Llordella 94 Bachelor’s final thesis

In order to test the improvement in computing time, the SpMV has been applied several

times to each matrix. In fact, the operation has been performed 50 times in the first seven

matrices for each ordering to get a more accurate average time. That is to say, 150

operations per matrix. The time of computation have been measured separately for each

ordering and compared to the time for the original matrix. SpMV for the last two matrices

has just been applied twice for each ordering due to their massive size.

The vector utilized to perform the multiplication is a randomly generated 𝑁-size dense

vector, i.e., all its elements are non-zero. The elements of this vector are allocated in

consecutive order in the computer’s memory.

The absolute time that is required to compute the SpMV is not as relevant as the difference

between the original matrices and the reordered ones. That is the reason why all the values

of time presented are referenced to the time required by the original matrix to perform the

operation. Results are presented in Table 9.

Sparse matrix Original RCM Random

p_driven_cav 1.000 1.014 1.178

Pres_Poisson 1.000 0.976 1.389

2cubes_sphere 1.000 0.869 1.341

poisson3Db 1.000 0.685 1.128

cfd2 1.000 1.066 1.937

ecology1 1.000 0.599 2.038

netherlands_osm 1.000 0.945 2.191

adaptive 1.000 0.397 3.701

road_usa 1.000 0.626 2.836

Table 9. Relative computing time depending on the reordering

The results are also graphically presented in Figure 64. This plot allows a better qualitative

comparison of the outcomes.

Figure 64. Relative computing time comparison

Computing time comparison

0

0

1

1

2

2

R
e
la
tiv
e
 t
im

e

original

RC

random

Towards larger real problems Universitat Politècnica de Catalunya
Performance analysis ESEIAAT, Terrassa

Pau Romeu Llordella 95 Bachelor’s final thesis

The first impression is that results differ considerably depending on the matrix.

Nevertheless, some general conclusions can be reached.

The most obvious conclusion is that the randomly reordered matrices perform much worse

in any case. That is an expected result as the values are spread across the matrix (and

therefore memory) leading to an extremely poor CPU and cache performance. However,

note that not all matrices are affected the same way. This is where the point of having

conducted such an experiment lies and is discussed later, as a random rearrangement has

no real value.

A second point to focus is the effectiveness of the RCM reordering. At first glance, the

majority of matrices clearly performed better after this rearranging. Except for p_driven_cav

and cfd2, all the other operations have been computed in less time. Once again, though, it

can be seen that some matrices have exhibited a much greater improvement.

The aim of the following sections is to discuss why these differences occur. The matrices

presented can be classified using two criteria: their shape and their size

6.5.3.1 Shape analysis

By looking at Figure 62, two main groups can be easily be done in terms of shape.

Specifically, focusing on the bandwidth of the matrices. On one hand, the three relatively

narrow matrices are p_driven_cav, cfd2 and netherlands_osm. On the other hand, the three

most dispersed matrices could be poisson3Db, ecology1 and adaptive.

Based on the results Table 9, one can compare netherlands_osm as narrow and ecology1 as

dispersed. The choice of these two matrices is convenient as they have a similar size and

that is not a factor that may misrepresent results. Size effect is discussed in the following

section.

The results of the performance upgrade for these two matrices when RCM is applied are

clearly differenced. While the narrower one presents a slight improvement of 5.55% time

reduction, the dispersed matrix reduced the calculation time by 40.1%. The same pattern

takes place with matrices of same nature.

The reason of this difference is evident, narrowest matrices already had a great operation

performance based on the cache usage. Therefore, reordering the matrix has a low effect on

improving or indeed worsening performance. In fact, that is the case for the two other

narrow matrices: cfd2 and p_driven_cav. The order of the latter was already almost perfect

since it was the resulting matrix of an ideal case (the lid driven cavity problem) with a

regular mesh. This way, its performance has decreased when RCM has been applied.

In contrast, matrices that are more dispersed had a much worse performance before

reordering because of the explained poor cache performance. In those cases, applying RCM

reordering really makes a difference.

Finally, analyzing the effects on the random order, the two example matrices present similar

results. The narrower one, netherlands_osm, performs worse as the contrast with the

original ordering is greater. However, both cases reaffirm that this type of ordering is not

even close to optimal, as computing time more than doubles.

Towards larger real problems Universitat Politècnica de Catalunya
Performance analysis ESEIAAT, Terrassa

Pau Romeu Llordella 96 Bachelor’s final thesis

6.5.3.2 Size analysis

The size of the matrix can be defined both by the number of rows and columns 𝑁 or the

number of non-zero elements 𝑛𝑛𝑧. In this case, the matrices are ordered both in Figure 62

and in Table 9 by 𝑛𝑛𝑧.

Focusing now only on dispersed matrices (so the shape does not affect anymore), one can

compare 2cubes_sphere and poisson3Db as relatively small matrices (𝑛𝑛𝑧 ≈ 2 · 106) with

adaptive and road_usa as the hugest with 𝑛𝑛𝑧𝑎 = 27 · 10
6 and 𝑛𝑛𝑧𝑟 = 58 · 10

6 respectively.

While the biggest matrices show the greatest improvement when RCM is used, they are also

worst performers when the random order is applied. The most sharply contrasted case is

for adaptive. When computing the SpMV in this matrix with the rearrangement obtained

from RCM, the time of computation is 39.7% of the original time. In contrast, when randomly

reordered, the time increases about 3.7 times. That is, from the optimum reordering to the

worst, the time gets increased more than 9.4 times. This is a great example of the time

savings that can be achieved.

Again, the reason is how the cache and the CPU performs in small or big matrices. For

smaller matrices, the reordering does not have such an effect because the rows fit better in

the cache. For instance, if vector the size of a matrix row could be fully allocated in the cache

memory, the cache misses that cause the greatest delays would simply not occur. The same

can be translated to bigger small matrices that, even though they cannot fit the entire vector

into cache, there are very few cache misses in the access to its values.

In contrast, for larger matrices whose vector clearly cannot be fully allocated in cache

memory, cache misses will happen much more frequently without proper ordering. In fact,

when the matrix is randomly sorted, almost every memory access may be a cache miss. This

situation leads to extremely low performance. In these cases, a reordering such as the one

provided by RCM can increase the number of cache hits, significantly reducing the

computing time.

Towards larger real problems Universitat Politècnica de Catalunya
Conclusions ESEIAAT, Terrassa

Pau Romeu Llordella 97 Bachelor’s final thesis

6.6 Conclusions

Nowadays, the numerical resolution of real problems requires great computational power.

Elements such as turbulence or boundary layer in three-dimensional CFD problems require

very fine grids that involve solving large systems of equations. The computational time

becomes enormous and a simulation of a seemingly simple element can take hours or days.

The main bottleneck in solving scientific and engineering computing problems is the

processor's access to data in memory. The vast majority of problems are solved by memory-

bound functions, i.e., methods whose execution time is mostly determined by the number

of memory accesses as opposed to the computation time. This hardware constraint forces

researchers to think of techniques to improve their programs and reduce computation time

and costs.

One of the most widely used kernels in the field of numerical resolution is the Sparse Matrix

Vector Multiplication (SpMV) and, due to its nature, the access to the vector elements in the

operation has a very poor performance. The objective of the last section was to test whether

sparse matrix reordering methods could be used to reduce the matrix bandwidth and

consequently reduce the computational time required to realise the SpMV computational

kernel.

The Reverse Cuthill Mckee algorithm has proved to be an efficient method for matrix

bandwidth reduction as can be seen in the sparse matrix representations before and after

reordering. The original version of this algorithm was presented in [35] in 1969 by the

authors of the same name. Since then, other more sophisticated versions obtaining similar

results in less time have been developed, for example, the GPS algorithm presented in [40].

Nevertheless, RCM remains today one of the most studied and widely used reordering

algorithms in more complex parallel distributions.

The results in terms of computational time improvement have varied depending on the type

of matrix treated. Matrices that already had a narrow bandwidth did not show an

appreciable time reduction as their initial sorting was already good enough. Similarly,

reordering does not offer much performance gain for small matrices as much of the

corresponding SpMV vector could be allocated in the cache memory.

In contrast, operations on very large matrices with poor initial orderings have shown great

improvements in efficiency, reducing their computation time by up to 60%.

In the random reordering of these matrices, it has been demonstrated the great importance

of creating so-called cache-friendly programmes that take into account the functioning of

this memory and avoid the number of failed accesses. In random reordering, where the

worst-case scenario for cache performance is used, computation times have increased by as

much as 370% of the original time.

Towards larger real problems Universitat Politècnica de Catalunya
Next steps towards parallelisation ESEIAAT, Terrassa

Pau Romeu Llordella 98 Bachelor’s final thesis

6.7 Next steps towards parallelisation

The techniques presented have been only a minimal part of the methods used today in

computational science and engineering.

When the problem size is so large, solving it by processing a single instruction at a time is

inefficient and slow, no matter how fast the processor is. Parallel computing makes use of

multi-core processors to perform calculations or processes simultaneously. In the last

decades, high performance computing has made use of parallelism to solve problems that

would be intractable in serial programming. This is done by dividing a huge problem into

smaller ones that can be solved at the same time [41].

This method of computation, which is often the only one available, brings with it great

challenges for the elaboration of the resolution codes. A simple operation in serial

programming can be quite complex in parallel.

For example, a parallel SpMV shares with its serial equivalent the efficiency problems

associated with irregular CPU access to memory. However, the same re-ordering methods

presented in this report may not be a solution for improving computing time since the

memory allocation scheme changes drastically.

A distributed-memory parallel SpMV splits the rows of the sparse matrix into as many

subsets as cores are available to perform the computation. This technique is known as

matrix partitioning and is a common preprocessing step. In this case, some new strategies

are required in order to keep the number of elements close to same value in each core so

computation load is balanced [42].

Another typical drawback of this scheme is dealing with communications. Frequently, an

element of a sparse matrix that has been partitioned among the cache memory of the

different process cores requires an element located in another core to perform an operation.

Minimising these communications is critical to good performance and, again, can be

achieved by reordering the elements [43].

The conclusion that can be drawn is that code parallelisation opens up a potentially huge

improvement in computational time that, however, requires a sophistication of

optimisation techniques. Thus, a wide range of researchers are focusing their efforts on

improving and developing new techniques for parallel coding enhancement.

Conclusions and future work Universitat Politècnica de Catalunya
Next steps towards parallelisation ESEIAAT, Terrassa

Pau Romeu Llordella 99 Bachelor’s final thesis

7
Conclusions and future work

These last sections present the conclusions of the

project and the work that remains to be done in the

future. This is followed by an estimate of the budget

and the social and environmental impact of this work.

Conclusions and future work Universitat Politècnica de Catalunya
Project conclusions ESEIAAT, Terrassa

Pau Romeu Llordella 100 Bachelor’s final thesis

7.1 Project conclusions

The main objective of this project was to introduce numerical methods as a tool for solving

heat transfer and fluid dynamics problems. In order to implement C++ programs capable of

solving problems of this nature, it has been necessary to study the corresponding analytical

equations and discretise them by means of the finite volume method.

Three major problems have been studied: heat conduction in a solid, convection-diffusion

of a property in a fluid and the pressure and velocity field of a fluid in a cavity through the

Navier-Stokes equations. Each of these problems has been solved using a system of linear

equations that was obtained according to the concrete conditions. In the different sections

it has been discussed both the physical aspects that influenced the result of the problem and

the treatment given to it by the computer.

The cases studied are a good introduction to the field of Computational Fluid Dynamics, a

discipline that has proven to be very useful in approaching and providing a good model of

the solution to great variety of problems.

During the development of these three problems, it has been verified that as a more precise

solution was required, the number of unknowns grew and, consequently, the computation

time of the computer increased exponentially. These are academic problems that can be

fairly solved without having to deal with long times of computation due to their simplicity.

However, reducing this time is a major challenge when dealing with real problems that

require much more processing.

The last part of the project has focused on an introduction to the treatment of large

problems. The first step has been to identify what is the main issue facing the processor

when performing operations needed in scientific computing.

The performance of the Sparse Matrix-Vector Multiplication kernel (very common in

solving problems such as those studied) has proved to be of great importance in

determining the computation time. This operation is memory-bound, i.e. its performance is

limited by the access of the CPU to the cache memory.

The Reverse Cuthill Mckee algorithm has been programmed. An algorithm that reorders a

sparse matrix by decreasing its bandwidth. This reordering allows much more regular and

predictable memory access to the elements of the multiplied vector when performing a

SpMV.

By means of real problem matrices obtained from a repository, it has been verified that the

application of this technique allows to reduce the computation time in most cases. The

effectiveness of the method depended to a large extent on the size and initial arrangement

of the matrix. Larger and originally unordered matrices have reduced their computing time

in SpMV by up to 60%, proof of the great effectiveness of this method.

Conclusions and future work Universitat Politècnica de Catalunya
Future work ESEIAAT, Terrassa

Pau Romeu Llordella 101 Bachelor’s final thesis

7.2 Future work

This project has been a brief introduction to Computational Fluids Dynamics, Computational

Science and Engineering and High-Performance Computing fields. Three major disciplines

that encompass much of today's engineering research. Therefore, there is still much to learn

and work on.

On the fluid mechanics side, the learning process will be continued through problem solving.

The next step is the treatment of the Navier-Stokes equations in turbulent regime. Further

complications such as complex geometries, compressible flow at high Mach numbers, etc.

will also be studied.

On the purely computer side, there is also a wide range of options. First of all, the aim is to

improve programming practices in C++, one of the most widely used languages in scientific

programming today, in order to make codes cleaner, more efficient and faster. Starting to

use Linux as an operating system in an efficient way is also key to be able to optimise the

processes that interact closer to the compiler.

Finally, on the scientific computation side, the first imminent step is to get introduced into

parallel computing and all its associated techniques. This step is intimately related to the

fact of dealing with more complex problems as it is where the benefit of parallel

implementation is realised.

Environmental and social impact Universitat Politècnica de Catalunya
 ESEIAAT, Terrassa

Pau Romeu Llordella 102 Bachelor’s final thesis

Environmental and social impact

This project has a low impact both environmentally and socially due to its academic

character. However, the concepts presented have great potential in the development of

technologies with a major improvement in people's lives.

Scientific supercomputing makes it possible to create models to forecast weather on a large

scale, the evolution of global warming or, recently, even the prediction of COVID-19 cases

within a society. These are just a few examples of how such simulations can be of great help

to everyone.

On a smaller scale, heat transfer and CFD programs like the ones discussed in this report

are of great utility to simulate the operation of new technologies or to make the existing

ones more efficient and less resource-consuming. If the power of computation was not

available, many technical advances would not have occurred because the high cost of

experimentation would have made it impossible.

On the other hand, it is also a fact that today's large computing centres consume a large

amount of energy resources as they grow exponentially in size. This is one of the reasons

why research is being done into cleaner and more efficient computing technologies, both

for greener and cheaper systems. In large computational complexes, optimisation

algorithms that improve performance and computational time such as the ones introduced

here also can save enormous amounts of resources.

References Universitat Politècnica de Catalunya
 ESEIAAT, Terrassa

Pau Romeu Llordella 103 Bachelor’s final thesis

References

[1] R. Temam, Navier-Stokes equations : theory and numerical analysis. Amsterdam
[etc.] : North-Holland Pub. Co., 1979.

[2] J. Oliver and C. Agelet de Saracibar, Mecànica de medis continus per a enginyers.
Barcelona : Edicions UPC, 2003.

[3] J. M. Bergadà Granyó, Mecánica de fluidos : breve introducción teórica con problemas
resueltos. Iniciativa Digital Politècnica, Oficina de Publicacions Acadèmiques Digitals
de la UPC, 2017.

[4] E. R. G. Eckert and R. M. Drake Jr, “Analysis of Heat and Mass Transfer,” 1972.

[5] S. V. Patankar, “Numerical heat transfer and fluid flow.” Taylor & Francis, Boca Ratón,
1980.

[6] W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic, “Handbook of Heat Transfer
Fundamentals,” 1985.

[7] J. F. Grcar, “John von Neumann’s analysis of Gaussian elimination and the origins of
modern numerical analysis,” SIAM Rev., vol. 53, no. 4, pp. 607–682, 2011, doi:
10.1137/080734716.

[8] J. Boudet, “Finite volume methods,” Comput. Fluid Dyn., no. January, pp. 1–24, 2011,
doi: 10.1007/978-3-319-99693-6_4.

[9] W. J. Minkowycz, “Handbook of numerical heat transfer,” 1988.

[10] L. Davidson, “TDMA Solver,” Numer. Methods Turbul. Flow, 2008.

[11] J. Dongarra, “The Gauss-Seidel Method,” Stationary Iterative Methods, 1995.
http://www.netlib.org/linalg/html_templates/node14.html#figgs (accessed Aug.
14, 2021).

[12] CTTC, “A Two-dimensional Transient Conduction Problem,” 2013.

[13] A. G. Smith and R. M. Hutton, “The numerical treatment of advection: a performance
comparison of current methods,” Numer. Heat Transf.

[14] CTTC, “Fractional Step Method - Staggered and Collocated Meshes,” Course Numer.
Methods Heat Transf. Fluid Dyn., 2013.

[15] F. X. Trias and O. Lehmkuhl, “A self-adaptive strategy for the time integration of
Navier-Stokes equations,” Numer. Heat Transf., vol. Part B: Fu, pp. 116–134, 2011.

[16] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible flow using
the Navier-Stokes equations and a multigrid method,” J. Comput. Phys., vol. 48, no. 3,
pp. 387–411, Dec. 1982, doi: 10.1016/0021-9991(82)90058-4.

[17] C. Rozov, Vladyslav Stuhlpfarrer, Marco Fernández Osma, Mario Breitsamter, “Small-
Disturbance-CFD-based Aircraft Flutter Investigation Including Powered Engine
Model,” 2019.

[18] Top500.org, “Top 500 supercomputers | June 2021,” 2021.
https://www.top500.org/lists/top500/2021/06/ (accessed Sep. 02, 2021).

[19] Our World In Data, “Supercomputer Power (FLOPS), 1993 to 2020,” 2020.
https://ourworldindata.org/grapher/supercomputer-power-flops (accessed Sep.
02, 2021).

[20] A. Buluç, J. Gilbert, and V. B. Shah, “Implementing Sparse Matrices for Graph
Algorithms,” Graph Algorithms Lang. Linear Algebr., vol. 94720, pp. 287–313, 2011,

References Universitat Politècnica de Catalunya
 ESEIAAT, Terrassa

Pau Romeu Llordella 104 Bachelor’s final thesis

doi: 10.1137/1.9780898719918.ch13.

[21] J. L. Hennessy, D. A. Patterson, and C. Kunia, The Architecture of ComputerHardware,
System Software, and Networking. 2013.

[22] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately hard, memory-bound
functions,” ACM Trans. Internet Technol., vol. 5, no. 2, pp. 299–327, 2005, doi:
10.1145/1064340.1064341.

[23] C. Carvalho, “The gap between processor and memory speeds,” Icca, pp. 27–34, 2002,
[Online]. Available: http://gec.di.uminho.pt/discip/minf/ac0102/1000gap_proc-
mem_speed.pdf.

[24] F. X. Trias, O. Lehmkuhl, A. Oliva, C. D. Pérez-Segarra, and R. W. C. P. Verstappen,
“Symmetry-preserving discretization of Navier–Stokes equations on collocated
unstructured grids,” J. Comput. Phys., vol. 258, pp. 246–267, Feb. 2014, doi:
10.1016/J.JCP.2013.10.031.

[25] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick, “Scientific
Computing Kernels on the Cell Processor,” Lawrence Berkeley Natl. Lab., 2007.

[26] J. González-Domínguez, O. A. Marques, M. J. Martín, and J. Touriño, “A 2D algorithm
with asymmetric workload for the UPC conjugate gradient method,” J. Supercomput.,
vol. 70, no. 2, pp. 816–829, 2014, doi: 10.1007/s11227-014-1300-0.

[27] L. O. Mafteiu-Scai, “The Bandwidths of a Matrix. A Survey of Algorithms,” Ann. West
Univ. Timisoara - Math., vol. 52, no. 2, 2015, doi: 10.2478/awutm-2014-0019.

[28] U. of Florida, “SuiteSparse Matrix Collection,” 1970. https://sparse.tamu.edu/
(accessed Aug. 12, 2021).

[29] A. George, J. Liu, and E. Ng, “Computer Solution of Sparse Linear Systems,” 1994.

[30] J. Pitt-Francis and J. Whiteley, Guide to Scientific Computing in C++. 2018.

[31] “Built-in types (C++) | Microsoft Docs,” Microsoft documentation, 2020.
https://docs.microsoft.com/en-us/cpp/cpp/fundamental-types-cpp?view=msvc-
160 (accessed Aug. 16, 2021).

[32] Dimitar Lukarski, “Sparse Matrix-Vector Multiplication and Matrix Formats,” Uppsala
Univ., 2013.

[33] U. Borštnik, J. Vandevondele, V. Weber, and J. Hutter, “Sparse matrix multiplication:
The distributed block-compressed sparse row library,” Parallel Comput., vol. 40, no.
5–6, pp. 47–58, May 2014, doi: 10.1016/J.PARCO.2014.03.012.

[34] P. R. Almeida Benítez and J. R. Franco Brañas, “Reducción del Ancho de Banda de
Matrices en el Algoritmo Go-Away para Mallas Regulares,” Divulg. Matemáticas, vol.
7, no. 1, pp. 1–12, 1999.

[35] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” Proc.
1969 24th Natl. Conf. ACM 1969, pp. 157–172, 1969, doi: 10.1145/800195.805928.

[36] A. George and J. Liu, “Computer solution of large sparse positive definite systems.”
Prentice-Hall, Englewood Cliffs, N.J, 1981.

[37] C. Wang, C. Xu, and A. Lisser, “Bandwidth Minimization Problem,” pp. 190–203, 2014.

[38] C. Berge, “The theory of graphs and its applications,” Bull. Math. Biophys., vol. 24, pp.
441–443, 1962, [Online]. Available: https://doi.org/10.1007/BF02478000.

[39] I. Arany, W. F. Smyth, and L. Szoda, “An improved method for reducing the bandwidth
of sparse symmetric matrices,” Inf. Process. 71, 1972.

References Universitat Politècnica de Catalunya
 ESEIAAT, Terrassa

Pau Romeu Llordella 105 Bachelor’s final thesis

[40] N. E. . Gibbs, J. . William G . Poole, and P. K. . Stockmeyer, “An Algorithm for Reducing
the Bandwidth and Profile of a Sparse Matrix,” vol. 13, no. 2, pp. 236–250, 1976.

[41] G. S. Almasi and A. Gottlieb, “Highly Parallel Computing,” Benjamin/Cummings Publ.
Company, Inc, 1989.

[42] A.-J. N. Yzelman and D. Roose, “High-Level Strategies for Parallel Shared-Memory
Sparse Matrix-Vector Multiplication,” IEEE Trans. parallel Distrib. Syst., vol. 25, no. 1,
pp. 116–125, 2014, doi: 10.1109/TPDS.2013.31.

[43] A. Bienz, L. Olson, and W. D. Gropp, “Reducing Communication Costs in the Parallel
SpMV,” 2015, Accessed: Sep. 15, 2021. [Online]. Available:
http://www.llnl.gov/CASC/hypre/.

