

Software and hardware implementation

for secure RF communications

on low power devices

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Auri Botines Puertas

In partial fulfilment

of the requirements for the degree in

Telecommunications Technologies and Services

ENGINEERING

Advisor: Sergi Bermejo

Barcelona, June 2021

 1

Abstract

In recent years, there has been an explosion of internet connected and other type of

remote-controlled devices. Companies and open source platforms have managed to make

those technologies much more accessible an easier to use by makers and other individuals.

However, there are multiple projects that lack security measures against potential wireless

attacks which could be performed without the user’s notice.

This work presents both hardware and software developments designed with security in

mind, using state of the art components and algorithms that allow cheap low-power devices

to exchange small messages securely. Despite those added measures, the end-user

interface and high-level programming of the hardware remains simple.

The resulting examples show how perform more secure RF communications with these

types of devices and how they avoid potential attacks.

 2

Resum

Durant els últims anys hi ha hagut un gran increment de dispositius connectats a internet i

d’altres tipus de dispositius amb control remot. Les empreses i plataformes de codi lliure

han aconseguit fer aquestes tecnologies molt més accessibles per a “makers” i molts altres

usuaris. De totes maneres, hi ha força projectes que no disposen o no mostren mesures

de seguretat contra possibles atacs en el medi que podrien ser realitzats sense que el

propi usuari se n’adoni.

En aquest treball es desenvolupa una part de maquinari i una de programari tenint en

compte la seguretat en tot moment. S’utilitzen els últims components i algorismes que

permeten a dispositius de poca potència poder intercanviar petits missatges amb seguretat.

Tot i les mesures afegides, la interfície d’usuari final i la programació a alt nivell s’ha

mantingut el més simple possible.

Els exemples finals mostren com efectuar comunicacions RF segures amb aquests tipus

de dispositius i com s’eviten possibles atacs.

 3

Resumen

A lo largo de los últimos años se ha producido un gran incremento de dispositivos

conectados a internet y a otros dispositivos con control remoto. Las empresas y

plataformas de código libre han hecho que estas tecnologías sean mucho más accesibles

para “makers” y otros muchos usuarios. Sin embargo, existen bastantes proyectos que no

disponen o no muestran medidas de seguridad contra posibles ataques en el medio que

podrían realizarse sin que el propio usuario se diera cuenta.

En este trabajo se desarrolla una parte hardware y otra software teniendo en cuenta la

seguridad en todo momento. Se han utilizado los últimos componentes y algoritmos que

permiten a dispositivos de poca potencia poder intercambiar pequeños mensajes de forma

segura. A pesar de las medidas añadidas, la interfaz de usuario final y la programación a

alto nivel se han mantenido lo más simple posible.

En los ejemplos finales se demuestra como efectuar comunicaciones RF seguras con

estos dispositivos y como se evitan posibles ataques.

 4

Acknowledgements

I would like to thank both the project supervisor and my family for the patience and effort

that have had during the realization of this work. I am also grateful for all individuals that

did contribute or help this project in any way or form.

 5

Revision history and approval record

Revision Date Purpose

0 01/03/2021 Document creation

1 18/04/2021 Document format and WP0 documentation

2 08/05/2021 WP0 documentation

3 05/06/2021 Updated HW documentation (WP1). Added SW development

documentation (WP2). Added appendices. Added repositories.

4 09/06/2021 Revision modifications (05/06/2021 – Doc. rev.1)

5 17/06/2021 Final candidate

6 18/06/2021 Last revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Auri Botines Puertas auri.botines@estudiantat.upc.edu

 Sergi Bermejo sergio.bermejo@upc.edu

Written by: Reviewed and approved by:

Date 18/06/2021 Date 18/06/2021

Name Auri Botines Puertas Name Sergi Bermejo

Position Project Author Position Project Supervisor

 6

Table of contents

Abstract .. 1

Resum .. 2

Resumen .. 3

Acknowledgements .. 4

Revision history and approval record .. 5

Table of contents .. 6

List of Figures ... 8

List of Tables .. 9

1. Introduction .. 10

1.1. Statement of purpose ... 10

1.2. Requirements and specifications .. 10

1.3. Methods and procedures .. 11

1.4. Work plan ... 12

1.5. Time Plan (Gantt diagram) ... 14

1.6. Deviations and incidences .. 15

2. State of the art of the technology used or applied in this thesis 16

2.1. Pre-shared key algorithms and its uses .. 16

2.2. Pros and cons of symmetric over asymmetric cryptography 17

2.3. Latest applicable security standards and considerations 17

2.4. Post-quantum cryptography implications .. 19

2.5. Hardware design .. 19

2.5.1. Integration ... 20

2.5.2. PCB design techniques ... 21

3. Methodology / project development ... 24

3.1. Hardware development .. 24

3.1.1. Diagram and schematic ... 24

3.1.2. PCB layout .. 24

3.2. Software development .. 24

3.2.1. Xoodyak-based AEAD algorithm (software-only) 24

 7

3.2.2. “SecureRF” library ... 26

4. Results .. 28

4.1.1. Integration ... 28

4.1.2. Simulated wireless attacks .. 28

5. Budget ... 32

6. Conclusions and future development ... 33

Bibliography .. 34

Appendices ... 35

Hardware diagram... 36

Schematic ... 37

Bill of materials (BOM) .. 39

PCB layout stackup ... 40

Components budget estimation ... 41

Assembly process pictures .. 42

Secure algorithm summary diagram (SO) ... 43

SecureRF Example: “Sender” and “Receiver” (commented) 44

SecureRF Example (TAMPERED): “Sender” and “Receiver” (commented) 45

Glossary ... 46

 8

List of Figures

Figure 1: TFG Zero PCB pinout reference .. 20

Figure 2: USB differential traces ... 21

Figure 3: RF trace width and length .. 22

Figure 4: External crystal design ... 23

Figure 5: AEAD algorithm payload structure ... 26

Figure 6: Basic replay attack example .. 29

 9

List of Tables

Table 1: Pros and cons of symmetric and asymmetric cryptography 18

Table 2: Main hardware components .. 19

Table 3: SecureRF library function prototypes and variables .. 27

Table 4: Probability of attack success vs. attack running time ... 30

 10

1. Introduction

1.1. Statement of purpose

This project aims to fill a gap found on a lot of remote devices that are being deployed in

home automation, smart cities and many other areas where remote sensing and actuation

have great advantages. There are numerous existing projects and companies providing

software and hardware allowing any individual to build or buy those services and devices.

Some of those projects are the most widespread, usually because they are the cheapest,

easiest to integrate and openly documented. But a few of them have considered security

measures like encryption, data integrity, authentication and anti-replay mechanisms, an

important step to keep privacy and potential attacks away.

The main objective of this project is to develop and provide an easy to use and easy to

integrate secure software and hardware solution for small low power devices remote

communications. This solution should be programmable with high level libraries and simple

function calls which at the same time must provide great secure mechanisms when used

for RF communications. In addition, the board needs to be designed for the lowest power

consumption possible and have battery management hardware built-in.

1.2. Requirements and specifications

This project requirements and specifications are designed for a certain type of devices that

require high security but at the same time they are not really high performing and often

need to consume as little as possible. Those devices are remotely controlled and may

report or actuate over critical infrastructures. The physical device direct manipulation or

attack (tampering) has not been considered in this work, the main focus has been the

protection against attacks in the wireless environment. However, the board can support

two different hardware secure elements that allows the user to implement tamper-proof

security measures (preventing key access, even when an attacker has complete access to

the device itself).

A final point that has also been considered is the easy integration with generic and

available hardware and software solutions (like Arduino). Some implementations on those

platforms lack these security measures but at the same time they are very easily accessible

and therefore heavily used (with the consequent large number of potential insecure

devices).

 11

Project requirements

- Hardware:

o Crypto integrated circuit (TRNG, SHA3)

o Easy to integrate (microcontroller, PCB pinout, documentation, …)

o Very low power (long battery life)

o Small footprint

o Integrated battery management

- Software:

o Easy to program (C++, C, Arduino)

o Symmetric-key cryptography (user has device access)

o Fast software-implementable encryption & authentication algorithm

o Git - updatable (bug & vulnerability fixes)

o Post-quantum considerations

Project specifications

- Hardware (main components):

o ARM Cortex-M microcontroller

o Crypto coprocessor

o SPI serial flash module

o RF transceiver

o Battery charge management controller

o External antenna connector

- Software:

o Arduino IDE integration

o Encryption & authentication implementation

o Custom secure communication implementation(s)

o Github / Gitlab for code hosting and version control

1.3. Methods and procedures

Hardware design: The board developed and manufactured during this project is a whole

new design. It uses a different microcontroller (low-power version) as the one which can

be found in the most similar boards. It adds multiple components (cryptography, sensors,

…). The PCB layout has been designed from the ground up.

Software design: The software is a mix of some previous projects and existing code

implementations with new and modified parts from the author. References to original

parts are specified in each section accordingly; see “3.2” and “2.5.1”.

 12

1.4. Work plan

Below there is a description of the plan made before the project started. It was divided into

four work packages each one having a list of specific tasks to be done (not necessarily in

parallel). At the end there is a Gantt diagram that helps to visualize the timing of those

tasks.

The time plan modifications made posteriori at the mid-term critical review and at

different stages of the project are pointed out in red (forecasted) and green (actual date it

ended). A more details are described in section “Deviations and incidences”.

Work Packages

SW & HW for secure RF communications on low power devices WP ref: 0

Major constituent: previous analysis & documentation Sheet 1 of 2

Short description:

Previous analysis and documentation for various project-related
tasks including: current and latest cryptography, post-quantum
cryptography, current analogous SW & HW implementations, PCB
RF design techniques, low power and battery management best
practices.

Planned start date:
15/02/2021

Planned end date:
19/04/2021

Start event:
Project start

End event:
SW and HW
implementations start

Internal task T1: pre-shared key algorithms and its uses.
Internal task T2: symmetric cryptography pros & cons.
Internal task T3: applicable latest security standards (RFC’s).
Internal task T4: post-quantum cryptography implications.
Internal task T5: common and integrable components research.
Internal task T6: RF PCB design techniques.
Internal task T7: low power design.

Deliverables:

Summary of
the research
and analysis
done for
each area.

Dates:
07/05/2021

SW & HW for secure RF communications on low power devices WP ref: 1

Major constituent: hardware prototypes (PCB’s) Sheet 1 of 2

Short description:

Hardware design of the board module (components, schematic,
PCB, fabrication, assembly and tests).

Planned start date:
20/03/2021

Planned end date:
08/05/2021

End event:
Assembled PCB’s

Internal task T1: general functional diagram and components.
Internal task T2: schematic design.
Internal task T3: PCB layout (placement and routing).
Internal task T4: fabrication output generation and manufacturing.
Internal task T5: PCB components.
Internal task T6: manual assembly of the boards.
Internal task T7: general tests.

Deliverables:

Finished
working PCB
prototypes

Dates:

20/05/2021

 13

SW & HW for secure RF communications on low power devices WP ref: 2

Major constituent: software implementations and programming Sheet 2 of 2

Short description:

Programming of board modules and its driver libraries.
Design and implementation of easy to use secure communication
algorithms.

Planned start date:
20/04/2021

Planned end date:
12/06/2021

Start event:
End of HW development.

End event:
Working code into PCB’s.

Internal task T1: programming board modules (drivers/libraries)
Internal task T2: secure algorithms implementations
Internal task T3: testing algorithms with the boards

Deliverables:
Crypto code

Dates:
05/06/2021

SW & HW for secure RF communications on low power devices WP ref: 3

Major constituent: final conclusions Sheet 2 of 2

Short description:

Project final conclusions for its different areas.
Final documentation and results.

Planned start date:
14/06/2021

Planned end date:
21/06/2021

Start event:
All previous work packages
finished.

Internal task T1: hardware implementation conclusions
Internal task T2: software implementation conclusions
Internal task T3: general work conclusions

Deliverables:
Finished
project

Dates:
17/06/2021

Milestones

WP# Task# Short title Milestone / deliverable End date (week)

0 1 PSK mechanisms (documentation) 19/04/2021 (17)

0 2 Symmetric crypto (documentation) 19/04/2021 (17)

0 3 Standardizations (documentation) 19/04/2021 (17)

0 4 Post-quantum crypto implications (documentation) 19/04/2021 (17)

0 5 Easy to integrate hardware (documentation) 19/04/2021 (17)

0 6 RF PCB design (documentation) 19/04/2021 (17)

0 7 Low power design (documentation) 19/04/2021 (17)

1 1 General diagram 20/03/2021 (12)

1 2 Schematic design 31/03/2021 (14)

1 3 PCB layout design 10/04/2021 (15)

1 4 Board fabrication 23/04/2021 (17)

1 5 PCB components 23/04/2021 (17)

1 6 Assembly 28/04/2021 (18)

1 7 Board testing Finished working PCB’s 20/05/2021 (21)

2 1 Drivers and libraries 12/05/2021 (20)

2 2 Secure communications 02/06/2021 (23)

2 3 Algorithm testing Crypto code & libraries 05/06/2021 (23)

3 1 Conclusions (HW) 17/06/2021 (25)

3 2 Conclusions (SW) 17/06/2021 (25)

3 3 Conclusions Finished project 17/06/2021 (25)

 14

1.5. Time Plan (Gantt diagram)

First plan (estimated at mid februray 2021)

Actual times (not a plan)

 15

1.6. Deviations and incidences

The first part of the project (research and documentation) took more time than the expected,

partly because this project focused on the latest security standards and research being

developed at the same time of this work.

The known global chip shortage crisis originated by multiple external factors caused

some delays and modifications of the hardware part of this project, however, it did not affect

the final result intended at the beginning.

Some parts of the project that couldn’t be implemented can be found in the latest section

“Conclusions and future development”.

 16

2. State of the art of the technology used or applied in this

thesis

This chapter is intended to show and provide some useful references, short descriptions

and best practices about simple wireless communications security and PCB design, but it

is not a deep analysis or explanation of the best definitive methods to implement a secure

RF communication or design a PCB. In the other hand, it tries to highlight state of the art

methods, potential issues and pros and cons of the different technologies used in today’s

real world.

It focuses on a specific use case defined in “Requirements and specifications” and,

therefore, the mechanisms chosen are thought to be the optimal for this case but not for

every possible type of communication or device. The physical intrusion was not the main

priority of this work, but strong symmetric ciphers and good true random number generators

are essential to acquire good enough security levels. [1].

2.1. Pre-shared key algorithms and its uses

Pre-shared key algorithms are an essential part in symmetric cryptography although they

are also used in some parts of asymmetric or public cryptography. They use a single secret

key to encrypt/decrypt and perform other operations between the two or more entities which

are communicating.

This key must be previously shared and known by all the members or entities that are

communicating. The method in which this secret key is shared is not a part of this work but

it is a critical part that should be considered when implementing and deploying devices or

systems using those mechanisms, because anyone knowing the secret key will have

access to all communications.

Public key cryptography methods are often used to generate a similar secret key from

public and private keys, those methods are inherently slower, more power demanding and

often require a more complex infrastructure than PSK systems. Despite that, they are

required when having physical access to all the communicating devices is impossible or

impractical (for example the vast majority of internet connected devices), usually those

devices are very far away.

For remote, but not too far away communications with low bit rates (car key fobs, garage

and household access doors, alarms, remote sensors & actuators, etc...), it makes sense

to use pre-shared key systems. Once the owner/s having physical access to the devices

(only one time) is already been taken in account and the devices themselves are secure,

having private, secure and resistance to potential attacks is a must.

 17

The main application of pre-shared key algorithms is encryption, integrity and

authentication, but not always all mechanisms provide those. There are also other aspects

to consider like constant time, nonce misuse resistance, message repudiation, message

committing, security level, post-quantum cryptography implications, etc. This project aims

to achieve security primarily by using strong cryptography and reduce potential wireless

attacks [2].

Some widely used PSK examples:

- Rolling/hopping codes [1]

They are often used in keyless entry systems, may be vulnerable to advanced

replay attacks like the “Rolljam vulnerability”. There are new keyless systems which

use other advanced algorithms not related with rolling codes, they use an exchange

of messages between parties, see [2] and [3].

- Wi-Fi protected access point passwords (for example, WPA-PSK)

- TLS-PSK

Set of different transport layer security cipher suites used on the internet usually

applied on processing power constrained and manually configured closed

environments. See [4] and [5] (latest).

2.2. Pros and cons of symmetric over asymmetric cryptography

In the table 1, some of the most remarkable properties of both symmetric and asymmetric

(or public) cryptography and encryption are presented. In the end, each one can be more

suitable for some type of communications and worst for other ones, it usually depends on

the specific use case.

2.3. Latest applicable security standards and considerations

There are several organizations providing standardizations and publishing detailed

descriptions on several algorithms related with secure communications. This work aims to

use the latest and more secure publicly available algorithms which can be implemented in

the hardware modules developed with small modifications.

The latest standard being used on Internet (and IoT) devices is TLS1.3 [6] (2018) which

uses some new cipher suites (like Chacha20-Poly1305) and removes old insecure ones.

Those cipher suites define how key exchange, authentication, hashing and encryption

algorithms are is used in the communications. There are other and more recent algorithms

 18

not specifically designed for the Internet which may be faster and more suitable for small

low power devices.

While this work was being done, the NIST announced (March 2021) the ten finalists of the

“Lightweight Cryptography” project which presents algorithms specially designed for highly-

constrained devices like the one designed in this project. Although the finalist is expected

to be announced withing the next 12 months, the software developed for this work tries to

use one of those secure-proven methods and hopes to keep the algorithm up to date or

change it in case any vulnerability were to be detected. All those algorithms don’t need

specific hardware and can be implemented on practically any microcontroller, therefore,

they can be easily maintained and updated over time without needing hardware changes.

 Symmetric / private key Asymmetric / public key

 Pros Cons Pros Cons

Certificates Not used. Not used. Unique key (root

CA). Only one entity

to be protected.

Unique key (root

CA). Only one

single entity can

compromise all

certificates it

generated.

Secret keys Same key for

encryption and

decryption.

Same unique key in

different devices,

more vulnerable

points. Any device

could compromise

all the other ones

sharing the same

key without notice.

Need to share the

key in advance.

Public-private key

groups (that usually

change over time

connection

establishment). No

need to pre share

any secret key.

Different keys for

encryption and

decryption. Public

key sharing method

required

(certificates).

Key sizes Smaller key sizes

for equivalent

security level.

 Bigger key sizes for

equivalent security

level.

Computation

power required

Usually less. Usually more.

Time required Less. More.

Non-repudiation Not provided. Can be provided (by

a trusted third

party).

Post-quantum Easily remediable

with increased key

sizes and

randomness.

 More complex

algorithms.

Table 1: Pros and cons of symmetric and asymmetric cryptography

https://csrc.nist.gov/projects/lightweight-cryptography

 19

2.4. Post-quantum cryptography implications

In the past few years, the new concept of post-quantum cryptography has been emerged

due to the new implications the future quantum computers may have over the cryptography

used nowadays. Those computers may be able to solve very hard or impossible

mathematical problems at the present time. Some of those mathematical problems are

used especially on public-key cryptography (for example RSA prime factoring), as a

consequence there is an active research on public-key encryption, and key-establishment

algorithms resistant to quantum computers.

However, the larger part of symmetric-key encryption algorithms does not rely on that

kind of mathematical problems hence the only implication of quantum computers may be

a square root speed-up factor over a simple brute force attack (Grover’s algorithm [7]). It is

known that, with increased key sizes and key management protocols (multiple algorithms

already exist), symmetric cryptography is resistant to quantum attacks. In fact, some

popular algorithms (like SHA3 or AES with 256-bit key) are already considered secure.

As a consequence, for now, using up to date standards with large symmetric key sizes

is enough to have a secure encryption. An authentication and integrity protocol based on

those standards should then, be also secure.

2.5. Hardware design

The hardware part of the project consists of a PCB module which integrates a number of

components carefully selected to provide it with secure remote-control functionalities, very

low power capabilities and an easy integration with the Arduino IDE platform and some of

its libraries. Some features of the PCB main components assembled are shown below.

 Component

reference

Lowest

consumption

Arduino

integration

Microcontroller ATSAML21G18B < 1 μA Modified ArduinoCore-samd

(Mattairtech and the author)

Transceiver RFM69HCW

(RFM95W LoRa compatible)

< 1 μA Modified LowPowerLab’s

RFM69 library (compatible with

RadioHead Packet Radio)

Charge controller MCP73831T-2ACI/OT 0.1 μA (no charge) -

Voltage regulator TCR3UF30A,LM(CT 0.6 μA (10 μA load) -

HW cryptographic

authentication

DS28C16Q+U (or DS2477Q+T) 3.5 μA (400 μA)

(or 0 μA)

The author

External memory AT25FF041A-SSHN-T

(compatible with other generic)

< 1 μA

(or 0 A)

SPIFlash

Table 2: Main hardware components

 20

2.5.1. Integration

Since one of the objectives of this project is to be easy to develop with, both the

microcontroller and the transceiver module have been selected so that they can be

somewhat easy to integrate with the Arduino IDE and its libraries and drivers.

The microcontroller (SAML21G18) is the low consumption version of another one

(SAMD21G18) already used in some Arduino boards, however it is not so similar and the

“ArduinoCore-samd”, which contains the source code and configuration files of the Arduino

Microchip's SAMD21 processor boards, has to be modified. The repositories below are the

ones used to develop this work. The first one was created by the author for this project:

“AtArduinoCore-samL” (Atalonica) MIT https://github.com/Atalonica/AtArduinoCore-samL

“ArduinoCore-samd” (Arduino LLC) LGPL https://github.com/arduino/ArduinoCore-samd

“ArduinoCore-samd” (MattairTech LLC) LGPL https://github.com/mattairtech/ArduinoCore-samd

The transceiver module can be interfaced with LowPowerLab’s RFM69 or with RadioHead

Packet Radio Arduino libraries. This project, however, adds a security layer on top of

LowPowerLab’s library (see 26). Finally, the board “TFG Zero” has a pinout spacing

compatible with any standard protoboard and the pin functionalities and Arduino references

are shown in Figure 1.

Figure 1: TFG Zero PCB pinout reference

https://github.com/Atalonica/AtArduinoCore-samL
https://github.com/arduino/ArduinoCore-samd
https://github.com/mattairtech/ArduinoCore-samd
https://github.com/LowPowerLab/RFM69
https://www.airspayce.com/mikem/arduino/RadioHead/classRH__RF69.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRH__RF69.html

 21

2.5.2. PCB design techniques

To ensure good integrity and reduce loses of the signals travelling inside the printed circuit

board (especially high frequency and RF signals), different methods for certain parts of the

PCB have been used:

- USB

USB data lines are differential and must have a controlled impedance of 90 Ω. The PCB

manufacturer provides a calculator that takes into consideration they PCB physical

characteristics to provide us with a trace width for a specific impedance value of differential

traces (KiCad built-in tools and others can also be used if the manufacturer doesn’t have

any specific application). The USB traces of the PCB developed in this project have a value

of 0.2611 mm in width (for a 0.2032 mm spacing). For the USB signals to arrive at the same

time both differential traces should have the same length (see marked left image in Figure

2). It is also important to keep an uninterrupted ground plane immediately under the

controlled impedance traces and to keep same layer ground/power pours (or fills) away

from those traces. This also applies to the next section (RF) where a 50 Ω matching

impedance is used (instead of 90 Ω).

Figure 2: USB differential traces

- RF

Transceiver integrated circuits and modules specify the reference impedance value that

should be used in the output/input pin (where the antenna should be connected). This

impedance value must be the same for the external antenna, its connector and the PCB

traces that connect the IC or module with the antenna. The transceiver used (RFM69HCW)

can work with a 200 Ω or 50 Ω impedance, we’ve chosen the second since it is more

standardized. There are different formulas and tools to calculate the matched impedance

trace width for a specific impedance value. We’ve used the manufacturer’s calculator, that,

for our specific PCB parameters (dielectric, cooper) and type of line (microstrips, striplines)

gave a value of 0.29337 mm.

 22

Once we know the trace width of the RF signals, we need to ensure RF traces are

shorter (in length) than the critical length to minimize RF effects. The formulas are again

different depending on the line used (microstrips or striplines), in our case we used a

microstrip trace:

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ =
𝑐

𝑓
∙

1

12√𝜀𝑟(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

=
3 ∙ 108 𝑚/𝑠

868 ∙ 106 𝐻𝑧
∙

1

12√3.3941
= .01563 𝑚 = 15.63 𝑚𝑚

(2.1)

The above effective relative permittivity for a microstrip can be calculated as follows:

𝜀𝑟(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) =
𝜀𝑟+1

2
+

𝜀𝑟−1

2√1+12(
𝐻

𝑊
)

=
4.6

2
+

4.6−1

2∙√1+12(
0.2

0.29337
)

= 3.3941 if (
𝑊𝑖𝑑𝑡ℎ

𝐻𝑒𝑖𝑔ℎ𝑡
> 1)

(2.2)

The relative permittivity of the dielectric should be provided by the PCB manufacturer, in

our case the dielectric used is a “7628 prepreg” with an εr of 4.6.

As we can see below, by minimizing the distance between the antenna and the RF pin of

the module, the trace length (including pads) is far below to the critical length previously

calculated (7.4 mm < 15.6 mm).

Figure 3: RF trace width and length

 23

- External crystal

The external crystal oscillator purpose is to provide a very accurate constant frequency to

the microcontroller. It must be placed very close to the MCU pins (and its respective

capacitors). However, it can be an important source of noise that’s why it is very important

to not route anything else close or under it and to cut all planes under it. A solid ground

plane under it can reduce electromagnetic emissions and noise but it also adds parasitic

capacitance that can decrease frequency stability. For this design the ground plane directly

under it has been cut out and the one at the bottom has been kept with a small gap around

it connected to the main ground plane through a small trace. [8], [9], [10].

Figure 4: External crystal design

- EMI / EMC

There are different techniques that can be used to both prevent outside electromagnetic

interferences from affecting the PCB circuits and minimizing the emissions of the board to

outside devices. By having a four-layer board with an entire ground plane and ground pours

under components and signals that ensure low current return paths is key to reduce those

effects.

Low electromagnetic emission has been kept in mind during the design process but has

not been the priority of this project, therefore the signal routing, power planes and board

stackup could be modified to improve further the EM compatibility (EMC) of the board.

 24

3. Methodology / project development

3.1. Hardware development

3.1.1. Diagram and schematic

Refer to appendices, first sections “Hardware diagram” and “Schematic” for both a high-

level preview of the hardware components chosen and the detailed schematic used to build

the PCB itself.

3.1.2. PCB layout

The printed circuit board designed consists on a four-layer stackup. The top and bottom

layers are used for component routing the traces and the two inner layers are both

reference planes carrying the ground and the 3V power signals. With four layers we can

achieve an easier component placement, higher density and better electromagnetic, signal

integrity and power distribution properties. A detailed view for all four layers layouts is

shown in “PCB layout stackup” appendix.

3.2. Software development

Two objectives of this project are: providing high security but also having an easy

implementation for any ordinary user to employ. The next two sections describe those two

points: a secure lightweight algorithm and a brief description of an Arduino compatible

library that implements it.

3.2.1. Xoodyak-based AEAD algorithm (software-only)

For an overall overview of the algorithm and its timing diagram, see appendix: “Secure

algorithm summary diagram (SO)”. Note that all messages exchanged must be encrypted

with any secure-proven 128-bit symmetric encryption algorithm, in our case we use AES-

128 (built in the RFM69 transceiver module).

Parameter definitions

- NREQ (12-byte buffer): nonce request message, contains NREQNID, NREQRID and NREQH (in this

order).

- NREQNID (4-byte buffer): nonce request identification name, must contain fixed values for all requests.

- NREQRID (4-byte buffer): nonce request random identifier, must contain random values for each request.

- NREQH (4-byte buffer): nonce request Xoodyak hash of NREQNID, NREQRID and KH.

- N (16-byte buffer): unique or true random generated array. Obtained either by a hardware certified TRNG

or by an increment/decrement-only hardware counter.

- KH (16-byte buffer): pre-shared key used for Xoodyak hashing.

 25

- KX (16-byte buffer): pre-shared key used for Xoodyak AEAD scheme (should be randomly generated).

- KE (16-byte buffer): pre-shared key used for top-layer encryption (should be randomly generated).

- M (0 to 44-byte buffer)*: contains the user message (will get encrypted and authenticated).

- AD (1 to 4-byte buffer)*: contains the user associated data (0-3 bytes) and 1 protocol-specific byte that

indicates sizes (will get authenticated only).

- C (0 to 44-bytes buffer): contains the ciphertext of M (Xoodyak encryption of M). Same length as M.

- T (16-byte buffer): Xoodyak authentication tag used to validate AD and C integrity and authenticity.

* The combined length of AD and M must be 45 bytes maximum (i.e. if we transmit a 42-byte message, the

user associated data length must be 2 bytes at most).

Nonce exchange algorithm

All the communications start with a nonce [11] exchange mechanism. This nonce is, later

on, used as an initialization parameter on the encryption and authentication algorithm.

The first message is sent from whoever wants to send a secure message (encrypted,

authenticated and with valid integrity) to a receiver. From now on, let’s call them “A” (the

sender) and “B” (the receiver). Those messages, in the order they are issued, are described

below:

Nonce request (NREQ):

Sent from A to B asking for a nonce. Contains a user custom “nonce request” identifier

NREQNID (same message for all nonce requests), four random bytes NREQRID (different for

each nonce request) and a hash, NREQH, of those two parameters plus the pre-shared key

KH. If NREQ fails the integrity check or B is waiting for an AEAD message when the NREQ is

received, an error counter must be increased and the current minimum nonce generation

time must be multiplied by this error counter.

Nonce response (NRES):

Sent from B to A when B receives NREQ. Contains the nonce (N) and a hash of: N, a

transformation of (NREQNID, NREQRID) and KH. When N is either generated (by B) or

received (by A) a short lifespan (<1s) nonce expiration timer must be started, at timeout no

AEAD messages must be decrypted/encrypted.

AEAD algorithm

After a nonce is successfully received by A, this node sends the AEAD message. This

message is generated using the Xoodyak AEAD algorithm [12] with the key KH, the nonce

N, and the user message M and associated data AD. Refer to the parameter definitions

above for its sizes (constrained by the maximum RFM69’s payload size). The final payload

which is send from A to B containing the unencrypted (but authenticated) AD, C (encrypted

 26

M) and the authentication tag T is as follows (note that AD contains two parts: one is a

protocol-specific information byte and the other is customizable for the user, up to 3 bytes):

Associated Data (1 + 0-3) Ciphertext (0-44) Authentication Tag (16)

Figure 5: AEAD algorithm payload structure

If nonce timeout expires or any validation fails during encryption/decryption, buffers are

emptied and the state reset. On the other hand, if a secure AEAD message passes all

checks and is successfully decrypted, error counter and minimum nonce generation time

are set to its default values.

3.2.2. “SecureRF” library

This is the library that implements the algorithm functionality described in the above section.

It is compatible with the Arduino platform. Its built-in examples show how to securely

transmit and receive critical communication lightweight commands using the RFM69

Arduino library (which is only actually required by the examples). The Xoodyak

implementation used inside is a modified version of the one made by Rhys Weatherley

which has coded all NIST competition finalists’ algorithms.

Repositories:

“SecureRF” (Atalonica) MIT https://github.com/Atalonica/SecureRF

DEPENDENCY “RFM69” (LowPowerLab) GPL3 https://github.com/LowPowerLab/RFM69

“lwc-finalists” (rweather) MIT https://github.com/rweather/lwc-finalists

Public function prototypes and variables:

setKeys(const unsigned char * kx, const unsigned char * kh)

Sets hash and AEAD pre-shared keys, it must be called once before any nonce or message request/response.

Parameters

 kx
kh

Buffer to receive the input key.
Buffer to receive the input key.

Returns

 true
false

On success.
On error (keys are already set).

createNonceRequest(const unsigned char * nReqNameId, const unsigned char * nReqRandId,
 unsigned char * nReq)

Creates the nonce request message from name and random identifiers.

Parameters

 nReqNameId
nReqRandId
nReq

Buffer to receive the input unique nonce request identifier.
Buffer to receive the input random nonce request identifier.
Buffer where the output message will be saved.

Returns

 true
false

On success.
On error (keys not set or error generating hash).

https://github.com/Atalonica/SecureRF
https://github.com/LowPowerLab/RFM69
https://github.com/rweather/lwc-finalists

 27

onNonceRequest(unsigned char * nReq, const unsigned char * n, unsigned char * nRes)

Creates the nonce response message from the nonce request received and the provided nonce.

Parameters

 nReq
n
nRes

Buffer to receive the input nonce request.
Buffer to receive the new random nonce.
Buffer where the output message will be saved.

Returns

 true
false

On success.
On error (waiting AEAD, invalid nonce req., error generating hash or nonce not saved).

onNonceResponse(unsigned char * nRes)

Saves the received nonce if valid and prepares for receiving a new secure AEAD message.

Parameters

 nReq Buffer to receive the input nonce response.

Returns

 true
false

On success.
On error (error generating hash, invalid response or nonce can’t be saved).

createSecureMessage(unsigned char * message, unsigned char messageLength,
 unsigned char * ad, unsigned char adLength)

Creates the AEAD payload from user message and associated data.

Parameters

 message
messageLength
ad
adLength

Buffer to receive the user input message.
Length of user message (in bytes). Maximum is 44 minus a.data length.
Buffer to receive the user associated data.
Length of user a. data (in bytes). Maximum is 3.

Returns

 true
false

On success.
On error (keys not set, nonce expired, message length error, a. data length error or
error in xoodyak AEAD encryption).

static unsigned char SECURE_PAYLOAD[62]

Buffer containing the AEAD secure message payload ready to be send. It is updated when
createSecureMessage(…) function returns true.

static uint8_t SECURE_PAYLOAD_LEN

Length (in bytes) of SECURE_PAYLOAD.

waitingSecureMessage()

Used to check if node is waiting for an AEAD message. Should be called before onSecureMessage(…).

onSecureMessage(unsigned char * payload)

Reads, decrypts and validates an AEAD input payload message.

Parameters

 payload Buffer to receive the input payload just received.

Returns

 true
false

On success.
On error (nonce expired, error in xoodyak AEAD decryption or validation).

static unsigned char PLAINTEXT[45]

Buffer containing the decrypted and authenticated user message. It is updated when onSecureMessage(…)

function returns true.

static uint8_t PLAINTEXT_LEN

Length (in bytes) of PLAINTEXT.

static unsigned char ASSOCIATED[5]

Buffer containing the authenticated user a.data. Updated when onSecureMessage(…) function returns true.

static uint8_t ASSOCIATED_LEN

Length (in bytes) of ASSOCIATED.

Table 3: SecureRF library function prototypes and variables

 28

4. Results

4.1.1. Integration

By using the developed Arduino-compatible core for the board and the library that handles

the security algorithm (referenced in the previous section), the prototype board can be

successfully programmed with the Arduino IDE (including the new 2.0 beta IDE) by using

high-level functions that allow a fairly inexperienced user to handle it.

The examples show how to perform an easy message exchange between two pre-

programmed remote nodes while using robust security mechanisms which give the

communication the extra layer of protection intended at the beginning of this work.

4.1.2. Simulated wireless attacks

For the secure messages (AEAD), the security level of the messages is directly the one

used by the Xoodyak payload times the AES-128 provides, the nonce exchange messages,

however, are only AES-encrypted. Both methods have a security level of 128 bits.

Delayed replay attack:

An attacker may be interested in replaying (or sending a command that was sent

previously) later on, whenever he wants. The algorithm created prevents that from

happening.

First, the attacker continuously listens during some time and identifies how the

messages are sent (if there is a nonce exchange, ACK’s, etc). After that, it may record

specific payloads, for example nonce requests and a specific AEAD messages he is

interested to replay. Finally, the attacker executes and tries to impersonate another node

by sending its recorded messages. If the attacker requests a nonce and it receives a

previously sent value then he may try to replay the AEAD message that was sent with that

nonce. The algorithm expands over large time periods the little probabilities of successfully

executing this attack.

The diagram below (Figure 6) shows how the attacker could replay an AEAD message

without ever having to decrypt any payload.

 29

Figure 6: Basic replay attack example

The probability of a successful delayed replay attack (where the attacker does not need to

decrypt any message), is directly related to how good and long are the nonces. If they are

indeed truly unique (using a counter for example), the probability of successfully replaying

a previous message is non-existent (since all future payloads will be different). However, if

the nonces are randomly generated (with a true random generation engine), the probability

is the same as correctly guessing a nonce. Since the nonces are 128 bits long (16 bytes),

this probability can be obtained as follows:

𝑃(correct nonce guess) =
1

2128
≈ 2.939 ∙ 10−39 (4.1)

This is, however, somewhat useless if an attacker could be attacking the system constantly

(replaying nonce requests indefinitely). The algorithm, has a protection mechanism against

that: for every nonce or AEAD message that fails, a timer is increased and the node stops

responding to any requests while the timer has not expired.

 30

A better way to describe the chance of a replay attack is then the probability of guess

success per time interval. Since the probability of success within ‘n’ tries follows a binomial

distribution 𝑋~𝐵(𝑛, 𝑝), we have that

𝑃(k successes in in n tries) = 𝑃(𝑋 = 𝑘) = (𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘, with 𝑝 =
1

2128. (4.2)

Note that this probability does not consider the 32 random bits of the nonce exchange since

the attacker could always replay the same nonce request (or alternate between some of

them). Since in our case ‘k’ is always equal to 1,

𝑃(1 success in in n tries) = 𝑃(𝑋 = 1) = 𝑛𝑝(1 − 𝑝)𝑛−1.
(4.3)

Our timer increases exponentially for each failed try, then:

𝑇′ = 2𝑇 ∙ 𝑎𝑛 with 𝑎𝑛 = 𝑛2 + 𝑛 + 1
(4.4)

For a specific time interval trying to succeed, the number of tries would be approximately:

𝑛(𝑇𝑎𝑡𝑡𝑎𝑐𝑘) =
1

2
(√

2𝑇𝑎𝑡𝑡𝑎𝑐𝑘

𝑇
− 3 − 1) (4.5)

Finally, we can calculate the likelihood of accomplishing the attack during this period:

𝑃(𝑠uccess within Tattack) = 𝑛(𝑇𝑎𝑡𝑡𝑎𝑐𝑘) ∙
1

2128 (1 −
1

2128)
𝑛(𝑇𝑎𝑡𝑡𝑎𝑐𝑘)−1

 (4.6)

Several examples with T = 1s are shown in Table 4.

Attack running time Number of attempts Probability of success

1 day ~207 ~6.08·10-37

1 month ~1137 ~3.34·10-36

1 year ~3970 ~1.17·10-35

Table 4: Probability of attack success vs. attack running time

* Notes on delayed replay attack:

- The attacker must use specialized tools and techniques to be able to block the

impersonated node (A) from receiving the messages sent by the intruder (the sniffing of

the wireless traffic can be done much more easily).

- While the attack is being performed, the user may know something is going on since the

nodes would not respond to his valid requests.

 31

- The above example does not take into account in-between successful traffic which would

reset the exponential timer. If the attacker was waiting for a correct transmission before

trying his replay, the number of attempts per timer interval would increase depending on

the frequency A and B exchange secure messages.

- The strength of the algorithm is the ability to prevent the attacker to replay a message

whenever he wants.

Integrity:

Both the nonce exchange and the AEAD scheme have mechanisms to ensure the payloads

transmitted are not tampered in any way. The nonce exchange messages contain hashes

(with a PSK) that verify the rest of the payload, and the Xoodyak AEAD algorithm already

checks for integrity and authentication of the communication in a similar way (with its

validation tag). On top of that there is AES-128 encryption which makes it much more

difficult to target specific parts of a payload (for example the associated data, which

Xoodyak does not encrypt).

We can test the above stated by executing the basic “Sender” and “Receiver” examples

but flipping any bit just before sending or receiving the payload. Then, the internal code of

the library detects that and the high-level user gets an error (false) return value. Note that

this simulated modification is done before AES encryption so we can test the library. If the

bit was to be flipped after encryption, the error would be detected as well, since the payload

would not pass any integrity or format checks.

See example in appendix “SecureRF Example (TAMPERED): “Sender” and “Receiver”

(commented)”, where a payload bit was flipped (secure.SECURE_PAYLOAD[0] ^= 0x10) just

before sending the message with (radio.sendWithRetry(…)).

 32

5. Budget

Prototype costs:

- Components

The entire component list for the prototypes, including its prices can be found in the

appendices (“Bill of materials (BOM)” and “Components budget estimation”).

- Schematic design (included in labor costs)

- PCB design (included in labor costs)

- PCB prototypes manufacturing

25€/5 pieces: 4-layer, 75x25mm, HASL lead-free, silkscreen (both sides).

70€/100 pieces (same specifications).

- PCA prototypes assembly (included in labor costs)

When manufacturing x5 PCB’s the total cost for each one was 29.55€ (not including

development and assembly costs). However, the costs (components and printed circuit

boards) are obviously heavily reduced when manufacturing an increased number of boards,

for example it would cost an estimated of 19.21€ if manufacturing 100 units (the cost goes

further down for larger quantities).

Labor costs: This work has been carried out during the first semester of 2021 with an

estimated dedication of 12 hours per week. Considering 22 working weeks and a junior

engineer cost of 11 €/hour, the total working hours cost is about 2900 € (to be added to the

protype costs above).

Similar boards available on the market oscillate between 20€ and 25€ (some of them do

not include security processors and sensors built-in). Even including one-time development

and occasional labor costs (since almost the whole process can be automated), the

manufacturing of large quantities (>1000) makes this prototype reasonable to be sold with

sufficient margins (if there was an intentionality).

(*) All specific software used to develop this project both the programming and hardware

(KiCad) parts is open source and free of any charge.

 33

6. Conclusions and future development

The hardware prototypes passed all the design, manufacture, assembly and testing stages

successfully and they have been able to incorporate all the proposed requirements.

Although the work focuses on security provided by software, the boards can use the state

of the art crypto processor built-in. The prototypes should be able to achieve very low power

consumption, since all the components were selected accordingly (including the main

microcontroller which cannot be found on any Arduino board on the market), the board runs

on low voltage to further reduce power usage.

The software developed for both the integration with the Arduino platform and the

implementation of a secure algorithm for the RF communications do work as expected.

They are a fast way of substantially increasing the security of simple RF communications.

Any user can acquire the necessary files publicly available on the internet and use or modify

them to build custom projects with latest lightweight security.

High-level integration and open software have great impact on possible use cases of

this work. By choosing and implementing compatible software and using already popular

libraries, the added benefits of this work and its contributions may be able to reach more

people and therefore increase the security of some existing vulnerable devices.

Future development and new features:

- High-level low-power sleep modes implementations (for SAML21)

- Use built-in crypto processor for nonce generation (decrement-only counter)

- Use built-in crypto processor to run standardized authentication algorithm (limited

to this board or boards with DS28C16)

- AEAD message fragmentation

- NIST Lightweight Cryptography AEAD finalist implementation (when it comes out)

 34

Bibliography

[1] D. U. (Atmel/Microchip), "The “Three-Legged Stool” of Cryptography," 2016. [Online].
Available: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8972-CryptoAuth-3-
Legged-Stool-Article.pdf.

[2] K. M. (Atmel/Microchiop), "Attack Methods to Steal Digital Secrets," 2015. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8949-CryptoAuth-Attack-Methods-
Steal-Digital-Secrets-WhitePaper.pdf.

[3] "Rolling/hopping codes," [Online]. Available: https://en.wikipedia.org/wiki/Rolling_code.

[4] Atmel (Microchip), "Design and Security Considerations for Passive Immobilizer Systems,"
2010. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/Article_AC7_Design-and-Security-
Considerations.pdf.

[5] Atmel (Microchip), "Designing Next-Generation Key Fobs," 2010. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/Article_AC7_Designing-Next-
Generation-Key-Fobs.pdf.

[6] IETF, "RFC4279, Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)," 2005.
[Online]. Available: https://tools.ietf.org/html/rfc4279.

[7] IETF, "RFC5487, Pre-Shared Key Cipher Suites for TLS with," 2009. [Online]. Available:
https://tools.ietf.org/html/rfc5487.

[8] IETF, "RFC8446, The Transport Layer Security (TLS) Protocol Version 1.3," 2018. [Online].
Available: https://tools.ietf.org/html/rfc8446.

[9] L. K. Grover, "A fast quantum mechanical algorithm for database search," 1996. [Online].
Available: https://arxiv.org/pdf/quant-ph/9605043.pdf.

[10] STMicroelectronics, "STMicroelectronics Resources Application Note (AN5407)," 2020.
[Online]. Available: https://www.st.com/resource/en/application_note/dm00660594-optimized-
rf-board-layout-for-stm32wl-series-stmicroelectronics.pdf.

[11] Decawave (Qorvo), "Decawave Application notes (APH001)," 2018. [Online]. Available:
https://www.decawave.com/wp-content/uploads/2018/10/APS010_DW1000-and-Wireless-
Sensor-Networks_v1.1.pdf.

[12] ECS Inc., "CRYSTAL AND OSCILLATOR PRINTED CIRCUIT BOARD DESIGN
CONSIDERATIONS," [Online]. Available: https://ecsxtal.com/crystal-and-oscillator-printed-
circuit-board-design-considerations.

[13] NIST (COMPUTER SECURITY RESOURCE CENTER), [Online]. Available:
https://csrc.nist.gov/glossary/term/nonce.

[14] X. a. (. paper), "Xoodyak, a lightweight cryptographic scheme," May 2021. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf.

 35

Appendices

 36

Hardware diagram

 37

Schematic

 38

 39

Bill of materials (BOM)

(Some components had to be modified due to the “chip shortage crisis”).

R F R C AL F AT R S A FACT R R R F A FACT R R T

C1 n7 1k 0805 B 72K102CT Walsin 1

 C , C1 , C1 , C21 C26 100n 7R, 50 , 10 GCM155R71H10 KE02 Murata 9

 C , C29 70 n 7R, 10 , 10 LMK105B7 7 K F Taiyo ude n 2

 C2, C5 1n 7R, 50 , 5 0 025 C102 AT2A A 2

 C6, C7, C19 u7 5R, 25 , 10 CL21A 75KA E Samsung

 C8, C9 2u2 5R, 25 10 GRM188 R61E225KA12 Murata 2

 C10, C15 C18 10u 25 , 20 GRM188 R61E106MA7 Murata 5

 C11, C12 16p 50 , 5 , C0G GCM1555 C1H160 A16D Murata 2

C20 1u 25 , 10 , 5R CL10A105KA8 C Samsung 1

 C27, C28 70 n 25 , 10 , 5R C1005 5R1E 7 K050BB TDK 2

 D1, D5, D6 GR 2.2 , 20mA (0.5 10mA,2.05) APT1608 SGC Kingb right

D2 BLUE .2 , 20mA (0.5 8mA,2.9) 150060 BS75000 Wurth 1

D PMEG10010 ELR 1A, 0.71 PMEG10010 ELR experia 1

D PMEG 005 ESF 500mA, 0 , 0. 1 f PMEG 005 ESF L experia 1

D7 RED 2 , 20mA (0.5 10mA, 1.9) APT1608 EC Kingb right 1

 F1, F2 MF MSMF050/ 0 2 0.5A, 0 MF MSMF050/ 0 2 Bourns 2

 1 USB B Micro Flat SMD 10118192 0001L F Ampheno l 1

 2, Conn 01 x02 2 pin, 2mm pitch 6 005 2 TE Conne ctivity 2

 SMA 50 , 1.6mm PCB CO SMA EDGE S RF Solutions 1

 6 Conn 01 x18 22 28 18 Molex 1

 7 Conn 01 x16 22 28 16 Molex 1

 H1, H2, 5, 8 10, P1 P9 M SC conne ctors 15

 L1, L2 70 R 70R 100MHz, 1A BLM18PG 71 S 1D Murata 2

 1 SiA817ED S A817 ED T1 GE ishay 1

 2 TR510 TR510 T1G O Semicondu ctor 1

R1 1M 1 , 50 CRGP0 02 F1M0 TE Conne ctivity 1

 R2, R 270 R 5 , 50 ER 2GE 271 Panasonic 2

R 6k8 1 , 50 SFR01MZPF6801 Rohm 1

 R5, R16 100 k 1 , 50 RC0 02 FR 07100 KL ageo 2

R6 M7 5 , 50 RC0 02 R 07 M7L ageo 1

R7 0 R 5 , 50 RC0 02 R 7D 0RL ageo 1

 R8, R12, R1 , R17, R18 10k 5 , 50 CRCW0 0210 K0 EDC ishay 5

R9 1k 1 , 50 RC0 02 FR 071 KL ageo 1

 R10, R11, R1 100 R 1 , 50 RC0 02 FR 07100 RL ageo

R15 7k 1 , 50 RC0 02 FR 07 7 KL ageo 1

SW1 SW Push PTS815 S M 250 SMTR LFSC K 1

U1 USBLC6 2SC6 USBLC6 2SC6 STMicroele ctronics 1

U2 SHT x SHT 0 AD1B R Sensiron 1

U DS28C16 TDF EP DS28C16 U Maxim ntegrated 1

U MCP7 8 1 2 OT MCP7 8 1 T 2AC /OT Microchip 1

U5 TCR UFxxx TCR UF 0A,LM(CT Toshiba 1

U6 AT25SF0 1 SSHD AT25SF0 1B SSHB B Adesto Technologie s 1

U7 RFM69HCW/RFM95W 868MHz or 915MHz COM 1 90 9 HOPERF 1

U8 ATSAML21 G18B AUT ATSAML21G18B AUT Microchip 1

U9 DS2 77 TDF EP DS2 77 T Maxim ntegrated 1

 1 2.768kHz C L 12.5pF, ESR 70k (max), 2 pin, .2x1.5mm 1A0001 1000 1 2 EPSO 1

 40

PCB layout stackup

Top/Front layer (+ top silkscreen)

First inner layer (GND)

Second inner layer (+3V)

Bottom/Back layer (+ bottom silkscreen)

 41

Components budget estimation

(It is clear that prices of some specific components raised to the “chip shortage crisis” since
demand was far higher than supply, therefore those results are based on approximated
prices at mid-2021).

€,)stinu001(SEC RP€,)stinu5(SEC RP001 T 5 T T 2EC EREFER

91,16,000151TC201K27 B5080

5, 171,10095 9 20EK 01H17R551MCG

 , 19,0002012F K 7 7B501KML

8, 2,0002012A2TA 201C520 0

9,926,000 51 E AK57 A12LC

6,0186,0002012 21AK522E16R881MRG

5,8 57, 005525 7AM601E16R881MRG

51 ,0002012D61A 061H1C5551MCG

 ,1 ,000151C 8AK501A01LC

6 ,0002012BB050K 7 E1R5 5001C

1, 17 ,100 51 CGS8061TPA

9,0186,00015100057SB060051

 ,21 7,100151 RLE01001GEMP

5,2121,200151L FSE500 GEMP

8,5 2,100151CE8061TPA

8771,50020122 0 /050FMSM FM

1, 228,100151FL1000 29181101

2, ,00020122 500 6

 12,700151S EGDE AMS OC

8, 657, 00151 81 82 22

 ,2518, 00151 61 82 22

15 75 1500

8,59 ,0002012D1 S17 GP81MLB

7,8252,200151 EG 1T DE718A S

1,998,000151G1T 015RT

 ,0001510M1F20 0PGRC

6,191,0002012 172 EG2 RE

9,2 ,0001511086FPZM10RFS

6,01,0002012LK00170 RF20 0CR

 ,0 ,000151L7M 70 R 20 0CR

 ,0 ,000151LR0 D7 R 20 0CR

 ,0005525CDE 0K0120 0WCRC

 ,0 ,000151LK170 RF20 0CR

2,181,000 51 LR00170 RF20 0CR

 ,0 ,000151LK7 70 RF20 0CR

9,1118,000151SFLRTMS052M S518STP

2,5 67,2001516CS2 6CLBSU

8116,0100151 R B1DA 0 THS

 ,681,600151U 61C82SD

9,1 5,200151TO/ CA2 T1 8 7PCM

8187,100151TC(ML,A0 FU RCT

8,026 ,100151B BHSS B1 0FS52TA

 052,5200151909 1 MOC

6 ,0200151TUA B81G12LMASTA

00151T 77 2SD

2,58 8, 0015121 0001 1000A1

122,75 90,158.1€ €

55, 2:eceipenoroF 15,81€ €

 42

Assembly process pictures

Blank PCB (top) Blank PCB (bottom)

Component placement (small → large) SMD components soldered

Completed board (top)

 43

Secure algorithm summary diagram (SO)

 44

SecureRF xample: “Sender” and “Receiver” (commented)

A (sender, ID: 100) B (receiver, ID: 200)

[100]: SENDING NONCE REQUEST (RECEIVER:200) ->
(12){ 4E:52:45:51:9D:E8:F6:97:BA:46:AA:12 }
 ^^NREQNID^^|^^NREQRID^^|^^^NREQH^^^
 N R E Q • è ö — º F ª

[100]: VALID NONCE RECEIVED ->
(20){ 13:76:2C:6B:5D:10:7C:09:D2:63:0A:CD:FD:C7:
0F:B7:F7:FB:FE:CD }
[100]: PLAIN DATA THAT WILL BE SENT:
 -> ASSOCIATED (2): ON
 -> MESSAGE (16): Change LED state
[100]: AEAD DATA GENERATED SUCCESSFULLY
[100]: SENDING AEAD PAYLOAD ->
(35){ 90:4F:4E:3C:84:36:C8:79:D7:74:F3:40:35:42:
 PI|^AD^^|^^^^^^^^^^^CIPHERTEXT^^^^^^^^^^^
 • O N < „ 6 È y × t ó @ 5 B
44:60:D3:77:CA:2B:08:17:FB:46:C9:EB:C0:6E:8A:E3:
^^CIPHERTEXT^^|^^^^^^^AUTHENTICATION TAG^^^^^^^
D ` Ó w Ê + û F É ë À n Š ã
BA:0A:44:6F:20 }
^^^AUTH.TAG^^^
º D o

[100]: SECURE AEAD DATA RECEIVED BY REMOTE NODE
(or not)

[200]: RECEIVED NEW DATA (SENDER:100) ->
(12){ 4E:52:45:51:9D:E8:F6:97:BA:46:AA:12 }
[200]: VALID NONCE REQUEST RECEIVED
[200]: SENDING NEW NONCE ->
(20){ 13:76:2C:6B:5D:10:7C:09:D2:63:0A:CD:FD:C7:
 ^^^NRESH^^^|^^^^^^^^^^^NONCE^^^^^^^^^^^^^
 v , k] | Ò c Í ý Ç
0F:B7:F7:FB:FE:CD }
^^^^^^NONCE^^^^^^
 · ÷ û þ Í

[200]: RECEIVED NEW DATA (SENDER:100) ->
(35){ 90:4F:4E:3C:84:36:C8:79:D7:74:F3:40:35:42:
44:60:D3:77:CA:2B:08:17:FB:46:C9:EB:C0:6E:8A:E3:
BA:0A:44:6F:20 }
[200]: RECEIVED VALID AEAD DATA:
 -> ASSOCIATED (2): ON
 -> MESSAGE (16): Change LED state

* AES-128 decrypted payload contents.

* ASCII character conversion (unit8_t → char).

 45

SecureRF xample (TA P R D): “Sender” and “Receiver” (commented)

A (sender, ID: 100) B (receiver, ID: 200)

[100]: SENDING NONCE REQUEST (RECEIVER:200) ->
(12){ 4E:52:45:51:E2:1C:1F:8E:86:73:00:54 }

[100]: VALID NONCE RECEIVED ->
(20){ 6C:CD:6A:85:FA:D3:AC:F0:90:F1:37:22:AE:B0:
8E:06:AA:7F:9C:5C }

[100]: PLAIN DATA THAT WILL BE SENT:
 -> ASSOCIATED (2): ON
 -> MESSAGE (16): Change LED state
[100]: AEAD DATA GENERATED SUCCESSFULLY
[100]: SENDING AEAD PAYLOAD ->
(35){ 90:4F:4E:B3:F7:55:E0:CF:68:4C:26:74:43:07:
 ^^ Byte which will contain flipped bit

4E:03:7B:09:0C:40:BD:F0:46:65:44:C5:3E:30:33:FD:
CB:8E:92:58:DD }

* (RFM69 retrying since ACK was not received) *
* (retries (2) and timeouts can be configured) *

[200]: RECEIVED NEW DATA (SENDER:100) ->
(12){ 4E:52:45:51:E2:1C:1F:8E:86:73:00:54 }
[200]: VALID NONCE REQUEST RECEIVED

[200]: SENDING NEW NONCE ->
(20){ 6C:CD:6A:85:FA:D3:AC:F0:90:F1:37:22:AE:B0:
8E:06:AA:7F:9C:5C }

[200]: RECEIVED NEW DATA (SENDER:100) ->
(35){ 80:4F:4E:B3:F7:55:E0:CF:68:4C:26:74:43:07:
 ^^ Byte containing flipped bit

4E:03:7B:09:0C:40:BD:F0:46:65:44:C5:3E:30:33:FD:
CB:8E:92:58:DD }

[200]: AEAD DATA ERROR !
^^ TAMPERING DETECTED ^^

* (will not send ACK) *

* (extra data received is ignored) *
[200]: RECEIVED NEW DATA (SENDER:100) ->
(35){ 80:4F:4E:B3:F7:55:E0:CF:68:4C:26:
74:43:07:4E:03:7B:09:0C:40:BD:F0:46:65:44:C5:3E:
30:33:FD:CB:8E:92:58:DD }
[200]: RECEIVED NEW DATA (SENDER:100) ->
(35){ 80:4F:4E:B3:F7:55:E0:CF:68:4C:26:
74:43:07:4E:03:7B:09:0C:40:BD:F0:46:65:44:C5:3E:
30:33:FD:CB:8E:92:58:DD }

* AES-128 decrypted payload contents.

 46

Glossary

Ciphersuite: set of algorithms that help secure a network connection, they usually contain a key

exchange algorithm, an encryption algorithm, and a message authentication code (MAC)

algorithm.

Non-repudiation: is a property achieved through cryptographic methods which prevents an

individual or entity from denying having performed a particular action related to data (such as

mechanisms for non-rejection or authority (origin); for proof of obligation, intent, or commitment;

or for proof of ownership). On public key cryptography, it can be achieved by a trusted third party.

Security level: measure of the strength that a cryptographic primitive (cipher or hash function)

achieves. It is usually expressed in bits, where n-bit security means that the attacker would have

to perform 2n operations to break it.

Stackup: arrangement of copper layers and insulating layers of a printed circuit board. Power

planes, pours, trace directions and signal types must be taken into account together with the

stackup design. The stackup directly affects controlled impedance traces, crosstalk between

traces and interplane capacitance. It can be critical for good electromagnetic compatibility.

