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Abstract

In the recent years, the  automotive industry has oriented its research and development
efforts towards autonomous and assisted driving. These are critical systems as they must
guarantee their robustness and reliability for human life, and therefore they have complex
designs and involve the most innovative technologies. Location and positioning system is
one of its more challenging mechanisms that requires high availability and precision. For
this  problem  there  are  many  technological  approaches,  but  most  common  ones  are
GNSS-like  and  image  recognition  solutions.  They  both  have  accurate  and  reliable
performance  under  favourable  conditions.  However,  due  to  the  variability  of  the
environment  they  also  have some points  of  failure  that  can result  in  an accident.  In
certain  adverse conditions,  to  obtain  a  precise  and  reliable  localization,  further
information is needed. Here is where Ultra Wide Band technology (UWB) with support of
additional sensing mechanisms such as Inertial  Navigation System (INS), can provide
additional sources of information. This data fusion is done by means of Kalman Filtering,
more  concretely the  Extended  Kalman  Filter  algorithm,  which  applies  for  non-linear
systems like  the  one  under  study.  In  this  document,  the  whole  positioning  system's
performance will  be analysed and evaluated with some simulations and real scenario
tests, comparing the main approaches of the Kalman Filter (linear and non-linear) and
obtaining an optimized solution for the positioning  mechanism. Also, some conclusions
and future work tips will be provided in order to contribute the knowledge in similar areas.
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Resum

En els darrers anys, la indústria de l’automòbil ha orientat els seus esforços de recerca i
desenvolupament cap a la conducció autònoma i assistida. Es tracta de sistemes crítics,
ja que han de garantir la seva robustesa i fiabilitat per a la vida humana i, per tant, tenen
dissenys  complexos  i  impliquen  les  tecnologies  més  innovadores.  El  sistema  de
localització i posicionament és un dels seus mecanismes més difícils que requereix una
alta disponibilitat i precisió. Per a aquest problema hi ha molts enfocaments tecnològics,
però els més comuns són solucions similars al GNSS i de reconeixement d’imatges. Tots
dos tenen un rendiment precís i fiable en condicions favorables. Tot i això, a causa de la
variabilitat de l’entorn, també presenten alguns punts de fracàs que poden provocar un
accident. En certes condicions adverses, per obtenir una localització precisa i fiable, es
necessita més informació. Aquí és on la tecnologia Ultra Wide Band (UWB) amb suport
de mecanismes de detecció addicionals com el sistema de navegació inercial (INS), pot
proporcionar fonts d'informació addicionals. Aquesta fusió de dades es fa mitjançant el
filtratge de Kalman, més concretament l'algorisme del filtre Kalman estès, que s'aplica a
sistemes  no  lineals  com el  que  s'està  estudiant.  En  aquest  document,  s’analitzarà  i
avaluarà el  rendiment de tot el  sistema de posicionament  amb algunes simulacions i
proves d’escenaris reals, comparant els enfocaments principals del filtre Kalman (lineal i
no lineal) i obtenint una solució optimitzada per al mecanisme de posicionament. A més,
es proporcionaran algunes conclusions i futurs consells de treball per tal de contribuir al
coneixement en àrees similars.
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Resumen

En  los  últimos  años,  la  industria  del  automóvil  ha  orientado  sus  esfuerzos  de
investigación y desarrollo hacia la conducción autónoma y asistida. Estos son sistemas
críticos ya que deben garantizar su robustez y fiabilidad para la vida humana, por lo que
adquieren diseños complejos e involucran las tecnologías más innovadoras. El sistema
de  ubicación  y  posicionamiento  es  uno  de  sus  mecanismos  más  desafiantes  que
requiere  una  alta  disponibilidad  y  precisión.  Para  este  problema  existen  muchos
enfoques tecnológicos, pero los más comunes son las soluciones de reconocimiento de
imágenes  y  sistemas GNSS.  Ambos  tienen  un  rendimiento  preciso  y  confiable  en
condiciones favorables. Sin embargo, debido a la variabilidad del entorno también tienen
algunos  puntos  de  fallo que  pueden  resultar  en  un  accidente.  En  determinadas
condiciones adversas, para obtener una localización precisa y fiable, se necesita más
información. Aquí es donde la tecnología de banda ultra ancha (UWB) con soporte de
mecanismos de detección adicionales  como el  sistema de navegación inercial  (INS),
puede proporcionar fuentes adicionales de información. Esta fusión de datos se realiza
mediante  el  filtrado de Kalman,  más concretamente  el  algoritmo de filtro  de Kalman
extendido, que se aplica a sistemas no lineales como el que se está estudiando. En este
documento se analizará y evaluará el desempeño de todo el sistema de posicionamiento
con algunas simulaciones y pruebas de escenarios reales, comparando los principales
enfoques del Filtro de Kalman (lineal y no lineal) y obteniendo una solución optimizada
para el mecanismo de posicionamiento. Asimismo, se brindarán algunas conclusiones y
consejos de trabajo futuro con el fin de aportar el conocimiento en áreas similares.
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1 Introduction  

1.1 Motivation  

Technological advances in recent years have led the automotive industry to innovate in
the way of driving, which has resulted in the design, development and implementation of
assisted and autonomous driving systems. These systems require high availability and
precision positioning mechanisms, and so this project is focused on the improvement of
the positioning  mechanism of  a vehicle  in  a  rural  road,  where GNSS-like  and image
recognition  positioning  systems  become  unavailable  or  unreliable.  Environmental
conditions, as well as road characteristics, can affect system’s performance in various
ways, and the system design and implementation must behave appropriately to ensure its
reliability. The chosen technology to improve the localization is the emerging Ultra Wide
Band  (UWB)  technology  with  support  of  the  Inertial  Navigation  System  (INS).  This
technological approach has been widely used for indoor positioning (IPS). However, in
this thesis the viability of UWB technology in an Outdoor Positioning System (OPS) will
be evaluated.

1.2 Statement of purpose  

As stated before, assisted and autonomous driving ecosystems are critical systems as
they  must  guarantee  their  robustness  and  reliability  for  human  life.  For  this  reason
location  and  positioning  mechanisms become such important  and crucial.  Temporary
unavailability or  low accuracy in measures can lead into an accident.  Thus,  the main
purpose of this project is to implement and design a reliable Outdoor Positioning System
based on a sensor fusion solution implemented by means of the Extended Kalman Filter
(EKF), in order to obtain an accurate positioning of a target. The integrated hybrid system
will  combine measures from Ultra Wide Band sensors and Inertial Measurement Units
(IMU),  such as  accelerometers  and gyroscopes,  and  will  compute  the optimal  three-
dimensional positioning (3D) using EKF techniques. These all will be consciously placed
on the moving object in accordance with the designed system, allowing most accurate
and optimal performance for such purpose.

Ultra Wide Band technology will provide absolute positioning as it will compute distance
measures between anchors and a tag attached to the moving object. The anchors will be
placed on both sides of the road in well known positions. When no UWB  measure is
available  or  between  UWB  range  computation  periods,  INS  will  provide  additional
incremental data, such as acceleration, orientation and angular velocity  values, in order
to perform relative positioning updates.

Combining both sources of information in Kalman Filtering, the system must provide high
precision positioning estimates for each time step. The positioning values obtained as the
result must allow locating the target into the global frame with an error less than 30cm
along the trajectory when required by the driving system, so short time periods between
positioning  updates  must  also  be  accomplished.  Additionally,  three-dimensional
positioning  (3D)  will  be  computed  as  opposed  to  2D  positioning  performed  in  many
similar studies. In this way, the system can get more information about the real state of
the target.
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1.3 Requirements and specifications  

A positioning  system for  any  scope  of  use  is  supposed  to  have high  accuracy  and
reliability requirements, even more when applied in autonomous driving. Therefore, the
positioning  system  must  have  the  ability  to  perform  accurate  positioning  on  outdoor
environments  under  diverse  conditions.  The  environment  variability  modelling  must
comprise many scenarios, such as Line of Sight (LOS), Non Line of Sight (NLOS), beam
reflection and irregular  path.  Additionally,  the positioning mechanism must  be able to
compute positioning on real time, so the algorithm performance and computational cost
must be taken in care to design an implementable solution. Other designing aspects to
consider are  the  whole  infrastructure  scalability  and  associated  cost,  but  these are
outside the scope of this project.

For the current positioning system under study, an UWB infrastructure must be deployed.
For  such  purpose,  the  real  scenario  tests  have  been  performed  in  a  controlled
environment,  where  UWB  anchors  have  been  consciously  placed  on  well  known
locations. Additionally, an UWB tag and an IMU with an accelerometer and a gyroscope
have been  attached  to  the target.  For  the  real  case study,  different  data  acquisition
frequencies are obtained from UWB and INS, so the filtering must behave accordingly.

1.4 Methods and procedures  

This  project  is  the continuation  of  a previous one developed by Julia  Igual  Nevot  as
Master’s Final Thesis, in which generic Kalman Filter was implemented for sensor data
fusion from UWB/INS hybrid system in order to improve the location of a vehicle in rural
roads. As a starting point to the current study, and in order to evaluate and compare both
approaches many designing parameters have been reused. For better evaluation of the
system design, linear and non-linear algorithms will be tested and compared each other,
the standard Kalman Filter and the Extended Kalman Filter, respectively.

Later in this section, a brief introductory explanation on the mathematical background for
the Kalman Filtering and different kinematic model designs will be provided in order to
acquire a basic knowledge for later implementation of the algorithms. Additionally, in the
State of the Art section in this document some external documentation and references
will be given for further information. In this theoretical explanation and analytical approach
for the kinematic problem under study, the non-linearity will  be solved in two different
ways. Each one of them will have its advantages and drawbacks that will be analysed
and compared.

For  the  linear  approach  of  the  Kalman Filter,  the  results  from the  trilateration,  using
distance measures calculated from UWB ranging, and additional acceleration values from
INS will  be introduced into the computation of the algorithm to get optimal positioning
estimates.

Alternatively,  for  the non-linear  approach  known as Extended Kalman Filter,  distance
measures from UWB ranging will  be introduced directly into the filter, with no need of
previous processing. Also, additional acceleration measurements from INS will be added.

The evaluation of both implementations will be done in two ways. First, a simulation will
be  performed,  in  which  virtually generated  data  with  added  Gaussian  noise  will  be
introduced to the computation of the algorithms. Second, measures from a real scenario
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test  will  be  parsed  correctly  and  introduced  into  both algorithms.  In  this  way,  the
performance of  both  approaches will  be tested and compared each other in  different
scenarios. For each case of study descriptive statistics and visual plots will be generated
to help the analysing and evaluation process.

This comparison between filter outputs is made by means of statistical parameters, such
as mean, standard deviation, variance and Root Mean Square Error (RMSE). When real
positioning  values  are  known,  these  error  statistics  will  be  calculated  between  the
generated output estimates and the real path. In both cases a graphical representation of
the data will be done.

In order to ease the execution of the algorithm and its evaluation, a Jupyter Notebook has
been developed, where some parameters can be configured interactively. All the code is
written in Python 3.8 and many modules and third-party packages have been used for
various purposes. All this will be detailed in the Methodology section in this document.

Finally,  at  the  end  of  the  document  some  conclusions  and  future  work  tips  will  be
provided in order to help research in similar areas.

1.5 Work plan  

The initial working plan developed in the Project Proposal and Working Plan document
comprised  multiple  stages  for  the  project  development.  First,  some  research  about
currently used technologies and methodologies for positioning systems and sensor fusion
solutions was done. The State of the Art section is the result for that research. Second,
the  preliminary system  design  and  analytical  approach  was  developed.  Next,  in  the
implementation step all the code, simulations and evaluation tools were implemented in
order to evaluate the system’s performance in the following stages. Finally, according to
the results obtained, all the documentation and the current document have been written
and released in order to share the results. The Working Plan task breakdown and Work
Package relationship  designed in the initial planning stage are detailed  in the appendix
A1. For the timing plan a Gantt diagram is provided in the appendix A2.

At the System Design stage in WP3 some difficulties related to the system modelling and
analytical  approach  of  the  problem  delayed  the  implementation  stage  due  to  their
complexity. The problem under study and the algorithm itself required deep knowledge
and extensive mathematical background that had to be solved correctly. Additionally, at
the System Test and Validation in WP5 some technical difficulties in the scenario setup
for the tests have led into a lack of precision in the measurements. However, all  this
difficulties have been solved accordingly, and the results and conclusions are exposed
later in this document.

1.6 Related concepts and technologies  

In the current section the main concepts for this project will be introduced in a general
and theoretical way.
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1.6.1 Positioning system  

Positioning refers to locating a target on the space at known coordinates frame. Many
positioning systems are defined, and the position on each is determined with different
coordinates  systems.  For  this  study  case,  a  local  positioning  system is  defined,  and
positioning is expressed in Cartesian coordinates.

P= (x , y , z ) (1.1)

Figure 1.1: Cartesian coordinates (a) and 3D point graphical representation (b)

(a) (b)

For correct positioning of a target on the global frame an Absolute Positioning system is
required  at  least.  In  this  practical  case,  Ultra  Wide  Band  technology  is  used  as  an
Absolute Positioning system with support of the Inertial Navigation System that will serve
as a Relative Positioning system. In the State of the Art section a deeper explanation on
positioning systems is done.

1.6.2 Kinematic equations  

Kinematic  describes  the motion  of  bodies  in  the  space.  In  a  kinematic  problem with
known initial conditions and system’s geometry, the position, velocity and/or acceleration
values can be calculated at any point of the trajectory. These equations will  be useful
when defining the Process Model for the filter. Next, are the one-dimensional expressions
from kinematic equations that  will  be used in this project.  These equations only work
under constant velocity/acceleration conditions.

x=x0+v·t+
1
2
a·t 2

(1.2)

v=v0+a·t (1.3)

1.6.3 Ultra Wide Band  

For this brief introduction on UWB technology based positioning system, the explanations
from  Julia  Igual  Nevot’s  Master’s  Final  Thesis  will  be  referenced  for  more  detailed
explanation [1].
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Ultra Wide Band technology is a wireless radio technology emerging in recent  years,
characterized  by  the  use  of  a  wider  bandwidth  in  comparison  with  others  (fractional
bandwidth higher than 0.2 or total bandwidth larger than 500MHz). This feature allows
short time duration pulses generation (picoseconds to nanoseconds) with a very low duty
cycle, which translates into high precision in the time domain and a low transmission
power requirement.

Figure 1.2: UWB pulse in the time domain (a) and frequency domain (b)

This can be used to compute high accuracy distance measurements between two UWB
devices. As a result, a high accuracy absolute positioning system can be implemented.
One approach for this is to use these range measurements in trilateration [2]. For a given
number of  i space dimensions the next formula provides the required number of range
measurements to optimally compute positioning by trilateration method.

nd=i+1 (1.4)

According to the specifications for this project, in 3D positioning 4 range measurements
are required at least.

An UWB infrastructure is composed of two types of nodes: tags and anchors. Anchors
are fixed nodes located in well known positions, while tag is referred as the target device
attached to the moving object. Anchors are the reference nodes used to locate the tag
into  the  global  reference  frame.  Different  range  detection  and  localization  methods
between  nodes  have  been  designed.  However,  in  this  study  the  Two-Way-Ranging
(TWR) approach will be used as it better fits the system requirements. The next figure
shows an example of UWB infrastructure as well as the message flow in TWR.

Figure 1.3: UWB infrastructure scheme (a) and TWR message flow (b)

(a) (b)
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Each UWB range computation returns a distance value between the anchor and the tag.
The next expression shows the distance measurement formula.

d=√(x −ax )
2
+( y −a y )

2
+ ( z−az )

2 (1.5)

Where ( x , y , z )is the position of the tag and (ax , ay , az ) the coordinates of the anchor.

1.6.4 Inertial Navigation System  

Inertial  Navigation  System  is  a  sub-type  of  Dead  Reckoning.  Dead  Reckoning  is  a
process  to  compute  the position  of  a  target  relative  to  an initial  point  by  integrating
sensors’  measurements  over  the  time.  For  the  INS  approach  the  used  sensors  are
accelerometers  and  gyroscopes  that  obtain  acceleration  and  angular  rate  values
respectively. Inertial Measurement Units are attached to the moving object and collect
measurements data with integrated accelerometer and gyroscope sensors.

Using acceleration values on each axis, the trajectory of the body in the next steps can
be calculated as a kinematic problem. Additionally, integrating angular rate values from
gyroscopes,  the  body  frame  to  global  coordinate  frame  orientation  angles  can  be
calculated in order to transform acceleration values in the body frame into acceleration in
the global frame [3]. The transformation matrix  T  transforms the acceleration values on
the body frame into the global frame. The next operation shows the body-to-global frame
transformation of the acceleration vector.

(
axg
ayg
azg

)=[T ] (
axb
a yb
azb

)
(1.6)

Where (axg , a yg , azg) and (axb , a yb , azb ) are the acceleration vectors in the global and body

frames, respectively. The transformation matrix ( T ) for the 3D case is shown below.

T=(
cosψ cosϕ−cosθ sin ϕsinψ cosψ sinϕ+cosθ cosϕ sinψ sin θ sinψ
−sinψ cosϕ−cosθ sin ϕcosψ − sinψ sin ϕ+cosθ cosϕ cosψ sin θ cosψ

sinϕ sin θ −cos ϕsin θ cosθ )
(1.7)

With  the  body-to-global  frame  transformation  the  global  acceleration  values  can  be
obtained and thus, corresponding values of position, velocity and acceleration can be
calculated in the global frame. This approach is done using Euler Angles. They describe
the orientation of a rigid body with respect to a fixed coordinate system.
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Figure 1.4: Euler angles

1.6.5 Sensor fusion  

The  sensor  fusion  is  the  process  of combining  multiple  sources  of  information  from
sensors to obtain an optimal estimation on the observed variable. The resulting estimate
is more accurate and so has less uncertainty than the independent sensor readings, even
if the measurements are noisy, because it balances the strengths of different sensors.
For sensor fusion both configurations can be implemented: Loosely Coupled (LC) and
Tightly Coupled (TC). Kalman Filter is an approach for a sensor fusion problem.

1.6.5.1 Kalman Filter  

Kalman Filter is a predict/update algorithm that uses a series of measurements observed
over  time,  containing  statistical  noise,  and  produces  optimal  estimation  on  unknown
variables.  It  is  based  on  Bayesian  probability  and  it  uses  Gaussian  probability
distributions and linear algebra to compute optimal estimates. For a theoretical approach
on Kalman Filter  design and implementation refer  to  the book  Kalman and Bayesian
Filters in Python available online [4].

1.6.5.2 Extended Kalman Filter  

Kalman Filter applies on linear systems as the calculations are done with matrices that
indicate  linearity.  For  non-linear  systems  many  approaches  have  been  developed.
Extended Kalman Filter is the main solution for this problem.

The  EKF  handles  non-linearity  by  linearizing  the  system  at  the  point  of  the  current
estimate, and then the Kalman Filter  is used to filter the linearized system. The non-
linearity of a problem can be found in both points, in the Process Model used to predict
the state or in the measures from the Observation Model.

For the non-linear model the linear expression Fx+Bu  in the predict step is replaced
by a non-linear function f (x ,u) , and the linear expression H x̄  in the update step

is  replaced  by  non-linear  function  h( x̄) .  The  linearization  is  done  by  taking  the
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derivative of those functions, called Jacobian for the matrices, and evaluating at a point,
so the corresponding matrices are obtained for the linearized Kalman Filter.

F=
∂ f (x t ,ut )

∂ x |
xt , ut

(1.8)

H=
∂h( x̄ t)

∂ x̄ |
x̄t

(1.9)

The  Kalman  Filter  algorithm  requires  some  modelling  design.  The  custom
implementations of the algorithms for linear and non-linear approaches are introduced in
the Methodology section and will be particularized for each study case.
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2 State of the art of the technology used or applied in this  

thesis:

In  this  section  an overview of  the  most  important  positioning  system approaches for
autonomous  driving  and  sensor  fusion  solutions  is  done.  Also,  some  references  to
external  resources  and  projects  will  be  provided in  order  to  explore  other  systems’
advantages and throwbacks. As stated in the previous section the positioning systems is
a critical mechanism for assisted and autonomous driving due to its high availability and
precision requirements, and so, many research has been done in this topic among the
scientific and technological community and companies to get better performance.

2.1 Assisted and autonomous driving  

As a brief introduction to the assisted and autonomous driving, one of the most important
automotive  manufacturer  in  the  world  explains  the  five  levels  of  autonomous  driving
defined by the experts [5].  These levels range from zero to five and they have been
defined  according  to  their  relative  extent  of  automation.  Level  zero  means  “No
automation”, where the driver controls every aspect about driving without the support of
any driver assistance system, while in level five there is no human interaction.  For our
study case,  as  the level  increases  the  system must  provide  higher reliability,  as  the
human interaction decreases. In [6] a level 3 in autonomous driving system is introduced
at a demonstration stage which comprises multiple input data sources, such as GPS,
image recognition and light imaging detection and ranging (LiDAR).

In the same way, many well  known companies  from the automotive sector  and other
areas are making important research and have been able to develop some approaches.
Some  of  these  have  even  been  commercialized.  The  American  autonomous  driving
technology development company Waymo LLC, subsidiary of Alphabet Inc., the parent
company of Google, operates a commercial self-driving taxi service. Similarly,  famous
Tesla cars also incorporate autonomous driving systems.

The  next  article  remarks  the  importance  of  the  positioning  system  as  a  part  of
autonomous driving ecosystems [7].

The Universitat Politècnica de Catalunya (UPC) University also has some research and
development  projects  in  this  area  of  assisted  and  autonomous  driving,  such  as  the
Driverless project, where students from many engineering degrees design, create and
validate an autonomous car to compete in Formula Student Driverless category.

2.2 Positioning systems on assisted and autonomous driving  

In the Master’s Final Thesis from Julia Igual Nevot a detailed breakdown on positioning
technologies is done [1], in which main characteristics for each technology are listed. The
positioning systems can be divided in two categories: Absolute Positioning and Relative
Positioning. Depending on whether the global or reference frame based positioning is
provided.
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Absolute Positioning systems do not depend on time and can compute global positioning
with no need of initial configuration. This computation is done using landmarks placed in
well  known  locations  around  the  target.  For  this  reason,  information  about  the
environment must be collected previously.

On the contrary, Relative Positioning systems require initial positioning configuration as
they use incremental data collected from the internal state of the target, such as velocity
and  acceleration,  to  compute  relative  positioning.  They  do  not  require  previous
knowledge  on the  environment  and  can  be  used  everywhere.  However,  they  don’t
provide enough information to calculate positioning globally.

In most positioning systems for assisted autonomous driving, Absolute Positioning and
Relative  Positioning  approaches  are  combined  for  better  performance  on  positioning
estimation. The research made by Julia Igual Nevot in the Master’s Final Thesis about
positioning  systems for  autonomous  driving  concludes  that,  in  general,  the  precision
achieved  by  the  previous  technologies  in  stand-alone  mode  is  not  enough  for
autonomous  driving  precision  requirements,  and  so  a  sensor  fusion  solution  is
implemented.

Most  widely  used  combination  is  GPS  and  INS.  For  better  performance  on  GPS
positioning similar approaches that include error correction algorithms are used instead.
Differential GPS (DGPS) and Real Time Kinematic GPS (RTK) are listed as examples. In
[8] a Loosely Coupled (LC) GPS/INS integration with Snap To Road (STR) correction
system is designed. This approach has being tested in two real scenarios, where 90% of
errors were less than 8.3 and 7.82 meters in both trajectories respectively. In [9] GPS
Doppler/INS  combination  is  done  by  Tightly  Coupling  (TC)  approach  for  urban
environments  with  Non  Line  of  Sight  (NLOS)  and  beam reflection  conditions,  where
important  improvement  is  done  compared  to  the  stand-alone  GPS  positioning.  As
conclusion for this study the error of heading estimation has been reduced to less than ¼
(from 15.2 meters to 3.4 meters).

Other technological approaches have been developed less frequently for positioning on
outdoor  environments for  autonomous driving.  Some of  the projects discussed above
used LiDAR and/or image recognition technologies or even radio detection and ranging
(RADAR).

On the other hand, switching to indoor positioning systems, Ultra Wide Band technology
becomes more frequent. In the next example an indoor GPS/UWB sensor fusion solution
is  implemented  [10].  As  a  conclusion,  it  is  verified  that  the  implemented  GPS/UWB
solution  for  indoor  positioning could enhance position estimation accuracy as well  as
being less sensitive to initial position guess. Additionally, it is stated that future work could
be done in the area of multipath mitigation. For indoor environments UWB technology is
widely  used on positioning  and many research and test  have been done in different
scenarios [11][12]. As an example for UWB indoor positioning approach in [12], under
LOS conditions the RMSE value is 0.1 meters, while  for  NLOS it  is  increased to 0.2
meters.

For  deeper  knowledge  about  Ultra  Wide  Band  technical  specifications  and  ranging
methods  refer  to  Julia  Igual  Nevot’s  Master’s  Final  Thesis  [1].  There,  a  detailed
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explanation  on UWB standard PHY and MAC layers is  provided,  as  well  as  ranging
methods breakdown and trilateration algorithms.

2.3 Sensor fusion  

Sensor fusion algorithms allow optimal estimation for unknown variables as they combine
multiple sources of information. In  many of the projects the sensor fusion solution get
better precision than stand-alone configurations. Integration of sensor measurements can
be done in two ways: Loosely Coupled (LC) and Tightly Coupled (TC) configurations.

In the LC configuration a previous processing on sensor  data is  required in  order  to
introduce it  to the filter computation. As an example, in some approaches of GPS the
position is calculated using trilateration techniques before fusing with INS data [13].

On  the  other  hand,  the  TC  integration  fuses  sensor  measurements  directly,  without
previous processing on the data obtained [14].

The standard Kalman Filter and Extended Kalman Filter can perform sensor fusioning on
positioning systems and thus their performance has been tested in various projects. An
analytical approach on the filtering problem is done in the free online book Kalman and
Bayesian Filters in Python [4].
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3 Methodology:  

The methodology followed for this project is discussed below. First of all, the filter design
and implementation will be explained. The main approaches for the positioning problem
will be introduced in this section: the standard Kalman Filter and the Extended Kalman
Filter.  Additionally,  some  filtering  models  will  be  implemented  to  evaluate  and  test
different designs.

In  order  to  evaluate  these  designs  a  simulation  is  performed  first.  This  simulation
generates  virtual  data  according  to  the  input  data  model  and  evaluates  the  filtering
performance. The setup, initialization and implementation for this is provided in the next
sections. Then, a real case study is done with obtained data from a real scenario test. In
both  study  cases,  all  needed  designs  and  explanations  will  be  provided,  and  in  the
following section the results obtained are discussed in order to evaluate the designed
system’s performance and make conclusions. All the code implemented for this project is
available in the annex.

3.1 Filter   design  

The current section is probably the most critical step for the system implementation, as a
good filter design will expect an optimal performance for the filtering process. At this point
two approaches for the positioning problem will  be  designed in order to evaluate and
compare each other: the standard Kalman Filter and Extended Kalman Filter.

To address the problem correctly some definitions will be done on the filtering literature.
The dynamic system is considered a physical system whose state evolves over time, and
this can be modelled by a set of differential equations. For the current study case the
location of  a moving object  is the dynamic system, and this can be characterized by
kinematic  equations  (1.2,  1.3).  State  variables are  changing  values  from  a dynamic
system that have special  relevance for the problem under study. The state variables for
the  positioning  problem  on  a Euclidean  space  in Cartesian  coordinates  for  three-
dimensional approach are the positioning values on each axis defined by (1.1). However,
depending  on  the  filtering  model  to  implement  (Constant  Velocity  Model,  Constant
Acceleration Model,  …) additional state variables can be added, such as velocity and
acceleration. All these considerations are included in the State-Space Model design. For
this,  next parameters  have  to  be  designed:  the  State  Vector  ( x )  and  the  State
Covariance Matrix ( P ).

The  next  step  is  designing  the  Process  Model.  It  is  a  mathematical  model  which
describes  the  behaviour  of  the  system.  The  filter  uses it  to  predict  the  state  after  a
discrete time step ( Δ t ). For this task the kinematic equations provided in (1.2) and
(1.3) will be used. Also, the noise associated to the Process Model must be modelled in
the  Process  Noise  Model,  as  the  real  system  operation  is  affected  by  an  unknown
number  of  factors  that  can’t  be  modelled  analytically.  These  all  is  considered  in  the
Process Model and the parameters to be designed are the next:  the State Transition
Function ( F ) and the Process Noise Matrix ( Q ).
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Optionally, in the predict step in addition to the state propagation from the Process Model,
additional knowledge can be introduced as control inputs. The Constant Velocity Model
Constant Acceleration Controlled (CVCA) introduces acceleration values as control inputs
in a first order kinematic model. This is part of the Control Input Model and it is defined by
the next parameters: the Control Input Function ( B ) and the Control Input Vector (
u ).

The  better  the  State-Space  Model  and  Process  Model  model the  dynamic  system
operation, the better prediction will be done on the state for the next time step. For such
purpose  main  filtering  models  have  been  designed:  Constant  Velocity  Model  (CV),
Constant  Velocity  Model  Constant  Acceleration  Controlled  (CVCA)  and  Constant
Acceleration Model (CA). These models comprise the State-Space Model and Process
Model design. On the Process Noise model, some approaches have also been discussed
from the work in the online book Kalman and Bayesian Filters in Python, in the section
dedicated to the Kalman Filter Math [4].

Finally,  the  Observation  Model,  also  known  as  the  Measurements  Model,  must  be
designed.  It  is  a  mathematical  model  that  comprises  observable  variables  as
observations  made  to  the  dynamic  system.  These  observations  are  obtained  as
measurements  from  sensors,  whose  mean  and  variance  are  defined  on  the
Measurements Vector ( z ) and the Measurement Noise Matrix ( R ).

The Kalman Filter computes the update step into the measurements domain, calculating
the residual between the measurement and the state prior, and getting a midpoint as the
state estimate according to the Kalman Gain ( K ). To be able to calculate the residual,
both the state prior and the measurement must be in the same units, so the state must be
converted  into  the  measurement  domain.  The  opposite  way  does  not  work  always
because  most measurements  are  not  invertible  (UWB  distance  measurements,  for
example, are not convertible to position values). The Observation Model for the Kalman
Filter  provides  the  Measurement  Function  ( H )  to  transform  the  state  into  a
measurement.

The  Kalman  Filter  uses  linear  algebra  to  compute  optimal  state  estimates,  so  non-
linearities on the dynamic system must be solved somehow. In this project these non-
linearities will be solved in two ways. The next sections introduce both approaches and
provide required mathematical knowledge, as well as concrete designing parameters in
order to evaluate both of them.

Then, the job for designing the Kalman filter is to properly design the Space-State Model (
x ,P ),  the  Process  Model  ( F ,Q ),  the  Measurement  or  Observation  Model  (
z ,R ,H ), and optionally the Control Input Model ( B ,u ).

3.1.1 Kalman   Filter  

The first approach to solve the positioning problem is the linear implementation of the
Kalman  Filter.  This  implementation  requires  the  Loosely Coupled  (LC)  sensor  fusion
configuration,  as  a  previous  manipulation on  UWB  range  measurements is  required
before the filtering step.  In this configuration UWB range measurements are used for
trilateration in order to obtain positioning values, so these can be introduced into a linear
Kalman Filter. For the trilateration method Least Square Error (LSE) and Least Square
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Error  with  Geometry  Constraints  (LSE-GC)  algorithms  are  combined  to  get optimal
performance. In the appendix A4 the Kalman Filter algorithm is defined. For the concrete
evaluation of the designing parameters defined for the KF detailed in the appendix A3, 3
filtering models will be introduced in the next subsections.

3.1.1.1 Constant   Velocity Model (CV)  

CV Model is a first order kinematic model that models the dynamic system with the next
differential equations on the univariate case.

x=x0+v·t (3.1)

v=v0 (3.2)

As  first  order  model,  it  comprises  constant  velocity  ( a=0 )  and  thus  velocity  is
introduced  into  the  State  Vector  as  a  state  variable.  Extending  for  the  multivariate
approach the State Vector and the State Covariance Matrix for  three dimensions are
shown below.

x=[ x v x y v y z vz]
T (3.3)

P=[
σ x
2 0 0 0 0 0

0 σ vx
2 0 0 0 0

0 0 σ y
2 0 0 0

0 0 0 σ vy
2 0 0

0 0 0 0 σ z
2 0

0 0 0 0 0 σ vz
2
]

(3.4)

The Process Model used to predict the state relies on the kinematic equations (3.1) and
(3.2). Then, the State Transition Function is shown next.

F=[
1 Δ t 0 0 0 0
0 1 0 0 0 0
0 0 1 Δt 0 0
0 0 0 1 0 0
0 0 0 0 1 Δt
0 0 0 0 0 1

]
(3.5)

For the Process Noise Model two approaches have been implemented: the Continuous
Model and the Discrete Model. The Continuous Model assumes the higher order (velocity
for  current  model)  is  influenced  by process noise,  it  is  no longer  constant  and so,  it
changes  by a continuous time zero-mean white  noise  ( w ).  As the noise changes
continuously,  it  has  to  be  integrated  on  each  time  step  for  discretization.  The  next
expression shows the calculus for the process noise in the Continuous Noise Model.
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Q=∫
0

Δ t

F( t)Q cF
T
(t)dt

(3.6)

Where Qc  is the continuous noise defined by the spectral density of the white noise (

Φs ). The next matrix shows the continuous noise for a single dimension.

Qc=[0 0
0 1 ]Φs

(3.7)

Finally, the resulting Process Noise Matrix for the discretized Continuous Noise Model is
introduced below for three dimensions.

Q=[
Δ t3 /3 Δ t 2/2 0 0 0 0
Δ t2 /2 Δ t 0 0 0 0
0 0 Δ t 3/3 Δ t2/2 0 0
0 0 Δ t 2/2 Δ t 0 0
0 0 0 0 Δ t3/3 Δ t 2/2
0 0 0 0 Δ t2/2 Δ t

]Φs

(3.8)

On the other hand, the Discrete Noise Model assumes the higher order is constant during
the  time  step,  but  changes  for  each  time  period  and  each  of  these  is uncorrelated

between periods. For this case the Process Noise Matrix is shown next, where σ v
2  is

the process noise variance.

Q=[
Δ t 4/4 Δ t3/2 0 0 0 0
Δ t3/2 Δ t 2 0 0 0 0
0 0 Δ t 4/4 Δ t 3/2 0 0
0 0 Δ t 3/2 Δ t2 0 0
0 0 0 0 Δ t 4 /4 Δ t 3/2
0 0 0 0 Δ t 3/2 Δ t2

]σ v
2

(3.9)

This model does not include control input values, so the parameters for the Control Input
Model are evaluated to empty values.

B=0 (3.10)

u=0 (3.11)

For the Observation Model the next parameters are designed.

z=[ zx z y z z]
T (3.12)
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R=[
σ zx
2 0 0

0 σ zy
2 0

0 0 σ zz
2 ]

(3.13)

H=[
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0]

(3.14)

As it can be seen, the Observation Model contains position values from the trilateration
method as mean ( z ) and variance ( R ). This model does not comprise acceleration
values.

3.1.1.2 Constant   Velocity Model Constant Acceleration Controlled (CVCA)  

As the previous model, CVCA is a first order kinematic model that comprises constant
velocity. However, it introduces acceleration measures as control input values in order to
increase knowledge in the predict step. The Control Input Model for the CVCA modifies
the next parameters from the CV model.

B=[
Δ t2 /2 0 0
Δt 0 0
0 Δ t2/2 0
0 Δ t 0
0 0 Δ t2/2
0 0 Δ t

]
(3.15)

u=[uax uay uaz ]
T (3.16)

The acceleration values as control inputs contribute to the state variables (positioning and
velocity)  according  to  the  Control  Input  Function  designed  above.  The  rest  of  the
parameters remain as for the KF CV model.

3.1.1.3 Constant   Acceleration     Model   (CA)  

CA model introduces acceleration as a state variable for a second order kinematic model,
so it comprises constant acceleration in the state propagation. The kinematic equations
that model the dynamic system are shown next.

x=x0+v·t+
1
2
a t 2

(3.17)

v=v0+at (3.18)

The State Vector and State Covariance Matrix are shown below.
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x=[ x v x ax y v y ay z vz az ]
T (3.19)

P=[
σ x
2 0 0 0 0 0 0 0 0

0 σ vx
2 0 0 0 0 0 0 0

0 0 σax
2 0 0 0 0 0 0

0 0 0 σ y
2 0 0 0 0 0

0 0 0 0 σ vy
2 0 0 0 0

0 0 0 0 0 σay
2 0 0 0

0 0 0 0 0 0 σ z
2 0 0

0 0 0 0 0 0 0 σvz
2 0

0 0 0 0 0 0 0 0 σaz
2

]
(3.20)

The Process Model designing is introduced next.

F=[
1 Δ t Δ t2/2 0 0 0 0 0 0
0 1 Δ t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 Δt Δ t2/2 0 0 0
0 0 0 0 1 Δ t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 Δ t Δ t2/2
0 0 0 0 0 0 0 1 Δ t
0 0 0 0 0 0 0 0 1

]
(3.21)

For  the  Process  Noise  Model  both  approaches have  been  implemented  as  in  the
previous model. Next, both the Continuous Noise Model and the Discrete Noise Model
implementations are shown for second order kinematic model.

Q=[
Δ t5 /20 Δ t 4 /8 Δ t3 /6 0 0 0 0 0 0
Δ t4 /8 Δ t3/3 Δ t2 /2 0 0 0 0 0 0
Δ t3/6 Δ t2/2 Δ t 0 0 0 0 0 0
0 0 0 Δ t5 /20 Δ t 4 /8 Δ t3 /6 0 0 0
0 0 0 Δt 4 /8 Δ t3/3 Δ t2 /2 0 0 0
0 0 0 Δ t3/6 Δ t2/2 Δ t 0 0 0
0 0 0 0 0 0 Δ t5 /20 Δ t 4/8 Δ t3/6
0 0 0 0 0 0 Δ t 4 /8 Δ t3/3 Δ t2 /2
0 0 0 0 0 0 Δ t3/6 Δ t2/2 Δ t

]Φs

(3.22)

29



Q=[
Δ t4 /4 Δ t3 /2 Δ t2 /2 0 0 0 0 0 0
Δ t3 /2 Δ t2 Δ t 0 0 0 0 0 0
Δ t2 /2 Δ t 1 0 0 0 0 0 0
0 0 0 Δ t

4
/4 Δ t

3
/2 Δ t

2
/2 0 0 0

0 0 0 Δ t 3/2 Δ t2 Δ t 0 0 0
0 0 0 Δt 2/2 Δ t 1 0 0 0
0 0 0 0 0 0 Δ t 4/4 Δt 3/2 Δ t2 /2
0 0 0 0 0 0 Δ t3 /2 Δ t2 Δ t
0 0 0 0 0 0 Δ t

2
/2 Δ t 1

]σv
2

(3.23)

This model does not include control input values, so the parameters for the Control Input
Model are shown next.

B=0 (3.24)

u=0 (3.25)

Finally, the Observation Model for the CA is introduced next.

z=[ zx zax z y zay zz zaz]
T (3.26)

R=[
σ zx
2 0 0 0 0 0

0 σ zax
2 0 0 0 0

0 0 σ zy
2 0 0 0

0 0 0 σ zay
2 0 0

0 0 0 0 σ zz
2 0

0 0 0 0 0 σ zaz
2

]
(3.27)

H=[
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

]
(3.28)

The CA model introduces acceleration measurements in the Observation Model, unlike
the CVCA model that introduces them as control input variables.

3.1.2 Extended   Kalman Filter  

The second approach to solve the positioning problem is the non-linear version of the
Kalman  Filter  in  the  Tightly Coupled  (TC)  sensor  fusion  configuration.  In  this
implementation the UWB ranges are introduced directly into the filtering algorithm with
the acceleration measurements. The non-linearity is then solved by the EKF approach.
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The non-linearity of a problem for the Kalman Filter can be found in the Process Model or
in  the  Observation  Model,  the  State  Transition  Function  ( f (x ,u) )  and  the

Measurement  Function  ( h( x̄) )  respectively.  In  this  case  they  become  non-linear

functions. Then, the EKF linearizes the problem on a point ( xt ,u t ) by calculating the

partial  derivative  with  respect  to  the  state  variables.  For  matrices,  the  Jacobian  is
calculated for both functions.

F=
∂ f (xt ,ut)

∂ x |
xt ,u t

(3.29)

H=
∂ h( x̄)
∂ x̄ |

x̄ t

(3.30)

Then, the EKF algorithm uses the Kalman Filter equations with the linearized problem.
The algorithm remains the same, but for this case the State Transition Matrix ( F ) and
the Measurement  Matrix  ( H )  are approximated by the first  partial  derivatives,  the
Jacobian, evaluated at the current state. The general algorithm for the EKF is shown in
the appendix A5.

In this concrete case under study, the Process Model remains the same way as in the
previous implementation on the linear filter. The non-linearity problem in this scenario is
found in the Observation Model,  as the UWB ranging returns measurement distances
modelled  by the expression in  (1.5).  So,  the Measurement Function becomes a non-
linear expression instead of a matrix.

Therefore, to solve the non-linear problem, the Measurement Function is linearized by
evaluating  its  partial  derivative  at  the  state  prior.  To  do  so,  the  Jacobian  of  the
Measurement Function is calculated with respect to the state variables (3.34). Then, this
linearized  Measurement  Function  will  be  introduced  to  the  KF  algorithm  as  the
Measurement Matrix ( H ).

For the concrete evaluation of the designing parameters 3 filtering models will be defined
in  the  next  subsections.  For  each  filtering  model  the  differences  between  the  linear
algorithm will be provided in order to shorten the extension of this document.

3.1.2.1 Constant   Velocity   Model (CV)  

The  State-Space  Model  and  the  Process  Model  remain  unchangeable,  so  the  State
Vector ( x ), the State Covariance Matrix ( P ), the State Transition Function ( F )
and the Process Noise Matrix ( Q ) will not be modified from the linear implementation.

Otherwise,  in  the  Observation  Model  little  change  will  be  done  in  the  Measurement
Function, as it becomes a non-linear function.

h( x̄)=[√(x−ax )
2
+( y−ay )

2
+(z−az)

2
] (3.31)

The linearization is done by calculating the Jacobian of the expression above with respect
to the state variables and evaluated at the state prior. This way, the linear Measurement
Matrix is obtained.

31



H=[
x−ax

√(x−ax )
2
+( y−ay )

2
+( z−az)

2
0

y−ay

√(x−ax )
2
+( y−ay )

2
+( z−az)

2
0

z−az

√( x−ax )
2
+( y−ay)

2
+( z−az)

2
0] (3.32)

3.1.2.2 Constant Velocity Model Constant Acceleration Controlled (CVCA)  

The  State-Space  Model  and  the  Process  Model  remain  unchangeable,  so  the  State
Vector ( x ), the State Covariance Matrix ( P ), the State Transition Function ( F )
and the Process Noise Matrix ( Q ) will not be modified from the linear implementation.
The  Control  Input  Function  ( B )  and  the  Control  Input  Vector  ( u )  will  not  be
modified either.

In the Observation Model the same modification for the EKF CV Model will be done (3.31
and 3.32).

3.1.2.3 Constant   Acceleration     Model   (CA)  

The  State-Space  Model  and  the  Process  Model  remain  unchangeable,  so  the  State
Vector ( x ), the State Covariance Matrix ( P ), the State Transition Function ( F )
and the Process Noise Matrix ( Q ) will not be modified from the linear implementation.

In the Observation Model some modifications will be done in the Measurement Function (
h( x̄) ), and so in its linear approximation for the Measurement Matrix ( H ). The

current  model  takes  acceleration  values  as  measurements  variables.  Therefore,  the
Measurement Function is implemented as shown next.

h( x̄)=[
√(x−ax )

2
+( y−ay)

2
+(z−az)

2

zax
zay
zaz

]
(3.33)

H=[
x−x a

√( x−xa)
2
+( y− y a)

2
+( z− za)

2
0 0

y− ya

√(x−x a)
2
+( y− ya)

2
+( z−za)

2
0 0

z−za

√(x− xa)
2
+( y− y a)

2
+( z− za)

2
0 0

0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

]
(3.34)

3.1.3 Algorithm   code implementation  

The implementation on the filtering algorithm is done in an interactive Jupyter Notebook
that  can  be  found  in  the  annex.  The  programmatically  approach  for  the  filtering
implementation is to create a Python class that provides the parameters, as vectors and
matrices required to the filter computation according to the designed filtering model. To
create  a model,  a  Python class  must  be created and this  class  must  implement  the
abstract methods from AbstractModel class in models/abstract_model.py. These models
are stored in the modules kf_models.py and ekf_models.py under the models/ package.
The concrete implementation on each model parameters has been done according to the
previous sections. The UML diagram for Python classes that implement filtering models is
shown in the appendix A7. Also, the blocks diagrams that shows the filtering process and
the configurable parameters list is provided in A8. This implementation is available on the
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Jupyter Notebook created for filtering and evaluation, and it can be run interactively by
executing the code cells.

3.1.4 Filter input  

The Kalman Filtering algorithms use Gaussian probability distributions and linear algebra
to compute optimal state estimates. So, the input data model assumes that the noisy
measurements from sensors can be modelled by Gaussian distributions characterized
with  two  parameters,  mean and variance.  For  the  multivariate  case of  the  Gaussian
probability distribution the next expression is used.

N (μ ,Σ) (3.35)

Where μ , Σ  are the mean vector and covariance matrix for the multivariate Gaussian
in n  dimensions.

μ=[
μ1
μ2
...
μn

]
(3.36)

Σ=[
σ1
2

σ12 ... σ1n

σ21 σ2
2 ... σ2n

... ... ... ...
σn1 σn2 ... σn

2 ]
(3.37)

Finally,  the  multivariate  normal  (or  Gaussian)  distribution  has  the  next  mathematical
expression.

f (x ,μ ,Σ)=
1

√(2Π)
n
|Σ|
exp [−12 (x−μ)

T
Σ

−1
(x−μ)]

(3.38)

A graphical visualization of normal distributions is shown next.

Figure 3.1: Univariate Gaussian distribution (a) and multivariate Gaussian distribution (b)

(a) (b)

So, the filtering process in Kalman Filtering introduces sensors’ measurements as inputs
in  the update  step.  These  can  be  modelled  by  Gaussian  distributions  as  mean and
variance values. Additionally, the time step is introduced in the filter for the predict step.
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3.2 Simulation  

A simulation allows to imitate a real-world process operation in a totally controlled virtual
environment, where customizable parameters can be easily changed and evaluated. For
such purpose a model  on system input  has  been designed.  For  handling all  code a
Python project  and Jupyter Notebook have been developed, where code can be easily
run and modified interactively.

3.2.1 Setup and initialization  

The previous step before running the simulation is to configure the working environment.
For the execution of the simulations, Python 3.x and Jupyter Notebook server must be
installed. Please, refer to the Jupyter Project official web page and follow the installation
steps  [15].  Additionally,  other  Python  modules  and  packages  are  required  for
miscellaneous purposes. These all are listed in the requirements.txt file in the project root
folder. To install all the dependencies with pip [16] open a terminal and run the following
command on the project root folder:

$ pip install -r requirements.txt

3.2.2 Measurements   input  

The first  step in  the  simulation  process is  to  generate  noisy  measurements  data  for
filtering  input.  The  data  format  generated  depends on the filter  implementation,  so  it
changes for the standard KF and EKF. The implemented functions for this purpose are in
the module utils/random_stream.py.

The simulated measures for the UWB ranges and acceleration values contain Gaussian
noise. The parameters for the measurements noise, as well as other parameters for the
input data can be configured interactively in the generator inside the Jupyter Notebook. In
the  appendix  A6  a  flowchart  for  the  generator’s  operation  process  and  a  table  of
configurable  parameters  are  provided  for  better  understanding  on  simulated  data
generation and configuration.

The generator takes initial position, velocity and acceleration for each axis, as well as
other  configurable  parameters  such  as  variances  for  UWB/INS  measures,  time  step
between  measurements  and  sample  count,  and  generates  corresponding  noisy
measurements for the filtering input according to kinematic equations in (1.2) and (1.3).
This implementation for the generator allows comparing both KF and EKF approaches as
the obtained measurements simulate real scenario operation. The next table shows the
initial values given to the simulation. The rest of the parameters will be configured on
each study case defined later in this section.

Table 3.1: Initial simulation values

Parameter Value Units

init_pos (0, 0, 1) m

init_vel (1.8, 0.05, 0) m/s

init_acc (0, 1, 0) m/s2
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dt 1 s

count 100

anc (120, 50, 1),

(250, 300, 1),

(80, 400, 1.2),

(0, 200, 0.8)

m

3.2.3 Study   cases  

In order to evaluate and compare each implementation some study cases have been
designed. Each study case will evaluate some filtering parameters and will check how the
filtering  responds  to  this  changes.  The  concrete  evaluation  on  each  parameter  is
described in the appendix A9 in order to get reproducible data. The results are shown in
the next section on this document and conclusions will  be listed in the corresponding
section according to the results obtained.

3.2.3.1 Ideal case  

For this first study case ideal measurements will be generated, with no added noise. Also
a perfect initialization on the state will be done. This test allows to evaluate how precise
the Process Model is in the predict step, as in the update step the measures will be ideal.

3.2.3.2 Bad initialization  

To evaluate how fast the filter converges into the real value, a bad initialization will be
done in the initial state estimate.

3.2.3.3 Optimal design  

Finally, an optimal design will be done to the filter. For this case, an uncertain initialization
will be done and measurements variance will be modelled correctly.

3.2.4 Simulation constraints  

The simulation has many benefits before a real implementation of a design, as it allows to
control  many  of the  parameters.  The  best  the  simulation  models  the  real  system
operation, the best the results emulate a real test. However, it gets almost impossible to
consider all the variables of a real scenario test. For this reason, in the simulation process
some  approximations  and  simplifications  are  done  with  respect  to  the  real  dynamic
system. The next list  enumerates some of  this simulation constraints that  have to be
taken into account in the conclusions section:

• It is supposed to get a higher variability of a dynamic system in a real scenario:
irregular path, changes of direction, velocity and acceleration, etc.

• The noise for the sensor measurements is not ideally Gaussian with zero mean.

• The positioning of the anchors in a virtual scenario is defined, not measured. So it
can be defined ideally.
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• Number  of  samples and error  on UWB ranging measurements depend on the
environmental conditions (LOS, NLOS, beam reflection, outliers, …).

• Different data acquisition rates for real sensors.

3.3 R  eal scenario test  

On  the  current  section  the  setup  and  configuration  for  the  real  scenario  tests  are
introduced. The results from the real tests in addition with the result from the simulations
will validate the system design.

3.3.1 Setup and initialization  

The current real tests have been carried out in the campus of Universitat Politècnica de
Catalunya University in Campus Nord, Barcelona.  The concrete scenarios comprise a
straight way and a 90 degree bend.

Figure 3.2: Real test scenario image

The UWB hardware used for this tests is the In-Circuit radino32 DW1000 [17]. According
to the manufacturer it can provide 10 cm-level accuracy. Additionally, GY-521 IMU device
[18]  based  in  the  MPU-6050  sensor  [19]  will  be  used.  This  sensor  contains  3-axis
gyroscope  and  3-axis  accelerometer.  For  the  real  test  two  scenarios  have  been
configured.

Figure 3.3: Straight-way scenario (a) and 90-degree-bend scenario (b) setups

(a) (b)
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In (a) UWB ranging measures and acceleration updates are obtained each 55ms in a 40-
meters-length straight-way trajectory. However, in (b) different data acquisition rates are
obtained from UWB ranging and the accelerometer.  UWB ranges are computed each
second  (1Hz),  while  acceleration  updates  are  obtained  each  100ms  (10Hz).  This
constraint is related to the UWB infrastructure deployment, to test whether with less UWB
updates the positioning system can maintain its accuracy and availability levels.

3.3.2 Measurements input  

The UWB ranging distance measurements and acceleration values are obtained in a csv
file after the data acquisition stage. Before introducing to the filter the acceleration data
must  be  transformed from the  body  frame to  the  global  frame reference  in  order  to
compute  positioning  updates.  For  this  refer  to  the  equations  in  (1.6)  and  (1.7).
Additionally, for the LC configuration in the standard KF implementation trilateration must
be  done  with  UWB  range  measurements  before  the  filtering  process.  The  input
measurements csv files can be found in the samples/ folder and the parsers used for raw
data  in  utils/_parser.py module.  For  these  real  scenario  tests  {kf,  ekf}recto2.csv and
10Hz-{kf, ekf}-irampa.csv files will be used. Each one of them is parsed according to the
filtering implementation (KF or EKF) for one of the scenarios (a) or (b) mentioned above.

3.3.3 S  tudy cases  

For  both real tests the same models in the simulation will  be used (CV, CVCA, CA).
However, the initial configuration parameters will  vary for better operation on the data
filtering.  The initial  configuration  and setup values for  both scenarios  (a)  and (b)  are
described in the appendices A11 and A12 respectively. For both uncertain initialization
will  be  done  and  the  measurements  error  will  be  modelled  according  to  the  sensor
specifications with slight variance. For the Process Noise Model the Continuous model
will be used instead, as the real system operation comprises continuous noise unlike the
simulation scenario.

3.3.4 Real scenario test constraints  

The real test results serve as a validation method for a system design. However, the
current scenario tests have many inaccuracies that should have to be solved in future
tests to evaluate correctly the system performance. First, the test environment comprised
many challenges as there were many objects and obstacles that could interfere in the
UWB signal, such as buildings, cars and EMI from electronic devices. Next, important
error was made in the anchors positioning. Additionally, initial positioning and orientation
values were approximated.

3.4 Output evaluation  

In order to evaluate the filter performance between different designs and operations, two
evaluating approaches will be implemented. The code implemented for this purpose is
found in the function evaluate_filter() developed in the Jupyter Notebook.

First, some visualizations will be created on the data. Filter output, prior, real path and
measurements (when presented) will be graphically plotted in a 3D plot. Additionally, 2D
projections will be provided.

Next, error will be calculated between real path and filter output for each axis. In addition,
total  three-dimensional  error  and  plane  error  (2D)  will  be  calculated,  too.  The  next
expression shows the computation of the error in a multidimensional approach.
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e=r−x=[
ex
e y
ez

]
(3.39)

Where r  is the real path, x  the output of the filter and e  is the computed error.
So, the error module is calculated next.

|e|=√ex
2
+ey

2
+e z

2 (3.40)

|e2D|=√ex
2
+e y

2 (3.41)

It is important to distinguish total error and 2D error, as the error in z axis is not such
critical for the positioning problem for autonomous driving applications, and usually gets
higher order values as the anchors and the trajectory are in the same horizontal plane.

Finally, some descriptive statistics on the error values are performed, such as mean, min
and max values. Additionally, Root Mean Square Error is calculated.

RMSE=√ 1N∑ e2
(3.42)

The graphical representation of the error is also provided with bar plots and histograms
for each axis.
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4 Results  

On the current section the results obtained from the simulations and the real scenario
tests  will  be  provided.  After  the  filtering  process,  the  evaluate_filter() function
implemented in the project takes measurements stream, filtered data and real path, and
computes some visualizations and descriptive statistics to evaluate the filter performance.
These results shown below contain plots and visualizations for these data streams, as
well  as  error  statistics  as  a  summary  to  make  correct  conclusions  on  the  system
performance. For deeper analysis on the evaluation outputs refer to the appendices.

4.1 Simulation results  

The results for the simulations are divided in corresponding study cases defined in the
Methodology section. In the appendix A10 some outputs and error plots are shown for
each study case.

4.1.1 Ideal case  

The ideal case simulation introduces ideal measurements data (with no added noise) to
the filter. This study case allows evaluating the Process Model’s systematic error on the
dynamic system modelling for  each implementation.  In the optimal case,  the Process
Model  perfectly  models  the  dynamic  system  and  the  predict  step  behaves  ideally.
However, all models are approximations for real systems, and then the Process Noise
Model comprise these unmodelled factors. The next table shows the error statistics.

Table 4.1: Error statistics summary for ideal case simulation

Kalman Filter Extended Kalman Filter UWB stand-
alone

CV CVCA CA CV CVCA CA

err2d err err2d err err2d err err2d err err2d err err2d err err2d err

mean 0.087 0.168 ~0 0.125 0.001 0.123 0.015 0.070 ~0 ~0 ~0 ~0 ~0 0.121

std 0.010 0.116 0.002 0.136 0.002 0.128 0.031 0.059 0.005 0.005 0.005 0.005 ~0 0.141

max 0.092 0.658 0.011 0.652 0.012 0.600 0.159 0.218 0.092 0.092 0.089 0.089 0.001 0.680

RMSE 0.088 0.204 0.002 0.184 0.002 0.177 0.034 0.091 0.005 0.005 0.005 0.005 ~0 0.185

In general, the error values obtained are low. However, it must be considered that the
measurements are ideal. The stand-alone UWB positioning for the ideal case has optimal
performance  on  the  XY plane.  However,  for  the  three-dimensional  case  higher  error
values are obtained due to the error in the Z axis. The reason for obtaining higher order
error values on the Z axis is that the trajectory, as well as the anchors are oriented along
the horizontal XY plane, and thus positioning on z becomes more difficult to solve as
there is low variability in the z coordinates of the anchors’ positions and the trajectory.

The input data for the simulation contains acceleration of value 1m/s2 in the Y axis. As it
can be checked the errors for the KF CV and EKF CV implementations are the highest
errors comparing to the other models for the same algorithm. This can be easily seen in
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the appendix A10.1 for the KF CV error bar plot, where there is a constant error in the y
coordinates. The reason for this is that the CV model is a first order kinematic model and
thus, it does not include acceleration in its computation. In this way, the prediction step is
always behind the accelerated movement in the y coordinate.  This  behaviour  can be
shown in the next figure.

Figure 4.1: Prediction in the XY plane for the KF CV model

Finally, in optimal conditions it can be seen that the Extended Kalman Filter operation for
CVCA and CA models enhances the performance for the positioning problem as the error
obtained is very small. The better filtering operation with slightly difference is for the EKF
CA implementation. However, it must to be analysed how the filters react to noisy data.
This will be done in the next study cases.

4.1.2 Bad initialization  

For the current study case a bad initialization in the state mean and covariance has been
configured. A bad initialization on the state supposes a bad estimate on the state for the
filter initialization, as well as little uncertainty in the state. This way the filter is initialized
on a bad location with high belief on the wrong value. Additionally, unlike the previous
study case, the current measurements are no longer ideal and contain added Gaussian
noise. This test allows evaluating how fast the filter corrects the bad initial state estimate
and converges into the real value of the trajectory.

Table 4.2: Error statistics summary for bad initialization case simulation

Kalman Filter Extended Kalman Filter UWB stand-
alone

CV CVCA CA CV CVCA CA

err2d err err2d err err2d err err2d err err2d err err2d err err2d err

mean 0.579 2.417 0.553 2.407 0.934 2.499 1.490 4.769 1.490 4.579 2.313 8.843 0.109 2.395

std 2.008 2.297 2.012 2.293 2.531 2.494 11.653 16.796 11.655 16.847 12.220 21.197 0.064 2.260

max 13.749 13.778 13.745 13.774 14.335 14.365 166.549233.477166.531234.440166.426224.757 0.359 10.375

RMSE 2.080 3.326 2.077 3.316 2.685 3.521 11.734 17.440 11.735 17.437 12.422 22.944 0.127 3.285
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The results show bad performance for EKF models in bad initialization conditions. In the
appendix A10.4 error bar plots show high error for first iterations of the filter. However,
after many iterations the filter converges to the actual value with lower error. This could
be an expected result, as for each iteration distance measurements are used, instead of
trilateration results for the KF. Then, each distance measurement implies infinite number
of  positions in  a sphere of  the same radius  around the anchor  used to compute the
ranging measurement.  For this reason, after a bad initialization the filter delays many
iterations of the algorithm until it converges into the real path.

Figure 4.2: EKF CA output plot (a) and error bar plot (b) for bad initialization

(a)

(b)

Otherwise,  the  KF  models  in  LC  configuration  have  better  performance  on  bad
initialization conditions. The reason for this is that in the first iteration a positioning value
from  trilateration  is  introduced  directly.  For  the  first  iterations  of  the  filter  the  output
converges more rapidly to the real values. The error plots for KF models in the appendix
A10.3 show this behaviour in the horizontal coordinates. For the CVCA and CA models
the initial transient stage is slightly shorter than for the CV model, as they both introduce
acceleration  values.  However,  for  the  KF  CA  model  in  the  Y  axis,  some  error
disturbances that oscillate in values close to 30cm can be seen.

The  best  performance  for  the  sensor  fusion  solution  in  bad  initialization  scenario  is
obtained by KF CVCA. In this approach the maximum error value is obtained on the first
iterations, and the error is rapidly reduced on subsequent iterations of the filter.
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Finally, it can be checked that the UWB stand-alone configuration works much better than
sensor  fusion  solutions.  This  is  because  a  bad  initialization  affects  on  the  filter
performance increasing the error for the predict step. A solution for this is to make an
uncertain initialization. This way the filter converges more rapidly as the first updates are
more confident than the predictions for initial estimates.

4.1.3 Optimal design  

The last study case is supposed to emulate a real scenario design. For this purpose an
uncertain initialization is done. Also, measurements’  noise is correctly modelled by the
variance. The next table shows the error statistics summary.

Table 4.3: Error statistics summary for optimal design case simulation

Kalman Filter Extended Kalman Filter UWB stand-
alone

CV CVCA CA CV CVCA CA

err2d err err2d err err2d err err2d err err2d err err2d err err2d err

mean 0.124 2.030 0.101 2.021 0.182 1.867 0.162 2.454 0.159 2.356 0.122 1.925 0.109 2.395

std 0.053 1.644 0.053 1.637 0.090 1.347 0.136 2.325 0.136 2.359 0.090 2.101 0.064 2.260

max 0.255 7.177 0.295 7.123 0.387 5.365 1.236 13.881 1.199 13.869 0.889 12.701 0.359 10.375

RMSE 0.135 2.607 0.114 2.596 0.203 2.298 0.211 3.378 0.209 3.332 0.151 2.848 0.127 3.285

As seen in the previous study cases, the error in the Z axis is higher than in the other
axis, because of the small variability of the anchors positions along that axis, resulting in
less information contained in the third coordinate. However, the horizontal error on the XY
plane will be evaluated first, which is more critical on autonomous driving systems.

For this scenario the KF CVCA model gets the best performance due to its maximum
error and RMSE values. However, KF CV model has similar results and should have to
be considered. The UWB stand-alone configuration shows little worse operation in 2D,
but for the three-dimensional approach the error increases considerably.

The next figure shows the projections for the filter output and the error bar plot for each
axis. Most error values for X and Y axis are below 20 cm.

Figure 4.3: KF CVCA projections (a) and error bar plot (b)

(a)
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(b)

The EKF approach shows low error  mean and standard deviation  on CVCA and CA
models. However, the maximum error achieved can not be allowed for positioning in an
autonomous driving  system. Refer  to the error  plots  in  the appendix  A10.6 for  better
interpretation on the error for the EKF approaches.

4.1.4 Simulation results summary  

The  results  have  showed  that  in  the  current  simulated  scenarios  the  sensor  fusion
solution  performs  better  than  the  UWB  positioning  in  stand-alone  configuration.
Moreover, it reduces considerably the error in the Z axis due to the low variability of the
samples along this axis. However, the performance along the Z axis could be enhanced
placing  the  anchors  at  different  heights  along  the  road.  Future  improvements  and
considerations will be discussed later in this document.

Additionally, the simulations conclude that the KF performs better than the EKF in many
scenarios, as long as there are enough range measurements for trilateration. The lack of
ranging distance measurements and the existence of outliers in measures have not been
covered for  these simulations,  in  which  case the EKF operation  will  be  increased  in
comparison  to  the  KF’s,  as  it  is  not  required  a  minimum  number  of  distance
measurements for positioning with EKF in TC configuration. For the EKF models, the
CVCA  has  better  error  statistics  than  the  other  approaches  on  the  3  study  cases.
Additionally, without taking into account the initial stage of the EKF filter until converging
to the real value, error statistics obtained prove that it could be useful in some scenarios.

Finally, it has been shown that the performance of the models that include acceleration
values, such as CVCA and CA, gets better. Generally, the CVCA model has had the best
performance for the simulations. However, the samples generated  did not contain high
variability  in  acceleration,  and  thus  modelling  the  dynamic  system  in  a  first  order
kinematic  model  has  been  accurate.  But  in  some  scenarios  with  high  variations  on
acceleration and big  changes on direction it  may be required to implement  a second
order model containing acceleration.

4.2 Real scenario test results  

In the current section the same procedure from the simulations will be followed in order to
evaluate  the  filter  performance.  The  results  for  both  tests  are  shown  next  as  error
statistics summary. However, in the appendix A13 more extensive error analysing results
are provided, such as error bar plots and histograms.

4.2.1 Straight-way scenario test  

In this scenario setup a straight-way trajectory is followed by the tag in LOS conditions,
so no outliers have been found in the measurements data. The error summary for each
filtering approach is shown below.
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Table 4.4: Error statistics summary for straight-way scenario

Kalman Filter Extended Kalman Filter UWB stand-
alone

CV CVCA CA CV CVCA CA

err2d err err2d err err2d err err2d err err2d err err2d err err2d err

mean 0.220 0.244 0.186 0.211 2.597 2.624 0.240 0.574 0.217 0.605 1.897 2.573 0.226 0.245

std 0.148 0.177 0.115 0.156 1.429 1.403 0.213 0.467 0.212 0.456 0.952 0.551 0.149 0.218

max 0.544 1.650 0.454 1.650 5.201 5.215 4.046 5.533 4.046 5.533 4.046 5.533 0.576 1.650

RMSE 0.265 0.302 0.218 0.262 2.963 2.974 0.321 0.740 0.303 0.757 2.122 2.631 0.270 0.328

For  the  current  scenario  the  best  performance  is  obtained  with  KF  CVCA  model.
However,  EKF CVCA also  shows good performance on error  mean and RMSE.  The
problem  for  the  EKF  implementation  is  that  it  takes  many  iterations  until  it  finally
converges to the actual value. This behaviour can be checked in error plots for EKF in
A13.2.

Figure 4.4: KF CVCA projections (a) and error bar plot (b)

(a)

(b)

As it  can be seen in  the figure  above,  the  error  values  on X axis  are  below 20cm.
However, higher errors are obtained for the Y coordinate with a remarkable increase at
the second half of the trajectory.

4.2.2 90-degree-bend scenario test  

For this test, the UWB measurements have been affected by the environment factors that
have caused bad operation on filtering. Next, the error statistics are shown.
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Table 4.5: Error statistics summary for 90-degree-bend scenario

Kalman Filter Extended Kalman Filter UWB stand-
alone

CV CVCA CA CV CVCA CA

err2d err err2d err err2d err err2d err err2d err err2d err err2d err

mean 8.772 10.021 9.500 10.891 9.958 12.125 8.637 9.709 8.759 10.181 10.054 11.680 8.787 9.633

std 6.347 5.912 7.828 8.391 9.056 12.780 6.430 7.335 6.495 7.527 5.245 4.816 6.280 5.739

max 30.172 30.186 49.373 58.759 68.716 102.414 43.969 49.856 44.053 50.247 24.210 29.632 23.458 23.506

RMSE 10.826 11.634 12.308 13.746 13.458 17.613 10.767 12.167 10.903 12.660 11.339 12.634 10.780 11.197

As it can be checked, the error statistics have increased from previous tests. This is due
to  the  measurement  outliers  in  the  data  acquisition  stage,  were  the  environmental
conditions caused bad measurements on distances from UWB. Even if the error values
are unaffordable for precision positioning purposes, the EKF filter performs better on the
first  straight  stretch of  the track,  while  it  diverges on the  curve due to the  outliers  in
measurements.

Figure 4.5: Track for KF CVCA (a) and EKF CV CVCA (b)

(a) (b)

As an interesting result in A13.4 the EKF CA model shows better operation on the outliers
section than the rest of the implementations.
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Figure 4.6: Projections (a) and error bar plot (b) for EKF CA

4.2.3 Real tests summary  

In  general,  due to  the environment  effects  on the UWB ranging  operation,  the  tests
performed  in  real  scenarios  have  not  reached  the  precision  requirements  for  the
positioning purposes on autonomous driving systems. However, they are intended to be a
starting point on the development and implementation process of the UWB technology for
outdoor scenarios.

According  to  the  filtering  models  implemented,  the  results  have  shown  better
performance for first order kinematic models. However, in the last scenario due to higher
variability  on  the  trajectory  direction  the second  order  kinematic  model  has  obtained
better results.

In real tests the Process Noise Model must be designed accordingly to each Process
Model implemented. However, these optimization on Process Noise Model has not been
done; instead, a comparison between Process Models under similar conditions was one
of  the  main  goals.  Thus,  the  performance  could  have  been  enhanced  with  a  more
accurate design on dynamic system modelling.
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5 Budget  

The system cost evaluation and resources optimization is outside of the scope of this
thesis.  However,  some  approximated  cost  values  on  testing  scenario  setup  and
deployment  will  be  detailed  in  the  next  table  for  a  100  meters  road.  It  should  be
highlighted that these are guide values and that more detailed study must be done for this
system implementation on production environments.

Table 5.1: Budget summary table

Item/task/component Unit Cost/unit Total amount

UWB Anchors + Tag 8+1 34.90€ 314.1€

IMU GY-521-MPU6050 1 4.29€ 4.29€

Installation and setup 6 h 15€ 90€

System design and modelling 60 h 25€ 1500€

TOTAL COST 1908.39€

One of biggest drawback of this positioning system approach based on Ultra Wide Band
technology is that it requires a large investment on a dedicated UWB infrastructure, as it
requires  multiple  UWB  anchors  placed  on  both  sides  of  the  road.  Therefore,  its
deployment should be restricted to areas where main positioning approaches become
unreliable, such as rural roads and tunnels.
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6 Environment Impact  

The UWB technology infrastructure deployment does not  imply a huge environmental
impact beyond the need to produce required hardware. However, as this technology has
wide frequency spectrum (over 500MHz) the overlap with other radio signals should be
evaluated in the future in order to avoid interferences.
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7 Conclusions and future development:  

In this thesis a solution for outdoor positioning system has been designed and evaluated.
This hybrid system combines UWB and INS technologies in a sensor fusion solution by
means  of  Kalman  Filter.  For  better  evaluation on  the  system  performance  both
approaches of the Kalman Filter have been studied: the standard Kalman Filter and the
Extended  Kalman Filter.  Additionally,  some filtering  models  have  been  designed  and
tested for each study case.

The results from this simulations, evaluated as error mean, standard deviation, maximum
error and RMSE have proved that the best models to describe the simulated trajectory
are first  order kinematic models. These models include constant velocity for the state
propagation  estimate.  However,  the  acceleration  values  from an  accelerometer have
improved many of the operations for the CVCA model.  Additionally,  they highlight  the
sensor fusion as a better approach for the improvement of positioning instead of stand-
alone configurations.

The Extended Kalman Filter algorithm has shown a good performance on the simulations
for  the  ideal  case.  However,  under  bad  initialization  conditions  the  filter  delayed
converging into the real value that resulted in high errors for the first iterations of the filter.
This behaviour shows the importance of the initialization  of the filter, specially for the
EKF.  For the rest  of  the tests,  generally,  the non-linear  approach has shown slightly
worse performance than the KF. This result can be expected, as the EKF performs an
approximation for the non-linear problem as a linearization evaluated at a point. However,
the EKF can perform updates with single range measurements, while the KF requires a
minimum of samples to perform the trilateration.

First  and  second  kinematic  Process  Models  are  precise  enough  for  tracking  the
positioning  of  a  moving  object.  However,  more  research  and  test  must  be  done  in
positioning  of  faster  objects  and  dynamic  systems  with  higher  order  variability.
Additionally, a deeper study on Process Noise Models must be done in order to improve
the modelling.  According to the Observation Model,  the measurements’  precision and
availability must be enhanced in order to get better performance of the system. Also, for
better  measurements in the testing stage, the anchors must be globally located in well-
known positions with high precision.

In  general,  it  can  be  concluded  that  the  standard  Kalman  Filter  algorithm  with  the
Constant Velocity Model Constant Acceleration Controlled (CVCA) gets better position
estimates  for  the  real  scenario  tests.  However,  the  generic  implementations  of  both
algorithms  are  not  precise  enough  for  positioning  on  autonomous  driving.  For  such
purpose, improvement on the algorithms must be done in order to detect outliers in the
measurements and reject them. In addition, it could be interesting mixing both linear and
non-linear  approaches of  the Kalman Filter.  In this case,  when there are not  enough
ranging measurements for trilateration with the KF, or the error increases, the EKF can
perform these updates.

It  has  been  proved  that  the  outdoor  environments’  variability,  such  as  NLOS  and
multipath  propagation  conditions,  deteriorates  the  UWB  ranging  performance  and
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generates outliers on the filter input, that result into bad operation. Future work could be
done in the mitigation of the environmental effects on UWB ranging.
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Appendices:

A1. Work Breakdown Structure and Work Packages relationship
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A2. Gantt diagram
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A3. Kalman Filtering design parameters

Predict step

State Vector x Contains state variables
to  estimate  from  the
dynamic system

x=[ x1 , x2, ...xdimx ]
T

State
Covariance
Matrix

P Defines  state  variables’
covariance.  It  can  be
translated  as  the  belief
in the state estimate

P=[
var (x1) cov (x1 , x2) ... cov (x 1, xN)
cov (x2 , x 1) var (x 2) ... cov (x 2, xN)

... ... ... ...
cov (xN , x1) cov (xN , x2) ... var (xN)

]
Control  Input
Function

B Transforms control input
values  in  a  contribution
to state variables

B  (must  be  designed  according  to
Control Input Model)

Control  Input
Vector

u Contains  control  input
variables

u=[u1 ,u2 , ...udimu]
T

State
Transition
Function

F Models  the  state
propagation over time

F  (must  be  designed  according  to
Process Model)

Process
Noise Matrix

Q Models Process Model’s
noise

Q  (must  be  designed  according  to
Process Model)

Update step

Measurement
Vector

z Contains  measurement
variables observed from
the dynamic system

z=[ z1 , z2 , ... , zdimz ]
T

Measurement
Noise Matrix

R Contains  measurement
variables’  variances.  It
can be translated as the
belief  in  the
measurements

R=[
var (z1) 0 ... 0
0 var (z2) ... 0
... ... ... ...
0 0 0 var (zdimz)

]
Measurement
function

H Transforms  state
variables  into  the
measurement domain

H  (must  be  designed  according  to
Measurement Model)
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A4. Kalman Filter algorithm

Initialization

1. Initialize the state of the filter ( x )

2. Initialize our belief in the state ( P )

Predict

1. Use Process Model to predict state at the next time step (prior, x̄ )

x̄=F x+Bu A4.1

2. Adjust belief to account for the uncertainty in prediction

P̄=F P FT+Q A4.2

Update

1. Get a measurement ( z ) and associated belief about its accuracy ( R )

2. Compute residual ( y ) between estimated state (prior) and measurement

y= z−H x̄ A4.3

3. Compute scaling factor (Kalman Gain, K ) based on whether the measurement
or prediction is more accurate

K=P̄ HT
(H P̄ HT

+R)
−1 A4.4

4. Set state between the prediction and measurement based on scaling factor

x= x̄+K y A4.5

5. Update belief in the state based on how certain we are in the measurement

P=(I−K H) P̄ A4.6
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A5. Extended Kalman Filter algorithm

Initialization

1. Initialize the state of the filter ( x )

2. Initialize our belief in the state ( P )

Predict

1. Use Process Model to predict state at the next time step (prior, x̄ )

x̄=f (x ,u) A5.1

2. Adjust belief to account for the uncertainty in prediction

P̄=F P FT+Q A5.2

Update

1. Get a measurement ( z ) and associated belief about its accuracy ( R )

2. Compute residual ( y ) between estimated state (prior) and measurement

y= z−h( x̄) A5.3

3. Compute scaling factor (Kalman Gain, K ) based on whether the measurement
or prediction is more accurate

K=P̄ HT
(H P̄ HT

+R)
−1 A5.4

4. Set state between the prediction and measurement based on scaling factor

x= x̄+K y A5.5

5. Update belief in the state based on how certain we are in the measurement

P=(I−K H) P̄ A5.6
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A6. Measurements generator flowchart and configurable parameters table

Parameter Type Meaning Default value

dim int Number of spatial dimensions

init_pos [], int, float Initial positioning coordinates

init_vel [], int, float Initial velocity on each axis

init_acc [], int, float Initial acceleration on each axis

var_uwb float Variance of measures from UWB ranging

var_ins float Variance of measures from INS

anc [] Anchors position coordinates

dt float Time differential 1

count int Number of samples to generate 100
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A7. UML diagram for filtering models
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A8. Filtering algorithm in Python and configurable parameters list

Parameter Type Meaning Default value

x0 [] Initial State Vector

x_var [] State variables’ variances

z_var [] Measurements’ variances

model {‘CV’, ‘CVCA’, ‘CA’} Filtering model to use

noise_model {‘ContinuousModel’,
‘DiscreteModel’}

Process Noise Model to use

noise_density float Process  Noise  spectral  density  for
Continuous Noise Model

1

noise_variance float Process  Noise  variance  for  Discrete
Noise Model

1
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A9. Parameter configuration for each study case

The configurable parameters for  the generator  and the filter  algorithm for  each study
case.

Ideal case

Table A9.1: Generator parameters for ideal case

std_uwb 0

std_ins 0

Table A9.2: Filter parameters for ideal case

CV CVCA CA

x0 [0, 1.8, 0, 0.05, 1, 0] [0, 1.8, 0, 0.05, 1, 0] [0, 1.8, 0, 0, 0.05, 1, 1, 0, 0]

x_var [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1]

z_var KF: [0.52, 0.52, 0.52]

EKF: [0.12]

KF: [0.52, 0.52, 0.52]

EKF: [0.12]

KF: [0.52, 0.12, 0.52, 0.12, 0.52, 0.12]

EKF: [0.12, 0.12, 0.12, 0.12]

noise_model Discrete Model Discrete Model Discrete Model

noise_variance 0.1 0.1 0.1

Bad initialization

Table A9.3: Generator parameters for bad initialization

std_uwb 0.1

std_ins 0.1

Table A9.4: Filter parameters for bad initialization

CV CVCA CA

x0 [120, 0, -50, 0, 7, 0] [120, 0, -50, 0, 7, 0] [120, 0, 0, -50, 0, 0, 7, 0, 0]

x_var [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1]

z_var KF: [0.52, 0.52, 0.52]

EKF: [0.12]

KF: [0.52, 0.52, 0.52]

EKF: [0.12]

KF: [0.52, 0.12, 0.52, 0.12, 0.52, 0.12]

EKF: [0.12, 0.12, 0.12, 0.12]

noise_model Discrete Model Discrete Model Discrete Model

noise_variance 0.1 0.1 0.1
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Optimal design

Table A9.5: Generator parameters for optimal design

std_uwb 0.1

std_ins 0.1

Table A9.6: Filter parameters for optimal design

CV CVCA CA

x0 [0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0]

x_var [202, 102, 202, 102, 202, 102] [202, 102, 202, 102, 202, 102] [202, 102, 32, 202, 102, 32, 202, 102,
32]

z_var KF: [0.52, 0.52, 0.52]

EKF: [0.12]

KF: [0.52, 0.52, 0.52]

EKF: [0.12]

KF: [0.52, 0.12, 0.52, 0.12, 0.52, 0.12]

EKF: [0.12, 0.12, 0.12, 0.12]

noise_model Discrete Model Discrete Model Discrete Model

noise_variance 0.1 0.1 0.1
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A10. Simulation outputs

Ideal case

Figure A10.1: KF CV (a), CVCA (b) and CA (c) plots for ideal case simulation

63



Figure A10.2: EKF CV (a), CVCA (b) and CA (c) plots for ideal case simulation
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Bad initialization

Figure A10.3: KF CV (a), CVCA (b) and CA (c) plots for bad initialization case simulation
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Figure A10.4: EKF CV (a), CVCA (b) and CA (c) plots for bad initialization case
simulation
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Optimal design

Figure A10.5: KF CV (a), CVCA (b) and CA (c) plots for optimal design case simulation
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Figure A10.6: EKF CV (a), CVCA (b) and CA (c) plots for optimal design case simulation
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A11. Real test (a). Straight way scenario setup and filter design parameter 
evaluation

Figure A11.1: Anchors locations in 3D plot (a) and aerial view (b) for the straight-way
scenario

(a) (b)

Figure A11.2: Real path plotting for the straight-way scenario

Table A11.1: Anchors positioning coordinates for the straight-way scenario

Anchor ID Location 

6ECD (0.06, 0, 1.1)

7331 (9.7, 12.5, 1.1)

6EC7 (0.06, 20.24, 1.1)

1111 (8.10, 33.86, 1.1)
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Table A11.2: Filter parameters for the straight-way scenario

CV CVCA CA

x0 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0)

x_var (202, 102, 202, 102, 202, 102) (202, 102, 202, 102, 202, 102) (202, 102, 32, 202, 102, 32, 202, 102,
32)

z_var KF: (0.52, 0.52, 0.52)

EKF: (0.252)

KF: (0.52, 0.52, 0.52)

EKF: (0.252)

KF: (0.52, 0.12, 0.52, 0.12, 0.52, 0.12)

EKF: (0.252, 0.12, 0.12, 0.12)

noise_model Continuous model Continuous model Continuous model

noise_density 1 1 1

70



A12. Real test (b). 90 degree bend scenario setup and filter design parameter 
evaluation

Figure A12.1: Anchors locations in 3D plot (a) and aerial view (b) for the 90-degree-bend
scenario

(a) (b)

Figure A12.2: Real path plotting for the 90-degree-bend scenario
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Figure A12.3: Measurements plotting for the 90 degree bend scenario

Table A12.1: Anchors positioning coordinates for the 90 degree bend scenario

Anchor ID Location

6ECD (29.65, 15.37, 3.46)

6EC7 (-10.86, 15.83, 2.10)

1111 (-1.78, 21.31, 2.86)

7B6F (0, 0, 2.3)

7BDB (70.01, 15.02, 2.20)

7331 (53.41, 0, 2.22)

7B30 (-1.78, 61.74, 2.57)

7B22 (-16.5, 97.3, 2.66)
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Table A12.2: Filter parameters for the 90 degree bend scenario

CV CVCA CA

x0 (-4.6, 0, 96, 0, 1.8, 0) (-4.6, 0, 96, 0, 1.8, 0) (-4.6, 0, 0, 96, 0, 0, 1.8, 0, 0)

x_var (202, 102, 202, 102, 202, 102) (202, 102, 202, 102, 202, 102) (202, 102, 32, 202, 102, 32, 202, 102,
32)

z_var KF: (0.52, 0.52, 0.52)

EKF: (0.252)

KF: (0.52, 0.52, 0.52)

EKF: (0.252)

KF: (0.52, 0.12, 0.52, 0.12, 0.52, 0.12)

EKF: (0.252, 0.12, 0.12, 0.12)

noise_model Continuous model Continuous model Continuous model

noise_density 1 1 1
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A13. Real scenario test results

(a) Straight-way scenario

Figure A13.1: KF CV (a), CVCA (b) and CA (c) plots for straight-way scenario
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Figure A13.2: EKF CV (a), CVCA (b) and CA (c) plots for straight-way scenario
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(b) 90-degree-bend scenario

Figure A13.3: KF CV (a), CVCA (b) and CA (c) plots for 90-degree-bend scenario
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Figure A13.4: EKF CV (a), CVCA (b) and CA (c) plots for 90-degree-bend scenario
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Glossary

2D Bidimensional

3D Three-dimensional

AP Absolute Positioning

CA Constant Acceleration

CV Constant Velocity

CVCA Constant Velocity Constant Acceleration

DGPS Differential GPS

EKF Extended Kalman Filter

GNSS Global Navigation Satellite System

GPS Global Positioning System

IMU Inertial Measurement Unit

INS Inertial Navigation System

IPS Indoor Positioning System

KF Kalman Filter

LC Loosely Coupled

LiDAR Light imaging Detection and Ranging

LOS Line of Sight

LSE Least Square Error

LSE-GC Least Square Error with Geometry Constraints

NLOS Non Line of Sight

OPS Outdoor Positioning System

PPWP Project Proposal and Working Plan

RADAR Radio Detection and Ranging

RMSE Root Mean Square Error

RP Relative Positioning
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RTK Real Time Kinematic

STD Standard deviation

STR Snap to Road

TC Tightly Coupled

TWR Two Way Ranging

UWB Ultra Wide Band

VAR Variance

WP Working Package
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