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el febrer de 2017. Ha estat una etapa d’aprenentatges, altibaixos, descobri-
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Abstract

On the way towards a low carbon electricity system, flexibility has become
one of the main sources for achieving it. Flexibility can be understood as
the ability of a power system to cope with the variability and uncertainty
of demand and supply. Both the generation-side and the demand-side can
provide it. This research is focused on the role of the demand-side flexibility
for providing a service to the distribution system operator, who manages
the medium and low-voltage network. By activating this flexibility from the
demand-side to the distribution network operator, the latter can avoid or
mitigate congestions in the network and prevent grid reinforcement.

This thesis starts with analyzing the current state of the art in the field of
local electricity markets, setting the baseline for flexibility products in power
systems. As a result of the previous analysis, the definition of flexibility is
developed more specifically, considering the flexible assets to be controlled,
the final client using this flexibility and the time horizon for this flexibility
provision.

Following the previous step, an aggregated flexibility forecast model is
developed, considering a flexibility portfolio based on different controllable
assets such as electric vehicles, water boilers, and electric space heaters.
The signal is then modeled under a system-oriented approach for providing
a service to the distribution network operator under the operation timeline
on a day-ahead basis. The flexibility required by the distribution network
operator is then calculated through an optimization problem, considering
the flexibility activation costs and the network power flow constraints.

Finally, since this scenario aims to lower the environmental impacts of the
power system, its sustainability is assessed with the life-cycle assessment,
considering the entire life cycle and evaluating it in terms of greenhouse
gas emissions. This approach enhances the analysis of the potential role of
flexibility in the power system, quantifying whether, in all cases, there is a
reduction of emissions when shifting the consumption from peak hours to
non-peak hours.
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Resum

En el camı́ cap a un sistema elèctric amb baixes emissions de carboni, la
flexibilitat s’ha convertit en una de les principals fonts per aconseguir-ho.
La flexibilitat es pot entendre com la capacitat d’un sistema de reaccionar
davant la variabilitat i la incertesa provocades per la demanda i la generació.
Tant la part de la generació com el costat de la demanda tenen actius per
a poder proporcionar-ho. La recerca presentada està enfocada en el paper
de la flexibilitat de la demanda, per a proporcionar un servei a l’operador
del sistema de distribució, que gestiona les xarxes de mitja i baixa tensió.
Gràcies a l’activació de la flexibilitat de la demanda, l’operador de les xarxes
de distribució pot evitar o mitigar la congestió de la xarxa i evitar-ne les
inversions per a reforçar-la, aix́ı com el seu impacte ambiental.

Aquesta tesi comença amb l’anàlisi de l’estat de l’art en el camp dels
mercats d’electricitat locals, establint-ne la ĺınia base per a la definició dels
productes de flexibilitat en els sistemes elèctrics. Com a resultat de l’estudi
anterior, la definició de flexibilitat es desenvolupa més espećıficament, consi-
derant els actius flexibles que han de controlar-se, el client final que utilitza
aquesta flexibilitat i l’horitzó temporal per a aquesta disposició de flexibi-
litat. A continuació es desenvolupa un model de predicció de la flexibilitat
agregada, considerant una cartera de flexibilitat basada en diferents actius
flexibles, com ara vehicles elèctrics, calderes d’aigua i escalfadors elèctrics,
gestionats per la figura de l’agregador. El senyal es modela sota un enfoca-
ment orientat al sistema per proporcionar un servei a l’operador de la xarxa
de distribució, per un horitzó temporal corresponent a l’operació de la xarxa
de mitja i baixa tensió. El resultat és un model de la flexibilitat que pot
oferir l’agregador.

Una vegada desenvolupat el model de flexibilitat pel costat de l’agregador,
la tesi s’enfoca al càlcul de la flexibilitat requerida per l’operador de la xarxa
de distribució. Això es desenvolupa mitjançant un problema d’optimització,
tenint en compte els costos d’activació de la flexibilitat, la localització dels
punts on s’injectarà la flexibilitat i les restriccions de flux de potència de la
xarxa de distribució. Finalment, s’avalua la sostenibilitat del sistema elèctric
considerant-ne tot el cicle de vida, utilitzant les emissions de gasos d’efecte
d’hivernacle com a indicador. L’ús d’aquest enfocament millora l’anàlisi del
potencial paper de la flexibilitat en el sistema elèctric, quantificant si, en
tots els casos, hi ha una reducció de les emissions traslladant el consum de
les hores punta a hores vall.
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Chapter 1

Introduction

Current society is facing a challenge to mitigate the effects of climate change.
To limit global temperature rise 2◦C below pre-industrial levels as stated
in the Paris Agreement [1], the whole energy system is called to action:
transform a mainly fossil-based electricity generation scenario into carbon-
neutral, mostly based on renewable energy sources (RES). The challenge is
even more significant since it is expected that the electricity consumption will
increase 20% to 40% by 2050 [2]. This can be observed in Figure 1.1, where
the scenario by 2050 expects 85% of the electricity supply to be covered by
renewables.
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Chapter 1 Introduction

This chapter aims to provide an overview of the current state of the elec-
tricity system and its stakeholders to highlight the main shortcomings, chal-
lenges, and opportunities for implementing the energy transition roadmap.

The following pages cover the main aspects related to the current scenario
in the energy transition, such as the regulation related to distribution sys-
tem operators and smart grids, the technical aspects of distributed energy
resources and related technologies, the role of demand-side and end-user’s
awareness, and lastly the role of new business agents and services that can
help distribution network operators to become key agents in the develop-
ment of smart grids and achievement of the decarbonization objectives for
2050.

1.1 Smart Grids. The evolution of the electrical
network

The physical infrastructure of the electricity network is composed of gen-
erators, transmission network, distribution network and end-users or con-
sumers.

Generators are the main agents feeding the grid downstream. Large gen-
erators can produce a grid voltage range from 6 kV to 20 kV [3]. The voltage
is then increased up to typically 220 kV or 400 kV in order to connect to the
high voltage (HV) transmission lines. The transmission network is respon-
sible for the electricity transportation over long distances, and it is done
at HV level. By doing this, the transmission losses are lower while using
a cheaper infrastructure. The transmission network voltage level usually
ranges from 200 kV to 1000 kV [4], and both generators and transform-
ers are the main elements connected to it. Due to their critical position
in the system, connecting generation and consumption sides, transmission
grids are meshed to avoid collapsing when there is any failure in one of
the lines. On top of that, this layout allows the distribution of the loads
through different tramission lines with the objective of reducing losses and
avoiding congestions. Transmission networks are operated by the so-called
Transmission System Operators (TSO). Similarly, distribution networks are
responsible for the energy distribution and transportation for shorter dis-
tances. One could consider a distribution grid when its voltage levels are
either medium-voltage (MV) and low-voltage (LV). By definition, the volt-
age levels considered for distribution networks are: 132 kV, 66 kV, 45 kV,
30 kV, 20 kV, 10 kV, 6 kV, 3 kV, 1 kV, 400 V and 230 V [3,4].
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Differently as seen in the transmission system, the assets connected at
distribution level are mainly loads ranging from industrial loads, connected
at MV, to residential loads, mostly connected at the LV level. However,
generation units can also be connected at the distribution level, usually only
considering renewable sources. The configuration layout of distribution net-
works is commonly not redundant, meaning that they do not usually use
meshed configurations. As a result, these networks are not as redundant
as the transmission system. Hence, this could lead to problems when dis-
tributed energy resources (DERs) or distributed generators (DG) are con-
nected to MV or LV connection points, leading to congestions in distribution
networks that were not expected when the network was implemented. Dis-
tribution networks are managed by Distribution System Operators (DSO),
who connect consumers, install electricity meters and communicate the end-
user consumption to energy suppliers or retailers [4]. An overview of the
previously mentioned elements is shown in Figure 1.2.
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Despite the scenarios where renewables are the main source for electricity
generation, it is a fact that geographical, economic, and social-cultural bar-
riers are still slowing down the implementation of renewable energy projects
in some locations [5, 6]. As a result, newer technologies allowed placements
where larger power outputs can be obtained, and generally less concern by
end-users in terms of the environmental and visual impact of them, such as
off-shore wind turbines [7,8], connected to the transmission network. At the
same time, as electricity demand on grids increased due to the electrification
of appliances, distribution system operators started to face congestions in
their networks. Hence, utilities began to find solutions for managing these
peak loads, usually located in specific periods. Due to the implementation
of smart meters, utilities could encourage customers to switch consumption
from peak to non-peak hours. However, this made necessary the increase
of monitoring and control activities in distribution networks. Tradition-
ally, electric power systems have been based on centralized management
structures organized into generation, transmission and distribution, placing
end-users at the endpoint of the supply chain. This was a unidirectional
structure where electricity generated by large power plants was transmit-
ted by means of transmission and distribution networks, to be delivered to
end-users.

Furthermore, the emergence of the social awareness of the environmental
impact of the end-users consumption, the increase of the electricity prices,
as well as the emergence of DERs, such as small-scale photovoltaic (PV)
installations (mainly rooftop), storage systems, electric vehicles (EVs) and
smart home appliances are transforming the end-users into active partici-
pants in the power system, known as prosumers. The increasing penetration
of these decentralized resources, as well as the emergence of new market
agents like prosumers, aggregators and active consumers, are pushing the
electricity system to include innovation in their business models, creating
the paradigm of smart grids. According to [9], a smart grid can be defined
as:

”An electricity network that can integrate in a cost efficient manner
the behaviour and actions of all users connected to it, including gener-
ators, consumers and those that both generate and consume, in order
to ensure an economically efficient and sustainable power system with
low losses and high levels of quality, security of supply and safety”.
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However, fulfilling the energy transition roadmap is not only a matter of
technological capabilities. Changing the DSO regulatory framework is a key
factor for the success of the energy transition. By doing that, distribution
networks could have more and better opportunities to operate distribution
networks with a high penetration of renewables and DERs.

With the liberalization of the electricity markets all over Europe, new
directives such as the ones in the First, Second, and Third Energy packages
[10,11] highlighted the need to create a more robust internal market [12–14].
As a result, grid planning faced problems related to generation forecast
because, at that point, the generation at the HV side of the grid was not
100% planned anymore. However, the network overcame the problem of
establishing rules where these new agents must inform their operations in a
centralized organization to maintain the balance of the system and create a
market-system where TSOs upload their needs and generators their offers.

Nowadays the European Union (EU) is promoting another change in the
structure of the electricity market, imposed by the need to decarbonise the
energy sector by 2050 and the willingness to empower the citizen chang-
ing its role from pure consumer to a new agent in the market [12]. This
is mainly going to be done by promoting the integration of DERs in the
distribution grid which supposes an entirely new approach to the grid man-
agement. Challenges like reverse power flows and an increase of voltages
near the point of coupling, among others, will arise. This structural change
of the electricity system can be classified as follows, according to [15]:

(i) With the liberalization of the generation, system operators are less
capable of limiting connections of new generation assets which can
drive the grid, at some locations, to its limits.

(ii) Formerly traditional generators’ location was determined considering
the interests of the system operator and the constraints related to the
construction of such large power plants. Nowadays, the location of
new RES power plants is instead related to energy source availability.

(iii) RES generation tends to connect at distribution level instead of trans-
mission level where all the main generators were connected.

(iv) Democratization of generation assets which, other than the new cases
stated above, can transform traditional passive-customers to active
customers and thus increase the variability of the demand.
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These four changes in the power system structure can and will improve
clean generation, increased energy efficiency, customer empowerment, and
grid reliability, among others. However, nowadays, most of the European
grids are far from being ready to face such challenging opportunities, and
these new approaches are also giving rise to new and not-so-new problems,
which can be divided into two main groups:

(i) Generation and load balancing: If there is no balance between gen-
eration and demand, the frequency of the system starts to deviate from
the nominal value; this may be a problem for some electric/electronic
loads. The main concern arises when large generators are synchronous
machines. In an intense frequency deviation event some generators
may trip from the grid, causing even a harder frequency deviation.
This domino-like problem is called cascade tripping and can lead to a
local system blackout, and has been a concern for the system since its
beginnings because the load forecast is not always accurate. However,
large generator units can be mandatorily disconnected from the grid
for safety purposes [15]. Then, the challenge increased with the liber-
alization of the generation market. Nowadays, with the introduction
of DERs and the empowerment of the user via demand-modulation
strategies, the future forecast of generation and demand is expected to
be more challenging than ever.

(ii) Distribution grid congestion: Grid congestions at both transmis-
sion and distribution level have always been present. Due to the tra-
ditional operation of the grid, the fit-and-forget approach consisting
of investing in expanding the infrastructure was the most cost-efficient
approach at the distribution level. With the uncontrolled connection,
in terms of number but also location and characteristics, of new DER
assets to medium and low voltage grids, a new grid structure may
be needed from the fit-and-forget perspective. Despite this, this does
not seem either rational nor cost-effective viable, and instead, these
new congestion challenges will need to be addressed from an active
(real-time) management approach.

1.2 Regulation framework and new agents in the
energy transition

For the last 15 years global warming awareness and a more rational approach
to generation and consumption of goods and habits have been an increasing
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concern for societies with a firmly established welfare state. Related to
this new approach, electricity markets have been the target of criticism due
to their massive contribution to the emission of greenhouse effect gases [12].
Within the European energy policy context, the chosen way to carry out this
reduction of emissions by the energy sector is enhancing a higher penetration
of DERs (particularly RESs) in distribution networks. This positioning,
despite its multiple potential benefits for the grid and its agents, also sets
out new challenges to be faced. All the perks and disadvantages of a higher
share of DERs need to be adequately regulated in order to keep secure
the functioning and operation of the grid. Besides, inside the EU energy
policies, the environmental concern is nowadays one of the main driving
forces. However, there are also other key objectives to achieve, which in
some cases will present synergies, but in other cases, could collide among
them.

The creation of the Winter Package the year 2016, also known as Clean
Energy Package for all Europeans (CEP) [16], started after the European
Commission had evaluated the performance of the Third Energy Package
established in 2009. After assessing the outcomes of the previous energy
packages, the objectives starting back then could be grouped in three, as
follows:

(i) Adapting to the decentralization of the power system.

(ii) Empowering customers and citizens.

(iii) Ensuring the internal market level playing field.

The Clean Energy package is a set of regulations and directives published
in June 2019 to promote the energy transition started with the Third En-
ergy Package back in 2009. Among the CEP regulations and directives, the
ones that address the electric sector are the e-Directive (EC 2019/944; [17])
and the e-Regulation (EC 2019/943; [18]), whose subject matter and scope
is centred in ”setting the basis for an efficient achievement of the objectives
of the Energy Union and in particular the climate and energy framework for
2030” (e-Regulation), ”via the creation of common rules for all the assets
connected to the power system, with a view to creating truly integrated, com-
petitive, consumer-centred, flexible, fair and transparent electricity markets
in the Union” (e-Directive). The e-Directive and e-Regulation are mainly
focused towards the creation of market models to promote the energy tran-
sition. In terms of market design there is a group of markets, local energy
and flexibility markets, that can be crucial to promote the widespread use
of new smart grids related technologies [19].
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1.3 Flexibility as a service for the energy transition

Power system flexibility will play a key role in the energy transition and the
next generation electric grid. Some of the main outcomes of implementing
flexibility are the possibility to replace fossil fuel generators with clean and
renewable energy sources; increase reliability and resilience against disrup-
tive events; improve performance and reduce cost of new and existing assets
and achieve the scenario where a low carbon economy is possible.

In general terms, flexibility can be defined as follows, according to the
International Smart Grid Action Network (ISGAN) [20].

”The ability of a power system to reliably and cost-effectively man-
age the variability and uncertainty of demand and supply accross all
relevant timescales.”

Traditionally, these variations from the demand-side have been covered
utilizing fuel-based flexible large generators such as carbon and gas tur-
bines; and pumped hydro power plants. Those changes in the demand-side
were mainly from changes in the load consumption based on consumer be-
havior. Some of these requirements for large generators are still considered
in the new regulation under the Clean Energy Package and Grid Codes [16].
However, most of the requisites are not mandatory for smaller generator
units, and with the new paradigm where there is a reduction in the num-
ber of synchronous generators and more difficulties to forecast demand and
generation, the remanining generator units might not be able to handle the
flexibility required to keep the grid consumption and generation balance.
The reason is that smaller generator units connect the power supply to the
grid through semiconductor power converters instead of synchronous gener-
ators that lack the inertia capacity that synchronous generators have. This
will lead to an increased need for flexibility [19]. Besides, the increasing
penetration of DERs into the MV and LV grid will suppose some challenges
in terms of network operation, which will need to be addressed by the DSOs
by means of active management and flexibility activation to avoid grid rein-
forcement. For these reasons, flexibility markets are being recognized in the
e-Directive [17] as a key element to support a safer and more efficient use
of the already existing grids. According to the same institution, flexibility
will enable all stakeholder and elements of the grid considering generators,
consumers/end-users, storage and infrastructure to be active participants in
the energy system, also enabling the cost-efficient development of RES and
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more resilient power systems [20].
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Fig. 1.3: Evolution of the demand curve when implementing flexibility ac-
tions.

Due to the increase of electricity consumption and DERs integration in the
last ten years, the consumer behavior patterns have been broadly studied [21,
22], showing that the electricity consumption is focused at specific periods,
such as noon and in the evening. With the implementation of DERs and
the increase in electricity consumption, there is a possibility of flexibility in
power systems by achieving the paradigm where consumption follows the
generation curve only partially. Flexibility can be then provided by shifting
the consumption of specific assets such as EV charging and water boilers,
curtail the generation of some small-scale generators such as PV, or control
the charge and discharge process of storage systems, as seen in Figure 1.3.
Demand-side flexibility can be defined as follows, according to [23]:

”The ability of a customer or prosumer to deviate from its normal
electricity consumption or production profile, in response to price sig-
nals or market incentives”

Hence, demand-side flexibility can help developing smart grids and achiev-
ing the Paris Agreement objectives, by means of distributed energy re-
sources, the change on their electricity consumption profile and the inte-
gration of energy storage and electric vehicles.
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1.4 Sustainability of smart grids and DERs

Sustainability can be understood as a progress model that considers not only
economic, but also environmental and societal needs in order to develop an
economic model that maintains an ecological balance. The 2030 Agenda
for Sustainable Development, agreed by all United Nations Member States,
defined 17 goals calling for action by all countries with the objective to
achieve a sustainable and prosperous future [24]. Many of the goals are
aligned with the energy transition roadmap, and with the implementation
of demand-side activities for encouraging end-users as market participants.
Objectives 7, 11, 12 and 13 of the Sustainable Development Goals for 2030
(Figure 1.4) are related to the previous statement, encouraging all Member
States to include sustainability when planning the electricity system and
market of the near-future.

Fig. 1.4: Sustainable Development Goals defined by the United Nations.
Source: [25]

The increase of renewable generation has provided and is providing many
benefits in the road towards a decarbonized power system. However, in the
past years, social concerns about the environmental impact of renewable
technologies have arisen [26], with more than 3000 environmental conflicts
based on renewable energy-related projects. These problems are based on
the fact that these projects take into consideration neither the acceptance of
the population living close to the renewable energy plant location, nor the
consequences of having the power plant, such as the reduction of agriculture
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fields or the impact on the land prices.
The decentralization of the renewable generation with the appearance of

DERs has a large potential to succeed in the energy transition roadmap.
However, sustainability must be taken into consideration in each and every
step, even in local energy communities and DERs [27].

Some of the current methodologies for calculating the environmental im-
pact of renewable energy technologies assume that the carbon footprint of
renewable sources is zero because they only consider the CO2 emission fac-
tor under the operation phase [28]. However, renewable energy technologies,
electric vehicles, and storage systems can be carbon neutral under the oper-
ation phase. Still, they are not zero, and they contribute negatively to other
environmental indicators when considering the entire life cycle. Therefore,
there is a non-negligible carbon footprint or other environmental impacts
such as water usage and pollution and ozone contribution that must be con-
sidered [29–31]. National preliminary studies about the current installed
capacity based on an LCA approach could help policymakers determine
whether these energy transition initiatives lead to a lower environmental
impact [32].

Technologies and methodologies such as circular economy, second-life op-
tions for storage systems, and life-cycle assessment (LCA) are crucial to
check the viability of renewable energy projects and smart grid implementa-
tion. More specifically, LCA is a powerful tool for assessing the environmen-
tal impacts of renewable energy sources based on indicators of renewable
energy technologies and smart grids throughout the entire life cycle.
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1.5 Objectives and scope

Several past and recent works in the literature have dealt with the devel-
opment of smart grids and defining local electricity markets for enhancing
the energy transition. The majority of these studies are based on DERs
integration, optimization at household level and forecast of indivual assets.
The majority of these studies consider flexibility as a known signal, assum-
ing a perfect forecast and a direct control of the flexible assets, as a way
of simplifying the operation of the local flexibility markets. Furthermore,
they assume that both the aggregator and the DSO share information re-
garding the flexible assets or the network layout, or can even control the
flexible assets or the network. The fact is that, in reality, and according
to the current regulation, they must be different entities, and as a result
they might differ in the business model. Furthemore, even though there is
a significant amount of data being collected at different points of the power
system thanks to smart meters rolling out and more information and com-
munication technologies (ICT) implemented, there is still a difficulty to get
access to this data. As a result, the access to data is still a challenge for
smart grids agents to develop innovative algorithms and solutions for the en-
ergy transition era. Combining the previous facts and challenges, the main
research question that this thesis aims to answer is the following one:

What are the possibilities to develop and activate flexibility in distri-
bution networks, by engaging demand-side and ensuring that the sus-
tainability goals are taken into consideration, considering data-driven
approaches and challenges?

This can be considered a broad question, and hence the knowledge barriers
should be found in order to establish the baseline for the PhD research.
This thesis aims to answer this question focusing on the role of the demand-
side and their flexible assets and what the benefits and consequences would
be for distribution networks, managed by DSOs. Figure 1.5 provides an
overview of the system under study, considering the demand-side by means of
prosumers and flexible assets; the aggregator as the entity that collects all the
available flexibility and provides this service to the DSO by controlling the
end-user’s assets; the DSO as the main client of this flexibility; the electricity
market to understand the role of flexibility in current and new market-based
configurations; and lastly the environment, to assess the global warming
potential and other environmental impacts that flexibility could reduce or
increase. Based on the previous discussion, more specific objectives can be
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outlined in order to set the basis for the research developed in this thesis.
The research questions that led to the objectives of the thesis are outlined
below:

RQ1: What are the possible market schemes to integrate DERs and
demand-side flexibility, while at the same time ensuring that
network operators can benefit from these services?

RQ2: How can flexibility be defined and modeled based on the stake-
holders involved, as well as the final use of this flexibility?

RQ3: How can flexibility be forecast, from the aggregator point of
view, with very limited amount of data available, in a fast and
reliable approach so as to know in advance the flexibility avail-
able in the portfolio, in order to provide flexibility to DSOs for
operation purposes?

RQ4: How can this flexibility help DSOs to mitigate or avoid con-
gestions in MV networks, and how can this flexibility request
be calculated so as to be economically better than investing in
network expansion or hosting capacity?

RQ5: How can this scenario of flexibility provision be environmentally
assessed, so as to know if these approaches can be included in
each and every country? Should the current installed capac-
ity and generation portfolio be taken into account before the
deployment of flexibility services in smart grids?

The previous research questions lead to the following objectives:

(i) Analysis of the market schemes for energy and flexibility for
the development of smart grids. The first step of the thesis has
the objective of defining the framework where new products and ser-
vices can be implemented, with the purpose of providing smart grids
stakeholders such as retailers, network operators and end-users a set of
benefits. Special focus is set in energy and flexibility services for bal-
ancing agents and distribution network operators, with the creation of
new market agents like the aggregator and the local market operators.
Different market mechanisms for providing these services are analyzed,
considering peer-to-peer and peer-to-platform approaches.

13



Chapter 1 Introduction

(ii) Definition of flexibility based on the main stakeholder, time
horizon and business objective. As a result of the previous state-
of-the-art analysis, the research is focused on flexibility for the distri-
bution network operator. The main research gap to address here is
that distribution network operators require flexibility for the network
operation, however current research still lacks a common definition for
flexibility, and how can this flexibility be formulated based on the final
user and the final approach of this flexibility. There are several differ-
ences to be considered if this flexibility is implemented for operation
purposes or planning purposes. In this case, the role of the aggre-
gator, the information exchange between these two agents as well as
the regulation behind them are key for the development of successful
flexibility services for the DSO.

(iii) Modeling and forecasting flexibility of an aggregator’s port-
folio based on statistical techniques. Based on the result of the
previous objective, a modeling and forecasting approach is developed
under this objective of the PhD research. This methodology is based
on a bottom-up approach for collecting the flexible assets’ submeter-
ing data, and later a hierarchical approach is performed to estimate
the available flexibility in a two-level hierarchy. The underlying fore-
casting technique is based on statistical learning, considering several
approaches. The benchmark model is defined by means of a particular
case of the moving average, known as climatology model; and also con-
siders simple exponential smoothing. The most complex methodology
for forecasting the flexibility value is based on a conditional approach,
and implementing probabilistic forecast by means of kernel density es-
timation and recursive maximum likelihood. This methodology is later
implemented to a case study of an aggregator’s portfolio to assess the
goodness of fit.

(iv) Development of an optimization algorithm for the distribu-
tion network operation under congestion management sce-
narios. Once the flexibility has been forecast by the aggregator, this
service can be provided to the DSO for the correct operation of the
distribution network. The research performed under this objective
aims to provide DSOs with a tool to calculate the flexibility required
for avoiding a congestion in the distribution network. This is imple-
mented by means of an AC-OPF algorithm, with the main objective
function of minimizing the flexibility activation costs that the aggre-
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gator should pay for it. The final purpose of activating flexibility in
distribution networks is for DSOs to avoid the reinforcement of the
network and activate flexibility instead.

(v) Analysis of the environmental impact of the current electric-
ity market generation scheme and evaluation of environmen-
tal savings by implementing flexibility. The final step of the
research aims to assess the whole idea and approach by evaluating po-
tential savings in terms of CO2 emissions in the generation profiles,
based on a cradle-to-gate life cycle assessment methododology. This
study defines a peak hourly LCA approach to highlight those time pe-
riods where flexibility could be activated and evaluate the environmen-
tal impact of these time periods. This methodology is implemented in
five case studies in Europe to assess whether there are environmental
savings or not. This approach can help policy makers to implement
smart grids and energy transition initiatives not focusing only on the
technical development, but also in terms of sustainability.

Figure 1.5 depicts the different objectives covered in this thesis and the
interaction between the agents involved. Lastly, Section 1.7 defines the topics
covered in each chapter and relates them to each of the objectives.
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Fig. 1.5: Contextualization of the thesis objectives
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1.6 Thesis related work and activities

This section provides a summary of the work and the relevant activities
that the author has participated in during the development of the thesis
presented in this manuscript.

Doctoral activities started in June 2017 with the collaboration on be-
half of the EMPOWER Local electricity retail markets for prosumer smart
grid power services Project (Grant Agreement No. 646476). This work
consisted of a review of the current state of the art in terms of Life Cycle
Assessment Methodology in the field of smart grids, the understanding of
how this methodology can be implemented in power systems and renewable
energy technologies and the assessment of the environmental impact of the
pilot-sites implemented throughout the project. This research resulted in
a presentation in the General Assembly of the H2020 Project [P1] and the
technical report [R2]. The research on the environmental assessment of ICT
and Smart grids continued in the H2020 Project INVADE Integrated elec-
tric vehicles and batteries to empower distributed and centralised storage in
distribution grids (Grant Agreement No. 731148), in years 2018 and 2019,
with the assessment of the environmental impact of electricity generation
and the possibility of including flexibility to lower the environmental im-
pact of electricity production in the INVADE pilot-sites. This research was
performed in collaboration with the Finnish research center VTT, NTNU,
Elaad and eSmart resulting in the journal publication [J1], a conference pro-
ceeding [C2], and technical reports [R3], [R5]. Dissemination events for the
exploitation of the results took place in years 2019 and 2020, [P5] and [P11].

Since one of the main objectives of the thesis is how new local markets
and new services can help the deployment of smart grids, a thorough review
of the state-of-the-art on local electricity market was done as a starting
point of the doctoral research in 2018. This research was mainly focused
on describing the basics of power systems and market mechanisms and a
literature review on local and micro-markets. As a result of that, a technical
report was developed [R1], and two book chapters were published by Wiley
([B1],[B2]). The evolution of this state-of-the-art review, combined with the
collaboration with colleagues at CITCEA-UPC and other research centers
and companies such as EYPESA and Smart Innovation Norway on behalf
the INVADE Project led to several outcomes covering from technical reports
[T4], journal articles [J3] and [J4]; conference papers [C1], [C3] and [C4]; and
presentations in local and international events [P3] and [P4].

The evolution and implementation of smart grids based on data-driven
approaches has been of interest of the author, and combined with collabo-
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ration with other universities as KU Leuven, DTU and KTH Stockholm on
behalf of EIT InnoEnergy, resulted in [P6], [P10] and [P14].

The year 2020 started with the kick-off of the BD4OPEM H2020 Project
Big Data for Open Innovation Energy Marketplace (Grant Agreement No.
872525), with the participation of 12 partners from 8 different countries and
five pilot sites. The research consisted of the development of algorithms for
flexibility forecast and distribution network congestion management based
on optimization techniques and flexibility provision. This work was com-
bined with the Technical University of Denmark (DTU) under the external
stay of the author and in collaboration with other research centers and com-
panies such as JSI and ICOM. This work resulted in a journal article [J6],
a technical report [R6], two dissemination events [P12], [P15], and a journal
publication under review [J2].

The international placement took place from March 2020 until April 2021,
at the Electricity Markets (ELMA), DTU, Kongens Lyngby, Denmark. The
topic was aggregated flexibility forecast based on probabilistic forecast tech-
niques. It resulted in a journal paper [J2], and the database publication
[D1]. During this period, the author has collaborated with KU Leuven in
the core of the Data Science Working Group, with the aim of improving
the knowledge of undergraduate and graduate students in the field of data
science in the energy sector. This resulted in the publications [J5] and [J7].

The author has collaborated with other entities and other researchers,
resulting in the respective outcomes, which are not included in the thesis
manuscript. This is the case of the collaboration with EIT InnoEnergy,
whose core activity is the connection and cooperation between industry,
universities, and research centers to reduce the gap between research and the
market. In years 2018, 2019 and 2020 the author has been the lead teacher
of the course on Control and Automation for the Efficient Use of Energy,
developing the open-source learning material, and developing a course based
on project-based learning and flipped classroom approach. This resulted in
[E1] learning material, and dissemination of the results in different local
conferences [P2], [P7] and [P8]. The project Learning Analytics started in
September 2018, with the objective of monitoring students’ performance
to assess their engagement in the course, in collaboration with the Data
Collection company DataLemon. This collaboration led to dissemination
event [P9] and [P13], as well as an ongoing journal paper to be submitted
in the near future. Other collaborations within the Electrical Engineering
Department led to two outcomes: a MOOC course for wearable technology
[E2], and a publication in a local journal [C5].

17



Chapter 1 Introduction

1.7 Thesis outline

The content of the thesis is organized in the following chapters as follows:

� Chapter 2 presents the overall state-of-the-art in terms of local energy
markets, in order to define the role of flexibility in a local market
and to which extent this service can help energy transition, and more
specifically, DSOs. This work corresponds to the first objective of the
thesis (i) detailed in Section 1.5.

� Chapter 3 outlines how flexibility can be formulated, defined and
modelled according to different approaches in terms of end-user, ap-
proach and time-horizon, covering the second objective of the thesis,
providing different formulations for modeling flexibility (ii).

� Chapter 4 presents the aggregated flexibility forecast for estimating
the available flexibility within an aggregator’s portfolio, with limited
amount of information, for operation purposes and trading in a market
or a bilateral contract. This chapter aims to fulfill the third objective
of the thesis (iii). This formulation is implemented under a case study
covering a portfolio of flexible assets such as Electric Vehicles, Space
heaters and electric water boilers.

� Chapter 5 outlines the AC-OPF formulation for calculating the flex-
ibility requests needed by DSOs to solve congestions in MV networks
by means of flexibility activation. This chapter corresponds to the
fourth objective of the thesis research (iv).

� Chapter 6 extends the scope of the previous research assessing the
potential role of flexibility in different countries, in terms of sustain-
ability. This chapter calculates the peak-hour environmental impact
measured in CO2 emissions, so as to establish a baseline for countries
to understand where DERs and flexibility could be implemented and
leading to a lower carbon footprint. This chapter focuses on the last
objective of the research (v).

� Appendix A enumerates the publication and research outcomes both
related and non-related to the thesis manuscript.
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Chapter 2

Local market services and products
for active network management

2.1 Objectives and contributions

There are many concepts in the field of power markets that are being for-
mulated at the current time: local electricity markets, local markets, local
power markets, smart city marketplaces, micro markets, microgrid energy
markets, etc. There is a need to set up the basis of these concepts, to build
up the technology that enhances the transition towards a smart grid based
on the distribution of locally generated energy instead of big power plants.
This chapter aims to provide the reader with a standardized theoretical
background of local and micro power markets so the reader can understand
all the agents involved in the energy transition, as well as the main services
that can be provided. Several references are included to prove that right
now this topic is of broad and current interest, with many ongoing projects
involved. In this chapter, the concepts of local and micro power markets
are reviewed and then defined to establish a common reference for their de-
velopment. The main contribution of this chapter is focused on objective
(i) of the research, as outlined in Figure 2.1. It establishes the hypotheses
on which the research will be based, such as who is the main user of the
service, how flexibility can be provided and what are the possible schemes
to implement these services for the network operator.

2.2 Why local and micro?

The road to local and micro markets comes after years of a centralized mar-
ket and a rigid structure of the electric power system. Despite this, at present
society is facing a globalization movement, where the objective is to simplify
entities and structures, and achieve a more homogeneous behaviour of the
markets, developing a model that is more predictable, more standardized,
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Fig. 2.1: Chapter objective based on the PhD scope

and more transparent [33]. Besides the energy transition, there is a challenge
for distribution system operators: to connect more than 90% of customers
and ever-growing numbers of DERs in a rapidly changing, ever more de-
centralized, and digital energy world. One example of this behaviour is the
project EUPHEMIA [13], where the aim is to develop a single price-coupling
algorithm, used to calculate energy allocation and electricity prices across
Europe, maximizing the overall welfare and increasing the transparency of
the prices and flows computations. So why is there a need to go local and
micro in terms of energy markets? What advantages does this approach
have? The objective of this chapter is to answer the questions faced in [34]:

To what extent do these concepts offer something new? Aren’t these
services already offered by suppliers, who can exchange flexibility and
energy with consumers, and help them in home automation? Don’t
current regulation, market arrangements and commercial practices
already allow all this? How can the proposed solutions be made com-
patible with the natural monopoly of the grid, and deal with the likely
conflicts of interest? In activities that present significant economies
of scale, thanks to the power of digital devices, what is the advantage
of being local and small scale?
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2.2 Why local and micro?

One of the advantages of being local and small scale is to fulfil the pref-
erences of consumers, as is stated in [35]. For instance, some consumers are
willing to pay more for the energy they consume if the energy they receive
meets their environmental preferences, such as being carbon-free, pollution-
free, exclusively renewable and locally generated [36]. The fact is that the
structure and roles of transmission and distribution systems are changing
significantly due to the integration of RES, in a distributed way, in both
transmission and distribution grids. The integration of these DERs along
the distribution grid creates local variations that can affect the optimal op-
eration of transmission and distribution networks.

Despite this, local supply variation can be matched with local demand
variation, resulting in a local way to solve the problem [37] and producing a
potential business model to increase the hosting capacity of the distribution
grid without investing in it. This could be the basic idea of a local or micro
power market. At present, the existing electricity markets (e.g. wholesale
market, balancing market, futures market, and bilateral trading) do not
provide to end-users the scenarios needed to share their excess of energy or
to purchase the surplus of energy generated locally by the prosumers near
that end-user. Local and micro markets are needed to provide new tools to
prosumers to empower them to become pro-active and game-changers in the
energy (r)evolution that is currently being faced.

To combine these characteristics in one local market design, there is an ad-
ditional requirement besides technological development: consumer engage-
ment. The success of local markets would only happen if there is consumer
engagement to deal with the energy transition. Due to the energy transition
that the power system has faced in the last few years, society has become a
key player in this game. Society is prepared right now to face this challenge.
Small consumers, producers, and prosumers are becoming more and more
active in the way they consume energy. Kalkbrenner and Roosen [38] state
that citizen participation can be an important means for energy transition at
the local level. In this research, a detailed analysis is done to assess whether
or not community identity feeling, social norms, and environmental concern
can help the implementation of local markets. Also in [38], the promotion
of community identity and contacts at local neighbourhood level can facil-
itate a community feeling, which is key to integrating these new services
into smart grids. A local energy community (LEC) can also be based on
prosumers who are willing to collaborate with each other and hence to share
their investments [39]. In addition, the main aims of prosumers participating
in this type of market approach are (i) to reduce costs in their energy bill,
(ii) to develop a more transparent energy trading scenario by being able to
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choose the type of energy source, and (iii) to invest in local and renewable
energy production among the community.

The power system was designed based on a top-down approach, which
provides reliability and security of supply. Since the integration of DERs
along the electrical grid and its natural intermittent behaviour, along with
the increase in demand, there has been a change in the way energy is sup-
plied. There is a need to integrate methods of electricity supply [40], by
facilitating the development of LECs, while also maintaining the reliance of
the top-down power system, which needs infrastructure investments. In that
sense, microgrids can become the main actor to enable the creation of local
and micro power markets.

2.3 Local and micro power market concepts

This section reviews the definition of local and micro power markets, which
are nowadays dragged into the spotlight, being discussed, defined, and char-
acterized to help in the integration of DERs into distribution grids. This
review collects, classifies, and summarizes the main definitions regarding lo-
cal and micro power markets, as well as their characteristics or market design
and their main approaches. First, definitions of local and micro markets are
suggested, and are compared to the previous work done in literature.

The European Commission proposed a new electricity market model in
2016 [16], defined as decentralized, smart and interconnected, which is needed
to achieve the sustainability objectives for the decarbonization of the power
sector in Europe [40]. Also in this document, the Commission aims to em-
power consumers by reforming the energy market, to enable them to be more
in control of their choices. As a result, more competitiveness between agents
will be introduced as will more and better information for end-users, who will
be able to manage their energy costs more efficiently and thus become active
agents in the electricity market. Hence, micro markets can be seen as an en-
ergy management system (EMS) but using a management algorithm based
on market rules. Micro markets are therefore a trading arena for energy
products within a microgrid. Micro markets exist because there are micro-
grids with different owners and a micro market is a way to establish market
rules to maximize the social welfare of the microgrid. Local power markets,
hereinafter LMs, are placed in neighbourhoods, called LECs. LECs are an
emergent trend with the aim of engaging end-users in a sustainable energy
future. There is not an agreed LEC definition in the literature because they
can be organized in different ways. Recently European regulatory bodies
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included LECs in Article 16 of the proposal for a directive on common rules
for the internal market in electricity [16] and considered them to be an effi-
cient way to manage energy at community level. As stated in [41], LECs are
citizen-led renewable energy cooperatives, housing associations, foundations,
and charities that are not commercial actors but produce energy meant for
self-consumption, mainly by PV panels and wind turbines. Additionally, [42]
analysed LECs in the Netherlands and their common characteristic is their
intention to prioritize community benefits. However, it is not clear if a LEC
should be under the same DSO or within the same balance responsible party
(BRP) portfolio in all cases. In some cases, citizen energy communities are
considered under the same DSO while renewable energy communities do not
belong to the same DSO. Either way, end-user aggregation would constitute
an opportunity to create energy and flexibility exchanges regardless of the
LEC characteristics. LECs are based on local market players, which are the
local DSO, prosumers, consumers, storage owners, distributed generators,
and other entities allowed to participate in the local market [35]. All market
agents are described in Section 2.5.1.

Local power markets can provide two different but related services: energy
and flexibility. As a result, two local markets can be considered, local energy
markets (LEMs) and local flexibility markets (LFMs), and these can be
based on a centralized approach or a peer-to-peer (P2P) approach. Both the
services and the approach are described in more detail in Sections 2.5.2 and
2.5.3. The LM ambition is to develop a local market place to encourage local
generation and active participation of prosumers to exploit the flexibility
that it creates, for the benefit of all connected to the local grid. Thus, the
LM objectives are listed as follows:

(i) To support a business model whereby locally produced energy is pri-
marily targeted towards local consumers.

� To offer a competitive marketplace.

� To facilitate local trade.

(ii) To promote the installation of distributed renewable generators.

� To create an attractive and competitive marketplace that forges
incentives to buy energy from local and renewable resources.

� To cater for increased investment in distributed renewable re-
sources.

(iii) To support trade of end-user flexibility for the benefit of the DSO and
its operations.
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� By managing grid bottlenecks.

� By providing power curtailments under request.

(iv) To support power system balancing in wholesale markets.

� In intraday markets.

� In balancing markets such as the TSO tertiary reserve market.

Prior to the increase in the micro and local markets concept, virtual power
plants (VPPs) were seen as a novel mechanism for smart grid development
and prosumer engagement. VPPs were defined first as an aggregation of
different types of DERs which may be dispersed at different points of a
MV distribution network. They are a cluster of spread generator units,
controllable loads, and storage units that are aggregated to be seen as a
unique operating power plant. The main difference between VPPs and LMs
is the approach that each mechanism considers. LMs aim to deal with DERs
located within an LEC, focusing on a local area, whereas DERs are close to
each other. The main difference between VPPs and LECs is that in VPPs
the location of the source is not considered, and in LECs the energy sources
must be inside this community. Current literature focuses on trading energy
and flexibility by boosting new market agent participation and new market
mechanisms, as will be detailed in Section 2.6. To conclude this section, the
proposed definitions for local and micro markets are given below.

Micro power market (µM): An energy management system
(EMS) based on market rules used to manage the DERs located
within a microgrid, mainly providing energy services, although
flexibility service might also be considered. These services permit
the maximization of the time of use of the DERs located in the
microgrid. In this case, the local grid ownership is private. That
means that there is a microgrid operator (central operator).

Local power market (LM): A trading arena located within
an LEC, operated in a public grid to provide two different services:
energy and flexibility. These services are aggregated in a portfolio
that is provided to a smart grid agent. LMs may interact with the
wholesale market. In a local market, the local grid is public and the
DSO operates it.
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2.4 Comparative analysis

2.4 Comparative analysis

Once the definitions of micro power market and local power market have
been settled, a comparative analysis can be developed. Several definitions
regarding local and micro power markets have been presented in the lit-
erature and several differences may arise between them. The comparative
analysis that is presented below presents the differences between each defi-
nition and the definitions presented above to clarify which of them can be
associated with micro power markets and which with local power markets.
In Tables 2.1, 2.2 and 2.3 the concept name and the definition are presented,
sorted by year of publication. Each definition is grouped under the concept
of local power market or micro power market, according to the definition
outlined before. In some cases, clarifications are written in italic alongside
the literature definition to facilitate the reader’s comprehension.

The local markets concept has been more frequently used than the micro
market concept, and there is an evolution of the local market definition.
At the beginning, the local market concept proposed was mainly based on
an approach close to a VPP, where energy agent represents power suppli-
ers, customers, and prosumers [43, 44], without taking into account that
DERs should be located within an LEC, close to each other. Later on,
some researchers started developing and defining local markets for flexibil-
ity services but energy services were still implemented most often in local
markets [45, 52, 78]. In 2016, flexibility services came back into research
and so literature [55, 59]. Flexibility services are mostly applied to pro-
vide ancillary services to TSOs and DSOs and are managed by aggregators.
New business models can be developed due to flexibility services. The fig-
ure of the aggregator is one of them and it is widely represented in litera-
ture [50,52,53,66]. Recently, blockchain has become a key agent in local mar-
kets, evolving LEMs from a centralized approach to a P2P approach [39,63].
In general terms, most references that describe the trading arena as a micro
market are considering a trading arena for microgrid DERs and exchanges
between agents located within the microgrid, mainly providing energy ser-
vices [35,36,67–69,72,73,77]. In [74], despite considering the term LEM, the
authors diverge from the one proposed here. There, the market is set up to
perform an economic dispatch by microgrid agents. Micro markets are to-
tally based on energy service provision, managing the DERs located within
the microgrid. However, in some cases, micro markets have been defined
as trading places for energy exchanges between microgrids [71]. Recently,
novel market mechanisms technologies as blockchain and multi-agent based
micro markets have been considered, moving from a centralized approach
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Table 2.1: Local market definitions. Part I

Ref. Year Concept

[43] 2010
Local energy market: Highly flexible market platform to coordinate self-interested
energy agents representing power suppliers, customers, and prosumers. The energy
agents implement a generic bidding strategy that can be governed by bidding policies.

[44] 2010

Trading agent for smart grids: New electricity market mechanism for self-interested
agents to create a decentralized autonomous system. The aim is to manage the self-
interested actions of the participants while guaranteeing a high level of surplus and
ensuring that transmission lines are never overloaded

[45] 2011
Demand response exchange (DRX): Competitive trading platform used to sell/buy
demand response as a commodity between buyers and sellers

[46] 2011
Smart city energy marketplace: Neighbourhood or district-wide marketplaces within
a smart grid where prosumers may interact portions of their prosumed energy.

[47] 2012
DSO-market on flexibility services (FLECH): Marketplace where the flexible DER of
the consumers can be mobilized by aggregators for providing flexibility products to
the DSO or TSO.

[48] 2012

Local energy market: Energy market at smart neighbourhood district level with the
primary goal of facilitating and managing electricity trading between the citizens of
this smart neighbourhood. Additionally, the implied aim is also to use it for market-
driven demand response.

[49] 2012

Consumer-driven market (local market): Wholesale market structures where
consumers have access to these markets. Energy marketplace to enhance small
consumer and local generation participation in the distribution constrained power
network.

[50] 2013
Local reserve energy market: Auction mechanism that aims to enable regionally or
virtually restricted trading of ancillary services.

[51] 2014
Local electricity market: Geographic area where consumption and production can
be metered, there is no transmission capacity restriction between the market
balanced areas, and for which there is one BRP and thus one price for the imbalance.

[52] 2014 Local market: Energy exchange market that manages network congestions locally.

[53] 2015
Local electricity market: Type of market area where there is no transmission capacity
restriction between the market balanced areas.

[54] 2016
Local electricity trading market: Trading area which allows not only local users but
also suppliers to trade excess electricity generated by RESs. In addition, a set of
functional requirements and potential interactions among different entities are provided.

[55] 2016

Local flexibility market: Long- or short-term trading actions for flexibility in a specific
geographical location, voltage level, and system operator (DSO and TSO), given by grid
condition or balancing needs, where participants in a relevant market can be aggregated to
provide flexibility services.

[56] 2016

Local power market: Trading area grounded on a local community and including
different types of prosumers, consumers, producers, and storage facilities. It engages
community members and those sharing the interest of the community in an array of
commercial activities that serve to create a better and more sustainable energy experience
for all parties involved. It supports energy-related exchanges. The local power market can
be seen as an amalgamation of the local energy market, the local flexibility market, and a
local market for other services.

[56] 2016
textbfLocal energy market: Trading platform which aims to schedule the local resources at
minimum cost to get an optimal balancing between local demand, local supply, and grid
exchange.

[56] 2016
Local flexibility market: Trading platform to adjust the energy resources to correct
forecasting errors or to increase the participants’ profits in balancing markets.

[56] 2016
Local market for other services: Trading platform for other services such as
maintenance, failure detection, and technical user support.
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Table 2.2: Local market definitions. Part II

Ref. Year Concept

[57] 2016

Local AS market: Real-time energy market to consider the activation of balancing
and congestion management services in both transmission and distribution ancillary
services. The DSO operates a local market to solve distribution grid problems and
then aggregates and offers the remaining flexibility bids to the TSO markets.
Market for ancillary servicesfor DSO and TSO.

[57] 2016

Common TSO-DSO AS market model: Real-time energy market to consider the
activation of balancing and congestion management services in both transmission
and distribution ancillary services. The TSO and DSO have the common objective
of minimizing the total costs needed to satisfy their respective services (AS for
TSO and local services for DSO) by using a decentralized architecture, but with
dynamic integration of a local market operated by the DSO.

[58] 2016

Local flexibility market: Decentralized implicit interaction framework for trading
flexibility from prosumers. Consists of one market operator, one DSO, and a number
of energy suppliers, aggregators, and BRPs, which aim to exploit the flexibility that
is available on the demand side. Two mechanisms: ahead planning via markets and
real-time dispatching.

[59] 2016
Local flexibility market: Marketplace which aims to solve low-voltage grid
violations with regional flexibility.

[16] 2017
Local energy market: Marketplace in which prosumers and consumers are able to
trade electricity directly with each other at variable prices. The aim is to facilitate a
local balance of energy supply and demand in a decentralized approach.

[60] 2017
Local electricity market: Market set up to create economic incentives for the expansion
of generation capacity close to load centres. The objective is to solve redispatch locally.

[61] 2017

Local energy market: Geographically constrained market mechanisms with distinct
pricing mechanisms between interconnected agents i (i.e. producers, prosumers, and
consumers). The agents have an energy generation and demand per time slot t. The
market mechanism allows for trading energy between the agents.

[62] 2018
Local flexibility market: Electricity trading platform to sell and buy flexibility in the
LEC. In order to run this market, local traders need the SESP platform. It acts as the
local market facilitator for the LEC and as an aggregator for wholesale market agents.

[63] 2018
Local renewable energy balancing market: Auction mechanism in charge of the
efficient matching of households offers to buy and sell renewable energy based
on a blockchain transactive platform.

[64] 2018
Local market parties: Small parties considered as aggregators or flexibility services
providers to DSOs and TSOs.

[65] 2018

Local flexibility market: Electricity trading platform to sell and buy flexibility in
geographically limited areas like neighbourhoods and small towns. The SESP is the local
market platform provider and community aggregator (AGR). At the same time, the SESP is
a BRP from the regulatory point of view because it bids in wholesale markets.

[66] 2018

Energy collectives: Community of prosumers that operates in a collaborative manner,
optimizing usage of resources. A market framework in which collective members can
trade their lack or excess of energy. All prosumers are in charge of optimizing their assets
individually. Optimality is achieved as prosumers are coordinated by a non-profit virtual
node, the community manager.

[39] 2018
Full P2P market: Decentralized electricity market that implies that each agent (i.e.
producers, consumers, and prosumers) directly interacts with the other agents without
intermediary entities like a retailer or market operator.

[39] 2018

Community-based market: Decentralized electricity market structured with a third
entity (community manager) to manage transactions among agents within the
community. This third entity can act as an intermediary between the community and
other communities or existing markets.

[39] 2018
Hybrid P2P market: Combination of a full P2P market and a community-based market,
ending up with different layers for trading energy. In each layer communities and single
agents may interact directly with each other.
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Table 2.3: Micro-markets definitions

Ref. Year Concept

[67] 2008
Micro market: Decentralized market mechanism that facilitates the efficient matching of
energy (electricity and heat) demand and supply in micro energy grids.

[68] 2011

Micro market: Energy market that is relatively simple and scalable. It has requirements
consistent with all markets, including market clearing, converging algorithms, mechanisms
for non-repudiation, and clear rules. It is a means to balance energy supply and demand
within a microgrid.

[69] 2013
Microgrid level competitive market: Market mechanism located within a microgrid to
provide competitiveness at the microgrid level by means of dynamic matching mechanisms.

[35,36] 2013
Micro energy market: Energy network architecture, pricing methodology, and
mathematical template included within a microgrid to meet consumer preferences,
minimize economic inefficiencies, and encourage DER integration.

[70] 2014 Micro market: Type of energy management system that facilitates the integration of EV.

[71] 2014
New market platform to coordinate energy exchanges among several micro smart grids in a
smart city context. It considers the presence of a city energy provider that converses with a
city DSO.

[72] 2014

Electricity trade model for microgrid communities: Closed economy group that
decides the optimal power generation in terms of time to maximize the total welfare and
meet the local demand in the neighbourhood. The interaction between microgrids within a
marketplace is allowed.

[73] 2015

Micro market: Internal energy market for islanded microgrids, with three primary
objectives: to reduce investors’ risk by dynamically adjusting pricing to encourage demand
when loads are less than expected, then increasing revenues, to invite local entrepreneurs to
provide capacity to the grid, and by regulating demand via pricing to reduce loads when grid
capacity becomes constrained.

[74] 2015
Local energy market: ED performed by microgrid agents. Each agent is capable of
trading electricity with other agents through this market.

[75] 2016

Micro market: An environment which allows all participants, consumers, producers, and
prosumers, to share their energy in a regime of competition on a distribution network level.
In this marketplace generators send offers, and consumers send bids, which are matched
according to the clearing auction algorithm that also determines the energy prices.

[76] 2017

Energy micro-generation market: Solar energy production and distribution
architecture using smart contracts (blockchain, Ethereum) to support automatic energy
exchanges and auctions, enabling a new energy micro-generation market. A local grid is
assumed where energy is produced and consumed in a limited geographical area, such as a
local neighbourhood.

[77] 2018
Microgrid electricity market: Electricity market for optimal DER management within a
microgrid. Energy market based on a multi-agent modelling approach.
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to a P2P approach also in microgrid energy markets [76]. To provide ser-
vices of energy and flexibility, different market designs have been introduced.
Some of these designs are only focused on energy or flexibility trading, while
others coordinate their resources to combine energy and flexibility services
provision [44,69,79]. For instance, in [51] the local market design is analysed
and defined to integrate PV generation and energy storage at neighbourhood
level. In this case, the market design is based on a continuous double auction
with a trading horizon of 15 minutes, taking into account that unmatched
bids and offers are served by the grid. As a conclusion of this work [51], lo-
cal trade is more attractive than trading with external agents or the central
market, thanks to the community feeling [80].

2.5 Local market design

The development of local markets is based on the evidence that new market
models have to be detailed to enhance DER integration and deal with the
intermittency of these sources. Market design rules have to be applied to
characterize local markets to clarify their objective and audience. In this
section, four characteristics are detailed: involved agents and stakeholders,
services, and approach.

2.5.1 Involved agents and stakeholders

Local electricity markets have several benefits that help them achieve renew-
able energy targets. Several stakeholders can be involved in this new energy
trend. Each of them has an interest in the evolution from the traditional
grid model to the smart one. A total of eight involved agents and stakehold-
ers are defined below, detailing their role and responsibilities within an LEM.

The transmission system operator (TSO) is responsible for the
operation of the transmission system and its stability [81], and this
agent has the final responsibility for maintaining instantaneous
generation and consumption balance. With the increase of DER
and renewable energy, TSOs are playing a more active role due

to the intermittent and variable character of these sources. However, even
though power flows are changing more frequently, the TSO must ensure grid
stability. To do so, the TSO relies on ancillary services (ASs) markets and
capacity provided by large generation units, which usually are non-renewable
and expensive. As there is an increase in renewable sources in the energy
mix, there is also an increase in the need for flexibility and capacity. Hence,
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flexibility services provided by end-users and the LEC can help to achieve
a cheaper operation of the TSO’s activities, leading to economic savings for
the TSO.

The distribution system operator (DSO) is a natural or legal
entity that is responsible for the operation of the distribution
system, power delivery to customers, and grid maintenance. The
most apparent change that distribution networks are facing today
is the introduction of smart meters, enabling tariff differentiation

and providing insights to end-users [82]. In this transition towards smart
grids, distribution networks are facing several challenges due to the increase
in DER integration along the distribution grid. Hence, locally generated
electricity provided by LECs and flexibility services provided by demand-
response (DR) activities can avoid huge grid capacity investments. Avoiding
grid capacity investments can be translated into economic savings for the
DSO by changing its role to a more active one for managing all the resources
located along its network.

An aggregator or energy service company (ESCO) can act as
an intermediary between smaller entities (such as consumers) and
the market. This is a new role introduced after the deregulation
of the electricity market. Aggregators can be seen as local mar-
ket operators regarding energy and flexibility [62]. In terms of

flexibility, usually under the concept of a flexibility operator, the aggregator
gathers the flexibility provided by DR activities performed by end-users. It
can then provide a portfolio based on flexibility services to the TSO, the
DSO, and the BRP. An aggregator can also be its BRP, being responsible
for its imbalances [81]. As a result of this collection and management of
DERs, they receive economic incentives. Aggregators are nowadays seen as
key actors in the smart grids concept for energy management and therefore
flexibility services [83].

Retailers are existing commercial entities that buy electrical
energy from their associated BRP or directly from the market
for their customers, assuming BRP responsibilities [81]. Within
a local electricity market, retailers can broaden their portfolio by
including demand-side management, allowing end-users to receive

an incentive for changing their consumption pattern. Retailers can then find
a way to compensate for the intermittency of DERs. Furthermore, they can
reduce their balancing costs by optimizing their portfolio.
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A balance responsible party (BRP) is a market entity (whole-
sale supplier, retailer, etc.) that takes up the responsibility to
maintain a continuous balance between the energy demand of its
customers and the energy bought in the wholesale market or pro-

duced directly [84]. A BRP assumes this role by creating a portfolio based
on generation and consumption that can be self-provided or exchanged with
other BRPs. The goal of BRPs is to minimize the costs of power imbalances
whereas aggregators and consumers seek profit maximization [58]. In ad-
dition, they are responsible for balancing demand and supply for a certain
metering point. They have to pay penalties for the deviation from their
energy forecasting after the energy has been delivered to end consumers. By
participating in local and micro-markets by providing energy and flexibility
services, they can achieve economic savings due to their interaction with
aggregators and, therefore, prosumers. Generators still manage the physical
process of generating and consuming electricity and consumers [85], respec-
tively, and the final responsibility lies with the TSO. Hence, they can be
considered administrative entities needed within an energy market to ensure
this balance. It is important to remember there can be overlap between
agents and stakeholders in smart grids, such as BRPs and retailers. There
can be the case where a BRP also acts as a retailer and vice versa.

Prosumers are considered to be active energy consumers that
both consume and produce electricity. According to [24], there are
four types of prosumers: residential prosumers, citizen-led energy
cooperatives, commercial prosumers, and public entities. They
consume part of the electricity they have produced by means of

the DERs they own and sell the excess to the grid, but they have the ca-
pability to buy power from the grid when they require it. They participate
actively in energy transition by investing in PV panels or community dis-
tributed storage, and so they are evolving from a passive role to a more
active role, taking care also of their energy consumption. They are the main
energy and flexibility services providers by means of the aggregator figure.
As a result, they get incomes for these activities. As stated in [82], end-
users are unaware of the current market structure and have no interest in
the market model limitations. However, the current market structure and
electricity grid structure present several difficulties for allowing prosumers
to buy and sell energy from anyone in the system. Regulatory changes are
needed to empower prosumers by creating new services for them. Regard-
ing prosumers and consumers, the concept of active consumers is implanted
within the local electricity market terminology. Active consumers are con-
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sidered to be a group of jointly acting customers who consume, store or
sell electricity generated on their premises, including through aggregators,
or participate in DSM, DR or energy-efficiency schemes provided that these
activities do not constitute their primary activity.

Electricity markets are trading places where energy is sold and
bought. They are based on two approaches: over-the-counter or
bilateral contracts and a pool-based mechanism, which matches
the offers and bids and clears the market. Electricity markets
are managed by the market operator, which can be different de-

pending on the electricity market itself (day-ahead market [DAM], intraday,
forwards, etc.).

Generating companies, the so-called gencos or producers, are
entities that produce and sell electrical energy [86]. They in-
ject the produced energy into the electrical grid, but also play a
key role in energy supply security [82]. At present, by increasing
DERs along the electrical grid, more variability and intermittency

has been introduced to the system. However, gencos should guarantee the
security of supply regardless of the generation technology.

Once all involved agents have been described, the main benefits for each
of them in local market participation can be highlighted. Table 2.4 details
the main advantages that local market participation can bring to each local
market stakeholder. It can be seen that all benefits can be translated into
economic value, becoming an incentive or a saving, depending on each local
market agent.

Table 2.4: Local market stakeholders and main benefit of their interaction

Stakeholder Main benefits of Local Market Participation

Prosumer
Economic incentives for providing energy and flexibility
Reduction of energy consumption from the main grid

Aggregator Economic incentives for collecting and managing DERs from the demand-side
BRP Economic savings due to imbalances penalties reduction

DSO
Economic savings by reducing grid investments
Operational benefits by avoiding/mitigating distribution network congestions

TSO Operational benefits by providing frequency restoration services
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2.5.2 Market approach

In Section 2.4 the literature review of local and micro power market defi-
nitions demonstrated two different approaches for energy and flexibility ex-
changes between the involved agents: centralized or pool-based and P2P.
Both approaches require the implementation of ICT tools as a key factor
for local and micro market development and success. This section defines
and details the centralized approach and the P2P approach and highlights
the main services provided. To start with, Figure 2.2 represents a schematic
view of each trading mechanism, providing an overview of the agents in-
volved in each one. In this section, the main benefits of each approach will
be described to give to the reader not only the broad view of each method-
ology but also the tools and knowledge to research more detailed literature
if required. The two approaches are consumer-centric within the LEC and
have three main principles [39]:

(i) Agents are willing to share their resources among each other.

(ii) The grid operation is performed locally instead of being centralized.

(iii) There is a willingness to self-organize.

The user should notice that, depending on the market design in terms
of approach, a different form of offering and clearing algorithm will be ap-
plied [80]. These two approaches can be seen as extreme approaches. As
well as using centralized and P2P approaches in electricity products trad-
ing, other end-user focused approaches, such as prosumer-to-interconnected
microgrids or prosumer-to-islanded microgrids, as stated in [87], can also be
used. However, these other local and micro market approaches are out of
the scope of this chapter.

Centralized (Pool-Based) Approach

In a centralized approach, all local market participants need to have a con-
tract with the platform entity who manages the local market services, the
so-called local market operator. In this case, direct negotiations or bilateral
contracts between traders are not allowed [34]. Local market or micro mar-
ket participants in a pool-based approach do not interact with each other
directly. The centralized approach offers a unified structure for participant
interactions, and it is mainly based on auctions [44]. As shown in Figure
2.2, the interaction between agents is based on a local market facilitator en-
tity or clearing house, which manages the local resources and coordinates the
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agents involved in this local market. In a centralized or pool-based approach,
there will be a single price for electricity, which means that electricity is a
non-differentiable product [80].

In the literature, the centralized approach has been applied to local elec-
tricity markets. In [56], the local market operator is called a smart energy
services provider (SESP), which is a platform for energy trading, flexibil-
ity trading, information exchange, and actions scheduling. Regarding the
technological development of this role, the SESP is usually based on cloud
platforms for electricity-related services, such as energy and flexibility. Sim-
ilar to this approach are the network markets, detailed in [88], where new
platforms permit the interaction of new agents within a community. Men-
niti et al. [71] have developed a local market in which a platform facilitator
(the city energy provider or CEP) aims to coordinate the energy exchanges
between micro smart grids.

Fig. 2.2: Centralized vs P2P market approach

LEMs between prosumers and the DSO can also be developed based on
a centralized approach [89]. Here, a bilevel iterative auction is proposed
and the DSO is the main stakeholder of the market, with aggregators as
intermediate agents competing for energy. Nguyen et al. [45] proposed a
new poolbased market platform for flexibility services. The LFM operator
is called the DR exchange operator (DRXO), who collects offers and bids
and is responsible for the market clearing procedure. In [90], a market-based
mechanism was developed based on a centralized approach. The platform
operator is the smart microgrid operator (SMO), and it offers regulation
service reserves covering the commands issued by the wholesale market in-
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dependent system operator, which is responsible for energy provision and
reserves purchasing. The main participants in an LM operating under a
centralized approach are the aggregators, central platforms, the DSO and
the group of consumers-producers-prosumers, that is, the LEC members.
The LEC members in the LM are recruited from the neighbourhood and
organized by the central entity or platform. In that sense, it is important
to state that participation in this initiative is purely voluntary. Once the
LMs have been broadly implemented in different neighbourhoods, members
of the same neighbourhood are able to choose a different central entity.

Related to the LM participants who are located within the LEC, all mem-
bers with DERs and flexible loads need to have local control functionalities
that can be included in either the smart meter or a local controller to receive
command signals from the central entity. This entity also includes commu-
nication tools to receive and send control signals and messages between LEC
members and the SESP platform, and also to interact with the wholesale
market, as will be further detailed in Section 2.7.

To guarantee a proper development and operation of the LM, each LEC
member who participates in the LM is responsible for fulfilling the contract
that has been established previously. In that sense, direct negotiations be-
tween traders are not allowed. This central entity has a set of roles that
should be taken into account to understand the centralized approach. It
works as a local market operator, by organizing energy exchange, schedul-
ing local resources, and operating the trading platform. The local market
represents the community members when it interacts with the wholesale
market. Also, it ensures that all the energy that has been purchased on the
wholesale market is consumed by community members and all energy sold
must be produced by the LEC. Furthermore, this balance must be constant
during all periods, otherwise the central entity will pay deviation penalties.
The SESP is responsible for collecting all contracts and offering to their
members a brokering, clearing, and price settlement service. The presence
of a supervisory node or agent simplifies market regulation and the interface
between the local or micro market and the system operator and wholesale
market [66].

Peer-to-peer

The idea of direct interaction and direct trading between agents in power
systems was discussed 20 years ago, in [91], where the concept of multilateral
bilateral trading was first stated. This is what is now known as peer-to-peer
(P2P) electricity trading.
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In the P2P approach, prosumers and consumers trade between each other
individually and in a randomized order on a pay-as-bid basis [61]. In this
case, different prices for each trade are possible, since P2P trade involves
one-to-one transactions. The P2P approach in energy markets is based on
blockchain technology. Blockchain originated in 2008 with Satoshi Nakamoto.
Related to blockchain, bitcoin was created in 2009, becoming the first decen-
tralized currency, now known as cryptocurrency. Blockchain can be defined
as a distributed and digital transaction technology that allows secure stor-
age of data and execution of smart contracts in P2P networks [92]. It is a
distributed ledger system that instead of having a central entity responsible
for coordinating, settling, and archiving, decentralizes this task and relies
on a number of entities that work in parallel with a specific ledger copy [80].
In addition, blockchain contains a continuously growing list of data records,
which are called blocks. These blocks are time-stamped, shared, unalter-
able, and connected to preceding blocks. Blockchain blocks can contain
data, programs, batches of individual transactions, and executables.

In terms of P2P energy markets, [93] proposed a new decentralized mar-
ket in which there is no auctioneer and transactions take place via pair-
wise meetings of agents. It could be understood as the first definition of a
P2P approach in energy markets. P2P markets rely on a consumer-centric
bottom-up approach by giving prosumers the opportunity to choose the
energy source they want, based on expressed preferences [39]. The first ap-
plication of blockchain in electricity markets was developed in 2014 by [94].
These authors proposed a new virtual currency (NRGcoin) for renewable
energy trading, which is produced locally. NRGcoins are quite similar to bit-
coins. The mechanism converts locally produced renewable energy directly
to NRGcoins, independent of their value on the market. Consumption is
measured and billed in near real-time, achieving a model that is close to the
current operation of the grid.

Regarding this market approach, few implementations have been devel-
oped in the field of energy markets. In [95], a new decentralized market for
carbon emissions trading based on bitcoin is detailed. Sikorski et al. [96]
developed a proof-of-concept to enhance the machine-to-machine electric-
ity market in the chemical industry, also based on blockchain. Related to
this market approach, a pilot site based on blockchain as the main ICT was
developed in the Brooklyn Microgrid Project [37]. A new architecture for
microgrids is presented in [97], where the blockchain P2P approach is applied
instead of a microgrid aggregator to manage the DERs within the microgrid.
In [61], a double-sided market based on the P2P blockchain approach is de-
tailed. It does not use bitcoin protocol but instead applies the Ethereum
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protocol. Mannaro et al. [98] analysed a blockchain-based software platform
for P2P energy trading to enhance renewable energy integration and trad-
ing within the Sardinia region. Recently, a project called Enerchain [99] has
been set up to work on P2P energy trading in the wholesale market using
blockchain technology. Using this approach for energy trading, the whole-
sale market operator is no longer needed. This project is comprises energy
trading firms that take part in the wholesale market at the present time.
The evolution of the power system leads to new market design, business
models, and market approaches, and the path leads towards a fully decen-
tralized power system, with different scenarios still opened. To that extent,
and based on P2P electricity trading, in theory the power system could
be based on consumers being able to choose directly the type of electricity
source they want to buy and LECs that provide flexibility services to the
system operator or to be traded within the same community. On the other
hand, a power system based on LECs could provide a community feeling
among the agents involved and trade on energy and flexibility as their main
purpose or the energy could also be exchanged with external agents (other
microgrids or consumers not located inside the LEC) or with the system
operator, for example the DSO. There is a need to define the rules of each
smart grid agent to avoid any conflict with the existing top-down power
system structure, wholesale market, and additional electricity markets.

2.5.3 Services

The main aim of local electricity markets is to facilitate the transition to-
wards a smart energy grid by connecting new or redefined smart grid agents
thanks to new services provision. In this chapter, the literature review has
introduced two different services that can be provided by a local market:
energy trading and flexibility services exchange. These services can be pro-
vided separately or together between local market agents

Energy

Most of the literature references we have found defined LEM for energy trad-
ing. According to [56], the objective of the energy service is to schedule local
resources at minimum cost during the day ahead, achieving an equilibrium
point between local demand, local supply, and grid exchange. First, an en-
ergy service is a way to sell and/or buy energy for customer purposes. The
main concept to take from the local market for energy services is trading
energy locally (from local resources inside the LEC) to reduce electricity
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consumption from the main grid.
Two LEM approaches are detailed in [61]: the P2P market and the closed

order book market, with the aim of trading electricity directly within their
community and concluding that the P2P LEM approach is the most advan-
tageous, with the lowest energy prices. Later, in [100], a LEM case study
based on P2P trading and bitcoin, without the need of central intermedi-
aries, was developed. In this work a framework is also described, with seven
market components for its efficient performance. Energy trading within a
microgrid based on a P2P approach was developed in [101] to minimize the
microgrid operation cost by increasing the integration of renewable DERs.
In [71], a new market platform was created to coordinate energy exchanges
between micro-smart grids aggregated in a virtual energy district (VED). It
is based on a centralized approach and the local market operator, the CEP,
handles the supply and demand of prosumers within the VED. In [102], the
integration of distributed energy storage within the VED is analysed to im-
prove the performance of the LEM. Cui et al. [72] considered a microgrid as
a closed economy group and detail two market-based approaches. The first
model deals with the optimal power generation per hour within the micro-
grid. The second model allows energy trading between microgrids for local
welfare maximization.

Interactions and power exchanges between microgrids can also be consid-
ered as microgrid energy markets or micro markets. In [103, 104], market-
based mechanisms are studied to schedule and exchange power flows between
microgrids, to minimize the global operation cost. In [105], a prosumer acts
as an aggregator within the microgrid and buys or sells the energy in the
DAM. This paper considers the uncertainty provided by the DERs located
within the microgrid. Cintuglu et al. [106] implemented a multiagent-based
game theory auction market model that combines conventional and renew-
able DERs to schedule the microgrid resources. Staudt et al. [60] defined an
LEM as a market set up to solve redispatch locally by providing economic
incentives for the expansion of local capacity generation. Prosumer cluster-
ing is a topic that is currently being addressed in the literature [107–109].
This approach can enhance prosumer participation in local and micro energy
markets. Prosumer clustering is an aggregation of prosumers through ICT
platforms. At a higher level, coordination of micro and local markets can
also be considered as a local market [71].

This new market aims to coordinate the energy exchanges between local
and micro power markets. In [110], microgrid interaction with the macrogrid
or distribution network is defined in a market-based approach. Storage and
community energy storage (CES) are key elements in local and micro energy
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Fig. 2.3: Local energy market interaction

markets to achieve the optimal operation of the energy market and DERs
located within the LEC [75,79,100,102,111,112]. Storage can be understood
as units that are controlled by the local market operator to maximize the
social welfare of the LEC [75]. Results in [100] indicate that LECs with CES
have greater local market efficiency.

The scheme in Figure 2.3 exemplifies how an LEM can work. The LEC
is represented by the grouping of different prosumers. This LEC can trade
locally by means of an LEM operated by a local market operator or the
aggregator. The LEM schedules the local resources depending on their mar-
ket time horizon, usually the day-ahead. Then, if there is a surplus or a
lack of energy resources based on the LEC’s resources, the LEM can inter-
act with the day-ahead wholesale market or intraday market to trade the
energy needs.

Flexibility

Flexibility can be understood as DR or DSM activities, the so-called demand-
side participation. As DERs are installed along the distribution grid, there
is a need for end-user flexibility to maximize DER integration and their
profitability. In addition, high flexibility is required to deal with the un-
certainty of renewable generation and variability on the demand-side. An
electric flexibility service can be defined as a power adjustment sustained
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at a given moment for a given duration from a specific location within the
network [103]. Flexibility activities reflect the possibility of modifying gener-
ation and/or consumption patterns in reaction to an external signal (price or
activation) to contribute to the power system stability cost-effectively [81].
DR is considered to be the tool that will be used to achieve energy effi-
ciency and intermittent RES goals, and where customers will play a crucial
role. Thus, according to the previous definition, there are three types of DR
actions, according to Albadi and El-Saldani [113]:

� Electricity reduction. End-users reduce their electricity usage during
critical peak periods when prices are high, but they do not change
their consumption pattern. This leads to temporary comfort losses.

� Load shifting. Consumers shift their consumption activities from peak
demand periods to off-peak periods to respond to high electricity prices.
To exemplify this, end-users shift their household activities (dishwash-
ers, washing machines, electric vehicle (EV) charging) to lower-priced
periods. In this case, there is no or little reduction of comfort.

� On-site generation. Consumers who generate their power by using
DERs can follow their consumption profile without changing their be-
haviour, but by just swapping the origin of the electricity generation.
In this case, they experience no or little change in their load profile
but, from the utility point of view, a reduction of energy consumption
will be noticed.

To sum up the characteristics of DSM and DR, Figure 2.4 collects the dif-
ferent tools under the ideas of DSM and DR. Here, DR is considered to be
a type of DSM where a temporary reduction or increase in energy consump-
tion is performed by the end-user. Energy efficiency is also grouped under
DSM. In this case, energy efficiency covers all the measures or investments
performed to achieve lower energy consumption.

There are two types of DR: dispatchable and non-dispatchable. According
to [114], dispatchable DR (DDR) refers to ”planned changes in consumption
that the customer agrees to make in response to a requirement from some-
one other than the customer. It includes direct load control of customer
appliances and a variety of wholesale programs offered by RTOs/ISOs that
compensate participants who reduce demand when directed for either relia-
bility or economic reasons”. For that reason, DDR can be considered as the
participant giving the control of the loads to the utility, who is in charge of
its management depending on the needs. Hence, dispatchable DR can be
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Fig. 2.4: Demand-Response and Demand-Side Management activities clas-
sification

understood as direct control classical incentive-based programs in the DR
classification defined in [113].

In non-dispatchable DR, participants choose if they want to change their
behaviour. The utility sends information to the participant and it is the end-
user who decides whether or not they follow the signal. Here, participants
remains the master of their loads and consumption. Two programs are
included under nondispatchable DR: price-signal and behavioural. Price-
signal is structured in the same way as time of use in a price-based program,
where electricity price rates per unit consumption are defined. Behavioural
DR is the most innovative type of DR. ICT tools permitted the creation of
this type of DR. Usually, participants in this program receive their energy
consumption tracking (behaviour) thanks to smart meters, monitoring, and
ICT tools. By using these tools, the participant can predict their energy
use, reduce cost and also provide flexibility service to the utility, thanks
to energy consumption tracking. DR has a key role to play in helping to
increase electricity system flexibility [115]. As a result, it will improve the
efficiency of the power system, but also the efficiency of the electricity market
and the power system security. A higher penetration of flexibility by DR
programs will also help the integration of DERs, as DR can help to cover
DER intermittency, achieving the goal of carbon footprint reduction (see
Figure 2.4).

The participation of consumers in DR activities can set up a proper market
design to integrate flexibility services and increase market competition [116].
Local flexibility services for the DSO and ancillary services for the TSO at
local level can be provided on account of DER integration [117].
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As a result of DSM and, more specifically, DR activities, flexibility comes
into play. Flexibility can be used to adjust the demand profiles during peak
periods, to adjust them to peaks of renewable generation, and, related to
that, to the available capacity in the distribution grid.

A new framework to create markets for flexibility services has been de-
fined in [82, 118]: ”Demand response through load shifting and the storage
and management of locally generated energy provides new means to unlock
flexibility in the energy system”. Under this scenario, flexible resources and
DERs can be considered a single group and provide flexibility by operating
it according to system operator needs. The aggregator is then a key agent
to add value to flexibility. It is responsible for aggregating the prosumers’
flexibility, creating a flexibility portfolio and offering it to different stake-
holders by means of diverse markets. The aggregator can then also offer
services as a supplier and assume BRP responsibilities [116]. Eurelectric
states in [84] that there is a need for a new agent in the system, the flexibil-
ity operator and flexibility platform, which aggregates and coordinates the
activation of flexible loads located along the distribution network. This mar-
ket platform should facilitate coordination between the TSO and DSO, and
minimize the cost of flexibility market participation. However, the impact
of flexibility load participation in the market has to be analysed because it
can lead to congestion in the distribution grid [119]. The role of aggregators
in DR programs is relevant in involving end-users in smart grid transition
and providing ancillary services to system operators, both the TSO and the
DSO [83].

Also in [82], four potential customers are identified (Figure 2.5): the pro-
sumer, the BRP, the DSO, and the TSO, managed by the aggregator as a
central entity. Up to now, local markets for flexibility services have been
mainly based on a centralized approach (Table 2.4).

The market models proposed in [82, 116] do not have an effect on the
energy supply chain. They respect the European liberalized energy market
model, but change the roles of the involved agents (Section 2.5.1) for these
new services to be provided. The aggregator establishes a smart contract
with the prosumer, optimizing the flexibility value in its portfolio and selling
this flexibility to the stakeholder with the highest need for this service who
is also willing to pay the highest price for it. It should be taken into account
that here the role of the aggregator can be developed by a supplier or by an
independent aggregator. In any case, they can take BRP responsibility or
not.

Recently, several associations, such as Eurelectric, Groupement Européen
des entreprises et Organismes de Distribution d’Energie (GEODE), the Eu-
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Fig. 2.5: Flexibility services and main stakeholders. Based on [82]

ropean Distribution System Operators Association for Smart Grids (EDSO
for Smart Grids), and the European Federation of Local Energy Companies
(CEDEC), have produced a report focused on the development of flexibility
services for the DSO [64]. This report highlights the need for an improved
regulatory framework that rewards the use of flexibility and also takes into
account the evolving role of the DSO as an active system operator and neu-
tral market facilitator. DSOs should be able to decide on the best solution
to face challenges, either by activating flexibility services or by network re-
inforcement.

Figure 2.6 shows the entire supply chain with flexibility services inte-
grated. At the top of the figure, the top line represents the energy flow from
the generation plant to the transmission network, the distribution network,
and finally arriving at the consumers. Prosumers can also inject their small-
scale generated power into the distribution network if regulation allows them
to do that. As can be seen in the figure, the energy supply chain remains
unaltered with the integration of flexibility services.

The ticker line in the middle represents the flexibility flow. The aggregator
settles a smart contract with the prosumer. This contract states the terms
and conditions of the contracted flexibility services. Hence, the aggregator
collects all the smart contracts, optimizes the flexibility assets portfolio, and
then offers this flexibility to different stakeholders: the DSO, the BRP, and
the TSO by means of the BRP.

Lastly, the line at the bottom of the figure represents the economic flow
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Fig. 2.6: Flexibility services in a local flexibility market. Scheme and inter-
action

between the different agents of the smart grid that combine energy and
flexibility flows. The economical flow takes into account that the energy is
sold and bought on electricity markets. The BRP is the entity responsible for
the imbalances that are paid after the actual delivery. As a result, retailers,
by means of the energy bill, are paid for the energy delivery to end-users.
Furthermore, the BRP applies the imbalance payment to the final bill that
the end-user is disbursing.

Current literature proposes different services offered by LFMs or local
markets for flexibility services. Olivella-Rosell et al. [62] developed an LFM.
In this the local market operator controls the LEC flexible resources (thermal
loads, EVs, storage, etc.) during specific time periods and rewards the
participants accordingly on their smart contracts. On the contrary, LFM
can be understood as a trading platform to adjust the energy resources to
correct forecasting errors or to increase the participant’s profits in balancing
markets [56]. In [120], an aggregator collects and optimizes the day-ahead
and intraday scheduling of electro-thermal heating units within a city district
to provide flexibility services to the DSO and BRPs. Ramos et al. [55]
described three different local market designs for local flexibility services for
DSO: participating in the existing wholesale market, creating an LFM, and
contracting flexibility as a system reserve. Bilateral contracts for flexibility
services based on thermal loads from residential DR are defined in [121].
The optimization model is also detailed and presented in [121], taking into
account consumer preferences so that end-users can select their own contract
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based on them. Specific topics directly related to flexibility services are
currently addressed in the literature, such as aggregating flexible loads [122,
123] and thermostatic loads [124].

In [57], flexibility market-based schemes are defined for TSO-DSO coordi-
nation. Two LEMs are detailed: a local AS real-time market and a common
TSO-DSO AS market model. The local AS real-time market considers bal-
ancing and congestion management services for the DSO and the TSO. The
DSO operates the local market to solve distribution grid problems and then
aggregates the remaining flexibility offers to the TSO markets.

The TSO-DSO AS market model is also based on real-time dispatching.
It is based in a local market operated by the DSO, but satisfies the needs
for both the TSO and the DSO. The LFM can be established to provide
flexibility services to the TSO. Teotia and Bhakar [125] defined the local
electricity market concept as an ancillary services provider for the DSO
and TSO by creating a new local market operator, an aggregator, and a
local grid controller (LGC). The LGC is responsible for the management of
the local grid resources, such as energy storage, combined heat and power,
residential flexible loads, and DERs. In [50], an auction-based LEM for
TSO ancillary services trading is detailed based on BRP enhancement. Also
related to ancillary services, [126] developed a secondary market for ancillary
services offered by active demand participation (prosumers) to minimize
grid operation costs. Regarding ancillary services, [71] considers them as a
possible service that the LEM could provide to the TSO and DSO.

Different projects and market designs for electric flexibility trading are
reviewed in [127]. First, the Power Matching City project developed a local
market operator, Powermatcher, which is in charge of controlling the oper-
ation of household appliances located in the Netherlands by means of direct
and semi-direct control. The flexibility services are offered by prosumers to
the DSO and retailers. The Energy Frontrunners project developed a flex-
ibility aggregator that acts as an intermediary between the flexible loads,
the BRP, and the DSO. In this project, the aim of the flexibility trading is
to reduce the PV panels’ peak and so the peak load in the distribution net-
work during the evening period. Furthermore, in the context of the project
a local integrated utility is at the same time the retailer, the owner of the
distribution network, and also acts as a flexibility operator. It is responsi-
ble for trading flexibility between the TSO and the utility that controls the
flexible loads. Here there is no participation of the DSO, the retailer, and
the prosumers; the local integrated utility controls the operation of these
flexible loads and the grid.

A P2P approach can also be used in LFM, but it is not widely applied.
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Chen et al. [128] proposed a new market mechanism for EV parking lots
to participate in real-time markets, based on smart contracts and a P2P
approach. These flexible loads can adjust their demand and consumption
behaviour according to DSO requirements and incentives. The Your En-
ergy Moment project [127], also developed in the Netherlands, is based on
dynamic pricing signals that consumers receive thanks to in-home applica-
tions. Both the DSO and the retailer are able to submit their price to the
participant.

2.6 Local market services and approach review

As a summary of the literature review detailed before, Table 2.5 shows the
published papers in terms of the services provided, the main stakeholder, and
the market approach. This table aims to show an overview of the current
status of local and micro power market technology.

Table 2.5: Local market services and approaches review

Service / Approach Peer-to-peer Centralized

Energy
[37,39,43,44,66,77,79,80,94]
[97–99,129–133]

[39,46,50–53,56,60,66,71,72]
[74,79,80,89,102–105,112,129,134–139]

Flexibility to TSOs - [45,47,50,55,57,60,82,126,127,140]

Flexibility to DSOs [127,128,141]
[62,78,82,84,120,127,142–145]
[45,47,55,57,59]

Flexibility from Demand-Side [127,128,141]
[16,59,62,82,112,127,136,139,143]
[78,144,145]

Flexibility to BRPs [127] [16,45,59,62,82,120,127,144]

As shown in Table 2.5, research has been focused mainly on centralized
platforms to deal with local and micro power markets. Furthermore, the
main services provided have been energy. For instance, [56] has shown as
part of the H2020 project EMPOWER how an LEM can exist side by side
with a centralized platform that enables power exchanges. Cui et al. [72]
presented a market model for microgrids (micro market) with two different
approaches. First, the microgrid is considered as a standalone entity and
the central entity schedules the generation for it. The second approach is
based on interconnecting close microgrids to trade between them to increase
the total welfare, thanks to covering the local demand with local generation.
Shamsi et al. solved an economic dispatch (ED) problem for scheduling the
resources within a microgrid by means of a dynamic ED algorithm for each
agent [74]. It is based on a centralized approach, since there is a microgrid
market operator who is responsible for collecting microgrid agents’ offers
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and bids and finding the microgrid spot price. A micro market within a
microgrid, using a centralized approach (the microgrid service provider), is
theoretically defined in [138]. This central entity is one where community
users can acquire the services. It emphasizes the democratic and community
feeling on which the microgrid community is based.

In [66] an energy collective is presented based on both the P2P and cen-
tralized approaches. A community of prosumers is considered, and they
are responsible for scheduling their resources using their own priority rules
(no social welfare considered of the whole community), that is, behind-the-
meter. They can trade the lack or excess of energy by means of a central
entity called the community manager. The community manager is also able
to directly interact (P2P) with other community managers to trade energy.
The community manager is also the smart grid agent who interacts with the
market and system operator, as well as being the supervisor of convergence
to system optimality. Mengelkamp et al. [129] introduced and compared
four scenarios for an LEM. They are based not only on two market ap-
proaches, P2P and centralized, but also considering zero intelligence agents
and intelligently bidding agents. The research concluded that P2P markets
considering intelligent market agents reach a lower average electricity price
for the community.

Based on a P2P market approach, in 2014 Mihaylov presented a novel
mechanism for energy trading: NRGCoins [94]. They were formulated as
a virtual currency for renewable energy injected into the grid, which was
later traded between prosumers by means of blockchain technology. Sorin
et al. [132] introduced multilateral energy trading taking into account prod-
uct differentiation. In this case, the product differentiation covers consumer
preferences. It allows prosumers participating in this market to be more
involved and proactive due to the possibility of increasing their interest re-
garding energy origin and typology. One of the drawbacks that is high-
lighted in this paper and has to be taken into account when working on
P2P electricity markets is the scalability of them. The computational costs
for scaling a P2P market are higher than for a poolbased market. The lat-
ter is considered to be far more structured than P2P trading, thanks to
the intermediary that negotiates with the agents involved in the LEC and
also to external agents such as the system operator, aggregator, or BRP. A
solution proposed in [132] to increase the scalability of P2P markets is to
reduce the communication between agents participating in the market. In
order not to rely on any central entity, a blockchain-based microgrid energy
market is presented in [97], with the aim of guaranteeing that payments
are made between non-trusting microgrid agents. By means of the alternat-
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ing direction method of multipliers optimization method and local optimal
power flow, a set of batteries, and curtailable and shiftable loads located
along the distribution grid are scheduled. When dealing with LEMs based
on a P2P approach, one of the most important shortcomings is where to
allocate the grid costs. Baroche et al. [133] present a method to allocate
grid cost based on the electrical distance between market participants. In
this approach an ED along with product differentiation is carried out. In
many literature papers the ED was done but without taking into account
the grid infrastructure.

The fact is that P2P has an impact on the grid status, and the grid status
and electrical distance should have an impact on peer interactions. Hence, in
this paper, by applying electrical distance cost allocation there is a reduction
in power trades between agents because the proposed market mechanism
pushes the market agents to consider and respect the power system capacity
constraints. Several projects are currently ongoing in Europe in the field
of local and micro energy markets, as stated in [39], mainly focused on
the interaction between prosumers and consumers based on DERs located
in a low voltage distribution grid. Local control and ICT platforms are a
core part of these projects and both centralized [56] and P2P [66, 94, 99]
approaches are being used to implement the market design.

In terms of flexibility, it is worth separating them into the agents involved
in the flexibility services chain. In this case, four distinctions are made: TSO,
DSO, BRP, and prosumers. As can be seen from Table 2.5, the centralized
approach has also been the main research focus in the field of flexibility
services.

The main actor in receiving flexibility services is the DSO. Due to the in-
crease in DERs and the need for grid capacity enhancement, the DSO needs
market tools to facilitate their operation in terms of congestion management.
Ramos et al. present three main approaches to contract flexibility: by means
of the already existing wholesale market, by creating a new LFM based on
a centralized approach, and a reserve market approach, contracting flexibil-
ity as a system reserve [55]. iPower is a project supported by the Danish
Government with the aim of innovating and investigating intelligent power.
The development of a DSO market for flexibility, by means of DR schemes
and based on the aggregator role to collect end-user DR for DSO purposes,
is introduced in [47]. The specifications in terms of flexibility services to be
provided by end-users are detailed, such as the size of the service in power,
the service in energy, the maximum duration of service per activation, pric-
ing, and penalty. In 2017, another H2020 European project called INVADE
began [62] with the aim of developing a centralized local flexibility trading
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platform to sell and buy flexibility within a specific area.

In this platform, the aggregator acts as a central entity and also as an
esco. In this project, prosumer flexibility is aggregated by means of the
flexibility operator or aggregator, and so it is responsible for participating in
the market. This central entity aims to maximize the profits for its prosumer
portfolio. Thanks to the flexibility provided by prosumers, the central entity
can provide new services to the two main actors in the smart grid: the BRP
and the DSO. The use of DR schemes for providing flexibility services to the
DSO is analysed in [142,145] based on a centralized approach.

Flexibility services provided by means of P2P trading are still not im-
plemented as much as the centralized approach. However, Kok et al. [141]
describe a P2P mechanism based on transactive energy to provide flexibil-
ity services to the DSO to maintain the distribution network resiliently and
efficiently. The mechanism was initially focused on the USA but the Pow-
erMatcher project is ongoing to implement transactive energy trading by
giving the consumer and prosumer the role of deciding whether or not to
sell flexibility to parties involved in the project. Chen et al. describe a trad-
ing mechanism based on P2P to encourage users with flexible loads as EV
to adjust their charging behaviour according to DSO requests [128].

Table 2.5 proposes a classification of existing literature in local and micro
power markets, considering energy and flexibility as services to be provided
and P2P and centralized as approaches to providing these services. This is
a topic of current interest and much research is being carried out at present.
The roadmap of this technology is evolving from a theoretical framework to
even more research and implementation to prove its feasibility. There is still
research to be done and questions to be answered, such as the viability of
P2P mechanisms for providing flexibility.

2.7 Local market interaction

In this chapter different local market services and structures have been pre-
sented. The fact that local markets provide energy and flexibility exchanges
may lead to interactions between these new local markets and existing en-
ergy markets worldwide. A possible general interaction among these mar-
kets is outlined in Figure 2.7, based on a centralized approach by a central
platform. To run these markets, local traders need this platform for shar-
ing information, trading energy and flexibility, and scheduling actions. The
smart energy platform acts as a local market facilitator for the LEC and also
as an aggregator for wholesale market agents. The platform takes actions to
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Fig. 2.7: Wholesale and Local Market interaction in the short term. Based
on [146]

increase market interactions, ensuring liquidity. Moreover, LMs could have
problems balancing consumption and generation using only local resources,
in terms of energy. Hence, it is imperative for the central platform to oper-
ate in wholesale markets during such periods to buy or sell the community
energy deficit or surplus.

The energy and flexibility LMs have their parallels in the wholesale mar-
ket. The negotiation period of the LEM is equivalent to the DAM, and the
LFM is equivalent to intraday plus the balancing market, as shown in Figure
2.7. The reader should take into account that the scheme shown in Figure
2.7 is one possible option to define the interaction between local and micro
power markets and existing wholesale markets. In this chapter we propose
an interaction scheme to illustrate with an example the service timeline, but
there are several options to define the integration between markets based on
the type of contract established between the different agents.

As shown in Figure 2.7, the first market that is being run or that starts is
the LEM. With the aim of maximizing the community benefits for the LEM
from the DAM, the central entity asks their members to participate in the
LEM. It starts one day before the delivery or operation day, and the central
entity estimates local energy consumption to determine if the LEC has to
purchase or sell electricity in the DAM. The SESP prepares bids and offers
for the DAM with the objective of minimizing energy costs. In addition, this
central entity also is able to schedule flexible loads to reduce energy costs
or, on the contrary, maximize LEC benefits.

Thus, the SESP prepares the corresponding bids, which include transac-
tions between local consumers and producers within the same LEC. Addi-
tionally, the energy bid must be within the distribution limits defined in the
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DSO-SESP contract. In European electricity markets, bidding in the DAM
is a prerequisite for wholesale market participants to get access to intraday
and balancing markets such as OMIE or NordPool. The result of executing
the LEM is the energy plan containing information about energy purchased
or sold after the DAM auction during each period by the entire community.
The following section outlines the steps needed to obtain the energy plan.

Once the energy plan is settled for the operation day, the trading platform
shifts to the LFM. In the LFM, the central entity or aggregator controls its
members’ flexible resources such as loads, generators, EVs, and batteries
during certain time intervals and rewards them according to their flexibility
contract activation prices. Flexibility contracts for loads, EVs, and batteries
are explained in detail in [62]. The LFM defines flexibility plans according to
allocated and reserved flexibility for future needs. The goal of the LFM can
be summarized as follows: it should comply with DSO requests to prevent
grid overloads caused by consumption or generation from community mem-
bers or others connected to the same grid. Thus, the LFM allows the DSO to
prevent grid damage and postpone grid reinforcements. It should compen-
sate for BRP deviations due to forecasting errors or other issues to reduce
deviation penalties for the BRP in wholesale markets. The aggregator uses
the ICT platform to send flexibility control signals to compensate for LEC
deviations if the deviation penalty is higher than the flexibility costs. Last
but not least, the LFM should also comply with prosumer needs. In the
case of no external request, the aggregator can activate flexibility to reduce
electricity cost individually.

All LFM participants need to have a contract with the aggregator. Nowa-
days, consumers can have separate or unified contracts with the BRP for
consuming and producing electricity depending on the national regulations.
Additionally, the LFM adds a new contract for activating flexibility. Local
flexibility market participants settle an activation price for every flexibility
asset, and they can include additional constraints like permitted activation
periods or the number of flexibility activations per day. These contracts
can be renewed every month, week or day depending on participation lev-
els. The aggregator issues all contracts and offers a brokering, clearing, and
price settlement service. The LFM algorithm is an optimization problem
that minimizes the cost involved in scheduling the required flexibility. It
can be formulated as a single-side auction between flexibility providers and
the SESP, who will request flexibility to maximize social welfare. On the
other hand, the algorithm could be implemented as a minimization cost for
the SESP allocating the cheapest flexibility offers. Hours before the opera-
tion day begins, the SESP executes the LFM algorithm.
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2.8 Chapter remarks

The deployment of microgrids and local energy communities facilitates the
integration of DERs in distribution networks. Until now, research has fo-
cused on the theoretical analysis of the definition and operation of local and
micro power markets, without a clear distinction of both concepts and their
boundaries, which services can be provided, and the main agents involved.

One of the services that is expected to be decisive for developing smart
grids towards a carbon-neutral power system is flexibility. Flexibility can be
unlocked and implemented in distribution networks thanks to the engage-
ment of the end-user and the integration of distributed energy resources.
This chapter concludes that flexibility will be implemented locally to help
network operators develop active grid management; and under market-based
schemes, with the objective to provide fair competition. By means of the
aggregator figure, flexibility allows end-users engagement through demand-
side activities. Flexibility is then the product that will be considered for
achieving the energy transition objectives presented in this research. The
main conclusion of this chapter is that flexibility services can be implemented
under a local approach, based on the demand-side and under market-based
interactions, to provide a service to the network operator for active grid
management. The following chapter considers the current hypotheses as a
baseline for the definition of flexibility from the demand-side, managed by
aggregators and for distribution network operators.
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Framework definition and
mathematical formulation of flexibility

3.1 Objectives and contributions

One of the outcomes of the previous chapter is that flexibility can be a key
enabler of the energy transition, due to the possibility to create a new service
for network operators, aggregators, retailers and end-users. Even though
in the first years of the discussion on local markets energy was the main
product to be provided, reviewed literature showed an increasing interest on
enabling flexibility. However, there is still some discussion on how flexibility
can be defined, modeled, forecast and priced. This chapter focuses on the
definition of flexibility according to objective (ii) of the PhD research, and
provides a formulation which will be later used for providing this service to
the distribution system operator in Chapter 4. The relationship between
the thesis objective within the whole ecosystem of the research is shown in
Figure 3.1.

The previous chapter highlighted the role of active grid management im-
plemented by DSOs in order to increase the hosting capacity (HC) of dis-
tribution networks, and that flexibility could be one of the main services to
achieve it. Furthermore, the provision of local flexibility will help not only
to secure the grid operation but also to improve grid efficiency during nor-
mal operation time [18]. For these reasons, improved flexibility markets are
being recognized in the e-Directive as a pillar to support the safer and more
efficient use of the existing grids, and to enhance the HC of distribution
feeders. Since the scope of this work is to research those regulations that
enhance RESs penetration while guaranteeing safe operation of the power
grid, it is interesting to study how flexibility markets could be designed in
order to promote DERs participation.
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Fig. 3.1: Chapter objective based on the PhD scope

3.2 Flexibility definition

The electricity system has one intrinsic flaw; the generation-consumption
link, which generally is not breakable. This flaw supposes a big challenge for
grid operators in terms of system safety in the energy transition roadmap.
From a time-perspective this problem has two sides, according to [147]:

(i) Long-term reliability (Capacity adequacy): The ability of the
electric system to supply the aggregated electrical demand and energy
requirements of costumers at all times. [147]

(ii) Short-term reliability (Flexibility): The ability of the electric sys-
tem to withstand sudden disturbances.

This can be considered as the initial and most generic definition of flexibil-
ity. However, in the recent years more specific definitions of flexibility have
been provided, based on the final client using it and the agent providing it.
These definitions are given below:

(i) Consumer approach: From the consumer point of view, flexibility is
meant to be the modification of generation and consumption patterns,
employing DSM, in reaction to an external signal such as a change
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in price, to provide a service within the energy system [148]. They
also include as new flexibility methods energy storage and distributed
generation.

(ii) Transmission system approach: From the Transmission System
Operator (TSO) perspective, it is understood as the capability of the
power system to cope with the short and mid-term variability of re-
newable generation and demand so that the system is kept in bal-
ance [53,149]. The Universal Smart Energy Framework (USEF) points
out that TSOs can benefit from flexibility services to cope with differ-
ent problematic: from ancillary services (AS) for balancing purposes
to constraint management and adequacy services [150].

(iii) Distribution system approach: Lastly, flexibility services for the
DSO are related to the capability of the distribution network to cope
with located short-term congestion of feeders, and also for distribution
grid balancing purposes [151,152].

It is inherent to all the perspectives seen that flexibility is something that
provides margin to the grid to maintain instantaneous stable and safe oper-
ation, and in some cases during normal operation periods it can improve the
way the grid is working. In the case of the study in this research, flexibility is
to be provided to the distribution network operator for operation purposes.
Consequently, this flexibility bought by the DSO is provided by the demand-
side or consumer side, but the main objective of this flexibility is to increase
the grid hosting capacity and enhace active grid management at distribu-
tion level. However, it is important to highlight the main applications and
benefits for the power system agents by activating flexibility.

(i) Prosumer/consumer approach: Self-balancing in terms of maxi-
mization of power used coming from installed DERs, time of use op-
timization based on load shifting and peak-shaving that leads to a
reduction of energy costs [153].

(ii) Transmission system approach: Ancillary services for balancing
purposes, constraint management and adequacy services [150].

(iii) Distribution system approach: Congestion management, voltage
control, avoidance of grid reinforcements and associated costs [150,
153].

(iv) Balance Responsible Party/Retailer approach: Portfolio opti-
mization, imbalances and penalties minimization [153].
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In this case, the main objective is to provide a flexibility service to the
DSO. By doing so, the DSO can implement active grid management, in-
creasing the network hosting capacity and avoiding the grid reinforcement.
At the same time, and since this flexibility will be provided by the demand-
side or end-users, this will also provide the demand-side with the benefits of
providing flexibility listed above.

3.3 EU regulation and directives for flexibility services

There are several approaches to add flexibility to the grid; but this re-
search foscuses on the demand-side flexibility. Hence, the EU legislation
for demand-side flexibility is summarized and listed below.

(i) Compulsory provision: Technical and operational requirements for
all the generators and loads is the traditional approach before the
creation of the European balancing markets. It is still a thing today
on some legislations, but mainly for large generator units. Imposing
these requirements to the smaller generators/loads nowadays seems
technically impossible due to the impossibility to control and monitor
all the assets, plus it may be unfair for prosumers, and could collide
with their interests.

(ii) Bilateral contracts: TSO agrees with some capacity provider on an
over-the-counter contract to acquire capacity provision. These kinds
of contracts are long-term ones, and the capacity provided is well over
anything a prosumer can provide. It is the least transparent way to
provide flexibility, but it can be a way to provide safety to some sig-
nificant investments focused on earning money from energy/capacity
provision.

(iii) Flexibility provision by TSO or DSO: DSO and TSO as respon-
sible for the grid management may seem to be one of the prominent
agents interested in flexibility provision. However, due to the objec-
tives of market liberalization and unbundling of the power grid settled
by the EU, DSOs and TSOs shall not be allowed to own either gen-
erator units or energy storage systems. Summarizing, this leads to
the impossibility of the system operators to provide such services and
hence determines the creation of the aggregator agent. There are two
possible exceptions to this: the DSO modulates the voltage to affect
the grid load and thereby elicit flexibility indirectly. The second is
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where the DSO incentivizes a centralized energy storage unit without
making any profit.

(iv) Flexiblity Markets: Since the publication of the First Energy Pack-
age, the creation of an European internal electricity market has been
the main objective. From this perspective, nowadays the EU is pro-
moting the use of flexibility markets as the primary capacity mecha-
nism [18] (e-Regulation Art. 22), and also the creation of a standard-
ized portfolio of products to enhance the transnational exchange of
capacity. The main argument to discourage other options is that Eu-
rope as a whole is nowadays in over-capacity, and traditional capacity
mechanisms tend to be highly inefficient [12,16].

As can be seen from the items listed below, the current EU Guidelines
still focus the flexibility provisions based on the same structures thought for
TSOs, by means of compulsory provision. However, it is clearly stated that
this implies several difficulties when it comes to demand-side flexibility. The
Third Energy Package follows the path established by the EU in terms of
the creation of an internal European market, promoting the unbundling of
the electric system structures and therefore opening the system to private
investors. The Efficiency Directive (2012/27/EC) was published is the first
one to promote the concept and use of leveled-for-all-users energy flexibility
markets as the primary agents for the transformation to a more efficient
energy system. Lately, the publication of the Electricity Balancing Guide-
lines (EB GL; 2017/2195) has been an enormous step forward in terms of
standardization of balancing products and guidelines for EU-Member States
to establish their own balancing markets. Finally, the publication of the
CEP [16] outcomes is a new opportunity for flexibility markets, dealing and
highlighting the technical and regulatory problems not treated in previous
directives.

Despite this, up until the CEP publication, when Europe was talking
about flexibility markets, it was focused on ancillary services related to fre-
quency provision for TSOs. This kind of product aims to balance genera-
tion and demand, so TSOs centrally operate this market. In the e-Directive
(Art.59), the need for network codes related to non-frequency ancillary ser-
vices is stated for the first time. This will suppose the opening of a new but
unexplored, decentralized market for congestion management at DSO level.
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3.4 Flexibility provision by the Demand-Side

One way to approach the power system is by dividing it into generation and
consumption, two antagonist concepts that are nowadays merging due to
DERs and ESSs. Both sides can provide flexibility: Generation-side flexi-
bility and demand-side flexibility. However, the spotlight is set now on the
demand-side, by means of demand-side management activities, that have
been covered in Chapter 2. In this section the aim is to define flexibility
not only based on demand-side activities, but also from the system per-
spective, in order to find a common definition that links the demand-side
flexibility with the system operator needs. Demand-side management can
be approached from two perspectives defined in [150]:

(i) Explicit demand-side flexibility: It can be understood as the flexi-
bility that can be traded or dispatched. It can also be defined similarly
as generation flexibility) on the different energy markets such as the
wholesale day-ahead, intraday, balancing system support and reserves;
but also by means of direct control and bilateral contracts. Aggrega-
tors are the entities in charge of managing and providing this service,
which can be considered an independent service provider only for flex-
ibility or a supplier.

(ii) Implicit demand-side flexibility: That is based on the consumer’s
reaction to price signals, defining flexibility as a relationship between
consumption and electricity price. In that case, consumers can choose
hourly or shorter-term energy market pricing, reflecting variability on
the market and the network. As a result, they can adapt their behavior
to save on energy expenses. This type of demand-side flexibility is often
referred to as ”price-based”.

While both kinds of DR are considered in the new European framework,
Explicit Demand-Side flexibility is the one towards which the EU is legislat-
ing. This is primarily because of the product nature that makes it market
sellable, which supposes a step forward on the predictions of capacity bal-
ancing of future power grids. At the same time, if consumers can provide
services to the grid operators, this will suppose empowerment for them and
possibly a push for the widespread adoption of small RES installations.
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3.5 Mathematical formulation for demand-side
flexibility definition for DSOs

Until now flexibility has been defined by the provider of this flexibility, and
the final user of this service. However, based on the final user of this service,
flexibility can be formulated under two perspectives: the market-oriented
approach and the system-oriented approach. This section aims to provide a
framework for determining the best flexibility model approach based on the
flexibility provider and the flexibility user. In all cases, flexibility is defined
as a time-based and power or energy-based signal. In some cases, it can be
defined as a power consumption signal, power generation or power variation.

3.5.1 Market-oriented approach

From the market-oriented perspective, the most common definition of flex-
ibility is determining operating points of flexibility, as defined in [153]. In
this case, a deterministic value of flexibility for each home energy manage-
ment system (HEMS) is determined and then aggregated and provided to
the local flexibility market with an associated cost at each time period to
benefit and optimize the flexible assets of a specific household. This study
presents the shortcoming that flexibility cannot be modeled as a determin-
istic process based on the uncertain nature of the demand-side. Flexibility
can also be modeled by specifying an upward and downward flexibility band,
as stated in [154]. This paper focuses the flexibility from DERs located in
the demand-side, but considering only generators and not any demand-side
management activities. They determine first the operating point of the DER
considered to provide flexibility. That operating point at each time period
t corresponds to the energy bid cleared in the day-ahead electricity market.
Furthemore, flexibility in this case is defined as the difference between the
expected forecast and the operating point, determining the upward flexibil-
ity that could be traded and provided to the DSO. Similarly, they defined
downward flexibility by taking the operating point as the upper limit and
the expected forecast as the lower boundary. The resulting boundaries are
shown in Figure 3.2. However, this definition limits the participation to flex-
ibility services only to those DERs that are large enough to participate in
the market, not considering any aggregated flexibility definition under that
study. This is similar to the flexibility modeling developed in [155]. In this
case, a flexibility envelope is defined for DERs, mainly wind and solar power
plants, in order to provide a formulation for flexibility to be considered by
the generation plants owners and provide flexibility to the system operator.
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Fig. 3.2: Flexibility envelopes for upward and downward regulation.

Other research has focused on determining the available flexibility from
a specific type of asset. This is the case, for example, of the flexibility
available in combined heat and power systems with thermal energy storage
in district heating presented in [156]. This paper determines the maximum
flexibility available in power units from different aggregated assets, but being
all of them of the same nature. Determining flexibility in an aggregated
way is a good approach since it allows the management of uncertainty by
jointly considering a set of assets, reducing the forecast error for both energy
demand and flexibility.

Another approach for calculating the flexibility from the market perspec-
tive is modeling the elasticity between price and demand [157], linking the
price with the flexibility activation, represented as a consumption increase or
decrease. This is also implemented in [158], implementing the so-called and
defined in Section 3.4 as Implicit demand-side flexibility. However, modeling
flexibility as the elasticity between price and demand requires the partici-
pation of a control group in order to determine the elasticity curve between
price and consumption, being a barrier in some cases where this is not avail-
able. As an example, Figure 3.3 shows the results of flexibility provision
based on price-elasticity flexibility.

Also related to modeling flexibility under a market-based approach, the
International Energy Agency (IEA) developed a program for characterizing
the energy flexibility in buildings, called Energy in Buildings and Commu-
nities Program (EBC). In Annex 67 [159], and in one of the related arti-
cles [160], a novel methodology is defined for characterizing the energy flex-

60



3.5 Mathematical formulation for demand-side flexibility definition for DSOs

P
o
w

e
r 

co
n
su

m
p
ti

o
n
 [

M
W

]

Time period [h]

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Baseline

Price signal 1

Price signal 2

Fig. 3.3: Flexibility signal based on price-demand elasticity.

ibility available in buildings and districts, and therefore modeling demand-
side flexibility. In there, energy flexibility in buildings is mainly based on
an implicit demand-response scheme, incentivizing a change in the building
energy consumption through a penalty function, with the primary purpose
of minimizing the overall penalty value. In the case of [160], the available
energy flexibility is based on a penalty function that can take three different
models, being the real-time CO2 emission related to the actual electricity
production, real-time price, and a constant value to minimize the overall
energy consumption.

3.5.2 System-oriented approach

From the system-oriented approach, flexibility has mainly been defined as a
multiperiod and time-constrained vector, without an associated price to it,
as described in [161]. By doing so, the main objective is to determine all the
possible trajectories the household consumption can take, in order to provide
this flexibility to the system operator. This is an interesting approach since it
considers the uncertainty associated to demand, and it is shown in Figure 3.4.
However, the computational resources spent and time required to compute
the flexibility trajectories for each household and then aggregate them for
operational purposes can lead to scalability limitations. A similar approach
for considering uncertainty associated to DERs is developed in [162] and
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[163]. In both cases, they determine a starting operating point and the
schedule associated to it for the next time steps. Later, in each time step,
the trajectory is modified according to a random factor in order to model
the uncertainty associated to these flexible assets.
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Fig. 3.4: Stochastic time-constrained flexibility.

Hence, each approach has its benefits and shortcomings. It is not easy to
provide a single flexibility modeling approach that works for all flexibility
providers, asset types, and flexibility users. There are several differences in
each of the cases. In conclusion, and to set a framework for the research de-
veloped in this PhD, the objective is to define a flexibility signal that works
independently of the asset type. Consequently, flexibility is forecast as an
aggregated signal, aggregating a portfolio of users and assets by consider-
ing their submetering data from the flexible assets but not considering the
nature of each flexible asset. The flexibility provider is the aggregator, and
hence, the prosumers and end-users represented by it. On the other side,
the flexibility user is the distribution network operator, intending to use this
flexibility for operation purposes in the short-term horizon. As a result, the
approach used in this research is the system-oriented approach, not consid-
ering any price or cost to it, and neither a market. With that objective
in mind, flexibility is to be a short-term decision-making tool for aggrega-
tors to know how much flexibility they have in their portfolio that can be
provided to the DSO through a bilateral contract. Furthermore, this aggre-
gated flexibility will be forecast using a probabilistic forecast to consider the
uncertainty and randomness associated with demand-side flexibility.
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3.6 Service interaction

In this research, the aggregator is responsible for scheduling all flexible assets
according to different lower-level objective functions and flexibility contracts
between the aggregator and the end-users (consumers or prosumers). Figure
3.5 presents the process of flexibility availability calculation and activation
in the development of the INVADE H2020 and BD4OPEM projects, based
on a peer-to-platform or centralized approach. This definition allows either
the settlement of a local flexibility market or bilateral contracts between the
DSO, the aggregator and finally, the end-users represented by the aggregator.

Firstly, the aggregator collects the historical submetering data of the flex-
ible assets from the different end-users in the portfolio. Once the aggregator
has collected the data, flexibility can be modeled according to the defined
approach. In this case, a system-oriented approach is considered that is
further described in Chapter 4, where flexibility does not assume any asso-
ciated price, and it is modeled as an energy or power change based on the
aggregator needs. In this step, the energy-based collected data is aggregated
at each time step, and hence the maximum flexibility from the demand-side
is calculated. Under this stage, it is assumed that under the contract estab-
lished between the aggregator and the end-user, direct control of the flexible
assets is given.

Once the flexibility has been modeled, the available flexibility is forecast
based on the approach detailed in Chapter 4. When the aggregator receives
a flexibility request from the DSO, the aggregator either accepts or rejects
it based on the previously calculated available flexibility. If the request
is accepted, the scheduling within that portfolio has to be performed to
send the control signals to the specific flexible assets that will provide the
flexibility at that time period. This step can be implemented by means of
optimization techniques, considering the portfolio where this flexibility has
to be activated. The output of this step is a set of control signals for a given
time frame; usually, a single day with hourly steps. Consequently, when
the control signals are sent to each HEMS unit, another optimization can
consider an end-user optimization problem based on end-user preferences.
The last step of this flexibility chain is the flexibility activation based on the
request sent by the DSO.

63



Chapter 3 Framework definition and mathematical formulation of flexibility

AGGREGATOR

Reject/Accept

 control signals

Flexibility request

Flexibility 

modeling

PROSUMER

 

DSO

 

Send submetering

 historical data

 

 
Flexibility 

Forecast

 

Area/Zone 

scheduling 

 
HEMS 

optimization

 
Flexibility 

activation

Replan 

(if needed)
Replan 

(if needed)

(if accepted)

Fig. 3.5: Interaction between aggregators and prosumers for flexibility pro-
vision.
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3.7 Chapter remarks

In this chapter, the current framework about flexibility provision in power
systems has been outlined, considering all the agents that can provide flexi-
bility, all the clients that can use this flexibility, all the schemes to exchange
this service, and all the different approaches and formulations to define this
service. The main focus is set on DSOs, demand-side, and aggregators.
Based on the literature review performed, two different approaches for mod-
eling flexibility have been drawn: market-oriented flexibility and system-
oriented. Based on the scope of the research, the system-oriented approach
is the most convenient one for providing a service for DSOs, considering
demand-side flexibility managed by aggregators. Furthermore, the system-
oriented approach allows the implementation of this service using different
market structures such as a local flexibility market or bilateral contracts
from Chapter 2.

The framework presented in this chapter allows the definition of the flex-
ibility signal that will be forecast and provided to the DSO for active grid
management under operation time-horizon. This is done by the aggregator
figure’s participation, responsible for managing and controlling a portfolio
of flexible assets with different nature.

It is essential to define the flexibility signal based on the specific agents
participating in this exchange, and the related data, monitoring systems,
and controllability of the flexible assets, to evaluate the flexibility activated
within a particular portfolio. The following chapters will use the flexibil-
ity formulation defined here for forecasting the available flexibility within
an aggregator’s portfolio in Chapter 4 and the calculation of the flexibility
request in Chapter 5.
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Chapter 4

Demand-side flexibility forecast for
aggregators

4.1 Objectives and contributions

Flexibility in smart grids has become a key element to enhance the integra-
tion of renewable energy sources that are variable and with some natural
uncertainty associated to them [118,164]. Furthermore, the increase in elec-
tricity consumption in specific time periods can lead to network operation
problems such as congestions [64,165]. One way of activating flexibility is by
Demand-Side Management (DSM), incentivizing the consumption through
electricity price signals, allowing a paradigm shift where consumption fol-
lows generation partially [166]. Another way is by aggregators providing
flexibility services to the Distribution System Operator (DSO) [167], the
Balance Responsible Party (BRP) or retailers under a Local Flexibility Mar-
ket (LFM) [153,168]. Thus, aggregators must directly control the end-user’s
assets to increase or decrease the electricity consumption at specific time pe-
riods. For this purpose, aggregators should know the potential flexibility out
of the total load. The contributions of this chapter are (i) the development
of a framework based on hierarchical modeling to characterize and predict
the aggregated flexibility within a flexibility portfolio; (ii) a probabilistic
forecast formulation of the aggregated flexibility based on Online Learning,
using Kernel Density Estimation and Recursive Maximum Likelihood; (iii) a
flexibility forecast approach that does not require network topology informa-
tion; and (iv) a flexibility estimation that is applicable to different flexible
assets, and does not require specific information of them.

This chapter aims to provide a probabilistic tool for estimating the avail-
able flexibility of a set of flexible assets managed by an aggregator. Hence,
the interaction studied is the one according to objective (iii) of the PhD
thesis, outlined in Figure 4.1. The organization of the chapters is the fol-
lowing. Section 4.2 introduces the definition of flexibility and the modeling
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approach. Section 4.3 describes the two-level hierarchy chosen for the flex-
ibility modeling and the mathematical formulation. Section 4.4 presents a
case study of the aggregated flexibility forecast under a real dataset, while
Section 4.5 discusses the obtained results under the case study. Finally,
Section 4.6 concludes on the results.

PROSUMERS

AGGREGATOR DSO 

MARKET

i

ii

iviii

ENVIRONMENT

v

Fig. 4.1: Chapter objective based on the PhD scope

4.1.1 Literature review

Several works in the literature have investigated different approaches for
providing flexibility in the electrical network to DSOs, BRPs, or retailers,
highlighting the feasibility and the advantages of these services [157,161,169–
172]. There are mainly three ways of carrying out this flexibility forecast,
that is by means of individual forecast at each household through a Home
Energy Management System (HEMS) [161], individual forecast by asset type
[169], or by providing an aggregated forecast of the portfolios’ flexibility
[170]. Flexibility can be forecast aggregately by modeling the aggregated
electricity demand of a group of domestic users signed up to an incentive-
based DSM program [157]. Another approach, and certainly one of the most
common, is Non-Intrusive Load Metering (NILM) to obtain the flexibility
value from residential users, as implemented in [171, 172]. There is still
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room for improvement in terms of flexibility modeling and forecasting due
to limitations: (i) The existing flexibility forecast models assume known
network topology and all the information regarding the flexible assets at
each of the households [157, 161]. However, the current regulation states
that aggregators and DSOs must be different entities [173–175], complicating
the implementation of such services due to the lack of network-related data
sharing. (ii) Aggregators might not have access to asset-specific data due
to data storage, information availability limitations, or data privacy and
protection such as the General Data Protection Regulation (GDPR) [176,
177]. (iii) Forecasting at each individual household and then aggregating
can lead to computation times longer than the operation times required for
providing flexibility services [178]. These differences on levels of information,
business model interests as well as conflicting objectives among DSOs and
aggregators are also pointed out by [168]. The reviewed literature shows a
research gap on how flexibility can be defined and estimated, avoiding the
use of asset-specific data and providing probabilistic forecast to tackle the
uncertainty associated with demand-side flexibility.

Kernel Density Estimation (KDE) methods are commonly used for obtain-
ing predictive distributions of a specific signal, being commonly parametrized
with a mean-variance model when data do not follow a parametric distribu-
tion. This approach also allows to be implemented online, considering the
evolution of the data density function as soon as new data points enter the
model, allowing this approach to be used for probabilistic forecast. KDE
for renewable energy forecasting has been implemented in literature [179],
being mainly applied to wind energy forecast [180]. In [179], a conditional
KDE is implemented to forecast solar and wind energy generation, using
an adaptive bandwidth with the aim of minimizing the associated error.
Recent research has shown an increase of the use of this approach on load
forecasting [181, 182]. In [181], KDE is used to calculate the medium term
probabilistic load consumption forecast, for energy planning. Until now,
KDE has only been focused on a single asset-type data and mainly for plan-
ning purposes, being the implementation of KDE for aggregated flexibility
forecast for portfolio operation not considered yet.

This chapter presents a methodology for estimating the flexibility by
means of Online KDE, employing Gaussian kernels, which are parameter-
ized with a mean-variance model. Accordingly, the relevant parameters of
the kernels are tracked with a Recursive Maximum Likelihood estimation
method. Recursivity and on-line learning approaches outlined here allow
the time-adaptivity of the model, and potential application to real test
cases. This methodology provides the aggregator with a tool to estimate

69



Chapter 4 Demand-side flexibility forecast for aggregators

the flexibility availability probability, as well as its conditional value, in a
short period of time, for operation purposes, without the need of computing
HEMS optimization algorithms for each household. Furthermore, in this
approach no particular forecasting models for each asset type are needed,
since the estimation is done in an aggregated level, only using metering
and submetering data, assuming that the flexibility signal is known. An
additional advantage is that asset-specific data such as driving patterns or
battery state of charge, among others, are not needed, which are usually not
available. This is because the presented methodology is general and asset-
independent. Hence, this approach is useful for decision-making objectives
in an aggregated approach as a first stage of the flexibility provision.

4.2 Aggregated flexibility estimation

4.2.1 Problem statement

By considering all the previous definitions in Chapter 3, and the main ob-
jective of this study, flexibility is defined and formulated as (i) aggregated,
by jointly considering a group or a portfolio of users represented by an ag-
gregator, with no available information neither in terms of the electrical
network layout nor the location of the flexible assets; (ii) consumption ap-
proach, since flexibility is modeled considering only those flexible sources
that consume energy, being prosumption [183] out of the scope at this stage;
(iii) short-term horizon, since flexibility will be forecast in a day-ahead ba-
sis, in time periods that may range from 15 minutes to 1 hour; and lastly
(iv) system-oriented, being the output of this algorithm the energy value,
defined as positive and in energy units [kWh], for operation and short-term
decision-making purposes for DSOs and BRPs, with no associated price or
cost.

4.2.2 Approaches for Flexibility Aggregation

With the aim of characterizing and modeling flexibility based on an aggre-
gated portfolio with different sources of flexible consumption, bottom-up
and top-down approaches are used. Instead of modeling and forecasting
each type of flexibility source, the aggregated flexibility value is predicted.
Figure 4.2 shows the bottom-up approach used to obtain the initial dataset
to model the aggregated flexibility value. By means of this approach, the
signal obtained will be later used to characterize the flexibility signal and
predict its value. In this model, three different sources of flexibility are con-
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sidered based on submetering data: Electric Water Boilers (EWB), Space
Heaters (SH), and Electric Vehicles (EV). The aggregated flexibility value
can be obtained by adding them up by type and user, which will be the
input data for the flexibility characterization and modeling.

Aggregated flexibility  

[kWh]

Bottom-up approach

Electric water boiler

 [kWh]

Electric space heater

 [kWh]

Electric vehicle 

 [kWh]

 

Fig. 4.2: Bottom-up approach for flexibility modeling

The second stage considers the aggregated flexibility from the bottom-
up approach as input data. Then, the modeling of the flexibility signal is
defined by employing a two-level hierarchical model and top-down approach,
as shown in Figure 4.3. The first level of the hierarchy characterizes the
flexibility signal. In this context, the signal is transformed and modeled as a
Bernoulli distribution, characterizing the flexibility signal into two different
values based on a chosen threshold; flexibility available (1) and flexibility not
available (0). By doing that, one can first know whether there is flexibility
available in the portfolio before quantifying the available amount under the
second level of the hierarchy.

The previously described bottom-up and top-down approaches are depen-
dent by means of the output-input relationship. The output of the bottom-
up approach is the aggregated flexibility signal in terms of historical data
that will be used as an input of the top-down approach.

To conclude this section, Figure 4.4 outlines the steps covered in the chap-
ter related to flexibility characterization and flexibility activation, following
the system interaction described in the previous chapter (Section 3.6). The
scope of this chapter focuses on the data collection, data aggregation, and
aggregated flexibility forecast. The resulting outcome of the algorithm and
the chapter would be the flexibility value that could be cleared in a local flex-
ibility market or by means of a bilateral contract with either the DSO or the
BRP. At the same time, this output will help aggregators know the amount
of flexibility required within their assets for the following day. Therefore,
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Fig. 4.3: Top-down approach for flexibility characterization and modeling.

the aggregated flexibility forecast will become the input of the HEMS or
asset-based optimization models to determine the assets to schedule for pro-
viding flexibility. The last step of the flexibility value chain will cover the
flexibility activation at the delivery time.
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Fig. 4.4: Chapter scope based on the flexibility value chain
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4.3 Flexibility modeling

4.3.1 Dealing with time series data

The approach to forecasting depends on the time horizon, the factors and
related inputs that determine the current outcome, types of visible and ”not
visible” data patterns, and many more. There are several approaches for
forecasting time series data, from the most basic used for developing a
benchmark, also know as näıve methods, to the more complex ones such
as probabilistic forecasts, neural networks, or reinforcement learning [184].
This chapter covers the five main steps in a forecasting project, as follows:

(i) Problem definition: Definition of the variable to be predicted, as
well as the integration of this forecast model to the organisation and
the related models that might interact with it.

(ii) Data and information collection: According to [184], there are at
least two types of information required: (a) being the statistical data,
and (b) the accumulated expertise of people who collect the data and
use these forecasts. On top of that, even though larger amounts of data
are currently being stored, there are still some difficulties to collect
enough historical data to be able to fit a good statistical model.

(iii) Exploratory Data Analysis (EDA): With the main objective to
find consistent patterns such as seasonality and trends, as well as out-
liers and missing values.

(iv) Choosing and fitting models: This step is directly related to the
amount of historical data available and other explanatory variables,
since they will affect the choice of the model to use. Most likely, the
definition of a benchmark will help to evaluate in a later stage the
performance of the more complex model. It is important to remember
here that each model is itself an artificial construct based on a set of
assumptions. and usually invovles one or more parameters which must
be estimated using the available and known historical data [184].

(v) Model evaluation and utilization: Evaluating the performance of
the model once the data for the forecast period have become available.

The forecast variable is most commonly called a random variable. In
this case, according to the definition of flexibility outlined in Section 4.2,
flexibility is considered as a random variable X. However, since we want to
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specify that we are considering one observation at a time, we will use the
subscript t, resulting in the random variable xt. This corresponds to the
so-called time series data, meaning a set of observations xt, each one being
recorded at a specific time t. In this chapter and for the sake of simplicity,
we will consider discrete time series, when observations are recorded under
a discrete set, made at fixed time internvals. On the contrary, continuous
time series are out of the scope of this research.

When considering a probabilistic forecast, the forecast value x̂t represents
the average value of the forecast distribution.

Time series data have several characteristics that make their analysis dif-
ferent from other types of data:

(i) They can present a trend over time, understood as an increasing or
decreasing offset tendency values in a given time series.

(ii) The random variable may exhibit seasonality, understood as a fixed
and known period. A seasonal pattern happens when a time series is
influenced by seasonal factors such as the day of the week, the month
of the year, among others.

(iii) The data presents autocorrelation, meant as serial correlation between
subsequent observations.

(iv) The data might present cycles, when the data present rises and falls
without a fixed frequency, most likely under economic conditions or
cycles.

(v) The time series data presents an unexplanatory component, known as
white noise. This can be understood as a random component that
cannot be explained by any of the considered variables. This noise
component is a stationary process with parameters mean and variance.

An important part of the analysis of a time series is the choice of a
suitable probability model for the data. The most common approach to
deal with time series data is the implementation of autoregressive models
(ARIMA/SARIMA). However, tuning the hyperparameters of this type of
models can be a challenging task resulting in an algorithm that does not
perform better than the benchmark [185], since ARIMA models assume lin-
ear functions of past data; and sometimes the time series data under study
present non-linearities of one of the decomposed signals. Furthermore, time
series decomposition to assume stationarity is mostly not feasible in the en-
ergy sector, making it more challenging to forecast time series under auto-
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regressive models. In the recent years, the most used approaches for fore-
casting time series data have been boosting algorithms and probabilistic
forecast approaches [186–189].

4.3.2 Benchmarks models

The benchmark models are a helpful tool for setting the baseline of the per-
formance of a forecast algorithm. This section covers the definition of two
different benchmarks for the aggregated flexibility forecast task, the clima-
tology model and the simple exponential smoothing (SES) model. Algorithm
1 presents the first benchmark developed for forecasting the flexibility avail-
able within an aggregator’s portfolio. This model is based in the so-called
näıve, but evolved to consider the monthly seasonality in each month of the
year. In this case, there is an average model created in each month of the
year, represented by m ∈M and at each time period t ∈ T . As an example,
the flexibility value for the 2nd of February at 10:00 consider all the previous
flexibility values in February at 10:00, outlined as yn|m,t, providing the value
ŷt+1|t. The set N represents all the data points that belong to the same time
period t and month m, n ∈ N |n ∈ T ∧M .

Algorithm 1: Benchmark 1: Climatology Model

Input: Y observed data, T,M time-related parameters
Result: Ŷ : ŷt

1 for all m ∈M do
2 for all t ∈ T do

3 ŷt+1|t = 1
N

N∑
n=1

yn|m,t

4 end

5 end

In the case of simple exponential smoothing, forecasts are calculated using
weighted averages, meaning that there is a weight attached to each previous
observation that decays exponentially as observations come from further in
the past. As a result, the greatest weight is associated to the most recent
observation, whereas the smallest weights correspond to the oldest observa-
tion. The smoothing parameter or time decay is represented by α, being
a constant value α ∈ [0, 1]. For the sake of clarification, those cases where
α is close to 1, more importance and hence weight is given to more recent
observations, On the contrary, when α is close to 0, more importance is pro-
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vided to older observations. Algorithm 2 outlines the setup for forecasting
the flexibility signal based on historical data.

Algorithm 2: Simple Exponential Smoothing (SES)

Input: Y observed data, T time granularity set, α decay factor
Result: Ŷ : ŷt

1 for all t ∈ T do

2 ŷt+1|t =

T−1∑
n=1

α (1− α)n yt−n + (1− α)t`0

3 end

4.3.3 Hierarchical model formulation

The hierarchical model shown in Figure 4.3 has two different levels, being
level 1 the characterization of whether there is flexibility available or not,
represented by the random variable X, and level 2 the value of the avail-
able flexibility given the prior condition of availability, defined as a random
variable Y . This yields

X ∼ B(p) (4.1a)

Y |X = 1 ∼ F (4.1b)

In the first level of the hierarchy, the output value is either 0 or 1, follow-
ing a Bernoulli distribution X ∼ B(p) with associated probability p. The
second level of the hierarchy aims to obtain the flexibility value assuming
available flexibility or given that X = 1. These data follow an unknown
distribution named F , which we will eventually approximate and track with
Kernel Density Estimation (KDE). Consequently, the output of the model is
obtained by combining the results of the two levels of the hierarchical model,
as follows

E[Y ] = E[Y |X = 1]P [X = 1] (4.2)

where the expected available flexibility at a specific time period is a result
of multiplying the probability that flexibility is available (Level 1), times
the expected value of flexibility given that the first condition is met (Level
2). The Root Mean Squared Error (RMSE) and the Mean Average Error
(MAE) are chosen here as scores to evaluate the performance of the final
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outcome. The performance scores are calculated at the end of the validation
set, based on [184].

4.3.4 Level 1: Bernoulli modeling for flexibility characterization

Given the overview of the hierarchy, the first level is modeled according to
a Bernoulli distribution X ∼ B(p). This first level encodes the aggregated
flexibility value into a binary signal, given a predefined threshold according
to the characteristics of the flexible assets portfolio. Then, the random
variable X of the model can take a binary output either k = 0 or k = 1,
with the associated probability p.

P [X = k] =

{
p if k = 1,

1− p if k = 0.
(4.3)

In order to determine the probability value p at a specific time period in
this first level of the hierarchy, we implemented a climatology model. This
approach considers the flexibility binary states previous to that specific time
and for a given month, resulting in the average value for p. The output of
the model is then the average probability value, pm,t, for a time t ∈ T , for a
day d ∈ D and month m ∈M , pm,t ∈ [0, 1] and calculated as

pm,t =
1

D

D∑
d=1

Xd,m,t ∀m ∈M, ∀t ∈ T (4.4)

This approach also provides valuable information for the input data re-
quired under the second level of the hierarchy (Figure 4.3). In this case, the
values lower than the threshold are removed from the dataset, obtaining the
input data for Level 2. Accordingly, the resulting data and distribution are
modeled according to an online and adaptive bandwidth KDE by means of
Recursive Maximum Likelihood estimation.

Model evaluation

In order to evaluate the accuracy of a probabilistic prediction based on
binary outcomes, we consider the Brier Score (BS). This evaluation method
can be generally outlined as follows

BS =
1

N

N∑
t=1

(pt − ot)2 (4.5)
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where N is the total number of observations under the case study, p̄t is
the probability of the outcome to be 1, obtained at time t, and ot the binary
outcome at time t.

4.3.5 Level 2: Online KDE for flexibility value forecast

Given that flexibility is available from the previous level of the hierarchy,
the problem is now outlined by using a KDE, where a Gaussian Mixture
Model (GMM) [190] of the observed data point is produced. Therefore, it is
updated and adapted online based on new data samples fed into the model,
similar to the approach outlined in [191,192]. Formally, KDEs can be defined
as

ft(y) =
1

nλ

t∑
i=1

λt−i K

(
y − yi
ht

)
(4.6)

where nλ = 1
1−λ is known as the equivalent window size and defines the

number of observations used to calculate the updated flexibility value. The
weight or forgetting factor can be defined as λ, being associated with that
kernel. Accordingly, ht refers to the bandwidth of the kernel at time pe-
riod t, y is the vector of values where the function is evaluated, and yi is
the measurement at time t, on which the kernel is going to be centered.

Lastly, K
(
y−yi
ht

)
is in this case a normalized Gaussian Kernel that can be

formulated as

K

(
y − yi
ht

)
=

1

ht
√

2π
exp

(
−1

2

(
y − yi
ht

)2
)

(4.7)

Since the main objective of this approach is to adapt the resulting distri-
bution as long as a new data point is fed into the model, an online learning
approach is used. As a consequence, the kernel has to be updated at each
time step in order to fit the new sample included in the model.

A uniform and normalized distribution is chosen as initial condition to
start the recursive approach, and can be formulated as

ft0(y) =
1

fmax
(4.8)

where fmax is the maximum expected flexibility, considering all the avail-
able historical data at the beginning of the study. Hence, the kernel is
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updated at each time period by means of the following recursive formula

ft(y) = λ ft−1(y) + (1− λ) K

(
y − yi
ht

)
(4.9)

which relies on the previous resulting distribution, together with the new

data sample yi at time t and associated KDE, K
(
y−yi
ht

)
. This method-

ology ensures that at each time step the normalized kernel properties are
maintained since ∫

y
K

(
y − yi
ht

)
dy = 1 (4.10)

∫
y
ft(y) dy = 1 ∀t ∈ T (4.11)

Adaptive Bandwidth estimation

Since the main objective of this approach is to adapt the resulting distribu-
tion as long as a new data point is fed into the model, an online learning
approach is used. As a consequence, the kernel has to be updated at each
time step. To do so, the value of the bandwidth has to be adaptive in order
to fit the new sample included in the model.

There are two parameters to estimate in this model, being the forgetting
factor λ and the kernel bandwidth for each time period ht. The forgetting
factor λ is a real constant parameter in the range between 0 and 1, λ ∈ [0, 1).
In the case of ht, its value is defined as ht ∈ R+, and calculated at each time
step as a function of yt. This yields

ht = h̃
√
yt (4.12)

where h̃ is an estimated and constant value h̃ ∈ > 0. This function ensures
that the resulting KDE does not provide a negative parameter for the flexi-
bility estimation, according to the definition of flexibility defined in Section
4.2. In order to determine the value of h̃ and λ so as to generalize the model,
grid search and cross-validation techniques have been implemented, using a
cross-validation set of 3 months.

The setup used for the second level of the hierarchy used to calculate the
resulting available flexibility value can be found in Algorithm 3. There, the
previously defined formulation is structured together with the required input
data, as well as the mathematical formulation in a generalized approach.
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Algorithm 3: Online Adaptive Bandwidth KDE

Input: Y |X = 1 ∼ F , λ, h̃
Result: ft(y) ∀t ∈ T

1 at t0 → ft0(y) = 1
fmax

2 for ∀ t ∈ T do
3 yi: read input data point at time t

4 ht = h̃
√
yi

5 ft(y) = 1
nλ

∑t
i=1 λ

t−i K
(
y−yi
ht

)
6 K

(
y−yi
ht

)
= 1

ht
√
2π

exp

(
−1

2

(
y−yi
ht

)2)
7 ft(y) = λ ft−1(y) + (1− λ)K

(
y−yi
ht

)
8 end

Recursive Maximum Likelihood for bandwidth estimation

Let ht, t = 1, ..., T be the kernel bandwidth for a given time period t of T
time steps. This parameter is now estimated, ĥt, using a recursive approach,
maximizing the likelihood, also known as Recursive Maximum Likelihood
(RML). For convenience, the problem is formulated instead as a minimiza-
tion problem, minimizing the log-likelihood, approach implemented as well
in [180,193]. Hence, ĥt is going to get the value where the objective function
is at its minimum for each time period t, at a given point yi. This yields

ĥt = arg min
ht

St(ht) (4.13)

In this case, the objective function St(ht) to be minimized at each time
period is a function of ht, and it can be formulated as follows

St(ht) = − 1

nλ

t∑
i=1

λt−i ln ft(yi) (4.14)

St(ht) = λ St−1(ht)− (1− λ) ln ft(yi) (4.15)

We define a recursive estimation procedure for calculating ĥt. In this case,
we implement a Newton-Raphson step to express the estimation of ĥt, de-
fined as ĥt ∈ R+, as a function of the previous estimation. The bandwidth
of the estimated kernel must be positive, since the flexibility value is defined
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positive according to Section 4.2. However, the mathematical formulation
of the model can lead to negative bandwidths. Hence, a logarithmic trans-
formation is included in the model to ensure that the bandwidth is always
positive. The new parameter defined is h̃t ∈ R. This yields

h̃t = h̃t−1 −
∇h St(ĥt−1)
∇2
h St(ĥt−1)

(4.16)

ĥt = eh̃t (4.17)

To compute the estimated value for ĥt, we calculate the derivative terms
∇h St(ĥt) and ∇2

h St(ĥt) which can be expressed as

∇h St(ĥt) = λ ∇h St−1(ĥt)︸ ︷︷ ︸
= 0, optimal state

− 1

nλ

∇ft(y)

ft(y)
(4.18)

Where the first term is equal to 0, since we assume that we were under
the optimal state at t− 1. This gives the formal solution

∇h St(ĥt) = (λ− 1) Ut (4.19)

Where Ut is defined as the information vector

Ut =
∇h ft(y)

ft(y)
(4.20)

In which the numerator can be outlined as follows

∇h ft(y) = λ ∇h ft−1(y) + (1− λ)

(
(y − yi)2

ĥ2t
− 1

)
·K

(
y − yi
ĥt

)
(4.21)

Accordingly, the term ∇2
h St(ĥt) can be written as

∇2
h St(ĥt) = λ ∇2

h St−1(ĥt)−
1

nλ

d

dht

(
∇hft(y)

ft(y)

)
(4.22)

∇2
h St(ĥt) = λ∇2

h St−1(ĥt)−
1

nλ

≈ 0︷ ︸︸ ︷
∇2
hft(y) · ft(y)−∇hft(y) · ∇hft(y)

ft(y)2
(4.23)

The first and over-braced term can be neglected according to equations
(28) and (29) in [193]. There, we assume that ft is almost linear in the close
vicinity of ĥt for a given t ∈ T . Thus, it can be outlined as
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∇2
hft(y) · ft(y)

ft(y)2
� −∇hft(y) · ∇hft(y)

ft(y)2
(4.24)

Hence, it can be translated into

∇2
hft(y)

ft(y)
� −∇hft(y)2

ft(y)2
(4.25)

As a result,

d

dh

(
∇hft(y)

ft(y)

)
' −∇hft(y) · ∇ft(y)

ft(y)2
(4.26)

d

dh

(
∇hft(y)

ft(y)

)
' −

(
∇ft(y)

ft(y)

)2

(4.27)

Hence, this allows a formal solution to be found as

∇2
h St(ĥt) = λ ∇2

h St−1(ĥt) + (1− λ)

(
∇hft(y)

ft(y)

)2

(4.28)

∇2
h St(ĥt) = λ ∇2

h St−1(ĥt) + (1− λ) U2
t (4.29)

This formulation can be implemented in different time-scales, being for
example a Single Model for the hourly flexibility estimation, created at the
initial time period and recursively updated at each time period t ∈ T . An-
other implementation could be a multiple hourly model, defined as Hourly
Model, where the flexibility estimation in each hour is characterized by a
density function, and updated at that specific hourly time period t ∈ T for
each day. Both approaches are implemented and analyzed based on the case
study data in Section 4.5.

The setup used in this section can be found in Algorithm 4. There, the
previously defined formulation is structured together with the required input
data, as well as the mathematical formulation in a generalized approach. It
is worth to consider a number of particularities in the following algorithm
to ensure the good performance of the code for all data points. A lower
bound has been included in the model by means of a tolerance value. This
is done to avoid discontinuities in the calculation of the information vector
(line 4 in Algorithm 4) when the read data point yi is closer to the tails
of the approximated distribution. However, for the sake of clarity, this is
not include in the Algorithm formulation, but can be found in the code
source. Both terms ∇h St(ĥt) and ∇2

h St(ĥt) are considered as a function
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of ht. These functions are evaluated at each time period t ∈ T at a vector
of specific data points y defined at t0. Nevertheless, in order to update the
estimated value of the bandwidth ĥt, ∇h St(ĥt) and ∇2

h St(ĥt) have to be
evaluated and hence interpolated in a new data point, being in this case yi
(lines 6 and 7). Finally, the if-statement in line 8 considers a warm-start
initialization, represented as tws.

Algorithm 4: Online KDE using Recursive Maximum Likelihood

Input: Y |X = 1 ∼ F
Result: ft(y) ∀t ∈ T

1 at t0 → ft0(y) = 1
fmax

, dft0(y) = 0, ∇2
hSt0(y) = 1

fmax
, h̃t0 = −1

2 for ∀ t ∈ T do
3 yi: read input data point at time t

4 Ut = ∇h ft(y)
ft(y)

5 ∇h St(ĥt−1) = (λ− 1) Ut

6 ∇h St(ĥt−1, yi): retrieve the value through linear interpolation of

7 ∇hSt(ĥt) and y in the read data point yi

8 ∇2
h St(ĥt−1, yi): retrieve the value by linear interpolation of

9 ∇2
hSt(ĥt) and y in the read data point yi

10 if t ≥ tws then

11 h̃t = h̃t−1 − ∇h St(ĥt−1, yi)

∇2
h St(ĥt−1, yi)

12 else

13 ĥt = e(h̃t)

14 ft(y) = λ ft−1(y) + (1− λ)K
(
y−yi
ĥt

)
15 ∇h ft(y) = λ ∇h ft−1(y) + (1− λ)

(
(y−yi)2

ĥ2t
− 1
)
·K

(
y−yi
ĥt

)
16 ∇2

h St(ĥt) = λ ∇2
h St−1(ĥt) + (1− λ) U2

t

17 end

18 end

Model evaluation

This approach has the forgetting factor or time decay λ as a hyper-parameter
to be tuned. The choice of an optimal value for λ is implemented by using
a cross-validation technique. In this case, the last three months of data are
used as a validation set to validate the optimal value of the forgetting factor,

83



Chapter 4 Demand-side flexibility forecast for aggregators

out of the 6000 available hourly data points of flexible consumption under
the second level of the hierarchy. For the evaluation of the probabilistic
forecast, in this case a density distribution, we follow the approach of a log-
likelihood score (LS). For a given predictive density distribution ft(y) and
corresponding measured available flexibility value, written as yi+1, the score
can be formulated as

LSt = − ln (ft(yi+1)) (4.30)

Accordingly, the LS value can be averaged over the evaluation set, given
by

LS = − 1

NCV

NCV∑
t=1

ln (ft(yi+1)) (4.31)

where NCV represents the number of data points considered under the
validation set. The optimal value of the forgetting factor λ is chosen as that
which minimizes the log-likelihood score over the validation set.

4.3.6 Model overview

The hierarchical model for flexibility forecast is based on two levels, as de-
scribed in Section 4.3.3. Figure 4.5 describes the steps to be carried out
for modeling and therefore forecasting flexibility based on the available his-
torical data and according to the model described. First of all, submetered
data are collected and aggregated to define the historical aggregated flexibil-
ity, becoming the input of the top-down and hierarchical flexibility forecast
model. Then, level 1 of the hierarchy characterizes flexibility according to
the Bernoulli modeling formulation. The output of this step is a new dataset
that is used as an input for level 2, determining the density function of the
conditional flexibility value. Later on, each level’s output is combined and
reconciled to determine the aggregated flexibility forecast value. Each level
of the hierarchy has a specific outcome and score to assess the individual
and the overall performance of the model, as shown in Figure 4.5.
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Timestamp – Probability [-]

Score: Brier Score (BS)
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Fig. 4.5: Flexibility modeling overview

4.4 Case study

The data used in this chapter have been obtained from the Dataport Pecan
Street Inc. dataset, collected from real households in Austin, Texas, the
USA [194]. This dataset contains appliance-level energy consumption data
from 25 households during one year of metering and sub-metering in 2018,
providing the dataset in different granularity. Table 4.1 shows an overview
of the dataset used for the model.

Element Description

Number of users 25
Location Austin, Texas (USA)
Types of flexible assets PV, ESS, EV, SH, EWB
Data granularity 1 min - 5 min - 15 min
# users with PV panels 9 (36%)
# users with ESS 0 (0%)
# users with SH 0 (0%)
# users with EWB 5 (20%)
# users with EV 4 (16%)

The final dataset has been defined considering the following particular-
ities: (i) Specific types of flexible loads and renewable generation features
have been chosen, constituting the dataset: Photovoltaic panels PV , Energy
Storage Systems ESS, Electric Water Boilers EWB, Space Heaters SH, and
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Electric Vehicles EV, being the energy of each of them measured in kWh
and aggregated according to the bottom-up approach shown in Figure 4.2;
(ii) The total, the flexible and the inflexible load signals are then formulated
as an aggregation of the flexible assets for each user i, at a given time t, and
also considering the net load Net available in the raw dataset. This can be
formulated as follows

Totalt =
N∑
i=1

(Neti,t − ESSi,t − PVi,t) (4.32a)

Flext =

N∑
i=1

(EWBi,t + SHi,t + EVi,t) (4.32b)

Inflext = Totalt − Flext (4.32c)

Figure 4.6 displays a sample of the aggregated total, flexible and inflexible
load of the dataset used in the case study, over an arbitrarily chosen episode
of one week.

Fig. 4.6: Aggregated total, flexible and inflexible loads

Open-access datasets with real-world data containing metering and sub-
metering measurements are not generally accessible. As a result, the avail-
able dataset has some shortcomings. For example, there are no users with
SH, and that at the moment, the available submetered flexibility is still quite
limited. This can be understood as a representation of a real dataset, where
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not all end-users have flexible assets, and where SH are not commonly used.
Likewise, having only one year of data and a portfolio of 25 users can lead
to shortcomings in the flexibility modeling. PV generation and ESS are not
defined as flexible loads but as flexible prosumption, and are not considered
into the flexibility forecast at this stage of the research, because these assets
are defined as generation or generation/consumption signals. Hence, it can
lead to a misunderstanding of the signal itself based on the definition of
flexibility considered in Section 4.2.

4.5 Analysis of results

This section presents the results obtained after applying the hierarchical
model described in Section 4.3 to the case study presented in Section 4.4.
Section 4.5.1 corresponds to the output of the first level of the hierarchy:
the flexibility availability forecast. Section 4.5.2 shows the output of the
second level of the hierarchy, being it the flexibility value estimation using
the adaptive bandwidth approach. In Section 4.5.3 two different strategies
are implemented: a single model, created at the first instant and updated for
each time period of the time horizon considered; and an hourly model, cre-
ated for each time period of the day and updated daily. In section 4.5.4, the
first and second levels of the hierarchy are combined to obtain the expected
flexibility value. All data preparation, processing, and model simulations
were carried out using a desktop unit with an Intel Core i7-10510U quad-
core CPU @ 1.8-4.9 GHz with 16 GB RAM.

4.5.1 Flexibility availability forecast: Hierarchy level 1

In the first level of the hierarchy, the defined threshold for encoding the
dataset has been 0.20 kWh, resulting in a dataset with one year of data
encoded within binary outputs 0-1. Based on that, the climatology model
has been computed and evaluated. Figure 4.7 shows the probability value
of having available flexibility, represented by the binary output k = 1, for a
given time period t under the first level of the hierarchical model. For the
sake of simplicity, we have stratified the probability value based on seasonal-
ity. Results show that, regardless of the season, afternoon and evening time
periods from 14:00 until 21:00 is where the greatest probability of available
flexibility is provided, following similar patterns. Despite this, it can also be
seen that there are differences in specific time periods and seasons, being fall
the season with the lowest flexibility availability until 6:00 in the morning.
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At the same time, fall is the season where the highest flexibility availabil-
ity is seen in the afternoon, and at the same time achieving greater values
earlier in the afternoon, compared to the other seasons.

Fig. 4.7: Available flexibility. Probability value based on season and time
period

The Brier Score (BS) is formulated as ∈ R+[0, 1], assuming 0 as the perfect
forecast and 1 the worst forecast, and it is considered as the evaluation
method for the model developed under the first level of the hierarchy. Table
4.2 provides an overview of the results, where the BS obtained is 0.196. That
means that the probabilistic forecast calculated by this methodology can be
considered as accurate enough. Furthermore, the computational time for
which this algorithm computes the probabilities for one year of data is less
than one minute, making this algorithm fast enough for operational purposes
where flexibility must be estimated.

Table 4.2: Results of model evaluation procedure for the climatology model
in the first level of the hierarchy, using the Brier Score (BS) as a
performance score.

BS [-] Processing time [s]

Level 1 - Single Model 0.196 53.31
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4.5.2 Flexibility value estimation: Hierarchy level 2 - Adaptive
bandwidth estimation

As a starting point for the development of a probabilistic forecast model for
the second level of the hierarchy, the formulation of the kernel density esti-
mation model based on the adaptive bandwitdh estimation is applied to the
study case. Fig. 4.8 shows a representation of the online KDE algorithm for
a specific time period. This visualisation aims to highlight the performance
of the algorithm as new data are fed into the model, calculating a KDE
for each new data point; and updating the actual distribution based on the
obtained parameters h̃ and λ.

Fig. 4.8: Online KDE algorithm on February 13, 2018, 16:00

With the aim of evaluating the performance of the online and adap-
tive bandwidth KDE, the Root Mean Square Error (RMSE) and the log-
likelihood score have been chosen as a metric to measure the accuracy of
the model. Fig. 4.9a shows the RMSE value of the online KDE algorithm,
depending on the values taken by h̃ and λ. These results have been ob-
tained under grid search and cross-validation algorithms, with the objective
to define the best combination of h̃ and λ to achieve the minimum RMSE
value. The same methodology is implemented for calculating the best pa-
rameters of the model using the LS as the evaluation method, shown in
Figure 4.9b. We first considered a broader range for λ and h̃ under the grid
search and cross-validation techniques. Therefore a second grid search was
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performed, narrowed around the minimum value for both the RMSE and LS
score. According to the results observed in Fig. 4.9a, the minimum RMSE
value of the model under the train set is RMSE = 0.0458, with h̃ = 0.7555
and λ = 0.6455. In the case of evaluating the model with the LS evaluation
method, the optimal values found are h̃ = 0.4 and λ = 0.978, resulting in a
LS = 2.15 under the train set.

The final distribution of the flexibility value can be calculated once the
resulting best parameters for h̃ and λ have been obtained at the end of the
test case set, as displayed in Figures 4.10a and 4.10b. This figure shows the
final probability density function, obtained once the entire dataset has been
included in the model under the cross-validation step, and can be compared
to the histogram of the dataset under the second level of the hierarchy at that
time period. Beware that the figure is displayed as a representation of the
results; however, it is not directly comparable. The explanation is that the
histogram is a static representation, whereas the resulting density functions
are time adaptive based on the values of λ and h̃. It is interesting to highlight
the differences between the resulting distribution for the combination of λ
and h̃ with the most accurate performance.

The approximated distribution, obtained with the online KDE, follows
the histogram of the dataset. However, our results were unsatisfactory in
terms of the approximated distribution when the flexibility value is around
3.75 kWh, being the resulting distribution not capable of following the peak
value on both cases under the RMSE and LS score. These differences can
be accounted for as a limitation of the model since the best λ value obtained
under the grid search and cross-validation methods using RMSE as the eval-
uation method can be considered excessively low, leading to a significant
down-weighting of the previous values when the distribution is updated at
each time period t. In the case of using LS for finding the best parameters
of the model, there is a better performance and the resulting λ prevents
the model from forgetting the previous observations too fast. However, by
looking at the resulting distribution, it can be concluded that the adaptive
bandwidth formulation should be improved in order to be shaped according
to non-parametric distributions with more that one mode. This is why this
method is not shown as a combination of levels. Consequently, this model
is improved by means of the recursive maximum likelihood approach for
determining the hyperparameters. The results of the recursive maximum
likelihood approach are shown in the following section.

90



4.5 Analysis of results

a) Representation of RMSE as a function of h̃ and λ grid search
values.

b) Representation of LS as a function of h̃ and λ grid search
values.

Fig. 4.9: Grid-search results comparison
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a) Online KDE algorithm on February 13, 2018, 16:00 using the grid-
search optimal parameters under RMSE evaluation.

b) Online KDE algorithm on February 13, 2018, 16:00 using the grid-
search optimal parameters under LS evaluation.

Fig. 4.10: Final density functions comparison
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4.5.3 Flexibility value estimation: Hierarchy level 2 - Online
RML-KDE performance

Prior to the visualization and explanation of the results obtained by imple-
menting the online RML-KDE formulation to the case study, this section
aims to validate the presented mathematical formulation presented in Al-
gorithm 4 under a normal distribution with parameters µ = 0 and σ = 1,
and 1 × 106 random samples. As shown in Figure 4.11 this online learn-
ing algorithm updates the resulting distribution. More specifically, Figure
4.11a outlines the performance of the algorithm in the 50th iteration and
Figure 4.11b under iteration 19500. It can be seen that the first iteration
starts with a uniform distribution, and that by iteration 50 the resulting
distribution starts to be shaped. Since the resulting distribution needs a
significant amount of iterations to be shaped and provide accurate forecast,
the resulting algorithm presents a warm-start to initialize the model before
computing the evaluation score.

Once the model is validated, it is implemented under the case study. In
this case, before tuning the hyperparameters of the model, it is important to
highlight the importance of the time-decay factor λ in the resulting distribu-
tion. λ can act as a smoothing factor of the resulting distribution; the lower
λ is, the noisier the resulting function is. Accordingly, the larger the value of
λ is, the smoother the resulting distribution is. This is shown in Figure 4.12.
It is also important to notice that, even though an increment in λ of 1×10−3

can be considered as insignificant to the resulting disribution, this is not the
case. In order to understand the effect of lambda to the resulting distribu-
tion, this parameter can be understood as the window size, formulated as
nλ = 1

1−λ , meaning the number of previous observations considered at each
time period t ∈ T . As a result, between Figures 4.12a and 4.12b, there is
difference of one order of magnitude in terms of previous observations con-
sidered. That means that, while Figure 4.12a shows a resulting distribution
considering the previous 1 × 103 observations, Figure 4.12b calculates the
resulting distribution based on the 1× 104 previous observations.

Single Model

Under the second level of the hierarchy, the data used are those that ensure
that flexibility is available, meaning that the first condition of the model is
met. In this case, a single model is created at the beginning of the case study
which is being updated at each time period of the time horizon considered
under study. The dataset has been split into train and test, using the last
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a) Iteration 50

b) Iteration 19500

Fig. 4.11: Online RML-KDE algorithm evolution

three months as a validation of the model. The Grid-Search method has
been used to determine the optimal value of the hyper-parameter λ, being
the one that results in the minimum value of the LS. Based on the results
obtained in the training phase, the optimal value of lambda, λ∗, has been
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a) Density function with λ = 0.999

b) Density function with λ = 0.9999

Fig. 4.12: Effect of λ in the resulting probability density function

0.997. This parameter has then been introduced as a fixed parameter under
the test set, in order to validate the model and test that the resulting model
is not overfitted. Table 4.3 shows the resulting scores under the train and
validation sets. This optimal forgetting factor of λ∗ = 0.997 informs that the
equivalent window size for estimating the conditional flexibility value at t+1
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is equal to 333.33 time periods, in this case, hours. This value is significant to
show that implementing recursive maximum likelihood estimation methods
allows the forgetting factor to consider enough previous time periods to
adapt to slow variations in the time horizon of study. On the contrary,
this value could imply that it cannot compensate extreme flexibility values
in specific time periods. However, in this case the performance of the LS
score does not show any sign of it, and hence the consideration of a greater
number of previous observations results in a better likelihood score. Figures
4.13a and 4.13b show the resulting flexibility value distribution for a given
time period. These figures reveal the probability for a specific flexibility
value in kWh under a specific period of time. One can see how at each time
period the resulting distribution function evolves, according to the recursive
formulation presented in Section 4.3. The resulting conditional flexibility
shows that there are two peaks where the probability is higher, compared
to the other values, being around 0.53 kWh and 3.51 kWh.

Table 4.3: Results of the cross validation procedure for hyperparameter def-
inition for the Single Model in the second level of the hierarchy,
using the log-likelihood score (LS) as a performance score.

Train set Validation set

LS
(λ∗ = 0.997)

1.87 2.04

Hourly Model

One can use the same approach for estimating flexibility, creating a model
for each time period, in this case for every hour, instead of using a single
model that is updated at each time period, as developed in the previous
section. Then, this model could show differences in the density function
for each time period of the day, since it is updated every day at that given
time when a new observation is introduced into the model. According to
the mathematical formulation, there is only a single forgetting factor λ to
be considered in each model. However, this approach considers 24 models,
one for each hour of the day. To assess the possibility of considering a single
λ forgetting factor for all models, Grid-Search technique is implemented,
considering a wide range of forgetting factors. The first set of analyses
confirmed that the behaviour of the forgetting factor is the same for each
hourly model, as seen in Figure 4.14. Interestingly, this analysis revealed
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a) 16/09/2018 17:00

b) 31/12/2018 23:00

Fig. 4.13: Single Model - Flexibility Value conditional densities at specific
time periods
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that, in some hours of the day, the forgetting factor plays a key-role in the
resulting score. This can be seen for example in the early morning between
4:00 and 7:00, whereas in the afternoon there is not such influence in the
resulting overall score.

Fig. 4.14: Training set scores for each time period using different λ forgetting
factors

The model presented here shows slightly different results, in terms of the
value of the forgetting factor λ as well as the resulting density functions. The
minimum LS obtained under the train set provides the optimal forgetting
factor of λ∗ = 0.96, being the LS score of 1.75 in this case (Table 4.4).

Table 4.4: Results of the cross validation procedure for hyperparameter def-
inition for the Hourly Model in the second level of the hierarchy,
using LS as a performance score.

Train set Validation set

LS
(λ∗ = 0.96)

1.75 2.00

In order to validate the model, this parameter is fixed under the validation
set, and the LS score is calculated again, being in this case of 2.00. One could
argue that the forgetting factor value λ∗ could be too low for a forgetting
factor, since it will overwrite previous density distribution faster than values
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closer to 1. However, this approach provides a density function for each hour
of a day, and hence it is updated daily when new data are fed into the model.
An optimal forgetting factor of λ∗ = 0.96 considers an effective number of
observation of 25 data points, being the equivalent of 25 days in memory
to compute the following day. Figures 4.15a and 4.15b show a significant
difference in the resulting density function for a given time of the day and a
given day, being in both cases a wider range of flexibility available around
17:00 than at 00:00.

The initial hypotheses that the hourly model would perform better in
terms of summarized performance is validated. However, when comparing
the two different approaches, the Hourly Model obtains only slightly better
results. The performance score (LS) is 6.85% lower under the train set. Be-
sides, when evaluating the model under the validation set under the optimal
value of the forgetting factor, the score is almost equal for both approaches,
obtaining an improvement of 2%. In terms of computational resources, both
models are fast. The Single Model performs approximately 29% faster than
the model containing 24 hourly density functions. The reason being that
the latter needs more parameters and spends more resources on storing the
density functions, derivatives, and hessian values for each model. Therefore,
there is a practical complexity associated with training different models for
each step because there are both generalization and scalability particular-
ities. It is plausible that, in both models, the estimated densities show
greater roughness than the expected by using KDE approaches, which could
be improved as a further research by means of regularization or roughness
penalization applied to splines (Figures 4.13a, 4.13b, 4.15a, 4.15b). As a
conclusion for the calculation of the conditional density, the choice between
the Single Model and the Hourly Model can be made according to the fi-
nal objective of the conditional density. In cases where the time period at
which flexibility could be provided is known, for example, the possibility of
EV fleet portfolios, a model for each period could offer better results than a
single one updated throughout all time periods.

Table 4.5: Results overview between the two models developed under level 2
of the hierarchical model for conditional flexibility estimation.

LS train [-] LS validation [-] Processing Time [s]

Level 2 - Single Model 1.87 2.04 0.97
Level 2 - Hourly Model 1.75 2.00 1.36
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a) 30/06/2018

b) 31/12/2018

Fig. 4.15: Hourly Model - Flexibility value conditional densities at specific
time periods
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4.5.4 Aggregated flexibility forecast: Combination of level 1 and
level 2

The final outcome of this methodology is the expected flexibility value as a
combination of the two-level hierarchical model, as follows

E[Y ] = E[Y |X = 1]P [X = 1] (4.33)

where the final value, meaning the flexibility forecast is represented as the
probability of the flexibility to be available, P [X = 1], times the expected
value of the conditional probability, represented as E[Y |X = 1]. Figures
4.16a and 4.16b illustrate the final time-series flexibility forecast for both the
Single Model and the Hourly Model, compared against the real measurement
over an arbitrary week of the case study.

The combination of Level 1 and Level 2 using the Single Model based
on a single density function updated at each time period t ∈ T , results in a
RMSE value of 1.82 kWh. In the case of using the Hourly Model based on 24
density functions for each hour of the day, the final RMSE obtained is 1.68
kWh. An overview of the RMSE and MAE scores obtained for the flexibility
final outcome is shown in Table 4.6. Results prove that, in both cases, this
approach performs significantly better against a benchmark modeled with a
SES approach which formulation is outlined in [184], as shown in Tables 4.7
and 4.8. Besides, the final flexibility outcome provides a better performance
when combining both levels of the hierarchy by means of the Hourly Model,
assessing its performance with the RMSE and MAE scores.

Table 4.6: Results of the final flexibility forecast outcome combining the two
levels of the hierarchy. Results are for SES, and RML KDE for
the Single Model and the Hourly Model.

RMSE [kWh] MAE [kWh]

SES Benchmark 2.83 2.04
Single Model 1.82 0.99
Hourly Model 1.68 0.92
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a) 30/06/2018

b) 31/12/2018

Fig. 4.16: Hourly Model - Flexibility value conditional densities at specific
time periods
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Table 4.7: Performance overview for the final flexibility outcome using Level
2 - Single Model as conditional flexibility, against the benchmark.
Performance is evaluated with RMSE and MAE criteria.

SES Benchmark Level 1 / Single Model Improvement [%]

RMSE [kWh] 2.83 1.82 35.69
MAE [kWh] 2.04 0.99 51.47

Table 4.8: Performance overview for the final flexibility outcome using Level
2 - Hourly Model as conditional flexibility, against the benchmark.
Performance is evaluated with RMSE and MAE criteria.

SES Benchmark Level 1 / Hourly Model Improvement [%]

RMSE [kWh] 2.83 1.68 40.63
MAE [kWh] 2.04 0.92 54.90

4.6 Chapter remarks

This chapter proposed a new aggregated flexibility forecast model based on
a hierarchical formulation and an online adaptive bandwidth Kernel Density
Estimation approach based on Recursive Maximum Likelihood. Probabilis-
tic densities of flexibility estimation have been explicitly formulated under
this approach. Results based on a real dataset case study show that it is
possible to approximate and track an unknown distribution under an online
framework. This approach provides a fast tool for obtaining a probabilistic
forecast of the flexibility availability and its value. Furthermore, by imple-
menting a probabilistic forecast, one can manage the uncertainty given by
the nature of the demand-side flexible assets. It quantifies the flexibility
available within the portfolio without the need of creating a specific model
for each asset-type, while at the same time avoiding the storage of a large
amount of user data, which is sometimes difficult to obtain due to data pri-
vacy or third-parties contracts. This model estimates the aggregated avail-
able flexibility with low computation resources and input data compared
to individual approaches as HEMS optimization in terms of computational
burdens. It uses aggregated data, and the number of users or assets does not
affect the flexibility forecast algorithm computation time. However, when
this approach for estimating flexibility is to be implemented, it will require
scheduling the specific assets needed to activate this flexibility, allowing this
to be done at a later stage and using optimization techniques at household
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level. To further this research, the implementation of this novel formula-
tion should be based not only on flexible consumption but also considering
generation from PV and prosumption from ESS, eventually increasing the
aggregated flexibility that can be provided. Datasets including different and
a larger amount of flexible assets could be helpful to replicate and scale up
the approach presented in this chapter. Further approaches such as regu-
larization or roughness penalization applied to splines could be included in
the model. At this point of the manuscript, flexibility has been defined in
terms of market structures, sources, stakeholders, and time horizon. With
this chapter, flexibility has also been forecast by means of a probabilistic
approach from the aggregator point of view. By doing that, the flexibility
value chain between the aggregator and the end-user has been defined and
implemented. The following chapters change the perspective of the flexibil-
ity service, moving the scope to the DSO in Chapter 5. There, the DSO is
the entity requesting flexibility to the aggregator, which would activate flex-
ibility according to the schemes and approaches presented until Chapter 4.
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Chapter 5

Flexibility-based AC-OPF for active
network management in distribution
grids

5.1 Objectives and contributions

The dynamics of the power system are changing towards a new model where
large generators on the high-voltage side of the network are being replaced
by smaller generation units placed at the medium-voltage and low-voltage
side of the grid. The increasing proliferation of distributed energy resources
will have a significant impact on how the distribution network operates.
At the distribution level, DERs will give rise to some new operational and
planning challenges and, in some cases, problems already solved will rise
again. As a result, the increasing number of DERs placed alongside the
medium-voltage and low-voltage distribution networks leads to the need of
flexibility services for the DSO. This chapter aims to develop an optimization
tool for calculating the value and location of the flexibility request that a
DSO needs for operating the distribution network and avoid or mitigate
network congestions, corresponding to objective (iv) of the thesis research,
according to Figure 5.1.

These flexibility services could be provided by several demand-side flexi-
ble resources such as centralized energy storage, distributed energy storage,
electric vehicles, PV panels, or flexible loads such as water boilers or space
heaters. The aggregator gathers the flexibility from customers to provide
these services to different stakeholders, like energy suppliers, BRPs, TSOs,
DSOs, and final consumers [62, 82]. Then, the aggregator acts as a single
entity when engaging in power system markets or selling services to the sys-
tem operators [195]. Under the context of smart grids and flexibility services
in place, distribution system operators could benefit by activating flexibility
in distribution grids [82, 145,196,197]. First of all, DSOs could compensate
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Fig. 5.1: Chapter objective based on the PhD scope

grid congestions during high consumption or production periods and there-
fore reduce the network stress. At the same time, DSOs can increase their
renewable generation hosting capacity by using behind-the-meter flexibility
during peak production periods.

The most common problems caused by the high penetration of distributed
and renewable generation can be classified into four main categories. Figure
5.2 provides an overview of the location of these potential problems in an
arbitrary distribution network, also detailed in the following list:

(i) Overload and losses of feeders and transformers.

(ii) Voltage deviations (undervoltages and overvoltages).

(iii) Power quality disturbances.

(iv) Incorrect operation of protection elements.

Based on previous references [15, 198], the two main potential problems
under the distribution network operation are (i) overloads and (ii) volt-
age deviations. The following sections defines the potential problems and
details the main causes of them.
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Fig. 5.2: Distribution network scheme with potential problems and areas

5.1.1 Overcurrents - Line congestion

Overloads or commonly also known as overcurrents are those situations
where the current circulating through one of the electrical components is
higher than the nominal value. This can cause, for example, the damage of
the electrical component if the situation happens for a short period of time,
the component failure if the current limit is overly exceeded, or additional
losses in lines and transformers in the distribution network. However, in
many cases, protection elements would trigger and interrupt the service so
as to guarantee the correct performance of the component. If we consider
the current scenario of energy transition with a high penetration of DERs,
the risk of overcurrent is mainly caused by the increase of the electricity con-
sumption in a network that has not been reinforced since its construction,
and the increase of DERs and electrical appliances such as space heaters,
electric vehicles and electric water boilers. In the latter case, the electricity
is usually injected at MV and LV levels. Overcurrents happen when the re-
sulting power flow downstream the distributed generator point exceeds the
value upstream, under the hyphoteses that no other generation sources are
providing energy. This is also related to the feeder capacity limits under
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normal operation schemes. The scenario where a feeder capacity has been
working at its 40-50% capacity before the integration of capacity generation
would have a wider range to allocate these resources than those feeders that
in normal operation are at their 90-95 % of the total capacity. Furthermore,
the length of the feeder should be also taken into consideration, since at the
beginning of the line the power to be distributed must be equal to the sum
of all loads plus the power losses due to the line length, whereas at the end
of the feeder only the remaining has to be provided. Hence, the feeder ca-
pacity is also related to the length, structure and connected loads. Despite
the disadvantages and challenges of DERs in distribution networks, it is a
fact that DERs can help reduce the losses in the electricity system, since
generation is now closer to the consumption points. However, it should be
considered that under the case of an excess of generation, reverse flows in
MV and LV lines can increase the power losses of the overall system.

5.1.2 Voltage deviations - Undervoltage and overvoltage

This situation takes place when the voltage value at one or more of the buses
is out of the operation rated voltage magnitude, usually ± 3 % in LV grids
and ± 2 % in MV grids [199]. As in the case of overloads, if the overvoltage
exceed the upper bound operational constraint, this can lead to the damage
of the electrical components and the electric loads connected to that bus.
For many years, voltage magnitude variations have been a common concern
for system operators being the case of undervoltages. This problem is caused
by the associated impedance in the distribution lines leading to an excessive
voltage droop, but it does not cause any damage to the network components.

With the increase of DERs integration, utilities have registered an increase
of overvoltage cases at the point of common copuling (PCC) of DERs units,
and as a result have set up limits on the maximum size of a distributed
generator [200]. The reason being that these grid-connected distributed
generators do not explicitly regulate voltage, most commonly regulating the
active power output. One of the mitigation schemes for overvoltages is
the previously mentioned one, establishing restrictions on the distributed
generator size and location, under the expansion and planning process of
the network. However, with the aim of enhancing the integration of DERs,
this could lead to a lack of fairness for end-users who are willing to install
DERs at a household or LV-MV level. Another mitigation scheme is the
combination of DERs with storage units, avoiding the risk of overvoltage by
using the battery to manage the energy surplus. Lastly, DSM techniques
and flexibility can help the mitigation of overvoltages in active distribution
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networks. In the case of undervoltages, DERs can operate under a voltage-
reactive power mode with the objective to regulate the reactive power and
therefore control the voltage at the connection point, if this is allowed by
the network operator [201].

5.2 Demand-side flexibility for congestion
management

As mentioned in the previous section, the use of demand-side flexibility,
managed by aggregators, can help distribution network operators avoid or
mitigate congestions. However, as stated in earlier chapters, DSOs and ag-
gregators should be separated entities. DSOs do not have control over the
flexible assets for operating the network, and this is the hypothesis on which
this chapter is based. This chapter develops a tool for DSOs to calculate
the flexibility requests to avoid or mitigate network congestions for a specific
time period and under a particular load profile in that network. Therefore,
this request will be sent to the aggregator, the entity responsible for provid-
ing a service to the network operator and activating the flexibility based on
that request.

Based on the previous assumption where there are specific boundaries
between the aggregator and the DSO, a system interaction between these
two agents is required to achieve a correct flexibility request interaction.
This is depicted in Figure 5.3, where the DSO is responsible for calculating
their flexibility requests, while the aggregator is the agent receiving these
requests, and offers the available flexibility under these conditions of time-
horizon and location. If there is a possibility to fulfill the needs of the DSO,
then the aggregator is the responsible agent to activate the flexible assets.
However, there might be periods where the aggregator cannot cover the
totality of the flexibility required. This is why, in all cases, the DSO is the
responsible entity to either accept or decline the flexibility offered, being it
enough to cover the flexibility required totally or just partially.
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Fig. 5.3: Flexibility request interaction

5.3 Mathematical formulation for flexibility request
calculation

The optimization problem is developed to minimize the aggregator operation
costs. The costs are based on curtailing local generation output, charging or
discharging batteries, switching off curtailable and disconnectable loads and
shifting loads during specific time periods. A local flexibility market design
is presented in [12], described as a market-based mechanism for aggregators.
BRP and DSO are the main stakeholders of these flexibility services and they
can buy flexibility from a market platform or a bilateral contract. However,
in any case an information exchange is required between the flexibility buyer
and the flexibility provider, to agree on the quantity and delivery time of
this flexibility to be provided.

The problem to solve is mainly an alternating current optimal power flow
(AC-OPF), considering as the objective function the minimization of the
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total flexibility activation costs, also considering the distribution network
related constraints. The following section outlines the formulation, covering
the objective function and the related constraints of the model. AC-OPF
formulation is primarily used for optimization of operation and control ac-
tions, meaning in the short term horizon. In the recent years, AC-OPF
has started to be implemented in local markets, as being the case of study
in this chapter, for the procurement of flexibility for the network operator.
Contrarily to DC-OPF, AC-OPF considers the full AC power flow equa-
tions, becoming a non-convex problem in its original form, and as a result
it cannot be guaranteed that the global optimum is found. In a non-convex
problem as this case, several local minima can be present.

This AC-OPF formulation is based on the polar power-voltage formulation
[202]. This formulation represents complex quantities in polar form, and
explicitly uses sines and cosines in the power flow constraints. However, in
this case the objective function as well as some of the nodal power balance
and the power at buses is adapted to the objective of the flexibility provision
for DSOs.

This chapter will consider the notation for complex magnitudes by means
of module and angle, defining the complex variable with an underline. This
can be seen in the voltage value at each of the buses, V i,t. The polar formu-
lation of this variable can be hence outlined as follows

V i,t = Vi,t θi,t

Where Vi,t represents the voltage module measured in pu for a given node
i ∈ N and time t ∈ T , and θi,t the angle in rad. The network topology and
the line admittances are represented by the bus admittance matrix, [Y ]bus.
Each element of this matrix is obtained by means of the following equations,

y
busii

= y
iksh,1

+
∑
k

y
ik

y
busij

= −
∑

y
ij

Where two different formulations are used depending on the position of the
element in the matrix, being y

busii
for a diagonal element and y

busij
for a non-

diagonal element. The subscripts i,k and j are buses of the bus network set
N . The parameters y

iksh,1
, y
ik

are obtained from the equivalent π-model of

the network, represented in Figure 5.4. In the case of distribution networks
with medium and short lines, the shunt elements y

iksh,1
, y
iksh,2

should be
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Fig. 5.4: π-model of the network

In all cases, the relationship between the nodal admittance matrix [Y ]bus
and the nodal impedance matrix [Z]bus is maintained following the following
equation

[Y ]bus = [Z]−1bus

The admittance matrix [Y ]bus for a line between nodes i, k ∈ N can be
formulated as a complex formulation, being the [G]bus the real component
representing the conductance of the line between nodes i, k ∈ N ; and [B]bus
the complex component defined as the line susceptance between nodes i, k ∈
N , both measured in S [Ω−1].

[Y ]bus = [G]bus + j[B]bus

The apparent power of the bus i ∈ N and time t ∈ T , Si,t, measured in
kVA, can be decomposed into active, Pi,t in kW, and reactive power Qi,t in
kvar, by the following equation

Si,t = Pi,t + jQi,t

The objective function is to minimize the total flexibility costs for activat-
ing both active and reactive power. This function is based on the flexibility
activation price accorded between the aggregator and the DSO for a given
time period t ∈ T , CPt , CQt ; measured in N/kW and N/kvar; and the total

active and reactive power requested, φPi,t and φQi,t, measured in kW and kvar
respectively. This yields
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min
φP

UP
i,t ,φP

DOWN
i,t ,φQi,t

T∑
t

(
N∑
i

CPt · φPi,t + CQt · φ
Q
i,t

)

There are a set of constraints involved to ensure the correct calculation of
the flexibility request. First of all, in the case of active power, there are two
types of flexibility that can be activated, being flexibility upwards, φP

UP

i,t ,

and flexibility downwards, φP
DOWN

i,t . These are two of the variables of the
optimization problem, for a given node i ∈ N and time t ∈ T . The two
vectors containing all the variables for sets N and T are defined as ΦPUP

and ΦPDOWN
. In the case of the reactive power flexibility request variable,

it is defined as φQi,t, for a given node i ∈ N and time t ∈ T ; being the vector

for all nodes n ∈ N and times t ∈ T represented as ΦQ.

From the DSO perspective, active power flexibility upwards is meant to
be an increase of generation or reduction of consumption, and hence it can
be modeled as a generator in a specific node, for a given time period. On the
contrary, active power flexibility downwards is meant to be an increase of
the load at a specific node location of the network or equally as a reduction
of the generation. As a consequence, downwards flexibility can be modeled
as a load in a specific network node. When talking about the reactive power
flexibility request, no disctintion is made between upwards and downwards,
since both generators and loads can provide capacitive and inductive reactive
power.

In terms of considering upwards and downwards flexibility at specific time
period and a specific node, there cannot be an active power flexibility request
upwards and downwards at the same time. In order to avoid binary variables
into the model, the flexibility variables are linked as follows

φP
UP

i,t · φPDOWN

i,t = 0 ∀i,∀t

In the case of reactive power, since both a generator and a load can provide
or consume reactive power, being it considered as inductive or capacitive,
the reactive power flexibility request is considered as a single variable φQi,t,
which can take both positive and negative values.

The constraints listed below ensure the compliance of the AC power flow
equations and a correct system operation. The AC power flow equations
describe the power system network operating point in steady state, and are
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based on complex phasor representation of voltage-current relationship at
each node. The active Pi,t and reactive Qi,t power flow node balance at
node i ∈ N and period t ∈ T are formulated. Similarly, there is an equality
constraint to detail the mathematical conversion to express θi,k,t based on
the voltage angle at each node. This can be outlined as follows,

Pi,t = Vi,t

N∑
k=1

Vk,t(Gi,k cos(θik,t) +Bi,k sin(θik,t) ∀i,∀t

Qi,t = Vi,t

N∑
k=1

Vk,t(Gi,k sin(θik,t)−Bi,k cos(θik,t) ∀i,∀t

θik,t = θi,t − θk,t ∀i, k ∈ N, ∀t

The formulation detailed above described the active and reactive power
balance at each node. As a consequence, a nodal power balance Pi,t at node
i ∈ N and time t ∈ T between generation, demand and the flexibility request
can be outlined. This yields,

Pi,t = PGi,t − PDi,t ∀i,∀t
Qi,t = QGi,t −QDi,t ∀i,∀t

Where PGi,t is the active power generated at node i ∈ N and time t ∈ T ;

PDi,t is the active power consumed by the demand-side at node i ∈ N and
time t ∈ T , being equivalent for the reactive power case. Consequently,
generation, loads and flexibility are linked as follows with the objective to
consider all generation sources P gensi,t , Qgensi,t , φP

UP

i,t , φQi,t ; and all load sources

P loadsi,t , φP
DOWN

i,t , Qloadsi,t in each node i ∈ N and time t ∈ T of the distribution
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network. This can be outlined as follows,

PGi,t = P gensi,t + φP
UP

i,t ∀i,∀t

PDi,t = P loadsi,t + φP
DOWN

i,t ∀i,∀t

QGi,t = Qgensi,t + φQi,t ∀i,∀t

QDi,t = Qloadsi,t ∀i,∀t

Hence, from the power flow equations, it is possible to calculate the appar-
ent flow injected depending on the voltages at all the grid nodes. The line
flow constraints follow the π-model of the grid, since both the longitudinal
impedance and the transversal capacitance of the line have to be considered
in the case of distribution networks (Figure 5.4). As a result,

Sik,t = V i,t · I∗ik,t = V i,t

[
V i,t − V k,t

zik
+ V i,t yik1

]∗
∀t

Ski,t = V k,t · I∗ki,t = V k,t

[
V k,t − V i,t

zik
+ V k,t yik2

]∗
∀t

Where parameters y
ik1

, zik are calculated from the equivalent π-model of
the grid.

A set of upper boundaries are required to limit the line apparent flow
between two nodes i and k, according to the π-model of the network, con-
sidering the flow from i to k and from k to i. As a result,

Sik,t ≤ SMAX
ik,t ∀t

Ski,t ≤ SMAX
ki,t ∀t

In the AC-OPF algorithm, the nodal voltage is restricted by an upper
limit and a lower bound to guarantee the correct operation of the system.

Furthermore, with the aim to improve the solvability of the problem, the
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voltage angle constraint is included in this model. This yields

VMIN
i ≤ Vi,t ≤ VMAX

i ∀i,∀t
θMIN
i ≤ θi,t ≤ θMAX

i ∀i,∀t

By jointly considering all the equations and constraints, the optimization
problem can be outlined as follows

min
φP

UP
i,t ,φP

DOWN
i,t ,φQi,t

T∑
t

(
N∑
i

CPt · φPi,t + CQt · φ
Q
i,t

)
(5.9a)

s.t. Pi,t = Vi,t

N∑
k=1

Vk(Gi,k cos(θi,k) +Bi,k sin(θi,k) (5.9b)

Qi,t = Vi,t

N∑
k=1

Vk(Gi,k sin(θi,k)−Bi,k cos(θi,k) (5.9c)

θik,t = θi,t − θk,t (5.9d)

Pi,t = PGi,t − PDi,t (5.9e)

Qi,t = QGi,t −QDi,t (5.9f)

PGi,t = P gensi,t + φP
UP

i,t (5.9g)

PDi,t = P loadsi,t + φP
DOWN

i,t (5.9h)

QGi,t = Qgensi,t + φQi,t (5.9i)

QDi,t = Qloadsi,t (5.9j)

Sik,t = V i,t · I∗ik,t = V i,t

[
V i,t − V k,t

zik
+ V i,t yik1

]∗
(5.9k)

Ski,t = V k,t · I∗ki,t = V k,t

[
V k,t − V i,t

zik
+ V k,t yik2

]∗
(5.9l)

Sik,t ≤ SMAX
ik,t (5.9m)

Ski,t ≤ SMAX
ki,t (5.9n)

VMIN
i ≤ Vi,t ≤ VMAX

i (5.9o)

θMIN
i ≤ θi,t ≤ θMAX

i (5.9p)
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The previously detailed optimization problem is computed under an algo-
rithm that considers the load forecast in each of the network nodes, as well
as detects the congestions in the distribution network. The execution of the
Flexibility Request Calculation based on the AC-OPF formulation is shown
in Algorithm 5.

Algorithm 5: Flexibility Request Calculation. AC-OPF

Input: Network layout,
D + 1 forecast P̂Gi,t, P̂

D
i,t

Network parameters zik,yik
1 Compute [Y ]bus and [Z]bus;
2 for ∀ t ∈ T do
3 for ∀ i ∈ N do

4 Assign forecast P̂Gi,t, P̂
D
i,t to nodes;

5 Initialize: [V ], [I];
6 Compute AC-power flow equations;
7 if lload ≥ Lmax then
8 line overload identified: store results;
9 end

10 if vmpu ≥ V max
mpu then

11 bus overvoltage identified: store results;
12 end
13 if vmpu ≤ V min

mpu then

14 bus undervoltage identified: store results;
15 end
16 Initialize: [V ], [I]
17 Compute AC-OPF optimization problem (Eqs 5.13);

18 Obtain φP
UP

i,t , φP
DOWN

i,t , φQi,t;

19 Check new grid status - Compute AC-power flow equations;

20 end

21 end

Output: ΦPUP ,ΦPDOWN
,ΦQ
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5.4 Case study for evaluating the flexibility activation

This section presents the description of the case study chosen for the evalu-
ation of the mathematical formulation for calculating the flexibility request
in a distribution network managed by DSOs.

The network of study is based on a LV distribution network, located in
a rural area, extracted from [203]. This network is based on 26 buses, 16
loads, 5 generators, 1 transformer for MV/LV 20 kV to 0.4 kV, and the slack
or external grid bus. A representation of the studied network is represented
below in Figure 5.5, considering three feeders in the LV side. This network
considers two types of standard loads by default, being household loads
with a power of 5.9 kW, and special loads covering farms of 7.1 kW. The
generation side is modeled considering distributed energy resources from
6.9 kW to 25 kW. The network is modeled using pandapower standard
models for network structure, transformers and cables data [204]. The AC-
OPF formulation is implemented using a non-linear solver using the interior
point approach (ipopt), provided by the same library.

MV/LV

DG DG DG

DG DG

Fig. 5.5: LV Network scheme

The main goal of the case study is to simulate active network management
for a safe distribution network operation, calculating the flexibility request
to avoid network reconfiguration and congestions problems such as overloads
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and voltage deviations. The associated flexibility activation costs are based
on the costs of demand-response activation and its impact on grid reinforce-
ment obtained from [205, 206]. The case study implements the previously
defined mathematical formulation under the LV network detailed above, and
also considers the following restrictions for a correct operation, based on the
operational guidelines [199,207]:

(i) All bus voltages have to be within ±3 % of the rated voltage, 1.01 pu.

(ii) All lines have a maximum loading percentage of 70 %.

At these time periods where the operation constraints are not fulfilled,
a congestion problem is detected, being characterized under overload, over-
voltage or undervoltage, and the AC-OPF computes the flexibility requested
to return the distribution network to a status where the restrictions are met
again at all buses, transformers, and lines. The problem is based on a day-
ahead time horizon, split into hourly time periods. The following sections
cover a detailed analysis of the results under a single period, being under-
stood as one hour, while the latter covers the operation results under a
multiperiod optimization for a day-ahead scenario.

5.5 Results

The results of the flexibility request under certain scenarios are detailed in
this section. The defined scenario considers an increase of the residental load
in some of the nodes, and a surplus of DERs generation in some of the nodes.
The results section is structured into two main subsections, first for detailing
the specific results under a single period of study (e.g 1 hour), whereas the
second section draws the results for a day-ahead simulation, split into hourly
time periods. While the single period section aims to detail the effect of the
flexibility request under a specific time period, the day-ahead or multiperiod
section aims to detail the evolution of the flexibility requests for a given day
and a given scenario of load and generation profiles in the LV network.

5.5.1 Single period

The congestion caused by a high load scenario in node 10 is an overload
of line 6-10, as shown in Figure 5.6a. After the flexibility-based AC-OPF
calculation, the flexibility requests are located in two different nodes, re-
questing both flexibility upwards and downwards for active, and reactive
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power flexibility, as shown in Table 5.1. For the sake of simplicity of the re-
sults explanation, the variables related to flexibility request φP

UP

i,t , φP
DOWN

i,t

and , φQi,t are represented in the following tables as φPi,t; represented by pos-

itive values for φP
UP

i,t , negative values for φP
DOWN

i,t . In the case of φQi,t, this
variable can take either positive or negative values depending on the type of
reactive power requested, inductive or capacitive. The network status after
activating the flexibility requested is shown in Figure 5.6b.

Table 5.1: Flexibility request values under a single congestion in the distri-
bution network

Node φPi,t [kW] φQi,t [kvar]

5 57.84 23.72
4 - 0.7 - 0.2

Results for two congestions and two flexibility points

In this second scenario, two congestions were identified on the network, one
caused by a surplus of generation, and the other by an increase of the demand
in one of the network nodes. In this case, congestions were characterized as
overcurrent in line 8 (Nodes 6-10) with a load percentage of 91.5 %, and in
line 20 (Nodes 15-22), with a load percentage of 73.75% (Figure 5.7a). After
computing the AC-OPF algorithm, flexibility is requested in three nodes,
for both active and reactive power, as shown in Table 5.2

Table 5.2: Flexibility request values under multiple congestions in the dis-
tribution network

Node φPi,t [kW] φQi,t [kvar]

5 17.54 1.99
15 17.12 1.78
4 - 4.82 - 0.29

By activating these flexibility requests, a new network status is achieved
and validated by the Power Flow check at the end of the algorithm. As can
be observed in Figure 5.7, the previous network status with the indentified
congestions showed that there are two lines with the loading percentage over
the constraint of 70 % (Figure 5.7a). Once flexibility is activated, Figure
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a) Network status before the flexibility request activation

b) Network status after flexibility request being activated

Fig. 5.6: Flexibility AC-OPF results comparison
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a) Network status before the flexibility request activation

b) Network status after flexibility request being activated

Fig. 5.7: Flexibility AC-OPF results comparison for two identified conges-
tions
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5.7b shows that the congested lines achieve a reduction of congestion around
18 %. In this case, a greater reduction in these lines lead to a congestion
located in other lines of the network, and hence to an infeasibility of the
AC-OPF algorithm.

It is important to notice that are some network buses and network scenar-
ios where a congestion cannot be completely avoided by activating flexibility,
without creating a congestion in a different location of the same network.
In this case, the objective is to decrease the overload or the overvoltage
problem closer to the maximum operation constraints while ensuring the
AC power flow equations are satisfied at any point. In all cases, though,
the AC-OPF algorithm considers a maximum line overload of 70 %, and the
voltage magnitude within the ± 3 % of the rated voltage.

5.5.2 Multiperiod flexibility request

This section presents a time series simulation for evaluating the formulation
and the flexibility request approach under a day-ahead scenario, where the
DSO knows the load forecast and can calculate the flexibility request needed
for operating the grid correctly. The time series load and generation profiles
are shown in Figure 5.8. The goal is to operate the grid under the same
constraints for a single period, but calculating the flexibility requests at
each time period considering the load and generation for that specific time
period.

Fig. 5.8: Time-series power profiles for node 9 of the LV network
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Figure 5.9 shows the flexibility requested at specific nodes of the LV net-
work. For a better understanding of the results, only the nodes where flex-
ibility has been requested are shown in the figures. The most congested
nodes have been nodes 6, 10, 15 and 22, with overcurrents in the lines be-
tween them, and undervoltages at the end of the line. After the execution of
the flexibility-based AC-OPF, flexibility is requested in nodes 4, 5 and 22,
with request values between 0.5 to 57.84 kW. In any case, upward flexibil-
ity requests have always been greater than downwards flexibility requests.
This can be explained because in these nodes the most common congestion
detected has been undervoltage. Hence, upward flexibility provides active
power in that node, and raises the voltage magnitude solving the congestion
at that specific node. In a smaller scale, reactive power is requested as well
in one of the network nodes.

Fig. 5.9: Flexibility requests for 24 time periods simulation

The main objective of the flexibility request optimization problem is to
find a solution where there is a local flexibility activated in one of the net-
work nodes, reducing or mitigating the problem detected of undervoltage,
overvoltage or line overload while not creating another congestion in a dif-
ferent network area. The results of the optimization problem are checked by
means of the power flow equations, to check the new status of the network
after finding an optimal solution. As can be seen in Figure 5.10, the network
lines are below the operational load percentage limit of 70% in all time peri-
ods. There are specific time periods, being for example at 8:00 and 18:00 for
line 5-4, and at 13:00 for line 14-15 where the line is operating at the upper
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boundary of the line load constraint. Under these periods, other feasible
solutions could not be found to reduce the congestion at these lines without
leading to another congestion in the lines close to these nodes involved.

Fig. 5.10: Line loading percentage throughout the multiperiod simulation

This correct operation of the network can also be checked by means of
the voltage magnitudes where there was a flexibility request activated or
a congestion in the network. Figure 5.11 depicts the voltage magnitudes
at each time period of the day-ahead simulation. As can be seen in that
figure, the operational constraint that the voltage magnitude should always
be between ± 3 % of the rated voltage (1.01 pu) is always satisfied.

Only a single period with overvoltage was detected in the day-ahead simu-
lation due to a large power generation by the distributed generation source.
However, the most common problems detected under the multiperiod sim-
ulation have been line overloads due to significant demand in some network
buses and undervoltages related to overload problems. Due to an overload
of the line, voltage magnitude at the end of the congested line can drop,
leading to an undervoltage. Hence, sometimes to avoid an undervoltage
problem at the end of the line, an overload or overvoltage could happen.
This is why flexibility activation in some specific buses can help prevent or
mitigate these scenarios.

To sum up, some considerations must be made about the mathematical
formulation and the solvability of the problem. While AC-OPF has the
advantage that it considers the full AC power flow equations, being the
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Fig. 5.11: Voltage magnitudes in network nodes

best choice for optimization of control and operation actions, it has some
challenges and disadvantages that have been faced in this chapter. AC-
OPF is computationally expensive and troublesome for extensive networks.
In some cases, the current and available solvers such as the interior point
(ipopt) or knitro used in this formulation could not obtain a solution for
the case study. That means that some efforts have to be made to decrease
computation time and resources to avoid the infeasibility of the solution.
One option has been to change the control variables’ initial values to start the
simulation with a power flow feasible solution. Despite this, this is not always
possible when considering power system networks. Another option could
be to use the DC approximation. However, DC approximations are more
suitable for transmission systems, not being possible to represent the correct
behavior of a distribution network because of the impedance associated with
short lines as the ones in distribution networks.

Furthermore, in its original form, as the one being formulated in this
chapter, the AC-OPF formulation is a non-linear and hence a non-convex
problem. Further research on this topic should focus on deriving convex
relaxations into the problem to transform the OPF problem into a convex
Semi-Definite Program (SDP). Under certain conditions, that can lead to
obtaining a solution that is the global optimum to the original OPF problem,
achieving a zero-duality gap. If this cannot be achieved, a convex relaxation
could help determine the distance between solutions.
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5.6 Chapter remarks

This chapter aimed to evaluate the possibility of defining a model for calcu-
lating the flexibility requests under a distribution network to create a tool
for DSO to know in advance the flexibility required for a correct active net-
work operation. In recent years, electricity consumption is increasing faster
than it could have been expected, and the distribution network is allocating
more loads, more distributed generation, and controllable assets, creating a
space for prosumers. However, the network is facing operational challenges.
The DSO can operate the network without reconfiguring the network or
reinforcing the network through the flexibility request calculation.

Flexibility can be a valuable tool for DSOs while providing them with more
knowledge about the distribution network and using demand-side flexibility
to operate the grid correctly. A mathematical formulation has confirmed
this hypothesis considering the flexibility activation costs and the network
constraints under the AC power flow formulation. Under the case study
considered, a single period and a multiperiod simulation has been carried
out. In both cases, some lines and nodes were more likely to experience
congestions than others, based on the characteristics of the line components
and the network layout. In all cases, active power has been the main request
to solve congestions in the distribution network case study. In further stud-
ies, DSOs could base their active network management on requesting active
power flexibility and let the reactive power request be provided automati-
cally by distributed generators.

Furthermore, computational resources should be considered when evaluat-
ing more extensive distribution networks because it can compromise finding
an optimal solution or the problem to converge. In these cases, either split-
ting the network into different feeders, using other non-linear solvers, or
extracting the convex relaxation problem could help the solvability of the
problem. With the objective of providing a more specific cost optimiza-
tion objective function, a particular model of the flexibility activation costs
should be developed to evaluate the benefits of activating flexibility com-
pared to grid reinforcement.

To conclude, the flexibility-based AC-OPF formulation presented in this
chapter can become a standard tool for DSOs to develop active network
management based on demand-side assets, being the last element in the
flexibility chain constituted by end-users, aggregators, and finally distribu-
tion network operators.
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Chapter 6

The potential role of flexibility for a
sustainable energy transition

6.1 Objectives and contributions

Climate change has pushed the electricity grid in an evolution towards smart
grids by including distributed energy resources and the Internet of Things
(IoT) [208]. At the same time, the increase in electricity consumption is
directly related to a significant contribution of the electricity supply to the
carbon footprint, since CO2 emissions in the power sector increased by 2.5 %
as a result of a 4 % rise in the global energy demand (GED) [209]. However,
renewable energy sources (RES) are helping the energy transition by increas-
ing their share in the energy mix. As stated by Pleßmann et al. in [210], a
transition from a conventional to a renewables-based power supply system is
possible for the EU, even considering nuclear power phase-out. Despite this,
the variability of these resources requires flexibility in the energy system.

The goal is to decarbonize the electricity sector, reducing the power sys-
tem’s environmental impact by shifting the consumption to those time peri-
ods where electricity from renewable sources is produced. This is currently
being implemented with the integration of energy storage systems, the ac-
tivation of demand-response mechanisms, and the development of flexibility
markets [82, 211]. Demand-side management (DSM) activities can be key
for energy strategy and policy development. Nilsson et al. [212] proposed
an interdisciplinary framework to evaluate demand response based on price
and environmental signals. Gerbaulet et al. [213] proved that the integra-
tion of storage and DSM, as well as other mechanisms, could lead to a
decarbonization of the entire energy sector by 2050. This is also supported
by Child [214], considering also the integration of flexibility services and
interconnections. All energy agents can benefit from flexibility services, as
defined in [62], where distribution system operators (DSOs), balance re-
sponsible parties (BRPs), and prosumers are the main stakeholders of the
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flexibility platform. This chapter analyses the environmental impact of flex-
ibility, analyzing the greenhouse gas emissions during peak hours with the
aim to quantify the potential emission savings or increase by implement-
ing flexibility. This corresponds to the last objective of this PhD research,
Objective (v), according to Figure 6.1.

PROSUMERS

AGGREGATOR DSO 

MARKET

i

ii

iviii

ENVIRONMENT

v

Fig. 6.1: Chapter objective based on the PhD scope

This shift in the energy mix entails an environmental burden, requiring
an analysis of the resources used during daily high-demand time periods,
as well as their effects on the environment. Traditionally, peak hours (PH)
were covered by using conventional sources such as coal or natural gas, since
renewable sources had a low capacity factor [215]. Policies in terms of energy
planning and grid expansion attempt to tackle climate change by restrict-
ing greenhouse gas (GHG) emissions in the electricity sector, since GHG
emissions are closely linked to the production and use of energy [216]. How-
ever, each national electricity mix has unique characteristics based on the
resources located inside the borders as well as geo-political conditions, and
this must also be considered when defining energy policies [217–222].

GHG emissions accounted by the electricity sector are calculated based
on techniques that include absolute carbon emissions and average carbon
intensity, as stated by Khan in [223]. This was the case in [224], which
assessed the Belgian low-voltage electricity mix using life cycle assessment
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(LCA) approaches, resulting in average environmental impacts, to check the
quality of the datasets from the European Network of Transmission System
Operators for Electricity (ENTSO-E). Additionally, ecoinvent 3.1. Average
CO2 emissions were also developed in [225,226]. However, these studies did
not analyze the temporal variability of CO2 based on the resources used to
cover the national demand when the demand reaches maximum values. On
the contrary, the absolute emissions approach quantifies the total amount
of CO2; it is usually used in national and international studies for tracking
changes in emissions, comparing scenarios and developing GHG regulation
[227–230]. However, these approaches are not useful for accounting the
electricity produced with the temporal variation of resources (and hence,
emissions).

Earlier studies considered the time-varying dependence of electricity pro-
duction to assess the potential environmental impacts. The hourly life cycle
footprint of electricity generation in Belgium using LCA was first assessed
by Messagie et al. in [231]. However, they calculated the average carbon
emissions for each specific month, and hence peak hours resources could
not be evaluated. Nilsson et al. [232] analyzed the change in residential
electricity consumption through the possibility for the final customer to vi-
sualize the electricity prices in real-time. A similar path was followed by
Cubi et al. [233] in Canada, assessing the building environmental impacts
related to the variability of the resources used during the day-time. Khan
et al. [234] approached the electricity mix environmental impacts with an
analysis in which peak hours and off-peak hours were compared, leading to
useful results for policy makers regarding Bangladesh’s grid. This method
was followed by Khan et al. in [235] to evaluate GHG emissions in New
Zealand. The hourly-defined life cycle assessment (HD-LCA) approach was
put forth in [236], with the enhancement that the hourly electricity supply
was environmentally evaluated. As a result, electric vehicle (EV) charging
processes could be scheduled according to the time variability of GHG emis-
sions. In [237], Rangaraju et al. emphasized the importance of considering
the temporal resolution of EV charging in LCA, by combining the electric-
ity mix time variability and charging time frames. The geographical and
temporal variation of marginal electricity generation can affect the environ-
mental impacts of an energy system, as well as policy decisions, as stated by
Olkkonen and Syri in [238]. In addition, the time-varying nature of marginal
electricity generation sources should be taken into account for relevant LCA
models.

All the previously mentioned works studied how to assess the environ-
mental impacts of electricity systems, but none assessed peak hours for
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flexibility objectives, considering peak hours as the most expensive and
resource-intensive time periods. Furthermore, none of them used hourly
attributional LCA in which the time variability is considered, nor did they
compare this methodology to traditional LCA and yearly average values.
There is a knowledge gap in the environmental assessment of peak hours’
electricity generation, and more specifically in using LCA approaches for an-
alyzing the flexibility potential of electricity production. The contribution
of this chapter is the definition of a general methodology for the environ-
mental impact assessment of peak-hourly electricity generation by means of
attributional LCA, using statistical data of electricity generation. Addition-
ally, this methodology was implemented in an evaluation of five different
countries through the ENTSO-E Transparency Platform and GaBi® Soft-
ware database, leading to peak-hourly national carbon intensity curves and
share of resources. The results and discussion of this analysis can provide
some guidance to energy policy makers as well as energy services compa-
nies (ESCOs) and aggregators in taking decisions on how flexibility and DR
strategies should be designed, quantified, and rewarded, considering not only
economic savings but also CO2 cuts.

6.2 LCA applied on electricity production

There are different approaches to assessing the environmental impact of elec-
tricity production. As stated by Khan in [239], six different methodologies
have been used in the literature for electricity generation systems. Life cycle
assessment (LCA) is one of the most established methods, and is widely
used for comparing different generation technologies. The aim of LCA is to
assess the potential environmental impacts of a product or system through-
out its entire life cycle, by providing both absolute and average values of the
environmental impact. That means that LCA can also be used to assess the
time-variability of resources in electricity mixes, and is suitable for evaluat-
ing the environmental impact of peak hours electricity production. Garćıa et
al. studied the possible changes in the Spanish electricity production mix to
assess and guarantee the European Commission Directives accomplishments
and CO2 cuts [240]. Consequential LCA was used by Lund et al. [241] to set
a business as usual (BAU) projection of the Danish energy system, focusing
on the marginal production unit with particular attention to day–night and
summer–winter variations. Jones et al. used the same approach combined
with a net energy analysis to describe the future environmental outcomes of
distributed electricity production in the United Kingdom [225]. Thomson et
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al. analyzed [242] the GHG emissions displacement provided by wind power
in the marginal generation of Great Britain, considering the uncertainty of
the production. Howard et al. [243] developed an LCA model to calculate
the GHG emissions considering a timeline from 2011 projected until 2025,
considering the grid operation, the integration of wind turbines, and power
plants’ addition and dismantling. Garcia et al. [244] described the average
electricity grid mix in Portugal looking at seven different impact indicators.
The same authors improved their study by looking at GHG emissions im-
plications for EVs, including time constraints regarding electricity peaks of
production [245].

The common point of the previously cited papers is that the LCAs of elec-
tricity grid mixes account for the yearly average electricity production of a
certain country. To understand the environmental impacts related to the
resources used during peak hours, a time-varying approach should be imple-
mented, as highlighted by Curran et al. in [246]. According to methodologi-
cal reviews of LCA electricity mixes [247,248], the difference between average
yearly and shorter time periods could be significant, especially when there is
a consistent difference in the strategy used to cover peak hours in compar-
ison with the base load. At the same time, the electricity demand changes
depending on seasons, weather, and resources availability, and consequently
the mixes used during base load and peak hours can differ significantly.

Consideration of the time dependency of GHG emissions due to electricity
production is the novelty proposed by this chapter in comparison to previous
literature [30,225,240–245]. There is no such analysis regarding the electric-
ity production in Bulgaria, Germany, the Netherlands, Norway, or Spain.
In this study, the most complete data were analyzed, including the entire
year 2018. Because demand response and flexibility are two main important
topics regarding electricity production, this study aimed to improve upon
the knowledge about the resources used during peak time periods, and to
investigate possible alternatives.

6.2.1 Peak-hourly life cycle assessment (PH-LCA) methodology

There are four different stages in an LCA model, according to [249, 250]:
(i) goal and scope definition; (ii) life cycle inventory (LCI); (iii) life cycle
impact assessment (LCIA); and (iv) interpretation. LCA is an iterative
process, being all the steps interconnected, as shown in Figure 6.2. Section
6.2.2 defines the goal and scope for this study. The life cycle inventory
and life cycle impact assessment are defined in Section 6.2.3 and Section
6.2.4, respectively. The case study is implemented in Section 6.3 for the five
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targeted countries, interpreting the results in Section 6.3.4.

Fig. 6.2: Life cycle assessment (LCA) steps according to ISO 14040, 14044,
and 14067.

6.2.2 Goal and scope

The goal and scope definition of an LCA provides the intended application
of the analysis, describes the product system boundaries, and defines the
functional unit [251], determining and guiding the choices to be made in
other stages of the analysis. Table 6.1 defines the goal and scope for this
study. In this article, the attributional LCA approach was applied for peak
hours, developing a new LCA methodology named peak-hourly life cycle
assessment (PH-LCA). As a result of this study, comparison between the
environmental impacts of average and peak-hours electricity produced in an
entire year can be analyzed.

The functional unit for the environmental impact assessment is defined as
one kWh of electricity produced and delivered to the grid, which is in line
with previous studies of the environmental impacts of electricity generation
[224, 231–235]. The impact category chosen for the assessment was global
warming potential (GWP), using the CML 2015 life cycle impact assessment
method [252].

System boundaries

The system boundaries limit the LCA framework by defining the resource
inputs and the emissions outputs of the system, excluding those that are out
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Table 6.1: Electricity grid mix LCA goal and scope structure.
G

o
a
l

Intended Application Explorative study
LCA Typology Attributional LCA

Purpose of the Study
Provide the reader knowledge to understand
the environmental impacts of peak hours’
electricity production

Comparative Analysis
This is not a comparative analysis between countries.
Comparison between average and peak-hourly (PH)
global warming potential (GWP) values.

S
c
o
p

e

Function of the System
The targeted country’s electricity grid mixes are in charge of
producing the electricity needed to meet the national load
in any time period t.

Functional Unit 1 kWh [232,234,235]
Reference Flow Energy flow (kWh) of electricity
Description of the System Bulgaria, Germany, The Netherlands, Norway, and Spain
System Boundaries Cradle to Gate
Allocation Procedures Detailed in Section 6.2.2
Impact Assessment Method CML 2015 [252]. Impact category : GWP (kg CO2-eq/kWh)
Data Requirements Secondary data provided by ENTSO-E Transparency Platform

of the LCA’s scope. The included limitations should derive from the avail-
able hourly data from the statistical source used for the analysis (in this
research, the ENTSO-E TP). Soimakallio et al. [247] describe the challenges
of performing an LCA about electricity mixes, suggesting the main factors
and variables to consider as system boundaries. Elements such as grid losses,
electricity import/export, power plant consumption, and environmental im-
pact allocation procedures are described in the following subsections.

Grid losses

Specifically in this LCA, the background system includes all the previous
steps of the final electricity production process, like the extraction of the
fuel, its refinement, and its transportation to the power plant. The fore-
ground system is related to the effective production of 1 kWh inside the
power plant. For the background system, the software tool dataset used
for this research includes imported electricity from neighboring countries
and transmission/distribution losses (e.g., the electricity mix of the coun-
try which exports the fuel, the losses in transportation, etc.). However, the
foreground system does not include the same values, meaning that it does
not contain the exports of the produced electricity in other countries, the
imports of electricity from bordering nations, or the grid losses to distribute
the produced electricity [253]. According to [247], the difficulties in how
grid losses should be allocated between HV, MV and LV consumers make
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the process excessively complicated for the losses contribution in the final
results, especially in terms of GHG emissions. This is why grid losses (dis-
tribution, transmission) of the targeted countries are not considered in this
model. On the contrary, transformation losses are part of the model because
these values can be estimated through the efficiency of the power plants.

Import/export

Another subject of discussion is the amounts of imported and exported elec-
tricity from neighboring countries, as mentioned in the previous subsection.
In ENTSO-E TP, the classification named Actual Generation per Production
Type includes the natural resources used for the electricity production, and
refers to the amount of fuels utilized including the import of these substances
from other countries. However, it does not include the already-produced
electricity imports between bordering countries. These data are integrated
in a different class in the ENTSO-E TP platform, as cross-border physical
flows, which is not taken into account in this study. In fact, incorporating
electricity imports and exports in a national grid mix could lead to inaccu-
racy and imprecision when dealing with GWP calculations, because it is not
possible to know from which power plants the electricity comes from. As a
result, the analysis of Nillson et al. in [232], which contains Swedish elec-
tricity imports, could include minor defects compared to a baseline where
exchanges are not considered. Considering only the geographical borders
avoids any possible misconception, as was also done by Khan [234]. Cubi et
al. [233] do not specify if imports and exports were counted, and Khan et
al. [235] did not include them. Furthermore, in a recent paper by Moro et
al. [30], four out of five targeted countries of this study (Bulgaria, Germany,
Spain, and the Netherlands) had a very low carbon intensity variation of
the electricity production after trading with other countries (−2 %, +2 %,
−6 %, and −1 % respectively).

Power Plants’ Consumption

Regarding the electricity consumption of power plants themselves, these
values were taken from the official statistics of the IEA (International Energy
Agency) through the LCA software tool, and so they were included in the
model [253]. Specifically, the power consumed in pumping the water in
hydro pumped storage (PHS) power plants was considered when data from
TP were available. The sources of electricity for the pumps were assessed
according to the average national electricity mix presented in this study.
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Combined heat and power plant emission allocation procedures

Finding the suitable allocation factor can sometimes be problematic, and
can have a significant impact on the LCA results. According to [249], al-
location should be avoided whenever possible. Combined heat and power
plants (CHP) produce two outputs, and so it is necessary to allocate the en-
vironmental impacts of just the electricity production. LCA software tools
present a database for every resource used in CHP power plants, such as
natural gas, biogas, heavy fuel oil, hard coal, lignite, and biomass. In the
used database, there are data regarding the share of electricity, the over-
all efficiency, and the share of electricity to thermal energy within a CHP
plant. According to the description of the dataset, for the CHP production,
allocation by exergetic content is considered. Whenever there seemed to be
a lack of data regarding the amount of produced heat or the efficiency of
CHP plants in a country’s database, the research found that this was due to
the low percentage of produced heat relative to the total energy originated,
which was neglected since it is usually only about 0.01 % [253]. Therefore,
the allocation of CHP plants was considered as a part of the analysis only
when data were available (Bulgaria, Germany, and the Netherlands).

6.2.3 Life cycle inventory (LCI)

LCI can be understood as a model of the product system which fulfills
a function that is quantified in the functional unit. It requires hypothesis
definition, data collection, and data modeling, resulting in an inventory table
with all the environmental interventions. The objective of the LCI is to
quantify the resources used and the emissions and waste per functional unit
[251]. Traditional LCA approaches quantify the resources, emissions, and
waste on average per functional unit. However, when the aim is to quantify
the environmental impacts on peak hours to develop flexibility services, this
approach is not enough. The time variability of the electricity production
is a fundamental issue to consider in order to correctly assess the GWP
during different time slots. To achieve that objective, a new methodology
named peak-hourly LCA is defined in Figure 6.3, and it is compared to the
traditional approach of LCA for electricity production.

The methodology followed for this study is based on the identification of
electricity production peak hours for every day of the year, compared to
the base load. Every single peak hour, extracted from the statistical source
available in [254], was analyzed to define the resources used to meet the most
significant electricity demand of the day. The electricity mix was normalized
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Fig. 6.3: LCA methodology for peak hours electricity generation.
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into the functional unit of 1 kWh. Then, the resultant GHG emissions, and
therefore the GWP impact indicator values, were calculated. To compare
the obtained results for peak-hours to average values, the traditional LCA
approach was also implemented. In this case, all the hours of the year 2018
were considered. Accordingly, peak hours GWP values were compared with
the average, resulting in monthly results to highlight the seasonal variations.

The scope of this comparison is based on identifying the differences in
the use of various resources to meet the electricity demand in different time
frames. A similar approach is followed in [233–235], but the results are
presented in order to show the link between electricity demand and carbon
intensity and not to compare peak hour values with a fixed average. In [232],
the aim is to determine the hourly time slot where the highest CO2 intensity
takes place throughout the year. This approach may hide the seasonality
between summer and winter, since the peak hour time slot differs from season
to season. In this study, the hourly analysis enhances the differentiation of
GHG emissions from peak hours and off-peak hours.

This chapter bases its results on the data extracted from the Transparency
Platform (TP) of the European Network of Transmission System Operators
for Electricity (ENTSO-E), as well as the GaBi® Software database. The
software allows the carbon intensity of every source to be assessed, consid-
ering the electricity produced as input. The related database is essential to
differentiate the impact of each technology in different nations, having vari-
able country-based data in which the same power plant can have different
emission factors according to the country in which it is based.

The ENTSO-E TP database is based on hourly time periods. Hence,
it is possible to determine the time slots where peak consumption takes
place. A critical review of the ENTSO-E TP from 2018 in [255] points out
a number of simplifications, but at the same time the review highlights that
it is the single most important data source for European researchers. For
this study the consistency of the data is guaranteed, supported by the fact
they were compared, when possible, with the statistics from each national
Transmission System Operator (TSO). As a result, the most complete and
available data were used for the analysis, referring to the entire year 2018.

The databases available for the development of electricity grid mixes anal-
ysis have limitations that hinder the accurate development of the model. For
this reason, certain assumptions and hypotheses were considered. Even if
from the ENTSO-E TP, the data for hydro production are divided into cate-
gories such as hydro pumped storage, hydro run-of-river and poundage, and
hydro water reservoir; these were all merged together in this work. The
reference value for hydro power plants is the carbon intensity provided by
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the database, which makes a mean between the different types of hydro
technologies. The same procedure was used to calculate the environmen-
tal impacts of wind power production, grouping onshore and offshore wind
only for Germany and the Netherlands (the two countries which have both
technologies). ENTSO-E shows data including solar thermal and solar pho-
tovoltaic electricity in the same box (i.e., Solar), without any distinction.
Thus, the model was developed incorporating the data in the Electricity
from photovoltaics GaBi® Software model.

6.2.4 Life cycle impact assessment (LCIA)

Life cycle impact assessment (LCIA) yields indicators that evaluate the prod-
uct life cycle on a functional unit basis, considering one or several impact
categories. For the purpose of this study, the impact category used to as-
sess the potential environmental impact of the electricity production was
the global warming potential, measured in kg CO2-eq/kWh. Section 6.3
provides the results of the LCIA stage.

6.3 Case study: INVADE H2020 project pilot-sites
electricity grid mixes

6.3.1 INVADE project description

The methodology described in Section 6.2 was applied under the H2020
INVADE project to assess the potential environmental impact of large-scale
pilots integrating DERs and EVs, by means of a cloud-based platform for
the provision of flexibility services. Denominated Integrated electric vehicles
and batteries to empower distributed and centralized storage in distribution
grids, this project belongs to the Low-Carbon Energy call of the Horizon
2020 Work Program 2016–2017. This project is based on five pilot sites
located in five different countries, which are environmentally assessed in the
following section.

6.3.2 Overview of the installed capacity in assessed countries

The installed capacity represents the total amount of power in MW that is
installed in a country. It determines the resources the country has available
to meet the demand, representing the number of power plants that can
be used for electricity generation in a targeted country. As can be seen
in Table 6.2, the targeted countries of the H2020 INVADE project have
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different installed capacities. These data represent the percentage of power
plants which can produce electricity in the country divided by source used,
and are not directly related to the power generation. For example, in Spain
the maximum hourly power request in 2018 was 42 GW, but the country
has nearly 105 GW of installed capacity. This means that even if the power
plants which are run by natural gas represent the major share of the installed
capacity (29.3 %), it does not necessarily mean that the highest share of
electricity production in 2018 was from natural gas, as determined in Section
6.2.4.

Table 6.2: Electricity installed capacity in the targeted countries for the year
2018.

Main Flexible Hydro Power Others

Bulgaria - (12,708 MW)
Lignite (33.7 %)
Hydro (25.2 %)
Nuclear (15.5 %)

Pumped storage (6.8 %)
Reservoir (14.2 %)

Solar (8.2 %)
Natural gas (6.1%)
Wind onshore (5.5 %)
Others (5.8 %)

Germany - (221,020 MW)
Wind (26.6 %)
Solar (19.6 %)
Natural gas (14.3 %)

Pumped storage (4.2 %)
Reservoir (0.5%)

Hard coal (11.4 %)
Lignite (9.6 %)
Hydro (6.5 %)
Others (12 %)

Netherlands - (30,531 MW)
Natural gas (57.6 %)
Hard coal (14.5 %)
Wind Onshore (11.5 %)

Pumped storage (0 %)
Reservoir (0 %)

Solar (8.1 %)
Wind Offshore (3 %)
Waste (2.1 %)
Others (3.2 %)

Norway - (33,755 MW)
Hydro (93.2%)
Wind Onshore (3.5 %)

Pumped storage (10.8 %)
Reservoir (78.5 %)

Thermal power* (3.3 %)

Spain - (104,975 MW)
Natural gas (29.3%)
Hydro (24.7 %)
Wind Onshore (21.7 %)

Pumped storage (5.4 %)
Reservoir (18.22 %)

Hard coal (9.1 %)
Nuclear (6.8 %)
Solar (6.4 %)
Others (2 %)

Source: ENTSO-E TP [256]. * The installed capacity data from Norway in ENTSO-E TP
were not sufficient. More detailed data come from [257].

6.3.3 Life cycle impact assessment discussion

This section presents the results of the performed LCA. As mentioned in
Section 6.2.3, the GWP impact factors of each technology are dependent on
the country they are based in. However, to frame the studied context, Table
6.3 shows the average life cycle emission factors for electricity generation
from the most used technologies in Europe, according to Turconi et al. [248].

The values in Table 6.3 include upstream and downstream processes and
thus all the steps involved in the electricity generation, like the construction
of the power plants and Operations and Maintenance (O&M) procedures.
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The ranges of the values are wide, because the 167 case studies analyzed
have different system boundaries and methodologies [248]. Even so, the
software used in this study has a specific country-based database for each
technology, conferring the results a significant precision. As it is possible to
see from Table 6.3, even renewable sources have non-zero GWP values. This
is due to indirect emissions, especially related to the manufacturing of the
components for the construction of renewable power plants, which are taken
into account in this study.

Table 6.3: Emission factors of power production technologies. Extracted
from [248].

Energy Source GWP (kg CO2-eq/kWh)

Hard coal 0.66–1.05
Lignite 0.8–1.3

Natural gas, single cycle 0.61–0.85
Natural gas, combined cycle 0.36–0.59

Oil 0.53–0.9
Nuclear 0.003–0.035
Biomass 0.008–0.13

Hydropower 0.002–0.02
Solar photovoltaic (PV) 0.013–0.19

Wind 0.003–0.041

Two types of graphs (Figures 6.4 -6.13), area and line plots, are presented
in the following sections to facilitate the comprehension of the results. Area
plots, represented by even Figures 6.4, 6.6, 6.8, 6.10, 6.12, show the GWP
value of each resource used only during peak hours in the related country’s
grid mix. The outcomes are shown month by month and are compared
with the average GWP value (represented by a dotted line), which takes
into account all the hours of the year. This is why the dotted line does not
coincide with the average of the values of the 12 months.

However, it is possible that resources such as hydro and nuclear, even
though they have a great share of the electricity production, could not ap-
pear in the graph because of their low carbon impact factors (Table 6.3).
Line plots, represented by odd Figures 6.5, 6.7, 6.9, 6.11, and 6.13; corre-
spond to the variation in the percentage of use of the most representative
sources during the year, compared with the monthly peak hours GWP vari-
ations. All the previous listed figures were made with our own calculations
and estimations through MATLAB®. All data sources have already been
mentioned in the text, namely the GaBi® Software professional database
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and the ENTSO-E TP. Every energy source grouped under the label “Oth-
ers” was calculated in terms of carbon intensity in the same way as the other
main sources. Nevertheless, their weights were too low to be represented on
the chosen plot typology, and for that reason the results are merged in a
single and more general group.

Bulgaria

The electricity demand of this southeastern European country during the
year is mainly covered by lignite and nuclear power, as explained in Table
6.4. The high percentage of hydro power capacity (Table 6.2) is reflected
in the consistent use of hydro power plants. Solar and wind power together
represented just 5.35 % of the total electricity production in Bulgaria in 2018.
The total electricity produced during the year was equal to 45.2 TWh.

Table 6.4: Percentage of resources used during peak and off-peak hours in
Bulgaria [256].

Lignite Nuclear Hydropower Natural Gas Wind Solar Others

42.29 % 34.78 % 11.42 % 4.26 % 2.75 % 2.60 % 1.90 %

Consequently, the GWP during peak hours was mainly based on lignite
(Figure 6.4). The GWP during peak hours was higher than the average from
September to December because of higher use of lignite and a lower use of
flexible hydro to cover the peak demand (+6.65 % more on average). From
Figure 6.5, it is possible to see the direct correlation between the use of
lignite and hydropower during peak hours and the GWP. Hydropower and
lignite are the only two represented resources because they were the only
ones with a significant variation in their usage throughout the year. When
there was the possibility to use the hydro reservoirs and the hydro pumped
storage, the GWP decreased in comparison with the average. The months in
which the power production during peak hours was greater than the average
showed higher values of GWP. The reason is that nuclear power represents
a huge and constant portion of the base production (34.78 % throughout
the year), and the less extra power is needed, the less fossil fuels are used
to generate it. The two presented curves of lignite and hydro in Figure 6.5
have exactly the opposite trends. April is a symbolic month, with the highest
share usage of hydro and the lowest of lignite, leading to the lowest GWP of
the year (0.397 kg CO2-eq/kWh). The reasons behind this event are related
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to the low power production in April and possibly to the abundance of water
resources.

Fig. 6.4: Monthly peak hours GWP compared with average through the year
(dotted line) in Bulgaria.

Germany

Germany has a national production mix which relies on different sources.
Regarding the base load, lignite and hard coal, respectively 24.46 % and
13.72 %, were the most used fossil fuels. The use of lignite throughout 2018
was almost constant, as shown in Figure 6.6. Wind farms had the highest
share of capacity in the country and a total share of production of 20.63 %, as
presented in Table 6.2 and Table 6.5. Nuclear still had a regular contribution
(13.64 %), while solar (7.83 %) and biomass (7.63 %) power plants surpassed
the use of natural gas (6.41 %) in 2018. Hydropower accounted for just 2.81
% of the total electricity production. The total electricity produced during
the year in the country was equal to 2183.6 TWh.

Table 6.5: Percentage of resources used during peak and off-peak hours in
Germany [256].

Lignite Wind Hard Coal Nuclear Solar Biomass Natural Gas Hydro Others*

24.42 % 20.63 % 13.7 2% 13.64 % 7.83 % 7.63 % 6.41 % 2.81 % 2.91 %

*Others includes: coal gas derived, fossil oil, geothermal, other renewables, waste.
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Fig. 6.5: Percentage use of resources throughout the year compared with
monthly GWP in Bulgaria, both related to peak hours.

Fig. 6.6: Monthly peak hours GWP compared with average through the year
(dotted line) in Germany.
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Fig. 6.7: Percentage use of resources throughout the year compared with
monthly GWP in Germany, both related to peak hours.

According to the LCIA, the GWP during peak hours was higher than the
average only in February (+5.2 %) and November (+4.52 %) (Figure 6.6).
This was due to the highest percentages of the use of hard coal (+29.15 %
in average) and natural gas (+26.1 % in average) during the entire year,
and also the higher use of lignite in comparison with the other months.
From Figure 6.6, April and May were the months with the lowest GWP
(−23.95 %), because of the lower use of fossil fuels compared to the average.
This strategy was applicable considering that both months had peaks of
demand much lower than the average, with the power requested during peak
hours being around 5.45 % lower compared to the other months. This means
that the base power from nuclear power plants (which is almost constant
throughout the year) had a more important role than during the months in
which the production was higher and so fewer fossil fuels had to be used.

It is interesting to look at solar and wind power trends: electricity produc-
tion from solar power was clearly higher during the summer months, while
the wind production had its maximum in the winter months (Figure 6.6).
These two facts lead the peak hour GWP to be lower than the average for
10 out of 12 months. February and November, the two exceptions, saw a
larger use of fossil fuels compared to the other months.

The Netherlands

In the Netherlands, the use of natural gas for electricity production repre-
sented 67.85 % of the total. It was the most important resource affecting the
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GWP value. Nuclear power helped to cover a small percentage of the base
load (6.61 %), while the lack of hydropower capacity influenced the electric-
ity generation strategy. The overall production percentages are presented in
Table 6.6. The total electricity produced during the year in the country was
equal to 224.8 TWh.

Table 6.6: Percentage of resources used during peak and off-peak hours in
the Netherlands [256].

Natural Gas Wind Nuclear Solar Biomass

67.85 % 19.48 % 6.61 % 5.48 % 0.58 %

Through the analysis related to the ENTSO-E data [256], the yearly av-
erage value was 0.287 kg CO2-eq/kWh. In the study performed by Moro
et al. [30], the average outcome for the GWP was 0.558 kg CO2-eq/kWh.
The reason behind this difference lies in the fact that hard coal electricity
production in the Netherlands was not mentioned by the ENTSO-E TP for
2018. However, hard coal has still a considerable percentage in the energy
mix, as is notable in Table 6.2. This lack of data reduces the accuracy of
the GWP results, but not the effect of the other resources on peak hours.
As is notable from Figure 6.8, hard coal is not specified.

As can be seen in Figure 6.9, the GWP line follows the natural gas use
curve. The valley formed by the dotted line from March to June is linked
to a similar one drawn by the natural gas curve. From April until July,
the amount of electricity produced through solar power plants during peak
hours was higher than the yearly average, resulting in an increase of +39.7 %
on average, affecting positively the GWP. The lowest values for wind pro-
duction corresponded to the highest values of the GWP (Figure 6.8), as in
February, when the production from wind power was 49.94 % lower than the
yearly average. The changes in the use of resources through the year were
limited, and this is why there were no major changes in monthly GWPs.
The Netherlands was the country with the lowest observed fluctuations in
terms of GWP, being in the range between 0.256 and 0.303 kg CO2-eq/kWh
(respectively −10.9 % and +5.6 % in comparison with the yearly average
value of 0.287 kg CO2-eq/kWh). As already observed in the case of Ger-
many, solar and wind power had opposite concavities. When the availability
of solar and wind power during peak hours was higher than the average,
lower values of GWP were obtained.
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Fig. 6.8: Monthly peak hours GWP compared with the annual average (dot-
ted line) in the Netherlands.

Fig. 6.9: Percentage use of resources throughout the year compared with
monthly GWP in the Netherlands, both related to peak hours.
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Norway

As mentioned in Table 6.7, Norway bases its electricity needs on hydropower.
The high percentage of water reservoirs and pumped hydro storage (87.93 %)
allows the Nordic country to manage the generation in a flexible manner.
Thanks to this, the GWP value related to the produced electricity was much
lower compared to the other studied countries, being around an order of
magnitude less. Although it is beneficial for the flexibility of the generation,
Norway is a good example of a country in which pumped hydro is not actu-
ally valuable because of the high presence of naturally charged reservoirs.

The pumped storage technology was just a small percentage compared
with the conventional hydropower (see Table 6.2). Its use is historically
based in the months of June and July [258]. Regarding the case study
of 2018, a greater use in May was also observed. PHS is used to store
the electricity that comes from conventional thermal power plants, leading
to higher GWP values during those months, as presented in Figure 6.10.
The total electricity produced during the year in the country was equal to
146.8 TWh.

Table 6.7: Percentage of resources used during peak and off-peak hours in
Norway [256].

Hydro Reservoir Hydro Run-of-River Wind Onshore Natural Gas Others

87.93 % 6.87 % 2.32 % 2.10 % 0.77 %

Fig. 6.10: Monthly peak hours GWP compared with average through the
year (dotted line) in Norway.

According to Figure 6.10, what was not produced with reservoirs and
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Fig. 6.11: Percentage use of resources throughout the year compared with
monthly GWP in Norway, both related to peak hours.

pumped storage was mainly made by natural gas, wind, and waste power
plants. This is why the GWP line follows the “Others” resources use curve
for the majority of the year 2018. Whenever there was more production from
waste (+42.5 % in average) and natural gas (+18.9 % on average), the GWP
was higher than the average (Figure 6.11). Curiously, the months of May,
June, and July were also the ones with the lowest power generation during
peak hours. During the month of August, the amount of power required for
the nation’s needs was close to the yearly average, but fewer thermal power
plants were used while hydropower plants were even more exploited than
usual, leading August to be the month with the lowest GWP of the year,
with a value of 0.0172 kg CO2-eq/kWh. Nevertheless, the monthly changes
in the use of all the resources was always lower than 2 % and this is why
also the GWP did not differ substantially.

Spain

Spain has several different resources with a great share in the electricity pro-
duction, like Germany. Natural gas and hard coal were the fossil fuels used at
higher rates, with percentages of 20.91 % and 13.29 % respectively. Nuclear
power plants accounted for 22.46 % of the total yearly electricity production,
and wind onshore power represented a consistent share (20.21 %). Solar pro-
duction was also present during night hours because of some concentrated
solar power plants with molten salts. Table 6.8 shows the resources used

150



6.3 Case study: INVADE H2020 project pilot-sites electricity grid mixes

during the year in descending order. The total electricity produced during
the year in the country was equal to 242.7 TWh.

Table 6.8: Percentage of resources used during peak and off-peak hours in
Spain [256].

Nuclear Natural Gas Wind Hard Coal Hydro Solar Lignite Biomass Others*

22.46 % 20.91 % 20.21 % 13.29 % 13.22 % 4.69 % 1.28 % 1.25 % 2.32 %

*Others includes: fossil oil, other renewables, and waste.

Fig. 6.12: Monthly peak hours GWP compared with average through the
year (dotted line) in Spain.

The dependence on fossil fuels resulted in a high GWP in Spain. Fig-
ure 6.12 demonstrates that natural gas and hard coal were the main drivers
of a high GWP, and the less they were used, the lower the indicator was.
Figure 6.13 shows that during the month of March there was a minimum
of the GWP value (0.157 kg CO2-eq/kWh, due to a high production of
wind power which reached 30 % of the share of production and at the same
time an increase in the use of hydro storage and solar power plants. The two
maximum GWP points recorded in September and November, both 0.341 kg
CO2-eq/kWh, were due to a decrease in solar electricity production and a
consequential increase of fossil fuels to meet the demand needs (Figure 6.13).
Spain was the analyzed country with the highest fluctuations among the dif-
ferent months of the year. March had the lowest GWP, being 44.2 % lower
than the average value. On the contrary, September and November had the
greatest GWP values, specifically 21.3 % higher than the annual average
value of 0.281 kg CO2-eq/kWh.
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Fig. 6.13: Percentage use of resources throughout the year compared with
monthly GWP in Spain (both related to peak hours).

6.3.4 Analysis of case study results

The effects of temporal variability on GWP values confirmed their impor-
tance in this study. Impact indicators can differ substantially depending on
the amount of power produced, the season, and the resources used through-
out the year. The expectation to obtain higher GWP values during peak
hours in comparison with the annual average value was not completely con-
firmed here. In fact, many factors can cause variations in the GWP during
different periods, such as the marginal technology used in peak hours and
the baseline technology, which can make a difference in the overall GWP
value. For this reason, it is important to consider not only economic savings
but also environmental aspects when defining DR and flexibility strategies.

During low-demand times (e.g., night hours), the power requested is lower
than during peak hours, and consequently it is logical that the GWP value
should be lower than the average, because less resources are used to produce
the electricity. In contrast, it should be noted that the comparison was
always made taking into account the functional unit equal to 1 kWh. Hence,
the time slots were not compared with their absolute production values but
with relative ones, normalized to 1 kWh. For example, an hour with a power
generation of 2000 MW can have a higher GWP value than a 5000 MW one,
since it depends on the resources used to meet the demand. In summary,
GWP is usually higher not because more electricity is produced, but because
more fossil fuels are used to reach the maximum production.
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Table 6.9 summarizes the results obtained with the traditional LCA and
PH-LCA approaches in each specific country. Countries with a consistent
share of flexible hydropower in their capacity portfolio such as Bulgaria,
Norway and Spain mainly used this resource to meet the peak hours demand
because of its rapidity in producing electricity and its low marginal cost. As
a result, lower GWP figures were obtained compared to the yearly average.
During the months in which the GWP was higher than the comparable value,
it was demonstrated that the more conventional power plants were powered
to reach the demand during the spikes of production, because of nationwide
lacks in rainfall and water shortages.

Germany and the Netherlands mainly had their peak hours production
during times in which wind and/or solar power were efficiently running, also
leading to lower GWP values. Particularly in Germany, the good alternation
of sunny and windy days, the first ones during the summer months and the
second ones during winter, were advantageous for the national electricity
grid. Regarding the Netherlands, the almost constant usage of natural gas
to match the national electricity request throughout the year did not lead
to substantial changes in the monthly GWP values. In addition, countries
which do not have the geographical morphology to host PHS plants could
investigate the potential of centralized and distributed energy storage to
shave the generation electricity curve and provide flexibility to the electricity
grid.

Based on the results of this section, Bulgaria was the studied country with
the highest yearly average GWP (0.617 kg CO2-eq/kWh), led by lignite-
based power plants but with a hydro power potential widely used to meet
the peak demand. Germany showed a high potential in renewable use during
peak hours, but the base load was still covered by fossil fuels like lignite
and hard coal, leading to a yearly average GWP of 0.476 kg CO2-eq/kWh.
The Netherlands had the lowest fluctuations in terms of monthly GWP
during peak hours, being in the range between 0.256 and 0.303 kg CO2-
eq/kWh (respectively -10.9 % and +5.6 % in comparison with the yearly
average value of 0.287 kg CO2-eq/kWh), displaying the use of the same
strategy in the electricity generation mix for both peak and base loads.
Norway had limited variations, considering the changes in the monthly GWP
affected the yearly average value (0.0278 kg CO2-eq/kWh) in a scale of
10-3 kg CO2-eq/kWh and so the peak hours had a limited influence on the
environmental impacts of electricity production in the country. In Spain,
the monthly GWP changed substantially throughout the year, especially in
September when the value increased by +21.3 % compared to the yearly
average (0.281 kg CO2-eq/kWh) and in March when the carbon intensity
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during peak hours had a difference in percentage of −44.2 % compared to
yearly average. The differentiation between resources used in peak hours
and off-peak hours was highlighted and discussed, helping to understand the
overall GWP value. Seasonality is an important factor in terms of resources
utilization and thus in GWP. The comparison between peak-hourly LCA
and traditional LCA results proved that the average approaches fell short
in quantifying the environmental impacts of time-varying systems, as is the
case of electricity production.

The results of this study show that by considering the environmental im-
pact of electricity generation, flexible resources such as EVs, water boilers,
or batteries can be scheduled according to carbon intensity, reducing their
environmental impacts, which is in line with the findings of Baumann et
al. [236]. At present, DR strategies and flexibility services are implemented
following price signals, for the purpose of achieving economic savings for
the end-user. However, if decarbonization is the main objective of these
initiatives, flexibility potential should be environmentally assessed. By im-
plementing peak-shaving or load-shifting strategies from peak hours to off-
peak hours, the flexibility potential can be quantified in CO2 savings, using
the maximum peak-hourly GWP value and the average GWP for the same
functional unit. According to Table 6.9, the flexibility potential was around
16 % in Bulgaria and Norway, greater than 5 % in Germany and The Nether-
lands, and 21.3 % in Spain, being the country with the maximum flexibility
potential.

The stability of the EU energy sector can be confirmed by looking at the
general degrowth in the electricity prices according to the latest report of the
EU Agency for the Cooperation of Energy Regulators (ACER) [259]. This
trend has caused a reduction in electricity generation peaks and valleys.
Nevertheless, this should not be an obstacle for the exploitation of large-
scale batteries and other storage systems (e.g., PHS). On the other hand,
the current EU Emissions Trading System does not lead to higher prices
for fossil power plant owners [260], which is why gas turbines are still a
competitive and trusted choice to cover the peak demand in some countries.

The presented study is replicable in other countries, following the same
methodology and using statistical data sources from electricity generation.
The only obstacle may be the lack of hourly data regarding the national
electricity generation and missing data about the different power plants, es-
pecially their carbon intensity per kWh produced. Life cycle inventory data
sourcing has been complex since ENTSO-E is the only platform available
for collecting data from national grid mixes on an hourly basis. Besides, the
aggregation between data coming from ENTSO-E and data from the GaBi®
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Software professional database could add uncertainty to these results, adding
limitations to the study. Furthermore, the traditional LCA approach was
implemented in order to compare the environmental impact of peak hours’
electricity production with the general trend, obtaining a yearly average
GHG value. Other methodologies using monthly, daily, or off-peak compar-
isons could be further developed in the next steps of this analysis in order
to maximize the flexibility potential accuracy in optimization models.

Regarding the methodology, prior literature review states that time-varying
environmental assessment and LCA approaches are the methods that should
be considered when assessing the GHG emissions from the electricity sec-
tor [223,231,236,239], aligned with the methodology presented in this publi-
cation. However, uncertainties in LCA initiatives may affect strategic plans
and government policies, as stated by [261]. LCA models should resemble
emissions in the real world. In this research, data were gathered from the
statistical database of the ENTSO-E, which collects data directly from the
different TSOs, and ensures the quality and validation of data coming from
real sources, according to [255]. Additionally, databases used under the LCI
for electricity modeling in this chapter (i.e., GaBi® Software Professional
Database and ecoinvent 3.1) are validated by external entities and publica-
tions [224,249].

6.4 Chapter remarks

This chapter answered the last research question of the PhD research. It de-
veloped a general peak-hourly LCA methodology to environmentally assess
electricity production by calculating the carbon footprint based on GWP
values throughout one year of study. This methodology can be implemented
using statistical sources of hourly electricity production and energy sources
databases.

Flexibility has been proved to be a key factor for the decarbonization
of the energy system. This chapter provided a holistic analysis of the en-
vironmental impact and benefits that flexibility can provide to the overall
electricity generation, not only considering operational benefits for distribu-
tion network operators. Linking the approach implemented here with the
previous chapters, one can understand the important role of demand-side
flexibility. It can easily help shift consumption and generations periods and,
therefore, the associated environmental impact under their entire life cycle.
The previously defined and modeled demand-side flexibility can reduce peak-
hours electricity production. As a result, that could lead to a clear reduction
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of GWP during peak hours in countries such as Bulgaria and Spain, which
presented a high GWP value while at the same time providing a service to
network operators and benefits to the end-users providing this flexibility.

Using time-varying carbon prices based on temporal carbon intensity vari-
ations could be a good approach for designing carbon pricing strategies at
national level, enhancing the transition towards a low-carbon energy sys-
tem. When defining and implementing DSM strategies, not only economic
benefits should be considered, but also the environmental impacts or savings
thanks to load shifting and peak-shaving. Flexibility should be quantified
in terms of carbon intensity, since not all countries use the most polluting
resources as natural gas or coal for covering peak-hours demand. This can
also be implemented at a smaller scale, being it at the household level. The
methodology presented here can be used to consider an objective function
to minimize the overall environmental impact of electricity consumption and
production. This objective function would consider the hourly GWP value
of the electricity production according to the peak-hourly LCA methodology
and schedule the flexible assets accordingly, as implemented in [160,262,263].

Other aspects could be investigated further, such as analyzing the poten-
tial environmental impacts of electricity grid mixes, but by adding other
indicators apart from GWP, like human health impact, resource depletion,
and ecotoxicity. Additionally, the integration of centralized energy storage
(CES) in the grid could be environmentally assessed by means of a con-
sequential LCA, analyzing the shift in the generation profile, conceivably
shifting the peak hours in the curve, developing a new scenario where elec-
tricity production and consumption do not have the same profile, but also
considering the environmental impact of the CES life cycle. The same ap-
proach could be applied to assess the possible variations of renewable sources
power output, considering uncertainty.

At the same time, the increasing interconnection between European coun-
tries adds even more challenges to the current environmental evaluation of
country-based generation since it is still difficult to track the generation mix
coming from this source. Therefore, further research could deal with the
traceability of the generation mix between countries and interconnections
for calculating the environmental impact of these sources and be included
in the peak-hourly life cycle assessment approach developed here.
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Chapter 7

Conclusions and future work

This thesis addressed five main research questions related to the development
of flexibiliy services for distribution network operators. To answer them, this
work gathers several studies related to flexibility services, and each chapter
outlines specific remarks based on the results. The present chapter discusses
the main findings of the thesis, summarizes the main contributions, and
draws further research directions to resolve the remaining questions.

7.1 General conclusions

The importance of lowering the carbon footprint of the electricity gener-
ation and engaging end-users to change their electricity consumption pat-
terns — while keeping the system reliability and the quality and security of
supply— has provided a revolution in the way distribution networks were
managed until now. The flexibility concept has unlocked new business mod-
els and products for all the power systems agents, from the generation to
the demand-side. However, some questions remain about the integration of
DERs and demand-side flexibility in already existing electricity markets and
power systems, as outlined in the first research question of the thesis:

RQ1: What are the possible market schemes to integrate DERs and
demand-side flexibility, while at the same time ensuring that network
operators can benefit from these services?

Flexibility has lacked for many years a clear definition of how it can be in-
tegrated into a local energy market, connecting flexibility providers and flex-
ibility users. The initial objective (i) (see objective definition in Section 1.5),
wanted to outline and analyze all the possible market schemes for energy and
flexibility. The conducted research presented how these markets have been
defined in the literature, how these services have been implemented, and the
market mechanisms for it. The study provides a clear definition based on
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all the previous literature for the most important concepts like local market,
energy, flexibility, and all the market agents present in this chain. One of the
most important agents for the success of flexibility in distribution networks
is the aggregator. The aggregator has the role in managing the demand-side
flexibility and providing this flexibility to the final client. From the author’s
perspective, flexibility will become an essential product in the energy system,
allowing the setup for new markets; however, there is a need for a regula-
tory framework for monetizing demand-side flexibility. In this scenario, the
most common structure for providing flexibility services should be mainly
through local flexibility markets, allowing the market-clearing under a cen-
tralized approach and a flexibility market operator. Despite this, bilateral
contracts could also be at the moment a solution for unlocking flexibility
and starting the path for setting up a market scheme for flexibility trading.
On the other hand, peer-to-peer trading allows the interaction of all stake-
holders for flexibility exchange. However, the current peer-to-peer market
structures lack on defining the counterparty risks of flexibility activation
and imbalances and the possible resulting congestions by only considering
economic dispatch, resulting in increased difficulty for network operation.
However, if the objective is to provide and activate demand-side flexibility,
there is a need for a specific definition, not only as a general concept but
also considering important aspects for modeling it. This was, therefore, the
main objective of the second research question:

RQ2: How can flexibility be defined and modeled based on the stake-
holders involved, as well as the final use of this flexibility?

This work has been done under objective (ii). There is still an unclear
definition for flexibility and how to model it, and the work developed in
this case provided a new framework for modeling flexibility, based on the
end-user providing flexibility, the final client using this flexibility, the time
horizon when this flexibility should be provided and the approach. There
are two different approaches found when defining flexibility: the market-
oriented approach and the system-oriented approach. The first adds a price
to the flexibility signal, making it suitable for those scenarios where flex-
ibility is defined as a relationship between demand and price, considering
the price and demand elasticity and controlling the demand-side flexibility
based on price. On the other hand, it is highlighted that the system-oriented
approach does not include the price in the flexibility signal. Still, there is
a cost of the flexibility activation, which has to be agreed upon beforehand
between the two parties participating in the flexibility supply. The latter
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flexibility definition is the one found most suitable for providing flexibility to
the DSO from the aggregator point of view. Also, it becomes a more realistic
approach due to the lack of control groups where demand changes can be
monitored based on price signals. Once flexibility has been defined in terms
of stakeholders and approach, the following research question highlighted the
need for a forecasting approach to model flexibility from the demand-side
and managed by aggregators, as follows:

RQ3: How can flexibility be forecast, from the aggregator point of
view, with very limited amount of data available, in a fast and re-
liable approach so as to know in advance the flexibility available in
the portfolio, in order to provide flexibility to DSOs for operation
purposes?

This leads to objective (iii), where the main objective was to develop
a framework for forecasting flexibility based on an aggregator’s portfolio.
The main conclusions drawn from this research question in general terms
are that even though lots of data are being collected, there is still a lack
of standardization of the data storage coming from smart meters, making
it more difficult to handle and provide useful solutions. On top of that,
there is still an unclear answer to how end-users data can be monetized, and
as a result, there is a lack of shared data in the energy field, complicating
the implementation of data-driven approaches for demand-side flexibility.
Furthermore, there is a controversial issue that has arisen when answering
this research question, that is the importance of respecting the privacy of
the end-user data and ensuring that data-driven companies that base their
business models in the data collected can still participate in open-data initia-
tives and share their data sources while respecting their intellectual property.
Hence, aggregators and DSOs are different entities with different business
models, and as a fact, there is not full cooperation in terms of data shar-
ing. Besides, the current EU regulation states that DSOs and aggregators
must be different entities. This is why the research performed under this
research question aimed to provide a framework for forecasting flexibility
in an aggregated way, ensuring that all the previous concerns are consid-
ered. Furthermore, this approach is not sensible to the portfolio size since
all the submetering data covering the flexibility signals is aggregated before
calculating the forecast, being more suitable than aggregating single-users
flexibility forecast afterward. This tool provides aggregators with a solution
for knowing with a limited amount of data and, in a short time, the amount
of flexibility available within their portfolio for operation purposes. Lastly,
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from the author’s point of view, there is still a need to set up market-based
schemes for monetizing data. Firstly, this would allow end-users to know
the amount of data being collected at the moment, be informed of the com-
pliance of GDPR and data privacy-related aspects, and decide whether they
allow sharing data. The approach covered in this research question on ag-
gregating end-users data helps in the anonymization of users’ data. On top
of that, there is still a need to push energy-related data to be available on
open access, enabling innovation to occur in energy systems. This research
led to an answer on how to model demand-side flexibility managed by aggre-
gators. However, the main purpose of this flexibility is to provide a service
to distribution network operators in terms of daily operation and conges-
tion management due to the increasing penetration of DERs and energy
consumption. As a result, the following research question stated:

RQ4: How this flexibility can help DSOs to mitigate or avoid con-
gestions in MV networks, and how can this flexibility request be cal-
culated so as to be economically better than investing in network
expansion or hosting capacity?

This research question is answered under objective (iv), providing a so-
lution for DSOs to calculate their flexibility request cost-effectively in a
specific location of the network, ensuring that the power flow equations are
respected. The main conclusion drawn is that it is possible to provide DSOs
with a tool for calculating the operational flexibility needed to avoid or
mitigate congestions in an MV network. DSOs should be able to request
flexibility in any point of the network under operation for a specific time pe-
riod, allowing a new scenario where end-users help in the network operation
by means of demand-side flexibility managed by aggregators.

Furthermore, this approach enables creating a local flexibility market be-
tween aggregators and DSOs while respecting the current regulation. How-
ever, from the author’s perspective, there is still a lack of knowledge of the
overall network costs to define a cost model for the DSO flexibility. This is
still a pending question, being essential for the success of flexibility provision
to DSOs. Flexibility services for DSOs have to be, in any case, a better so-
lution than grid reinforcement, meaning to be economically and technically
viable. Then, some efforts are still to be done in terms of quantifying the
price of flexibility activation between aggregators and DSOs.

This research, even though it is focused on the flexibility interaction be-
tween end-users, aggregators, and DSOs, this entire scenario should help
towards the objective of the energy transition and the Paris Agreement.
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Therefore, there is a need to assess the environmental impact of electricity
production considering the entire life cycle. More specifically, a new ap-
proach should quantify the environmental effects of peak-hours electricity
production to help policymakers regulate flexibility integration. Hence, the
last research question of the thesis claims:

RQ5: How this scenario of flexibility provision can be environmen-
tally assessed, so as to know if these approaches can be included in
each and every country? Should the current installed capacity and
generation portfolio be taken into account before the deployment of
flexibility services in smart grids?

To do so, the current electricity generation is environmentally assessed by
using the life cycle assessment methodology under objective (v). Traditional
LCA approaches consider the average value of electricity generation, not be-
ing able to cope and compute the environmental impact during peak hours,
being the time periods where flexibility has its most significant potential.
In this case, a new methodology is proposed to calculate the environmental
impacts in these time-periods. One of the conclusions drawn is that current
CO2 monitoring systems present in the dashboards of the transmission sys-
tem operators of the wholesale market operator for renewable energy sources
only compute their value based on statistical analysis, concluding that all
kinds of renewable energy sources and distributed energy resources have zero
environmental impact. At the same time, the LCA approach proves that this
is not true and that when assessing the benefits of DERs, the entire life-cycle
should be considered. Furthermore, the current installed capacity is of great
importance since the integration of DERs and RES sources could increase
the environmental impacts on such cases. As a general conclusion, it is not
only a matter of integrating innovative solutions for developing smart grids
but also assessing the benefits and the impacts of such technologies to ensure
the sustainability goals are respected. Countries such as Spain and Bulgaria
are two of the best candidates for implementing demand-side flexibility pro-
grams to lower the environmental impact of electricity production in peak
hours.

In summary, the integration of flexibility into the current power system is
already a fact, being technically, environmentally, and economically possible,
and a business opportunity for many of the agents in the power system.
There are strong interactions between all the agents, the market, and the
environment that must be considered in all steps of the flexibility provision
supply chain to succeed in the roadmap towards a low carbon power system.
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7.2 Overview of contributions

The contributions of this PhD research are focused on the ecosystem that
covers the flexibility supply chain. The main actors involved are the demand-
side as the flexibility provider, the aggregator as the flexibility third-party
manager, the DSO as the flexibility end-user, the electricity market that has
to allocate this new service, and the environment since flexibility should be
a tool for achieving the energy transition objectives for 2030 and 2050. The
major contributions of this thesis are summarized as follows:

� Chapter 2 Local market services and products for active network man-
agement:

(i) Development of a comprehensive reference guide on the overall
local energy markets for energy and flexibility.

(ii) Definition of a common baseline for understanding the differences
between the surrounding concepts around local energy markets
such as micro markets, energy provision, flexibility provision, cen-
tralised approaches and peer-to-peer market structures.

� Chapter 3 Framework definition and mathematical formulation of flex-
ibility services:

(i) Analysis of the current state of the art in flexibility definition in
terms of approach, end-user, time horizon and final use of this
flexibility.

(ii) Analysis of the current EU guidelines on flexibility provision, ac-
tivation and billing.

(iii) Proposal of a generalised framework for defining flexibility based
on the previously cited objectives.

� Chapter 4 Demand-side flexibility forecast for aggregators:

(i) Analysis of the time series structure of the flexibility signal, so as
to know the main characteristics and particularities when devel-
oping forecast algorithms for time-series data.

(ii) Analysis of the different algorithms for time-series, developing
a benchmark model for flexibility forecast using the climatology
model and the simple exponential smoothing.

(iii) Development of a framework based on hierarchical modeling to
characterize and predict the aggregated flexibility within a flexi-
bility portfolio.
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(iv) Development of a probabilistic forecast formulation of the aggre-
gated flexibility based on Online Learning, using Kernel Density
Estimation with two main approaches, first a linear relation for
obtaining the value of the kernel bandwidth h, and Recursive
Maximum Likelihood for updating the kernel bandwidth at each
time period, ht.

(v) Proposal of a flexibility forecast approach that does not require
network topology information

(vi) Proposal of a flexibility estimation that is applicable to different
flexible assets, and does not require specific information of them.

� Chapter 5 Flexibility-based AC-Optimal Power Flow for active network
management in distribution grids:

(i) Analysis of the flexibility activation cost models for DSOs for the
success of flexibility services for DSOs.

(ii) Formulation of a congestion management optimization problem
based on the AC-OPF formulation for calculating the flexibility
request of a DSO.

(iii) Definition of the communications scheme between the DSO and
aggregator for exchanging the information and matching the flexi-
bility request and the flexibility forecast via a bilateral agreement.

� Chapter 6 The potential role of flexibility for a sustainable energy tran-
sition:

(i) Analysis of the life-cycle assessment methodology, the lack of im-
plementation in power systems and the benefits of considering a
holistic approach for achieving a sustainable energy tranisiton.

(ii) Development of a new LCA approach based on peak-hours elec-
tricity production for assessing the environmental impact of elec-
tricity production in a peak-hourly based, instead of the general
approaches that calculate average values, and do not consider the
effect of the technologies used to cover peak hours.

(iii) Calculation of the environmental impact in Global Warming Po-
tential indicators, in kg CO2/kWh units.

(iv) Proposal of a new methodology based on LCA for policy makers
to assess the potential environmental, using time-varying carbon
pricing strategies.
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(v) Analysis of the environmental impact of peak-hours electricity
production in 5 different case studies, making room for the quan-
tification of flexibility considering also the environmental impact
or savings in GWP indicator units.

7.3 Perspectives for future work

The presence of flexibility in the distribution network is already a reality, and
at the moment, it can be considered a trend. Therefore, further research to
improve the state-of-the-art forecasting techniques and optimization models
for activating this flexibility for DSOs is required and will be continuously
developed in the upcoming years. Considering the research developed in
each of the chapters of this manuscript, the potential research areas based
on the accomplished achievements of the present thesis are described below:

� Chapter 3 Framework definition and mathematical formulation of flex-
ibility services:

(i) Develop a flexibility model for specific flexible-assets such as EVs
or Electric Water Boilers, to quantify the flexibility that can be
provided considering the intrinsic nature of the asset.

� Chapter 4 Demand-side flexibility forecast for aggregators:

(i) Develop a logistic model for level 1 of the hierarchy to increase
the overall performance of the algorithm.

(ii) Implementation of the model under a real scenario where the
flexibility forecast could be evaluated under a control group.

(iii) Improve the model by including a hierarchical top-down approach
where the location of the asset could be derived.

� Chapter 5 Flexibility-based AC-Optimal Power Flow for active network
management in distribution grids:

(i) Development of a cost-model for specifying the flexibility cost for
DSOs, based on the network reinforcement costs.

(ii) Improve the algorithm to reduce computational time and improve
the solvability by deriving the convex relaxation of the AC-OPF
power flow problem, and compare with other solvers.

(iii) Develop a study case with the integration of the whole flexibility
supply chain by means of a bilateral contract or a local flexibility
market.
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7.3 Perspectives for future work

� Chapter 6 The potential role of flexibility for a sustainable energy tran-
sition:

(i) Develop a Consequential LCA method to compare the conse-
quences of implementing flexibility in countries with a low peak-
hour LCA environmental impact.

(ii) Include the environmental impact of energy storage into the model.

(iii) Assess other environmental categories such as water depletion and
cumulative energy demand and compare the case studies using
more than one impact category.
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[123] H. Pandžić, J. M. Morales, A. J. Conejo, and I. Kuzle, “Offering model
for a virtual power plant based on stochastic programming,” Applied
Energy, vol. 105, pp. 282–292, 2013. 45
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[167] I. Munné Collado et al., “System architecture for managing conges-
tions in distribution grids using flexibility,” 25th International Con-
ference on Electricity Distribution (CIRED 2019), pp. 3–6, 2019. 67

[168] C. Heinrich, C. Ziras, A. L. Syrri, and H. W. Bindner, “EcoGrid 2.0:
A large-scale field trial of a local flexibility market,” Applied Energy,
vol. 261, 2020. 67, 69

[169] J. Huber, D. Dann, and C. Weinhardt, “Probabilistic forecasts of time
and energy flexibility in battery electric vehicle charging,” Applied
Energy, vol. 262, 2020. 68

[170] E. F. Bødal et al., “D5.1 - Challenges in distribution grids with high
penetration of renewables. INVADE H2020,” Tech. Rep., 2017. 68

[171] A. Lucas, L. Jansen, N. Andreadou, E. Kotsakis, and M. Masera,
“Load flexibility forecast for DR using non-intrusive load monitoring
in the residential sector,” Energies, vol. 12, no. 14, p. 2725, 2019. 68

[172] H. Yue et al., “Estimating demand response flexibility of smart home
appliances via NILM algorithm,” in 4th IEEE ITNEC Conference,
2020. 68

[173] M. Guldbæk Arentsen et al., “Market models for aggregators - Ac-
tivation of flexibility,” Intelligent Energi - Dansk Energi - Energinet
Technical Report, 2017. 69

[174] BEUC - The European Consumer Organisation, “Electricity aggrega-
tors: Starting off on the right foot with consumers,” vol. 32, pp. 0–11,
2018. 69

[175] European Parliament, “Directive 2019/944 on common rules for the in-
ternal market for electricity,” Official Journal of the European Union,
2019. 69

[176] C. Vigurs, C. Maidment, M. Fell, and D. Shipworth, “Customer pri-
vacy concerns as a barrier to sharing data about energy use in smart
local energy systems: A rapid realist review,” Energies, vol. 14, no. 5,
2021. 69
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J1 Í. Munné-Collado, F. M. Aprà, P. Olivella-Rosell, R. Villafafila-Robles,
A. Sumper, “The potential role of flexibility during peak hours on
greenhouse gas emissions: a life cycle assessment of five targeted na-
tional electricity grid mixes,” Energies, vol. 12, no. 23, Nov. 2019. doi:
10.3390/en12234443

Submitted journal papers
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Robles ”A data acquisition pipeline for home energy management sys-
tems” III Congreso Iberoamericano de Ciudades Inteligentes, Novem-
ber 2020

Local journals
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