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BRIDGING THE GAP BETWEEN RECONSTRUCTION AND SYNTHESIS

Albert Pumarola Peris

Abstract

3D reconstruction and image synthesis are two of the main pillars in computer vision. Early
works focused on simple tasks such as multi-view reconstruction and texture synthesis. With
the spur of Deep Learning, the field has rapidly progressed, making it possible to achieve more
complex and high level tasks. For example, the 3D reconstruction results of traditional multi-
view approaches are currently obtained with single view methods. Similarly, early pattern based
texture synthesis works have resulted in techniques that allow generating novel high-resolution
images.

In this thesis we have developed a hierarchy of tools that cover all these range of problems,
lying at the intersection of computer vision, graphics and machine learning. We tackle the
problem of 3D reconstruction and synthesis in the wild. Importantly, we advocate for a paradigm
in which not everything should be learned. Instead of applying Deep Learning naively we
propose novel representations, layers and architectures that directly embed prior 3D geometric
knowledge for the task of 3D reconstruction and synthesis. We apply these techniques to
problems including scene/person reconstruction and photo-realistic rendering. We first address
methods to reconstruct a scene and the clothed people in it while estimating the camera position.
Then, we tackle image and video synthesis for clothed people in the wild. Finally, we bridge the
gap between reconstruction and synthesis under the umbrella of a unique novel formulation.
Extensive experiments conducted along this thesis show that the proposed techniques improve
the performance of Deep Learning models in terms of the quality of the reconstructed 3D shapes
/ synthesised images, while reducing the amount of supervision and training data required to
train them.

In summary, we provide a variety of low, mid and high level algorithms that can be used
to incorporate prior knowledge into different stages of the Deep Learning pipeline and improve
performance in tasks of 3D reconstruction and image synthesis.

Keywords: 3D reconstruction, image synthesis, deep learning, generative models, human-
centric imaging.
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1
Introduction

Deep Learning (DL) has gained much popularity over the last years and achieved performance

breakthroughs in a wide range of applications. DL represents a paradigm change on how we

think about machine learning and has revolutionized fields such as natural language processing,

robotics, computer graphics, and in particular, computer vision. Previous standard pipelines

relied on highly engineered handmade problem-dependant methodologies and feature design

techniques that were combined with Machine Learning classifiers, typically Support Vector

Machines (SVMs). In contrast, Deep Learning offers a general framework for training end-

to-end systems, from raw data, without any feature engineering involved. A chained cascade of

non-linear transformations allows the networks to learn powerful image feature representations

from large collections of examples which outperform all traditional engineered features.

Nevertheless, this thesis advocates for a paradigm in which not everything should be learned.

For most DL-based applications there exist a set of predefined properties and constraints that

need to be satisfied, and that should not be learned by the network. Instead, these proper-

ties/prior knowledge should be directly embedded into the data representation or as an inherent

part of the network architecture. An example where prior knowledge can be greatly exploited

is in modeling the distribution of 3D objects, that is, to learn the manifold of plausible objects

in terms of their 3D shape and visual appearance. To learn such distribution, one should exploit

well established computer vision and graphics techniques such as camera projection models,

efficient 3D data representations and volume rendering.

Being able to model the distribution of 3D objects would open the door to many new

exciting applications in different areas, including 3D reconstruction and neural rendering, key

components for scene understanding and augmented reality. Recent advances in DL and gen-

erative models have shown impressive results for the related task of 2D image modeling and

synthesiszing photo-realistic images, face generation and super-resolution imaging. However,

these methods are not able to escalate to 3D data and become intractable in terms of space and
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time complexity making it, in practice, intractable. Moreover, convolutional based methods such

as deep Convolutional Neural Network (CNN) are not well fitted for 3D representation and the

community has not yet agreed on a 3D object representation that is both memory efficient and

easily modeled by learning methods.

This thesis lies at the intersection of computer vision, graphics, and machine learning. We

tackle the problem of 3D reconstruction and 2D synthesis for the applications of scene/person

reconstruction and photo-realistic rendering. Importantly, we do not apply Deep Learning

naively with fully Convolutional Neural Networks, but instead with novel representations, layers

and architectures which embed prior knowledge of the problem. For example, we propose a fully

differentiable layer that models the pin-hole projection model without learning parameters and

a new representation for 3D meshes well fitted for CNNs. We believe that it is only by enhancing

networks with this knowledge that they will achieve super-human performance in computer

vision problems. And most importantly, we pursue models that can be trained without requiring

vast amounts of training data, and, in some scenarios, without ground-truth annotations.

The methods developed in this thesis have contributed and been implemented in several

competitive projects: (i) Real-time scene reconstruction and precise localization of UAV vehicles

in the EU project “AEROARMS” H2020-ICT-2014-1-644271; (ii) Non-rigid 3D shape estimation

from a single image in the 2017 Google Faculty Research Award “Geometry-aware CNNs for Non-

Rigid Shape Reconstruction”; (iii) 3D reconstruction of human body and cloth from a single

image in the 2019 Amazon Research Award “Geometry-aware 3D Human Body Animation from

Still Photos”; (iv) Unsupervised baseline method in which to integrate a 3D geometry model

for facial expressions rendering in the 2019 Google Faculty Research Award “GANimation3D:

Unsupervised 3D Face Animation from Monocular Images”.

It is also worth mentioning that GANimation [18], the face animation algorithm, developed

in this thesis received the “Best Paper Honorable Mention” award at ECCV 2018 out of 2439

valid submissions.

1.1 Objectives

The main goal of this thesis is to incorporate prior knowledge into different stages of the Deep

Learning pipeline and improve performance in tasks of 3D reconstruction and image synthesis.

Let us clarify two keywords of this statement: ‘prior knowledge’ and ‘performance’. As a

‘prior knowledge’ we consider different types of data representation that can be easily processed

by the networks, and novel layers/architectures that inherently reason about the geometric

and physical constraints of the problem. Additionally, although ‘performance’ is a quite generic

concept, here we measure it in terms of the quality of the reconstructed 3D shapes or synthesised
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images; in terms of the amount of training data that is required; and in terms of the supervision

that it needed.

We next summarize the specific goals of our research:

- Design novel data structures to represent 3D objects that are both memory efficient and

easily modeled by DL architectures.

- Build novel DL-based models and loss functions that enforce 3D geometric constraints.

- Create new realistic and diverse benchmarks for the comparison and evaluation of recon-

struction methods.

- Apply the above goals to 3D reconstruction and synthesis in the wild.

1.2 Contributions

Chapter 3.
Scene & Person Reconstruction

Chapter 4.
Image & Video Person Synthesis

Chapter 5.
Bridging the gap between 

Reconstruction and Synthesis

Figure 1.1: Thesis overview.

The contributions of this dissertation are organized in three main blocks: reconstruction,

synthesis and its conjunction (Fig. 1.1). In the first block, we present a pipeline for simulateous

reconstruction of scenes / clothed people, and camera pose estimation. In the second block, we

further model 3D data, but this time through novel generative methods to model the nonrigid

articulated human body. Finally, in the last block, we bridge the gap between reconstruction and

synthesis with new general-purpose models. We next list the main contributions for each block.

Scene & Person Reconstruction Contributions:

1. We introduce an algorithm for scene 3D reconstruction and camera pose estimation ro-

bust to poorly textured scenarios that builds upon the joint estimation of point and line

correspondences [19–21].
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2. We present a method to learn spatio-temporal object models for real-time detection and

tracking from a single reference image [22]. This was the first approach able to run at

real-time.

3. Build DeformNet [23], a large dataset and benchmark of synthetic renderings of non-rigid

surfaces under different levels of deformation, material properties, textures and lighting

conditions.

4. Propose a novel architecture for predicting the 3D shape of a deformable surface from a

single view [23]. By contrast with previous approaches, it does not require a pre-registered

template of the surface, and is robust to the lack of texture and partial occlusions.

5. Build 3DPeople [24], the first large-scale synthetic dataset and benchmark with 2.5 Million

photo-realistic images of 80 subjects performing 70 activities and wearing diverse 3D

outfits. Besides providing textured 3D meshes for clothes and body, we annotate the

dataset with segmentation masks, skeletons, depth, normal maps and optical flow. All

this together makes 3DPeople suitable for a plethora of tasks.

6. Propose a representation for 3D meshes [24] that maps 3D data into a 2D space emulating

an image, therefore being a 3D data representation compatible with all existing literature

on image-based CNN architectures.

7. Build a model that, given an input image of a dressed human in the wild, reconstructs the

3D mesh of the body pose and clothing shape [24].

Image & Video Person Synthesis:

8. Design the first unsupervised method to synthesize photo-realistic images of people in

arbitrary poses [25]. Given an input image of a person and a desired pose represented

by a 2D skeleton, the model renders the image of the same person under the new pose,

synthesizing novel views of the parts visible in the input image and hallucinating the non-

visible.

9. Propose an unsupervised method that allows facial expression synthesis [18,26]. Previous

approaches were only suitable for editing facial expressions out of a discrete set of emotion

categories. Ours was the first method able to animate facial expression in a continuous

manner.

10. Develop plug-and-play attention mechanisms for image editing networks to make them

robust to changing backgrounds and lighting conditions in images in the wild [18,26].
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11. Devise the first unsupervised system to photo-realistically transfer the clothing of a person

in a reference image into another person in an unconstrained image or video in the

wild [27].

12. Build a novel plug-and-play CNN layer mimicking a physical memory for consistent video

frames synthesis [27].

Bridging the gap between Reconstruction & Synthesis:

13. Develop a novel formulation for conditioning flow models [28]. We demonstrate our

conditioning method to be very adaptable, being applicable to 3D reconstruction, image

synthesis and manipulation, style transfer and multi-modal mapping in a diversity of

domains, including RGB images, 3D point clouds, segmentation maps, and edge masks.

14. Present a novel bijective plug-and-play CNN layer to encode 3D point clouds for bijective

architectures [28].

15. Introduce a method able to reconstruct and render novel images of objects under rigid

and non-rigid motions given a sparse set of images captured by a single camera moving

around the scene [29].

For a detailed list of publications derived from this thesis refer to Appendix A.

1.3 Outline

This thesis is organized in six chapters. The first chapter introduces, motivates and defines

its initial goals and final contributions. The second chapter establishes groundwork for the

techniques used. The following three chapters explain the contributions of the thesis, which

are conceptually grouped into the three blocks aforementioned: reconstruction, synthesis and

its unification (Fig. 1.1). Each of these chapters has an introduction to the topic, discussion of

the previous work, several sections explaining the developed techniques, each corresponding

roughly to a single publication, and a final summary of the work. Finally, the last chapter

provides the closing remarks of this thesis.

- Chapter 1: Introduction. The first chapter introduces the motivation, the main objectives

and an overview of the contributions done throughout the thesis.

- Chapter 2: Overview. Establishes groundwork for the techniques and tools used through-

out the thesis. It is divided in: Deep Learning, learning methods and generative models.
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- Chapter 3: Scene & Person Reconstruction. Chapter devoted to explain the proposed

methods for reconstructing a scene and the clothed people in it while estimating the

camera position. Eight publications are related to this chapter: five already published [19–

21,23,24] and three under revision.

- Chapter 4: Image & Video Person Synthesis. Introduces three unsupervised methods

for clothed people synthesis and edition in the wild. Five publications are related to this

chapter: four already published [18,25–27] and one under revision.

- Chapter 5: Bridging the gap between Reconstruction and Synthesis. This chapter

combines the previous chapters, bringing reconstruction and synthesis under the umbrella

of two novel formulations: [28] for generalization to large datasets and [29] to model one

specific scene at a time. Two publications are related to this chapter: [28,29].

- Chapter 6: Closing Remarks. The last chapter summarizes and discusses all our contri-

butions and conclusions. It also gives a high-level description of future research lines.



2
Overview

The goal of this chapter is to give the reader a global perspective of the elements common to the

techniques used in this dissertation. We first introduce Deep Learning, the common denominator

of most of our models (Sec. 2.1). Then, we discuss the different learning paradigms we have

considered (Sec. 2.2). Finally, we introduce and explain the required concepts on generative

models (Sec. 2.3). Table 2.1 summarises the reviewed techniques and how they relate to each

work presented in this dissertation.

2.1 Deep Learning

Machine learning deals with the problem of learning from data and the development of algo-

rithms capable of tackling a specific task by relying on patterns from a training dataset instead

of hard-coded instructions. Machine learning plays a fundamental role in modern computer

vision. There is a vast family of techniques in the literature such as Support Vector Machine [30],

decision trees and conditional random fields [31]. However, the best performing solutions for

computer vision nowadays are mostly based on Deep Learning (Deep Learning).

Over the past 8 years, DL has grown in popularity thanks to its performance breakthroughs

in works in a wide range of applications. The first neural network dates back to 1943 when

Warren McCulloch and Walter Pitts introduced the concept of Thresholded Logic Unit as a model

of how a human neuron was thought to work [32]. In the 1958 Frank Rosenblatt proposed

Mark I Perceptron, the first precursor to modern nets. An end-to-end system based on the

McCulloch-Pitts neuron capable of iteratively optimizing the perceptron weights by minimizing

the difference between desired and predicted output. This was considered to be key to true pure

intelligence.

Minsky destroyed this idyllic believe by proving that a perceptron could not even learn the

XOR function, and could only discriminate between linearly separable classes [33]. Also it
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DL Sup. Unsup. Semi-sup. Gen.

Chapter 3

Sec. 3.3 - Scene Reconstruction and Camera Pose Estimation
Sec. 3.4 - Object Detection and Tracking X X X
Sec. 3.5 - Non-Rigid Surface Reconstruction X X
Sec. 3.6 - Modeling the Geometry of Dressed Humans X X X

Chapter 4
Sec. 4.3 - Person Image Synthesis X X X
Sec. 4.4 - Face Image Synthesis and Animation X X X
Sec. 4.5 - Image-to-Video Cloth Transfer X X X

Chapter 5 Bridging the gap between Reconstruction and Synthesis X X X

Table 2.1: Overview. Index of the overviewed techniques and how they relate to the methods
presented in this thesis. ‘DL’ stands for Deep Learning (Sec. 2.1). ‘Sup.’, ‘Unsup.’ and ‘Semi-sup.’
stand for Supervised, Unsupervised and Semi-supervised (Sec. 2.2). ‘Gen.’ stands for Generative
(Sec. 2.3).

was argued that multi-layered neural networks would take infinite amount of time to learn

its weights. Nevertheless, in 1986, Geoff Hinton et al. [34] demonstrated that multi-layer

networks could be trained by a simple method based on back-propagating the error across the

network [34]. Backpropagation and the Universal Approximation Theorem stating that neural

networks were potential universal approximators lead to the appearance of Convolutional Neu-

ral Networks [35]. But its lack of scalability made neural nets not competitive against SVM [30].

It was not until 2012 that neural networks regain popularity when Alex Krizhevsky et al. won the

ImageNet [36] competition with the convolutional network architecture AlexNet [37] introduc-

ing key improvements to the original CNNs as Dropout, Rectified Linear Activation Units (ReLU)

and training the model with Graphics Processing Unitss (GPUs). The latter allowed training

with large amounts of data in reasonable amounts of time.

At its very core, neural networks, are formally defined as a directed acyclic graphical model

consisting of a compositional function in which the nodes represent non-linear transformations:

f(x;θ) = WLσL(WL−1 · · ·σ2(W2σ1(W1x))) (2.1)

where θ = {W1, ...,WL} are the parameters of a L-layers network and every σl(·) is a nonlinear

activation function. The parameters θ are learned using gradient descent. More adaptive opti-

mization algorithms like RMSProp and Adam [38] are also commonly used in Deep Learning.

Throughout this thesis we used Adam.

While traditional machine learning algorithms have great performance on small training

datasets, for large datasets deep neural networks outperform the rest of methods for two main

reasons: (i) Large neural networks have many more parameters than traditional approaches,
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making it possible to learn complex nonlinear patterns from data. (ii) Deep neural networks do

not require hand-crafted features, they are able to extract low and high-level features directly

from raw data.

2.2 Supervised vs. Unsupervised vs. Semi-supervised

Learning

There exist several taxonomies to classify machine learning models. Here we consider a clas-

sification based on the level of supervision during training. Three main categories are defined,

namely: supervised, unsupervised and semi-supervised. We next define and discuss their impli-

cations in this thesis.

Supervised Learning. Learning procedure that consists on learning from labeled data with

training pairs of input and desired output. For example, this would consist in learning a cat breed

classifier using a dataset containing diverse images of cats each labeled with its corresponding

breed class. Supervised learning is the most commonly used and more stable to train among

all learning methods. Supervision allows to be very specific with the expected behavior of the

model, as one can define the exact desired output by penalizing the difference between the

desired and regressed output. The main pitfall of supervised learning is having to go through

the expensive procedure of ground-truth annotation. In some cases, setting a label per sample

can be challenging to define, requiring the use of experts (e.g.medical data). It can even be close

to impossible to set (e.g.annotating the time varying shape of a deformable object given a single

image).

Unsupervised Learning. When considering an unsupervised learning strategy the input train-

ing data is provided with no corresponding ground-truth output. In other words, the algorithm

is expected to find by its own the hidden patterns and structure in unlabeled data. Let us

consider a classification algorithm trained to cluster images of cats. The classification would

be based on the hidden patterns found in the data and, not necessarily correlated with the

human concept of ‘breed’. Unsupervised learning allows to tackle tasks for which humans do not

have a specific answer, finding hidden patterns and structures in the data than can determine

unexplored solutions. The main advantage of unsupervised learning is the ease of gathering

training data, as finding unlabeled data is easier than finding labeled, this last being necessary

for supervised methods.



10 Overview

Semi-supervised Learning. This learning paradigm can be understood as a combination of

supervised and unsupervised learning in which the data is mostly unlabeled and only some of

it is labeled. In the previous example of classifying cat breeds, this would consist in using a

training dataset containing diverse images of cats but only some of the images are labeled with

its corresponding breed. However, although semi-supervised learning apparently seems to get

the best of both supervised and unsupervised learning, it cannot provide significant advantages

over supervised learning unless there is some non-trivial relationship between labels and the

unlabeled data.

Which is the best learning strategy? There is no universal answer, the selection of the

learning algorithm depends entirely on the task use cases and the available data.

We live in a society generating ∼ 40 zettabytes (1021 bytes) of data daily. Meaning that there

is plenty of publicly available but unlabeled training data and it is impossible to keep up to date

with manual annotations. The authors opinion is that the future is unsupervised, and more

precisely its subcategory self-supervised. Self-supervised learning aims to use large amounts

of unlabeled data by defining learning objectives supervised by the data itself. In other words,

instead of learning from manually annotated data, learn by using some part of the inputs or

transformed inputs as targets.

Across this thesis we leverage on each of the previous learning strategies (see Table 2.1).

For instance, in Chapter 3 we rely on a fully supervised approach to reconstruct the geometry of

deformable surfaces. This same chapter also explores a semi-supervised video segmentation and

tracking algorithm which, in test, can be applied to previously unknown objects. In Chapter 4,

the proposed synthesis methods are trained in a self-supervised manner, as they do not require

direct supervision nor ground-truth on the specific desired task. Finally, Chapter 5 sets a solid

supervised baseline for novel solutions for reconstruction and synthesis.

2.3 Generative Models

Generative models aim to approximate an unknown true data distribution x ∼ p∗(x) from a

limited set of observations {x(i)}Ni=1 by generating new synthetic data similar to the true data.

The generated data is intended to be novel, and not copies of the original data. To prevent

the model from acting as a copying hash table, the number of parameters of generative models

needs to be significantly smaller than the size of the training set. By doing so, the model is

forced to discover the data essence at its very core in order to then generate it.

The most popular generative models are the Variational Auto-Encoders (VAEs) [39] and

Generative Adversarial Networks (GANs) [40]. VAEs maximize a lower bound on the data log-
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likelihood to model a continuous latent variable with intractable posterior distribution. GANs,

on the other hand, circumvent the need of dealing with likelihood estimation by leveraging

a min-max game. More recently flow-based generative models [41, 42] have started to gain

popularity, being the only generative models that allow explicitly estimating the exact data

probability density function.

We next explain in more detail the two generative methods explored throughout this thesis:

Generative Adversarial Network and flow-based generative models.

Generative Adversarial Networks (GANs)

GANs are a class of generative models based on game theory that, when applied to image

generation, have been shown to produce very realistic results with a high level of detail. The

original GAN formulation is based on the Jensen-Shannon (JS) divergence, consisting in si-

multaneously training a generator G to produce realistic fake samples and a discriminator D

trained to distinguish between the real data from the true distribution and the fake data from

the approximated distribution. This idea is embedded into the so-called adversarial loss:

min
G

max
D

Ez∼Pz [log(1−D(G(z)))] + Ex∼Px [logD(x)] , (2.2)

where z is random noise, Pz the Gaussian distribution N (z; 0, I), I the identity matrix, x is

the input data and Px the input data distribution. This loss is potentially not continuous with

respect to the generator’s parameters and can locally saturate leading to vanishing gradients

in the discriminator. Recent works [43, 44] have shown improved stability by replacing JS

with the continuous Earth Mover Distance (EMD) metric. In practice, computing the EMD is

instractable. Using the Kantorovich-Rubinstein duality it can be approximatly estimated as long

as the Discriminator is constrained to lie on the set of 1-Lipschitz functions. To maintain a

Lipschitz constraint D, WGAN-GP [44] proposes to add a gradient penalty computed as the

norm of the gradients with respect to the discriminator input.

Formally, let x̃ be a randomly weighted linear interpolation between the real data x and

the generated data G(x), Px̃ the random interpolation distribution and λgp the weight of the

gradient penalty regularization. Then, the new loss is defined as:

min
G

max
D∈D
−Ez∼Pz [D(G(z))] + Ex∼Px [D(x)]− λgpEx̃∼Px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
(2.3)

An active research area consists in designing GAN models that incorporate conditions and

constraints into the generation process. Prior studies have explored combining several con-

ditions, such as textual descriptions [45, 46] and class information [47, 48]. Particularly in-
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teresting for this thesis are those methods exploring image-based conditioning as in image

super-resolution [49], future frame prediction [50], image in-painting [51], image-to-image

translation [52] and multi-target domain transfer [11].

Flow-Based Generative Models

In Flow-based generative models the data is modeled by learning an invertible transformation
gθ(·) mapping from a latent space with tractable density pϑ(z) to the true data x:

z ∼ pϑ(z), x = gθ(z), (2.4)

where z is a latent variable and pϑ(z) is typically a Gaussian distributionN (z; 0, I). The function

gθ, commonly known as normalizing flow [42], is bijective, meaning that given a data point x

its latent-variable z is computed as:

z = g−1
θ (x), (2.5)

where g−1
θ is composed of a sequence of K invertible transformations g−1 = g−1

1 ◦g
−1
2 ◦ · · · ◦g

−1
K

defining a mapping between x and z, such that:

x , h0
g−1
1←→ h1

g−1
2←→ h2 · · ·

g−1
K←→ hK , z, (2.6)

being K a fixed hyper-parameter.

The goal of generative models is to find the parameters θ such that pθ(x) best approximates

the true data distribution p∗(x). Explicitly modeling such probability density function is usually

intractable, but using the normalizing flow mapping of Eq. (2.4) under the change of variable

theorem, we can compute the exact log-likelihood for a given data point x as:

log pθ(x) = log pϑ(z) + log |det(∂z/∂x)| (2.7)

= log pϑ(z) +

K∑
i=1

log | det(∂hi/∂hi−1)| (2.8)

where ∂hi/∂hi−1 is the Jacobian matrix of g−1
i at hi−1, and the Jacobian determinant measures

the change of log-density made by g−1
i when transforming hi−1 to hi. Since we can now com-

pute the exact log-likelihood, the training criterion of flow-based generative model is directly

the negative log-likelihood over the observations. Note that optimizing over the actual log-

likelihood of the observations is more stable and informative than doing it over a lower-bound

of the log-likelihood for VAEs, or minimizing the adversarial loss in GANs. This is one of the

major virtues of flow-based approaches.
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Scene & Person Reconstruction

3.1 Introduction

3D reconstruction methods aim to reconstruct a scene and the objects in it from a single view,

have the potential to open the door to many applications in augmented reality and scene

understanding. This is an extremely challenging task. Taking a picture is equivalent to projecting

the 3D world to a 2D image plane losing depth information. Trying to recover depth is known

to be a severely ill-posed problem, and it requires introducing different sources of prior knowl-

edge in order to be solved. Another problematic are non-visible areas, objects are commonly

highly occluded and/or have self-occlusions. Reconstruction under occlusions is particularly

challenging due to the inherent ambiguity that exists in the reconstructions of non-visible parts.

This chapter is devoted to explain four novel methods that are tailored to reconstruct a scene

and/or the clothed persons in it, while estimating the camera position. All the proposed methods

are monocular and propose strategies to handle occlusions, self-occlusions and low-textured

surfaces.

First, we present a method for scene reconstruction and camera localization specially de-

signed for the challenging case of low textured scenes where textured key-points are scarce

(Sec. 3.3). Yet, there are many environments in which, despite being low textured, one can

still reliably estimate line-based geometric primitives, for instance in city and indoor scenes,

or in the so-called manhattan worlds, where structured edges are predominant. We present

a Simultaneous Localization and Mapping (SLAM) based method that relies on the edges and

lines of the scene as geometric primitives. We thoroughly benchmark the proposed approach

and demonstrate that the use of lines does not only bost the performance of the state-of-the-art

solution in poorly textured frames, but also systematically improves it in sequences combining

points and lines, without compromising the efficiency.
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Second, we present a spatio-temporal method to learn object models for real-time object seg-

mentation and tracking from a single reference image (Sec. 3.4). To achieve this, we concentrate

all the heavy computational load to the training phase with two generative model discriminators

that enforce spatial and temporal mask consistency over the last K frames. Then at test time,

we only use a light regressor, which considerably reduces the inference time. As a result, the

final model combines a high resiliency to sudden geometric and photometric object changes

with efficiency at test time. We demonstrate its accuracy to be on par with the state-of-the-art

techniques on the challenging benchmarks, while running at 32 fps, about 4x faster than the

closest competitor. This methods was the first to run inference at real-time for the specific task

of object segmentation and tracking from a single reference image.

Once we can segment objects in a scene, we then explore the problem reconstructing them.

As a third contribution, we propose a method for estimating the 3D shape of a deformable

surfaces with simple topologies (rectangular) from a single view (Sec. 3.5). In contrast to

previous approaches, our technique does not require a pre-registered template of the surface,

and is robust to the lack of texture and partial occlusions. The core of this approach is a

geometry-aware deep architecture that tackles the problem as usually done in previous non-

deep learning solutions: first perform 2D detection of the mesh and then estimate a 3D shape

that is geometrically consistent with the image. We also build a large dataset and benchmark

of synthetic renderings of shapes under different levels of deformation, material properties,

textures and lighting conditions. We benchmark the approach and demonstrate it consistently

improves the state-of-the-art solutions with a significantly lower computational time, about 67x

faster than the closest competitor in performance.

Finally, once we are capable of detecting objects in a scene and performing monocular

reconstruction of surfaces with simple topologies, we tackle the more complex task of monocular

reconstruction of dressed humans (Sec. 3.6). We contribute in three fundamental aspects of

the problem, namely, a new dataset, a novel shape parameterization algorithm and an end-to-

end deep generative network for predicting shape. First, we present 3DPeople, a large-scale

synthetic dataset with 2.5 Million photo-realistic images of 80 subjects performing 70 activities

and wearing diverse outfits. Besides providing textured 3D meshes for clothes and body, we

annotate the dataset with segmentation masks, skeletons, depth, normal maps and optical flow.

All this together makes 3DPeople suitable for a plethora of tasks. We then introduce a new

3D shapes representation based on 2D Geometry Images (GIMs). Lastly, we design a multi-

resolution deep generative network that, given an input image of a dressed human, predicts

his/her GIMs (and thus the clothed body shape) in an end-to-end manner. We obtain very

promising results in jointly capturing body pose and clothing shape, both for synthetic validation

and on the wild images.



3.2 Related Work 15

3.2 Related Work

We next elaborate on the state-of-the-art of all necessary aspects required to reconstruct a scene

and the clothed persons in it while estimating the camera position: scene reconstruction, camera

pose estimation, object segmentation and object reconstruction.

Scene Reconstruction and Camera Pose Estimation

Building the 3D rigid structure of unknown environment while recovering the camera trajectory

from a monocular image sequence has been a main research area in robotics and computer

vision for decades, with many real applications in autonomous robot navigation and augmented

reality. This problem is known as Simultaneous Localization and Mapping (SLAM), and its core

is roughly the same compared to structure-from-motion algorithms.

Early filtering approaches applied the Extended Kalman Filter [53] to process every frame in

the video for small maps, providing sparse but real-time solutions. Subsequent works based on

Bundle Adjustment (BA) handled denser maps just using key-frames to estimate the map [54,

55], obtaining more accurate solutions [56] than filtering techniques. Most approaches rely

on the Parallel Tracking and Mapping (PTAM) algorithm [54], that represented a breakthrough

in visual-based SLAM. This method approximately decouples localization and mapping in two

threads that run in parallel, relying on FAST [57] corners points. In [58] the accuracy was

improved with edge features together with a rotation estimation step during tracking that

provided better relocalization results, and even reducing the computational cost [59]. More

recently, the ORB-SLAM system has been proposed in [1], providing a more robust camera

tracking and mapping estimator. A multi-threaded Central Processing Unit (CPU) approach was

presented in [60] to estimate real-time dense structure estimation.

However, all previous feature-based methods fail in environments with poor texture or

situations with defocus and motion blur. To solve this, dense and direct methods can be applied,

even though they are likely to be computationally expensive [61, 62], and require dedicated

GPU-implementations to achieve real-time performance. Other semi-direct methods such as [63]

overcome the high-computation requirement of dense methods by exploiting only pixels with

strong gradients, providing an intermediate level of accuracy, density and complexity. Scene

prior information has been also exploited to provide a significant boost to SLAM systems [64,65].

Motivated by the need for efficient and accurate scene representations even for poorly tex-

tured environments, in Sec. 3.3 we propose a novel visual-based SLAM system that can combine

points and lines information in a unified framework while keeping the computational cost.

Note that several parametrizations to combine points and lines were used in EKF-SLAM [66].
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However, as we said above, filtering-based approaches have been outperformed by optimization-

based approaches in rigid SLAM, as we do in this thesis. We validate our method on a wide

variety of scenarios, outperforming state-of-the-art solutions for highly textured sequences and

showing very accurate solutions in low-textured scenarios where standard feature-based meth-

ods fail.

Object Segmentation

In recent years, object segmentation and tracking have experienced a tremendous increase in

popularity due to the publication of large datasets (DAVIS [67,68] and YouTube-VOS [69]) that

have enabled the training of Deep Learning techniques. The two main settings to tackle this

problem are semi-supervised and unsupervised. In the former, the ground truth mask for the

object of interest in the first frame of the video sequence is given to the method whereas in the

latter no information is given to the algorithm and usually the object with predominant motion

is segmented. In this thesis, we tackle the semi-supervised setting.

For semi-supervised segmentation, traditional approaches used temporal super-pixel [70,

71], optimization in the bilateral space [72], or optimal selection of object proposals [73] to

obtain the object segmentation mask for each frame in the video sequence. [74] and [75] were

the first two approaches to apply Deep Learning to the problem. Specifically, [74] fine-tuned

the network using the first frame of the video sequence whereas [75] used the mask from the

previous frame as an input to the network. [76] extended [74] with an online learning strategy,

while [77] also extended [74] by combining its result with Mask-RCNN [78].

Another set of techniques have tried to incorporate the information of the first frame in

different ways. [79] formulated the problem as a pattern matching with the initial mask, [80]

introduced the initial mask in the network in a batch-norm like layer. [81] used a siamese

network to combine the low level features of the initial frame with the current one together

with the back propagation through time training strategy introduced in [82].

Moreover, some methods have tried to leverage metric learning to solve the problem [83–

86], divide the object in multiple parts and track each of them [87], integrate CNN features

with traditional energy minimization techniques [88,89] or design a complex architecture with

re-identification and bidirectional propagation modules [90].

Previous approaches mostly rely on single image segmentation, using at most the previous

mask as a temporal consistency constraint. There are, however, a few attempts to exploit the

temporal dimension better. For instance, some techniques have leveraged optical flow as an

additional input to their network. [91] and [92] built a second CNN branch to process optical

flow, [93] used it as a prior in the decoder of the network and, [94] used it to align the features

from previous frames. While these methods use optical flow priors trained in a separate context,
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[94] used the large scale YouTube-VOS dataset (released by them) to train a convolutional Long

Short-Term Memory (LSTM) [95] in an end-to-end manner. The proposed approach in Sec. 3.4

lies in between methods that do not use temporal consistency, and [94, 96], which learns long-

term dependencies with an Recurrent Neural Network (RNN).

Close to our approach, several works rely on generative models for semantic segmenta-

tion [97–100]. [97] trained the discriminator to differentiate between real and predicted prob-

ability maps. [99] used two different discriminators to obtain local and global semantic consis-

tency for the human part segmentation problem. [100] tackled the semi-supervised semantic

segmentation task using the discriminator to obtain a confidence label map for unlabeled data.

To the best of our knowledge, the segmentation and tracking method we propose in Sec. 3.4

is the first one to successfully apply GANs to video segmentation. Furthermore, we can use a

considerably higher image resolution than previous segmentation works (512×512 vs. 256×256

in [99] or 321 × 321 in [100]) and we leverage recent advances introduced in the images

synthesis task, i.e., WGAN with gradient penalty [44], in order to improve stability during

training.

Non-Rigid Object Reconstruction

Reconstructing deformable objects from monocular images is known to be a severely ill-posed

problem which requires introducing different sources of prior knowledge. We split related work

on object reconstruction into methods that define these priors based on pre-defined models

(either physically-based or handcrafted) and techniques that learn them from training data.

Also, we include a discussion on what is the most appropriate 3D object representation.

Early approaches described non-rigid surfaces using models inspired by physics, such as su-

perquadrics [101], thin-plates [102], elastic models [103] and finite-elements [104]. These rep-

resentations, however, could not accurately approximate the non-linear behavior of large defor-

mations. More complex deformations can be captured by shape-from-texture approaches [105–

114], which aim at recovering the surface geometry given a reference configuration in which

the template shape is known, and a set of 3D-to-2D correspondences between this shape and

the input image. On top of this, additional constraints enforcing isometry [112], conformal

warps [105] and photometric consistency [107, 108] are considered. While effective, shape-

from-texture methods are very sensitive to the initial set of matches, which may be difficult to

establish in practice, especially under occlusions, low textured surfaces and varying illumination.

Temporal information is another typically exploited prior. Non-rigid-shape-from-motion

techniques generally extend Tomasi and Kanade’s rigid factorization algorithm [115] to recover

deformable shape and camera motion from a sequence of 2D tracks, exploiting physical [116]

and low-rank constraints on the shape [117–121], trajectory [122] or the forces inducing the
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deformation [123]. Again, these methods rely on the fact that 2D point tracks can be readily

computed, limiting thus their general applicability to relatively well-textured surfaces. There

exist approaches to describe patches [124] or points of interest [125,126] for deformable scenes,

although they are typically computationally expensive [125–127] or require depth informa-

tion [128].

The need of point correspondences is circumvented by template-free approaches that per-

form a per-point 3D reconstruction by minimizing an objective function on geometric and

photometric cues [129–132]. The shading models considered by these approaches, however,

use to be oversimplifications of the reality, either considering brightness constancy [131] or

Lambertian surfaces lit by point light sources [132].

More realistic deformation and appearance models can be learned from training data. The

first attempt along this line corresponds to the active appearance models [133], which learned

low-dimensional 2D models for face tracking. This was later extended to 3D by the active shape

and morphable models [134, 135], and by methods integrating these models into the shape-

from-texture formulation [136]. Yet, all these approaches for surface reconstruction still rely on

feature points detected over the whole surface or at its boundary [137], which are difficult to

obtain in practice. In contrast to previous approaches, in Sec. 3.5, we introduce a method that

does not require a pre-registered template of the surface and is robust to the lack of texture and

partial occlusions.

When dealing with more complex deformations such as human shape estimation, learning

methods typically use shape embeddings learned from body scan data repositories like SMPL

model [138]. The body geometry is described by a reduced number of pose and shape param-

eters [139–141]. Dibra et al. [142] are the first in using a CNN fed with silhouette images to

estimate shape parameters. In [143,144] SMPL body parameters are predicted by incorporating

differential renders into the deep network to directly estimate and minimize the error of image

features. On top of this, [6] introduces an adversarial loss that penalizes non-realistic body

shapes. [145, 146] extended the SMPL parametric representation to model cloth and [147]

used shape from shading to predict higher details. Very recently, [148] extended texture maps

and [149] implicit functions to regress full body 3D meshes.

Still, which is the most appropriate 3D object representation to train a deep network remains

an open question, especially for non-rigid bodies. Standard non-parametric representations for

rigid objects include voxels [150,151], octrees [152–154] and point-clouds [155]. [5,156] use

2D embeddings computed with geometry images [157] to represent rigid objects. Bodynet [158]

explores a network that predicts voxelized human body shape. Very recently, [159] introduces a

pipeline that given a single image of a person in frontal position predicts the body silhouette as

seen from different views, and then uses a visual hull algorithm to estimate 3D shape. Finally, in
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3DPeople [23] (Sec. 3.6) we extend the geometry image representation [157] to accommodate

for objects with elongated parts like the human body.

3.3 Scene Reconstruction and Camera Pose Estimation

The last years have witnessed a surge in augmented reality. Among other technologies, at

the core of these systems lie sophisticated SLAM algorithms, which have proven effective to

accurately reconstruct the unknown environment while estimating the camera position.

Since the groundbreaking Parallel Tracking And Mapping [54] algorithm was introduced by

Klein and Murray in 2007, many other real-time visual SLAM approaches have been proposed,

including the feature point-based ORB-SLAM [1, 160], and the direct-based methods LSD-

SLAM [60] and RGBD-SLAM [161] that directly optimize over image pixels. Among them,

the ORB-SLAM seems to be the current state-of-the-art, yielding better accuracy than the direct

methods counterparts.

While the performance of ORB-SLAM [1] in well textured sequences is impressive, it is prone

to fail when dealing with poorly textured videos or when feature points are temporary vanished

out due to, e.g., motion blur. These kind of situations are often encountered in man-made

scenarios. However, despite the lack of reliable feature points, these environments may still

contain a number of lines that can be used in a similar manner.

Exploiting lines, though, is not a trivial task. First, existing line detectors and parameter-

izations are not as well-established in the literature as feature point ones. And secondly, the

algorithms to compute pose from line correspondences are less reliable than those based on

points and are very sensitive to the partial occlusions that lines may undergo. These reasons

made current line based SLAM approaches rely on range cameras or laser scanners [162–165].

We propose to tackle all these issues using a purely visual-based approach. Building upon

the ORB-SLAM [1] framework, we propose PL-SLAM (Point and Line SLAM), a solution that can

simultaneously leverage points and lines information. As recently suggested by [166], lines are

parameterized by their endpoints, whose exact location in the image plane is estimated following

a two-step optimization process. This representation, besides yielding robustness to occlusions

and mis-detections, allows integrating the line representation within the SLAM machinery as

if they were points and hence re-use most of the ORB-SLAM [1] architecture. The resulting

approach is shown to be very accurate in poorly textured environments, and also, improves the

performance of the original ORB-SLAM [1] in highly textured sequences (see Fig. 3.5).

We also introduce a new initialization approach that allows estimating an approximate initial

map from only line correspondences between three consecutive images. Previous solutions

were based on homography [167] or essential matrix estimation [168], and required point
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correspondences. To the best of our knowledge, there are no equivalent techniques based on

lines. The solution we propose holds on the assumption of constant rotation between three

consecutive frames and that these rotations are relatively small. In the experimental subsection,

we will show that despite these approximations, the initial map we estimate highly resembles

those obtained by point-based solutions, and therefore, are a very good alternative to use when

feature points are not available.

In summary, this section main contributions are: 1) an algorithm for scene 3D reconstruction

and camera pose estimation robust to poorly textured scenarios that builds upon the joint

estimation of point and line correspondences; and 2) the first—to the best of our knowledge—

a new initialization approach that allows estimating an approximate initial map from only line

correspondences between three consecutive images.

3.3.1 PL-SLAM: Real-Time Monocular Visual SLAM with Points and Lines

The pipeline of our approach highly resembles that of the ORB-SLAM [1], in which we have

integrated the information provided by line features (see Fig. 3.1). We next briefly review the

main building blocks in which line operations are performed. For a description of the operations

involving point features, the reader is referred to [1].

One of the main issues to address in SLAM algorithms is the computational complexity. In

order to preserve the real-time characteristics of ORB-SLAM [1], we have carefully chosen, used

and implemented fast methods for operating with lines in all stages of the pipeline: detection,

triangulation, matching, culling, relocalization and optimization. Line segments in an input

frame are detected by mean of LSD [169], an O(n) line segment detector, where n is the number

of pixels in the image. Then, lines are pairwise matched with lines already present in the map

using a relational graph strategy [170]. This approach relies on lines’ local appearance (Line

Band Descriptors) and geometric constraints and is shown to be quite robust against image

artifacts while preserving the computational efficiency.

As it is done with point features, after having obtained an initial set of map-to-image line

feature pairs, all lines of the local map are projected onto the image to find further correspon-

dences. Then, if the image contains sufficient new information about the environment, it is

flagged as a keyframe and its corresponding lines are triangulated and added to the map. To

discard possible outliers, lines seen from less than three viewpoints or in less than 25% of the

frames from which they were expected to be seen are also discarded (culling). Line positions in

the map are optimized with a local Bundle Adjustment (BA). Note in Fig. 3.1 that we do not use

lines for loop closing. Matching lines across the whole map is too computationally expensive.
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Figure 3.1: PL-SLAM overview. The system is an extension of ORB-SLAM [1], and it is
composed by four main threads: Tracking, Local Mapping, Loop Closing and Scale Estimator. The
Tracking thread estimates the camera position and decides when to add new keyframes. Then,
Local Mapping adds the new keyframe information into the map and optimizes it with Bundle
Adjustment (BA). The Loop Closing thread is constantly checking for loops and correcting them.
The Scale Estimator estimates the real scale factor by comparing the real robot height vs the
estimated one.

Hence, only point features are used for loop detection.

Another issue of monocular SLAM is the lack of scale. In this section we also extend the

system with a scale estimator with the use of a cheap pointer sensor mounted on the camera rig.

3.3.2 Line-based SLAM

We next describe the line parameterization and error function we use and how this is integrated

within the main building blocks of the SLAM pipeline, namely BA, global relocalization and

feature matching.

Line-based Reprojection Error

In order to extend the ORB-SLAM [1] to lines, we need a proper definition of the reprojection

error and line parameterization.

Following [166], let P,Q ∈ R3 be the 3D endpoints of a line, pd,qd ∈ R2 their 2D detections
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in the image plane, and ph
d,q

h
d ∈ R3 theirs corresponding homogeneous coordinates. From the

latter we can obtain the normalized line coefficients as:

l =
ph

d × qh
d∣∣ph

d × qh
d

∣∣ . (3.1)

The line reprojection error Eline is then defined as the sum of point-to-line distances Epl

between the projected line segment endpoints, and the detected line in the image plane (see

Fig. 3.2-right). That is:

Eline(P,Q, l,θ,K) = E2
pl(P, l,θ,K) + E2

pl(Q, l,θ,K), (3.2)

with:

Epl(P, l,θ,K) = l>π(P,θ,K), (3.3)

where l are the detected line coefficients, π(P,θ,K) represents the projection of the endpoint

P onto the image plane, given the internal camera calibration matrix K, and the camera

parameters θ = {R, t} that include the rotation and translation.

Note that in practice, due to real conditions such as line occlusions or mis-detections, the

image detected endpoints pd and qd will not match the projections of the endpoints P and Q

(see Fig. 3.2-left). Therefore, we define the detected line reprojection error as:

Eline,d(pd,qd, l) = E2
pl,d(pd, l) + E2

pl,d(qd, l), (3.4)

where l are the projected 3D line coefficients and the detected point-to-line error is Epl,d(pd, l) =

l>pd.

Based on the methodology proposed in [166], a recursion over the detected reprojection line

error will be applied in order to optimize the pose parameters θ while approximating Eline,d to

the line error Eline defined on Eq. (3.2).

Bundle Adjustment with Points and Lines

The camera pose parameters θ = {R, t} are optimized at each frame with a BA strategy that

constrains θ to lie in the SE(3) group. For doing this, we build upon the framework of the ORB-

SLAM [1] but besides feature point observations, we include the lines as defined in the previous

subsection. We next define the specific cost function we propose to be optimized by the BA that

combines the two types of geometric entities.

Let Xj ∈ R3 be the generic j-th point of the map. For the i-th keyframe, this point can be
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Figure 3.2: Points and lines notation. Left: Notation. Let P,Q ∈ R3 be the 3D endpoints
of a 3D line, p̃, q̃ ∈ R2 their projected 2D endpoints to the image plane and l̃ the projected
line coefficients. pd,qd ∈ R2 the 2D endpoints of a detected line, Pd,Qd ∈ R3 their real 3D
endpoints, and l the detected line coefficients. X ∈ R3 is a 3D point and x̃ ∈ R2 its corresponding
2D projection. Right: Line-based reprojection error. d1 and d2 represent the line reprojection
error, and d′1 and d′2 the detected line reprojection error between a detected 2D line (blue solid)
and the corresponding projected 3D line (green dashed).

projected onto the image plane as:

x̃i,j = π(Xj ,θi,K), (3.5)

where θi = {Ri, ti} denotes the specific pose of the i-th keyframe. Given an observation xi,j of

this point, we define following 3D error:

ei,j = xi,j − x̃i,j . (3.6)

Similarly, let us denote by Pj and Qj the endpoints of the j-th map line segment. The cor-

responding image projections (expressed in homogeneous coordinates) onto the same keyframe

can be written as:

p̃h
i,j = π(Pj ,θi,K), (3.7)

q̃h
i,j = π(Qj ,θi,K) . (3.8)

Then, given the image observations pi,j and qi,j of the j-th line endpoints, we use Eq. (3.1)

to estimate the coefficients of the observed line l̃i,j . We define the following error vectors for the
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line:

e′i,j = (̃li,j)
>(K−1ph

i,j), (3.9)

e′′i,j = (̃li,j)
>(K−1qh

i,j). (3.10)

The errors (3.9, 3.10) are in fact instances of the point-to-line error (3.3). As explained in [166]

they are not constant w.r.t. shift of the endpoints Pj , Qj along the corresponding 3D line, which

serves as implicit regularization allowing us to use such a non-minimal line parametrization in

the BA.

Observe that representing lines using their endpoints we obtain comparable error represen-

tations for points and lines. We can therefore build a unified cost function that integrates each

error term as:

C =
∑
i,j

ρ
(
e>i,jΩ

−1
i,j ei,j + e

′
i,j

>
Ω′i,j

−1
e′i,j + e

′′
i,j

>
Ω′′i,j

−1
e′′i,j

)
(3.11)

where ρ is the Huber robust cost function and Ωi,j , Ω′i,j , Ω′′i,j are the covariance matrices

associated to the scale at which the keypoints and line endpoints were detected, respectively.

Global Relocalization

An important component of any SLAM method, is an approach to relocalize the camera when

the tracker is lost. This is typically achieved by means of a Perspective-n-Point (PnP) algorithm,

that estimates the pose of the current (lost) frame given correspondences with 3D map points

appearing in previous keyframes. On top of the PnP method, a RANSAC strategy is used to reject

outliers correspondences.

In the ORB-SLAM [1], the specific PnP method that is used is the EPnP [171], which however,

only accepts point correspondences as inputs. In order to make our approach appropriate to han-

dle lines for relocalization, we have replaced the EPnP by the recently published EPnPL [166],

which minimizes the detected line reprojection error of Eq. (3.4).

Furthermore, EPnPL [166] is robust to partial line occlusion and mis-detections. This is

achieved by means of a two-step procedure in which first minimizes the reprojection error of

the detected lines and estimates the line endpoints pd,qd. These points, are then shifted along

the line in order to match the projections p̃d, q̃d of the 3D model endpoints P,Q (see Fig. 3.2).

Once these matches are established, the camera pose can be reliably estimated.
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Figure 3.3: Camera rotation estimation from line correspondences. P,Q ∈ R3 are the 3D
line endpoints, li, i = {1, 2, 3} their detections in three consecutive frames with endpoints pi,qi,
and coefficients li.

Map Initialization with Lines

Another contribution of this section is an algorithm to estimate an initial map using only line

correspondences. Current optimization-based SLAM approaches are initialized with maps built

from point correspondences between at least two frames. Homography [167] or essential ma-

trix [168] estimation algorithms are then used to compute the initial map and pose parameters.

We next describe our line-based solution for map initialization, which can be a good alternative

in low textured scenes with lack of feature points.

Let us consider the setup of Fig. 3.3, where a line defined by endpoints P,Q is projected

onto three camera views. Let {p1,q1}, {p2,q2} and {p3,q3} be the endpoint projections in each

of the views and l1, l2, l3 ∈ R3 the corresponding line coefficients computed from the projected

endpoints.

We will make the assumption of small and continuous rotation between consecutive camera

poses, such that the rotation from the first to the second camera views is the same than the

rotation from the second to the third one1. Under this assumption we can represent the three

camera rotations by R1 = R>, R2 = I, and R3 = R, with I being the 3× 3 identity matrix.

Note that the line coefficients li, i = {1, 2, 3} also represent the parameters of a vector which

is normal to the plane formed by the center of projection Oi and the projections pi,qi. The cross

product of two such vectors li will be parallel to the line P,Q and at the same time orthogonal

to the third vector, all of them appropriately rotated and put in a common reference. This

1In the experimental subsection we evaluate the consequences of this assumption, and show that in practice is a
good approximation.
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constraint can be written as:

l>2

(
(R>l1)× (Rl3)

)
= 0. (3.12)

Additionally, for small rotations we can approximate R as:

R =


1 −r3 r2

r3 1 −r1

−r2 r1 1

 . (3.13)

For this parametrization, having three matched lines, we will have three quadratic equations

like Eq. (3.12) with three unknowns, r1, r2 and r3. We adapt the polynomial solver of [172],

which yields up to eight solutions. For each possible rotation matrix we can get t1, t3 by using

the trifocal tensor equations [173] which will be linear in t1, t3. We assume t2 = 0. We evaluate

the eight possible solutions and keep the one that minimizes Eq. (3.12).

It is worth to point that in order to get enough independent constraints when solving for

the translation components using the trifocal tensor equations, we need two additional line

correspondences, and hence, the total number of line matches required by our algorithm is five.

3.3.3 Scale Estimation

It is well-known that monocular SLAM methods are up to scale, but for real tasks it is necessary

to have an approximate real scale estimate of the map, trajectory and actual position of the

robot. To this extend, we have further improved the system by adding a scale estimation module.

The scale estimator thread computes the scale as the factor between the real height of the

robot/camera and the estimated one. The real height is obtained by correcting the distance

measurement of a lidar pointer pointing to the ground with the camera gyroscope as:

h′ = h cosα cosσ, (3.14)

where h′ is the real height, h the lidar pointer range measurement, α the roll angle and σ the

pitch angle. Notice that this algorithm adds the constraint that the floor under the robot must

be flat in the first frames until the scale estimator has converged.

3.3.4 Experimental Evaluation

We have compared our system with the current state-of-the-art Visual SLAM methods using

the TUM RGB-D benchmark [13]. Also, we evaluate the proposed initialization approach with

synthetic and real data and compare the computation time of our PL-SLAM algorithm and the
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TUM RGB-D
Sequence

PL-SLAM
PL-SLAM

Classic Init
LAP-SLAM ORB-SLAM PTAM† LSD-SLAM† RGBD-SLAM†

f1_xyz 1.21 1.46 1.34 1.38 1.15 9.00 1.34
f2_xyz 0.43 1.49 0.46 0.54 0.2 2.15 2.61

f1_floor 7.59 9.42 7.85 8.71 - 38.07 3.51
f2_360_kidnap 3.92 60.11 4.12 4.99 2.63 - 393.3
f3_long_office 1.97 5.33 2.45 4.05 - 38.53 -

f3_nstr_tex_far
ambiguity
detected

37.60 -
ambiguity
detected

34.74 18.31 -

f3_nstr_tex_near 2.06 1.58 1.31 2.88 2.74 7.54 -
f3_str_tex_far 0.89 1.25 - 0.98 0.93 7.95 -

f3_str_tex_near 1.25 7.47 1.31 1.5451 1.04 - -
f2_desk_person 1.99 6.34 2.75 5.95 - 31.73 6.97

f3_sit_xyz 0.066 9.03 0.27 0.08 0.83 7.73 -
f3_sit_halfsph 1.31 9.05 1.76 1.48 - 5.87 -

f3_walk_xyz 1.54
ambiguity
detected

1.54 1.64 - 12.44 -

f3_walk_halfsph 1.60
ambiguity
detected

1.76 2.09 - - -

Table 3.1: Localization accuracy in the TUM RGB-D Benchmark: Euclidean distance median
in centimeters over 5 executions for each sequence. All trajectories were aligned with 7DoF
with the ground truth before computing the Absolute Trajectory Error (ATE) error with the
script provided by the benchmark [13]. Both ORB-SLAM and PL-SLAM were executed with the
parametrization of the on-line open source ORB-SLAM package. †Results of PTAM, LSD-SLAM
and RGBD-SLAM were extracted from [1].

ORB-SLAM [1]. All experiments were carried out with an Intel Core i7-4790 (4 cores @3.6

GHz), 8Gb Random-Access Memory (RAM). Due to the randomness of some stages of the

pipeline, e.g., initialization, position optimization or global relocalization, all experiments were

run five times and we report the median of all executions.

Localization Accuracy in the TUM RGB-D Benchmark

To evaluate the localization accuracy we compare our PL-SLAM method against current state-

of-the-art Visual SLAM methods, including ORB-SLAM [1], PTAM [54], LSD-SLAM [60] and

RGBD-SLAM [161]. The metric used for the comparison is the Absolute Trajectory Error (ATE),

provided by the evaluation script of the benchmark. Before computing the error, all trajectories

are aligned using a similarity warp except for the RGBD-SLAM [161] which is aligned by a rigid

body transformation. The results are summarized in Table 3.1.

Note that our PL-SLAM consistently improves the trajectory accuracy of ORB-SLAM [1] in
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Figure 3.4: ORB-SLAM vs. PL-SLAM. Comparison between ORB-SLAM and PL-SLAM in two
TUM-RGBD sequences. First-Column: Ground truth and predicted trajectories by PL-SLAM and
ORB-SLAM. The dotted line represents the ground truth, the green line the trajectory obtained
with PL-SLAM, and the blue line the trajectory obtained with ORB-SLAM. Second-Column and
Third-Column: Estimated trajectories color-coded with the amount of error by PL-SLAM and
ORB-SLAM, respectively.

all sequences. Indeed, it yields the best result in all but two sequences, for which PTAM [54]

performs slightly better. Nevertheless, PTAM [54] turned not to be so reliable, as in 5 out of all

12 sequences it lost track. LSD-SLAM [60] and RGBD-SLAM [161] also lost track in 3 and 7

sequences, respectively.

Fig. 3.4 presents a comparison between ORB-SLAM and our extension PL-SLAM in sequences

freiburg2_desk_person and freiburg3_sit_halfsph. Note how PL-SLAM reduces the drift w.r.t ORB-

SLAM by adding line geometric primitives information.

Localization Accuracy in Low Textured Scenarios

To demonstrate the performance of PL-SLAM in low textured scenarios we performed real

experiments in two environments, each with a predominant non-textured element: planes or

cylinders.



3.3 Scene Reconstruction and Camera Pose Estimation 29

− 0.4 − 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3

x [m ]

− 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

y
 [

m
]

Ground t ruth

PL-SLAM

− 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x [m ]

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

y
 [

m
]

Ground t ruth

PL-SLAM

Figure 3.5: Results on non-textured scenes. Left: Localization accuracy in structured low
texture scenarios. Right: Low texture sequence. For each block: Top-Image: Scene overview.
Middle and Bottom Images: Sampled frames from the video sequence. Plot: Ground truth
(green dotted line) vs. predicted trajectory (green solid line).

The video data was recorded at 30 Hz frame rate and a sensor resolution of 640x480 pixels.

The ground-truth trajectory was obtained from a rigid body motion-capture system with 13

high-speed tracking cameras at 120 FPS.

In the first experiment we evaluated our PL-SLAM method in a scene with predominant non-

textured planes (Fig. 3.5-left). Despite the absence of texture, line features are still consistent

enough to initialize the map and obtain a trajectory with an Absolute Trajectory Error (ATE) of

0.31 meters.

We also tested our system in a scene with only non-textured cylinder elements (Fig. 3.5-

right). This is a challenging scenario because of the predominance of apparent lines - most

line features are not lines, but instead apparent lines product of projecting the cylinders to

the camera plane. However, the combination of point and line features makes the system still

reliable enough to initialize a map and estimate a trajectory with 0.1 meters of ATE.

In both experiments ORB-SLAM fails to estimate a trajectory.

Low Texture Reflectant Glazed Building Experiment

We have also performed a qualitative evaluation of our method tracking the frontal view of a

glazed building. This is a challenging task due to the glaze low texture profile and the window

reflections. Fig. 3.6 shows the results of the experiment. The system is robust enough to filter

the features of the reflected image by checking movement consistency between frames and relay

on line features of the building window’s frames to estimate a trajectory.
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As the experiment was performed in a non-controlled environment, we do not have the

ground truth trajectory, and we only provide an estimate one.

0.0

Est im at ed ground t rut h

PL-SLAM

Figure 3.6: Localization of a glazed building. Top: Scene overview. Middle and Bottom:
Sampled frames from the video sequence. Center: Approximated ground truth (green dotted
line) vs. predicted trajectory (green solid line).

Real Robot Qualitative Experiment

To further test the proposed system, we have embedded PL-SLAM in a quadcopter framed robot.

For the real robot experimentation we have further extended the system by adding the real

scale estimator described in Subsec. 3.3.3. The experiment setup was designed to test the most

common and challenging situations in real scenarios: high speed direction changes, apparent

lines, challenging light conditions, long distance features and inconsistent camera frame rates

with low latency peaks. PL-SLAM was capable of running onboard in real-time at 20Hz with a

camera resolution of 640x480 pixels on an embeded Intel R© NUC Skull. The scale estimate error

factor was 0.06. The generated map and estimated trajectory outputs are shown in Fig. 3.7.

Because the experiment was performed in a non-controlled environment, we do not have the

trajectory ground truth. The scale estimate error was computed as:
∣∣1− s

s̃

∣∣ being s the real

factor and s̃ the estimated factor.

Map Initialization - Synthetic Experiments

In order to evaluate the map initialization algorithm we performed several synthetic and real

experiments.
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Key Frame

Trajectory

Point Features

Line Features
Robot

Figure 3.7: Real robot experiment. Top-First: Scene overview. Top-Second: Robot. Top-Third
and Top-Fourth: Sampled frames from the video sequence. Bottom: Experiment visualization
of the generated map and estimated trajectory. For both key-frames (crossed boxes) and
trajectories (solid lines) orange color stands for before scale convergence estimation (B.S.C.) and
blue for after scale convergence estimation (A.S.C.). Point features are displayed as green dots
and line features as pink segments.

In the synthetic tests we first evaluated the stability of the polynomial solver we built,

modifying the toolbox of Kukelova et al. [172]. Fig. 3.8-left shows the distribution of errors

in the parameter estimation for ideal solutions. Note that the average error is around 1e-15,

indicating that our modified solver is very stable.

Additionally, we have assessed the consequences of assuming small and constant rotations

between three consecutive frames. Fig. 3.8-right displays the rotation and translation errors

produced for increasing inter-frame rotations. While the estimated rotation error remains within
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Figure 3.8: Map initialization - synthetic experiments. Left: Numerical stability of the
polynomial system solver. Right: Rotation and translation error w.r.t frames rotation.
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Figure 3.9: Number of points vs. number of lines. In high texture (top-row) and low texture
(bottom-row). Left-Column: Evolution of the number of points and lines in the map. The green
dotted line shows the number of points, the blue solid line the number of lines. Middle-Column
and Right-Column: Visualization of the line and point features of a sample frame, respectively.

relatively small bounds, the translation error is more severely affected by the small rotation

assumption. In any event, when this initial map is fed into the BA optimizer, the translation

error is drastically reduced.

Map Initialization - Real Experiments

We also evaluated our PL-SLAM method using the classic initialization (based on homography

or essential matrix computation), and with the proposed map initialization based only on lines

(see again Table 3.1). As expected, the accuracy with the line map initialization drops due to the

small rotation assumptions it does. However, in the low textured sequence f3_nstr_tex_far, the

classic initialization detects an ambiguity which disables it of initializing the map. In contrast,
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Thread Operation PL-SALM ORB -SLAM

KeyFrame Insertion 17.08 9.86

Local Mapping

Map Feature Culling 1.18 1
Map Features Creation 74.64 8.39

Local BA 218.25 118.5
KeyFrame Culling 12.7 2.86

Total 3Hz 7Hz

Tracking

Features Extraction 31.32 10.76
Initial Pose Estimation 7.16 7.16

Track Local Map 12.58 3.18
Total 20Hz 50Hz

Table 3.2: Tracking and mapping execution time Mean execution time in milliseconds of 5
different sequences of the TUM RGB-D benchmark [13].

the proposed line initialization is able to estimate an initial map. In the sequences f3_walk_xyz

and f3_walk_halfsph the proposed initialization does not work due lo large inter-frame rotations

produced in the initial frames.

Number of Points versus Number of Lines

We finally perform two experiments to analyze the behaviour of point and line features in low

and high textured scenarios (see Fig. 3.9). In the first experiment both features are examined in

a high texture scenario shown in Fig. 3.9-top. As expected, point features predominate over line

features. It may seem like lines are dispensable due to the low number of constraints that are

adding to the BA. However, notice that lines contain more information (infinit points) and are

more robust than a single point causing a consistent improvement in the trajectory estimation

even in high textured environments as shown in Table 3.1.

In the second experiment, the system is tested in. The challenging low textured environment

shown in Fig. 3.9-bottom. In this case, the number of points is still larger than the number of

lines because several key-points lie on each line. However, while lines are consistent across

frames, points are miss-paired due to the similarity of its descriptor.

Computation Time

While adding line primitives to the visual SLAM improves accuracy and robustness, it also

increases the computational complexity. Table 3.2 summarizes the time required for each

subtask within the Tracking and Local Mapping blocks, for PL-SLAM and ORB-SLAM [1]. Note

that the subtasks with larger penalties are the map features creation and the local BA. In any

event the final frame rate of the PL-SLAM is near real time (20 FPS) in a standard and not
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(a) Reference Mask (b) LCE (c) LCE + LS (d) LCE + LT (e) LCE + LS + LT

Figure 3.10: FaSTGAN overview. The proposed approach learns spatio-temporal object models
given a reference mask. When only training with cross-entropy (LCE) large errors at the object
boundary are produced (b). Adding spatial consistency (LS) improves the latter but errors still
occur on semi-occluded parts (c). Instead, using temporal consistency (LT) improves the mask
propagation but the model struggles to recover from occluded parts (d). In this section we
leverage the benefit of combining spatio-temporal information (e) running at 32 FPS.

optimized point cloud.

3.4 Object Segmentation and Tracking

In order to reconstruct 3D objects we first need to detect and track them. With this objetive in

mind, in this section, we tackle the problem of semi-supervised video object segmentation. This

consists in segmenting an object from the background throughout a video sequence given its

ground truth mask in the initial frame. Large video datasets like DAVIS [67,68] and the recently

released YouTube-VOS [69] have spurred a number of deep networks methods [69, 74–77, 79–

81, 83–85, 88–94, 174] that improve by a large margin the performance of approaches from

the pre-DL era [70–73, 175]. The problem, however, is still far from being solved. Occlusions,

rapid object movements, appearance changes and similarity of different instances of the same

object are still a major obstacle that often require heavy post-processing operations, human

intervention and expensive model fine-tuning.

In order to achieve robustness to these challenges, descriptive spatio-temporal object models

encoding appearance and geometric changes need to be learned. Most existing state-of-the-art

approaches [74,75,80] rely on a reference mask to fine-tune the model and in some cases, use

the previous mask as a guidance. Formally, if we denote this reference mask by Y0 and the

RGB frame at time t by Xt, these approaches model the mask Ŷt as p(Ŷt|Y0,X0,Xt−1,Xt) or

p(Ŷt|Y0,X0,Xt−1,Xt, Ŷt−1). Since no temporal consistency is enforced, these methods tend to

be robust to drifting, but they underperform when the object drastically changes its appearance.

This can be remedied by leveraging the temporal consistency of the segmented mask. How-

ever, while this was a common practice in the past [71–73], it is not usual among Deep Learning

methods, in part due to the absence of large scale video object segmentation datasets. Very

recently, Xu et al. [69] used a convolutional LSTM trained with the YouTube-VOS dataset to learn
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long-term temporal dependencies from the entire history of the object in the video. That is, the

mask Ŷt is modeled as p(Ŷt|Y0,X0,X1, . . . ,Xt). While this approach demonstrates improved

performance compared to previous baselines which did not enforce temporal consistency, it

seems to be too generic, as it still needs a computationally demanding fine-tuning step when

applied to a sequence with unseen objects.

In this section, we propose FaSTGAN (see Fig. 3.10), an intermediate solution that learns

spatio-temporal object appearance models over finite time horizons that does not require fine-

tuning nor post-processing. Essentially, during training, we model the segmentation masks as

p(Ŷt|Y0,X0,Xt−K , . . . ,Xt), where K is the size of the temporal window. In order to implement

this model, we design a regressor network architecture inspired by the agile siamese encoder-

decoder structure proposed by Wug et al. [81]. In its original form, this regressor is only fed by

the reference mask and the masked image at the previous time step. To exploit all information

within a temporal window of size K, we could naively make the regressor have access to

more information by concatenating features from the K previous frames. This, however, would

heavily penalize the efficiency and adaptability of the model. We have therefore devised a novel

GAN architecture (Fig. 3.11) in which, during training, this regressor is combined with K + 1

discriminators that enforce the temporal and spatial coherence of the generated masks over the

temporal window. At test, these discriminators are removed, keeping the original efficiency of

the siamese regressor, while allowing it to model the object across longer time horizons.

As a result, our architecture only uses video data to train and does not require any kind of

fine-tuning nor post-processing operations at test time. This makes our approach very efficient,

running at 32 FPS on 512 × 512 video frames, being about 4× faster than [81], which was

the fastest video segmentation method so far with 7.7 FPS reported in their original work.

Furthermore, we demonstrate the accuracy of our method to be on par with state-of-the-art

techniques on single-object video segmentation.

In summary, this section main contributions are: 1) a method to learn spatio-temporal object

models for real-time detection and tracking from a single reference image; and 2) a novel

generative architecture that enforce spatio-temporal consistency over finite temporal windows

that does not require fine-tuning nor post-processing operations when applied to new sequences

with unseen objects.

3.4.1 Problem Formulation

We next formally describe our problem, and generalize the formulation introduced in Sec. 3.4

to an arbitrary number of objects, i.e., we aim to design a Deep Learning model able to segment
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Figure 3.11: FaSTGAN model. The diagram displays the model at training time for frames
t−K + 1, t−K + 2, . . . , t. The proposed architecture consists of three main components: a
segmentation regressor φ, a spatial critic DS and a temporal critic DT. Weights are shared across
each network of the same instance. φE is the encoder part of φ and it encodes the image-mask
pair 〈Xt, Ŷt−1〉 and Mn at every time step.

and track objects along a video sequence given only one single segmentation mask per object.

Let x = (X1, . . . ,XT ) be an input RGB video with T frames, where Xt ∈ RH×W×3 denotes

the t-th frame. Let us also define m = (M1, . . . ,MN ) as a set of reference segmentations of N

objects. The reference segmentation Mn ∈ RH×W×(3+1) for the n-th object is the concatenation

of the first RGB frame in which the object appears with its annotated binary mask. Our goal

is to estimate the masks ŷ of all N objects along the entire sequence x, i.e., we want to learn

the mapping M : (x,m) → ŷ, where ŷ = (Ŷ1, . . . , ŶT ), and Ŷt ∈ RH×W×N contains the N

tracked objects masks in the t-th video frame. We define the ground truth masks y for a certain

sequence x as y = (Y1, . . . ,YT ) .

3.4.2 Spatio-Temporal GAN

Fig. 3.11 shows an overview of FaSTGAN, our proposed approach for video object segmentation.

A regressor Φ is trained on the binary segmentation task of separating the desired object from

the background and two WGAN-GP [44] based critics, DS and DT, enforce the model to produce

semantically and temporally consistent estimates. To simplify the model, we introduce a Markov

assumption defining the conditional distribution p(ŷ|x,m) to be factorized as:

p(ŷ|x,m) =
T∏
t=1

p(Ŷt|xtt−K ,m, ŷt−1
t−K), (3.15)
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meaning that we assume objects in a certain frame to be trackable given the reference segmen-

tations m, the current and K-1 previous frames xtt−K = (Xt−K , . . . ,Xt), and the K-1 previous

estimated segmentation masks ŷt−1
t−K = (Ŷt−K , . . . , Ŷt−1) .

During training, the regressor Φ is required to learn the mapping M by modeling the

distribution p(Ŷt|xtt−K ,m, ŷt−1
t−K), as Ŷt = Φ(Xt,m, Ŷt−1). A key property of our design is that

the regressor does not directly receive the full information of theK-temporal window. Instead, it

is trained to binary segment the K frames, one at a time, given a single foreground/background

segmentation Mn of the desired object (xtt−K ,Mn) → ŷtt−K . Each predicted mask is then

independently evaluated by a spatial critic DS(Xi, Ŷi) ∀i ∈ [t − K, t] that aims to penalize

non-consistent semantic masks per frame. The temporal consistency is assessed by a temporal

critic DT(xtt−K , ŷ
t
t−K) that jointly evaluates the K segmentation masks. Additionally, to feed the

regressor with information from previous estimations we introduce a temporal skip connection

(see details in the following subsection). Note that with this strategy, the regressor is adapted

to produce temporally coherent masks within a horizon of size K, without having to simulta-

neously process the K frames. This will be crucial to deliver a very fast regressor at test time,

when the critics will be discarded. In the following subsections we describe in detail each of

these components as well as the proposed training loss:

Segmentation Regressor. Given the current frame Xt, the single-view reference segmentation

Mn of the desired object, and the previous estimate Ŷt−1, the segmentation regressor Φ aims

to separate the desired object from the background producing the current estimate mask Ŷt =

Φ(Xt,Mn, Ŷt−1). We denote the encoder part of Φ as ΦE. Similar to [81], ΦE maps the image-

mask pairs 〈Xt, Ŷt−1〉 ∈ RH×W×(3+1) and Mn to a shared low-dimensional space. Then, feature

matching using global convolutions [176] between both features is performed and fed into the

decoder part of Φ to produce the estimated mask Ŷt. In other words, we train Φ to refine a

rough mask from the previous frame t − 1 to estimate the mask at the current frame t using a

reference segmentation of the object Mn.

In order to enforce temporal consistency along time, we extend the architecture from [81]

with a “temporal skip connection". To do so, we concatenate features in the last decoder layer

of Φ with features extracted by the same layer in the previous frame. To reduce the memory

complexity involved, we reduce the number of channels in the previous frame feature map by a

factor of 1/8 with a 3×3 convolution, making the computational cost increase negligible. Adding

this connection not only provides the model with information from previous frames but also acts

as a simplified model memory state similar to an RNN. Moreover, when training, the gradients

of future frame predictions will directly flow into previous estimates guiding the optimization to

take into account that an estimated mask at frame t will have a direct impact into future ones.
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Spatial Critic. Partial object segmentation masks and background leaks are two of the most

frequent errors in segmentation. To avoid them, we introduce a spatial critic network, DS,

trained to evaluate the semantic consistency of the pixels in the estimated mask, i.e., we penalize

the segmented regions that do not contain one and only one fully covered object ending in

its borders without extending into the background. In the experimental subsection, we prove

this supervision to be more informative for the model in comparison to just using the cross

entropy loss, as it improves its accuracy. The structure ofDS resembles that of the PatchGan [52]

mapping the product2 (Xt · Ŷt) ∈ RH×W×3 to an output matrix S ∈ RH/26×W/26 where S[i, j] is

used as a partial function to compute the Earth Mover Distance (EMD) between the distributions

of the input overlapping patch ij and the real one. This critic helps to improve the difficult task

of defining the mask boundaries while enforcing the model not to produce miss-classified small

segmentation blobs around the objects of interest.

Temporal Critic. When tracking an object instance across a video sequence we do not only

need to have semantically coherent masks, but these masks must also be consistent across time.

To this end, the temporal critic DT simultaneously evaluates the current estimate w.r.t. to K − 1

neighbor frames by learning the mapping (xtt−K · ŷtt−K) → S, where as above S ∈ RH/26×W/26

is the overlapping partial scores of a PatchGan based critic. This critic helps to learn relative

deformation patterns and plausible absolute motion in the segmentation mask pixel space across

time. Also, it enforces the model to generate smooth transitions across mask estimates without

large noisy changes.

3.4.3 Learning the Model

The loss function we define contains three terms, namely a balanced binary cross entropy loss to

penalize pixel-wise masks errors w.r.t. ground-truth annotations; the spatial consistency loss to

drive the distribution of the estimates to the distribution of the training masks; and the temporal

consistency loss that penalizes temporally non-consistent masks.

Balanced Binary Cross Entropy Loss. We first define the supervised pixel-wise loss for binary

classification. To take into account the imbalance between the number of pixels in the object of

interest and the background, we apply the balancing strategy proposed in [177] originally used

for contour detection. The balanced binary cross entropy loss LCE for K frames is given by:

LCE = − 1

K

t∑
t−K

∑
j∈Yt

[
βYtj log p(Ŷtj = 1) + (1− β)(1−Ytj) log p(Ŷtj = 0)

]
(3.16)

2By an abuse of notation we perform the element-wise product on the three RGB channels of Xt.
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where Yt is the ground truth binary mask and β = |Y−t |/|Yt| is the percentage of pixels not

belonging to the object.

Spatial Consistency Loss. In order to optimize the spatial critic DS parameters and learn the
distribution of the training data, we use the modification of the standard GAN min-max strategy
game [40] proposed by WGAN-GP [43]. In our initial experiments, we observed that replacing
the Jensen-Shannon divergence by the continuous EMD resulted in a more stable training. To
introduce the required Lipschitz constraint, we apply the gradient penalty proposed by [44]
computed as the norm of the gradients with respect to the critic input. Formally, if we denote the
data distribution by Pr, the model distribution by Pg, and the random interpolation distribution
between masked images by Px̃, the spatial consistency loss LS is given by:

LS =
1

K

t∑
t−K

[
EYt∼Pr [DS(Xt ·Yt)]− EŶt∼Pg

[DS(Xt · Ŷt)]
]

− 1

K

t∑
t−K

λgpEx̃∼Px̃

[
(‖∇x̃DS(x̃)‖2 − 1)2

]
, (3.17)

where x̃ is the random interpolation between 〈Xt ·Yt,Xt · Ŷt〉 and λgp is the penalty coefficient.

Temporal Consistency Loss. With the previously defined losses, the segmentation regressor

Φ is enforced to estimate pixel-wise spatial-consistent masks. However, there is no constraint to

guarantee temporal consistency, meaning that the predicted masks should cover similar content

across frames. With the temporal critic DT, we push Φ to maintain temporal consistency by

enforcing similarity between joint distributions of K estimated and annotated masks. To esti-

mate the distance between the distributions, we use the approximated Kantorovich-Rubinstein

duality [178] of the EMD as proposed in [44]:

LT =Ex∼Pr [DT(x)]− Ex̂∼Pg [DT(x̂)− λgpEx̃∼Px̃

[
(‖∇x̃DT(x̃)‖2 − 1)2

]
, (3.18)

where x = xtt−K ·ytt−K and x̂ = xtt−K · ŷtt−K are the real and estimated conditional distributions

respectively, and x̃ is the random interpolation between 〈x, x̂〉. Note that, again, by an abuse

of notation, we extended the element-wise product between each xt and yt (or ŷt) along the 3

color channels of xt.

Overall Loss. To learn to track an object instance across time, we finally define the following

minmax problem:

Φ? = arg min
Φ

max
D∈D

(λCELCE + λSLS + λTLT) (3.19)
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where λCE, λS and λT are the hyper-parameters that control the relative importance of every loss

term and D the set of 1-Lipschitz functions.

Implementation Details

Our model’s encoder ΦE is a ResNet 50 [179] pretrained on ImageNet [36] on the task of image

labeling. In order to obtain our final model, we divide the training process in two steps. First,

our model is trained only using the supervised loss LCE to obtain Φ? = minΦ LCE for 6 epochs on

YouTube-VOS [69]. As a result, Φ∗ has an initial understanding of the video object segmentation

task and provides a better initialization than ImageNet.

Then, we use Φ∗ as an initialization to train our spatio-temporal model using the loss defined

in Eq. (3.19) in DAVIS17 [68] for 40 epochs. When training either with YouTube-VOS or

DAVIS17, we consider every pair of video-object as independent samples.

In our experiments, we observe that adding the critics once the model is initialized closer to

the final task helps to stabilize training. With the idea to bring the predicted and the ground

truth masks distributions in the discriminators closer at each iteration, we overwrite the ground

truth pixel values Yt with the values of the predicted masks Ŷt that are correctly estimated with

an uncertainty lower than 0.25. Also, at each iteration, the ground truth masks are augmented

by adding Gaussian noise with mean and variance equal to Ŷt statistics.

Our model is trained on images of size 512×512 augmented with horizontal flipping, random

scaling with factors [0.75, 1.25] and [−30, 30] degrees rotations. Also, at each training iteration,

the reference object frame Mn of a sequence x is randomly chosen (instead of always being the

first frame in which the object appears). We use Adam [38] with a learning rate 1e-5, β1 = 0.5,

β2 = 0.999, batch size 6 and polynomial decay with power 0.9. During the training of the spatio-

temporal model, the learning rate is constant for the first 10 epochs and Φ is optimized once for

every 5 optimization steps of the critic networks. The weight coefficients for the loss terms in

Eq. (3.19) are set to λCE = 100, λS = 1, λT = 1 and λgp = 10.

In order to better approximate the mask error propagation that occurs at test time during

training, we set the temporal window size K to the highest value that fits in our GPU memory,

K = 4. Note that K is just used during training and only information from the previous frame is

used at test time. This parameter is similar to back propagation through time introduced in [82]

where it was shown that training robustness improves by propagating as many K estimated

masks as possible rather than the ground-truth.

We concentrate all computational load to the training stage, which requires 4 NVidia R© Titan

Xp , 3 of them used for training the regressor and 1 for the critics. Our model takes 2 days to

finish pretraining on YouTube-VOS and 3 days for the final training on DAVIS17. During test, we

only require one single GPU with at least 600Mb of RAM. When using an NVidia R© Titan Xp, we
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can process videos up to 32 FPS.

3.4.4 Experimental Evaluation

We thoroughly evaluate our method, FaSTGAN, quantitatively and qualitatively. We compare

our approach against current state of the art on semi-supervised video object segmentation:

PReMVOS [174], OSVOSS [77], RVOS [96], CRN [93], MoNet [94], RGMP [81], MaskRNN [82],

FEELVOS [86], PML [83], OSMN [80], STCNN [180], RVOS [96] and BVS [72].

We evaluate our method on the tasks of single object (DAVIS16 [67]) and multiple object

video segmentation (DAVIS17 [68], YouTube-VOS [69]). The segmentation accuracy is reported

as region similarity (intersection over union J ), contour accuracy (F measure), and their mean

(J&F). For the subsets whose annotation is non-public, we compute the results using the

submission website provided by the organizers of the challenge.

Ablation Study

In Table 3.3, we perform a comprehensive ablation study to analyze the effect of the different

loss components that we use in our method during training. In our baseline, we only use the

balanced binary cross entropy loss LCE that penalizes wrong predictions at each pixel and frame

independently. Therefore, we do not enforce any spatial or temporal consistency.

First, we introduce the spatial discriminator with its associated loss (LS). This improves

substantially the accuracy of the method in the contours of the objects boosting the F measure

by more than 1.5 points. This improvement can also be seen qualitatively in Fig. 3.10 comparing

(b) to (c).

After that, we replace the previous discriminator by the temporal one with its associated loss

(LT). As a consequence, performance increases considerably gaining 1.5 points in J&F . Now,

the model predicts masks with better temporal consistency as can be seen in Fig. 3.10 when

comparing the right arm of the man in (Fig. 3.10-c) versus (Fig. 3.10-d). However, the temporal

smoothness of the masks enforced by the model is sometimes too severe and the regressor has

difficulties recovering from large disoccluded parts (Fig. 3.10-d).

Finally, we combine the spatial and temporal discriminators and their respective losses. As

a result, FaSTGAN is capable of incorporating the accuracy improvements in the contours intro-

duced by the spatial discriminator together with the temporal masks propagation smoothness

introduced by the temporal discriminator achieving a final score of 81.9 J&F in DAVIS16. As

it can be seen in Fig. 3.10-e, the final mask predicted by our spatio-temporal model segments

properly the right hand of the man and it can also recover the segmentation of the legs that

were occluded in previous frames.



42 Scene & Person Reconstruction

DAVIS16 Val

LCE LS LT J&F J F

X - - 80.0 79.8 80.2

X X - 80.5 79.2 81.8

X - X 81.5 80.7 82.2

X X X 81.9 80.2 83.5

Table 3.3: Quantitative ablation study: Comparison between the different loss components.
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Figure 3.12: Accuracy versus speed. J&F in DAVIS16 with respect to FPS.

Measure Ours RGMP OSMN PML FEELVOS CRN STCNN MaskRNN OSVOSS MoNet PReMVOS RGMP∗

J&F Mean M ↑ 81.9 81.8 73.5 77.4 81.7 85.0 83.8 81.3 86.6 84.8 86.8 79.0

FPS ↓ 32.5‡/32.2?/30.3† 7.7? 7.1� 3.6 2.2 1.4† 0.25 0.11 0.09† 0.07† 0.06 32.2?

Mean M ↑ 80.2 81.5 74.0 75.5 81.1 84.4 83.8 80.4 85.6 84.7 84.9 78.4

J Recall O ↑ 94.6 91.7 87.6 89.6 – 97.1 96.1 96.0 96.8 96.8 96.1 92.1

Decay D ↓ 9.6 10.9 9.0 8.5 – 5.6 4.9 4.4 5.5 6.4 8.8 3.6
Mean M ↑ 83.5 82.0 72.9 79.3 82.2 85.7 83.8 82.3 87.5 84.8 88.6 79.7

F Recall O ↑ 94.3 90.8 84.0 93.4 – 95.2 91.5 93.2 95.9 94.7 94.7 90.8

Decay D ↓ 9.1 10.1 10.6 7.8 – 5.2 6.4 8.8 8.2 8.6 9.8 3.6

Table 3.4: DAVIS16 benchmark: FaSTGAN versus the most recent state of the art, more
methods can be found in the DAVIS website3. RGMP∗ is pretrained on YouTube-VOS instead
of simulated data. Frames per Second (FPS) reported on a Titan X for †, Titan Xp for ‡,
Quadro M600 for � or 1080Ti for ?, methods without specifier did not report hardware in their
publications.
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Evaluation on Single-Object VOS

Fig. 3.12 shows the accuracy using J&F in DAVIS16 versus the frame rate for various state-of-

the-art methods. We can clearly see that our method is in a unique position achieving similar

accuracy to previous methods that focused on speed like RGMP, OSMN or PML, while improving

on their frame rate by at least a factor of 4. When compared to methods that aim to maximize

the accuracy (OSVOSS , MoNet or PReMVOS), we lose around 5 points in J&F , but in exchange

we increase on their frame rate by a factor of at least 350. As a result, FaSTGAN sets new state of

the art in terms of high frame rate while obtaining high accuracy. This brings the field of video

object segmentation closer to applications in real time scenarios.

Table 3.4 reports the results presented in Fig. 3.12 quantitatively and in more depth. In

general, methods usually focus either on accuracy or speed at the expense of achieving lower

performance in the other. Our method clearly focuses on speed while trying to retain as much

accuracy as possible. Compared to the best previous method in the fast speed spectrum, RGMP,

we achieve a similar accuracy while improving their frame rate by almost a factor of 4 when

tested in the same hardware (32.2 vs 7.7 FPS). This improvement is mainly achieved by sim-

plifying their multiscale testing approach by using only a single scale with an image resolution

of 512x512. Note that by testing RGMP with our single scale strategy, a similar frame rate is

obtained but their accuracy drops by 5 points in J&F (76.78 vs 81.9).

In order to show the effect of YouTube-VOS pretraining in previous methods, we train RGMP

by substituting their synthetic data generation pretraining with YouTube-VOS video sequences,

denoted as RGMP∗ in Table 3.4. To do so, we first train their method on YouTube-VOS and then

we fine-tune it on DAVIS17, we stop training in both cases when the loss flattens. In order to

provide a fair comparison, our single scale test strategy is used, which also improves their FPS.

Pretrainig on YouTube-VOS improves their performance by roughly 2 points in J&F (79.0 vs

76.78) which is sill significantly lower than the accuracy of our model.

Evaluation on Multi-Object VOS

For completeness, even though our method is designed for single-object video sequences, we

report its performance in multi-object scenarios by considering every pair of video-object as a

different video and by sequentially combining the predicted masks.

In Table 3.5, we compare against state-of-the-art methods in DAVIS17 and YouTube-VOS.

Our method is again the fastest and it achieves remarkably good accuracy compared to methods

trained with multiple objects at the same time. When compared to RGMP pretrained in YouTube-

3https://davischallenge.org/davis2016/soa_compare.html
4https://davischallenge.org/davis2017/soa_compare.html

https://davischallenge.org/davis2016/soa_compare.html
https://davischallenge.org/davis2017/soa_compare.html
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DAVIS17 Val YouTube-VOS Val

J&F FPS J F J&F FPS J F

Ours 60.2 16.5‡/16.3?/15.4† 57.6 63.4 52.0 17.2‡/17.1?/16.1† 50.0 53.9

RVOS 60.6 7.57 57.5 63.6 56.8 7.91 54.6 59.1

OSMN 54.8 3.62� 52.5 57.1 51.8 3.79� 50.3 52.1

RGMP 66.7 2.97? 64.8 68.6 52.8 2.66? 51.4 54.2

FEELVOS 71.5 1.96 69.1 74.0 – – – –
STCNN 61.7 0.13 58.7 64.6 – – – –
OSVOSS 68.0 0.05† 64.7 71.3 – – – –

PReMVOS 77.8 0.03 73.9 81.8 72.2 0.03 69.3 75.2

RGMP∗ 56.2 16.3? 52.8 59.6 46.3 17.1? 44.3 48.2

Table 3.5: DAVIS17 and YouTube-VOS: FaSTGAN versus the state of the art, more methods
can be found in the DAVIS website4. FPS is computed assuming linear scaling with the number
of objects, thus using FPS from DAVIS16 and multiplying by the mean number of objects in a
certain set. Specifier (∗, †, ‡, �, ?) definitions are the same than in Table 3.4.

VOS and tested with our single scale strategy, for the same speed, we outperform their model by

4 and 5.7 points in J&F in both DAVIS17 and YouTube-VOS, respectively.

Compared to the original RGMP model, our method has a similar accuracy in YouTube-VOS

while running almost 6.5 faster. In DAVIS17, there are several small objects and their multi-scale

testing strategy helps to obtain better performance in such scenarios. As a result, FaSTGAN with

a single-scale strategy achieves a slightly worse result but it runs more than 5 times faster than

RGMP.

Overall, our method is the only one running at real-time (> 12 FPS), enabling video object

segmentation applications on the fly.

Fairness in method comparison

We would like to briefly discuss the difficulties in providing a fair comparison with other video

object segmentation models. First of all, methods in Table 3.4 and Table 3.5 have been pre-

trained in a wide variety of different datasets. For instance, OSVOSS , OSMN, PML and PReMVOS

use COCO [181]; MoNet, PReMVOS, PML, RGMP and CRN use PASCAL VOC [182, 183]; and

RGMP uses as well ECSSD [184] and MSRA 10K [185]. Also, MoNet, PReMVOS, and CRN

use optical flow obtained from Flownet2.0 [186] which is trained using [187, 188]. Before the

release of YouTube-VOS, static image datasets were used to train most methods due to the lack of

a large scale video object segmentation dataset. We expect future methods to gradually converge

to YouTube-VOS pretraining which would enable an easier comparison among methods.

Moreover, previous methods report timings in a wide variety of GPU types. In order to

provide a fair comparison, we list the GPU type used in each publication in Table 3.4 and
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Figure 3.13: Qualitative results: Sample sequences from YouTube-VOS (top 2), DAVIS17
(middle 2) and DAVIS16 (bottom 2). In each row, the leftmost image is the initial reference
frame, the rest of the images are the predictions for the following frames.

Table 3.5 when available and we test our method in the three different GPU types that we

have at our disposal, 1080Ti, Titan Xp and, Titan X.

Qualitative Results

Fig. 3.13 shows examples of the predicted masks using our approach, FaSTGAN. The first column

displays the reference mask Mn and the rest of the columns display the segmented mask by our

method in the following frames.

Note that even when the input frame is corrupted by occlusions, changes of appearance and

dynamic background, our method remains robust.



46 Scene & Person Reconstruction

3.5 Non-Rigid Surface Reconstruction

Once we can segment objects in a scene, we are particularly interested in reconstructing them.

Motivated by the current success of Deep Learning methods for estimating depth maps from

single images of a scene [189–191], in this section we tackle the related problem of estimating

the underlying parametric model defining the shape of a non-rigid surface from a single im-

age. This problem has been traditionally addressed in the context of the Shape-from-Template

(SfT) [105], requiring a reference template image of the surface for which the 3D geometry is

known, and a set of 3D-to-2D point correspondences or a mapping between this template and

the input image. This approach, however, may be difficult to hold in practice, specially when

considering low-textured surfaces.

We relax previous assumptions and present a learning-based approach that allows for glob-

ally non-rigid surface reconstruction from a single image without relying on point correspon-

dences, and which in particular, shows robustness to situations rarely addressed previously:

lack of surface texture and large occlusions. Our model is based on a fully differentiable Deep

Neural Network that estimates a 3D shape from a single image in an end-to-end manner, and

builds upon three branches that enforce geometry consistency of the solution.

More exactly, as illustrated in Fig. 3.14, a first branch of the proposed architecture (the 2D

detection branch) is responsible for localizing the mesh onto the image, and for fitting a 2D

grid to it. The 2D vertices of this grid are then lifted to 3D by a depth branch, a regressor that

combines the 2D detector confidence maps and the input image features. Finally, a shape branch

is responsible for recovering the full shape while ensuring that the estimated 3D coordinates

correctly re-project onto the image. During training, this branch also incorporates a novel fully-

differentiable layer that performs a Procrustes transformation and aligns the estimated 3D mesh

with the ground truth one. This branch is important as it was proven important to perform

Procrustes alignment in previous approaches for adapting to datasets with different reference

frames and metrics. It also favors convergence of the learning process.

Since there is no dataset large enough to train data-hungry Deep Learning algorithms such

as ours, we have created our own using a rendering tool. We have synthesized 128,000 photo-

realistic pairs input 2D-image/3D-shape accounting for different levels of deformations, amount

and type of texture, material properties, viewpoints, lighting conditions and occlusion. Fig. 3.16-

top shows some examples. Evaluation on a test split of this dataset demonstrates remarkable

improvement of our network compared to state-of-the-art SfT techniques, which typically rely

on known 3D-to-2D correspondences, especially under strong occlusions and poorly-textured

surfaces. Furthermore, our model learned with synthetic data can be easily fine-tuned to real

sequences, using just a few additional real training samples. Results on the CVLab sequences [2]
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Figure 3.14: DeformNet overview. The proposed architecture consists of three main branches.
The 2D detection branch is responsible for the 2D location of the mesh and the associated
belief maps. The depth branch lifts the 2D detected mesh by leveraging on image cues and the
detection uncertainties. Finally, the shape branch fuses the 2D detections and their estimated
depths to obtain 3D shape in such a way that perspective projection is enforced. An additional
procrustes layer is used during training to align the estimated mesh with the ground truth one.

with a bending paper and a deforming t-shirt clearly show that our method outperforms existing

approaches.

In summary, this section main contributions are: 1) the first—to the best of our knowledge—

fully-differentiable model for non-rigid surface reconstruction from a single image that does not

require initialization, accurate knowledge of the template, 3D-to-2D correspondences, nor hand-

crafted constraints; 2) a geometry-aware architecture that embeds a pinhole camera model and

encodes rigid alignment during training; and 3) a large photo-realistic publicly available dataset

of images of non-rigid surfaces annotated with the corresponding 3D shapes, which we hope it

will inspire future research in the field.

3.5.1 DeformNet Dataset

It is well known that deep networks require large amounts of training data. However, the only

existing dataset we are aware of that contains non-rigid surfaces annotated with ground-truth

3D shape is [2], which includes 505 images of a bending paper and a deforming t-shirt. This

is far below what is needed, specially if we expect our network to generalize to non-observed

textures. For this purpose, we have created a large synthetic dataset with 128,000 samples

rendered with AutodeskTM- Maya. Each sample consists of a 224 × 224 image and a 3D shape

represented by a 9×9 triangular mesh. A few examples of the dataset are shown in Fig. 3.16-top.

We generated our dataset by varying textures, deformations and lighting conditions. Con-
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cretely, we have chosen 200 different textures from [192] which is formed by repetitive patterns,

rich, poor and plain textures. The deformations were generated for 40 different meshes (same

topology but varying aspect ratios and sizes). The mesh dynamics were rendered by simulating

a hanging piece of material held with up to 4 pins and moving with the wind. Four different

materials, defined with four different stiffness matrices, were considered. The scene was lit by

one point light source of high intensity with a random position, plus a component of ambient

illumination. In all cases, we assumed a Lambertian reflectance.

The rendered dataset was augmented with all three possible flips of each image. Additionally,

for each image, three new ones were generated by applying a random rigid transformation on

the corresponding deformable surface. At training time, the dataset was further augmented with

random color changes at pixel level (hue, saturation, contrast and brightness). The dataset is

publicly available at https://www.albertpumarola.com/research/DeformNet.

3.5.2 Problem Formulation

We aim at designing a Deep Learning framework that directly estimates a non-rigid 3D shape

from an input RGB image I ∈ RHo×Wo×3. The shape is represented as a triangulated 3D mesh

with Nv vertices X = (x1, . . . ,xNv), where xi = (xi, yi, zi) are the coordinates of the i-th vertex,

expressed in the camera coordinate system. In the following, we assume the structure of the

mesh to be known, being a N ×N rectangular grid, i.e., Nv = N2.

We also assume the calibration parameters of the camera to be known, namely the focal

lengths, fu and fv, and the principal point (uc, vc).

3.5.3 Geometry-aware Network

Our framework for estimating a non-rigid shape from a single image is shown in Fig. 3.14.

We have devised an architecture with three branches, each responsible of reasoning about a

different geometric aspect of the problem. The first two branches are arranged in parallel and

perform probabilistic 2D detection of the mesh in the image plane and depth estimation (red and

green regions in the figure, respectively). These two branches are then merged (blue region in

the figure) in order to lift the 2D detections to 3D space, such that the estimated surface correctly

re-projects onto the input image and it is properly aligned with the ground truth shape. In the

results subsection we will show that reasoning in such a structured way provides much better

results than trying to directly regress the shape from the input image, despite using considerably

deeper networks.

https://www.albertpumarola.com/research/DeformNet
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2D Detection Branch

Given an input image I, the first step consists in extracting image features from a pre-trained

network, in our case we concatenate two Resnet V2 blocks [193]. For each block, the stride of

the last unit is set to one, in order to keep the same spatial resolution for the two units. Let

us denote these features as Ψ(I) ∈ RH×W×C being H, W and C the height, width and depth

features dimensions.

The image features are then fed into the 2D detection network, which is responsible for

estimating the 2D locations of the mesh vertices U = (u1, . . . ,uNv) ∈ U , where ui = (ui, vi)

and U is the set of all (u, v) pixel locations in the input image I. Drawing inspiration on the

convolutional pose machines [194] for human pose estimation, the 2D location of each vertex

ui is represented as a probability density map Bi ∈ RH×W computed over the entire image

domain as:

Bi[u, v] = P (ui = (u, v)) ,∀ (u, v) ∈ U . (3.20)

As in [194] these belief maps are estimated in an iterative manner. In particular, let Bt =

(Bt
1, . . . ,B

t
Nv

) ∈ RH×W×Nv be the concatenation of all belief maps at iteration t. This tensor is

estimated by a regressor function Φt, which takes as input the image features and the concate-

nated belief maps at the previous stage t− 1:

Φt(Ψ(I),Bt−1)→ Bt . (3.21)

In the first step, the regressor is only fed with the image features, that is Φ1 ≡ Φ1(Ψ(I)). We

denote by Tmax the maximum number of iterations. As it is shown in Fig. 3.15, after each

iteration, the location of the vertices is progressively refined.

In order to implement the regressor Φt(·) we use again ResNet V2 blocks followed by two

convolutional layers. The output of each Φt is normalized with respect to H and W to guarantee

that
∑H

u=1

∑W
v=1 Bt

i[u, v] = 1, ∀i ∈ {1, . . . , Nv}, and ∀t ∈ {1, . . . , Tmax}.

Finally, it is worth noting that the 2D detection branch we have just described is fully

differentiable. The output ui = (ui, vi) for the i−th vertex can be estimated as the following

weighted sum over the last belief map BTmax:

ui=

∑
(u,v)∈U

u ·BTmax
i [u, v]∑

BTmax
i

, vi=

∑
(u,v)∈U

v ·BTmax
i [u, v]∑

BTmax
i

where
∑

BTmax
i sums over all elements of BTmax

i . These 2D estimates will be forwarded to the

shape branch’ previously described, while the belief maps in BTmax will be used to infer the depth
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t = 1 t = 2 t = 3

Figure 3.15: Refinement of the 2D vertices position. Output (for one specific vertex) of the
regressor Φt for three consecutive time steps. Note how the uncertainly in the vertex location is
progressively reduced.

value for each of the vertices in the depth branch.

Depth Branch

The belief maps BTmax
i of the 2D vertex locations are forwarded to the depth branch, to estimate

the depth coordinate zi for every vertex. Note that previous works in related problems like

3D human pose estimation [195, 196] have not taken advantage of the uncertainty typically

associated to the feature detectors.

To do so, the proposed layer produces new feature maps V(BTmax ,Ψ(I)) ∈ RN×N×C , that

condition the input feature maps Ψ(I) ∈ RH×W×C with the probability maps BTmax ∈ RH×W×Nv ,

that is:

V[j(i), k(i), c] =
∑

(u,v)∈U

BTmax
i [u, v] ·Ψ(I)[u, v, c] (3.22)

∀i ∈ {1, . . . , Nv}, c ∈ {1, . . . , C}, where (j(i), k(i)) converts the i-th input of an Nv-dimensional

vector into a two dimensional input of an N ×N matrix (recall that Nv = N2).

These image features conditioned on the vertices 2D locations are then used as input of a

regressor Ω(·) to estimate the vertices’ depth:

Ω(V(BTmax ,Ψ(I)))→ (z1, . . . , zNv). (3.23)

Again, the regressor Ω(·) consists in two ResNet V2 blocks followed by two convolutional layers

and the full branch (conditioned features + regressor) is fully differentiable.

Shape Branch

The 2D locations and depth estimates are merged in order to estimate the shape while enforcing

the projection constraints and rigid alignment consistency.
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Given the estimates (ui, vi, zi) in Eqs. (3.22) and (3.23) of the two first branches, the 3D

position xi = (xi, yi, zi) of each vertex is recovered with a differentiable layer that models the

pinhole reprojection model:

xi = zi ·
ui − uc
fu

, yi = zi ·
vi − vc
fv

, zi = zi . (3.24)

This gives us an estimate of the deformable shape X, and we could train the network by

considering the L2 loss ||X−X∗||22 where X∗ is the ground truth 3D shape. However, we propose

introducing an additional layer, which computes the Procrustes alignment error between X and

X∗ in a fully differentiable manner, and build our loss function based on this error. Although

this layer is removed at test time, we observed that it favors the convergence during training,

helps adapting to different datasets, and most importantly, it improves the capacity of the rest

of the network to capture the non-rigid component of the shape.

The Procrustes layer (‘Procr’ box in Fig. 3.14) is implemented by first normalizing X and X∗

with respect to translation and scale. Let us denote by X̂ = (x̂1, . . . , x̂Nv) and X̂∗ = (x̂∗1, . . . , x̂
∗
Nv

)

these normalized versions.

Following [197], we can then compute the alignment error between X̂ and X̂∗, without

having to explicitly estimate their relative rotation and translation as follows:

La(X̂, X̂∗) =

√∑Nv
i=1 |x̂i|2 + |x̂∗i |2 − 2λmax

Nv
(3.25)

where λmax is the maximum eigenvalue of a 4 × 4 matrix built in terms of the elements of

X̂ and X̂∗. Since there exist differentiable approximations of the eigendecomposition (for

example, the function tf.self_adjoint_eigvals in Tensorflow), the full shape branch is

again differentiable.

3.5.4 Learning the Model

The cost function that we aim to minimize is a combination of the 3D alignment error in

Eq. (3.25) and the 2D detection error produced at the output of each regressor Φt, for t =

{1, . . . , Tmax}:

L = La(X̂, X̂∗) + γ

Tmax∑
t=1

‖Bt −B∗‖22 , (3.26)

where B∗ is a heat-map generated by placing Gaussian peaks at the ground truth 2D locations

(u∗i , v
∗
i ) of the mesh vertices. γ denotes a weight used to give similar orders of magnitude to

each of the terms of the loss function.
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Method Known Text New Text No-Text Time (ms)

Ba15Iso 8.54 / - 8.72 / - - / - 495
Ba15Iso-It 5.65 / - 6.78 / - - / - 15,507
Ba15Conf 30.50 / - 31.91 / - - / - 11,232
Ch14IsoLsq 6.74 / - 6.95 / - - / - 2618
Ch14IsoLsq-It 4.85 / - 5.3 / - - / - 14,813
Resnet-50 V2 0.92 / 3.83 11.23 / 18.50 8.39 / 9.43 152
DeformNet 2.64 / 4.57 3.28 / 4.09 2.86 / 4.62 219

Table 3.6: Evaluation on synthetic data. Euclidean average distance between 3D ground-truth
and estimated 3D reconstruction. Each pair ‘err1 / err2’ indicates the error without and with
occlusions, respectively. Execution time in the last column is computed as the average time
(in ms) to reconstruct a sample. Symbol ‘-’ indicates that the method was not evaluated on
this scenario, as they correspond to situations (no texture or large occlusions) that can not be
addressed by template-based analytical solutions.

Implementation Details

The model is trained with the synthetically generated dataset described in the next section,

made of Ho ×Wo = 224× 224 images. The image features Ψ(I) are obtained from a Resnet V2

network pre-trained on ImageNet, resulting in feature maps of size H ×W ×C = 56× 56× 768.

In all our experiments we consider meshes of spatial resolution N ×N = 9× 9, thus, Nv = 81.

The resulting belief maps Bt will be therefore of size 56× 56× 81. In the 2D detection branch,

we fixed the maximum number of iterations to Tmax = 3, as further stages did barely change the

resulting belief maps distributions.

The training procedures is split in two stages: initially, only the regressors Φt are trained.

Then, regressors Φt and Ω are jointly trained. In both cases, the parameters of the feature

extractor Ψ(I) are kept fixed. In Eq. (3.26) we set γ = 5 · 10−3. We use Adam solver [38] with a

batch size of 3 images and weight decay of 4 · 10−5. Every 2 epochs we exponentially decay the

learning rate, which is initially set to 2 · 10−4.

3.5.5 Experimental Evaluation

We now present results on synthetic and real data. We compare our approach, which we dub

DeformNet, with the following state-of-the-art template-based solutions: Ba15Iso, the isometry-

based solution proposed in [105]; Ba15Conf, a conformal-based approach, also from [105];

Ch14IsoLsq, the least-squares isometric reconstruction of [106]. We denote by Ba15so-It and

Ch14IsoLsq-It the same previous methods after executing 25 iterations of the non-linear re-

finement proposed in [198]. This refinement step could not be applied to Ba15Conf due to

computational time constraints. [106] showed that Ch14IsoLsq-It systematically outperformed
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the same baselines we consider here and also the methods introduced in [110, 111, 198]. We

therefore consider Ch14IsoLsq-It to be the best current analytic approach to assess the potential

of our solution. Additionally, we also compare against a deep network baseline, consisting of a

ResNet-50 V2 architecture [193] directly inferring 3D mesh coordinates.

In the following, we will report the reconstruction error, computed as the L2 distance be-

tween the estimated and the ground truth shapes (dimensionless for the synthetic results and

in mm for the real ones). As common practice, the estimated meshes are aligned to the ground

truth before evaluation using a Procrustes transformation. Additionally, in order to make a fair

comparison, all methods requiring the pixels coordinates of the mesh, are fed with the estimates

U = (u1, . . . ,uNv) obtained with our network, augmented to a few hundreds of template-to-

image correspondences by interpolation. We would like to point that our network produces

an error of approximately 2 pixels in these 2D detections, and computing them using feature

descriptors such as SIFT [199], generally led to worse results as these type of descriptors are

prone to fail for non-textured surfaces with repetitive pattens and self-occlusions.

Evaluation on Synthetic Data

We evaluated all methods on a test set of our dataset consisting of 1208 independent samples

generated with random values of shape and camera pose. These test samples are split into

three subsets: 553 unknown shapes with a texture seen at training time (‘Known Texture’), 553

unknown shapes with a texture not seen at training time (‘New Texture’), and 102 unknown

shapes without texture or very poorly textured (‘Non-Textured’). Additionally we have simulated

occlusions by covering the input images with a number of gray rectangular patches randomly

distributed. Examples of the type of input images for each test case are shown in Fig. 3.16-top.

Template-based analytical methods (Ba15Iso, Ba15Conf, Ch14IsoLsq and their iterative ver-

sions) were only evaluated on the textured and non-occluded cases, as they are methods that by

construction can not realistically address the lack of texture or strong occlusions. Alternatively,

to make the learning approaches (Resnet-50 V2 and DeformNet) robust to occlusions, the two

networks were retrained with the gray-patched images. No retraining was done to handle the

lack of texture.

Table 3.6 summarizes the results of the synthetic evaluation. When dealing with textured

and non-occluded images, Ch14IsoLsq-It is, as expected, the most accurate solution among the

analytical methods. Regarding the learning approaches, Resnet-50 V2 turns to work very well

under known textures. However, its performance suffers a big drop when dealing with textures

not seen during training and with poorly textured surfaces. DeformNet performs consistently

well in all situations, outperforming in all cases the analytical solutions. Particularly interesting

is the case when dealing with new textures that are occluded, in which we obtain an accuracy
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Known Texture New Texture Non-Textured Known Texture New Texture Non-Texture
with Occlusion with Occlusion with Occlusion

2.42 3.15 2.90 3.28 2.88 2.83

Figure 3.16: Results on synthetic data. Reconstructions samples in each of the six cases we
consider (surfaces with known, new or no-texture, and with and without occlusions). First Row:
Input image. Second Row: 3D estimated mesh projected onto the input image. Third Row: 3D
estimated mesh seen from the camera view. Last Row: Side view of the ground truth mesh and
our estimation (green and blue meshes, respectively). The reconstruction error is indicated at
the bottom, to give significance to the errors in Table 3.6.

very similar to the best analytical methods (we obtain 3.62mm versus 3.57mm for competing

methods) when dense non-occluded correspondences are provided.

Fig. 3.16 shows examples of the reconstructed meshes obtained by our approach. Note that

when there are no occlusions, the recovered shape highly resembles the ground truth, even for

non-textured surfaces and not previously seen textures. When the input image is corrupted by

occlusions, our solutions turn to be noisier, but even in this case, they are very close to the

ground truth.

Computation Times. Another advantage of learning based approaches is that once they are

learned, they are much faster than the analytical solutions. The last column of Table 3.6 shows

that computing the shape can be done in a fraction of a second for either Resnet-50 V2 and our

approach, between one and two orders of magnitude faster than analytical methods.
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Figure 3.17: Evaluation on the CVLab sequences [2]. The two graphs plot the 3D
reconstruction error per frame (in mm) for all methods in the two real sequences (Left: Paper
bending sequence, Right: T-shirt sequence). The results of Resnet-50 V2 are not plotted as it
was not able to generalize to these sequences. Right: Mean reconstruction errors of all methods.
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Figure 1. Results on real data. Reconstruction samples on the CVLab sequences for all methods. Results on Resnet-50 are not included
as it did not generalize to real sequences. Each shape is color coded according to its reconstruction error. Larger errors appear in red.
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Figure 3.18: Reconstructed meshes on the ‘paper bending’ and ‘t-shirt’ CVLab sequences.
Results on Resnet-50 are not included as it did not generalize to real sequences. Each shape is
color coded according to its reconstruction error. Larger errors appear in red, and small errors in
dark blue. Below each reconstructed shape we indicate the mean reconstruction error (in mm).
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Evaluation on Real Data

We also evaluate all methods on two real datasets provided by CVLab [2], which consist in video

sequences of a bending paper and a deforming t-shirt, with 193 and 312 frames, respectively.

As common practice, the background of the sequences was subtracted. Additionally, both for

Resnet-50 V2 and DeformNet, we performed a finetuning of the networks with a very small

portion of the dataset (15% first frames). This finetuning was necessary to capture the bounds

of the real deformations and adapt to the true illumination conditions that were not rendered by

the synthetic dataset. In all methods we evaluated with the rest of the 85% of the frames. Again,

for the fairness of comparison, the analytical solutions were fed by the 2D inputs of the mesh

obtained by DeformNet, augmented to 500 correspondences using interpolation. The mean 2D

location error (in pixels) obtained using DeformNet was 1.24 (paper bending sequence) and

2.28 (t-shirt sequence).

In Fig. 3.17 we plot the 3D reconstruction error per frame for all methods. The table on

the right of the figure summarizes the results. Again, our DeformNet is the most accurate

approach. In the bending paper sequence the analytic solution of Ch14IsoLsq-It is very close

to ours, although DeformNet improves this method by a larger margin in the t-shirt sequence.

In any event, recall that DeformNet performs inference per image in a fraction of a second

while Ch14IsoLsq-It requires about 15 seconds. For these sequences, Resnet-50 V2, the other

Deep Learning baseline we considered, performs very poorly demonstrating that the specific

architecture we use in DeformNet allows for a much better generalization.

Finally, Fig. 3.18 shows a few reconstructed shapes obtained for each of the methods. Below

each sample, we indicate the reconstruction errors. Note that samples with errors of about

4mm (in the paper bending sequence) or 6mm (in the t-shirt sequence) are already very good

solutions. This is the magnitude of the error obtained by DeformNet.

3.5.6 Discussion

One of the most significant aspects of our network is its ability to generalize to unknown textures

(see results in Table 3.6). We conjecture that this is the result of two factors: (i) training with

a large variety of textures, and (ii) separating the network into two input branches, one for

performing 2D detection and the other to modulate input image features using the belief maps

of the 2D detections. That is, our two branches allow us to correctly combine appearance and

geometry. Note that the Resnet-50 V2 baseline we evaluated was also trained with a variety of

textures, but it was not capable to generalize to new textures.

It is well known that on developable surfaces one may reconstruct shape from only the image

boundaries [200]. One might therefore think that the robustness of DeformNet to new textures
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Figure 3.19: Reconstruction under artificial specularities. As in Fig. 3.18, each shape is color
coded according to its reconstruction error.

might be because our architecture learns to infer shape from the boundaries. In order to evaluate

this, we performed the following experiment.

Blurred contours. To reduce the dependency of DeformNet on the contours, we retrained it on

a training set in which the surface boundaries of the input images were artificially corrupted by

both adding random noise to the 2D coordinates of the boundary vertices and then blurring the

contours. This strategy was also used in [201] to evaluate planar homographies. We then tested

our architecture on the full dataset and obtained an error of 3.77mm, which is just slightly above

the results reported in Table 3.6. Therefore, we can conclude that our network does not highly

depend on the boundaries and exploits the whole image.

Relaxing Lambertian reflectance assumptions. To further test our model limits Fig. 3.19

presents an evaluation of the model under synthetic specularities. The network also shows

robustness to this scenario, and the overall reconstruction error (2.82) remains very similar to

the case with Lambertian assumptions.

3.6 Modeling the Geometry of Dressed Humans

Once we are capable of detecting objects in a scene and performing monocular reconstruction of

simple surfaces, we next tackle the more complex task of monocular reconstruction of dressed

humans. With the advent of Deep Learning, the problem of predicting the geometry of the

human body from single images has experienced a tremendous boost. The combination of CNNs
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with large Motion Capture Data (MoCap) [202,203], resulted in a substantial number of works

that robustly estimate the 3D position of the body joints [3, 195, 196, 204–209] or predict their

temporal evolution [210–212].

In order to estimate the full body shape, a standard practice adopted in [6, 140, 142, 144,

213,214] is to regress the parameters of low rank parametric models [138,215]. Nevertheless,

while these parametric models describe very accurately the geometry of the naked body, they

are not appropriate to capture the shape of clothed humans.

Current trends focus on proposing alternative representations to the low rank models. Varol

et al. [158] advocate for a direct inference of volumetric body shape, although still without

accounting for the clothing geometry. Very recently, [159] uses 2D silhouettes and the visual

hull algorithm to recover shape and texture of clothed human bodies. Despite very promising

results, this approach still requires frontal-view input images of the person with no background,

and under relatively simple body poses.

In this section, we introduce a general pipeline to estimate the geometry of dressed humans

which is able cope with a wide spectrum of clothing outfits and textures, complex body poses

and shapes, and changing backgrounds and camera viewpoints. For this purpose, we contribute

in three key areas of the problem, namely, the data collection, the shape representation and the

image-to-shape inference.

Concretely, we first present 3DPeople (Fig. 3.20) a new large-scale dataset with 2 Million

photorealistic synthetic images of people under varying clothes and apparel. We split the dataset

40 male/40 female with different body shapes and skin tones, performing 70 distinct action. The

dataset contains 3D geometry of both the naked and dressed body, and additional annotations

including skeletons, depth and normal maps, optical flow and semantic segmentation masks.

This additional data is indeed very similar to SURREAL [3] which was built for similar purposes.

The key difference between SURREAL and 3DPeople, is that in SURREAL the clothing is directly

mapped as a texture on top of the naked body, while in 3DPeople the clothing does have its own

geometry.

As essential as gathering a rich dataset, is the question of what is the most appropriate ge-

ometry representation for a deep network. We consider the Geometry Image proposed originally

in [157] and recently used to encode rigid objects in [5,156]. The construction of the Geometry

Image involves two steps, first a mapping of a genus-0 surface onto a spherical domain, and then

to a 2D grid resembling an image. Our contribution here is on the spherical mapping. We found

that existing algorithms [4,5] were not accurate, especially for the elongated parts of the body.

To address this issue we devise a novel spherical area-preserving parameterization algorithm

that combines and extends the FLASH [4] and the optimal mass transportation methods [216].

Our final contribution consists of designing a generative network to map input RGB images
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Figure 3.20: 3DPeople dataset. We present a synthetic dataset with 2 Million frames of 80
subjects (40 female/40 male) performing 70 different actions. The dataset contains a large
range of distinct body shapes, skin tones and clothing outfits, and provides 640 × 480 RGB
images under different viewpoints, 3D geometry of the body and clothing, 3D skeletons, depth
maps, optical flow and semantic information (body parts and cloth labels). We use the 3DPeople
dataset to model the geometry of dressed humans. The dataset can be explored and downloaded
at https://cv.iri.upc-csic.es/

of a dressed human into his/her corresponding Geometry Image. Since we consider 128×128×3

Geometry Images, learning such a mapping is highly complex. We alleviate the learning process

through a coarse-to-fine strategy, combined with a series of geometry-aware losses. The full

network is trained in an end-to-end manner, and the results are very promising in variety of

input data, including both synthetic and real images.

In summary, this section main contributions are: 1) build the first large-scale synthetic

dataset and benchmark with 2.5 Million photo-realistic images of 80 subjects performing 70

activities and wearing diverse 3D outfits; 2) a novel representation for 3D meshes that maps 3D

data into a 2D space emulating an image, therefore being a 3D data representation compatible

with all existing literature on image-based CNN architectures; and 3) a new model that, given

an input image of a dressed human in the wild, reconstructs the 3D mesh of the body pose and

clothing shape.

3.6.1 3DPeople Dataset

Datasets are fundamental in the deep-learning era. While obtaining annotations is quite straight-

forward for 2D poses [217–219], it requires using sophisticated MoCap systems for the 3D case.

https://cv.iri.upc-csic.es/
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3DPeople SURREAL

Figure 3.21: Comparison with previous large-scale datasets. The only publicly available
large-scale dataset of 3D bodies is SURREAL [3]. However, it does not contain true geometry
for the clothes, and it projects textures into the naked SMPL shape resembling body-painting.
To fill this gap we introduce 3DPeople, a large-scale dataset with true geometry for clothes, hair
and apparel.

Additionally, the datasets acquired this way [202, 203, 203] are mostly indoors. Even more

complex is the task of obtaining 3D body shape, which requires expensive setups with muti-

cameras or 3D scanners. Marcard et al. [220] proposed solution based on IMUs and a moving

camera but it still does not provide perfect ground-truth annotation. To overcome this situation,

datasets with synthetic but photo-realistic images have emerged as a tool to generate massive

amounts of training data. SURREAL [3] is the only large scale and more complete dataset so far,

with more than 6M frames generated by projecting synthetic textures of clothes onto random

SMPL body shapes. The dataset is further annotated with body masks, optical flow and depth.

However, since clothes are projected onto the naked SMPL shapes just as textures, they cannot

be explicitly modeled (see Fig. 3.21).

To fill this gap, we introduce 3DPeople, the first dataset of dressed humans with specific

geometry representation for the clothes. The dataset contains 2 Million photorealistic 640× 480

images split into 40 male/40 female performing 70 actions. For every subject-action sequence

we randomly change the texture of the clothes, the lighting direction and the background, and

capture it from 4 camera views. Each frame is annotated with (see Fig. 3.22): 3D textured mesh

of the naked and dressed body; 3D skeleton; normals; body parts and cloth segmentation masks;

depth map; optical flow; and camera parameters. In the following we describe the generation

process:

Body models: We have generated fully textured triangular meshes for 80 human characters
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Figure 3.22: Annotations of the 3DPeople dataset. For each of the 80 subjects of the dataset,
we generate 280 video sequences (70 actions seen from 4 camera views). The bottom of the
figure shows 5 sample frames of the Running sequence. Every RGB frame is annotated with
the information reported in the top of the figure. 3DPeople is the first large-scale dataset with
geometric meshes of body and clothes.

using Adobe Fuse [221] and MakeHuman [222]. The distribution of the subjects physical char-

acteristics cover a broad spectrum of body shapes, skin tones and hair geometry (see Fig. 3.23).

Clothing models: Each subject is dressed with a different outfit including a variety of garments,

combining tight and loose clothes. Additional apparel like sunglasses, hats and caps are also

included. The final rigged meshes of the body and clothes contain approximately 20K vertices.

MoCap sequences: We gather 70 realistic motion sequences from Mixamo [223]. These include

human movements with different complexity, from drinking and typing actions that produce

small body motions to actions like breakdance or backflip that involve very complex patterns.

The mean length of the sequences is of 110 frames. While these are relatively short sequences,

they have a large expressivity, which we believe make 3DPeople also appropriate for exploring

action recognition tasks.

Textures, camera, lights and background: We then use Blender [224] to apply the 70 MoCap

animation sequences to each character. Every sequence is rendered from 4 camera views,

yielding a total of 22,400 clips. We use a projective camera with a 700 mm focal length and

640× 480 pixel resolution. The 4 viewpoints correspond approximately to orthogonal directions

aligned with the ground. The distance to the subject changes for every sequence to ensure a

full view of the body in all frames. The textures of the clothes are randomly changed for every

sequence (see again Fig. 3.20). The illumination is composed of an ambient lighting plus a light
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Figure 3.23: Dataset high variance. When building the dataset an special effort has been made
into covering the broadest spectrum of unbiased body and cloth types. The dataset contains a
large variety of shapes, skin tones, hair and beard geometry. Also, each person outfit is unique
and complemented with diverse garments such as hats, caps and glasses.

(a) (b) (c) (d) (e) (f)

Figure 3.24: Geometry image representation of the reference mesh. (a) Reference mesh
in a tpose configuration color coded using the xyz position. (b) Spherical parameterization;
(c) Octahedral parameterization; (d) Unwarping the octahedron to a planar configuration;
(e) Geometry Image, resulting from the projection of the octahedron onto a plane; (f) mesh
reconstructed from the Geometry Image. Colored edges in the octahedron and in the Geometry
Image represent the symmetry that is later exploited by the mesh regressor Φ.

source at infinite, which direction is changed per sequence. As in [3] we render the person on

top of a static background image, randomly taken from the LSUN dataset [225].

Semantic labels: For every rendered image, we provide segmentation labels of the clothes (8

classes) and body (14 parts). Observe in Fig. 3.22-top-right that the former are aligned with the

dressed human, while the body parts are aligned with the naked body.
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3.6.2 Problem Formulation

Given a single image I ∈ RH×W×3 of a person wearing an arbitrary outfit, we aim at designing

a model capable of directly estimating the 3D shape of the clothed body. We represent the body

shape through the mesh associated to a Geometry Image with N2 vertices X ∈ RN×N×3 where

xi = (xi, yi, zi) are the 3D coordinates of the i-th vertex, expressed in the camera coordinates

system and centered on the root joint xr. This representation is a key ingredient of our design,

as it maps the 3D mesh to a regular 2D grid structure that preserves the neighborhood rela-

tions, fulfilling thus the locality assumption required in CNN architectures. Furthermore, the

Geometry Image representation allows uniformly reducing/increasing the mesh resolution by

simply uniformly downsampling/upsampling. This will play an important role in our strategy of

designing a coarse-to-fine shape estimation approach.

We next describe the two main steps of our pipeline: (i) the process of constructing the

Geometry Images, and (ii) the deep generative model we propose for predicting 3D shape.

3.6.3 Geometry Image for Dressed Humans

The deep network we describe later will be trained using pairs {I,X} of images and their

corresponding Geometry Image. For creating the Geometry Images we consider two different

cases, one for a reference mesh in a tpose configuration, and another for any other mesh of the

dataset.

Geometry Image for a Reference Mesh

One of the subjects of our dataset in a tpose configuration is chosen as a reference mesh. The

process for mapping this mesh into a planar regular grid is illustrated in Fig. 3.24. It involves

the following steps:

Repairing the mesh. Let Rtpose ∈ RNR×3 be the reference mesh with NR vertices in a tpose

configuration (Fig. 3.24-a). We assume this mesh to be a manifold mesh and to be genus-0.

Most of the meshes in our dataset, however, do not fulfill these conditions. In order to fix the

mesh we follow the heuristic described in [5] which consists of a voxelization, a selection of

the largest connected region of the α-shape, and subsequent hole filling using a medial axis

approach. We denote by R̃tpose the repaired mesh.

Spherical parameterization. Given the repaired genus-0 mesh R̃tpose, we next compute the

spherical parameterization S : R̃tpose → S that maps every vertex of R̃tpose onto the unit sphere

S (Fig. 3.24-b). Details of the algorithm we use are explained below.

Unfolding the sphere. The sphere S is mapped onto an octahedron and then cut along edges
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Figure 3.25: Comparison of spherical mapping methods. Shape reconstructed from a
Geometry Image obtained with three different algorithms. Left: FLASH [4]; Center: [5]; Right:
SAPP algorithm we propose. Note that SAPP is the only method that can effectively recover feet
and hands.

to output a flat Geometry Image X. Let us formally denote by U : S → X, and by GR =

U ◦S : R̃tpose → X the mapping from the reference mesh to the Geometry Image. The unfolding

process is shown in Fig. 3.24-(c,d,e). Color lines in the Geometry Image correspond to the same

edge in the octahedron, and are split after the unfolding operation. We will later enforce this

symmetry constraint when predicting Geometry Images.

Spherical Area-Preserving Parameterization

Although there exist several spherical parameterization schemes (e.g. [4,5]) we found that they

tend to shrink the elongated parts of the full body models such as the arms and legs, making

the Geometry Images incomplete (see Fig. 3.25). In this work, we develop a spherical area-

preserving parameterization algorithm for genus-0 full body models by combining and extending

the FLASH method [4] and the optimal mass transportation method [216]. Our algorithm

is particularly advantageous for handling models with elongated parts. The key idea is to

begin with an initial parameterization onto a planar triangular domain with a suitable rescaling

correcting the size of it. The area distortion of the initial parameterization is then reduced

using quasi-conformal composition. Finally, the spherical area-preserving parameterization is

produced using optimal mass transportation followed by the inverse stereographic projection.

Geometry Image for Arbitrary Meshes

The approach for creating the Geometry Image described in the previous subsection is quite

computationally demanding (up to 15 minutes for complex meshes). To compute the Geometry

Image for several thousand training meshes we have devised an alternative approach. Let Q ∈
RNQ×3 be the mesh of any subject of the dataset under an arbitrary pose (Fig. 3.26-a), and let
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(a) (b) (c) (d) (e) (f)

Figure 3.26: Geometry image estimation for an arbitrary mesh. (a) Input mesh Q in an
arbitrary pose color coded using the xyz position of the vertices; (b) Same mesh in a tpose
configuration (Qtpose). The color of the mesh is mapped from Q; (c) Reference tpose Rtpose.
The colors again correspond from those transferred from Q through the non-rigid map between
Qtpose and Rtpose; (d) Spherical mapping of Q; (e) Geometry Image of Q; (f) Mesh reconstructed
from the Geometry Image. Note that while being computed through a non-rigid mapping
between the two reference poses, the recovered shape is a very good approximation of the
input mesh Q.

Qtpose ∈ RNQ×3 be its tpose configuration (Fig. 3.26-b). We assume there is a 1-to-1 vertex

correspondence between both meshes, that is, ∃ I : Q → Qtpose where I is a known bijective

function5. We then compute dense correspondences between Qtpose and the reference tpose

R̃tpose, using a Non-Rigid Iterative Closest Point (NR-ICP) algorithm [226]. We denote this

mapping as N : Qtpose → R̃tpose (see Fig. 3.26-c). We can then finally compute the Geometry

Image for the input mesh Q by concatenating mappings:

GQ = GR ◦ N ◦ I : Q→ X (3.27)

where GR is the mapping from the reference mesh to the Geometry Image domain estimated

above. It is worth pointing that the NR-ICP between the pairs of tposes is also highly compu-

tationally demanding, but it only needs to be computed once per every subject of the dataset.

Once this is done, the Geometry Image for a new input mesh Q can be created in a few seconds.

An important consequence of this procedure is that all Geometry Images of the dataset will

be semantically aligned, that is, every uv entry in X will correspond to (approximately) the

same semantic part of the model. This will significantly alleviate the learning task of the deep

network.

5This is guaranteed in our dataset, with all meshes of the same subject having the same number of vertices.
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Figure 3.27: GimNet overview. The proposed architecture consists of two main blocks: a
multiscale Geometry Image regressor Φ and a multiscale discriminator D to evaluate the local
and global consistency of the estimated meshes.

3.6.4 GimNet

We next introduce GimNet, our deep generative network to estimate Geometry Images (and

thus 3D shape) of dressed humans from a single image. An overview of the model is shown

in Fig. 3.27. Given the input image, we first extract the 2D joint locations p represented as

heatmaps [23,194], which are then fed into a mesh regressor Φ(I,p) trained to reconstruct the

shape X̂ of the person in I employing a Geometry Image based representation. To enforce the

reconstruction to lie on the manifold of anthropomorphic shapes, an adversarial scheme with

two discriminators D1 and D2 is applied.

Mesh Regressor. Given the input image I and the estimated 2D body joints p, the mesh

regressor Φ aims to predict the Geometry Image X, i.e.we seek to estimate the mapping M :

I,p → X. Instead of directly learning the complex mapping M, we break the process into

a sequence of more manageable steps. Φ initially estimates a low-resolution mesh, and then

progressively increases its resolution (see Fig. 3.27). This coarse-to-fine approach allows the

regressor to first focus on the basic shape configuration and then shift attention to finer details,

while also providing more stability compared to a network that learns the direct mapping.

As shown in Fig. 3.24-e, the Geometry Images have symmetry properties derived from un-

folding the octahedron into a square, specifically, each side of the Geometry Image is symmetric

with respect to its midpoint. We force this property using a differentiable layer that linearly

operates over the edges of the estimated Geometry Images.
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Multi-Scale Discriminator. Evaluating high-resolution meshes poses a significant challenge

for a discriminator, as it needs to simultaneously guarantee local and global mesh consistency

on very high dimensional data. We therefore use two discriminators with the same architecture,

but that operate in different Geometry Image scales: (i) a discriminator with a large receptive

field that evaluates the shape coherence as a whole; and (ii) a local discriminator that focuses

on small patches and enforces the local consistency of the surface triangle faces.

3.6.5 Learning the Model

3D Reconstruction Error. We first define a supervised multi-level L1 loss for 3D reconstruction

LR as:

LR = EX∼Pr,X̂∼Pg

1

S

S∑
s=1

λs

∥∥∥Xs − X̂s

∥∥∥
1
, (3.28)

being Pr and Pg the real and generated data distribution of clothed human Geometry Images

respectively, S the number of scales, Xs the ground-truth reconstruction at scale s and X̂s =

Φs(I) the estimated reconstruction. The error at each scale is weighted by λs = 1
r where r

is the ratio between X̂S and X̂s sizes. During initial experimentation L1 loss reported better

reconstructions than mean squared error.

2D Projection Error. To encourage the mesh to correctly project onto the input image we

penalize, at every scale s, its projection error LP computed as:

LP = EX∼Pr,X̂∼Pg

1

S

S∑
s=1

λs

∥∥∥P(Xs)− P(X̂s)
∥∥∥

1
,

where P is the differentiable projection equation and λs is calculated as above.

Adversarial Loss. In order to further enforce the mesh regressor Φ to generate anthropo-

morphic shapes we perform a min-max strategy game [40] between the regressor and two

discriminators operating at different scales. It is well-known that non-overlapping support

between the true data distribution and model distributions can cause severe training instabilities.

As proven by [227, 228], this can be addressed by penalizing the discriminator when deviating

from the Nash-equilibrium, ensuring that its gradients are non-zero orthogonal to the data
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manifold. Formally, being Dk the kth discriminator, the Ladv loss is defined as:

K∑
k=1

[
EX̂∼Pg

[log(1−Dk(X̂S))] + EX∼Pr

[
log(Dk(XS))

]
+
λdgp

2
EX∼Pr(‖∇Dk(XS)‖21

]
, (3.29)

where K = 2 and λdgp is a penalty regularization for discriminator gradients, only considered

on the true data distribution.

Feature Matching Loss. To improve training stabilization we penalize higher level features

on the discriminators [229]. Similar to a perception loss, the estimated Geometry Image is

compared with the ground truth at multiple feature levels of the discriminators. Being Dk
l the

l-th layer of the k-th discriminator, LF is defined as:

EX∼Pr,X̂∼Pg

K∑
k=1

L∑
l=1

1

Nk
l

∥∥∥Dk
l (XS)−Dk

l (X̂S)
∥∥∥

1
, (3.30)

where Nk
l is a weight regularizer denoting the number of elements in the l-th layer of the kth

discriminator.

Total Loss. Finally, we to solve the min-max problem:

Φ? = arg min
Φ

max
D
Ladv + λRLR + λPLP + λFLF (3.31)

where λR, λP and λF are the hyper-parameters that control the relative importance of every loss

term.

Implementation Details

For the mesh regressor Φ we build upon the U-Net architecture [230] consisting on an encoder-

decoder structure with skip connections between features at the same resolution extended to

estimate Geometry Images at multiple scales. The encoder transforms the original image into

a 6 levels pyramid of multi-scale high-dimensional features Hs, each obtained by an average

pooling with stride 2 to down-sample the spatial dimension followed by two convolution blocks.

On the opposite site, the decoder builds upon a cascade of Geometry Image inference blocks

that estimate a coarse-to-fine mesh at multiple resolutions. The Geometry Image at each level

is estimated as X̂s = f(X̂s−1) + ∆X̂s being f(X̂s−1) the bilinearly upsampled Geometry Image

of the previous level. By doing this our network only needs to infer a residual delta ∆X̂s
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mean median std time (sec)

Choi 2015 333.16 331.68 47.66 3.66
Sinha 2016 24.90 12.86 36.76 268.94
Ours SaP 14.02 10.30 14.59 100.68

Ours SaP + NR-ICP 10.37 9.98 1.86 1.00

NR-ICP (lower bound) 4.89 4.67 0.83 -

Table 3.7: GIM accuracy. The errors are in mm, using the defined distance metric. We also
report the time required to compute the GIM for a single mesh. These results are obtained over
the t-pose configurations of the 80 models of our dataset.

over a lower dimensional mesh instead of the complete mesh. ∆X̂s is estimated by applying

a convolutional block with a Tanh(·) activation over the concatenation of bilinearly upsampled

features of the previous level f(Fs−1), the estimated mesh in a previous resolution f(X̂s−1), and

the skip connection Hs. For s = 0, the lowest dimensional mesh, X̂0 = ∆X̂0. In the finest scale

S, two refinement convolutions produce the final estimate X̂S . All convolution blocks, except

for the first two, consist of a convolution layer with stride and padding 1 and 3 × 3 kernels

followed by instance normalization and a Leaky ReLU activation with α = 0.2. The first two

blocks in the first encoder level use 7 × 7 kernels to capture long range dependencies of the

shape at high resolution.

Both discriminator networks operate at different mesh resolutions [229] but have the same

PatchGan [52] architecture mapping from the Geometry Image X to a matrix Y ∈ RH/8×W/8,

where Y[i, j] represents the probability of the patch ij to be close to a real Geometry Image

distribution. The global discriminator evaluates the final mesh resolution at scale S and the

local discriminator the down-sampled mesh at scale S − 1. Each discriminator is composed

by 3 down-convolution blocks, each containing 4 × 4 convolutions with stride 2 followed by

instance normalization and Leaky ReLU with α = 0.2; and a final convolution to produce the 1

dimensional estimate.

The model is trained with 170,000 synthetic images of cropped clothed people resized to

128× 128 pixels and Geometry Images of 128× 128× 3 (meshes with 16,384 vertices) during 60

epochs and S = 4. As for the optimizer, we use Adam [38] with learning rate of 2e−4, beta1 0.5,

beta2 0.999 and batch size 110. Every 40 epochs we decay the learning rate by a factor of 0.5.

The weight coefficients for the loss terms are set to λR = 20, λP = 0.1, λF = 10 and λdgp = 0.01.

3.6.6 Experimental Evaluation

We next present quantitative and qualitative results of the proposed Geometry Image mapping

and our model ability to perform 3D reconstruction on synthetic images of our dataset and on
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Figure 3.28: Mean error distance on the test set. We plot the results for the 15 worst and 15
best actions. Besides the results of GimNet, we report the results obtained by the ground truth
GIM (recall that it is an approximation of the actual ground truth mesh). We also display the
results obtained by the recent parametric approach of [6]. The results of this method, however
are merely indicative, as we did not retrain the network with our dataset.

GT Gim GT Ours Kanazawa [22]Input Image

Figure 3.29: Qualitative comparison with baseline. Given the input image on the left we plot
the results estimated by our method and [6] (last to columns). We also present the ground truth
mesh and GIM (recall that it is an approximation of the ground truth mesh).

images in the wild.

GIM Generation - Mapping Baseline Comparison

We first provide a detailed analysis of the proposed spherical area-preserving parametrization.

We compare our approach against the baselines Choi et al. [4] and Sinha et al. [5]. In Table 3.7

we report the reconstruction error of the GIMs generated by these two methods, Ours SaP: the

Spherical area Preserving strategy described in Sec. 3.6.3; and Ours SaP + NR-ICP: the combined

SaP and NR-ICP mapping to a reference shape. Additionally, we provide the error of the NR-ICP

mapping, between each input mesh and a reference shape being this the lower-bound error we

can obtain using Ours SaP + NR-ICP. We found that [4,5] tend to shrink the elongated parts of

the full body models such as the arms and legs, making the Geometry Images incomplete (see

Fig. 3.25). In contrast, our approach is particularly advantageous for handling these cases being

consistently more accurate and computationaly efficient than the rest of baselines.
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Noise Uniform Range (in pixels) {0} [-2, +2] [-4, +4] [-8, +8] [-10, +10]

Mean Error 23.29 24.93 30.19 49.73 61.28

Table 3.8: Model Sensitivity to noise in the 2D joints. Reconstruction error in mm, when
injecting uniform noise in the ranges ±{0, 2, 4, 8, 10} pixels.

3D Reconstruction - Synthetic Results

We evaluate our approach on 25,000 test images randomly chosen for 8 subjects (4 male/ 4

female) of the test split. For each test sample we feed GimNet with the RGB image and the

ground truth 2D pose, corrupted by Gaussian noise with 2 pixel std. For a given test sample, let

Ŷ be the N2 × 3 estimated mesh, resulting from a direct reshaping of its estimated Geometry

Image X̂. Also, let Y be the ground truth mesh, which does not need to have neither the same

number of vertices as Ỹ, nor necessarily the same topology. Since there is no direct 1-to-1

mapping between the vertices of the two meshes we propose using the chamfer metric:

dist(Ŷ,Y) =
1

2
(KNN(Ŷ → Y) + KNN(Y → Ŷ)) (3.32)

where KNN(Ŷ → Y) represents the average Euclidean distance for all vertices of Ŷ to their

nearest neighbor in Y. Note that KNN(·, ·) is not a true distance measure because it is not

symmetric. This is why we compute it bidirectionally.

The quantitative results are summarized in Fig. 3.28. We report the average error (in mm)

of GimNet for 30 actions (the 15 with the highest and lowest error). Note that the error of

GimNet is bounded between 15 and 35mm. Recall, however, that we do not consider outlier

2D detections in our experiments, but just 2D noise. We also evaluate the error of the ground

truth Geometry Image, as it is an approximation of the actual ground truth mesh. This error

is below 5mm, indicating that the Geometry Image representation does indeed capture very

accurately the true shape. We also provide the error of the recent parametric approach of [6],

that fits SMPL parameters to the input images. Nevertheless, these results are just indicative,

and cannot be directly compared with our approach, as we did not retrain [6]. We add them

here just to demonstrate the challenge posed by the new 3DPeople dataset. Indeed, the distance

error in [6] was computed after performing a rigid-icp of the estimated mesh with the ground

truth mesh (there was no need of this for GimNet).

Fig. 3.29 shows a representative example of the meshes used in the quantitative comparison.

As a common denominator across all test set, [6] struggles with extremely occluded limbs but

most importantly fails to capture the cloth due to its underlying SMPL representation.
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Figure 3.30: Qualitative results. For the synthetic images we plot our estimated results and the
shape reconstructed directly from the ground truth Geometry Image. In all cases we show two
different views. The color of the meshes encodes the xyz vertex position.

Finally, we evaluate the method sensitivity to nosy skeleton inputs. Table 3.8 reports the

average 3D reconstruction error (in mm) of GimNet for different levels of 2D noise of the input

skeleton joins. Note that the error is below reasonable bounds for noise levels up to 4 pixels.

Indicating that GimNet does indeed relay on the skeleton as a first approximation constrain while

still being robust to non perfect skeleton estimations up to 4 pixels for images of 128× 128.

3D Reconstruction - Qualitative Results

We finally show in Fig. 3.30 qualitative results on synthetic images from 3DPeople and real

fashion images downloaded from Internet. Remarkably, note how our approach is able to

reconstruct long dresses (top row images), known to be a major challenge [159]. Note also

that some of the reconstructed meshes have spikes. This is one of the limitations of the non-

parametric models, that the reconstructions tend to be less smooth than when using parametric

fittings. However, non-parametric models have also the advantage that, if properly trained, can

span a much larger configuration space.
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3.7 Summary

In this chapter we have presented four novel methods that define a pipeline for reconstructing

a scene and clothed people in it while estimating the camera position.

For scene reconstruction and camera estimation we have proposed PL-SLAM, an approach

to visual SLAM that allows to simultaneously process points and lines and tackle situations

where point-only based methods are prone to fail, like poorly textured scenes or motion blurred

images where feature points are vanished out. We built upon the architecture of the state-

of-the-art ORB-SLAM and modify its original pipeline to operate with line features without

significantly compromising its efficiency. We have also presented a novel line-based map ini-

tialization approach, which estimates camera pose and 3D map from 5 line correspondences in

three consecutive images. This approach holds on the assumption of constant and small inter-

frame rotation in these three images. In the results section we show that this indeed is a good

approximation for many situations. Additionally, we evaluated the full pipeline on a real robot

for the TUM RGB-D benchmark and showed consistent improvement w.r.t. current competing

methods.

To segment and track the objects in the scene to be later reconstructed we have presented

FaSTGAN, the first real-time approach for semisupervised video object segmentation running

at 32 FPS and yielding high-quality segmentation masks. FaSTGAN’s accuracy is on a par with

previous state of the art optimized for speed but it runs at a much higher frame rate. To achieve

this, we have designed a novel GAN architecture made of a relatively small regressor and two

critics that enforce spatio-temporal consistency over finite temporal windows during training. At

test time, the critics are removed, leading to a simple but robust regressor that does not require

fine-tuning nor post-processing operations when applied to new sequences with unseen objects.

We then have proposed DeformNet, the first deep network for 3D shape estimation of a

non-rigid surface from a single image. For this purpose we have designed an architecture that

can be trained in an end-to-end manner, but that internally splits the problem in three stages:

2D detection, depth estimation and shape inference. The three stages are intimately connected

and are executed by ensuring the satisfaction of geometric constraints such as correct 3D-to-2D

reprojection and 3D-to-3D alignment between the estimated and the ground truth shapes. In

order to train this network, we have rendered a large synthetic dataset of shapes under different

levels of deformation, varying textures, material properties and illumination conditions. We

have shown this network to outperform existing analytical solutions while being much more

efficient and allowing to tackle situations with large amounts of occlusion and very poorly

textured surfaces.
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Finally, we have tackled the more complex task of 3D reconstruction of clothed people. To

do so, we have made three contributions: (i) we have presented the first large-scale dataset of

3D humans in action in which cloth geometry is explicitly modelled; (ii) we have proposed a

new algorithm to perform spherical parameterizations of elongated body parts, to later model

rigged meshes of human bodies as geometry images; and (iii) we have introduced an end-to-

end network to estimate human body and clothing shape from single images, without relying

on parametric models.



4
Image & Video Person Synthesis

4.1 Introduction

In this chapter we present three novel generative methods to model the nonrigid articulated

human body. All proposed methods are self-supervised, they do not required specific dataset

with ground truth labels of the specific task. The experimentation results demonstrate that these

methods are capable of generating novel photo-realistic views of a person, face expressions and

cloth in the wild.

Addressing these tasks is an extremely complex endeavor. Nevertheless, GANs have shown

impressive results in rendering new realistic images, e.g.., faces [9,231], indoor scenes [232] and

clothes [233], by directly learning a generative model from data. They have been used for the

particular problem of person image generation and edition from single-view images [14, 234].

While the results of these approaches are very promising, they suffer from the same fundamental

limitation in that are methods trained in a fully supervised manner, that is, they need to be

trained with pairs of input-output images. This requires from specific datasets. Tackling the

problem in an unsupervised manner, one could leverage to an unlimited amount of images and

use other datasets for which no multi-view images of people are available.

First, we present a novel approach for synthesizing photorealistic images of people in arbi-

trary poses using generative adversarial learning (Sec. 4.3). Given an input image of a person

and a desired pose represented by a 2D skeleton, our model renders the image of the same

person under the new pose, synthesizing novel views of the parts visible in the input image

and hallucinating those that are not seen. We tackle this challenging scenario by splitting

the problem into two principal subtasks: (i) We consider a pose conditioned bidirectional

generator that maps back the initially rendered image to the original pose, hence being directly

comparable to the input image without the need to resort to any training image. (ii) We devise

a novel loss function that incorporates content and style terms, and aims at producing images
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of high perceptual quality. Extensive experiments conducted on the DeepFashion dataset [7]

demonstrate that the images rendered by our model are very close in appearance to those

obtained by fully supervised approaches.

Second, we present GANimation, a novel GAN conditioning scheme for facial expression

editing based on Action Units (AUs) annotations, which describes in a continuous manifold

the anatomical facial movements defining human expressions (Sec. 4.4). GANimation allows

controlling the magnitude of activation of each AU and combine several of them. Additionally,

we propose a fully unsupervised strategy to train the model, that only requires images annotated

with their activated AUs, and exploit attention mechanisms that make our network robust to

changing backgrounds and lighting conditions. Extensive evaluation shows that our approach

goes beyond competing conditional generators both in the capability to synthesize a much wider

range of expressions ruled by anatomically feasible muscle movements, as in the capacity of

dealing with images in the wild.

Finally, we tackle the virtual dressing problem as a cloth transfer one, in which given a

single image of a subject, we transfer his/her clothes to one or more target subjects, either in

still images or video sequences (Sec. 4.5). The core of the presented approach builds upon a

time-consistent GAN with a memory module that stores and progressively refines a texture map

representation of the clothes by hallucinating parts which were not initially visible. Again, this

model can be trained in an unsupervised manner, that is, it does not require being trained with

pairs of images of the same subject wearing different clothes. A thorough evaluation shows that

our approach captures very well the clothing appearance under varying body poses, complex

lighting and changing backgrounds, and provides temporally consistent mappings in long video

sequences.

4.2 Related Work

Rendering a person in an arbitrary pose, expression and cloth from a single image is a severely

ill-posed problem as there are many cloth and body shape ambiguities caused by the new

camera view and the changing body pose, as well as large areas of missing data due to body

self-occlusions. Solving such a rendering problem requires introducing several sources of prior

knowledge including, among others, the body shape, kinematic constraints, hair dynamics, cloth

texture, reflectance models and fashion patterns.

Initial solutions to tackle this problem first built a 3D model of the object and then synthe-

sized the target images under the desired views [235–237]. These methods, however, were

constrained to rigid objects defined by either computer-aided designed models or relatively

simple geometric primitives. Other strategies constrain the set of possible configurations to
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those that can be generated using low-rank 3D Morphable Models (3DMMs). Early approaches

along this line [134,238] generated novel expressions by adjusting the initially estimated 3DMM

parameters of a registered face. While simple, this strategy produced strong image artifacts and

could not convey shading and illumination effects.

More recently, with the advent of Deep Learning and GANs [40], there has been a growing

interest in learning generative image models from data. Particularly interesting for this section

are those approaches that incorporate conditions to train GANs and constrain the generation

process. Several conditions have been explored so far, such as discrete labels [47, 48], and

text [45]. Images have also been used as a condition, for instance in the problem of image-

to-image translation [52], for future frame prediction [50], image inpainting [51] and face

alignment [239]. Very recently [233] used both textual descriptions and images as a condition

to generate new clothing outfits.

Similar to the methods proposed in this thesis, several works have tackled the problem of

unpaired training data. First attempts [240] relied on Markov random field priors for Bayesian

based generation models, using images from the marginal distributions in individual domains.

Others explored enhancing GANs with VAE strategies [240, 241]. Later, several works [51,

242] have exploited the idea of driving the system to produce mappings transforming the style

without altering the original input image content. Our approach is more related to those works

exploiting cycle consistency to preserve key attributes between the input and the mapped image,

such as CycleGAN [243], DiscoGAN [244] and StarGAN [11].

We next elaborate on the state-of-the-art of all necessary aspects required to synthesize a

person in an arbitrary pose, expression and cloth from a single image:

Person Pose Retargeting. The works that are most related to ours are [14, 234]. They both

propose GAN models for the muti-view person image generation problem. However, the two

approaches use ground-truth supervision during train, i.e., pairs of images of the same person

in two different poses dressed the same. Tackling the problem in a fully unsupervised manner,

as we do in Sec. 4.3 chapter, becomes a much harder task that requires more elaborate network

designs, specially when estimating the loss of the rendered images.

Face Image Editing. Face generation and editing is a well-studied topic in computer vision

and generative models. Early approaches addressed the problem using mass-and-spring models

to physically approximate skin and muscle movement [245]. The problem with this approach

is that it is difficult to generate natural looking facial expressions able to capture subtle skin

movements with simple spring models. [238] relied on 2D and 3D morphings but produced

strong artifacts around the region boundaries and was not able to model illumination changes.
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More recent works [8,11,48] train complex convolutional networks able to work with images in

the wild. However, these approaches have been conditioned on discrete emotion categories (e.g.,

happy, neutral, and sad). Instead, in Sec. 4.4 we resume the idea of modeling skin and muscles,

but we integrate it in modern Deep Learning machinery. More specifically, we learn a GAN model

conditioned on a continuous embedding of muscle deformations, allowing to generate a large

range of anatomically possible face expressions as well as smooth facial movement transitions

in video sequences.

Cloth Transfer. 3D cloth reconstruction [23,24,105,198] is an open research problem which

is receiving increasing attention and that it can be an essential tool when building virtual try-

on systems. One of the first works in going a step further and exploring ways to generate

novel images of dressed people is [246], that proposed a system for animating realistic clothing

on synthetic 3D bodies under arbitrary poses. In [247] a multi-part 3D model of clothed-

bodies is used to reconstruct and retarget cloth to new body shapes. Later, Deep Learning

entered into action with several works on this topic: [25] proposed an unsupervised approach

for cloth synthesis in arbitrary poses, [248] trained a network to render a cloth item in a

person given a template image and [249] exploited a person 3D model [138] to change his/her

pose while realistically maintaining the cloth appearance. None of the previous methods could

handle images with cluttered background. This was first tackled by [250], that extended

DensePose [251] for the task of dense texture transfer. This work, however, fully maps the

source appearance and body of the source person onto the target, losing his/her identity.

Background Inpainting. Early approaches for image completion were based on diffusion-

based formulations that filled image holes by propagating neighbour pixels [252, 253]. These

methods, however, could not handle large holes, and were later extended with patch based

strategies [254–256] which filled incomplete regions using patches from the original image.

While effective, patch-based methods tend to be computationally demanding and cannot handle

non-stationary textures. Recently, DL techniques have surpassed these early approaches. For

instance, [257] proposed a dual discriminator loss to assess the image consistency, both locally

and globally. Yu et al. [258] extended this work by embedding an attention mechanism into

a post-processing refinement network. [259] introduced partial convolutions to deal with

irregular holes. In Sec. 4.5 we adopt these ideas to fill regions of the image that remain

incomplete after an initial mapping.

Memory based Generative Models. When generating video it is necessary to ensure temporal

consistency along the regressed frames. Several works have explored the idea of extending DL
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networks with memory, in order to backup long-term information that will be later queried

for future inferences [260–262]. The main advantage of this strategy w.r.t. to other long-

term state-based methods is its ability to robustly secure memory data across long sequences.

This idea has been also incorporated into generative models for better data modelling. Arici

and Celikyilmaz [263] proposed a Restricted Boltzmann Machine associative memory network

extending the GANs framework to transfer features distribution discovered by the discriminator

to the generator. Li et al. [264] added an external memory with a differentiable controller to

capture local texture details that are commonly lost in the bottom-up abstraction process. Kim et

al. [265] addressed the problem of structural discontinuity and discriminator forgetting when

dealing with highly multi-modal latent spaces. In Sec. 4.5 we extend the use of the memory to

maintaining long-term texture information for long video sequences generation.

4.3 Unsupervised Person Image Synthesis

In this first section we propose a fully unsupervised GAN framework that, given a photo of a

person, automatically generates images of that person under new camera views and distinct

body postures. The generative model we build is able to synthesize novel views of the body

parts and clothes that are visible in the original image and also hallucinating those that are not

seen. As shown in Fig. 4.1, the generated images retain the body shape, and the new textures are

consistent with the original image, even when input and desired poses are radically different. In

order to learn this model using unlabeled data (i.e., our training data consists of single images

of people plus the input and desired poses), we propose a GAN architecture that combines

ingredients of the pose conditional adversarial networks [266], Cycle-GANs [243] and the loss

functions used in image style transfer that aim at producing new images of high perceptual

quality [267].

More specifically, to circumvent the need for pairs of training images of the same person

under different poses, we split the problem in two main stages. First, we consider a pose

conditioned bidirectional adversarial architecture which, given a single training photo, initially

renders a new image under the desired pose. This synthesized image is then rendered-back to

the original pose, hence being directly comparable to the input image. Second, in order to assess

the quality of the rendered images we devise a novel loss function computed over the 3-tuple

of images –original, rendered in the desired pose, and back-rendered to the original pose– that

incorporates content and style terms. This function is conditioned on the pose parameters and

enforces the rendered image to retain the global semantic content of the original image as well

as its style at the joints location.

Extensive evaluation on the DeepFashion dataset [7] using unlabeled data shows very promis-
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Figure 2. Failure cases on DeepFashion. We display

Figure 3. Qualitative evaluation for one person with multiple target poses. Top: Our image estimation for several target poses,
considering the same condition image. Bottom: Eight target poses coded by a skeleton with 12 semantic points.

Figure 4. Qualitative evaluation for one person with multiple target poses. Top: Our image estimation for several target poses,
considering the same condition image. Bottom: Eight target poses coded by a skeleton with 12 semantic points.

3

Figure 4.1: Model overview. Given an original image of a person (left) and a desired body pose
defined by a 2D skeleton (bottom-row), our model generates new photo-realistic images of the
person under that pose (top-row). Our main contribution is to train such generative model with
unlabeled data.

ing results, even comparable with recent fully supervised approaches [14,234].

We have presented a novel approach for generating new images of a person under arbitrary

poses using a GAN model that can be trained in a fully unsupervised manner. This advances

state-of-the-art, which so far, had only addressed the problem using supervision. To tackle this

challenge, we have proposed an new framework that circumvents the need of training data by

optimizing a loss function that only depends on the input image and the rendered one, and aims

at retaining the style and semantic content of the original image.

In summary, this section main contributions are: 1) a novel approach for generating new

images of a person under arbitrary poses using a generative model that can be trained in a fully

unsupervised manner; and 2) a new framework that circumvents the need of training data by

optimizing a loss function that only depends on the input image and the rendered one, and aims

at retaining the style and semantic content of the original image.

4.3.1 Problem Formulation

Given a single-view image of a person, our goal is to train a GAN model in an unsupervised

manner, allowing to generate photo-realistic pose transformations of the input image while

retaining the person identity and clothes appearance. Formally, we seek to learn the mapping

(Ipo ,pf ) → Ipf between an image Ipo ∈ R3×H×W of a person with pose po and the image

Ipf ∈ R3×H×W of the same person with the desired position pf . Poses are represented by

2D skeletons with N = 18 joints p = (u1, . . . ,uN ), where ui = (ui, vi) is the i-th joint pixel
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Figure 4.2: Overview of our unsupervised approach to generate multi-view images of
persons. The proposed architecture consists of four main components: a generator G, a
discriminator D, a 2D pose regressor Φ and the pre-trained feature extractor Ψ. Neither ground
truth image nor any type of label is considered.

location in the image. The model is trained in an unsupervised manner with training samples

{I(i)
po ,p

(i)
o ,p

(i)
f }

N
i=1 that do not contain the ground-truth output image Ipf .

4.3.2 Unsupervised Generative Model

Fig. 4.2 shows an overview of our model. It is composed of four main modules: (i) A generator

G(I|p) that acts as a differentiable render, mapping one input image of a given person under a

specific pose to an output image of the same person under a different pose. Note that G is used

twice in our network, first to map the input image Ipo → Ipf and then to render the latter back

to the original pose Ipf → Îpo; (ii) A regressor Φ responsible of estimating the 2D joint locations

of a given image; (iii) A discriminator DI(I) that seeks to discriminate between generated and

real samples; (iv) A loss function, computed without ground truth, that aims to preserve the

person identity. For this purpose, we devise a novel loss function that enforces semantic content

similarity of Ipo and Îpo , and style similarity between Ipo and Ipf .

We next describe in detail each of these components as well as the 2D pose embedding we

consider.

Pose Embedding

Drawing inspiration on [194], the 2D location of each skeleton joint ui in an image I ∈ R3×H×W

is represented as a probability density map Bi ∈ RH×W computed over the entire image domain

as:

Bi[u, v] = P (ui = (u, v)) ∀ (u, v) ∈ U , (4.1)
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being U the set of all (u, v) pixel locations in the input image I. For each vertex ui we introduce

a Gaussian peak with variance 0.03 in the position (ui, vi) of the belief map Bi. The full person

pose p is represented as the concatenation of all belief maps p = (B1, . . . ,BN ) ∈ RN×H×W .

Network Architecture

Generator. Given an input image I of a person, the generator G(I|p) aims to render a photo-

realistic image of that person in a desired pose p. In order to condition the generator with the

pose we consider the concatenation (I,p) ∈ R(N+3)×H×W and feed this into a feed forward

network that produces an output image with the same dimensions as I. The generator is

implemented as the variation of the network from Johnson et al. [268] proposed by [243] as it

achieved impressive results for the image-to-image translation problem.

Image Discriminator. We implement the discriminator DI(I) as a PatchGan [52] network

mapping from the input image I to a matrix YI ∈ R26×26, where YI[i, j] represents the probabil-

ity of the overlapping patch ij to be real. This discriminator contains less parameters than other

conventional discriminators typically used for GANs and enforces high frequency correctness to

reduce the blurriness of the generated images.

Pose Detector. Given an image I of a person, Φ(I) is a 2D detection network responsible for

estimating the skeleton joint locations p ∈ RN×H×W in the image plane. Φ(I) is implemented

with the ResNet [193] based network by Zhu et al. [243].

4.3.3 Learning the Model

The loss function we define contains three terms, namely an image adversarial loss that pushes

the distribution of the generated images to the distribution of the training images, the conditional

pose loss that enforces the pose of the generated images to be similar to the desired ones, and

the identity loss that favors to preserve the person identity. We next describe each of these terms.

Image Adversarial Loss. In order to optimize the generator G parameters and learn the

distribution of the training data, we perform a standard min-max strategy game between the

generator and the image discriminator DI. The generator and discriminator are jointly trained

with the objective function LI(G,DI, I,p) where DI tries to maximize the probability of correctly

classifying real and rendered images while G tries to foul the discriminator. Formally, this loss is

defined as:

LI(G,DI, I,p) = EI∼pdata(I)[logDI(I)] + EI∼pdata(I)[log(1−DI(G(I|p)))] (4.2)
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Conditional Pose Loss. While reducing the image adversial loss, the generator must also

reduce the error produced by the 2D pose regressor Φ. In this way, the generator not only

learns to produce realistic samples but also learns how to generate samples consistent with the

desired pose p. This loss is defined by:

LP(G,Φ, I,p) = ‖Φ(G(I|p))− p‖22 (4.3)

Identity Loss. With the two previously defined losses LI and LP the generator is enforced

to generate realistic images of people in a desired position. However, without ground-truth

supervision there is no constraint to guarantee that the person identity – e.g., body shape, hair

style – in the original and rendered images is the same. In order to preserve person identity, we

draw inspiration on the content-style loss that was previously introduced in [267] to maintain

high perceptual quality in the problem of image style transfer. This loss consists of two main

components, one to retain semantic similarity (content) and the other to retain texture similarity

(style). Based on this idea we define two sub-losses that aim at retaining the identity between

the input image Ipo and the rendered image Ipf .

For the content term, we argue that the generator should be able to render-back the original

image Ipo given the generated image Ipf and the original pose po, that is, Îo ≈ Ipo , where

Îo = G(G(Ipo |pf )|po). Nevertheless, even when using PatchGan based discriminators, directly

comparing Ipo and Îpo at a pixel level would struggle to handle high-frequency details leading to

overly-smoothed images. Instead, we compare them based on their semantic content. Formally,

we define the content loss to be:

LContent = ‖Ψz(Ipo)−Ψz(Îpo)‖22 (4.4)

where Ψz(·) represents the activations at the z-th layer of a pretrained network.

In order to retain the style of the original image into the rendered ones we enforce the texture

around the visible joints of Ipo and Ipf to be similar. This involves a first step of extracting, in

a differential manner, patches of features around the joints of Ipo and Ipf . More specifically, let

Ψz(Ipo) ∈ RC×H′×W ′ be the semantic features of Ipo , and Bpo ∈ RN×H′×W ′ the down-sampled

(using average pooling) probability maps associated to the pose po. The pose-conditioned

patches are computed as:

Xpo,i = Bpo,i ·Ψz(Ipo) ∀i ∈ {1, . . . , N} (4.5)

The representation of a patch style is then captured by the correlation between the different
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channels of its hidden representations Xpo,i using the spatial extend of the feature maps as

the expectation. As previously done in [267] this can be implemented by computing the Gram

matrix Gpo,i ∈ RC×C for each patch i, defined as the inner product between the vectorized

feature maps of Xpo,i. The Patch-Style loss is then computed as the mean square error between

visible pairs of Gram matrices of the same joint in both images Ipo and Ipf :

LPatch-Style =
1

N

N∑
i

(Gpo,i − Gpf ,i
H ′W ′

)2

(4.6)

Finally, we define the identity loss as the weighted sum of the content and style losses:

LId = LContent(Ψ, Ipo , Îpo) + λLPatch-Style(Ψ, Ipo , Ipf ,po,pf ), (4.7)

where he parameter λ controls the relative importance or the two components.

Full Loss. We take the full loss as a linear combination of all previous loss terms:

L = LI(G,DI, Ipo ,pf ) + λPLP(G,Φ, Ipo ,pf )

+ LI(G,DI, Ipf ,po) + λPLP(G,Φ, Ipf ,po)

+ λIdLId + λPLΦ(I,po),

(4.8)

where LΦ(I,po) = ‖Φ(Ipo) − po‖22 is used to train the pose regressor Φ. Our ultimate goal is to

solve:

G? = arg min
G

max
DI,Φ
L (4.9)

Some could argue that the terms LI and LP for the recovered image Îpo are not required

because the same information is expressed by LContent. However, we experienced that these two

terms improved robustness and convergence properties during training.

Implementation Details

In order to reduce the model oscillation and obtain more photo-realistic results we use the

learning trick introduced in [269] and replace the negative log likelihood of the adversarial loss

by a least square loss. The image features Ψz(I) are obtained from a pretrained VGG16 [270]

with z = 7. We use Adam solver [38] with learning rate of 0.0002 for the generator, 0.0001

for the discriminators and a batch size 12. We train for 300 epochs with a linear decreasing

rate after epoch 100. The weights for the loss terms are set to λP = 700 and λId = 0.3. As

in [271], to improve training stability, we update the discriminators using a buffer with the
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previous rendered images rather than those generated in the current iteration. During training,

the pf poses are randomly sampled from those in the training set.

4.3.4 Experimental Evaluation

We verify the effectiveness of our unsupervised GAN model through quantitative and qualitative

evaluations. We next describe the dataset we used for evaluation and the results we obtained.

We have evaluated our approach on the publicly available In-shop Clothes Retrieval Bench-

mark of the DeepFashion dataset [7], that contains a large number of clothing images with

diverse person poses. Images of the dataset were initially resized to a fixed size of 256×256. We

then applied data augmentation with all three possible flips per each image. After that, 2D pose

was computed in all images using the Convolutional Pose Machine [194], and images for which

it failed were removed from the dataset. From the remaining images, we randomly selected

24,145 for training and 5,000 for test. Test samples are also associated to a desired pose and

its corresponding ground truth image, that will be used for quantitative evaluation purposes.

Training images are only associated to a desired 2D pose. No ground truth warped image is

considered during training.

Quantitative results

Since test samples are annotated with ground truth images under the desired pose, we can

quantitatively evaluate the quality of the synthesis. Specifically, we use the metrics considered by

previous approaches on multi-view person generation [14,234], namely the Structural Similarity

(SSIM) [272] and the Inception Score (IS) [16]. These are fairly standard metrics that focus

more on the overall quality of the generated image rather than on the pixel-level similarity

between the generated image and the ground truth. Concretely, SSIM models the changes in

the structural information and IS give high scores for images with a large semantic content.

In Table 4.1 we report these scores for our approach and two fully supervised methods [234]

and [14], when evaluated on the DeepFashion [7] dataset. Two additional implementations of

a VAE [273] and a Conditional GAN model [47], reported in [14], are included. It is worth

to point that while all methods are evaluated on the same dataset, the test splits in each case

are not the same. Therefore, the results on this table should be considered only as indicative.

In any event, note that the two metrics indicate that the quality of the synthesis obtained by

our unsupervised approach are very similar to the most recent supervised approaches and even

outperform previous VAE and conditional GAN implementations.
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Method SSIM ↑ IS ↑

Our Approach 0.747 2.97
Ma et al.NIPS’2017 [234] 0.762 3.09
Zhao et al.ArXiv’2017 [14] 0.620 3.03
Sohn et al.NIPS’2015 [273]* 0.580 2.35
Mirza et al.ArXiv’2014 [47]* 0.590 2.45

Table 4.1: Quantitative evaluation on the DeepFashion dataset. SSIM and IS for our
unsupervised approach and four supervised state-of-the-art methods. For all measures, the
higher is better. ‘*’ indicates that these results were taken from [14]. Note: These results
are just indicative, as the test splits in previous approaches are not available and may differ
between the different methods of the table. Nevertheless, note that the quantitative results put
our unsupervised approach on a par with other supervised approaches.

Qualitative results

We next present and discuss a series of qualitative results that will highlight the main character-

istics of the proposed approach, including its ability to generalize to novel poses, to hallucinate

image patches not observed in the original image and to render textures with high-frequency

details.

In Fig. 4.1 we observe all these characteristics. First, note the ability of our GAN model to

generalize to desired poses very different from that in the original image. In this case given a

frontal image of the upper body of a woman, we show some of the generated images in which

her pose is rotated by 180 deg. In the right-most image of this example, the network is also

able to hallucinate the two legs, not seen in the original image (despite not rendering the skirt).

For this particular example, the network convincingly renders the high frequency details of the

blouse. This is a very important characteristic of our model, and is a direct consequence of the

loss function we have designed, and in particular of the term LPatch-Style in Eq. (4.6) that aims

at retaining the texture details of the original image into the generated one. This is in contrast

to most of the renders generated by other GAN models [14,233,234], which typically wash out

texture details.

Fig. 4.3 presents another series of results obtained with our model. In this case, each

synthetically generated image is accompanied by the ground truth. Note again, the number

of complex examples that are successfully addressed. Several cases show the hallucination of

frontal poses from original poses facing back (or vice versa). Also are worth to mention those

examples where the original image is in a side position with only one arm being observed, and

the desired pose is either frontal of backwards, having to hallucinate both arms. Some of the

textures of the t-shirts have very high frequency patterns and textures (example 4-th row/2-nd

column, examples 6-th row) that are convincingly rendered under new poses.
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Figure 1. Results on real data. Reconstruction samples on the CVLab sequences

2

Figure 4.3: Test results on the DeepFashion [7] dataset. Each test sample is represented by 4
images: input image, 2D desired pose, synthesized image and ground truth.
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Figure 2. Failure cases on DeepFashion. We display

Figure 3. Qualitative evaluation for one person with multiple target poses. Top: Our image estimation for several target poses,
considering the same condition image. Bottom: Eight target poses coded by a skeleton with 12 semantic points.

3

Figure 4.4: Test failures on the DeepFashion [7] dataset. We represent four different types of
errors that typically occur in the failure cases (see text for details).

Figure 4.5: L1 vs identity loss. Synthetic samples obtained by our model when it is trained with
L1 loss and conditioned with the same inputs as in Fig. 4.1. The first five columns correspond
to Îpf , and the last column is the cycle image Îpo . Comparing these results with those of Fig. 4.1
it becomes clear that the L1 loss is not able to capture the person identity.

Failure Cases. Tackling such an unconstrained problem in a fully unsupervised manner causes

a number of errors. We have roughly split them into four categories which we summarize in

Fig. 4.4. The first type of error (top-left) is produced when textures in the original image are not

correctly mapped onto the generated image. In this case, the partially observed dark trousers are

transferred to a lower leg, resembling boots. In the top-right example, the face of the original

image is not fully washed out in the new generated image. In the bottom-left we show a type of

error which we denote as geometric error, where the pose of the original image is not properly

transferred to the target image. The bottom-right image shows an example in which a part of

the body in the original image (hand) is mapped as a texture in the synthesized one.
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Figure 1.

2

Figure 4.6: Testing on images with background. Given the original image of a person with
background on the left and a desired body pose defined by a 2D skeleton (bottom-row), the
model generates the person under that pose shown in the top-row. Albeit our model is trained
with images with no background it does generalize fairly well to this situation (compare with
the results of Fig. 4.1).

Ablation Study. Each component is crucial for the proper performance of the system. DI and

LI constrain the system to generate realistic images; Φ and LP ensure the generator conditions

the image generation to the given pose; and Ψ and LId force the generator to preserve the

input image texture. Removing any of these elements would damage our network. For instance,

Fig. 4.5 shows the results when replacing LId by the standard L1 loss used by most state-of-the-

art GAN works. As it can observed in the last column of the figure, although Îpo is preserving

the low frequency texture of the original image, the person identity in Ipf is lost and all results

tend to converge to a mean brunette woman with white t-shirt and blue jeans.

Images with Background. To further test the limits of our model, Fig. 4.6 presents an eval-

uation of the model performance when the input image contains background. Surprisingly,

although the model has no loss on background consistency nor was trained with images with

background, the results are still very consistent. The person is quite correctly rendered, while the

background is over-smoothed. To become robust to background would require more complex

datasets and specialized loss functions.

4.4 Unsupervised Face Image Synthesis and Animation

Once studied the change of view and pose of a clothed person we now focus on the face. And

more specifically to the task of automatically and smoothly change the facial expression from

a single image. As GANs have become more prevalent, this task has experienced significant

advances, with architectures such as StarGAN [11], which is able not only to synthesize novel
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Figure 4.7: Facial animation from a single image. We propose GANimation, an anatomically
coherent approach that is not constrained to a discrete number of expressions and can animate
the face in a given image and render novel expressions in a continuum. In these examples, we
are given solely the left-most input image Iyr (highlighted by a blue square), and the parameter
α shown on the top denotes the degree of activation of the target Action Units involved in a
smiling-like expression. Additionally, our system can handle images with complex illumination
and non-human skin textures, such as the example in the bottom row.

expressions, but also to change other attributes of the face, such as age, hair color or gender.

Despite its generality, StarGAN can only change a particular aspect of a face among a discrete

number of attributes defined by the annotation granularity of the dataset. For instance, for

the facial expression synthesis task, [11] is trained on the RaFD [274] dataset which has only

8 binary labels for facial expressions, namely sad, neutral, angry, contemptuous, disgusted,

surprised, fearful and happy, respectively. The generation possibilities of [11] are, in this case,

limited by these eight expression categories.

Facial expressions, however, are the result of the combined and coordinated action of facial

muscles that cannot be categorized in a discrete and low number of classes. Ekman and

Friesen [275] developed the Facial Action Coding System (FACS) for describing facial expres-

sions in terms of the so-called Action Units (AUs), which are anatomically related to the contrac-
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tions of specific facial muscles. Although the number of Action Units is relatively small (30 AUs

were found to be anatomically related to the contraction of specific facial muscles), more than

7,000 different AU combinations have been observed [276]. For example, the facial expression

for fear is generally produced with the following activation state: Inner Brow Raiser (AU1),

Outer Brow Raiser (AU2), Brow Lowerer (AU4), Upper Lid Raiser (AU5), Lid Tightener (AU7),

Lip Stretcher (AU20) and Jaw Drop (AU26) [277]. Depending on the magnitude of each AU,

the expression will transmit the emotion of fear to a greater or lesser extent.

In this section we aim at building a model for synthetic facial animation with the level

of expressiveness of FACS, and being able to generate anatomically-aware expressions in a

continuous domain, without the need to pre-compute the position of facial landmarks in the

input images [278]. For this purpose we leverage on the recent EmotioNet dataset [279], which

consists of one million images (we use 200,000 of them) of facial expressions of emotion in

the wild annotated with discrete AUs’ activation1. We build a GAN architecture which, instead

of being conditioned with images of a specific domain as in [11], it is conditioned on a one-

dimensional vector indicating the presence/absence and the magnitude of each Action Unit.

We train this architecture in an weakly supervised manner that only requires images with

their activated AUs. To circumvent the need for pairs of training images of the same person

under different expressions, we split the problem in two main stages. First, we consider an AU-

conditioned bidirectional adversarial architecture which, given a single training photo, initially

renders a new image under the desired expression. This synthesized image is then rendered-

back to the original expression, hence being directly comparable to the input image. We incor-

porate very recent losses to enforce the photo-realism of the generated image. Additionally,

our system also goes beyond state of the art in that it can handle images under changing

backgrounds and illumination conditions. We achieve this by means of a self-learned attention

layer that focuses the action of the network only in those regions of the image that are relevant

to convey the novel expression.

As a result, we build an anatomically coherent facial expression synthesis method, able to

render images in a continuous domain, and which can handle images in the wild with complex

backgrounds and illumination conditions. As we will show in the results subsection, it compares

favorably to other conditioned-GANs schemes, both in terms of the visual quality of the results,

and the possibilities of generation. Fig. 4.7 shows some example of the results we obtain, in

which given one input image, we gradually change the magnitude of activation of the AUs used

to produce a smile. We have also particularly analyzed the role of the attention mechanism we

propose, which is a key ingredient of our architecture, and brings robustness to several artifacts.

We show that besides yielding robustness to cluttered backgrounds it is also effective to handle

1The dataset was re-annotated with [280] to obtain continuous activation annotations.
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Figure 4.8: GANimation overview. The architecture of GANimation consists of three main
blocks: a generator G to regress attention and color masks; a critic DI to evaluate the quality of
the generated image and its photo-realism; and finally, an expression estimator Dy to penalize
differences between the desired conditioning expression yg and its fulfillment ŷg. It is worth
noting that our scheme does not require supervision, i.e., neither pairs of images of the same
person under different expressions, nor the target image Iyg are assumed to be known.

partial occlusions of the face. Finally, we also provide a user study to assess the quality of the

generated results.

In summary, this section main contributions are: 1) a novel generative model for face

animation in the wild that can be trained in a weakly supervised manner. It advances current

works which, so far, had only addressed the problem for discrete emotions category editing

and portrait images; and 2) a plug-and-play attention mechanisms for image editing networks

making them robust to changing backgrounds and lighting conditions for images in the wild.

4.4.1 Problem Formulation

Let us define an input RGB image as Iyr ∈ RH×W×3, which represents the cropped face of a

subject under an arbitrary expression. Every gesture expression is encoded by means of a set of

N Action Units yr = (y1, . . . , yN )>, where each yn denotes a normalized value between 0 and 1

to module the magnitude of the n-th Action Unit. This type of continuous representation is a key

ingredient of our design, as a natural interpolation can be done between different expressions,

allowing to render a wide range of realistic and smoothly changing facial expressions.

Our aim is to learn a mapping M to translate Iyr into an output image Iyg conditioned

on an action-unit target yg, i.e., we seek to estimate the mapping M : (Iyr ,yg) → Iyg . To
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Figure 4.9: Attention-based generator. Given an input image and the target expression, the
generator regresses an attention mask A and an RGB color transformation C over the entire
image. The attention mask defines a per pixel intensity specifying to which extend each pixel of
the original image will contribute in the final rendered image.

this end, we propose to train M in a weakly supervised manner, using M training triplets

{I(m)
yr ,y

(m)
r ,y

(m)
g }Mm=1, where the target vectors ymg are randomly generated. Importantly, we

neither require pairs of images of the same subject under different expressions, nor the expected

target image Iyg to be known.

4.4.2 Anatomically-aware Generative Model

This subsection describes our novel approach to generate photo-realistic conditioned images,

which, as shown in Fig. 4.8, consists of two main modules. On the one hand, a generator

G(Iyr |yg) is trained to realistically transform the facial expression in image Iyr to the desired

yg. Note that G is applied twice, first to map the input image Iyr → Iyg , and then to render it

back Iyg → Îyr . On the other hand, we use a WGAN-GP [44] based critic DI(Iyg) to evaluate

the quality of the generated image and an expression estimator Dy(Iyg) to penalize differences

between the desired and generated expression. We next describe in detail each one of these

blocks.

Generator. Let G be the generator block. Since it will be applied bidirectionally (i.e., to map

input image to desired expression and vice-versa) in the following discussion we use subscripts

o and f to indicate origin and final.

Given the image Iyo ∈ RH×W×3 and the N -vector yf encoding the desired expression,

we form the input of the generator as a concatenation (Iyo ,yo) ∈ RH×W×(N+3), where yo is

represented as N arrays of size H ×W .

One essential component of our system is to make G focus only on those regions of the
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image that are responsible of synthesizing the novel expression and keep the rest elements of the

image such as hair, glasses, hats or jewellery untouched. For this purpose, we have embedded

an attention mechanism into the generator. Concretely, instead of regressing a full image, our

generator outputs two masks, a color mask C and an attention mask A. The final image can be

obtained as:

Iyf
= (1−A) ·C + A · Iyo , (4.10)

where A = GA(Iyo |yf ) ∈ [0, 1]H×W and C = GC(Iyo |yf ) ∈ RH×W×3. The mask A indicates to

which extend each pixel of C contributes to the output image Iyf
. In this way, the generator does

not need to render static elements, and can focus exclusively on the pixels defining the facial

movements, leading to sharper and more realistic synthetic images. This process is depicted in

Fig. 4.9.

Conditional Critic. This block is a network trained to evaluate the generated images in terms

of their photo-realism. The structure of DI(I) resembles that of the PatchGan [52] network

mapping from the input image I to a matrix YI ∈ RH/26×W/26 , where YI[i, j] is used as a

partial function to compute the EMD between the distributions of real image patches and the

overlapping patch ij of the generated image.

Expression Estimator. Given an image I of a face, Dy(I) is an expression regression network

responsible for estimating the AUs’ activation ŷ = (ŷ1, . . . , ŷN )> in the image. Similar to the

conditional critic, its structure resembles that of PatchGan. To reduce the number of parameters

of the model, Dy(I) is implemented on top of the conditional critic as an auxiliary head sharing

the weights of the first five layers.

4.4.3 Learning the Model

The parameters of the generator, conditional critic and expression estimator are simultaneously

estimated. For this purpose we define a loss function made of four terms, namely an image

adversarial loss [43] with the modification proposed by Gulrajani et al. [44] that pushes the

distribution of the generated images to the distribution of the training images; the attention

loss to drive the attention masks to be smooth and prevent them from saturating; the conditional

expression loss that conditions the expression of the generated images to be similar to the desired

one; and the identity loss that favors to preserve the person texture identity. In the following we

describe these losses:

Image Adversarial Loss. In order to learn the parameters of the generator G, we use the

modification of the standard GAN algorithm [40] proposed by WGAN-GP [44] as in Sec. 3.6. As

a quick reminder for the reader, the original GAN formulation is based on the JS divergence loss
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function and aims to maximize the probability of correctly classifying real and rendered images

while the generator tries to foul the discriminator. This loss is potentially not continuous with

respect to the generator’s parameters and can locally saturate leading to vanishing gradients in

the discriminator. This is addressed in WGAN [43] by replacing JS with the continuous EMD. To

maintain a Lipschitz constraint, WGAN-GP [44] proposes to add a gradient penalty for the critic

network computed as the norm of the gradients with respect to the critic input.

Formally, let Iyo be the input image with the initial condition yo, yf the desired final condi-

tion, Po the data distribution of the input image, and P
Ĩ

the random interpolation distribution.

Then, the critic loss we use is:

LI(G,DI, Iyo ,yf ) =− EIyo∼Po [DI(G(Iyo |yf ))] + EIyo∼Po [DI(Iyo)] (4.11)

− λgpEĨ∼P
Ĩ

[
(‖∇

Ĩ
DI(̃I)‖2 − 1)2

]
,

where λgp is a penalty coefficient.

Attention Loss. When training the model we do not have ground-truth annotation for the

attention masks A. Similarly as for the color masks C, they are learned from the resulting

gradients of the critic module and the rest of the losses. However, the attention masks can easily

saturate to 1 which makes that Iyo = G(Iyo |yf ), that is, the generator has no effect. To prevent

this situation, we regularize the mask with a weight penalty. Additionally, to enforce a smooth

spatial color transformation when combining the regions of the input image and those of the

color transformation C, we perform a Total Variation Regularization over A. The attention loss

can therefore be defined as:

LA(G, Iyo ,yf ) = λTVLTV(A) + EIyo∼Po [‖A‖] , (4.12)

where A = GA(Iyo |yf ) and Ai,j represents the [i, j] entry of A. λTV is a penalty coefficient for

the mask smoothing, being the corresponding loss defined as:

LTV(A) =

H,W∑
i,j

[
(Ai+1,j −Ai,j)

2 + (Ai,j+1 −Ai,j)
2
]
.

Conditional Expression Loss. While reducing the image adversarial loss, the generator must

also reduce the error produced by the AUs’ regression head on top of D. In this way, G not only

learns to render realistic samples but also learns to satisfy the target facial expression encoded

by yf . This loss is defined with two components: an AUs regression loss with fake images used

to optimize G, and an AUs regression loss of real images used to learn the regression head on
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top of D. This loss is computed as:

Ly(G,Dy, Iyo ,yo,yf ) = EIyo∼Po

[
‖Dy(Iyo)− yo‖22

]
+ EIyo∼Po

[
‖Dy(G(Iyo |yf ))]− yf‖22

]
.

(4.13)

Identity Loss. With the previously defined losses the generator is enforced to generate photo-

realistic face transformations. However, without ground-truth supervision, there is no constraint

to guarantee that the face in both the input and output images correspond to the same person.

Using a cycle consistency loss [243] we force the generator to maintain the identity of each

individual by penalizing the difference between the original image Iyo and its reconstruction.

The identity loss Lidt(G, Iyo ,yo,yf ) is defined as:

EIyo∼Po [‖G(G(Iyo |yf )|yo)− Iyo‖1] . (4.14)

To produce realistic images it is critical for the generator to model both low and high frequen-

cies. Our PatchGan based critic DI already enforces high-frequency correctness by restricting

our attention to the structure in local image patches. To also capture low-frequencies it is

sufficient to use l1-norm. In preliminary experiments, we also tried replacing l1-norm with a

more sophisticated Perceptual loss [268], although we did not observe improved performance.

Full Loss. To generate the target image Iyg , we build a loss function L by linearly combining all

previous partial losses:

L =LI(G,DI, Iyr ,yg) + λyLy(G,Dy, Iyr ,yr,yg) (4.15)

+ λA
(
LA(G, Iyg ,yr) + LA(G, Iyr ,yg)

)
+ λidtLidt(G, Iyr ,yr,yg),

where λA, λy and λidt are the hyper-parameters that control the relative importance of every loss

term. Finally, we can define the following minimax problem:

G? = arg min
G

max
D∈D
L , (4.16)

whereG? draws samples from the data distribution. Additionally, we constrain our discriminator

D to lie on D, that represents the set of 1-Lipschitz functions.
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Figure 4.10: Single and dual-AU edition. Top: Single AUs are activated at increasing levels
of intensity (from .33 to 1). The first row corresponds to a zero intensity application of the AU
which correctly produces the original image in all cases. Bottom: For every grid two specific AUs
are activated at increasing levels of intensity (from 0 to 1). Left: Case in which the activation
areas of the AUs (#10 and #5) do not overlap. Right: Both AUs activate overlapping areas of
the face.

Implementation Details

Our generator builds upon the variation of the network from Johnson et al. [268] proposed

by [243] as it proved to achieve impressive results for image-to-image mapping. We have

slightly modified it by substituting the last convolutional layer with two parallel convolutional
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Figure 4.11: Attention model. Details of the intermediate color mask C (first row) and the
attention mask A (second row). The images in the bottom row are the synthesized expressions.
Darker regions of the attention mask A show those areas of the image more relevant for each
specific AU. Brighter areas are retained from the original image.

layers, one to regress the color mask C and the other to define the attention mask A. We

also observed that changing batch normalization in the generator by instance normalization

improved training stability. For the critic we have adopted the PatchGan architecture of [52],

but removing feature normalization. Otherwise, when computing the gradient penalty, the norm

of the critic’s gradient would be computed with respect to the entire batch and not with respect

to each input independently as is required by WGAN-GP.

The model is trained on the EmotioNet dataset [279]. We use a subset of 200,000 samples

(over 1 million) to reduce training time. We use Adam [38] with learning rate of 0.0001, beta1

0.5, beta2 0.999 and batch size 25. We train for 30 epochs and linearly decay the rate to zero

over the last 10 epochs. Every five optimization steps of the critic network we perform a single

optimization step of the generator. The weight coefficients for the loss terms in Eq. (4.15) are

set to λgp = 10, λA = 0.1, λTV = 0.0001, λy = 4000, λidt = 10. To improve stability we tried

updating the critic using a buffer with generated images in different updates of the generator,

as proposed in [271], but we did not observe performance improvement.

Several design choices (e.g., sharing part of the weights between the conditional critic and

the expression estimator) were done in order to fit the model into a single Nvidia R© GTX 1080

Ti GPU with 11GB of RAM. The model is trained in two days on the 200,000 EmotioNet dataset

samples. During testing only the regressors are necessary, and hence the size of the model is

reduced to 813 MB. Inference can be done at 66 FPS with an Nvidia R© GTX 1080 Ti GPU.

4.4.4 Experimental Evaluation

In this subsection we provide a thorough evaluation of the proposed architecture. Concretely, we
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evaluate GANimation’s ability for single and multiple AUs editing, for discrete and continuous

emotion editing, and compare it with existing techniques. We also provide a detailed analysis of

the attention mechanism. Finally, we discuss the model’s ability to deal with occlusions and its

limitations and failure cases.

It is worth pointing out that in some of the experiments the input faces are not cropped.

In these cases we first use an off-the-shelf detector2 to localize and crop the face, apply the

expression transformation to that area with Eq. (4.10), and place the generated face back into

its original image position. The attention mechanism is very helpful to process relatively high

resolution images and a render smooth transitions between the morphed cropped faces and the

original image.

Single Action Units Edition

We first evaluate our model’s ability to activate AUs at different intensities while preserving

the person’s identity. Fig. 4.10-top shows a subset of 9 AUs individually transformed with four

levels of intensity (0, .33, .66, 1). For the case of 0 intensity it is desired not to change the

corresponding AU. The model properly handles this situation and generates an identical copy

of the input image for every case. The ability to apply an identity transformation is essential to

ensure that non-desired facial movement is not be introduced.

For the cases with non-zero AU intensity, it can be observed how each AU is progressively

accentuated. Note the difference between generated images at intensity 0 and 1. The model

convincingly renders complex facial movements which in most cases are difficult to distinguish

from real images. It is also worth mentioning that the independence of facial muscle clusters

is properly learned by the generator. For instance, AUs relative to the eyes and the upper-half

part of the face (AUs 1, 2, 4, 5, 45) do not affect the muscles of the mouth. Equivalently, mouth

related transformations (AUs 10, 12, 15, 25) do not affect eyes nor eyebrow muscles.

Fig. 4.11 shows, for the same experiment, the attention A and color C masks that produced

the final result Iyg . Note how the model has learned to focus its attention (darker area) onto the

corresponding AU in a weakly supervised manner. In this way, it relieves the color mask from

having to accurately regress each pixel value. Only the pixels relevant to convey the expression

change are carefully estimated, the rest are just set to noise. For example, the attention is

clearly obviating background pixels allowing to directly copy them from the original image.

This is paramount to later being able to handle images in the wild with complex backgrounds

(see Subsec. 4.4.4).

2We use the face detector from https://github.com/ageitgey/face_recognition.

https://github.com/ageitgey/face_recognition
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Figure 4.12: Sampling the face expression distribution space. As a result of applying the
AU-parametrization through the vector yg, we can synthesize, from the same source image Iyr ,
a large variety of photo-realistic images.

Two Action Units Edition

In the following we evaluate the ability of our model to simultaneously activate two actions

units. The model must not only be able to activate the desired AUs but also combine them in

a realistic manner. The results of this experiment are shown in Fig. 4.10-Bottom. The left grid

of the figure shows the case when the two AUs activate different areas of the face (AUs 5 is

related to the chicks and 10 to the eyelids). In this case, since the muscles related to each AU are

different, their effects are independent from one another. A more difficult case occurs when both

AUs share facial muscles, see Fig. 4.10-Bottom-Right. In this specific case, when only activating

AU12 (left column) the model draws a smile, but when we also activate AU25, in charge of

controlling the distance between lips, the model produces a smile with the mouth open. Note

that the generator hallucinates the teeth that would be visible when smiling with the lips apart.

Simultaneous Edition of Multiple AUs

We next push the limits of the GANimation model and evaluate it in the task of editing multiple

AUs. Additionally, we also assess its ability to interpolate between two expressions. The results

of this experiment are shown in Fig. 4.7 of the Introduction subsection. The first column is the
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Figure 4.13: Qualitative comparison with state-of-the-art. Facial expression synthesis results
for: DIAT [8], CycleGAN [9], IcGAN [10] and StarGAN [11]; and our GANimation. In all cases,
we represent the input image and seven different facial expressions. As it can be seen, our
solution produces the best trade-off between visual accuracy and spatial resolution. Some of
the results of StarGAN [11], the best current approach, show certain level of blur. Images of
previous models were taken from [11].

original image with expression yr, and the right-most column is a synthetically generated image

conditioned on a target expression yg. The rest of columns result from evaluating the generator

conditioned with a linear interpolation of the original and target expressions: αyg + (1− α)yr.

The outcomes show a very remarkable smooth and a consistent transformation across frames.

We have intentionally selected challenging samples to show the robustness to complex lighting

conditions and even, as in the case of the avatar, to non-real data distributions which were not

previously seen by the model. These results are encouraging to further extend the model to

video generation [281–285] in future works.

High Expressions Variability

Given a single image, we next use GANimation to produce a wide range of anatomically feasible

face expressions while conserving the person’s identity. In Fig. 4.12 all faces are the result of

conditioning the input image in the top-left corner with a desired face configuration defined
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Method ACD ↓ IS ↑ User Preference ↑

GANimation 0.31 1.48 56%
StarGaN 0.29 1.41 44%

Table 4.2: Quantitative comparison with StarGAN [11]. The table reports the results of three
metrics (described in the text): Face Distance (ACD [15], the lower the better), Inception Score
(IS [16], the higher the better) and user preference (the higher the better).

1% 20% 40% 80%60% 100%Iyr Iyg

Figure 4.14: Attention mask convergence (qualitative assessment). Evolution of the
attention mask during training. Left to Right: Source Iyr and generated Iyg images,
respectively; and the corresponding attention mask evolution (from 1% to 100%) of the total
training epochs.

by only 14 AUs. Note the large variability of anatomically feasible expressions that can be

synthesized with only 14 AUs. Specially remarkable are some of the results in which parts of the

face are not visible in the input image (e.g., teeth) need to be hallucinated.

Comparison with the State-of-the-Art

We next compare our approach against several baselines, namely DIAT [8], CycleGAN [9],

IcGAN [10] and StarGAN [11]. For a fair comparison, we consider the results of these methods

trained by the most recent work, StarGAN [11], on the task of rendering discrete emotions

categories (e.g., happy, sad and fearful) trained and tested in the RaFD dataset [274]. Face

images in this dataset are properly cropped and aligned. Since DIAT [8] and CycleGAN [9] do

not allow conditioning, they were independently trained for every possible pair of source/target

emotions. GANImation was also fine-tuned with the RaFD dataset. We next briefly discuss the

main aspects of each approach:

DIAT [8]. Given an input image I ∈ X and a reference image Ir ∈ Y , DIAT learns a GAN model

to render the attributes of domain Y in the image I while conserving the person’s identity. It is

trained with the classic adversarial loss and a cycle loss ‖I−GY→X(GX→Y (I))‖1 to preserve the
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Figure 4.15: Qualitative ablation study. Impact of the attention mechanism and the attention
loss in the generated images. First row: Reference expressions. Second row: Results using
the full GANimation pipeline. Third row: GANimation without the attention mechanism. Last
row: GANimation without the attention loss.

person’s identity.

CycleGAN [9]. Similar to DIAT [8], CycleGAN also learns the mapping between two domains

X → Y and Y → X. To train the domain transfer, it uses a regularization term denoted cycle con-

sistency loss that combines two cycles: ‖I−GY→X(GX→Y (I))‖1 and ‖Ir−GX→Y (GY→X(Ir))‖1.

IcGAN [10]. Given an input image, IcGAN uses a pre-trained encoder-decoder to encode

the image into a latent representation in concatenation with an expression vector y to then

reconstruct the original image. It can modify the expression by replacing y with the desired

expression before passing it through the decoder.

StarGAN [11]. This approach is an extension of the cycle loss for simultaneously training be-

tween multiple datasets with different data domains. It uses a mask vector to ignore unspecified

labels and to optimize only on known ground-truth labels. It yields more realistic results when

training simultaneously with multiple datasets.

GANimation differs from these approaches in two main aspects. First, we do not condition
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Figure 4.16: Attention mask convergence (quantitative assessment). Mean value of the
attention mask over training time.

the model on discrete emotions categories, but we learn a basis of anatomically feasible warps

that allows generating a continuum of expressions. Secondly, the use of the attention mask

allows applying the transformation only on the cropped face, and put it back onto the original

image without producing transition artifacts. As shown in Fig. 4.13, besides estimating more

visually compelling images than other approaches, this results on images with higher spatial

resolution.

Table 4.2 presents a quantitative analysis (that includes a user study) comparing GANimation

and StarGAN [11], as a representative of current the state-of-the-art. We considered three

metrics: the ACD [15], the Inception Score (IS) [16] and the user preference. ACD is the

L2-distance between feature vectors of the input and generated images extracted by a face

classifier2 (the lower the better). IS is the metric used in previous approaches, that is higher

for images with a large semantic content (the higher the better). For the study, we evaluated

100 randomly picked images from the RaFD dataset test set, each transformed to 5 randomly

selected expressions. To compute the user preference score we asked 20 human subjects to

pick the most photo-realistic generated image among 20 randomly shuffled image pairs, one

generated by each method. As shown in Table 4.2 both methods have a very similar performance

in terms of the quality of the generated images. ACD is slightly favorable to StarGAN and

GANimation is better in IS and user preference. But recall that GANimation allows generating

expressions in a continuum, while StarGAN is only able to render expressions from set of 8

emotion categories. We can conclude that GANimation retains/slightly improves the quality of

StarGAN, while offering a much wider range of animation possibilities.
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Method ACD ↓ ED ↓ User Preference ↑

GANimation 0.4 0.4 87%
w/o attention 0.4 0.4 13%
w/o attention loss 0.0 4.8 0%

Table 4.3: Quantitative ablation study. Impact of the attention mechanism and the attention
loss on the face generation results. Three metrics are considered (described in the text): Face
Distance (ACD [15], the lower the better), Expression Distance (ED, the lower the better) and
user preference (the higher the better).

Attention Convergence

The most critical part when training GANimation is to ensure the correct convergence of the

attention mask. The fact that we are not using ground-truth supervision can easily lead to

the saturation of this mask, i.e., AH×W = (1)H×W , meaning that Iyo − G(Iyo |yf ) = 0, an

hence the generator simply performs the identity mapping. Indeed, most terms in the loss

function (see Eq. (4.15)) favor this situation, i.e., if the input image is not changed (identity

generator) the photo-realism, the identity preservation and the smoothness of the attention

mask are maximized. To avoid this from happening, we introduced the loss term LA that

explicitly enforces regularization over the attention mask and prevents it from saturating.

Fig. 4.14 shows the convergence of the attention mask during training. We noted that in

the first epochs the generator basically copies most parts of the original image (areas in white)

and only introduces the basic lines that convey the new expression. After a while, the attention

mask converges to a face segmentation mask that allows editing the fine details of the face such

as color and shadows while leaving the original background unchanged. Fig. 4.16 shows how

the amount of newly created pixels (size of the darker regions in the attention mask) increases

over the training time.

Ablation Study

To further analyze the GANimation’s architecture and loss components we conducted an ablation

study. Performing such ablation study, however, is not trivial, as most of the model elements are

crucial for convergence. DI and LI constrain the system to generate realistic images; Dy and

Ly ensure the proper expression conditioning when generating a new sample; and Lidt enforces

the model to preserve the person’s identity. Removing any of these elements prevent the model

from converging.

The only module that can be realistically ablated without catastrophically harming the net-

work’s performance is the attention mechanism A = GA(Iyo |yf ) and its corresponding attention

loss LA. Fig. 4.15 and Table 4.3 present a qualitative and quantitative ablation study of these
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Figure 4.17: Dealing with occlusions. Facial editing when dealing with input images containing
occlusions. In all cases, we represent (from left to right) the source image Iyr ; the target
image Iyg ; the attention mask A; and the color mask C. Top: Occlusions created by external
interfering objects (had and french-fries). Bottom: Self-occlusions created by other parts of the
body (hands and hair).

two elements. For the quantitative results we considered three metrics: the ACD, the ED and the

user preference. ACD is the same metric as in Subsec. 4.4.4 and ED is the l1-distance between the

generated and desired expressions (the lower the better). For the user preference we have asked

20 human subjects to pick the most photo-realistic generated image (the higher the better). For

the study, we evaluated 5,000 randomly picked images from the CelebA [286] dataset, each

transformed to 8 randomly selected expressions of the RaFD dataset. The model was not fine-

tuned on CelebA. For the user study 20 randomly shuffled images were scored based on their

photo-realism.

The quantitative results show that although we do not observe any gain on the face classifi-

cation features nor on the estimated expressions, the proposed generation mechanism produces

more photo-realistic images – better blended with the original background and better adjusted

to the scene illumination. This is clearly reflected by the user study. When no attention is used,

the cropped face bounding boxes are visible in the generated image and the illumination is

not consistent (see Fig. 4.15-w/o attention). By contrasts, when using the proposed generator

the background is perfectly blended and the illumination of the background and the generated

image are consistent (see Fig. 4.15-GANimation).

The ablation study also demonstrates the necessity of introducing the proposed attention loss

LA for the proper convergence of the model (see Table 4.3). When removing it, the obtained

ACD metric is 0.0, meaning Iyr = Iyg , that is, the output image is identical to the input image.

Dealing with Occlusions

We next explicitly evaluate the robustness of the proposed approach to partial occlusions of the
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input face. The results are shown in Fig. 4.17. Interestingly, the attention mask tags the occluded

pixels in white, meaning that these pixels will not be changed by the generator when creating

the new expression. This is another interesting property of the attention mechanism, which

besides learning a smooth foreground-background blending function, it also learns to ignore the

static elements of the image that do not participate in the generation of the facial expression,

like hats, glasses, hands or interfering objects. Recall that this is learned in a weakly supervised

manner.

Images in the Wild

As previously seen, the attention mechanism not only learns to focus on specific areas of the face

but also allows smoothly merging the original and the generated image background. This allows

our approach to be easily applied to images in the wild while still maintaining the resolution of

the original images. For these images we follow the detection and cropping scheme we described

before. Fig. 4.18 shows two examples on these challenging images: the first example illustrates

our model’s performance on a multiple-face editing task with complex illumination; the second

example deals with a non-human-like facial skin texture distribution, which is obviously not

observed at training time. Note how the attention mask allows for a smooth and unnoticeable

merging between the entire frame and the generated faces.

Pushing the Limits of the Model

We next push the limits of our network and discuss the model limitations when dealing with

extreme situations such as stone-like skin, drawings and face sketch abstractions. We have split

success cases into six categories which we summarize in Fig. 4.19-top. The first two examples

(top-row) correspond to human-like sculptures and non-realistic drawings. In both cases, the

generator is able to maintain the artistic effects of the original image. Also, note how the

attention mask ignores artifacts such as the pixels occluded by the glasses. The third example

(second-row, left) shows robustness to non-homogeneous textures over the face. Observe that

the model is not trying to homogenize the texture by adding/removing the beard’s hair. The

second-row, right example, corresponds to an anthropomorphic face with non-real texture. As

for the Avatar image, the network is able to warp the face without affecting its texture. The next

category (third-row, left) is related to non-standard illuminations/colors for which the model has

already been shown robust in Fig. 4.7. The last and most surprising category is face-sketches

(third-row, right). Although the generated face suffers from some artifacts, it is impressive how

GANimation is still capable of finding sufficient features on the face to transform its expression

from worried to excited.
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Figure 4.18: Qualitative evaluation on images in the wild. Top: We represent an image (left)
from the film “Pirates of the Caribbean” and an its generated image obtained by our approach
(right). Bottom: In a similar manner, we use an image frame (left) from the series “Game of
Thrones” to synthesize five new images with different expressions.

The fourth and fifth rows of Fig. 4.19 show a number of failure cases. The first case is related

to errors in the attention mechanism when given extreme input expressions. The attention does

not sufficiently weight the color transformation causing transparencies. The second case (fifth

row, right) shows failures with non-previously seen occlusions such as an eye patch causing

artifacts in the missing face attributes. The model also fails when dealing with non-human

anthropomorphic distributions as in the case of cyclopes. Also, in this case, the face detection

failed to detect the Cyclopes face forcing the generator to directly modify the original image

without previously cropping the face. Lastly, we tested the model behavior when dealing with

animals and observed artifacts like human face features.

4.5 Unsupervised Image-to-Video Cloth Transfer

The last years have witnessed a surge in e-commerce and, in particular, online fashion shopping.

Since 2003 fashion retail sales have experienced a steady annual growth [287] reaching 19.8%

of the total fashion retail sales in the United States in 2017 [288]. However, most users prefer

in-store shopping in order to get the proper fit for clothing, see how items combine with other

garments and how would they all look on them. In the near future, we expect that people will be

able to easily extract and virtually try on cloth from any image on the web without the need for

specialized hardware. In this section, we take a step forward towards this future by leveraging

all the knowledge on image editing acquired in the previous section to edit images. But now,
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Figure 4.19: Success and failure cases. In all cases, we represent the source image Iyr , the
target image Iyg , the attention mask A and the color mask C. Top: Some success cases in
extreme situations. Bottom: Several failure cases.

instead of editing face expressions we will be editing cloth.

Fig. 4.203 illustrates the main problem addressed in this section. In the left image, we

observe a person with an iconic computer science clothing and in the right image the result

of our algorithm to automatically transfer the clothing style to other subjects under different

poses, backgrounds, lightnings and body shapes. Our model is able to synthesize space-time

consistent novel views of the source clothing, while simultaneously fitting them to the target

person body shape and maintaining the original background. The proposed method is learned

in an unsupervised fashion, that is, we do not require pairs of images of the same person

with different clothing or poses, or the same person with same clothes in different positions.

Learning the models without this supervision, allows training with large amounts of data which

strengthens the robustness of our method to changes in body pose, background, occlusions and

clothing.

3In this section faces have been blurred out to preserve the persons’ private identity.
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Figure 4.20: Example of visual clothing transferring. Left, original image of an iconic
computer science clothing style. Right, the result of transferring the cloths from the left image
to other images containing one or several subjects in unconstrained poses and background.
This figure illustrates results in individual images, but the system is able generate space-time
consistent novel views of clothing in videos. Note: All faces in this section have been blurred out
to preserve the persons’ private identity.

To address all above-mentioned challenges, we combine a clothing segmentation output

with a temporally-consistent Generative Adversarial Network. Our main contribution consists

in equipping a standard GAN architecture with a memory module that progressively refines a

source texture map and adapts it to the target person, by filling occluded regions and adapting

to new lighting conditions and body pose. This section is related to recently proposed deep-

learning approaches for transferring clothes [248, 249]; however, while these models provide

visually compelling results, they typically rely on 3D human models, and their results are limited

to non-cluttered backgrounds, mild lighting conditions and require supervised training. Our TC-

GAN offers a simple but effective unsupervised image2Video approach that is shown to be robust

results across pose, background, lighting and body variability without the need of knowing the

underlying geometry of the body nor the physics ruling the cloth deformations.

In summary, this section main contributions are: 1) the first approach to tackle the clothing

transfer problem in a non-supervised manner. This allows training directly on images randomly

downloaded from the internet, while other methods require specialized datasets; and 2)

previous video generation methods tackled temporal coherence through motion compensation,

latent representations and specialized losses. Instead, we propose a physical memory that stores
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clothing texture across frames and guarantees temporal consistency when rendering images in

long video sequences.

4.5.1 Problem Formulation

Let Ic ∈ RH×W×3 be an input RGB image of a dressed person (source), and let xT1 = (X1, . . . ,XT )

be the target video, where Xt ∈ RH×W×3 and the subindex t denotes the video frame. The target

video can be of the same person in Ic or a different one. Our goal is to learn a mappingM to

transform xT1 into an output video yT1 where target person is realistically dressed with the clothes

of Ic. That is, we aim to transfer cloth items from the source image Ic to the target video xT1 by

learning the mappingM : (xT1 , Ic)→ yT1 = (Y1, . . . ,YT ).

One of our major contributions is that we propose learningM in an unsupervised manner,

that is, we do not require pairs of images of the same person under different clothes or poses, or

the same person wearing the same clothes under varying body postures. Instead, our training

data consists merely of N input RGB images {I(n)
c }Nn=1.

The output video yT1 is expected to be meet the following criteria: (i) the transferred cloth

items must be adjusted to the pose and body shape of the target person; (ii) hallucinated

views of the source clothes that are not visible in the source image Ic, must be photo-realistic

and consistent with the visible parts; (iii) transferred cloth items must be consistent with the

illumination of the target video xT1 ; (iv) target elements as body parts, background and non-

transferred cloth items must remain fixed; and (v) the texture across the output frames of yT1

must be consistent in space and time.

4.5.2 Time Consistent Memory GAN

In this subsection we describe the main contribution of this work, namely the time-consistent

GAN to photo-realistically transfer clothing between images of dressed people. The overall

architecture is depicted in Fig. 4.21. Before going deeper into the details of this network, let us

summarize its general functioning.

At test time, the source image Ic is used to initialize the state of the texture map T0 to be

transferred. Since this texture map is estimated from a single view, it will contain many regions

with missing information. Each target frame Xt ∀t ∈ {1, ..., T} is then transformed to the output

frame Yt following a two step process in which first the color information of the target cloth

regions are queried from Tt−1. This results in intermediate images X′t that contain a number

of holes (yellow regions in Fig. 4.21). In the second step, the generator fills these holes and

renders the output images Yt. Note that by introducing the texture memory, the generator only
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Figure 4.21: Overview of our approach for image-to-video cloth transfer. The proposed
architecture consists of three main blocks: a generator G to transfer cloth items; a memory T
that stores textures across long video sequences; and a multiscale discriminator D to evaluate
the photo-realism of the generated image and its consistency with the cloth segmentation labels.
Note that our system does not require supervision, i.e., no pairs of images nor videos of different
persons under the same clothing.

needs to perform a texture inpainting task, instead of having to learn the entire cloth mapping as

in previous works [25, 249, 289]. The inpainted regions are cumulatively added to the texture

memory that shall be used in the subsequent frames. By doing this, we guarantee temporal

consistency. Finally, a multilevel PatchGan [52] discriminator D(Yt,Mt) evaluates the photo-

realism of the generated frame and its compatibility with the input cloth segmentation labels

Mt.

Dataset Pre-processing - Cloth Segmentation

In order to learn the cloth mapping transformation, we automatically enrich the input dataset of

RGB images with segmentation masks {Mn}Nn=1 computed for each input image Inc , where Mn ∈
RH×W×S are the segmentation masks for S cloth labels. We further augment the dataset with

random occlusions, rotations, translations and color jitter. Specifically, occlusions are randomly

introduced over the cloth and body regions (excluding the face) to simulate non-visible parts

of the source clothing to be hallucinated. To help improving the blending of the transferred

cloth onto the image background we also add occlusions on the cloth-background boundaries.

Fig. 4.22 shows the type of input information we will use later to learn the mapping M. We

next describe the network we use for performing cloth segmentation. Note that this network is

independently trained from the one to perform the actual cloth mapping, described in Sec. 4.5.2,

and which is the main focus of this work.
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Figure 4.22: Dataset examples. The dataset used to learn the cloth mapping is originally made
of only RGB images (left). We automatically enrich it by computing cloth segmentation masks
(center) and artificially introducing occlusions (right). We also introduce color and brightness
perturbations, which is shown in some of the left-most images.

Existing state-of-the-art cloth segmentation algorithms [7, 290, 291] are intended for fine-

grained situations with a large variety of cloth items. In our case, segmentation labels will

be used to guide the cloth transfer process between people under potentially different outfits.

Therefore, we define a reduced number of high-level categories that can be shared even under

different clothing styles. Concretely, the segmentation labels we consider are: hair, skin, top-

layer1, top-layer2, bottom and shoes. For estimating such segmentation labels we built our own

architecture, which we describe next.

Cloth segmentation is performed using a PSPNet architecture [292] with a Resnet50 back-

bone, initialized with pre-trained Imagenet weights. After the feature map, we introduce a

pyramid pooling module with pooled feature maps of bin sizes {1 × 1, 2 × 2, 3 × 3, 6 × 6} with

average pooling. The model is trained with 69K pairs of image - cloth labels of size 512 × 512.

We used SGD with learning rate of 0.01. Momentum and weight decay are set to 0.9 and 0.0004

respectively. We set batch size to 32 in training. We train for 100 epochs on 8 GPUs.

This initial architecture, however, lacks of any strategy for enforcing temporal consistency.

For this purpose we extended the single-image segmentation network with a tracking method-

ology, by training a second network which is fed with an RGB image and the segmentation

mask predicted in the previous frame. To avoid having to label video frames, this tracking

model is trained using as input a randomly warped version of the RGB image and the unwarped

segmentation mask detected by the single-image segmentation module. Note that by doing
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Figure 4.23: Memory state and segmentation tracking. Top-Left: Input source image Ic.
Bottom-Left: First frame Xt of the target video in which we seek to transfer the clothes of Ic.
Top-row (columns 2-5): Visualization of the memory Tt, initially containing only the parts
visible in Ic. Novel regions hallucinated for the frames Xt are progressively added into the
texture map. Bottom-row (columns 2-5): Segmentation masks Mt (automatically estimated)
and cloth transfer results Yt.

this we are coupling the single frame and the tracking models in a way that the tracking

module refines the previous frame estimation. This allowed obtaining very consistent temporal

segmentation results.

At inference, the single-frame model runs first on an RGB input image and predicts a seg-

mentation mask for that frame. The tracking model is then applied over the subsequent frames

by taking as input the mask from the previous frame plus the RGB input of the current frame. To

prevent drifting we designed a simple re-initialization mechanism in which the tracking model

runs until the intersection over union (IoU) of the current frame mask and the previous frame

mask is above a threshold λIoU . When it drops below λIoU the single-frame module is run again.

λIoU is set to 0.85. In the experimental subsection we show several results of this approach.

Model Architecture

We next describe in detail each of the main components of our network.

Texture Memory: We define the memory as the estimated texture map of the target cloth. We

use the same body partition and UV parametrization as in DensePose [251]. At t = 0 the memory

is initialized with the cloth’s visible parts from the source image Ic. At each time step, the cloth

regions not seen in the target image are hallucinated by the generator and cumulatively added

to the state memory. An example of how the memory evolves across a video sequence is shown

in the top of Fig. 4.23.

Memory Query: The texture memory can be accessed by both the discriminator an the genera-

tor. In the generation phase, the memory is queried using the mapping Φ : (Xt,Ut,Mt,Tt−1)→
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Figure 4.24: From the texture map to the image and viceversa. Top: When mapping
from the texture map to the image naively using DensePose correspondences several artifacts
appear (left). We partially remove them using a Piecewise Affine Transformation (PAT) strategy
(right). Bottom: Similar noisy patterns appear when updating the texture map with the image
information (left). Again we apply the PAT to smooth the mapping.

X′t, which renders the source cloth into the target frame Xt. In order to perform this mapping,

we first extract dense 2D correspondences Ut between the input the image Xt and a 3D body

model, which implicitly provides the mapping onto the texture map. The correspondences are

obtained with the pretrained DensePose network [251]. Yet, when using directly DensePose

correspondences to assign a texture color to every image pixel a number of artifacts arise in

the form of irregular stripe lines with missing information (see Fig. 4.24-c). We remove these

by smoothing the texture-to-image map using piecewise affine transformation (see Fig. 4.24-c).

While this operation improves the mapping, the rendered image X′t still is prone to contain

several regions with incomplete information.

Cloth Segmentation: The segmentation mask Mk for each video frame is inferred using the

network we described in Sec. 4.5.2. This network performs the mapping Ω : (Xk,Mk−1)→Mk.

Note that, as we mentioned above, the segmentation network is fed with the input RGB image

and the mask Mk−1 at the previous time step. This helps to improve the temporal consistency

of the segmentation, heavily reducing the jittering in the boundaries of the segmented regions.

Generator: The incomplete image X′t and the input segmentation masks are passed to the

generator G : (X′t,Mt) → Yt. We force G to primarily focus on the segmented regions of the

body, by adapting the lighting in the regions of X′t which already have texture information,

and inpainting those which do not have, corresponding to the areas that were not visible in the

previous frames X1, . . . ,Xt−1.

Following the recent works in Self-Attention Generative Adversarial Networks [293–295],

we implemented a mechanism in the generator that allows the feature maps to be built using

relationships between widely separated spatial regions. The intuition behind this design choice

is that inpainting cloth textures is a task in which not only local information needs to be

considered, but also the details of other parts of the clothing that can be relatively far apart

(e.g.shirt sleeves, shoes).
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Memory Update: The new regions in Yt the generator has hallucinated are mapped back to

the texture memory using the inverse of the mapping we considered during the memory query

phase, that is, Φ−1 : (Yt,Mt,Ut)→ Tt. Again, the 2D correspondences Ut are estimated using

DensePose, producing noisy stripe line patterns into the texture map (see Fig. 4.24-c). The

piecewise affine tranform is used one more time to alleviate this problem (see Fig. 4.24-e).

Note that we only update the texture map with the new regions the generator hallucitaded in

the current frame X′t. The texture regions already observed in previous frames are not modified.

This strategy was the one that gave us better results in terms of temporal consistency of the

textures mapped onto the images rendered with the new clothes. We considered other updating

rules (e.g.a weighted update of previous areas with temporal decay), but did not perform that

well.

Multilevel Discriminator: The photo-realism of the generated image Yt is evaluated with the

network D(Yt,Mt). Its structure is similar to the multilevel PatchGan [229], which is made of

two discriminators with identical architecture that operate at different image resolutions, one

having a global view of the image to guide the generator to produce cloth labels, and the other

focused on fine texture details. Each discriminator computes a probability map for overlapping

image patches, that assesses the level of photo-realism of the rendered image and the consistency

with the input cloth segmentation labels.

4.5.3 Learning the Model

After having automatically segmented the N input RGB images {In}Nn=1, we can redefine our

training set as N tuples {In,Mn} of unordered images and their corresponding segmentation

masks. Recall that we do not consider neither videos nor ground truth output images. Despite

not having direct supervision, we carry on simple but effective data augmentation (as described

in Sec. 4.5.2) and define problem specific loss functions that allow our model to learn high-

quality cloth transfers maps.

Concretely we train our model with a loss function made of three terms: an image adversarial

loss to push the distribution of the generated images to the distribution of the training images;

a masked perceptual loss to stabilize the training loss by penalizing high-dimensional features in

the generated image; and a feature matching loss to further stabilize the convergence by forcing

the generator to match statistics at multiple feature levels of the discriminator. We next describe

each of these components:

Image Adversarial Loss: In order to optimize the parameters of the generator G and learn the

distribution of the training data, we extend the commonly used min-max strategy game between

the generator and the discriminator proposed by Goodfellow et al. [40]. To enforce the model



4.5 Unsupervised Image-to-Video Cloth Transfer 117

not just to produce photo-realistic images but also to be consistent with the cloth segmentation

labels, we add an extra term in the adversarial loss that aims to classify a mismatched image-

mask pair as a negative sample. Formally, let X be the input image with its corresponding cloth

segmentation labels M; Pr the data distribution of the input images and Pg the distribution of

the generated images X̂ = G(X′,M); and M̂ a segmentation mask randomly chosen from the

training set. We then define the extended adversarial loss LI is defined as follows:

LI = EX∼Pr [log(D(X,M))] + λ(EX∼Pr [log(1−D(X, M̂))]

+ EX̂∼Pg
[log(1−D(X̂,M))]), (4.17)

where λ = 0.5 is a penalty coefficient to balance the positive-negative rate.

Masked Perceptual Loss: In order to stabilize the training, we added a perceptual loss [268]

masked over the clothing regions. This loss penalizes the L1 distance between the original and

inpainted images after being projected into a high dimensional feature space. It can be written

as:

LP =
N∑
n=1

∥∥∥M� (Ψn(X)−Ψn(X̂))
∥∥∥

1
, (4.18)

where � is the pixelwise multiplication and Ψn the activation maps of the nth layer of a pre-

trained VGG-16 network [270].

Feature Matching Loss: To further stabilize the training process we penalize high level features

on the discriminators [229]. Similar to what was done in the loss LP , the generator is enforced

to match statistics of the original and inpainted images at multiple feature levels of the two

discriminators described in Sec. 4.5.2. If we denote by Dk
l the l-th layer of the k-th discriminator

(k = {1, 2}), the loss LF is defined as:

EX∼Pr,X̂∼Pg

K∑
k=1

L∑
l=1

1

Nk
l

∥∥∥Dk
l (X,M)−Dk

l (X̂,M)
∥∥∥

1
, (4.19)

where Nk
l is a weight regularizer denoting the number of elements in the l-th layer of the k-th

discriminator.

Total Loss: The final min-max problem that combines all previous losses is:

G? = arg min
G

max
D

λILI + λPLP + λFLF (4.20)

where λI , λP and λF are the hyper-parameters that control the relative importance of every loss
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term and G? draws samples from the data distribution.

Implementation Details

The generator consists of a U-Net architecture [230] with 4 feature levels. We have extended the

bottleneck of this network with 7 ResNet blocks and two self-attention layers, introduced after

the 3th and 6th ResNet blocks. Self-attention layers are known to be very memory demanding.

As suggested in [294], we have reduced these requirements by subsampling the feature maps

using maxpooling.

For discriminator networks, we use PatchGan [52], extended to multi-level as in [229]. The

two discriminators have the same architecture, each is formed by 4 down-convolutions with

InstanceNorm and a Leaky ReLU with slope 0.2. After the last layer, we apply a convolution to

produce a 1 dimensional output. The first convolution layer has no normalization.

The model is trained on 69.000 pairs of image - cloth labels of size 256 × 256. We use

Adam [38] with beta1 0.5, beta2 0.999, learning rate of 0.0001, and batch size 40 for both the

generator and discriminators. We train for 60 epochs. The weight coefficients for the loss terms

in Eq. (4.20) are set to λI = 1, λP = 0.05 and λF = 10.

4.5.4 Experimental Evaluation

We next report a thorough evaluation of our algorithm, including qualitative results on still

images and video sequences and a quantitative assessment using the IS metric. In all results we

do not assume ground truth cloth segmentation. We use the segmentation masks automatically

computed using the network we have described in Sec. 4.5.2.

Images in the Wild

We start evaluating the ability of our approach to transfer clothing between images in the wild,

with varying cloth items, unconstrained body poses and cluttered backgrounds. Fig. 4.25 shows

the results in four examples organized as follows: the top row are the reference (source) images

Ic and the left-most column are the target images Xt in which we seek to transfer the source

clothes. For every example, we represent the results of the two estimation steps: (i) memory

query Φ : (Xt,Tt−1) → X′t where X′t is a first estimation obtained with a 2D piecewise affinity

transformation of the texture. This initial estimation still contains missing parts, highlighted in

yellow; (ii) Final transferred image with cloth completion G : (X′t,Mt)→ Yt.

The results demonstrate the ability of our model to transfer very different types of upper-

body items, from short to long sleeves, t-shirts, jackets, jacket suits and long coats. For example,

observe the columns 4 and 5 corresponding to the second reference image. Our model correctly



4.5 Unsupervised Image-to-Video Cloth Transfer 119

Figure 4.25: Cloth transfer. Results from transferring the reference cloths (Ic) in the top row
to the target images in the first column (Xt). For every transfer, we report the initial estimation
X′t and the final result Yt. Missing areas after removing the original cloth and warping the
reference cloth are marked in yellow. These are the areas the generator is trained to inpaint.

introduces the long coat around the clothes of the original target images. Similarly, the learned

model is also robust to different types of lower-body clothing. Interestingly, note that it is also

effective to transfer the clothes between images of the body in which some of the reference parts

are largely occluded. For instance, as shown in the right-most column, the partially observed

source trousers are correctly inpaited on the complete trouser area of the target woman in row

#2. The model also shows robustness to disconnected parts, such us the case of the second

woman (row #3) holding a jacket.

The examples in Fig. 4.25 correspond to still target images. In Fig. 4.23 we already showed

an example of how clothes were transferred into a video sequence.
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Method Mean Std

Pose GAN [25] 2.46 0.80
Pose Variational U-NET [296] 2.79 0.36
VITON [248] 3.11 0.68
Ours X′t (only Memory Query) 3.47 0.56
Ours Yt (Memory Query + Generator Completion) 3.94 0.89
Real Data (Upper Bound) 4.21 0.62

Table 4.4: Quantitative evaluation. Evaluation using the IS metric (the highest the better).

Quantitative Evaluation

We next provide a quantitatively evaluation of our algorithm, compare it against the state-of-

the-art methods and perform an ablation study. The assessment will be done using the IS [16],

a popular metric for judging the image outputs of GAN and which focuses on the overall quality

of the generated images rather than on the pixel-level accuracy. The IS takes a list of images and

returns a single floating point number, the score, which will be higher for images with a large

semantic content.

Table 4.4 reports a quantitative comparison with the state-of-the-art approaches [25] and [296].

These works allow rendering novel views of clothed people but cannot change the identity of

the person (i.e., the source and target individuals are the same). We also consider [248], that

given a photo of a cloth item, can transfer it into a person while retaining his/her pose. It is

worth to point that [249, 289] are also closely related works, but they do not provide code nor

benchmark results, preventing being directly compared.

Additionally, Table 4.4 provides an ablation study of our approach, and compares the inter-

mediate results X′t we obtain right after querying the memory and performing the piecewise

affine transformation, with the final results Yt obtained after applying the learned generator. To

give significance and a reference basis to the results, we also included the IS of the real training

images, which would act as an upper bound.

The IS results on the table reveal that our model outperforms the previous approaches by

a significant margin. Even the intermediate results obtained by memory querying are a very

reliable approximation, achieving high-quality results that are further refined after completing

the missing regions with the generator.

Mapping Complex Clothing

We next evaluate the performance of our model under complex mappings between the source

and target outfits, such as the trouser-to-skirt mappings shown in Fig. 4.26. It is in this type

of scenarios where the high-level segmentation we propose becomes very relevant, as e.g.both
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Figure 4.26: Complex cloth mapping. Our approach can handle situations where the source
and target clothes have vary different topology (e.g.we can robustly transfer trouser textures to
long skirts and dresses.

‘trousers’ and ‘skirts’ will be assigned a ‘bottom’ label, and our model has learned mappings

between source-to-target clothes that have the same segmentation label. In any event, when

there exist such large geometric differences between the source and target clothes, the initial

estimation X′t is fairly inaccurate, which large incomplete regions, and requires from the action

of the generator to fill these areas. Nevertheless, as shown in the figure, the results are still very

photo-realistic.

Multi-Person Cloth Transfer

Another situation we have evaluated is when several people appear in the target image (see

Fig. 4.27). To increase the inference speed in these situations, we have designed our net-

work such that it can generate as many cloth instances as necessary. This allows performing

single-shot multiple instance transfer, that is, that all clothes of all subjects in the image are

simultaneously transferred in a single pass, instead of doing one cloth item at a time.

The quality of the results in images with two people (we have no larger number of individuals

per image in our dataset) is on a par with the single person images. One interesting result is
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Figure 4.27: Multi-Person cloth transfer. Results of our cloth transfer algorithm when dealing
with multiple people in the target image.

shown in the second target image (row #3), in which one person is facing back. In this case,

no texture from the reference image can be initially copied into the memory (as the source

and target image have no common visible regions). The full mapping is then performed by the

generator, that needs to hallucitate the texture of all person clothes. The results are still very

satisfactory in this case.

Videos in the Wild

We next present additional results (complementing Fig. 4.25) on image-to-video cloth transfer.

Some frames of each video sequence are shown in Figs. 4.29, 4.30, 4.31. In each sequence

the figure is organized as follows: the left-most column corresponds to three reference cloth

images Ic (source) to be transferred to the target images Xt displayed on the top row. For every

video frame, we show the cloth segmentation estimation Mt and the output images Yt with the

transferred clothes.

Note that our model shows remarkable temporally consistent results and robustness to

cluttered backgrounds, different body postures (Figs. 4.29, 4.30 and rotations (Fig. 4.31). Fur-
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Figure 4.28: Failure cases. The image displays several failure cases of our system, due to
segmentation errors (top), unrealistic hair inpainting (middle) and incorrect texture warping
(bottom). See text for details.

thermore, in contrast to previous methods [247, 248], we do not require the person nor the

reference cloth to be initialized from a predefined position. This provides our system with a

high flexibility towards being applied on unrestricted images from the Internet.

Pushing the Limits of the Model

We next push the limits of our model and discuss its limitations and failure cases. We have split

the errors into three categories, as shown in Fig. 4.28. The first failure case is produced by errors

in the segmentation, causing Xt to keep part of the original cloth texture that is later propagated

by the generator across the rendered image. This is particularly clear in the the white regions of

the skirt, in Fig. 4.28-top. The second source of error is produced when inpainting hair regions,

specially when they cover large parts of the image (Fig. 4.28-middle). Yet, realistically rendering

hair is an open research field, out of the scope of this work, but which we plan to tackle in the

future. Finally, since we do not estimate the underlying geometry, there are situations where the

propagation of the texture is not consistent.

4.6 Summary

In this chapter we have presented three novel generative methods to model the nonrigid ar-

ticulated human body. In experimentation we demonstrated these methods to be capable of

sampling novel photo-realistic views of a person, face expressions and cloth in the wild.

For generating new images of a person under arbitrary poses we have presented a GAN

model that can be trained in a fully unsupervised manner. These advances state-of-the-art,

which so far, had only addressed the problem using supervision. To tackle this challenge, we

have proposed a new framework that circumvents the need of training data by optimizing a loss

function that only depends on the input image and the rendered one, and aims at retaining the

style and semantic content of the original image. Quantitative and qualitative evaluation on the

DeepFashion dataset shows very promising results, even for new body poses that highly differ
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Figure 4.29: Transferring clothes in real videos. Sequence #1.
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Figure 4.30: Transferring clothes in real videos. Sequence #2.
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Figure 4.31: Transferring clothes in real videos. Sequence #3.
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from the input one and require hallucinating large portions of the image.

For facial expression editing we have presented a novel GAN model for face animation in the

wild that can be trained in a fully unsupervised manner. It advances current works which, so

far, had only addressed the problem for discrete emotions category editing and portrait images.

Our model encodes anatomically consistent face deformations parameterized by means of AUs.

Conditioning the GAN model on these AUs allows the generator to render a wide range of

expressions by simple interpolation. Additionally, we embed an attention model within the

network which allows focusing only on those regions of the image relevant for every specific

expression. By doing this, we can easily process images in the wild, with distracting backgrounds

and illumination artifacts. We have exhaustively evaluated the model capabilities and limits

in the EmotioNet and RaFD datasets as well as in images from movies. The results are very

promising, and show smooth transitions between different expressions in the wild.

Finally, we have presented the first system capable of photo-realistically transferring clothes

from a reference image to video sequences that can be trained in a non-supervised manner. Our

architecture is based on a GAN equipped with a physical memory that stores and maintains

an initially incomplete texture map that is progressively filled with the new inferred occluded

parts. This memory is designed so that the model can retrieve the texture of prior frames

while still being able to update it with new estimations. This strategy allows encoding long

term dependencies in the texture map that can then be consistently transferred to long video

sequences. The results are visually appealing and we believe they open the possibility to be used

in the future as a quick virtual try-on system for clothing.





5
From 3D Reconstruction to Synthesis and Back

5.1 Introduction

Throughout this dissertation we have studied the problem of 3D data understanding from two

different perspectives. First, in Chapter 3, we addressed the problem of explicit 3D reconstruc-

tion. Then, in Chapter 4, we presented generative methods able to implicitly model 3D data.

This chapter combines the two previous chapters approaches into one, bridging the gap between

reconstruction and synthesis by proposing two general-purpose models for both reconstructing

and synthesising novel images.

We start introducing C-Flow (Sec. 5.3), a novel learning method capable of generalizing to

large datasets based on flow-based generative models. Recall that in Section 2.3 we presented

their main formulation and properties. As a brief summary, standard flow models have highly

desirable properties like exact log-likelihood evaluation and exact latent-variable inference, but

they are still in their infancy and have not received as much attention as alternative generative

models. C-Flow is a novel conditioning scheme that brings normalizing flows to an entirely new

scenario with great possibilities for multi-modal data modeling. C-Flow is based on a parallel

sequence of invertible mappings in which a source flow guides the target flow at every step,

enabling fine-grained control over the generation process. We also devise a new strategy to

model unordered 3D point clouds that, in combination with the conditioning scheme, makes it

possible to address 3D reconstruction from a single image and its inverse problem of rendering

an image given a point cloud. We demonstrate our conditioning method to be very adaptable,

being also applicable to image manipulation, style transfer and multi-modal image-to-image

mapping in a diversity of domains, including RGB images, segmentation maps and edge masks.

Secondly, we propose a completely different approach. Instead of trying to generalize to

large datasets as in C-Flow, we present D-NeRF (Sec. 5.4), a neural rendering radiance field

technique specifically designed to model one scene at a time with very fine detail. Neural
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radiance field techniques combine machine learning with classic graphic renders by training a

deep network to map 5D input coordinates (representing spatial location and viewing direction)

into a volume density and view-dependent emitted radiance. D-NeRF extends neural radiance

fields to a dynamic domain, allowing to reconstruct and render novel images of objects under

rigid and non-rigid motions from a single camera moving around the scene. For this purpose

we consider time as an additional input to the system, and split the model two main sub-

models: one that encodes the scene into a canonical space and another that maps this canonical

representation into the deformed scene at a particular time. Both mappings are simultaneously

learned using fully-connected networks. Once the networks are trained, D-NeRF can render

novel images, controlling both the camera view and the time variable, and thus, the object

movement. We demonstrate the effectiveness of D-NeRF on scenes with objects under rigid,

articulated and non-rigid motions.

5.2 Related Work

We next elaborate on the state-of-the-art of the main building blocks for simultaneous recon-

struction and synthesis: generative models and implicit data representation.

Generative Models for Simultaneous Reconstruction and Synthesis

As we have seen in previous chapters, the success of Deep Learning has spurred a large number

of approaches for 3D reconstruction [23,297–300]. All 3D reconstruction techniques presented

till now on this disertation are discriminative, meaning that they learn direct mappings between

output shapes and input images. Generative models, in contrast, capture the actual shape

distribution from the training set, enabling not only to reconstruct new test images, but also

to sample new shapes from the learned distribution. In the first part of this chapter we are

interested in combining reconstruction and synthesis via generative models. There exist several

works along this line, mainly based on GANs and VAEs. For instance, GANs have been used in

Wu et al. [301] to model objects in a voxel representation; Hamu et al. [302] used them to model

body parts; and Pumarola et al. [24] to learn the manifold of geometry images representing

clothed 3D bodies. VAEs [303–306] have also been applied to model 3D data. Joon Park et

al. [17] used auto-decoders [307, 308] to represent the surface of a shape with a continuous

volumetric field.

While GANs and VAEs are the most studied deep generative models so far, we belief that

flow-based generative models [41,42] are key for 3D data modeling as they offer very attractive

properties such as the ability to estimate exact log-likelihood, efficient synthesis and exact
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latent-variable inference. Further advances have been proposed in RealNVP [309] by intro-

ducing the affine coupling layers and in Glow [12], through an architecture with 1x1 invertible

convolutions for image generation and editing. These works have been later applied to audio

generation [310–313], image modeling [314–316] and video prediction [317].

In our case it is crucial that we can condition the generation process (e.g.for 3D reconstruc-

tion we want to condition the 3D data generation on an input image of the desired scene to

be reconstructed). Some recent works have proposed strategies for conditioning normalizing

flows by combining them with other generative models. For instance, [315,318] combine flows

with GANs. These models, however, are more difficult to train as adversarial losses tend to

introduce instabilities. Similarly, for the specific application of video prediction, [317] enforces

an autoregressive model onto the past latent variables to predict them in the future. Dual-

Glow [314] uses a conditioning scheme for MRI-to-PET brain scan mapping by concatenating

the prior distribution of the source image with the latent variables of the target image. In

Sec. 5.3, we introduce a novel mechanism to condition flow-based generative models enabling

fine-grained control for reconstruction and render tasks.

Implicit Models for Simultaneous Reconstruction and Synthesis

In the second part of this chapter we focus on another major trend for 3D modeling based on

implicit functions. In Chapter 3 we have already seen [28,155], voxels [151,319], octrees [152,

153] and geometry images [23]. In this last chapter we exploit a very recent technique,

implicit functions for representing 3D data in an implicit manner via a neural network [17,305,

320–323]. The main idea behind this approach is to describe the information (e.g.occupancy,

distance to surface, color, illumination) of a 3D point x as the output of a neural network f(x).

Compared to the previously mentioned representations, neural implicit representations allow

for continuous surface reconstruction at a low memory footprint.

The first works exploiting implicit representations [17, 305, 320, 321] for 3D representation

were limited by their requirement of having access to 3D ground-truth geometry, often expensive

or even impossible to obtain for in the wild scenes. Subsequent works relaxed this requirement

by introducing a differentiable render allowing 2D supervision. For instance, [324] proposed

an efficient ray-based field probing algorithm for efficient image-to-field supervision. [325,326]

introduced an implicit-based method to calculate the exact derivative of a 3D occupancy field

surface intersection with a camera ray. In [327], a recurrent neural network was used to

ray-cast the scene and estimate the surface geometry. NeRF [328] showed that by implicitly

representing a rigid scene using 5D radiance fields makes it possible to capture high-resolution

geometry and photo-realistically rendering novel views. [329] extended this method to handle

variable illumination and transient occlusions to deal with in the wild images. In [330], even



132 From 3D Reconstruction to Synthesis and Back

more complex 3D surfaces were represented by using voxel-bouded implicit fields. And [331]

circumvented the need of multiview camera calibration.

However, while all mentioned methods achieve impressive results on rigid scenes, none

of them can deal with dynamic and deformable scenes. Occupancy flow [332] was the first

work to tackle non-rigid geometry by learning continuous vector field assigning a motion vector

to every point in space and time, but it requires full 3D ground-truth supervision. Neural

volumes [333] produced high quality reconstruction results via an encoder-decoder voxel-based

representation enhanced with an implicit voxel warp field, but they require a muti-view image

capture setting. In Sec. 5.4 we present D-NeRF, is the first approach able to generate a neural

implicit representation for non-rigid and time-varying scenes, trained solely on monocular data

without the need of 3D ground-truth supervision nor a multi-view camera setting.

5.3 Generative Flow Model for Images and 3D Data

Generative models have become extremely popular in the machine learning and computer vision

communities. Two main actors currently prevail in this scenario, VAEs [39] and especially

GANs [40]. In this section we focus on a different family, the so-called flow-based generative

models [41], which remain under the shadow of VAEs and GANs despite offering very appealing

properties. Compared to other generative method, flow-based models build upon a sequence of

reversible mappings between the input and latent space that allow for (i) exact latent-variable

inference and log-likelihoood evaluation, (ii) efficient and parallelizable inference and synthesis

and (iii) useful and simple data manipulation by operating directly on the latent space. A

detailed explanation of flow-based generative models has been already given in the Overview

chapter (Sec. 2.3).

The main contribution of this section is a novel approach to bridge the gap between re-

construction and synthesis by proposing a single general-purpose model capable of both recon-

struction and synthesis. For this purpose, we introduce C-Flow, a novel conditional normalizing

flows, making it possible to perform multi-modality transfer tasks which have so far not been

explored under the umbrella of flow-based generative models. C-Flow consists on two parallel

flow branches, interconnected across their reversible functions using conditional coupling layers

and trained with an invertible cycle consistency loss. This scheme allows guiding a source domain

towards a target domain guaranteeing the satisfaction of the aforementioned properties of flow-

based models. Conditional inference is then implemented in a simple manner, by (exactly)

embedding the source sample into its latent space, sampling a point from a Gaussian prior, and

then propagating them through the learned normalizing flow. For example, for the application

of synthesizing multiple plausible photos given a semantic segmentation mask, each image is
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Figure 5.1: C-Flow overview. We propose C-Flow, a conditioning scheme for flow-based
generative models applicable to many different domains. The figure shows the results of
modeling the conditional distributions image ↔ 3D point cloud. In the top row we apply this
model for 3D reconstruction (image → point cloud), and in the bottom row for rendering new
images (point cloud→ image). Our model allows sampling multiple times from this conditional
distribution to generate several renderings of the same point cloud.

generated by jointly propagating the segmentation embedding and a random point drawn from

a prior distribution across the learned flow.

Our second contribution is a strategy to enable flow-based methods to model unordered 3D

point clouds. Specifically, we introduce (i) a re-ordering of the 3D data points according to a

Hilbert sorting scheme, (ii) a global feature operation compatible with the reversible scheme,

and (iii) an invertible cycle consistency that penalizes the Chamfer Distance (CD). Combining

this strategy with the proposed conditional scheme we can then address tasks such as shape

interpolation, 3D object reconstruction from an image, and rendering an image given a 3D

point cloud (Fig. 5.1).

Importantly, our new conditioning scheme enables a wide range of tasks beyond 3D point

cloud modeling. In particular, we are the first flow-based model to show mapping between

a large diversity of domains, including image-to-image, pointcloud-to-image, edges-to-image

segmentation-to-image and their inverse mappings. Also, we are the first to demonstrate ap-

plication in image content manipulation and style transfer tasks. We believe our conditioning

scheme, and its ability to deal with a variety of domains, opens the door to building general-

purpose and easy to train solutions.

In summary, this section main contributions are: 1) a novel conditional normalizing flows

formulation to bridge the gap between reconstruction and synthesis by proposing a single

general-purpose model capable of both reconstruction and synthesis; and 2) a new strategy

to model unordered 3D point clouds with normalizing flows.
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Figure 5.2: The C-Flow model consists of two parallel flow branches mutually interconnected
with conditional coupling layers. This scheme allows sampling xB conditioned on xA. For a
detailed description on functions in grey refer to [12].

5.3.1 Conditional Flow-Based Generative Model

We next extend the original formulation of flow-based generative models (explained in Sec. 2.3)

to model conditional distributions. Let us define a true data distribution (xA,xB) ∼ p∗(xA,xB).

Our goal is to learn a model for xB ∼ p∗(xB|xA) to map sample points from domain A to domain

B. For example, for the application of 3D reconstruction from a single view, xA would be an

image and xB a 3D point cloud. To this end, we propose a conditional flow-based generative

model extending the architectures of [12, 309]. Our L-levels model, learns both distributions

with two bijective transformations gθ and fφ (Fig. 5.2):

zA ∼ pϑ(zA), zB ∼ pϕ(zB) (5.1)

xA = gθ(zA), xB = fφ(zB|zA) (5.2)

zA = g−1
θ (xA), zB = f−1

φ (xB|xA) (5.3)
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Figure 5.3: Conditional coupling layer for forward and backward propagation. Given two
input tensors xA and xB, the proposed conditional coupling layer transforms the second half of
xB conditioned on the first halves of xA and xB. The first halves of all tensors are not updated.
By sequentially concatenating these bijective operations we can transform data points x into
their latent representation y (forward propagation) and vice versa (backward propagation).

where zA and zB are latent-variables, and pϑ(zA) and pϕ(zB) are tractable spherical multivariate

Gaussian distributions with learnable mean and variance.

We then define the mappingM to sample xB conditioned on xA, as a three-step operation:

zA = g−1
θ (xA) encode condition xA (5.4)

zB ∼ pϕ(zB) sample latent-variable zB (5.5)

xB = fφ(zB|zA) generate xB conditioned on xA (5.6)

In the following we describe how this conditional framework is implemented.

Conditional Coupling Layer. When designing the conditional coupling layer we need to fulfill

the constraint that each transformation has to be bijective and tractable. As shown in [41,309],

both these issues can be overcome by choosing transformations with triangular Jacobian. In this

case their determinant is calculated as the product of diagonal terms, making the computation

tractable and ensuring invertibility. Motivated by these works, we propose an extension of their

coupling layer to account for cross-domain conditioning. A schematic of the proposed layers is

shown in Fig. 5.3. Formally, let us define y , hi and x , hi−1. We then write the invertible

function f−1 to transform a data point xB based on xA as follows:y1:c
B = x1:c

B

yc+1:C
B = xc+1:C

B � exp
(
s
(
x1:c

A , x1:c
B

))
+ t
(
x1:c

A , x1:c
B

)
,

where C is the number of channel dimensions in both data points, � denotes element-wise

multiplication and s and t are the scale and translation functions from (Rc,Rc) 7→ RC−c. We set

c = C/2 in all experiments.
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The inverse f of the conditional coupling layer is:x1:c
B = y1:c

B

xc+1:C
B =

(
yc+1:C

B − t
(
y1:c

A , y1:c
B

) )
� exp

(
s
(
x1:c

A , x1:c
B

))
,

(5.7)

and its Jacobian:

∂yB

∂x>
=

 Ic 0
∂yc+1:C

B

∂(x1:c)>
diag

(
exp

(
s
(
x1:c

A , x1:c
B

)) )
 , (5.8)

where Ic ∈ Rc×c is an identy matrix. Since the Jacobian is a triangular matrix, its determinant

can be calculated efficiently as the product of the diagonal elements. Note that it is not required

to compute the Jacobian of the functions s and t, enabling them to be arbitrarily complex. In

practice, we implement these functions using a Convolutional Neural Network Ψ(·) that returns

both log(s) and t.

Coupling Network Architecture. We next describe the architecture of Ψθ(·) and Ψφ(·) used

to regress the affine transform applied at every conditional coupling layer at each gi and fi

respectively. We build upon the stack of three 2D convolution layers proposed by [12]. The first

two layers have a filter size of 3×3 and 1×1 with 512 output channels followed by actnorm [12]

and a ReLU activation. The third layer regresses the final scale and translation by applying a 2D

convolutional layer with filter size 3×3 initialized with zeros such that each affine transformation

at the beginning of training is equivalent to an identity function.

For the transformation g−1
i (xA) we exactly use this architecture, but for f−1

i (xB|xA) we extend

it to take into account the conditioning xA. Concretely, in f−1
i , xB is initially transformed by two

convolution layers, like the first two of g−1
i . Then, xA is adapted with a channel-wise affine

transform implemented by a 1 × 1 convolution. Finally, its output is added to the transformed

xB. To ensure a similar contribution of xA and xB their activations are normalized with actnorm

so that they operate in the same range. A final 3 × 3 convolution regresses the conditional

coupling layer operators log(sB) and tB.

5.3.2 Learning the Model

Invertible Cycle Consistency. We train our model to maximize the log-likelihood of the train-

ing dataset. However, likewise in GANs learning [51, 52], we found beneficial to add a loss

encouraging the generated and real samples to be similar in L1. To do so, we exploit the fact

that our model is made of bijective transformations, and introduce what we call an invertible
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cycle consistency. This operation can be summarized as follows:

{xA,xB}
g−1,f−1

−→ {zA, zB} → {zA, ẑB}
f−→ x̂B. (5.9)

Concretely, the data points observations (xA, xB) are initially mapped into their latent variables

(zA, zB), where each variable is composed of an L-level stack. As demonstrated in [309] the first

levels encode the high frequencies (details) in the data, and the last levels the low frequencies.

We then resample the first L − 1 dimensions of zB from a Gaussian distribution, i.e.zB =

[z1, . . . , zL]→ ẑB = [N (0, I)1, . . . ,N (0, I)L−1, zL]. By doing this, ẑB is only retaining the lowest

frequencies of the original zB.

As a final step, we invert f−1, to recover x̂B = f(ẑB|zA) and penalize its L1 difference w.r.t

the original xB. What we are essentially doing is to force the model to use information from the

condition xA so that the recover sample x̂B is as similar as possible to the original xB. Note that

if reconstructed ẑB based on the entire latent variable, the recovered sample would be identical

to the original xB because f is bijective, and this loss would be meaningless.

Total Loss. Formally, denoting the training pairs of observations as {x(i)
A ,x

(i)
B }Ni=1, the model

parameters are learned by minimizing the following loss function:

1

N

N∑
i=1

[
− log pθ,φ(x

(i)
A ,x

(i)
B ) + λ

∥∥∥x(i)
B − x̂

(i)
B

∥∥∥
1

]
(5.10)

The first term maximizes the joint likelihood of the data observations. With our design, it

also maximizes the conditional likelihood of xB|xA and thus forces the model to learn the desired

mapping. To show this, we apply the law of total probability and we factor it into:

−
N∑
i=1

log pθ(x
(i)
A )−

N∑
i=1

log pφ(x
(i)
B |x

(i)
A ) (5.11)

Due to the diagonal structure of the Jacobians, the marginal likelihood of xA depends only on

θ (first sum), while the conditional of xB|xA – only on φ. Maximizing the joint likelihood thus

maximizes both likelihoods independently. The second term in Eq. (5.10) minimizes the cycle

consistency loss. λ is a hyper-parameter balancing the terms. This loss is fully differentiable,

and we provide details on how we optimize it in Sec. 5.3.3.
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Figure 5.4: Sorting 3D point clouds. Point clouds corresponding to three different chairs. The
colored line connects all points based on their ordering. Top: Unordered. Bottom: Applying
the proposed sorting strategy. Note how the coloring is consistent across samples even for point
clouds with different topology.

5.3.3 Modeling Unordered 3D Point Clouds

The model described so far can handle input data represented on regular grids but it fails

to model unordered 3D point clouds, whose lack of spatial neighborhood ordering prevents

convolutions from being applied. To process point clouds with deep networks, a common

practice is to apply symmetry operations [334] that create fixed-size tensors of global features

describing the entire point cloud sample. These operations require extracting point-independent

features followed by a max-pool, which is not invertible and not applicable to normalizing

flows. Another alternative would be the graph convolutional networks [335], although their

high computational cost makes them not suitable for our scheme of multiple coupling layers.

We propose a three-step mechanism to enable modeling 3D point clouds:

(i) Approximate Sorting with Space-Filling Curves. C-Flow is based on convolutional layers

which require input data with a local neigboorhood consistent across samples. To fulfill this

condition on unordered point clouds, we propose to sort them based on proximity. As discussed

in [334], for high dimensional spaces it is not possible to produce a perfect ordering stable to

point perturbations. We therefore consider using the approximation provided by the Hilbert’s

space-filling curve algorithm [336]. For each training sample, we project its points into a 3D

Hilbert curve and reorder them based on their ordering along the curve (Fig. 5.4). Notice that

not only we can establish a neighborhood relationship but also a semantically-stable ordering

(e.g.in Fig. 5.4 the chair’s right-leg is always blue). To the best of our knowledge there is no

previous work using such preprocessing for point clouds.
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Figure 5.5: Approximating global features in point clouds. When dealing with point clouds
(reordered and reshaped to a H × W × 3 size and using c = C/2) we approximate, with
operations in blue, global features in coupling layers while still being invertible. ~ stands for
affine transformation where the first C/2 input channels are the scale and the other half the
translation.

(ii) Approximating Global Features. Hilbert Sort is not sufficient to model 3D data because

of a major issue: it splits the space into equally sized quadrants and the Hilbert curve will

cover all points in a quadrant before moving to the next. As a consequence, two points that

were originally close in space, but lie near the boundaries of two different quadrants, will end

up far away in the final ordering. To mitigate this effect we extend the proposed coupling

network architecture (Sec. 5.3.1) with an approximate but invertible version of the global

features proposed in [334] that describe the whole point cloud. Concretely, we first resample

and reshape the reordered point cloud to form H×W × 3 matrices (in practice we use the same

size as that of the images). Then we approximate the global descriptors of [334] through a 1×1

convolution to extract point-independent features followed by a max-pool applied only over the

first half of the point cloud features x1:c (Fig. 5.5). The coupling layer remains bijective because

during the backward propagation the approximated global features can be recovered using a

similar strategy as in Eq. (5.7).

(iii) Symmetric Chamfer Distance for Cycle Consistency. For the specific case of point clouds,

we observed that when penalizing the invertible cycle consistency with L1 the model converged

to a mean Hilbert curve. Therefore, for point clouds, we substitute L1 by the symmetric Chamfer

Distance (CD), which computes the mean Euclidean distance between the ground-truth point

cloud xB and the recovered x̂B.
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Figure 5.6: Embedding 3D points clouds. Top: Reconstruction with partial embeddings.
Bottom: Reconstruction with three iterations of backward propagations of partial embeddings.

Implementation Details

Due to memory restrictions, we train with image samples of 64 × 64 resolution. For 3D point

clouds, to maintain the same architecture as in images, we reshape each point cloud sample

(list of 642 points) to 64 × 64. At test time we also regress 642 3D points per forward pass.

Our implementation builds upon that of Glow [12]. We use Adam with learning rate 1e−6,

β1 = 0.85, β2 = 0.007 and batch size 4. The multi-scale architecture consists of L = 4 levels

with 12 flow steps per level (K = 4 ∗ 12 in Eq. (2.6)) each and 2× squeezing operations. For

conditional sampling we found additive coupling (s(·) = 1) to be more stable during training

than affine transformation. The prior distributions pϑ(zA) and pϕ(zB) are initialized with mean 0

and variance 1. The rest of weights are randomly initilized from a normal distribution with mean

0 and std 0.05. λ = 10 in Eq. (5.10). As in previous likelihood-based generative models [12,337],

we observed that sampling from a reduced-temperature prior improves the results. To do so, we

multiply the variance of pϕ(zB) by T = 0.9. The model is trained with 4 GPUs P-100 for 10 days.

5.3.4 Experimental Evaluation

We next evaluate our system on diverse tasks: (i) Modeling point clouds, (ii) 3D reconstruction

and rendering, (iii) Image-to-image mapping in a variety of domains and datasets, and (iv)

Image manipulation and style transfer.

Modeling 3D Point Clouds

We evaluate the potential of our approach to model 3D point clouds on ShapeNet [338]. For

this task, we do not consider the full conditioning scheme and only use one of the branches of

C-Flow in Fig. 5.2, which we denote as C-Flow*.
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Figure 5.7: Interpolation. Results of interpolating two 3D point clouds x1 and x2 in the learned
latent space.

Method 100% 50% 25% 12.5%

C-Flow* ≡ Glow [12] 0.00 0.39 0.39 0.39
C-Flow* + Sort 0.00 0.19 0.21 0.22
C-Flow* + Sort + GF-Coupling 0.00 0.14 0.18 0.31

AtlasNet-Sph. [300] 0.75
AtlasNet-25 [300] 0.37
DeepSDF [17] 0.20

Table 5.1: Representing 3D point clouds. Chamfer Distance when recovering point clouds
with partial embeddings. For all C-Flow* we change the embedding size at test, with no further
training. The percentages are with respect to the input dimension (4096). For AtlasNet and
DeepSDF we provide the results from [17].

In our first experiment we study the representation capacity of unknown shapes, formally

defined as the ability to retain the information after mapping forward and backward between

the original and latent spaces. For this purpose, we first map a real point cloud x to the latent

space z = g−1
θ (x). The full-size embedding z = [z1, . . . , zL] has as many dimensions as the

input (HWC). Then we progressively remove information from z by replacing their left-most l

components with samples drawn from a Gaussian, i.e. ẑ = [N (0, I)1, . . . ,N (0, I)l, zl+1, . . . , zL].

Note that the embedding size L − l can be set at test time with no need to retrain, making

tasks like point cloud compression straightforward. Finally we map back this embedding to the

original point cloud space x̂ = gθ(z) and compare to x.

Table 5.1 reports the Chamfer Distance for different embedding sizes. The plain version

of C-Flow* (no conditioning, no sorting, no global features) is equivalent to Glow [12]. This

version is consistently improved when introducing the sorting and global features strategies

(Sec. 5.3.3). The error decreases gracefully as we increase the embedding size, and importantly,

when using the full size embedding we obtain a perfect recovering (Fig. 5.6-top). This is a
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One-to-Many One-to-One

Figure 5.8: Image-to-Image. Results from 64 × 64 image-to-image mappings on a variety of
domains. xA: source image; x̂B: generated image in the target domain. The examples on
the left correspond to target domains with high variability that when sampled multiple times
generate different images. In the examples on the right the target domain has a small variability
and the sampling becomes deterministic.

virtue of the bijective models, and is not a trivial property. Table 5.1 also reports the numbers

of AtlasNet [300] and DeepSDF [17], showing that our approach achieves competitive results.

This comparison is only indicative as the representation used in these approaches is inherently

different ( [300] parametric and [17] a continuous surface).

Recall that the left-most components randomly sampled in z encode the high details of the

shape. We exploit this property to generate point clouds with an arbitrarily large number of

points by performing multiple backward propagations (x̂ = gθ(ẑ)) of a partial embedding ẑ

(Fig. 5.6-bottom). Every time we propagate, we recover a new set of 3D points allowing to

progressively improve the density of the reconstruction.

Another task that can be addressed with C-Flow is shape interpolation in the latent space

(Fig. 5.7).

3D Reconstruction & rendering

We next evaluate the ability of C-Flow to model the conditional distributions (i) image→ point

cloud, which enables to perform 3D reconstruction from a single image; and (ii) point cloud →
image, which is its inverse problem of rendering an image given a 3D point cloud. Fig. 5.1 shows

qualitative results on the Chair class of ShapeNet. In the top row our model is able to generate

plausible 3D reconstructions of unknown objects even under strong self-occlusions (top-right
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Image→ PC Image← PC
Method CD↓ BPD↓ IS↑

3D-R2N2 [297] 0.27 - -
PSGN [303] 0.26 - -
Pix2Mesh [298] 0.27 - -
AtlasNet [300] 0.21 - -
ONet [305] 0.23 - -

C-Flow 0.86 4.38 1.80
C-Flow + Sort 0.52 2.77 2.41
C-Flow + Sort + GF-Coupling 0.49 2.87 2.61
C-Flow + Sort + GF-Coupling + CD 0.26 - -

Table 5.2: 3D Reconstruction and rendering. ↓: the lower the better, ↑: the higher the better.
C-Flow is the first approach able to render images from point clouds. The same model can be
used to perform 3D reconstruction from images. The results of all other methods are obtained
from their original papers.

example). The second row depicts results for rendering, which highlights another advantage

of our model: it allows sampling multiple times from the conditional distribution to produce

several images of the same object which exhibit different properties (e.g.viewpoint or texture).

In Table 5.2 we compare C-Flow with other single-image 3D reconstruction methods 3D-

R2N2 [297], PSGN [303], Pix2Mesh [298], AtlasNet [300] and ONet [305]. We evaluate 3D

reconstruction in terms of the CD with the ground truth shapes. Our approach (last row)

performs on par with [297, 298, 303] and it is slightly below the state-of-the-art techniques

specifically designed for 3D reconstruction [300,305].

With the same model, we can also render images from point clouds. To the best of our

knowledge, no previous work can perform such mapping. While a few approaches do render

point clouds [339–341], they hold on strong assumptions of knowing the RGB color per point

and the camera calibration to project the point cloud onto the image plane. Table 5.2 also reports

an ablation study about the different operations we devised to handle 3D point clouds, namely

sorting the point cloud (Sort), approximating global features (GF-Coupling) and inverse cycle

consistency with CD. In this case, evaluation is reported using IS [16] and Bits Per Dimension

(BPD) which is equivalent to the negative log2-likelihood typically used to report flow-based

methods performance. Results show a performance boost when using each of these components,

and especially when combining them.
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Figure 5.9: Other applications. Sample results on 64×64 image manipulation and style transfer.
The model was not retrained for these tasks, and we used the same training weights to perform
image-to-image in Fig. 5.8.

C-Flow C-Flow + cycle
Method BPD↓ SSIM↑ IS↑ BPD↓ SSIM↑ IS↑

segmentation→ street views 3.21 0.37 1.80 3.17 0.42 1.94
segmentation← street views 3.25 0.33 2.19 3.05 0.36 2.23
structure→ facades 3.55 0.24 1.92 3.54 0.26 1.69
structure← facades 3.55 0.31 2.05 3.55 0.30 2.01
map→ aerial photo 3.65 0.19 1.52 3.65 0.17 1.62
map← aerial photo 3.65 0.54 1.95 3.65 0.57 1.97
edges→ shoes 1.70 0.66 2.40 1.68 0.67 2.43
edges← shoes 1.65 0.64 1.61 1.65 0.65 1.69

Table 5.3: Conditional image-to-image generation. Evaluation of C-Flow (plain) and C-Flow
+ cycle consistency loss in image-to-image mapping.

Image-to-Image mappings

We evaluate the ability of C-Flow to perform multi-domain image-to-image mapping: seg-

mentation ↔ street views trained on Cityscapes [342], structure ↔ facade trained on CMP Fa-

cades [343], map ↔ aerial photo trained on [52] and edges ↔ shoes trained on [52, 344, 345].

The examples on Fig. 5.8-left show mappings in which the target domain has a wide variance

and multiple sampling generates different results (e.g.a semantic segmentation map can map

to several grayscale images). The examples on the right have a target domain with a narrower

variance, and despite multiple samplings the generated images are very similar (e.g.given an
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image its segmentation is well defined).

Table 5.3 reports quantitative evaluations using SSIM [272], and again BPD and IS. When

introducing the invertible cycle consistency loss (Sec. 5.3.2) the model does not improve its

compression abilities (BPD) but improves in terms of structural similarity (SSIM) and semantic

content (IS). It is worth to mention that while GANs have shown impressive image-to-image

mapping results, even at high resolution [346], ours is the first work that can address such tasks

using normalizing flows.

Other Applications

Finally, we demonstrate the versatility of C-Flow being the first flow-based method capable of

performing style transfer and image content manipulation (Fig. 5.9). Importantly, the model was

not retrained for these specific tasks, and we use the same parameters learned to perform image-

to-image mappings (Sec. 5.3.4). For image manipulation we use the weights of segmentation→
street view and for style transfer those of edges ↔ shoes. Formally, let the domain A to be the

structure (e.g.segmentation mask) and the domain B to be the image (e.g.street view). Then,

image manipulation is achieved via three operations:

z1
B = f−1

φ (x1
B|x1

A) encode original image x1
B (5.12)

z2
A = g−1

θ (x2
A) encode desired structure x2

A (5.13)

x2
B = fφ(z1

B|z2
A) synthesise new image x2

B (5.14)

Note that following this generation approach we are no longer conditioning based only on A,

and now the synthesised image is jointly conditioned on A (for structure) and B (for texture).

To perform style transfer, we first transform the content image into its structure x2
A. For

instance, in Fig. 5.9-bottom, the content of the shoe is initially mapped onto its edge structure

with the shoes → edges weights. Then, we apply the same procedure as we did for image

manipulation using the edges → shoes weights, setting x1
A to be the structure of the content

image and x1
B the style image.

5.4 Neural Radiance Fields for Dynamic Scenes

In the previous section we have studied how to model a large 3D data corpus. In this section we

no longer care about learning a manifold of plausible 3D objects but instead on how to model

one specific scene at a time with extreme photo-realistic details. Photo-realistically modeling

a scene from a sparse set of input images is necessary for many applications in e.g.augmented
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Point of View & Time

Figure 5.10: D-NeRF overview. We propose D-NeRF, a method for synthesizing novel views, at
an arbitrary point in time, of dynamic scenes with complex non-rigid geometries. We optimize an
underlying deformable volumetric function from a sparse set of input monocular views without
the need of ground-truth geometry nor multi-view images. The figure shows two scenes under
variable points of view and time instances synthesised by the proposed model.

reality, virtual reality, 3D content production, games and the movie industry. Recent advances

in the emerging field of neural rendering, which learn scene representations encoding both

geometry and appearance [325,328–331,347], have achieved results that largely surpass those

of traditional Structure-from-Motion [348–350], light-field photography [351] and image-based

rendering approaches [352]. For instance, the Neural Radiance Fields (NeRF) [328] have shown

that simple multilayer perceptron networks can encode the mapping from 5D inputs (represent-

ing spatial locations (x, y, z) and camera views (θ, φ)) to emitted radiance values and volume

density. This learned mapping allows then free-viewpoint rendering with extraordinary realism.

Subsequent works have extended Neural Radiance Fields to images in the wild undergoing

severe lighting changes [329] and have proposed sparse voxel fields for rapid inference [330].

Similar schemes have also been recently used for multi-view surface reconstruction [331] and

learning surface light fields [353].

Nevertheless, all these approaches assume a static scene without moving objects. In this

section we relax this assumption and propose, to the best of our knowledge, the first end-

to-end neural rendering system that is applicable to dynamic scenes, made of both still and

moving/deforming objects. While there exist approaches for 4D view synthesis [354], our

approach is different in that: 1) we only require a single camera; 2) we do not need to pre-

compute a 3D reconstruction; and 3) our approach can be trained end-to-end.

Our idea is to represent the input of our system with a continuous 6D function, which besides
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3D location and camera view, it also considers the time component t. Naively extending NeRF

to learn a mapping from (x, y, z, t) to density and radiance does not produce satisfying results,

as the temporal redundancy in the scene is not effectively exploited. Our observation is that

objects can move and deform, but typically do not appear or disappear. Inspired by classical 3D

scene flow [355], the core idea to build our method, denoted Dynamic-NeRF (D-NeRF in short),

is to decompose learning in two modules. The first one learns a spatial mapping (x, y, z, t) →
(∆x,∆y,∆z) between each point of the scene at time t and a canonical scene configuration. The

second module regresses the scene radiance emitted in each direction and volume density given

the tuple (x + ∆x, y + ∆y, z + ∆z, θ, φ). Both mappings are learned with deep fully connected

networks without convolutional layers. The learned model then allows to synthesize novel

images, providing control in the continuum (θ, φ, t) of the camera views and time component,

or equivalently, the dynamic state of the scene (see Fig. 5.10).

We thoroughly evaluate D-NeRF on scenes undergoing very different types of deformation,

from articulated motion to humans performing complex body poses. We show that by decompos-

ing learning into a canonical scene and scene flow D-NeRF is able to render high-quality images

while controlling both camera view and time components. As a side-product, our method is

also able to produce complete 3D meshes that capture the time-varying geometry and which

remarkably are obtained by observing the scene under a specific deformation only from one

single viewpoint.

In summary, this section main contributions are: 1) the first neural radiance field approach

for modeling dynamic scenes that can be trained end-to-end from only a sparse set of images

acquired with a moving camera, and 2) a new benchmark to evaluate techniques to model

dynamic objects under large deformations and realistic non-Lambertian materials.

5.4.1 Problem Formulation

Given a sparse set of images of a dynamic scene captured with a monocular camera, we aim to

design a deep learning model able to implicitly encode the scene and synthesize novel views at

an arbitrary time (see Fig. 5.11).

Formally, our goal is to learn a mapping M that, given a 3D point x = (x, y, z), outputs

its emitted color c = (r, g, b) and volume density σ conditioned on a time instant t and view

direction d = (θ, φ). That is, we seek to estimate the mappingM : (x,d, t)→ (c, σ).

An intuitive solution would be to directly learn the transformation M from the 6D space

(x,d, t) to the 4D space (c, σ). However, as we will show in the results subsection, we obtain

consistently better results by splitting the mappingM into Ψx and Ψt, where Ψx represents the
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Figure 5.11: D-NeRF problem definition. Given a sparse set of images of a dynamic scene
moving non-rigidly and being captured by a monocular camera, we aim to design a deep
learning model to implicitly encode the scene and synthesize novel views at an arbitrary time.
Here, we visualize a subset of the input training frames paired with accompanying camera
parameters, and we show three novel views at three different time instances rendered by the
proposed method.

scene in canonical configuration and Ψt a mapping between the scene at time instant t and the

canonical one. More precisely, given a point x and viewing direction d at time instant t we first

transform the point position to its canonical configuration as Ψt : (x, t) → ∆x. Without loss of

generality, we chose t = 0 as the canonical scene Ψt : (x, 0) → 0. By doing so the scene is no

longer independent between time instances, and becomes interconnected through a common

canonical space anchor. Then, the assigned emitted color and volume density under viewing

direction d equal to those in the canonical configuration Ψx : (x + ∆x,d)→ (c, σ).

We propose to learn Ψx and Ψt using a sparse set of T RGB images {It,Tt}Tt=1 captured

with a monocular camera, where It ∈ RH×W×3 denotes the image acquired under camera pose

Tt ∈ R4×4 SE(3), at time t. Although we could assume multiple views per time instance, we

want to test the limits of our method, and assume a single image per time instance. That is,

we do not observe the scene under a specific configuration/deformation state from different

viewpoints.

5.4.2 Implicit Model

We now introduce D-NeRF, our novel neural renderer for view synthesis trained solely from a

sparse set of images of a dynamic scene. We build on NeRF [328] and generalize it to handle

non-rigid scenes. Recall that NeRF requires multiple views of a rigid scene In contrast, D-NeRF

can learn a volumetric density representation for continuous non-rigid scenes trained with a

single view per time instant.

As shown in Fig. 5.12, D-NeRF consists of two main neural network modules, which param-

eterize the mappings explained in the previous subsection Ψt,Ψx. On the one hand we have

the Canonical Network, an MLP (multilayer perceptron) Ψx(x,d) 7→ (c, σ) is trained to encode
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Figure 5.12: D-NeRF model. The proposed architecture consists of two main blocks: a
deformation network Ψt mapping all scene deformations to a common canonical configuration;
and a canonical network Ψx regressing volume density and view-dependent RGB color from
every camera ray.

the scene in the canonical configuration such that given a 3D point x and a view direction d

returns its emitted color c and volume density σ. The second module is called Deformation

Network and consists of another MLP Ψt(x, t) 7→ ∆x which predicts a deformation field defining

the transformation between the scene at time t and the scene in its canonical configuration. We

next describe in detail each one of these blocks, their interconnection for volume rendering and

how are they learned.

Model Architecture

Canonical Network. With the use of a canonical configuration we seek to find a representation

of the scene that brings together the information of all corresponding points in all images. By

doing this, the missing information from a specific viewpoint can then be retrieved from that

canonical configuration, which shall act as an anchor interconnecting all images.

The canonical network Ψx is trained so as to encode volumetric density and color of the

scene in canonical configuration. Concretely, given the 3D coordinates x of a point, we first

encode it into a 256-dimensional feature vector. This feature vector is then concatenated with

the camera viewing direction d, and propagated through a fully connected layer to yield the

emitted color c and volume density σ for that given point in the canonical space.

Deformation Network. The deformation network Ψt is optimized to estimate the deformation

field between the scene at a specific time instant and the scene in canonical space. Formally,

given a 3D point x at time t, Ψt is trained to output the displacement ∆x that transforms the

given point to its position in the canonical space as x + ∆x. For all experiments, without loss of
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generality, we set the canonical scene to be the scene at time t = 0:

Ψt(x, t) =

∆x, if t 6= 0

0, if t = 0
(5.15)

As shown in previous works [293,328,356], directly feeding raw coordinates and angles to

a neural network results in low performance. Thus, for both the canonical and the deformation

networks, we first encode x, d and t into a higher dimension space. We use the same positional

encoder as in [328] where γ(p) =< (sin(2lπp), cos(2lπp)) >L0 . We independently apply the

encoder γ(·) to each coordinate and camera view component, using L = 10 for x, and L = 4 for

d and t.

Volume Rendering

We now adapt NeRF volume rendering equations to account for non-rigid deformations in the

proposed 6D neural radiance field. Let x(h) = o + hd be a point along the camera ray emitted

from the center of projection o to a pixel p. Considering near and far bounds hn and hf in that

ray, the expected color C of the pixel p at time t is given by:

C(p, t) =

∫ hf

hn

T (h, t)σ(p(h, t))c(p(h, t),d)dh, (5.16)

where p(h, t) = x(h) + Ψt(x(h), t), (5.17)

[c(p(h, t),d), σ(p(h, t))] = Ψx(p(h, t),d), (5.18)

and T (h, t) = exp

(
−
∫ h

hn

σ(p(s, t))ds

)
. (5.19)

The 3D point p(h, t) denotes the point on the camera ray x(h) transformed to canonical space

using our Deformation Network Ψt, and T (h, t) is the accumulated probability that the ray

emitted from hn to hf does not hit any other particle. Notice that the density σ and color c are

predicted by our Canonical Network Ψx.

As in [328] the volume rendering integrals in Eq. (5.16) and Eq. (5.19) can be approximated

via numerical quadrature. To select a random set of quadrature points {hn}Nn=1 ∈ [hn, hf ] a

stratified sampling strategy is applied by uniformly drawing samples from evenly-spaced ray



5.4 Neural Radiance Fields for Dynamic Scenes 151

bins. A pixel color is approximated as:

C ′(p, t) =

N∑
n=1

T ′(hn, t)α(hn, t, δn)c(p(hn, t),d), (5.20)

where α(h, t, δ) = 1− exp(−σ(p(h, t))δ), (5.21)

and T ′(hn, t) = exp

(
−

n−1∑
m=1

σ(p(hm, t))δm

)
, (5.22)

and δn = hn+1 − hn is the distance between two quadrature points.

5.4.3 Learning the Model

The parameters of the canonical Ψx and deformation Ψt networks are simultaneously learned

by minimizing the mean squared error with respect to the T RGB images {It}Tt=1 of the scene

and their corresponding camera pose matrices {Tt}Tt=1. Recall that every time instant is only

acquired by a single camera.

At each training batch, we first sample a random set of pixels {pt,i}Ns
i=1 corresponding to the

rays cast from some camera position Tt to some pixels i of the corresponding RGB image t. We

then estimate the colors of the chosen pixels using Eq. (5.20). The training loss we use is the

mean squared error between the rendered and real pixels:

L =
1

Ns

Ns∑
i=1

∥∥∥Ĉ(p, t)− C ′(p, t)
∥∥∥2

2
, (5.23)

where Ĉ are the pixels’ ground-truth color.

Implementation Details

Both the canonical network Ψx and the deformation network Ψt consists on simple 8-layers

MLPs with ReLU activations. For the canonical network a final sigmoid non-linearity is applied

to c and σ. No non-linearlity is applied to ∆x in the deformation network.

For all experiments we set the canonical configuration as the scene state at t = 0 by enforcing

it in Eq. (5.15). To improve the networks convergence, we sort the input images according to

their time stamps (from lower to higher) and then we apply a curriculum learning strategy

where we incrementally add images with higher time stamps.

The model is trained with 400 × 400 images during 800k iterations with a batch size of

Ns = 4096 rays, each sampled 64 times along the ray. As for the optimizer, we use Adam [38]

with learning rate of 5e− 4, β1 = 0.9, β2 = 0.999 and exponential decay to 5e− 5. The model is
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Figure 5.13: Visualization of the learned scene representation. Given a dynamic scene at
a specific time instant, D-NeRF learns a displacement field ∆x that maps all points x of the
scene to a common canonical configuration. The volume density and view-dependent emitted
radiance for this configuration is learned and transferred to the original input points to render
novel views. This figure represents, from left to right: the learned radiance from a specific
viewpoint, the volume density represented as a 3D mesh and a depth map, and the color-coded
points of the canonical configuration mapped to the deformed meshes based on ∆x. The same
colors on corresponding points indicate the correctness of such mapping.

trained with a single Nvidia R© GTX 1080 for 2 days.

5.4.4 Experimental Evaluation

We next provide a thorough evaluation of our system. We first test the main components

of the model, namely the canonical and deformation networks. We then compare D-NeRF

against NeRF and T-NeRF, a variant in which does not use the canonical mapping. Finally, we

demonstrate D-NeRF ability to synthesize novel views at an arbitrary time in several complex

dynamic scenes.

In order to perform an exhaustive evaluation we have extended NeRF [328] rigid bench-

mark with eight scenes containing dynamic objects under large deformations and realistic non-

Lambertian materials. As in the rigid benchmark of [328], six are rendered from viewpoints

sampled from the upper hemisphere, and two are rendered from viewpoints sampled on the

full sphere. Each scene contains between 100 and 200 rendered views depending on the

action time span, all at 800 × 800 pixels. We released the path-traced images with defined

train/validation/test splits for these eight scenes.
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Canonical Spacet=0.5 t=1

Figure 5.14: Analyzing shading effects. Pairs of corresponding points between the canonical
space and the scene at times t = 0.5 and t = 1.

Dissecting the Model

This subsection provides insights about D-NeRF behaviour when modeling a dynamic scene and

analyze the two main modules, namely the canonical and deformation networks.

We initially evaluate the ability of the canonical network to represent the scene in a canonical

configuration. The results of this analysis for two scenes are shown the first row of Fig. 5.13

(columns 1-3 in each case). The plots show, for the canonical configuration (t = 0), the RGB

image, the 3D occupancy network and the depth map, respectively. The rendered RGB image

is the result of evaluating the canonical network on rays cast from an arbitrary camera position

applying Eq. (5.20). To better visualize the learned volumetric density we transform it into a

mesh applying marching cubes [357], with a 3D cube resolution of 2563 voxels. Note how D-

NeRF is able to model fine geometric and appearance details for complex topologies and texture

patterns, even when it was only trained with a set of sparse images, each under a different

deformation.

In a second experiment we assess the capacity of the network to estimate consistent defor-

mation fields that map the canonical scene to the particular shape at each input image. The

second and third rows of Fig. 5.13 show the result of applying the corresponding translation

vectors to the canonical space for t = 0.5 and t = 1. The fourth column in each of the two

examples visualizes the displacement field, where the color-coded points in the canonical shape

(t = 0) at mapped to the different shape configurations at t = 0.5 and t = 1. Note that the

colors are consistent along the time instants, indicating that the displacement field is correctly

estimated.

Another question that we try to answer is how D-NeRF manages to model phenomena like

shadows/shading effects, that is, how the model can encode changes of appearance of the same

point along time. We have carried an additional experiment to answer this. In Fig. 5.14 we show

a scene with three balls, made of very different materials (plastic –green–, translucent glass –

blue– and metal –red–). The figure plots pairs of corresponding points between the canonical

configuration and the scene at a specific time instant. D-NeRF is able to synthesize the shading
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Figure 5.15: Qualitative comparison. Novel view synthesis results of dynamic scenes. For every
scene we show an image synthesised from a novel view at an arbitrary time by our method, and
three close-ups for: ground-truth, NeRF, T-NeRF, and D-NeRF (ours).

Hell Warrior Mutant Hook Bouncing Balls
Method MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

NeRF 44e-3 13.52 0.81 0.25 9e-4 20.31 0.91 0.09 21e-3 16.65 0.84 0.19 1e-2 18.28 0.88 0.23
T-NeRF 47e-4 23.19 0.93 0.08 8e-4 30.56 0.96 0.04 18e-4 27.21 0.94 0.06 6e-4 32.01 0.97 0.04
D-NeRF 31e-4 25.02 0.95 0.06 7e-4 31.29 0.97 0.02 11e-4 29.25 0.96 0.11 5e-4 32.80 0.98 0.03

Lego T-Rex Stand Up Jumping Jacks
Method MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

NeRF 9e-4 20.30 0.79 0.23 3e-3 24.49 0.93 0.13 1e-2 18.19 0.89 0.14 1e-2 18.28 0.88 0.23
T-NeRF 3e-4 23.82 0.90 0.15 9e-4 30.19 0.96 0.13 7e-4 31.24 0.97 0.02 6e-4 32.01 0.97 0.03
D-NeRF 6e-4 21.64 0.83 0.16 6e-4 31.75 0.97 0.03 5e-4 32.79 0.98 0.02 5e-4 32.80 0.98 0.03

Table 5.4: Quantitative comparison. We report MSE/LPIPS (lower is better) and PSNR/SSIM
(higher is better).

effects by warping the canonical configuration. For instance, observe how the floor shadows are

warped along time. Note that the points in the shadow of, e.g.the red ball, at t = 0.5 and t = 1

map at different regions of the canonical space.

Quantitative Comparison

We next evaluate the quality of D-NeRF on the novel view synthesis problem and compare it

against the original NeRF [328], which represents the scene using a 5D input (x, y, z, θ, φ), and

T-NeRF, a straight-forward extension of NeRF in which the scene is represented by a 6D input
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(x, y, z, θ, φ, t), without considering the intermediate canonical configuration of D-NeRF.

Table 5.4 summarizes the quantitative results on the 8 dynamic scenes of our dataset. We

use several metrics for the evaluation: Mean Squared Error (MSE), Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity (SSIM) [272] and Learned Perceptual Image Patch Similarity

(LPIPS) [358]. In Fig. 5.15 we show samples of the estimated images under a novel view for

visual inspection. As expected, NeRF is not able to model the dynamics scenes as it was designed

for rigid cases, and always converges to a blurry mean representation of all deformations. On

the other hand, the T-NeRF baseline is able to capture reasonably well the dynamics, although

is not able to retrieve high frequency details. For example, in Fig. 5.15 top-left image it fails

to encode the shoulder pad spikes, and in the top-right scene it is not able to model the stones

and cracks. D-NeRF, instead, retains high details of the original image in the novel views. This

is quite remarkable, considering that each deformation state has only been seen from a single

viewpoint.

Additional Results

We finally show additional results to showcase the wide range of scenarios that can be handled

with D-NeRF. Fig. 5.16 depicts, for four scenes, the images rendered at different time instants

from two novel viewpoints. The first column displays the canonical configuration. Note that we

are able to handle several types of dynamics: articulated motion in the Tractor scene; human

motion in the Jumping Jacks and Warrior scenes; and asynchronous motion of several Bouncing

Balls. Also note that the canonical configuration is a sharp and neat scene, in all cases, expect

for the Jumping Jacks, where the two arms appear to be blurry. This, however, does not harm

the quality of the rendered images, indicating that the network is able warp the canonical

configuration so as to maximize the rendering quality. This is indeed consistent with Sec. 5.4.4

insights on how the network is able to encode shading.

5.5 Summary

In this chapter we have presented two novel methods for simultaneous reconstruction and

synthesis.

For modeling the manifold of large 3D data corpus we have proposed C-Flow, a novel

conditioning scheme for normalizing flows. This conditioning, in conjunction with a new strat-

egy to model unordered 3D point clouds, has made it possible to address 3D reconstruction

and rendering images from point clouds, problems which so far, could not be tackled with

normalizing flows. Furthermore, we demonstrate C-Flow to be a general-purpose model, being
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t=0.1 t=0.3 t=1.0t=0.5 t=0.8Canonical Space

Figure 5.16: Time & view conditioning. Results of synthesising diverse scenes from two novel
points of view across time and the learned canonical space. For every scene we also display the
learned scene canonical space in the first column.

also applicable to many more multi-modality problems, such as image-to-image translation,

style transfer and image content edition. To the best of our knowledge, no previous model has

demonstrated such an adaptability.

For modeling a specific scene with extreme detail we have presented D-NeRF, a novel neural

radiance field approach for modeling dynamic scenes. Our method can be trained end-to-end

from only a sparse set of images acquired with a moving camera, and does not require pre-
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computed 3D priors nor observing the same scene configuration from different viewpoints. The

main idea behind D-NeRF is to represent time-varying deformations with two modules: one that

learns a canonical configuration, and another that learns the displacement field of the scene at

each time instant w.r.t. the canonical space. A thorough evaluation demonstrates that D-NeRF is

able to synthesise high quality novel views of scenes undergoing different types of deformation,

from articulated objects to human bodies performing complex body postures.





6
Conclusions

In this thesis we have addressed the problem of modeling the distribution of 3D objects for the

tasks of monocular reconstruction and synthesis. We have devised a large set of techniques

from low level data representations to full 3D pose estimation and rendering of rigid and non-

rigid objects. And more importantly, we have finally bridged the gap between reconstruction

and synthesis by proposing the first general-purpose model for bijective multi-modality transfer

under the umbrella of flow-based generative models.

In Chapter 3, we defined a full pipeline for reconstructing a scene and the clothed persons in

it while estimating the camera position. To do so, first, we presented a SLAM based algorithm for

scene reconstruction and camera localization specifically designed to be robust to low textured

scenarios by combining point and line correspondences. Next, to segment and track the elements

in the scene, we devised the first real-time method for semi-supervised object segmentation and

tracking from a single reference image. Once the elements are detected, we proposed what was

the first deep network for 3D shape estimation of a non-rigid surface from a single image. This

network was enhanced with novel geometric-aware layers embedding geometric properties as

priors. We finally tackled the more complex task of clothed people reconstruction by proposing a

fully-differentiable reconstruction algorithm and a novel 3D mesh representation. The results of

our experimentation conclude that all proposed methods are robust to occlusions, self-occlusions

and low-texture. In this chapter we also built two large-scale datasets to benchmark reconstruc-

tion algorithms that are publicly available.

In Chapter 4, we continued modeling 3D data, this time with a different approach. We

introduced three generative methods to model the human body, an articulated nonrigid object.

In experimentation we showed these methods to be capable of generating photo-realistic novel

views of a person, face expressions and cloth transfer from a single image in the wild. All

presented methods are unsupervised, that is, they do not require ground truth labels of the

objective task. To circumvent the need of training data we proposed novel data representations,
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architectures and losses capable of optimizing the model by only comparing the distributions

of real and synthesized data. The work done in this chapter was awarded with the Best Paper

Award Honorable Mention in ECCV 2018.

Finally, in Chapter 5, with all the knowledge acquired in previous chapters, we proposed

an implicit based neural render and a bijective model for multi-modal transfer acting as an

umbrella covering both reconstruction and synthesis into a single general-purpose model. To do

so, we introduced a novel neural radiance field formulation and a conditioning scheme based on

normalizing flows capable of explicitly modeling the conditional distribution of many domains

including point clouds, images, segmentation masks and edge maps.

6.1 Future Work

Finally, we discuss some of the future research lines that arise from the work and contributions

presented in this thesis that we have not yet fully exploited.

3D morphable models to support reconstruction. Part of this thesis focused on monocular

reconstruction. While the presented methods yield very promising results, it would be inter-

esting to tackle the problem in a coarse-to-fine manner with morphable models [138, 359].

First, estimate an initial rough estimation by regressing the parameters of a morphable model.

And then, refine the initial estimate with a generative model. After finishing this thesis we have

already started working in this direction. We are extending GimNet (Sec. 3.6) to run underneath

a parametric representation of the human body wit the 3DMM SMPL [138].

Egocentric pose estimation. In Sec. 3.6, we tackled the task of 3D reconstruction of a person

from am external point of view (e.g.picture of the person). It would be interesting to tackle such

estimation with egocentric vision, which is, a first-person view captured by a wearable camera

that approximates the visual field of the camera wearer. After finishing this thesis we have

already started working in this direction. We have captured a large-scale egomotion dataset of

40 people doing 20 actions with egocentric videos. Each frame is annotated with the 3D skeleton

joints. Using this dataset we intend to develop 3D pose estimation from egocentric videos.

Semantic information in reconstructed meshes. An interesting future line of research is to

extend the reconstruction estimates with semantic information such as object category, material,

texture and weight. We have started exploring this line of research in [360] (not included

in this thesis) where we aim to predict human grasp affordances once the object has been

reconstructed.
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Geometry Image. Thorough this thesis we have explored novel data representations. In

particular, in Sec. 3.6, we described and exploited geometry images. While the results obtained

are very promising, there are still several avenues to explore. For instance, exploring new

regularization schemes on the geometry images, as well as, reducing the amount of artifacts

caused by the sphere projection step.

Context-aware estimation. The methods presented in this thesis exclusively focus on the

specific object/person to be reconstructed/edited. We argue that taking into account the in-

fluence of the environment as a prior would be interesting to study. For instance, if a person is

carrying a box, the configuration of the body arms and legs will be highly constrained by the

3D position of that box. Discovering such interrelations between the person and the object/s

of the context (or another person he/she is interacting with), and how these interrelations

constrain the body would dramatically improve performance. We have started exploring this

line of research in [211] (not included in this thesis) to predict human motion given a sequence

of past observations using a novel context-aware motion prediction architecture. We use a

semantic-graph model where the nodes parameterize the human and objects in the scene and

the learned edges represent their mutual interactions.

3D morphable models to support generative models. Regarding synthesis, we strongly

believe that the direction to improve photo-realism and a avoid non-anthropomorphic errors

is to embed 3D models of the underlying geometry in the neural networks. After finishing

this thesis we have already started working in this direction. We are extending GANimation

(Sec. 4.4) to run underneath the 3DMM [359] representing the human face.

Flow-based models. Flow models have highly desirable properties like exact log-likelihood

evaluation and exact latent-variable inference, however they are still in their infancy and have

not received as much attention as alternative generative models. In Chapter 5, we introduced a

novel conditioning scheme that brings normalizing flows to an entirely new scenario with great

possibilities for multi-modal data modeling. However, for flows to become popular there is still

one key piece missing, lightweight models. Current models are too computational demanding,

requiring large data centers to train. Out of all mention future research lines, we believe making

flow-based models lighter is the one with greatest potential impact on the research community.
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