
ar
X

iv
:1

70
4.

05
25

9v
2

 [
cs

.I
T

]
 7

 M
ay

 2
01

8

On PGZ decoding of alternant codes

R. Farré, N. Sayols, and S. Xambó-Descamps

Universitat Politècnica de Catalunya

rafel.farre@upc.edu, narcissb@gmail.com, sebastia.xambo@upc.edu

Abstract

In this note we first review the classical Petterson-Gorenstein-Zierler decod-
ing algorithm for the class of alternant codes (which includes Reed-Solomon,
Bose-Chaudhuri-Hocquenghem and classical Goppa codes), then we present
an improvement of the method to find the number of errors and the error-
locator polynomial, and finally we illustrate the procedure with several ex-
amples. In two appendices we sketch the main features of the system [3] we
have designed and developed for the computations.

Keywords: Alternant codes, RS codes, BCH codes, classical Goppa codes
2010 MSC: 11T71, 94B05, 94B35, 94B15

Introduction

The Petterson-Gorenstein-Zierler decoding algorithm (PGZ for short) was
first developed for Reed-Solomon codes (RS), and later applied to Bose-
Chaudhuri-Hocquenghem codes (BCH). In [4], two flavours of it were pre-
sented for alternant codes, with due attention to the computational aspects.
The main interest of working with the class of alternant codes is that it
includes many interesting subclasses, like RS codes, BCH codes (the most
relevant class of cyclic codes), and classical Goppa codes. The practical bonus
of this realization is that all these families of codes can be constructed by
specializing the general constructor of alternant codes and, most fundamen-
tally, that any effective decoding algorithm for alternant codes is sufficient
(and effective) for all those subclasses.

In this note we present a natural improvement, both conceptual and com-
putational, of the PGZ algorithm. The key point is that the output of the
Gauss-Jordan reduction of a (Hankel-like) matrix constructed from the syn-
drome vector gives directly and at the same time the number of errors and
the error-locator polynomial.

The organization is as follows. In the first section we briefly review al-
ternant codes. This includes details about how the classes of codes just

http://arxiv.org/abs/1704.05259v2

mentioned can be contructed with special calls to the main constructor. The
second section is devoted to present the mathematical basis of the PGZ ap-
proach for the decoding of alternant codes. Our improvement of PGZ is
explained in detail in the third section and in the fourth we provide several
examples. Finally Appendix A contains listings of the key Python functions
that we have designed and coded to get clear implementations of the com-
putations and in the Appendix B we sketch the main features of the Python
package [3] used to script the examples.

Notations and conventions. If q is a prime power, the finite field of q elements
(unique up to isomorphism) is denoted Fq. It is a subfield of Fqm for all posi-
tive integers m. The field Fqm can be constructed as the quotient Fq[X]/(f),
where f ∈ Fq[X] is any irreducible polynomial over Fq of degree m.

Given elements α1, . . . , αn in a ring, we write Vr(α1, . . . , αn) to denote
the Vandermonde matrix of r rows associated to α1, . . . , αn. In other words,
its rows have the form (αi

1, . . . , α
i
n) for 0 ≤ i ≤ r − 1. The determinant of

the matrix Vn(α1, . . . , αn), which is called the Vandermonde determinant of
α1, . . . , αn, is equal to

∏
1≤i<j≤n(αj − αi). In particular, it is non-zero when

the αk are distinct elements of a field.
Let K be a finite field. A linear code of length n defined over K is a vector

subspace C ⊆ Kn. If C has dimension k, we say that C is an [n, k] code.
The quotient k/n is called the rate of C. The Hamming distance hd(y, y′)
of y, y′ ∈ Kn is the number of indices j ∈ {1, . . . , n} such that yj 6= y′j.
The minimum distance of a linear code C, denoted d, is the minimum of the
distances hd(x, x′) for x, x′ ∈ C, x 6= x′. The number of non-zero entries of
y ∈ K is called the weight of y and is denoted wt(y). It is easy to see that d
is the minimum of the weights of non-zero elements of C. An [n, k] code of
minimum distance d is said to be an [n, k, d] code, or an [n, k, d]K if we need
to write the base field K explicitly.

1. Essentials on alternant codes

Let K = Fq and K̄ = Fqm. Let α1, . . . , αn and h1, . . . , hn be elements of
K̄ such that hi, αi 6= 0 for all i and αi 6= αj for all i 6= j. Consider the matrix

H = Vr(α1, . . . , αn)diag(h1, . . . , hn) ∈ M r
n(K̄), (1)

that is,

H =




h1 . . . hn

h1α1 . . . hnαn

...
...

h1α
r−1
1 . . . hnα

r−1
n


 (2)

2

We say that H is the alternant control matrix of order r associated with the
vectors

h = (h1, . . . , hn) and α = (α1, . . . , αn).

To make explicit that the entries of h and α (and hence of H) lie in K̄, we
will say that H is defined over K̄.

The K-code AK(h,α, r) defined by the control matrix H is the subspace
of Kn whose elements are the vectors x such that xHT = 0. Such codes will
be called alternant codes. If we define the H-syndrome of a vector y ∈ K̄n as
s = yHT ∈ K̄r, then AK(h,α, r) is just the subspace of Kn whose elements
are the vectors with zero H-syndrome.

1.1 Proposition (Alternant bounds). If C = AK(h,α, r), then

n− r ≥ dimC ≥ n− rm

and

d ≥ r + 1

(minimum distance alternant bound).

Proof. See, for example, [4], p. 183.

For the proofs of the statements in the remainder of this section, we refer
to [4], Section 4.1.

Reed-Solomon codes

Given a list or vector α of distinct non-zero elements α1, . . . , αn ∈ K, the
Reed–Solomon code

C = RS(α, k) ⊆ Kn

is the subspace of Kn generated by the rows of the Vandermonde matrix
Vk(α1, . . . , αn). It turns out that

RS(α, k) = AK(h,α, n− k),

where h = (h1, . . . , hn) is given by

hi = 1/
∏

j 6=i

(αj − αi). (3)

Note that in this case K̄ = K, hence m = 1, and that the alternant bounds
are sharp. Indeed, we have r = n− k, hence k = n− r, while n− k + 1 ≥ d
(by the Singleton bound) and d ≥ r+1 = n−k+1 by the minimum distance
alternant bound. In other words, C is MDS (maximum distance separable).

An RS code is called primitive if the α1, . . . , αn are all non-zero elements
of K. In that case, a natural way to proceed is to generate those elements
as the powers 1, α, . . . , αq−2 of a primitive element α of K and so the code
is, if its dimension is k, RS([1, α, . . . , αn−1], k), where n = q − 1.

3

Generalized Reed-Solomon codes. The vector h in the definition of the code
RS([α1, . . . , αn], k) as an alternant code is obtained from α by the formula
(3). If we allow that h can be chosen possibly unrelated to α, but still with
components in K, the resulting codes AK(h,α, n− k) are called Generalized

Reed–Solomon (GRS) codes, and we will write GRS(h,α, k) to denote them.
An argument as above shows that such codes have type [n, k, n−k+ 1]. Notice
that the code AK(h,α, r) is the intersection of the GRS code AK̄(h,α, r)
with Kn.

BCH codes

These codes are denoted BCH(α, d, l), where α ∈ K̄ and d > 0, l ≥ 0 are
integers (called the design minimum distance and the offset, respectively).
When l = 1, we simply write BCH(α, d) and say that the it is a strict BCH
code. The good news here is that

BCH(α, d, l) = AK(h,α, d− 1), (4)

where h = (1, αl, α2l, . . . , α(n−1)l), α = (1, α, α2, . . . , α(n−1)), n = period(α).
If α is a primitive element of K, and hence n = q−1, we have the equality

BCH(α, n− k + 1) = RS([1, α, . . . , αn−1], k).

Classical Goppa codes

Let g ∈ K̄[T] be a polynomial of degree r > 0 and let α = α1, . . . , αn ∈ K̄
be distinct non-zero elements such that g(αi) 6= 0 for all i. Then the classical
Goppa code over K associated with g and α, which will be denoted Γ(g,α),
can be defined as AK(h,α, r), where h is the vector (1/g(α1), . . . , 1/g(αn)).
Thus the minimum distance of Γ(g,α) is ≥ r+1 and its dimension k satisfies
n − rm ≤ k ≤ n − r. The minimum distance bound can be improved to
d ≥ 2r + 1 in the case that K = F2 and the roots of g are distinct.

2. The PGZ decoding approach

Let C = AK(h,α, r) be an alternant code. Let t = ⌊r/2⌋, that is, the
highest integer such that 2t ≤ r. For reasons that will become apparent
below, t is called the error-correction capacity of C.

Let x ∈ C (using a transmission chanel terminology, we say that it is
the sent vector) and e ∈ K̄n (error vector, or error pattern). Let y = x + e
(received vector). The goal of a decoder is to obtain x from y and H when
l := wt(e) ≤ t. Henceforth we will assume that l > 0.

If em 6= 0, we say that m is an error position. Let {m1, . . . , ml} be the
error positions and {em1

, . . . , eml
} the corresponding error values. The error

4

locators η1, . . . , ηl are defined by ηk = αmk
. Since α1, . . . , αn are distinct, the

knowledge of the ηk is equivalent to the knowledge of the error positions.
The monic polynonial L(z) whose roots are the error locators is called

the error-locator polynomial. Notice that

L(z) =

l∏

i=1

(z − ηi) = zl + a1z
l−1 + a2z

l−2 + · · ·+ al, (5)

where aj = (−1)jσj = σj(η1, ..., ηl) is the j-th elementary symmetric polyno-
mial in the ηi (0 ≤ j ≤ l).

The syndrome of y is the vector s = yHT , say s = (s0, . . . , sr−1). Since
xHT = 0, we have s = eHT . Inserting the definitions, we easily find that

sj =
n−1∑

i=0

eihiα
j
i =

l∑

k=1

hmk
emk

αj
mk

=
l∑

k=1

hmk
emk

ηjk (6)

We will use the following notations:

Al =




s0 s1 . . . sl−1

s1 s2 . . . sl
...

...
. . .

...
sl−1 sl . . . s2l−2


 (7)

and the vector
bl = (sl, . . . , s2l−1). (8)

Next proposition establishes the key relation for computing the error-
locator polynomial.

2.1 Proposition. If al = (al, ..., a1) (see the fomula (5)), then

alAl + bl = 0. (9)

Proof. Substituting z by ηi in the identity

l∏

i=1

(z − ηi) = zl + a1z
l−1 + ... + al

we obtain the relations

ηli + a1η
l−1
i + · · ·+ al = 0,

5

where i = 1, ..., l. Multiplying by hmi
emi

ηji and adding with respect to i, we
obtain (using (6)) the relations

sj+l + a1sj+l−1 + · · ·+ alsj = 0,

where j = 0, ..., l− 1, and these relations are equivalent to the stated matrix
relation.

2.2 Remark. In the equation (9), the matrix Al turns out to be non-singular
and hence it determines al (and L(z)) uniquely, namely al = −blA

−1
l . In

next section we are going to establish this fact as a corollary of our Theorem
3.1, whose main outcome is a fast solution of that equation.

The roots of L only tell us in what positions the errors occur. To find
the actual value of the errors, we need the syndrome polynomial, σ(z) =

s0 + s1z + · · · + sr−1z
r−1 and the polynomial L̃(z) = 1 + a1z + · · · + alz

l.

Notice that the roots of L̃(z) are 1/η1, . . . , 1/ηl.

2.3 Theorem (Forney’s formula). Let E(z) = L̃(z)σ(z) mod zr. Then for

any m ∈ {m1, . . . , ml} we have

em = −
αm E(1/αm)

hmL̃
′(1/αm)

, (10)

where L̃
′

(z) denotes the derivative of L̃(z).

Proof. See, for example, [4], sections 4.2 and 4.4.

Because of this result, the polynomial E(z) is called the error-evaluator

polynomial.

3. Fast PGZ computations

The main object considered in this Section is the matrix (cf. [1])

S =




s0 s1 · · · sl−1 sl · · · st
s1 s2 · · · sl sl+1 · · · st+1
...

...
...

...
...

sl−1 sl · · · s2l−2 s2l−1 · · · st+l−1

...
...

...
...

...
st−1 st · · · st+l−2 st+l−1 · · · s2t−1




(11)

Note that 2t− 1 ≤ r − 1, so that all components are well defined. Note also
that the l× l submatrix at the upper left corner is the matrix Al defined by

6

Eq. (7) an that the column (sl, sl+1, . . . , s2l−1)
T to its right is the vector bl

defined by Eq. (8).
In next Theorem we use the following notation: Vs = Vs(η1, . . . , ηl). Thus

the i-th row of Vs, for 0 ≤ i ≤ s− 1, is the vector (ηi1, . . . , η
i
l). We also write

D = diag(hm1
em1

, . . . , hml
eml

).

3.1 Theorem. S = VtDV T
t+1.

Proof. Let 0 ≤ i ≤ t − 1 and 0 ≤ j ≤ t. Then the j-th column of DV T
t+1

is the column vector (hm1
em1

ηj1, . . . , hml
eml

ηjl)
T . It follows that the element

in row i column j of VtDV T
t+1 is hm1

em1
ηi+j
1 + · · · + hml

eml
ηi+j

l = si+j (by
Eq. (6)).

3.2 Corollary. The rank of S is l and the matrix Al is non-singular.

Proof. Since D has rank l, the rank of S is at most l. On the other hand,
the theorem shows that Al = VlDV T

l and therefore

det(Al) = det(Vl)
2 det(D) 6= 0.

Note that det(Vl) is the Vandermonde determinant of η1, . . . , ηl, which is
non-zero because the error locators are distinct.

3.3 Corollary. The Gauss-Jordan algorithm applied to the matrix S returns

a matrix that has the form




1 0 · · · 0 −al ∗
0 1 · · · 0 −al−1 ∗
...

...
...

...
...

0 0 · · · 1 −a1 ∗
...

...
...

...
...




(12)

where ∗ denotes unneeded values (if any) and the vertical dots below the

horizontal line denote that all its elements (if any) are zero. This matrix

gives at the same time l, the number of errors, and the coefficients of the

error-locator polynomial.

Putting together what we have learned in the last two sections, we ob-
tain two algorithms to decode alternant codes, or rather two variants of an
algorithm. We call them PGZ and PGZm, for in essence they are due to
Peterson, Gorenstein and Zierler (see [2]). They share the same scheme for
finding the location of the errors, but differ in how the error values are com-
puted. PGZm is the simplest of the two, as it relies mainly on linear algebra,

7

whereas PGZ relies on the finding the error evaluator polynomial and using
Forney’s formula.

In the descriptions that follow, Error means “a suitable decoding-error
message” and the function GJ(S) returns the values −al, . . . ,−a1 of the ma-
trix (12) as a column vector (this is a slightly modified form of the Gauss-
Jordan procedure). In detail, it works as follows:

Improved PGZ

1. Get the syndrome vector, s = (s0, ..., sr−1) = yHT . If s = 0, return y.

2. Form the matrix S as in the Eq. (11).

3. Set a = −GJ(S) (Eq. (12)). After this we have a1, ..., al, hence also
the error-locator polynomial L.

4. Find the elements αj that are roots of the polynomial L. If the number
of these roots is < l, return Error. Otherwise let η1, ..., ηl be the error-
locators corresponding to the roots and set M = {m1, . . . , ml}, where
ηi = αmi

.

5. Let σ(z) = s0 + s1z + · · ·+ sr−1z
r−1, L̃(z) = 1 + a1z + · · ·+ asz

s and
compute the error-evaluator polynomial by the formula

E(z) = L̃(z)σ(z) mod zr.

6. Find the errors em, for all m ∈ M , using Forney’s formula (equation
(10)). If any of the values of em is not in K, return Error. Otherwise
return y − e.

3.4 Theorem. The algorithm PGZ corrects up to t errors

Proof. It is an immediate consequence of what we have seen so far.

3.5 Remark. In step 5 of the algorithm we could use the alternative syn-
drome polynomial σ̃(z) = s0z

r−1 + s1z
r−2 + · · · + sr−1, find the alternative

error evaluator E∗ as the remainder of the division of L(z)σ̃(z) by zr and
then, in step 6, use the following alternative Forney formula ([4], P.4.9):

em = −E∗(αm)/hmα
r
mL

′(αm). (13)

Algorithm PGZm

The steps 5 and 6 of the PGZ algorithm can be compressed into a sin-
gle step consisting in solving for em1

, ..., eml
the following system of linear

equations:

hm1
em1

ηj1 + hm2
em2

ηj2 + ... + hml
eml

ηjl = sj (0 ≤ j ≤ l − 1),

8

which is equivalent to the matrix equation




hm1
hm2

. . . hml

hm1
η1 hm2

η2 . . . hml
ηl

hm1
η21 hm2

η22 . . . hml
η2l

...
...

. . .
...

hm1
η1

l−1 hm2
η2

l−1 . . . hml
ηl

l−1







em1

em2

em3

...
eml




=




s0
s1
s2
...

sl−1




and then return y− e (or Error if one or more of the components of e is not
in K).

3.6 Remark. Even with the improvements advanced in this note, in theory
the PGZ and PGZm algorithms cannot beat, for very large alternant codes,
the Berlekamp-Massey-Sugiyama (BMS) algorithm (cf. [4], Section 4.3). But
they are comparable for the codes that are feasible in practice. Indeed, the
very construction of the alternant matrix is costly in time and space and
within the range of parameters that can usualy be afforded, the efficiency of
the PGZ or PGZm is comparable to that of BMS. Let us also say that in
some contexts, as for example in teaching, the PGZm has the advantage that
it is more straightfoward to explain and to implement, the easiest case being
RS codes over K = Fp, p prime.

4. Examples

Here we are going to discuss the implementation of the algorithms using
[3], an how it works, by considering some examples for each of the following
classes: RS, GRS, BCH and (classical) Goppa codes.

In the code constructors described below, h and a stand for variables
bound to vectors of the same length n with entries in a finite field; K and
F, to finite fields K and F ; r, k, d and l, to integers r, k d and l used as in
the first two sections; and g to a univariate polynomial with coefficients in a
finite field.

• AC(h,a,r,K): This constructs the alternating code AK(h,α, r). In the
context of this note, it is our main constructor, as the others (described
below) are in fact defined as special calls to AC (cf. Section 1).

• RS(a,k): This yields the RS code RS(α, k), an [n, k, n − k + 1] code
defined over the field to which the elements of α belong.

• GRS(h,a,k): As RS, but we have to supply h as a first argument.

9

• PRS(F,k): The primitive RS code of the finite field F . It is defined as
RS(a,k), but taking as α the list of non-zero elements of F .

• BCH(a,d,l): Supplies the code BCH(α, d, l), where here a stands for an
element α in a finite field.

• Goppa(g,a): The Goppa code Γ(g,α).

The code C obtained by any one of these constructors is a record-like
structure with fields that allow to get data from the code or store new in-
formation about it. The labels of those fields end with an underscore, but
otherwise tend to mimic the mathematical symbols. For example, a = a (C)
and H = H (C) bind the variable a to the vector α and the variable H to the
alternant control matrix of C.

4.1 Remark. Except for RS and GRS codes, for which the parameters can be
deduced immediately from the data supplied to their constructors, in general
there is some work to be done to determine those not yet known. This work
is rather straightforward when it comes to compute k = dimK C. To that
end, we need to construct a control matrix of C defined over K. This can be
done in two steps: replace each entry of H by the column of is components
in the natural linear basis of K̄ over K (this yields an K-control matrix, but
it usually has redundant rows) and then suppress all the rows that are linear
combinations of the previous ones. We have implemented these steps by
means of the functions blow(H,K) and prune(M). The bottom line is that the
dimension of C is n− r′, where r′ is the number of rows of prune(blow(H,K))
or just rank(blow(H,K)). This is the method used to determine the dimension
k and the rate R = k/n when we quote them.

A final comment before getting into the examples is that we can assume
that the received vector is an error vector e such that wt(e) ≤ t. The reason is
the linearity of the code, which implies that only the error vector is involved
in the computations of the error positions and values.

RS. Take K = F13 and construct C = PRS(K,8), the primitive RS of K of
dimension k = 8. It has length n = 12, so its rate is 2/3, and the minimum
distance is d = n− k+1 = 5, so that it corrects at least two errors. First let
us consider the case of one error. Suppose the received vector is

e = [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]

Then the decoder call PGZ(e,C) (or PGZm(e,C)) yields

PGZ: Error positions [4], error values [3] :: Vector[Z13]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] :: Vector[Z13]

10

This means that PGZ finds that there is a single error at the index 4 (5th
element of the vector) and that its value is 3, and then outputs (correctly)
the decoded vector. Let us go over the steps followed by PGZ in detail. The
control matrix is H = H (C):

[[1 2 4 8 3 6 12 11 9 5 10 7]

[1 4 3 12 9 10 1 4 3 12 9 10]

[1 8 12 5 1 8 12 5 1 8 12 5]

[1 3 9 1 3 9 1 3 9 1 3 9]] :: Matrix[Z13]

Then the syndromy vector is given by s = y*transpose(H),

[9, 1, 3, 9],

and the matrix S = hankel matrix(s) is

[[9 1 3]

[1 3 9]] :: Matrix[Z13]

This matrix has rank 1, as the second row is 3 times the first. This means that
there is one error and that the error-locating polynomial is L(z) = z−1/9 =
z − 3. To find the error position, we have to look at the position of 3 in the
vector α used to construct C, which is a (C):

[1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7] :: Vector[Z13]

Thus the position is indeed the one in which the error occurred. To find the
error value, first we have to calculate the error evaluator

E(z) = σ(z)L̃(z) mod zr = (9 + z + 3z2 + 9z3)(−3z + 1) mod z6,

which turns out to be the constant 9. Forney’s formula for the error value
is −α4E(1/α4)/h4L̃

′

(1/α4) = −3 · 9/3 · (−3) = 3 (for in this case h = α),
which is the error value.

Now we are going to repeat, with less detail, the case of 2 errors. Suppose
the received vector is

y = [0, 0, 0, 0, 3, 0, 0, 0, 0, 7, 0, 0]

Then the decoder call PGZ(y,C) (or PGZm(y,C)) yields

PGZ: Error positions [4, 9], error values [3, 7] :: Vector[Z13]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] :: Vector[Z13]

The syndromy vector is

[5, 7, 7, 3],

and the matrix S = hankel matrix(s) is

11

[[5 7 7]

[7 7 3]] :: Matrix[Z13]

Since it has rank 2, there have been 2 errors. In this case the Gauss-Jordan
reduction produces L(z) = z2+5z+2 = (z−3)(z−5). Since the roots 3 and
5 occupy the positions 5 and 10 in α, we see that the indices of the computed
error positions are correct. For the error values we have to apply Forney’s
formula to 3 and 5 (α4 and α9). We have L̃(z) = 2z2+5z+1, L̃′(z) = 4z+5,

σ(z) = 5+7z+7z2+3z3, and E(z) = L̃(z)σ(z) mod z4 = 6z+5. Then the
error corresponding to, for example, the second root is

−5 ·E(1/5)/5 · L̃′(1/5) = −E(8)/L̃′(8) = −(48 + 5)/(32+ 5) = −1/− 2 = 7.

For another example, if we take F = Zn(31) and k = 20, then C = PRS(F,k)
is a [30, 20, 11] code. This corrects up to 5 errors and its rate is 2/3. This
capability is illustrated in the following listing:

e = rd_error_vector(F,n,5) # this creates a ramdom 5-error pattern

>>[0,0,0,0,0,0,0,0,0,14,0,0,0,28,26,0,0,0,0,23,0,0,16,0,0,0,0,0,0,0]

:: Vector[Z31]

PGZ(e,C)

>>PGZ: Error positions [9,13,14,19,22],

error values [14,28,26,23,16] :: Vector[Z31]

BCH. Take K = F2 and F = F32, generated by α such that α5 = α2 + 1.
Let C = BCH(α, 7). This is a binary code of length n = 31 (the order of α)
that corrects up to 3 errors. In our system it can be constructed as follows:

K = Zn(2)

[F,a] = extension(K,[1,0,0,1,0,1],’a’,’F’)

C = BCH(a,7)

Its dimension is 16 (so its rate is 16/31 > 1/2), as shown by the following
command:

n - rank(blow(H_(C),K))

>> 16

Now consider, for example, the weight 3 error pattern e:

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

Then the call PGZ(e,C) outputs

PGZ: Error positions [5, 19, 28], error values [1, 1, 1] :: Vector[K]

(Note that the only possible error value over F2 is 1, and that therefore in
this case the decoder only needs to care about error location.) The matrix
S computed in this case is (instead of αj we write j):

12

[[22, 13, 14, 26]

[13, 14, 26, 19]

[14, 26, 19, 28]]

which gives l = 3.
The code C also corrects up to 3 errors when considered as an F -code

(which is a GRS code over F). For example, if

e=[0,0,0,0,0,0,0,0, α5, 1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, α19, 0,0,0,0]

then the output contains

PGZ: Error positions [8, 9, 26],

error values [a**5, 1, a**19] :: Vector[F]

together with the correct decoded vector. With the same conventions as
before, the matrix S gives l = 3:

[[16, 0, 30, 14]

[0, 30, 14, 25]

[30, 14, 25, 28]]

Here is a more involved example. Take K = F3 and F = F343, generated
by α such that α5 = α + 2. The element α is primitive and β = α2 has
order n = (343 − 1)/2 = 121. It follows that the code C = BCH(β, 11) has
length n and that it corrects at least 5 errors. In the PyECC system it can
be constructed as folows:

K = Zn(3)

f=get_irreducible_polynomial(K,5,’X’) # X**5-X+1

[F,a] = extension(K,f,’a’,’F’)

C = BCH(a**2,11)

In addition, the command n - rank(blow(H (C),K)) yields that its dimension
is 121− 35 = 86, so that its rate is 86/121 > 7/10.

Consider the error pattern of weight 5 (where 0k denotes 0 repeated k
times)

e = [02, 1, 07, 1, 022, 2, 06, 2, 072, 1, 07] :: Vector[Z3]

Then we have:

PGZ(e,C)

>>PGZ: Error positions [2, 10, 33, 40, 113],

error values [1, 1, 2, 2, 1] :: Vector[F5]

13

Classical Goppa. Consider the field F25 generated over F5 by x such that
x2 = 2. Let g = T 6 + T 3 + T + 1 and make a list α of the elements t ∈ F25

such that g(t) 6= 0. Then it turns out that α has length n = 19 (g has four
simple roots and one double root in F25) and that C = Γ(g,α) corrects up
to 3 errors.

F5 = Zn(5)

Creation of F25, with generator x

[F25,x] = extension(F5,[1,0,-2],’x’,’F25’)

Creation of the polynomial ring F25[T]

[A,T] = polynomial_ring(F25,’T’)

g = T**6 + T**3 + T +1

a = Set(F25)[1:] # The non-zero elements of F25

a = [t for t in a if evaluate(g,t)!=0]

C = Goppa(g,a)

generate a random error pattern of weight 3

e = rd_error_vector(Z5,n,3)

>> e = [0,1,0,0,0,3,0,4,0,0,0,0,0,0,0,0,0,0,0] :: Vector[Z5]

Use the PGZ decoder for C

PGZ(e,C)

>>PGZ: Error positions [1,5,7], error values [1,3,4] :: Vector[K]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] :: Vector[Z5]

The dimension of C (given by n - rank(blow(H (C),F5)) is 19 − 12 = 7, and
its rate 7/19 > 1/3.

Here is another illustration, with n = 76:

e = rd error vector(F3,n,5) >> [010, 2, 035, 2, 09, 1, 06, 1, 03, 2, 010]

F3 = Zn(3)

f = get_irreducible_polynomial(F3,4,’X’) # X**4 + X + 2

[F81,x] = extension(F3,f,’x’,’F81’) # x is primitive

g = X**2 * (X-1)**4 * (X-2)**4

a = Set(F81)[3:] # g does not vanish on any of these values

n = len(a) # 81 - 3 = 76

C = Goppa(g,a) # code of length 76

k = n - rank(blow(H_(C),F3)) # k = 76-32 = 44

PGZm(e,C)

>> PGZm: Error positions [10, 46, 56, 63, 67],

error values [2, 2, 1, 1, 2] :: Vector[F3]

14

Appendix A. The function PGZm

For the sake of brevity, here we list and comment the PGZm(y,C) function.
Its code, together with the code of PGZ(y,C), can be accessed by browsing
the text file Listings-FSX.pyecc. The parameter y is supposed to be the
received vector in a transmission using the alternant code C. We have seen
that the value of expressions a (C) and H (C) is the vector α and the control
matrix H . Similarly, the values of the expressions K (C), h (C), r (C) are
the field over which C is defined, the vector h and the number of rows of H ,
respectively.

def PGZm(y,C):

if isinstance(y,list): y = vector(K_(C),y)

if not isinstance(y,Vector_Element):

return "PGZm: Argument is not a vector"

h = h_(C)

if len(y) != len(h):

return "PGZm: Vector argument has wrong length"

r = r_(C); alpha = a_(C); H = H_(C); K = K_(C)

s = y*H.transpose()

if is_zero(s):

print("PGZm: Input is a code vector")

return y

S = hankel_matrix(s)

c0 = S[:,0] # keep the first column of S

a = -GJ(S); l = len(a)

a = reverse(a.to_list())

K1 = K_(H)

[_,z] = polynomial_ring(K1,’z’,’K1[z]’)

L = hohner([1]+a,z)

R = [s for s in alpha if evaluate(L,s)==0]

if len(R) < l:

return "PGZm: Defective error location"

M = [alpha.to_list().index(r) for r in R]

h1 = [h[m] for m in M]

V = alternant_matrix(h1,R,l)

v = c0[:l]

V1 = splice(V,v)

w = transpose(GJ(V1))

for t in w:

t = pull(t,K)

if not belongs(t,K):

return "PGZ: error value not in base field"

15

https://mat-web.upc.edu/people/sebastia.xambo/Listings-FSX/

show("PGZm: Error positions {}, error values {}".format(M, w))

for j in range(len(M)):

y[M[j]]-=w[j]

return pull(y,K)

Appendix B. The PyECC system

Initially (October 2015) the idea that launched [3] was to match the
functionality of the CC system developed to deal with the computational
tasks related to the book [4], but it became soon clear that we could go
beyond that system in several directions. The aim of the undertaking is to
produce a Python package (PyECC) enabling the construction, coding and
decoding of error-correcting codes and make it freely available for teachers
and researchers. The current state of the project is documented at PyECC

References

[1] R. Farré. Notes on information theory and coding theory, 2003. In Cata-
lan.

[2] W. W. Peterson and E. J. Weldon. Error-Correcting codes. MIT Press
(2nd edition), 1972.

[3] N. Sayols and S. Xambó-Descamp. A Python package for the construc-
tion, coding and decoding of error-correcting codes. PyECC, 2017.

[4] S. Xambó-Descamps. Block error-correcting codes: a computational

primer. Univesitext. Springer, 2003.

16

https://mat-web.upc.edu/people/sebastia.xambo/PyECC.html
https://mat-web.upc.edu/people/sebastia.xambo/PyECC.html

	1 Essentials on alternant codes
	2 The PGZ decoding approach
	3 Fast PGZ computations
	4 Examples
	Appendix A The function PGZm
	Appendix B The PyECC system

