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We show that ultradilute quantum liquids can be formed with ultracold bosonic dipolar atoms
in a bilayer geometry. Contrary to previous realizations of ultradilute liquids, there is no need of
stabilizing the system with an additional repulsive short-range potential. The advantage of the
proposed system is that dipolar interactions on their own are sufficient for creation of a self-bound
state and no additional short-range potential is needed for the stabilization. We perform quantum
Monte Carlo simulations and find a rich ground state phase diagram that contains quantum phase
transitions between liquid, solid, atomic gas, and molecular gas phases. The stabilization mechanism
of the liquid phase is consistent with the microscopic scenario in which the effective dimer-dimer
attraction is balanced by an effective three-dimer repulsion. The equilibrium density of the liquid,
which is extremely small, can be controlled by the interlayer distance. From the equation of state,
we extract the spinodal density, below which the homogeneous system breaks into droplets. Our
results offer a new example of a two-dimensional interacting dipolar liquid in a clean and highly
controllable setup.

Introduction. Quantum liquids are self-bound fluids
which exhibit quantum mechanical effects at the macro-
scopic level. The effects of quantum mechanics and quan-
tum statistics, such as the indistinguishability of elemen-
tary particles, are crucial in the description of these sys-
tems [1]. One of the most celebrated examples of quan-
tum liquids is superfluid helium, which played a revo-
lutionary role in the history of quantum physics. The
interaction potential between helium atoms features a
repulsive short-range hard core due to the action of the
Pauli principle acting on the electronic shells and a long-
range attractive van der Waals tail due to induced dipole-
dipole interaction that tends to hold the atoms together.
A similar interplay between repulsive and attractive in-
teractions can be observed in atomic Bose gases with
dipolar interactions under rotation[2, 3].

Recently, an entirely new class of quantum liquids has
been created in which the quantum fluctuations stabilize
the system, which otherwise would be unstable at the
mean-field level [4]. A distinguishing feature of such liq-
uids is their ultradilute density, which can be more than
eight orders of magnitude lower than that of liquid he-
lium [5]. So far, two types of ultradilute quantum liquids
have been experimentally created: in dipolar systems [6–
9] and in two component Bose-Bose mixtures [5, 10, 11].
In both cases, distinct kinds of interaction potentials were
needed. That is, in dipolar systems an additional re-
pulsive potential was required to stabilize the system.
In mixtures, the attractive interaction between different
species (AB) was balanced by repulsive same-species in-
teractions (AA and BB) which resulted in three different
types of interactions with the complication of being im-
possible to tune them independently with only one ex-
perimental parameter (magnetic field). As a result, in all
previous experiments it was necessary to fine-tune two
or three types of interactions. While both kinds of sys-
tems allow the creation of ultradilute quantum liquids, it

is yet an open question if just a single kind of physical
interaction might be sufficient.

We argue that quantum dipolar bosons in a bilayer
geometry may serve as a simpler and cleaner system in
which there is no need of superimposing short-range in-
teractions. If the dipolar moments of the bosons are ori-
ented perpendicularly to the parallel layers, there is a
competing effect between repulsive intralayer and par-
tially attractive interlayer interactions, which can pro-
duce interesting few-and many-body states. The inter-
layer attractive potential energy is dominated by the
dimer contribution, which is a function of the interlayer
distance, and has a much weaker density dependence as
opposed to the intralayer repulsive potential energy. As
a result, the attractive part of the interlayer interaction
potential can overcome the repulsive one which eventu-
ally induces a phase transition from atomic to pair su-
perfluids, as discussed in Refs. [12, 13]. Recently, it has
been predicted that addition of a three-dimer repulsion
to a two-dimer attraction could stabilize a many-body
liquid [14]. It is therefore an open challenge to determine
the existence, formation mechanism, and properties of
the self-bound many-body dipolar system in the bilayer
geometry.

In this Letter, we study a two-dimensional system of
dipolar bosons confined to a bilayer setup. We calcu-
late the ground-state phase diagram as a function of the
density and the separation between layers by using ex-
act quantum Monte Carlo methods. The key result of our
work is the prediction of a homogeneous liquid in this sys-
tem. The liquid is stable in a wide range of densities and
interlayer values, including experimentally feasible ones.
We find that the critical interlayer separation at which
the liquid to gas transition happens is the same as the
threshold value at which the effective interaction between
dimers changes from attractive to repulsive. We charac-
terize the liquid by calculating its equation of state, the
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condensate fraction, and the equilibrium and spinodal
densities.

Hamiltonian. We consider N bosons of mass m and
dipole moment d confined to two parallel layers separated
by a distance h. It is assumed that the dipolar moment of
each boson is aligned perpendicularly to the planes by an
external field. Also, we suppose that the confinement to
each plane is so tight that there is no interlayer tunneling
and that transverse degrees of freedom are frozen. The
Hamiltonian of this system is given by

H =− ~2
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where Latin (Greek) indices run over each of NA (NB)
dipoles in the top (bottom) layer. The first two terms in
the Hamiltonian (1) correspond to the kinetic energy and
the next two terms are the intralayer dipolar interaction,
which is always repulsive and falls off with a power law
1/r3. The last term describes the interlayer potential,
which is attractive at short distances and repulsive for
large values of r, where r is the in-plane distance between
dipoles. The interlayer potential always supports at least
one bound (dimer) state. Its binding energy E2 diverges
when h → 0 and exponentially vanishes in the limit of
large interlayer separation [15–18]. The dipolar length
r0 = md2/~2 is used as a unit of length.

Method. We have studied the ground-state proper-
ties of the dipolar system using the diffusion Monte
Carlo (DMC) method [19]. The DMC algorithm solves
in a stochastic way the many-body imaginary-time
Schrödinger equation and is based directly on the micro-
scopic Hamiltonian (1). In this way, the DMC method
allows us to calculate the exact ground-state energy of
the system, as well as other properties, within control-
lable statistical errors.

As usual in DMC calculations, we employ a guiding
wave function for importance sampling to reduce the vari-
ance to a manageable level. In this work, we use two
guiding trial wave functions: the first one is of Jastrow
form, composed as a pair product of three different types
of two-body correlation terms,

ΨJ(r1, . . . , rN ) =

NA∏
i<j

fAA(rij)

NB∏
α<β

fBB(rαβ)

NA,NB∏
i,α

fAB(riα) ,

while the second one explicitly takes into account a pos-
sible formation of AB dimers with an appropriate sym-

metrization,

ΨS(r1, . . . , rN ) =
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NB∏
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×
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fAB(riα)

]
.

While the variance depends on a specific choice of the
guiding wave function both choices result in the same
DMC energy within statistical errors validating the con-
sistency of the method.

Intraspecies correlations at short distances, r < R0,
are modeled by the zero-energy two-body scattering so-
lution fAA(r) = fBB(r) = C0K0(2

√
r0/r), with K0(r)

the modified Bessel function and R0 a variational pa-
rameter [20]. For distances larger than R0 we choose
fAA(r) = fBB(r) = C1exp[−C2

r −
C2

L−r ] which describes
two-dimensional phonons [21], L being the simulation
box length. The constants C0, C1 and C2 are fixed by im-
posing continuity of the function and its first derivative at
the matching distance R0, and also that fAA(L/2) = 1.
The interspecies correlations are described by the dimer
wave function fAB(r) up to R1. Then, we impose the
boundary conditions f

′

AB(R1) = 0 and fAB(r) = 1 for
0 < R1 < L/2.

For simplicity, we assume a population-balanced sys-
tem NA = NB = N/2 where N is the total number of
dipoles. In order to approximate the properties of the ex-
tended system, we perform DMC simulations in a square
box with side length L and impose periodic boundary
conditions. The total density of the system is defined as
n = N/L2.

The dipolar potential is a quasi-long ranged one in two
dimensions, therefore its truncation at L/2 produces sig-
nificant finite-size corrections. The average energy Eint
of the interaction potential V (r) which is a two-body op-
erator, can be expressed in terms of the pair distribution
function g(r) as Eint/N = 1/(2n)

∫∞
0
V (r)g(r)dr. Ap-

plied to the bilayer geometry, the finite-size effects can
be significantly diminished by adding the tail energy,

Etail(n,L)

L2
=

∫ ∞
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1

2
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r3
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1

2

d2

r3
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gAB(r)

]
2πrdr.

(2)

We denote by gAA(r) = gBB(r) and gAB(r) the intra-
and interspecies pair distribution functions. An approx-
imate value of the tail energy (2) is obtained by ig-
noring correlations at large distances, gAA(r) → n2A,
gBB(r)→ n2B and gAB(r)→ nAnB, which leads to

Etail

N
=
πd2n3/2√

N
+

πd2N

(4h2 +N/n)3/2
. (3)
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FIG. 1. Energy per particle E/N with one-half of the dimer binding energy E2/2 subtracted as a function of the total
density nr20 for different values of the interlayer distance h/r0. The solid curves show polynomial fits to the equations of
state. Panel (a): From top to bottom the results correspond to the equations of state of a gas (h/r0 = 1.0, h/r0 = 1.05),
and liquid (h/r0 = 1.15) phases. The dashed line corresponds to the mean-field approximation for an attractive molecular gas
E/N = −π~2n/4mln[na2dd], where add is the dimer-dimer scattering length. Panel (b): The three curves correspond to the
equation of state of a liquid phase. The region where the liquid is unstable is shown as a shaded (red) area. Its boundary,
delimited by a dashed curve, is defined by the spinodal points.

Addition of the tail energy (3) to the DMC data allows
to significantly reduce the finite-size dependence. In the
end, we perform extrapolation to the thermodynamic
limit using the law E(N) = Eth + C/N1/2, with C a
fitting parameter and report the obtained energy [22].

0.0 0.5 1.0 1.5
h/r0

10-6

10-4

10-2

100

102

104

n
r

2 0 Liquid

Droplets

Atomic gas

Molecular gas

Crystal

→→→→→

←←←←←

neq ns

FIG. 2. Ground-state phase diagram as a function of the total
density nr20 and the interlayer distance h/r0. The green tri-
angles correspond to the transition points between an atomic
and a molecular gas [12]. The two arrows show the critical
density of crystallization of a single-layer of particles (right)
and of molecules (left) [20]. The liquid and droplet phases
appear for h/r0 > 1.1, blue circles correspond to the equilib-
rium densities neq of the liquid and red squares correspond to
the spinodal densities ns. Curves correspond to the Bogoli-
ubov approximation for a 2D Bose-Bose mixture with attrac-
tive interspecies and repulsive intraspecies short-range inter-
actions [23].

Results. The existence of a gas or a liquid phase can be
inferred from the equation of state. The dependence of
the energy on the total density is reported in Fig. 1 for
characteristic values of the interlayer distance. We ob-
serve that for h/r0 = 1.0, the energy per particle mono-
tonically increases with the density. The smallest energy
(zero) is obtained at vanishing density and thus this cor-
responds to a gas phase. By slightly increasing the in-
terlayer distance to h/r0 = 1.05, we find that the energy
as a function of density shows a tiny inflection point.
This could suggest the presence of a first-order gas-liquid
phase transition, so that the gas at low density coex-
ists with a liquid at higher density. However, we have
not been able to build a double tangent Maxwell con-
struction to characterize this transition because of the
minute change observed in the curvature of the equa-
tion of state. Drastically different behavior is observed
as the interlayer separation is further increased. That
is, the energy per particle becomes negative and devel-
ops a minimum at a finite density for h/r0 ≥ 1.1. The
position of the minimum corresponds to the equilibrium
density. The existence of this minimum proves the sta-
bility of a homogeneous liquid phase. A possible un-
derlying microscopic mechanism for the stabilization of
the liquid is due to effective three-dimer repulsion which
balances an effective dimer-dimer attraction as proposed
in Ref. [14]. Indeed, the three-dimer repulsive contri-
bution is negligible for small densities and we find an
energy which closely follows that of an attractive gas of
dimers, shown by a dashed line in Fig. 1a. We found that
the interlayer critical value for the liquid to gas transi-
tion (h/r0 ≈ 1.1) is the same as the threshold value for
the four-body bound state of dipolar bosons, when the
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tetramer breaks into two dimers [14]. The non-monotonic
dependence of the binding energy on h/r0 is shared be-
tween the few-body AABB, AAABBB, etc clusters[14]
and the thermodynamic liquid.

The equations of state are used to extract the equilib-
rium neq and spinodal ns densities, which are defined by

the conditions ∂E/N
∂n = 0 and ∂P

∂n = 0, respectively with

P = n2 ∂E/N∂n being the pressure. The resulting ground-
state phase diagram is reported in Fig. 2 as a function
of the total density nr20 and of the interlayer distance
h/r0. The self-bound many-body phases are formed for
large interlayer separations, h/r0 > 1.1. Below the spin-
odal curve (dotted line) the homogeneous liquid is unsta-
ble with respect to droplet formation. The stable liquid
phase appears above the spinodal curve. Remarkably,
this phase exists in a wide range of densities and in-
terlayer values. The equilibrium density (dashed line)
can be adjusted by changing the separation between the
layers: neq decreases as h/r0 increases. For large sep-
arations h, the liquid becomes very dilute and, in this
weakly-interacting regime, it is possible to make a com-
parison with the predictions of Bogoliubov theory [23]
developed for short-range potentials. The best agree-
ment is found for the smallest equilibrium and spinodal
densities, i.e., for the largest h, for which the dipolar po-
tential is well approximated by a contact potential with
the same s-wave scattering length. The gaseous and self-
bound phases are separated by the threshold h/r0 ≈ 1.1
at which the effective dimer-dimer interaction changes
its sign [14] from repulsion (gas) to attraction (homoge-
neous liquid or droplets). The gaseous regime features a
second-order phase transition between atomic and molec-
ular gas phases which on a qualitative level occurs when
the molecular binding energy approaches the chemical
potential. In the molecular gas phase, the atomic conden-
sate is absent while the molecular one is finite [12]. On
the other hand, in the atomic gas one observes an atomic
condensate and the system features a strong Andreev-
Bashkin drag between superfluids in different layers [24].
The gas phase is characterized by a quantum phase tran-
sition from a molecular to an atomic superfluid as the
interlayer distance increases. Indeed, we have verified
that an atomic condensate is present in the homogeneous
liquid.

As the density of the liquid is increased, the poten-
tial energy starts to dominate and eventually a trian-
gular crystal is formed. For large separation between
layers, two independent atomic crystals are formed and
the phase transition occurs when the density per layer
reaches the same critical value as in a single-layer geom-
etry, nr20 ≈ 290 [20, 25]. In the limit of small interlayer
separations, a single molecular crystal is formed at den-
sity nr20 ≈ 9.

In order to quantify the quantum coherence in the sys-
tem, we have calculated the atomic condensate fraction
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FIG. 3. Depletion of the condensate fraction N0/N vs
1/| ln(na20)|. The blue circles correspond to the liquid phase
at the equilibrium density. The solid line corresponds to the
quantum depletion of short-range potentials having s-wave
scattering length a0 in two dimensions 1 − 1/| ln(na20)|. In-
set: N0/N as a function of the interlayer distance h/r0, the
green triangles correspond to the gas phase at total density
nr20 = 10−3.

N0/N as the off-diagonal long-range limit |r − r′| → ∞
of the one-body density matrix (OBDM) n(1)(r, r′) =
〈Ψ̂†(r)Ψ̂(r′)〉, where Ψ̂†(r)(Ψ̂(r)) is the field operator
that creates (annihilates) a particle at the point r [26].
In Fig. 3, we report the condensate fraction N0/N as
a function of 1/| ln(na20)|, for the dipolar liquid at the
equilibrium density, where a0 = e2γr0 is the s-wave scat-
tering length and γ ≈ 0.577 is the Euler constant. In
the very dilute limit, we find a good agreement with the
quantum depletion 1/| ln(na20)| calculated in Bogoliubov
theory for short-range potentials. The equilibrium den-
sity has a strong dependence on the interlayer separation
h (see Fig. 2). For liquids formed at separations h & 1.6
the perturbative result is expected to hold. In the inset
of Fig. 3 we report the condensate fraction as a function
of the interlayer separation h. The liquid exists for large
separations between the layers h. As h is decreased the
equilibrium density grows up until it reaches nr20 ≈ 10−3

at h/r0 ≈ 1.1 where a phase transition from a liquid to
a gas happens. For smaller separations, the liquid does
not exist and we show the condensate fraction in the gas
with the density fixed to nr20 = 10−3. The condensate
fraction rapidly drops to zero signaling a phase transition
from atomic to molecular gas.

Possible parameters for experimental realization. Our
results open new perspectives for experimental observa-
tion of quantum liquids in quasi-two-dimensional geome-
tries. The predicted liquid, for ratios h/r0 > 1.1, can
be realized by using bosonic dipolar molecules produced
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with mixtures of 87Rb133Cs [27, 28] and 23Na87Rb [29, 30]
characterized by dipolar lengths r0 ∼ 5 × 10−6m and
2 × 10−5m, respectively. Magnetic dipolar 164Dy2 [31]
and 168Er164Dy [32] (r0 ∼ 2×10−7m and r0 ∼ 1×10−7m,
respectively) molecules can also be used. The interlayer
distance, one-half of the laser wavelength λ/2, has typi-
cal values of h ≈ (2 − 5) × 10−7m. In an experimental
realization the bilayer has a quasi-two-dimensional ge-
ometry, that is, each layer has a finite width. The ef-
fective intralayer interaction for a one layer of dipolar
atoms with finite width was derived in Ref. [33]. Con-
sidering a Gaussian profile in the transverse direction to
the planes, the length scale of the transverse confinement
a⊥ = λ

2π s
−1/4 [34] is related to the laser beam wavelength

λ and its strength, which commonly is quantified as the
height s of the optical lattice in units of the recoil energy.
A typical value of s = 16 results in a⊥ = 0.08λ, that is
the transverse size can be significantly smaller than the
distance between layers. For these typical experimen-
tal parameters, we have found no significant differences
between a quasi-two and a two-dimensional repulsive po-
tential. For attractive interactions, we have found that
the dimer energy calculated with our model and with
a quasi-two-dimensional model [35] differs at most by
20%. Therefore, we conclude that the effects of consid-
ering a quasi-two-dimensional model do not change our
main conclusions.

Conclusions. In conclusion, by using exact QMC
methods we have shown that it is feasible to create ul-
tradilute quantum liquids in atomic systems interacting
with purely dipolar interactions (i.e., no s-wave resonance
is needed) when confined to a bilayer geometry. The sta-
bilization mechanism is consistent with a microscopic de-
scription in which the liquid state is formed from the bal-
ance of a dimer-dimer attraction and an effective three-
dimer repulsion. A dipolar bilayer possesses a rich phase
diagram with quantum phase transitions between gas,
solid phases (known before), and a liquid phase (newly
predicted). From the equations of state, we extracted the
spinodal and equilibrium densities, which are controllable
through the interlayer distance. The equilibrium density
decreases as the interlayer distance increases, allowing
access to ultra-dilute liquids in a stable setup. Remark-
ably, the liquid state exists in a wide range of densities
and interlayer separations which are experimentally ac-
cessible. Therefore, our results offer a new example of an
ultradilute quantum liquid which can be experimentally
realized in a clean and highly controllable setup.
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SUPPLEMENTARY MATERIALS

Finite size effects

After adding the tail energy Etail to the DMC energy
EDMC, we extrapolate the energy E(N) = EDMC +Etail

to the thermodynamic limit value Eth using the fitting
formula

E(N) = Eth +
C√
N
, (4)

where C is a fitting parameter.

In Fig. 4, we show an example of the finite-size de-
pendence of the ground-state energy. In it, we consider
a liquid phase with density nr20 = 0.001033 and inter-
layer distance h/r0 = 1.2. We observe that the energy
dependence on the number of particles scales as 1/

√
N ,

contrary to the law 1/N , typical for fast decaying poten-
tials. We find that fitting function (4) describes well the
finite-size dependence.
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FIG. 4. An example of the finite-size dependence for the
energy in the liquid phase at the dimensionless density nr20 =
0.001033 and h/r0 = 1.2. Symbols, DMC energy (with added

the tail energy); solid line, fit Eth + C/
√
N .

The number of particles used in this study ranges from
N = 30 up to N = 120. All the energies reported in our
work are corrected to the thermodynamic limit using this
functional law. The described procedure is used in gas
and liquid phases.
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larization P for three values of h/r0 in the molecular gas
(nr20 = 0.001), atomic gas (nr20 = 0.001), and liquid phase
(equilibrium density).

Polarization

The pairing properties of the different phases present
in the system can be further characterized by calculat-
ing the ground-state energy dependence on small polar-
ization. This dependence can be linear or quadratic de-
pending on the molecular or atomic nature of the system,
respectively. This can be obtained by slightly imbalanced
the number of particles in the bottom NA and top NB

layers, while keeping fixed the total number of particles
NA +NB. The polarization is defined as

P =
NA −NB

NA +NB
, (5)

and small is small in a slightly unbalanced system, |P | �
1.

For an atomic condensate, the ground-state energy de-
pendence on small polarization is quadratic

E(P ) = E(0) +N(n/2χs)P
2, (6)

where E(0) is the ground-state energy of the balanced
system and χs is the spin susceptibility associated with
the dispersion of spin waves of the magnetization density
nt − nd with speed of sound cs =

√
n/mχs. In this case

the low-lying excitations are coupled phonon modes of
the two layers.

For a molecular superfluid phase the ground-state en-
ergy is a linear function of the polarization

E(P ) = E(0) +N∆gapP, (7)

in this case an energy ∆gap is needed to break a pair and
spin excitations are gapped.

Examples of the different behaviors of E(P ) are re-
ported in Fig. 5 for three values of h/r0 corresponding to

the molecular gas, atomic gas, and liquid phases. We no-
tice that E(P ) is a quadratic function of P for the liquid
state, therefore the liquid is a liquid of atoms and not a
liquid of molecules or dimers.
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[32] A. Trautmann, P. Ilzhöfer, G. Durastante, C. Politi,
M. Sohmen, M. J. Mark, and F. Ferlaino, Dipolar quan-
tum mixtures of erbium and dysprosium atoms, Phys.
Rev. Lett. 121, 213601 (2018).

[33] J. C. Cremon, G. M. Bruun, and S. M. Reimann, Tunable
wigner states with dipolar atoms and molecules, Phys.
Rev. Lett. 105, 255301 (2010).
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