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PRIMES REPRESENTED BY QUADRATIC

POLYNOMIALS VIA EXCEPTIONAL CHARACTERS

FERNANDO CHAMIZO AND JORGE JIMÉNEZ URROZ

Abstract. We estimate the number of primes represented by a gen-
eral quadratic polynomial with discriminant ∆, assuming that the cor-
responding real character is exceptional.

1. Introduction

Let f(x) = ax2+bx+c be a quadratic polynomial with integer coefficients
such that (a, b, c) = 1, a+ b or c odd and discriminant ∆ 6= �. Conjecture F
in the classic work [4] claims that there are infinitely many prime numbers
of the form f(n) when a > 0. Note that it is elementary that the imposed
conditions on f are necessary to represent infinitely many primes. If a < 0,
under the same conditions, we still expect to capture many primes if {n ∈
Z : f(n) > 0} is large and Conjecture H in [4] is an instance of it.

In [3] and in [2] special cases of these conjectures are addressed assuming
the existence of exceptional characters. For instance, in the second paper it is
proved that positive exceptional fundamental discriminantsD can be written
as D = m2+p and that if D is “exceptional enough” we have an asymptotic
formula for the number of primes of the form D − m2. In our setting it
corresponds to ∆ = 4D > 0 and a = −1 < 0. In [3] they are considered
two families of polynomials with ∆ < 0 and a > 0. To interpret correctly
this claims, it is important to keep in mind that the exceptional nature
of a discriminant depends on our scale and in some sense an exceptional
discriminant, zero or character is like a sequence. The existence of a real
zero in [1 − c/ log q, 1] only ruins the generic de la Vallée Poussin zero free
region if c can be taken arbitrarily small when q grows. In [3] and [2] a bona
fide asymptotic formula is only achieved if ∆ is allowed to grow.

Our goal in this paper is to adapt the techniques of [2] to get a result
valid for every f as above when ∆ is exceptional. By the reasons explained
before we prefer to present the result as a main term plus an error term

2010 Mathematics Subject Classification. Primary 11N32; Secondary 11N35, 11M20.
Key words and phrases. Exceptional characters, L functions, Sieve methods.
The first author is partially supported by the MTM2017-83496-P grant of the MICINN

(Spain) and by “Severo Ochoa Programme for Centres of Excellence in R&D” (SEV-2015-
0554). This latter grant supported the visit of the second author to the ICMAT where this
work was completed. The second author is partially supported by the PID2019-110224RB-
I00 grant of the MICINN (Spain).

1

http://arxiv.org/abs/2011.05398v1


2 FERNANDO CHAMIZO AND JORGE JIMÉNEZ URROZ

instead of as an asymptotic formula resembling the original statement of
the conjectures.

For each N ≥ 1 we denote

πf (N) = #{0 ≤ f(n) ≤ N : f(n) prime}
with f as before and for each integer d, ρ(d) = #{n : f(n) ≡ 0 (mod d)}.
Let χ∆(n) be the Kronecker character modulo ∆, χ∆(n) =

(

∆
n

)

. We will
also consider the L function associated to the character

(1.1) L(s, χ) =
∑

n

χ∆(n)

ns
=

∏

p prime

(

1− χ∆(p)

ps

)−1

.

We will denote A =
{

f(n) ∈ [0, N ] : n ∈ Z
}

and Ad = {k ∈ A : d | k}
for N, d ∈ Z

+ and A and Ad stand for their cardinality. Also, we denote
V (x) =

∏

p<x

(

1− p−1ρ(p)
)

. The exceptionality of the character χ∆ will be
measured by

β = − log(L(1, χ∆) log |∆|).
In the development of the proof it is convenient to introduce also

L = − log (L(1, χ∆) logA) and B =
3 log |∆|
logA

.

To state our main result we introduce the function

g(∆) =

{

∆e−β/2 if ∆ > 0

|∆|
(

4|a| − e−β/2
)−1

if ∆ < 0.

Theorem 1.1. Let 1 ≤ |a| ≤ eβ/5 and g(∆) ≤ N ≤ |a||∆|β/2. Then

πf (N) = AV (A)
(

1 +O(e−
√
β/6)

)

with an absolute O-constant.

Remark 1.2. An asymptotic formula is obtained only under β → +∞ or
equivalently, under the usual definition of exceptionality L(1, χ∆) log |∆| →
0.

2. Guidelines.

Along the proof we follow the sieve techniques of [2]. As usual for z ≥ 2
we write P (z) =

∏

p<z p and S(A, z) = #{a ∈ A : (a, P (z)) = 1}. We start
with the trivial identity

πf (N) = S(A,
√
N) +O(1)

and use the well known Buchstab identity

(2.1) S(A, z)− S(A,
√
N) =

∑

z≤p≤
√
N

S(Ap, p).

The main term of the theorem will come from S(A, z), while the sum on
the right will be part of the error term. In any event, in order to estimate
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both terms we need to have a concrete knowledge of both A and Ap. Then,
the whole idea of the proof of Theorem 1.1 is to bound the right hand side
of (2.1) using the exceptionality of the character χ∆. This comes by noting
that for d squarefree ρ(d) ≤ λ(d) where λ(n) is given by the convolution
λ = 1 ∗ χ∆, and in particular S(Ap, p) = 0 if χ∆(p) = −1. If the character
is exceptional, this will happen often, giving many zero terms in the right
hand side of (2.1).

In order to estimate the right hand side clearly we will need to have some
control over Ap. Observe that

Ad =
ρ(d)

d
A+ rd, with |rd| ≤ ρ(d).

Thanks to ρ(d) ≤ λ(d) finding good bounds for the sum in the right hand
side of (2.1) will come from finding good estimates for the sum defined as

(2.2) δ(x) =
∑

x≤p≤A

λ(p)

p
.

3. Proof of Theorem 1.1.

Along the proof we will assume β large enough, since otherwise Theorem
1.1 is the classical upper bound from linear sieve theory. The size of A grows
with ∆ (see Lemma 3.3 below) then we can assume that A is bigger than
a large constant. We will frequently use the inequality β ≤ ε log |∆|, which
follows from Siegel’s theorem.

Let us start by finding the asymptotics of S(A, z). For that we use the
fundamental lemma of sieve theory (see e.g. [1, Cor. 6.10]), with level of

distribution A2/3, zs = A2/3 and any 1 < s < 2 logA
9 log logA to get

(3.1) S(A, z) = AV (z)(1 +O(e−s)) +O(A2/3 logA).

Observe that

V (z) = V (A)eO(δ(z)) = V (A)
(

1 +O(δ(z))
)

,

and hence we can replace V (z) by V (A) with an error term bounded by
δ(z), which will be absorbed in the error term in (3.1).

The rest of the paper will be dedicated to bound the right hand side of
(2.1), which we will split into three different sums, depending on the range
of summation for the primes.

∑

z≤p≤
√
N

S(Ap, p) =
∑

z≤p≤A/z2

+
∑

A/z2<p≤A

+
∑

A<p≤
√
N

= S1 + S2 + S3.(3.2)

We start with the sum S1. The trivial bound S(Ap, p) ≤ Ap is not good
enough for the small primes in the sum S1, and we need a better bound
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gotten, as in [2], using an upper bound sieve of dimension 2 and level of
distribution A/pz (see e.g. [1, Cor. 6.10]). This gives us

S(Ap, p) ≪
ρ(p)

p
AV (z) +

∑

d<A/pz

ρ(d),

where the sum runs over squarefree integers d. The last term is trivially
bounded by

∑

d<A/pz

ρ(d) ≤
∑

d<A/pz

(1 ∗ χ∆)(d) ≪
∑

d<A/pz

τ(d) ≪ A

pz
logA.

Noting that z ≥ (logA)3, which follows by our assumption in s, and that
V (z) ≥ V (A) ≫ (logA)−2, since ρ(p) ≤ 2 for any prime p, we end up with
S(Ap, p) ≪ p−1λ(p)AV (z) and hence

(3.3) S1 ≪ AV (z)δ(z).

To bound δ(z) we use Lemma 3.4 of [2], which we include for reader’s
convenience.

Lemma 3.1. Let 2 ≤ u ≤ y ≤ x. Then,

∑

y≤n≤x
(n,P (u))=1

λ(n)

n
≪ W (u)L(1, χ∆) log

(

x

y

)

+ |∆|1/8+εy−1/3u1/3 log u,

where W (u) =
∏

p<u

(

1− p−1
) (

1− p−1χ∆(p)
)

.

Remark 3.2. Observe that, since W (u) ≤ C
∏

p<u

(

1− p−1λ(p)
)

≤ CV (u),

for some absolute constant C, we can write either W (u) or V (u) indistinctly.

Further we will use the formula, also proved in [2, p.1106],

(3.4) δ(z)k ≪ kk!W (z)L(1, χ∆) logA+ k!|∆|1/8+εz(1−k)/3

valid for any integer k ≥ 1. It is worth to note that in order to establish the
previous formula it is needed a bound of the type log z ≪ ∆ǫ, which in our
case follows assuming L > 0. Indeed

log z < logA <
1

L(1, χ∆)
≪ ∆ǫ.

Dropping the contribution of W (z) in (3.4) we get the more convenient form

δ(z) ≪ k
(

kL(1, χ∆) logA+ |∆|1/8+εz(1−k)/3
)1/k

.

Our goal is to prove

(3.5) δ(z) ≪ e−s

with a proper selection of s.
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Taking any positive integer k ≥ ( 3
16 + 3ε)Bs + 1 and noting that z =

|∆|2/Bs we obtain

|∆|1/8+εz(1−k)/3 ≪ |∆|−ǫ.

On the other hand
kL(1, χ∆) logA ≥ |∆|−ǫ

follows by Siegel’s theorem, and then

δ(z) ≪ k(L(1, χ∆) logA)
1/k.

Observe that, assuming again L > 0, we have that the previous bound is
increasing in k, and so we can relax the condition of k being an integer, In
particular, we can take k = Bs, which is possible assuming Bs greater than
a constant greater than 16/13. Then, to prove (3.5) we need to select some

s ≤ − log k +
L

k
,

which gives, replacing the value of k,

(3.6) Bs2 +Bs log(Bs) ≤ L.

The error term in Theorem 1.1 is in terms of β instead of L. The comparison
between both quantities comes from a proper control in A. We have the
following lemma.

Lemma 3.3. Let A ≥ 1 and assume the hypothesis in Theorem 1.1. Given
ε > 0, we have

|∆|1/2−ε ≤ A <
4
√
N

√

|a|
,

for ∆ large enough (depending on ε).

Remark 3.4. For the application of this in the proof of the main result we
are going to choose 1/2− ε = 7/16. This is connected to the constant 16/13
above.

Proof. The inequalities 0 ≤ f(x) ≤ N define one or two intervals for x,
depending on the real zeros of f and the sign of a and ∆, and it is straigh-
forward to measure the length of those intervals to be

X =















√
∆+4aN

a if ∆ < 0, a > 0, N > |∆|
4|a| ,

4N√
∆+4aN+

√
∆

if ∆ > 0, a > 0 or if ∆ > 0, a < 0, N ≤ |∆|
4|a| ,√

∆
|a| if ∆ > 0, a < 0, N > |∆|

4|a| .

The cases not listed above give empty intervals. From here the upper bound
X ≤ 2

√

N/|a| is trivial. Then, noting
(3.7) X − 2 < A < X + 2,

we deduce A ≤ 4
√

N/|a| for |a| < N , whenever X ≥ 2, which follows from

our assumptions a < eβ/5, N > g(∆) by Siegel’s theorem because β and ∆
can be assumed sufficiently large.
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We now prove X > |∆|1/2−ε. In the last case in the definition of X, the

result follows again from |a| < eβ/5. If ∆ < 0, then X > a−1e−β/4
√
N , since

N ≥ g(∆). Further if ∆ > 0 and N ≤ ∆
4|a| , we have X ≫ N/

√
∆, finally if

∆ > 0, a > 0 and N > ∆
4|a| we have the stronger bound X ≫

√

N/|a|. In

any case X > ∆1/2−ε is a consequence of N/∆ ≫ |∆|−ǫ and a ≪ |∆|ǫ. �

Now, A ≤ 4
√
N√
|a|

and the upper bound for N give

β = L+ log

(

logA

log |∆|

)

< 2L.

We select s = 1
2

√

β/B. By Lemma 3.3 B is bounded, namely with the
choice of ε as in the Remark we have B < 7. Then s is arbitrarily large,
in particular s > 1. It is important to check that this selection of s is
compatible with the rest of our previous assumptions:

16

13B
< s <

2 logA

9 log logA
.

The first inequality is consequence of A < 4
√

N/|a| and the upper bound
in N . The second is equivalent to

1 <
4
√
B logA

9
√
β log logA

,

which follows for A large enough, by the definition of B and Siegel’s Theo-
rem.

Let us prove with this selection of s that

(3.8) Bs2 +Bs log(Bs) ≤ β

2
< L.

As B < 7 and s is arbitrarily large, we can suppose Bs2 ≥ Bs log(Bs) and
then (3.8) follows directly from our choice of s. This proves (3.8), and (3.5)

with s = 1
2

√

β/B (and assures L > 0 as assumed), which gives by (3.2)

(3.9) S1 ≪ AV (z)e−
√

β/4B ≪ AV (A)e−
√
β/6

since B < 7.

It remains to bound S(Ap, p) for medium and large p. If A/z2 < p < A
then

S(Ap, p) ≤ Ap ≤
ρ(p)

p
A+ λ(p) ≪ λ(p)

p
A,

so

(3.10) S2 ≪ Aδ(A/z2).

We apply Lemma 3.1 x = A and y = A/z2 and u = Az−2|∆|−3/8−4ε.
Observe that u = Aγ with γ = 1− 4

3s − B
8 − 4

3Bε and γ > 0 for ε sufficiently
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small and s sufficiently large, since B < 7. With this selection the first term
in the sum in Lemma 3.1 dominates the second and we deduce

δ(A/z2) ≪ V (u)L(1, χ∆) log(z
2) ≪ V (A)L(1, χ∆) log(z

2).

For the last inequality we have used that u is a positive power of A. Now,

log(z2)L(1, χ∆) =
4

3s
e−L < e−β/2 ≤ e−

√
β/6,

and putting everything together we get the desired result

(3.11) S2 ≪ AV (A)e−
√
β/6.

Finally, it remains to bound S3 corresponding to the primes A < p <
√
N .

We have

S(Ap, p) ≤ Ap ≤
ρ(p)

p
A+ λ(p) ≪ λ(p)

p

√
N,

and again using Lemma 3.1 with the same parameter u as before, x =
√
N

and y = A, we get
∑

A≤p≤
√
N

S(Ap, p) ≪
√
NV (A)L(1, χ∆) log

√
N

We separate the different cases giving f(Z) ∩ Z
+ 6= ∅ (see the definition of

X in the proof of Lemma 3.3).

If ∆ < 0, a > 0 and by hypothesis N ≥ g(∆), which gives,
√
N ≪ aeβ/4A

by (3.7) and, hence, since f(x) = x log x is increasing for x > 2, we get
√
N log

√
N ≪ aeβ/4A log(aeβ/4A) ≪ aeβ/4A logA

by our assumption in a and Lemma 3.3. Also a < eβ/5 implies

a ≪ eL−β/4−
√
β/6,

since β < 2L, which gives

(3.12) S3 ≪ AV (A)e−
√
β/6,

in this case as desired.
If ∆ > 0, a < 0, we just need to consider the case ∆e−β/2 ≤ N ≤ ∆

4|a| ,

since f(n) ≤ ∆
4|a| . Then A ≫ N/

√
∆ > e−β/4

√
N and the proof of (3.12)

follows in the same way as before.
Finally, if ∆ > 0, a > 0 we have A ≫

√

N/a ≫ e−β/10
√
N and the same

proof applies getting again (3.12).

Substituting (3.9), (3.11) and (3.12) in (3.2) and recalling (2.1) and (3.1),
the proof of Theorem 1.1 is complete.
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