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Abstract—Side-channel analysis (SCA) attacks pose a major
threat to embedded systems due to their ease of accessibility.
Realising SCA resilient cryptographic algorithms on embedded
systems under tight intrinsic constraints, such as low area cost,
limited computational ability, etc., is extremely challenging and
often not possible. We propose a seamless and effective approach
to realise a generic countermeasure against SCA attacks. XDI-
VINSA, an extended diversifying instruction agent, is introduced
to realise the countermeasure at the microarchitecture level based
on the combining concept of diversified instruction set extension
(ISE) and hardware diversification. XDIVINSA is developed as
a lightweight co-processor that is tightly coupled with a RISC-
V processor. The proposed method can be applied to various
algorithms without the need for software developers to under-
take substantial design efforts hardening their implementations
against SCA. XDIVINSA has been implemented on the SASEBO
G-III board which hosts a Kintex-7 XC7K160T FPGA device for
SCA mitigation evaluation. Experimental results based on non-
specific t-statistic tests show that our solution can achieve leakage
mitigation on the power side channel of different cryptographic
kernels, i.e., Speck, ChaCha20, AES, and RSA with an acceptable
performance overhead compared to existing countermeasures.

I. INTRODUCTION

Embedded systems have become an integral part of modern
lives, and hence it is essential that they are secure. Although
cryptosystems implemented on embedded systems have been
mathematically proven to be secure, they can be deployed
in unforeseen adversarial settings and could be vulnerable to
physical attacks that exploit side-channel information, such as
execution time, power consumption, electromagnetic emission,
etc. In 1999, Kocher et al. presented power side-channel
attacks to reveal sensitive information by analysing the power
consumption measurements [1]. The power side-channel at-
tacks are typically categorised into two types of attacks:
Simple Power Analysis (SPA) and Differential Power Analysis
(DPA). SPA can reveal sensitive information by observing the
power consumption of one single execution of a cryptographic
algorithm. In contrast, DPA extracts sensitive information by
statistically analysing a large number of power measurements
on the same algorithm with different inputs.

Masking and hiding are two widely used countermeasures
against power side-channel attacks. Masking countermeasures
merge the sensitive information with random shares which

are unknown to the attacker, while hiding countermeasures
reduce the signal-to-noise ratio of leakage information in
observation traces [2]. Hiding countermeasures offer less se-
curity than masking countermeasures but have smaller im-
plementation and performance costs [3]. A common way to
perform hiding is to use random delays in embedded software
to desynchronise side-channel traces. Hiding is not able to
prevent an SCA attack completely, yet renders the attack
more complex and time-consuming to the point where it is
no longer practical [4]. Moreover, there is generally accepted
intuition that side-channel resistance requires the combination
of several countermeasures in order to be effective [5]. For
example, combination of masking with time randomization is
a promising method against SCA attacks.

In this work, we investigate the application of hardware
diversification and diversifying instructions to harden crypto-
graphic software on an embedded system against SCA attacks.
The approach aims at a countermeasure that is transparent to
software developers and requires no substantially algorithm-
specific change nor experience to implement the countermea-
sure. It means that the countermeasure is able to integrate
straightforwardly into other techniques to constitute a multi-
layer countermeasure. The main contributions of this paper are
as follows;

1) We propose a novel SCA countermeasure which relies
on hardware diversification and hiding techniques. Rather
than improving the security of hiding techniques, we fo-
cus on delivering a generic and “drop in” countermeasure
which avoids substantial changes in both hardware and
software, hence, minimise overhead incurred to provide
an acceptable security level.

2) An approach combining ISE and diversification concepts
is introduced. Diversified ISEs are defined with the same
logical function as primitive instructions. This enables the
countermeasure to be seamlessly applied to existing cryp-
tographic algorithms to facilitate SCA-hardened realisa-
tion without incurring an additional cost in code density
and memory footprint, nor re-designing the algorithms.

3) The proposed countermeasure employs a non-invasive
approach that avoids negative effects on non-security
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critical applications and causes only a marginal increase
in hardware.

4) An empirical SCA evaluation on widely used crypto-
graphic algorithms is conducted. The measurements show
that the proposed method reduces power side-channel
leakage below the thresholds and can mitigate actual SCA
attacks against AES encryption.

The paper is organized as follows: Section II discusses
related countermeasures and power analysis attacks, while
XDIVINSA is presented in Section III. In Section IV,
we provide a detailed discussion of the experimental eval-
uation and Section V concludes the paper. Moreover,
the source code of the proposed method is available at
https://github.com/scarv/xdivinsa

II. RELATED WORK

A hiding countermeasure can be generally realised on
time dimension and/or amplitude dimension. The former can
improve the robustness of cryptographic algorithms against
both power analysis and timing-based attacks. Random delays
in software are commonly used in the hiding countermeasure
against SCA and fault attacks in embedded devices. There
are extensive studies on generating various random delay
distributions to increase the difficulty against SCA attacks [4],
[3]. Due to the fact that a processor is usually idle during
the random delay, these countermeasures are still vulnerable
to some enhanced SCA attacks, namely Sliding Window
DPA [6], and elastic alignment based DPA [7]. The works
in [2] showed that runtime code polymorphism [8] is more
robust against the enhanced SCA attacks compared to inserting
delays based on random dummy loops. The code polymor-
phism countermeasure uses techniques that involve instruction
shuffling, randomly selecting instructions, and inserting noise
instructions to generate executed code at runtime. However,
runtime code generation and inserting additional redundant
instructions incur a large performance overhead in embedded
processors.

Hardware solutions of SCA-resistant processors can provide
a more generic countermeasure for different cryptographic
algorithms. However, existing hardware solutions usually re-
quire substantial changes to the processor architecture that
impacts all programs running on the processor and also in-
duce performance overhead on non-security critical programs.
A hardware-based instruction shuffler was proposed in [12]
to shuffle independent instructions randomly for protection
against side-channel attacks. However, the effect of this

TABLE I: Comparison of countermeasures on time dimension.

Methods Side Channel Software based Hardware based
invasive non-invasive

[3], [4] power dummy loops
[8] power shuffling, noise instr.
[9], [10] power enhancing algorithms
[11] time 3
[12], [13] power 3
This work power 3
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Fig. 1: Hardware Diversification on XDIVINSA.

countermeasure is dependent on the implementation of the
algorithm software. In addition, a secure processor which can
protect against side-channel attacks using masking and hiding
techniques was proposed in [13]. Besides an independent data
path to implement the masking scheme, a pipeline randomizer
is introduced to add non-deterministic dummy control and
data signals to the processor data path. The authors in [14]
presented a SCA-resistant embedded processor based on mask-
ing and DPA-resistant logic styles. These approaches result
in a significant increase in hardware usage. Interestingly, a
hardware-based non-invasive approach was presented in [11].
This countermeasure avoids substantial changes to processor
architecture and effectively reduces timing side-channel leak-
age. However, the evaluation in this work is solely performed
on execution time measurements. The method is based on
naive insertion of delay after performing the operation. Since
the operation is executed at the beginning of execution pe-
riod, a successful side channel attack could be realized by
measuring the power/energy consumption during this time.
Hence, the countermeasure is still vulnerable to power side-
channel attacks. Table I summarises the comparison between
countermeasures realised on time dimension. Invasive and
non-invasive hardware-based countermeasures refer to coun-
termeasures that either requires substantial modifications on
base-processor’s microarchitecture or not.

III. PROPOSED SOLUTION

A. XDIVINSA

A hardened processor is studied based on a soft RISC-V
processor. Basic approaches to integrate a hardware based
countermeasure into a processor can be invasive or non-
invasive. The former can achieve low area cost but induces
substantial changes in hardware and depends on a specific
microarchitecture. The latter can be implemented in isolated
hardware modules (i.e., dedicated IP modules) which can be
micro-architecture independent but induce higher area cost and
longer latency to access data compared to the former. Our
proposed method can be viewed as a non-invasive alternative
to provide a drop-in solution which is independent of the soft
processor implementation. We introduce XDIVINSA as a co-
processor which is tightly coupled with the soft processor
as shown in Fig. 1. So, there is no additional changes to



the processor microarchitecture except for the need of a
co-processor interface which is assumed to be available in
the soft processor. The tightly coupling with the processor
enables XDIVINSA to effectively get the source registers,
stall the entire processor, and write back result to destination
register through the co-processor interface. Importantly, the
presence of XDIVINSA does not cause negative effects on the
soft processor micro-architectural performance (i.e., reducing
maximum clock rate). Therefore the countermeasure does not
affect other normal (non-security critical) applications running
on the processor.

An ISE executed by XDIVINSA, called the diversified ISE,
is introduced to diversify a subset of the arithmetic/logic
instructions. We opt for the Addition and Xor instructions
because these instructions are commonly used in integer-
number-based (e.g., RSA) or finite-field-based (e.g., AES)
cryptography, respectively, to handle critical data. It is worth
noting that the RSA cryptosystem works on large integer num-
ber computation that requires both Addition and Multiplication
instructions. We select diversifying the Addition instruction in
favour of low area cost. The diversification of executing ISE
can typically be implemented in hardware by using multi-
ple versions of the same operation. However, this approach
incurs a considerable hardware consumption to implement
multiple versions of the operation. Instead, XDIVINSA relies
on hiding technique mechanisms to implement diversification
on time dimension. That can reduce the leakage with lower
cost compared to the previous alternative. Indeed, only one
execution unit is implemented inside the Extending ALU
(XALU) for each ISE instructions. In each time of executing
the instruction, a different delay duration is inserted before
and after instruction operation. With this, the measurements
of power traces are desynchronised, therefore reducing the
leakage observed. In addition, the hardware could also perform
other countermeasures, i.e., inserting dummy operations. In
this countermeasure, XDIVINSA executes dummy operations
on 32-bit random operands during the delay durations causing
different power profiles of the ISE. Doing so helps to raise the
difficulty for an attack templating the diversified ISEs.

To enable different execution times of the ISE, the Control
Unit loads random bits into a countdown timer to generate
the random duration. A larger range for the random duration
results in a better de-synchronisation (i.e., more security).
However, this also culminates in a longer overall execution
time. We define a diversification level L to specify the number
of diversifying profiles in time (n = 2L) wherein the execution
duration are varied in a range from 1 to n clock cycles. So, the
level is equivalent to the number of random bits required to
represent the random duration. As our countermeasure requires
a relatively small L to achieve the expected leakage mitigation,
we empirically choose to support the diversification levels upto
8 that equivalently requires 8 random bits. The opt signal
determines the operation to be executed on XALU and also
allows a developer to set an appropriate diversification level
for a trade-off between channel leakage and execution time.
During the random duration, dummy operations are calculated
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Fig. 2: FPGA-based Implementation of the RBG.

on 32-bit random numbers. In the middle of the random
duration, Control Unit releases the actual operands (rs1, rs2)
from the registers, and latches the result. After the random
duration expiration, the valid signal is set to indicate the
completion of the operation on XDIVINSA and the valid result
is passed to the processor core (refer to Fig. 1). The core is
then allowed to continue its execution.

B. Random bit generation (RBG)

There are two basic types of random number generators,
Pseudo Random Number Generator (PRNG) and True Random
Number Generator (TRNG). The former generates random
number sequences using a deterministic algorithm according
to initial numbers, called seeds. The randomness of the seeds
can be governed by a non-deterministic input to obtain the
unpredictability of PRNG. The latter has an indeterministic
property, required by cryptographic applications, and is based
on physical sources such as thermal noise. It normally induces
a higher area cost and longer latency for generating large num-
ber of random bits compared to PRNG. Practically, some of
current embedded processor systems consist of TRNG and/or
PRNG in them. In this case, our XDIVINSA can reuse these
built-in random sources from outside through some inputs for
its RBG. Since the a basic RISC-V processor lacks random
sources, we need to implement a RBG for XDIVINSA.

The RBG in our hardware generates 8 random bits to define
the random execution time and 32-bit random operands for
dummy operations. The random duration in execution is crit-
ical for hiding techniques. Hence, high quality randomness is
needed. Moreover, the generation of random duration requires
relatively a small number of random bits (i.e., 8 bits) and low
throughput. Therefore, we implement a true random generator
for the 8 random bits. The dummy operations requires 32-bit
random numbers with high throughput (i.e., each number per
clock cycle) during the random execution time. So, a PRNG
is implemented for this function to focus on area overhead
and throughput over the randomness quality. Fig. 2 shows the
implementation of our RBG.

There are many TRNG designs for FPGA platform in
the literature which either use timing jitter [15], [16] or
metastability [17] as a noise source. We implemented our true
RBG (TRBG) based on ES-TRNG [15] which relies on timing
jitter of ring oscillators implemented on the FPGA fabric. ES-
TRNG is designed to generate one single raw random bit.
To enhance statistical and security characteristics of the ES-



TRNG, a third-order parity filter is used for post-processing
on the raw random bit. This implementation is certified to
pass the NIST SP 800-22 statistical test suites [18] and is
compliant with AIS-31 standard [19]. To produce multiple
random bits, a part from generating each bit sequentially,
an alternative is to generate them in parallel. This approach
results in a considerable area cost, but has an increased
throughput and reduces the correlation between the bits. Our
TRBG is practically implemented with four 1-bit ES-TRNGs
in parallel and one shift register. The shift register sequentially
concatenates 4 random bits to generate 8 random bits.

For the PRNG, a simple 32-bit linear feedback shift register
(LFSR) could be used. The LFSR can generates the maximum
length sequence of 232 − 1 numbers. The selection of a feed-
back function determines the maximum length pseudo random
sequence and the appropriate function described in [20] is
used. The LFSR is updated every clock cycle, and the state
cannot be read or written to from the soft processor. Although
the PRNG could produce uniform random numbers, the output
is deterministic and so could be exploited by the attackers. An
input from our true TRBG seeds non-deterministic values to
the PRNG to enhance its security.

C. ISE

012345678910111213141516171819202122232425262728293031

d L fun rs2 rs1 111 rd 0001011

Fig. 3: Encoding of a custom RISC-V instruction for the
diversified ISE.

We realise the diversified ISE using the custom-0 encoding
space [21], which is reserved for custom instructions. Specifi-
cally, the ISE is encoded per Fig. 3. The d bit is set to specify
the diversified ISE. L and fun (3 bits for each) determine a
diversification level and operation, respectively, for the ISE.
fun can be assigned to 0, 1, and 2 to perform diversified
Addition, diversified Xor and RBG reading, respectively. The
other values of fun are reserved. 5-bit rd, r1 and r2 are encoded
for the destination, the first and the second source registers,
respectively, in the processor’s register file. Three bits, 12, 13,
14, are set to enable the processor to fetch two source registers
and write the computed result back the destination register.

D. Instruction Substitution

Since the function of the diversified ISE is equivalent to the
function of the corresponding normal instruction, the presence
of the ISE can be abstracted from algorithm implementation
at software level. Realising a SCA countermeasure for a
cryptographic algorithm using the proposed method can be
straightforwardly done in an automatic manner through a
instruction substitution sequence as follows: Firstly, a cryp-
tographic implementation is compiled into assembly codes.
Then, a script (i.e., python) is employed to substitute the nor-
mal instructions in the assembly codes by the corresponding
diversified ISE. Finally, the revised codes are compiled and
linked to an executable file by using a customised binary

TABLE II: Hardware Resource Utilization.

XDIVINSA PRNG TRBG Rocket Chip PicoRV

Slices 39 15 81 3486 809
DSPs 0 0 0 8 0

tools (i.e., GNU Binutils). The customised tool is modified
from RISC-V GNU Binutils to support the diversified ISE.
This approach avoids incurring any cost in software, and
relieve developers from the need to implement cryptographic
algorithms in a new language or with side-channel security
considerations. Currently, the substitution is done using a naive
find-and-replace mechanism. In future work, the substitution
will be investigated with other objective functions (e.g., to
reduce execution time and to increase obfuscation level).

E. Implementation on FPGA

We employ Xilinx Vivado 2019.1 to implement the evalu-
ated systems on Kintex-7 XC7K160T FPGA device; default
synthesis settings are used, with no effort invested in syn-
thesis or post-implementation optimisation. In this work, we
investigate the integration of XDIVINSA for two different and
popular RISC-V processor core’s implementations: a) Rocket
Chip for high-performance profile and b) PicoRV32 for low-
cost profile. Both of them explicitly support a similar co-
processor interface. Table II reports the hardware resource
utilization of XDIVINSA and RBG compared to the typical
Rocket Chip and PicoRV processor. The RBG uses 96 slices,
consisting of 15 slides for PRNG and 81 slides for TRBG,
which are more than double of that consumed by XDIVINSA.
The implementation of XDIVINSA consumes only 39 slices.
The slices used by both XDIVINSA and RBG occupy only
3.9% of the total slices of the entire Rocket Chip system.
For the low-area profile system, the number of slices used by
XDIVINSA and RBG accounts for 16.7% of the total slices
of the PicoRV system.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed solution has been implemented and evaluated
on SASEBO G-III (i.e. SAKURA-X) board [22]. The setup
consists of four main components, i.e., the host computer,
SAKURA-X board, amplifier, and PicoScope. The host com-
puter interfaces to the SAKURA-X board via a USB-UART
connection to provide data input and commands to the system
on the board being evaluated. The secured soft processor is
implemented on the cryptographic FPGA device of SAKURA-
X. The board has a connector to a passive probe for measuring
the consumed power of the FPGA device. The power signals
probed from the SAKURA-X board is fed to an amplifier to
enhance the SNR of measured signals before being passed as
inputs to an oscilloscope. The oscilloscope is set to capture
power traces at the sampling rate of 250 MHz. The acquired
power traces are sent to the host computer for leakage analysis.

The executions of the PicoRV32 processor has lower
switching noise and, therefore, generates clearer leakage in



power traces (due to its simple architecture and multiple
cycle execution) compared to the Rocket Chip (a 5-stages
pipeline processor). Hence, the PicoRV32 processor is chosen
as the worse case for leakage evaluation. The system runs the
benchmarks on the secured 32-bit PicoRV processor core with
a system clock of 50 MHz.

B. Benchmark Functions

Power side-channel leakage mitigation is evaluated with a
set of cryptographic kernels. Our benchmark includes widely
used cryptographic kernels as follows:

1) Speck is an (Addition-Rotation-Xor) ARX-based family
of lightweight block ciphers [23]. Speck-64/128, referring
to the variant of Speck characterized by a 64-bit block,
a 128-bit key, and 27 rounds, is investigated in our
evaluation. The round function of Speck-64/128 uses only
bitwise Xor, modular addition, and rotations. The Speck
encryption function is included in our benchmarks.

2) ChaCha20, an ARX based stream cipher, is deployed
in many application domains [24]. This kind of cipher
is easy to protect against timing side-channel attacks.
However, other side-channel protections, i.e. power or
EM are very costly. The Chacha 20 block function is
included in our benchmarks.

3) The Advanced Encryption Standard (AES), original name
Rijndael, was specified by the National Institute of Stan-
dards and Technology in 2001 [25]. AES-128, referring to
a 128-bit key variant, encryption function is implemented
using pre-computing S-BOX for our benchmarks.

4) Modular exponentiation (modExp) function used in RSA
cryptosystem to encrypt or decrypt a message [26] is
also included in the benchmarks. The (modExp) func-
tion is straightforwardly implemented using the square-
multiply algorithm with long integer numbers. We apply
the Coarsely Integrated Operand Scanning (CIOS) Mont-
gomery algorithm [27] (i.e. Montgomery reduction and
Montgomery multiplication) for modExp calculation.

C. Evaluation Results

In order to evaluate and verify leakage mitigation, a range
of methodologies exist: Side-channel Vulnerability Factor [28],
Signal Available to Attacker [29], and the Welch’s t-test [30]
based Test Vector Leakage Assessment [31], can, for example,
be used to assess whether or not leakage occurs in the power
traces. A main advantage of such approaches is their non-
specific nature, which helps to abstract the evaluation of
leakage mitigation countermeasures from performing a battery
of side-channel attacks. We adopt fixed versus random t-tests
for evaluating the leakage. The two sets of measurements are
employed to calculate t-test statistic. If the t-test values are
greater than the threshold T = ±4.5, the null hypothesis “the
implementation has no leakage” is rejected with confidence
< 99.999%. Otherwise, it corroborates that the information
leakage on power side channel of the measurements is not
distinguishable. The leakage evaluations are performed with
two detail levels a) fine level shows the leakage detection on

(a) Normal Addition Instruction

(c) XDIVINSA Addition Instruction with L = 2

(b) XDIVINSA Addition Instruction with L = 1

Sample Index

t-value power trace

Fig. 4: Non-specific leakage detection test on Addition instruc-
tions.

the power traces of a diversified instruction. At this level, it can
be clearly seen how the countermeasure reduces the leakage. b)
coarse level illustrates the observed leakage of each benchmark
function. It provides a leakage detection on very long traces to
evaluate the leakage mitigation results of the countermeasure
compared to the unprotected versions.

Fig. 4 and Fig. 5 show the leakage detection of the Addition
and Xor instructions, respectively. The figures illustrate the
power trace average and the t-test results of normal instructions
and diversified ISE instructions with different levels L running
on the evaluated system with PicoRV core. Two red horizontal
lines on the t-value sub-figures denote the threshold T = ±4.5.
If the t-test values are below the threshold, it corroborates
that the information leakage on the power traces is not
distinguishable. NOP instructions are inserted before and after
the evaluated instructions to isolate their leakage. We collect
100,000 power traces for each t-test evaluation. As can be seen,
the normal instruction clearly expose leakage on t-value traces.
Interestingly, the effect of diversifying execution in time before
performing instructions’ operation in the XDIVINSA flattens
the amplitude peaks in the average power trace, equivalently
spreads and reduces the leakage in t-value traces. Larger
spreading diversification (i.e., larger L) makes the leakage
smaller and spreading wider. The leakage of the diversified
Addition and Xor instructions of which L is set greater than
2 and 3, respectively, is below the threshold.

Fig. 6 shows the results of the proposed countermeasure
applied to the cryptographic kernels compared to their unpro-
tected implementation. Since collecting very long traces (i.e.,
greater than 17,000, 60,000, 70,000, and 170,000 sample/trace
for the cases of Speck, Chacha20, AES, and RSA, respec-



(a) Normal Xor Instruction

(b) XDIVINSA Xor Instruction with L = 1

Sample Index

t-value power trace

(c) XDIVINSA Xor Instruction with L = 2

(d) XDIVINSA Xor Instruction with L = 3

Fig. 5: Non-specific leakage detection test on Xor instructions.

tively) leads to a large memory required and longer acquisition
and processing time, the number of traces collected for each
t-test evaluation is set to 10,000 traces. In each benchmark’s
sub-figure, the above plot and the below plot present the t-
test trace of the unprotected version and the protected version
with XDIVINSA, respectively. The leakage can be clearly seen
in the unprotected t-test traces. The leakage of the protected
versions is reduced below the threshold at different L levels
(i.e., 3, 3, 3, and 4 for Speck, Chacha20, AES, and RSA,
respectively).

D. Leakage Recovery and Power Side-Channel Attacks

We evaluate further the security of the countermeasure
against actual attacks in term of the number of traces required
to success. Without loss of generality, the AES encryption
case study is chosen for the evaluation. Firstly, a well-known
first order correlation-based differential power analysis attack
(CPA), used in [12], [8], is performed against both unpro-
tected and protected implementations. The Hamming weight
is used to estimate the power consumption model. The attack
computes the sample estimation of Pearsons correlation coef-
ficients between the measured power traces and the model for
each possible hypothetical value of the involved key part. The
hypothetical value which results in the maximal correlation
value is guessed as the key. if the guessed key matches with
the correct key, the attack is successful. We choose to target the
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Samples

(b) ChaCha20

(c) AES

(d) RSA

L = 3

L = 3

L = 3

L = 4

Fig. 6: Leakage detection test on the unprotected version
and protected version applied XDIVINSA of the cryptographic
kernels.

first-round substitution operation of the first key-byte because
in the countermeasure, this operation has the least protection
compared to that of the subsequence substitutions. Only one
diversified ISE is performed before this operations while an
increased number of diversified ISE are executed through the
iteration of AES rounds providing more protection.

Fig. 7.a illustrates the result of the CPA attack on the unpro-
tected implementation. The correct key clearly distinguishes
from all the other hypothetical values as soon as more than
4,000 traces are used by the attack. This result validates the
experimental setup and the choice of the Hamming weight
model targeted operation used in the CPA. Fig. 7.b and 7.c



(a) Unprotected implementation

(c) Protected implementation using XDIVINSA with L = 3

(b) Protected implementation using XDIVINSA with L = 1

Fig. 7: Correlation-based differential power analysis attack
against both unprotected and protected implementations.

(a) Sliding window alignment attacks

L = 3

(b) Elastic alignment attacks

L = 1

L = 1 L = 3

Fig. 8: Combining Leakage Recovery and CPA attacks against
the protected implementations.

show the results of the CPA attack on the protected implemen-
tation using XDIVINSA with L = 1, and 3, respectively. Even
if XDIVINSA is set with the smallest diversification level, the
countermeasure can mitigate the attack. In case of L = 3,
where the leakage is compressed below the threshold, the
correlation value of the correct key is clearly indistinguishable
from the values of other keys.

Then, we have conducted well-known trace alignment at-

TABLE III: Hardware Cost Comparison.

LUTs FFs

Hardware Shuffler [12] 278 131
XDIVINSA 121 76

TABLE IV: Performance Cost Comparison.

Speck ChaCha AES

Hardware Shuffler [12] - - ≈ 1×
Code Polymorphism [8] - - 2.3×
PicoRV-XDIVINSA 1.1× 1.2× 1.1×

tacks, i.e., sliding window integration (SWI) [6] and elastic
alignment (EA) [7] to recover the leakage hiding by the
countermeasure before performing the CPA. Fig. 8.b and 8.c
show the results of the combined attack using SWI and EA,
receptively, on the protected implementation. The sub-figures
on the left-hand side present the result of the countermeasure
using L = 1. It can be seen that the SWI attack recovers
the leakage and results in a successful attack with more
than 16,000 traces required. The EA attack fails to have the
similar result of the SWI attack. More importantly when the
implementation is protected with L = 3 shown in the right-
hand side sub-figures, both of these attacks are unsuccessful.

E. Comparison with existing countermeauses

This sub-section provides the comparison between the pro-
posed method and existing hiding based countermeasures in
terms of area and performance overheads. We considered the
16-blocks hardware shuffler presented in [32] and the runtime
code polymorphism countermeasure in [8] for the comparison.
Table III reports the hardware usage of XDIVINSA and the
hardware shuffler The results listed exclude the overhead
of RBG in the both implementations. XDIVINSA consumes
about a half numbers of Look-up Tables (LUTs) and Flip-
Flops (FFs) used by the hardware shuffler.

Table IV reports the performance overhead of the coun-
termeasures. The overhead is represented by a ratio between
the execution time of the protected and unprotected imple-
mentations. For the proposed countermeasure, diversification
levels are assigned as in Sub-section IV-C so that the se-
curity of the countermeasure is satisfied while measuring
its performance The hardware shuffler causes a negligible
performance overhead to protect AES encryptions, while the
countermeasure using XDIVINSA introduces an overhead of
1.1×. The runtime code polymorphism in software has an
overhead of 2.3× for the AES. In addition, the proposed
countermeasure also induces small performance overheads
of 1.1× and 1.2× on Speck and Chacha20, respectively.
Importantly, the proposed countermeasure does not induce any
overheads of code density and memory footprint, and avoids
requiring changes in software to realise the countermeasure.
None of the existing countermeasures offers these advantages.



V. CONCLUSION

We have proposed XDIVINSA to harden cryptographic
software against SCA attacks. The proposed solution em-
ploys diversified ISE with hardware diversification to provide
a hardware-based countermeasure avoiding modification in
software. This allows the countermeasure to be realised in
the software in an automatic manner. Experimental results
on the benchmark consisting of widely used ciphers demon-
strated that our solution achieves leakage mitigation on the
power side-channel. The proposed hardware incurs a negligible
increased area cost compared to the base processors. The
protected software versions using our method do not suffer
any cost in terms of code density and memory-footprint but in-
duces a small performance overhead compared to unprotected
versions. We show that the proposed solution is a generic
countermeasure that can be applied to various cryptographic
algorithms without requiring any changes to the algorithms.
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