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Abstract— This paper proposes a lateral Advance Driver
Assistance System (ADAS) steering controller that uses the
detection of driver errors to reconfigure a Linear Parameter
Varying (LPV) controller acting on the combined driver-
vehicle lateral steering system. The detection of driver errors is
proposed to be formulated as a Fault Detection problem using
the Parity Space approach, and the computed residual signal
then schedules the LPV/H∞ controller. The overall goal is to
compute an ADAS controller that helps in stabilizing the vehicle
when driver errors are detected while otherwise minimizing
the level of intrusiveness. With this goal in mind, the proposed
method was tested in simulation using a full dynamical model
of a Renault Megane car and driver models, for simulation of
the human steering action, during a critical scenario.

I. INTRODUCTION

There have been many propositions in the field of Ad-
vanced Driver Assisted Systems (ADAS) to design auto-
mated systems with the objective of increasing vehicle’s
safety. Many of these works consider the presence of ob-
stacles in the path or adaptability to road condition and
environment changes. However, few works did consider the
effect of potential errors in the driver steering actions on
the vehicle stability. Indeed some studies have considered
for control design the driver’s lateral steering action through
Driver Models. In [1] the authors consider a supervisory
LPV/H∞ control problem with combined braking and
steering actions, where the driver steering action is modelled
by a SISO transfer function. Meanwhile, a MIMO driver
model with simplified dynamics is used in [2] to compute an
LPV/H∞ steering controller robust to parametric uncertain-
ties to account for different levels of driving performances.

One prominent field in the vehicle lateral control prob-
lem with human drivers in the loop is the shared control
proposition. Let us mention some recent works in shared
control, e.g. [3]–[5], where the main control approach is
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the optimal control theory, in order to solve some Model
Predictive Control or LQ/H2 problems. However, it is worth
mentioning that the shared control problem is based on the
idea that human and automated system work simultaneously,
aiming at minimizing the contradiction criteria between
human desire and the automatic control command. However,
in shared control it is assumed that automation can take over
control in a large percentage, which may be felt invasive by
the driver and trigger some users to disengage such systems.

In this paper we present a control method for ADAS
lateral steering control, as represented in Fig. 1, by evaluating
the driver’s performance in real-time and only allowing the
ADAS system to act on the steering input when needed, thus
aiming at not being invasive for the human driver as much as
possible. To evaluate the driver performance, a parity space
approach is proposed, and combined with an LPV/H∞
controller scheduled according to the detected driver errors.

Fig. 1. Proposed ADAS Structure for Lateral Steering Control with
Controller Reconfiguration Based on Driver Error Detection.

II. DRIVER MODEL

As highlighted during the introduction, it is of high
importance to understand the driver steering action for both
lateral control formulation and design, as well as for the
driver performance evaluation based on a Fault Detection
residual signal. Therefore, a Driver Model (DM) is used to
model the human lateral steering task. In this work, we



have selected as a base the DM proposed by Donges [6] as
represented in Fig. 2, with nu = 2 multiple inputs acting as
feedforward and feedback actions that explain the ny = 1
output of the model representing the driver steering action
applied to the vehicle.

Fig. 2. Driver Model for the Lateral Steering Task.

The feedback path models the neuromuscular human sys-
tem and explains the physical actions carried by the driver
in order to reduce the lateral error ye between the vehicle’s
Center of Mass and the road center-line, using the Simplified
Driver Precision Model (SDPM) [7] with nx = 1 number of
states. Meanwhile, the feedforwad steering is modelled as
a constant gain [8], and represents the driver’s anticipating
action to the incoming road path curvature kpath.

Finally, the multilevel driver model from Donges was
modified to introduce the weighting strategy proposed in
[8], with Kff ∈ [0, 1] as the weighting constant used to
explain the reliance of drivers mainly on the feedforward
visual information. Additionally, this constant is also useful
to differentiate the driver’s skill level between novice and
experienced drivers, as more experienced drivers rely more
on feedforward steering than novice ones.

Finally, given the DM structure in Fig. 2, let us define the
set of model parameters as:

P = {K,TL, TN , τ,Kv,Kff} ∈ R6 (1)

III. INTEGRATED DRIVER-VEHICLE SYSTEM
MODELLING

For the design of ADAS system, it is not enough to
consider the vehicle as an independent entity, as the human
interaction with the vehicle has an important impact in
the overall system performance and stability. Therefore, the
control-oriented model should be a combined Driver-Vehicle
one.

Let us consider a nominal DM with parameters P0 ∈ P .
Note that the choice of the nominal set of parameters P0

is so that in open-loop the nominal driver is able to steer
the vehicle in a way such that lateral accelerations and
overshoots are minimized, even during obstacle avoidance
maneuvers. On the other hand, to obtain a combined Driver-
Vehicle model for control purposes two modifications are
carried out.

First, the road curvature kpath input should be expressed
in terms of desired yawrate ψ̇ref . So that the DM inputs
can be easily related to vehicle dynamic variables. Using the
expression for ψ̇ref in [9], kpath is then substituted by:

kpath =
ψ̇ref
vx

(2)

where vx represents the vehicle longitudinal velocity.
The second modification is to approximate the pure delay

present in the SDPM by means of a Padé approximation,
considered in this work as of order nd = 4. Then, the
modified DM can be expressed in continuous-time state-
space form as:

{
ẋc = ac · xc + [bc 0] · uc

δ0 = (1−Kff0)cc · xc + [(1−Kff0)cc Kff0Kv0/vx] · uc

(3)
where xc ∈ Rnx+nd is the DM continuous-time state vector,
ac ∈ Rnx+nd×nx+nd , bc ∈ Rnx+nd , cc ∈ Rny×nx+nd , dc ∈
Rnu×ny are the state-space matrices of the modified SDPM
and their values depend on [TL0, TN0, τ0,K0] ∈ P0 as well
as [Kff0,Kv0] ∈ P0 and the input vector uc(t) ∈ Rnu is

uc(t) =

[
ye(t)

ψ̇ref (t)

]
(4)

On the other hand, the vehicle lateral dynamics are mod-
elled using the well known bicycle model given as:[
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(5)
For the details on the bicycle model parameters, as well as

its values, they can be found on [10], [11]. The parameter
values used come from the identification of a full car model
for a Renault Megane vehicle, which have been empirically
validated using data from a real car.

To conclude, the combined Driver-Vehicle model for con-
trol purposes considered in this work, is the series connection
of the state-space representation for the nominal driver and
vehicle dynamics model. Note that both the nominal driver
and the vehicle lateral dynamics models do depend on
the longitudinal vehicle speed vx, which is assumed to be
constant in this work. Note that this is coherent with the
paper objective which is to use the ADAS system in a critical
driving situation (at a given speed). The extension to varying
speed models can be the topic of future works.

IV. PARITY SPACE APPROACH FOR DRIVER ERROR
DETECTION

In the previous section, for the control oriented model a
nominal driver model has been assumed. However, it is to be
expected that most of human drivers would perform differ-
ently than the nominal one. Specifically, it can be assumed
that, in a critical driving situation, a human driver would
perform worst than the nominal one (so making errors), since
the parameters of the nominal driver model P0 ∈ P are
chosen to get an ideal performance. In order to detect driver
errors, it is proposed to formulate a Fault Detection problem,
for which the fault-free system is the nominal driver model,
while the difference in steering between the real human
driver δf and the nominal driver δ0 will be considered as
the fault signal.

δf (k) = δ0(k) + f(k) (6)



The chosen fault detection method on this paper is the
parity space approach, which requires a discrete state-space
model of the nominal DM. Assuming the pure time delay
present in the SDPM as an input delay, then using a sampling
period Ts = 10ms and an exact Zero-Order Hold discretiza-
tion method, the discrete-time state-space representation of
the nominal DM, with parameters P0 ∈ P and the chosen
DM structure shown in Fig. 2, is defined by the following
system matrices:

A0 = a0 ∈ R (7)
B0 = [b0 0] ∈ Rnx×nu , (8)
C0 = (1−Kff0)c0 ∈ R, (9)
D0 = [(1−Kff0)d0 Kff0Kv0] ∈ Rnu×ny , (10)

and can be expressed as:{
xd(k + 1) = A0 · xd(k) +B0 · ud(k)

δ0(k) = C0 · xd(k) +D0 · ud(k)
(11)

with xd(k) ∈ R is the DM discrete-time state vector, a0, b0,
c0, d0 ∈ R are the elements of the state-space representation
for the discretized nominal SDPM, whose values depend
on the chosen sampling time Ts and the DM parameters
[K0, TL0, TN0] ∈ P0 as well as [Kff0,Kv0] ∈ P0 and the
input vector ud(k) ∈ Rnu is

ud(k) =

[
ye(k − τ0/Ts)
kpath(k)

]
(12)

with τ0 ∈ P0.
Let us assume now that the real human driver is doing an

erroneous action, considered as an additive fault f(k) with
respect the nominal driver as previously defined in (6). The
faulty driver model is then given as:{

xd(k + 1) = A0xd(k) +B0ud(k)

δf (k) = C0xd(k) +D0ud(k) + f(k)
(13)

Then, for the detection of the driver error f(k) the Parity
Space representation of the system is defined as:

Y (k)−HU(k) = Wx(k − L) +MF (k) (14)

With Y (k) ∈ Rny·(L+1) a buffer of δf (k) and U(k) ∈
Rnu·(L+1) a buffer of ud(k), both buffers of length L +
1. F (k) ∈ Rny·(L+1) is the fault vector. And matrices
H ∈ RL+1×nu·(L+1), W ∈ Rny·(L+1)×nx and M ∈
Rny·(L+1)×ny·(L+1) defined in the standard manner of the
parity space approach according to [12].

Note that in the parity representation of system (14) all the
elements for the left-side of the equality are known in real
time. On the other hand, in the right side of the equality
appears the system state, which may be not completely
measured, and the fault vector F (k) which is unknown. In
order to make the fault detection independent of the system
state, (14) can be left-multiplied by the so called parity
vector V , which is defined in such a way that the following
condition is fulfilled:

V ·W = 0 (15)

If such a parity vector V exists for a number L of past
considered data samples, then the residual signal is given by:

r(k) = V (Y (k)−HU(k)) (16)

The interpretation of r(k) is the following: since the parity
vector V fulfills condition (15), left-multiplying (14) by V
leads to:

r(k) = VMF (k) = V F (k) (17)

Where using the definition for the matrix M in [12] and the
fault model definition (13) it can be observed that M = I ,
thus r(k) depends only on the fault vector value. Therefore,
in the considered driver error detection problem, the residual
signal r(k) equals zero (or almost) when the driver’s action
match or are close to those expected from the nominal
driver, on the other hand, when the human steering differs
significantly with respect the considered nominal driver it
is considered as an erroneous action and the value of r(k)
becomes important.

V. H∞ LATERAL ADAS CONTROLLER

This section presents the main result of the paper, namely
an LPV fault-scheduling controller allowing to reconfigure
the control action in the presence of driver errors. In what
follows, we present first the general structure of the control
scheme, then we define the scheduling parameter function of
the residual, then the LPV/H∞ control problem is formu-
lated, and finally the control synthesis method is explained.

A. Structure of the control system scheduled by the detected
driver error

The proposed structure for the integrated fault detec-
tion/control system is presented in Fig. 3. In this architecture,
high levels elements of the ADAS system will provide with
reference signals for the desired path, mainly ye, kpath and
ψ̇ref . The first two signals in conjunction with measurements
from the human steering δf are used to evaluate the driver
performance as explained in Sec. IV, using the Parity Space
approach in order to generate a residual signal r(k). This
indicator for the driver’s performance is then transformed
into an adequate scheduling parameter ρ for the real-time
reconfiguration of the LPV/H∞ controller K(ρ) acting on
the combined Driver-Vehicle System.

The considered control problem for the design of K(ρ) is
given in Fig. 4, which illustrates how the controller acts on
the combined Driver-Vehicle System presented in Sec. III by
acting on parallel to the driver and being scheduled by the
signal ρ. As proposed, the objective with such a scheduled
controller, is that when the levels of performance of the driver
are within the accepted levels, the ADAS system will have
low control authority. Meanwhile, when an important driver
error is detected, the automated lateral steering assistance
system will be given more freedom to act on the vehicle to
help overcome critical situations.



Fig. 3. Global Lateral Driver-in-the-Loop ADAS Control Scheme

Fig. 4. Driver plus ADAS Closed-Loop System

B. Residual Dependant Scheduling Variable ρ

In order to define the scheduling function, let us first define
the relative residual signal as:

r̂(k) =
r(k)

r0
(18)

where, r(k) is the residual signal as computed according to
Sect. IV and r0 is the threshold residual, which is defined
as the maximum value achieved by the residual when the
Driver-Vehicle system, described in Sect. III, is evaluated
during the nominal scenario. Its determination follows a
three-step procedure:

1) Simulation of a steering maneuver of the Driver-
Vehicle system with a given nominal driver defined
by a set of nominal parameters P0 ∈ P

2) Computation of the residual vector r0 (of length N )
using a constant sampling period Ts.

3) Definition of the threshold residual r0 as:

r0 = sup |r0(k)|, ∀k ∈ [0, N ] (19)

Then, let us define the scheduling signal ρ, as the following
hyperbolic function:

ρ(ν) =
ρ

2
· e

a(ν−ν0) − e−b(ν−ν0)

ea(ν−ν0) + e−b(ν−ν0)
+ (

ρ

2
+ ε) (20)

with ν := |r̂(k)|, ρ is the maximum value desired for
the scheduling function ρ(|r̂(k)|), ε is the minimum value

desired for ρ(|r̂(k)|), ν0 can be used to shift the x axis of
the function if desired, a and b determine the slope of the
hyperbolic function.

Finally, note that the scheduling variable ρ due to its
dependency on the residual signal is a discrete signal. For
implementation, it is converted from digital to analog to be
used to schedule the LPV/H∞ controller.

C. LPV/H∞ Control Problem

The control problem is here formulated as an LPV/H∞
problem where the objective is to minimize the induced L2

norm of the LPV closed-loop system from exogenous inputs
w to exogenous outputs z.

‖z‖2 ≤ γ∞‖w‖2 (21)

where the exogenous inputs w represent external references
and disturbances inputs and the exogenous outputs z rep-
resent the control performance channels. The closed-loop
interconnection for H∞ design is shown in Fig. 5, and is
given by the Lower Fractional Transformation between the
generalized plant P (ρ) and the controller K(ρ): ΣCL(ρ) =
LFT (P (ρ),K(ρ)). For control design, We and Wu are used
to set performances on the closed-loop system by means of
frequency shaping [13].

Fig. 5. Control Loop Interconnection for LPV/H∞ Design

The weight We shapes the tracking performances (through
the sensitivity function S) from the reference ψ̇ref to the
tracking error eψ̇ , and is given by:

We(s) =
s/M + 2πf1
s+ 2πf1εe

(22)

with M = 2 to ensure robustness at all frequencies, f1 =
3Hz to set the closed-loop system bandwidth and εe = 0.1
to ensure a closed-loop steady-state error less than 10%.

The weight Wu(ρ) is dedicated to the control input per-
formance (through the control sensitivity function KS from
ψ̇ref to the control output u). It is chosen as an LPV system
of the form:

Wu(ρ) = ρG0
δ

(s/2πf2 + 1)(s/2πf3 + 1)

(αs/2πf2 + 1)(s/α2πf3s+ 1)

G0
δ =

(α∆f/2πf2 + 1)(∆f/α2πf3 + 1)

(∆f/2πf2 + 1)(∆f/2πf3 + 1)

∆f = 2π(f2 + f3)/2

(23)



which is a band-pass filter extended from [10], [14]. The
objective of such a filter is to constraint the controller
commands in the frequency range between f2 = 1Hz and
f3 = 10Hz, where it can affect the vehicle dynamics
while not being felt intrusive to the driver, who is mainly
sensitive to low steady-state frequencies (≤ 1Hz) and very
high frequencies vibrations (≥ 10Hz) acting on the steering
wheel. The constant α is used to shape the filter.

The originality is here to use a parameter dependent weight
Wu(ρ), where the scheduling parameter ρ is obtained from
the residual signal as explained previously in (20). Note
that for the maximum value of ρ = 100, the control action
is heavily penalized so the controller does not have much
control authority, meanwhile for the minimum value ρ = 0.1
it is given extra authority in order to help the driver to
overcome a critical driving situation.

D. LPV/H∞ Controller Synthesis

The synthesis of the H∞ dynamic output feedback con-
troller, as represented in Fig. 5 consists in applying the
Bounded Real Lemma to the closed loop system ΣCL(ρ) =
LFT (P (ρ),K(ρ)). Such a problem being defined for an
infinite set of parameter values, several methods do exist
to reduce it to a finite dimensional problem. We here con-
sider the referred-to-as grid based approach considering a
parameter dependent Lyapunov function X(ρ), and using a
gridding of the parameter space to solve the optimisation
problem [15]. The grid-based LPV model, consists of a series
of LTI models ”frozen” along the trajectories of the varying
parameters. For both modelling and synthesis of the grid-
based LPV/H∞ controller the toolbox LPVTools [16] has
been used. Note that since the combined driver-vehicle model
is LTI, as vx is assumed constant in this paper, the varying
parameter is then ρ, appearing in the performance weight Wu

of the generalized plant P that defines the formulated H∞
control problem. The grid for the parameter is here defined
by: ρi = [0.1, 1, 100] with the parameter variation bounded
by ρ̇ ∈ [−400, 400]. Finally, the basis for the parameter
dependent Lyapunov function has been chosen as:

X(ρ) = X0 + ρX1 (24)

where X0 and X1 are constant matrices to be computed
during the LMI optimization.

VI. RESULTS

To assess the performances of the proposed control strat-
egy, simulations have been carried out using a full vehicle
model based on a real Renault Megane car [11] thus per-
forming a truthful vehicle dynamics simulation. Moreover,
to increase the accuracy of the driver action for simulation,
the full driver precision model [7] is used instead of the
SDPM shown in Fig. 2.

δfb(s)

ye(s)
= K

TLs+ 1

(TNs+ 1) · ( s2ωn + 2ς
ωn
s+ 1)

e−τs (25)

The other elements of the DM remain as presented in Sect.
II.

The test scenario presented to show the performance of the
proposed system is the following:
• A double lane-change (DLC) at high speeds, where the

controller and the nominal driver parameters are chosen
for a longitudinal speed of vx = 35m/s, while the test
has been done at a initial vehicle speed of vx = 40m/s.

Note that the differences between the vehicle velocity for
design and the simulation scenario allows to show the
controller robustness faced to parameter uncertainties. The
parameters that define the considered nominal and the faulty
driver are given in the following table:

Parameters Nominal Faulty
K 1/20 1/25
TL 0.3 0.3
TN 0.1 0.15
τ 0.1 0.18
Kv 1 1.7
Kff 0.85 0.81
ωn - 19
ς - 0.17

For the shown results, the Driver-Vehicle system has been
simulated first in Open-Loop, where only the faulty driver
acts on the steering system without ADAS intervention (case
referred to as Only Driver in Fig. 7). Then, a second sim-
ulation concerns the driver error reconfiguration controller
scheme in Fig. 3, acting in parallel to the faulty driver (case
referred to as With ADAS in Fig. 7).

The collected data from the simulations are1:
• in Fig. 6 information related to the controller reconfig-

uration is given: the relative residual signal (up), the
scheduling function (center) and finally the controller
command (down)

• in Fig. 7 it is shown useful information to compare
the gains in performance and safety thanks to the
proposed scheme, the global car trajectory (up-left), the
longitudinal velocity along the simulation (up-right), the
steering actions by the faulty driver δf together with the
total combined steering applied to the car δ = δf + δk
and the expected steering according to the nominal
driver δ0 (down-left), and the lateral acceleration (down-
right)

From Fig. 6, it can be seen that the high speed DLC
maneuver is demanding for the faulty driver. Which can be
quantified thanks to the value of the the relative residual,
which reaches an order of 100, an important difference with
respect the nominal driver expected steering behaviour. With
the fault driver error quantification, the scheduling function
ρ becomes small and the LPV controller is scheduled to
be able to act. Bringing the system to the nominal scenario
(r̂(k) ' 0) with a soft and safe trajectory.

Important differences for vehicle performance and safety
between the open-loop case and the case with ADAS can be

1Note that it is assumed that the steering action δ can be explained as the
combination of driver δf and controller steering’s δk . In reality, the steering
action applied to the car would be a combination of driver and controller
torques acting on the steering wheel/system.
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Fig. 6. Controller Scheduling and Command (DLC).

seen in Fig. (7). In the open-loop case with only driver, the
vehicle trajectory has an important oscillation which last for a
significant time after the DLC maneuver is completed, which
in a real scenario would be far from safe. Meanwhile, when
the ADAS is active, the applied steering by the controller
allows to produce a smoother trajectory. Which also transmits
in a reduction by half of the experienced vehicle’s lateral
acceleration during the maneuver. Which leads to an increase
in passenger comfort and most importantly an increase in
vehicle safety, as high lateral accelerations at high speeds
could cause the vehicle to roll-over.
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VII. CONCLUSION

In this paper a novel approach to ADAS systems de-
sign for lateral vehicle steering have been introduced. The
method combines the Parity Space approach to quantify the

driver performance as a residual signal and a reconfigurable
controller is designed using LPV/H∞ control techniques.
The strategy was proven in simulation using a full vehicle
dynamical model of a Renault Megane Car. It was seen
how the control action is low while the driver’s performance
is good and when important driver errors are detected the
controller helps in improving the vehicle yaw stability by
greatly decreasing trajectory oscillations, overshoots and
lowering lateral accelerations. Thus showing that the pro-
posed architecture allows indeed to obtain a robust and safe
ADAS controller while not being invasive to the human
driver in non-critical situations.
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