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Abstract. The present study focuses on the numerical simulation of unsteady cavitating flow around a 

plane-convex hydrofoil with a semi-cylindrical obstacle, which is based on the cavitation-

erosion experiment perform at LMH-EPFL using the vortex cavitation generator tunnel. The turbulence 

model k-𝜔 SST SAS method, which presents advantages in terms of computational consumption and 

reproduction of the phenomenon, has been applied in OpenFOAM version 4 to reproduce the unsteady 

behavior of cavitating flow. Additionally, the Zwart-Gerber-Belamri (ZGB) cavitation model has been 

applied, based on a previous work where this model was implemented in OpenFOAM. The model is based 

on Rayleigh Plesset equation, which considers small cavities with changes of void fraction for 

condensation and vaporization and using empirical calibration numbers based on previous research. 

Regarding the mesh development, the present work explores two configurations of grid mesh containing 

hexahedra (hex) and split-hexahedra (split-hex) automatically generated from triangulated surface 

geometries based on previous numerical studies. The aforementioned method aims to optimize 

computational demand and phenomenon reproducibility. Results show that the unsteady cavitating flows 

behavior has been reproduced with good accuracy and shows special details which are important for 

erosion studies in futures works.  

1. Introduction  

Hydroelectric power plants are an ecologically and economically method to solve problems related to 

energy security and energy deficit [1][2]. Moreover, apart from generating electricity, hydroelectric 

dams regulate water flows, provide fresh water, mitigate the effects of floods and irrigate crops [3]. The 

kinetic energy of the moving water when it is directed through the turbine, it becomes into mechanical 

energy. Then, the mechanical energy is converted into electricity in the generator. During the last 

century, hydropower has become widely use and of great impact on electricity generation for developed 

countries such as Canada, Switzerland, Sweden, Norway and also for developing countries such as 

Ecuador and Colombia [4]. 
 

The growth of the output power of the Francis turbine is based on the reduction of dimensions to reduce 

the cost of its components. Therefore, speeds are increased, and cavitation phenomenon are more likely 

to occur [5]. One of the most important types of cavitation in the field of hydraulic engineering is 

represented by the so-called hydrodynamic cavitation, where the pressure drop is caused by the local 

increase in flow velocity [6]. Cavitation can lead to erosion, both phenomena resulting in an increase in 

the cost of maintenance and undesirably affecting the operation and useful life of hydraulic 

machines [7] [8]. The phenomenon is a design consideration for a wide variety of devices that handle 

liquids [9].  
 

Research on unsteady cavitation is of great economic importance in the field of hydraulic machinery 

since understanding the phenomenon helps to improve machine and equipment designs [10]. Escaler et 

al. presents for the first time the procedure of erosion test by cavitation in the high-speed tunnel of the 

laboratory of Hydraulic Machines (LMH-EPFL) of the Federal Polytechnic School of 

Lausanne (EPFL). The experimental configuration is based on obstacles mounted on the surface of a 

leading edge of the plane convex hydrofoil, which can accelerate the rate of erosion damage by 
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cavitation on the flat surface [11]. The unsteady dynamics of cloud cavitation flow around a hydrofoil 

is investigated using experimental and numerical methods [12]. The numerical method predicts that the 

impact energy is small if the variation of the cavitation flow is small and that the position of the 

maximum impact energy moves down with the decrease of the cavitation number until the maximum 

length of the cavity of the blade becomes longer than the length of the chord [13]. The cloud cavitation 

area is divided into two parts: a vapor sheet attached at the front of the cavity and an unsteady biphasic 

mixture in the posterior region during the process of cavity collapse. The increase in local pressure 

induced by the reentrant jet is the main reason for driving the cloud cavity. The adverse pressure 

gradient in the posterior area of the cavity is primarily responsible for the generation of the re-

entrant jet [12]. These studies showed the structure of unsteady flow and the evolution of cloud 

cavitation patterns. It was concluded that the cavitation detachment and the violent collapse of the 

cavity, when the structures enter the region of highest pressure near the vicinity of the solid surface is 

the area most affected by vibrations and erosion. In this context, computational fluid dynamics (CFD) 

is shown as a fundamental tool in the study of cavitation, due to the costs and limitations of the 

experiments [14].  
 

A small group of tools for numerical simulation take advantage of free and open source software 

(FOSS). There is open source software such as OpenFOAM, which gives users the freedom to modify 

and improve the program. Hidalgo V. et al. implemented and validated the ZGB cavitation model as 

an OpenFOAM library using the implicit large eddy simulation (ILES) turbulence model [15]. Accurate 

simulations of the partial cavitation detachment process were obtained, which is the main mechanism 

of erosion. In addition, the author proposed the cavitation-erosion model based on the assumption of 

homogeneous flow [16]. The obtained results present good accuracy with observed experimental 

results.   
 

Based on the above, this work performs the numerical study of the cavitation flow around a plane 

convex hydrofoil with semi-cylindrical obstacle using the SAS turbulence model implemented by 

Hidalgo V [17]. The results are compared graphically with studies conducted by Hidalgo 

V. [16] and Escaler X. [11].  

 

2. Model description  

2.1. Reynolds-Averaged Navier-Stokes Equations 

The constitutive equations used in the Reynolds-averaged Navier–Stokes (RANS) equations are 

referred to as turbulence models [18]. The model consists of the filtered momentum equation (1) and 

filtered continuity equation (2). 
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where 𝑢𝑖 is the fluid velocity, 𝑝 is the pressure divided by the density, 𝜈 is the fluid kinematic viscosity, 

and 𝜏𝑖𝑗 is the Reynolds-stress tensor term divided by the density that incorporates the effects of turbulent 

motions on the mean stresses [19]. 

2.2. Scale Adaptative Simulation 

The Scale-Adaptive Simulation (SAS) concept is based on the introduction of the von Karman length-

scale into the turbulence scale equation [20], it can be expressed as 

𝐿𝑣𝐾 = 𝜅 |
𝒰
′

𝒰
′′| , (3) 
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where 𝜅 is the von Kármán constant and it is usually equal to 0.41 according to Xu et al. [21] and 

Hidalgo et al. [17] . Menter and Egorov showed that the |𝒰
′′
|term is the result of the exact length-scale 

equation of Rotta. It has also been shown that this term allows the model to operate in a scale-adaptive 

simulation mode. 𝐿𝑣𝐾 is a three-dimensional generalization of the boundary layer definition considering 

a von Kármán length-scale [17], with 

 

𝒰
′
= √2𝑆𝑖𝑗𝑆𝑖𝑗 , (4) 

and 

𝒰
′′
= √

𝜕2𝑢𝑘

𝜕𝑥𝑖
2

𝜕2𝑢𝑘

𝜕𝑥𝑗
2  , (5) 

More details of SAS description are given in [21]. 

 

2.3. Zwart-Gerber-Belamri Cavitation Model 

The Zwart-Gerber-Belamri model indicated in equation (6) has been written in C++ language and 

implemented in OpenFOAM [15].   
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Where 𝑝 and 𝑝𝑣 are the pressure and vapor saturation pressure respectively, 𝐹𝑣 = 50 and 𝐹𝑐 = 0.03 are 

the selected calibration constants for vaporization and condensation, 𝑟𝑛𝑢𝑐  = 5.0 𝑥 10
−6 is the 

nucleation site volume fraction, 𝑅𝐵 = 1.0 𝑥 10
−6 m is the typical bubble size in water  [23]. 

3. Methodology 

3.1. Geometric model and computational domain 

The plane convex hydrofoil (HFC) has 91,1 mm chord length, the profile cross-section has a suction 

plane and a circular pressure side of radius 110,2 mm [11]. The semicircular obstacle is mounted on the 

plane surface on the front border profile as shown in Figure 1. 

 

Figure 1. Geometric model dimensions [mm]. 

The domain is defined in function of the chord length “c” of the hydrofoil. Face names are assigned as 

“in” and “out” for the flow entrance and exit, “top” and “bottom” for the superior and inferior faces, 

“wing” for the hydrofoil walls, lastly, “front” and “back” for the symmetry faces, as shown in Figure 2.  
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Figure 2. Description of the computational domain HFC [m]. 

3.2. Mesh Generation 

For the study of the unsteady cavitating flow, two hybrid meshes H-type with different combinations 

of method of the use of the tools SnappyHexMesh and blockMesh. The first configuration is shown in 

figure 3a, it combines a base mesh generated with blockMesh and it is rotated 3° with respect to the “x” 

axis. The base mesh is bigger than the computational domain and contains it completely. On the other 

hand, the tool SnappyHexMesh generates tridimensional meshes using triangular meshes. The 

geometries are in .stl file format, in this case in, out, bottom, top, front back and wing are divided in 

two parts. The surfaces of the semi-cylindrical obstacle are named as obs1 and w1 for the hydrofoil 

surface. The second configuration shown in Figure 3b uses two triangulated geometries obs1 and w1, 

the other parts of the domain were generated using blockMesh as part of the base mesh and were not 

rotated. For this case, SnappyHexMesh was used only to refine the surroundings of the triangulated 

geometries. The rest of the domain remained with uniform cells of the base mesh. Both meshes have 4 

levels of refinement and boundary layers around the geometries obs1 and w1. 

 

 

Figure 3. Mesh description, a) mesh 1 (2’443.192 elements) and b) mesh 2 (1’926.841 elements). 

The mesh independence study was based on previous studies carried out by Hidalgo et al. 

[10][14][15]. 

3.3. Boundary Conditions 

Table 1 resumes the conditions used for the cavitation-erosion experiments performed in the Hydraulics 

Machines laboratory at EPFL. The free flow velocity is represented by U∞ , the pressure  p∞, the 
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cavitation number 𝜎, and the angle of attack  AOÂ. The chord length of the hydrofoil is defined as “c” 

[11]. 

Table 1. Experimental data obtained for the HFC. 

Variable U∞ p∞ 𝜎 AOÂ c 

Units [m/s] [kPa]  ° [mm] 

HFC 35.00 613.60 1.00 3.00 91.10 

 

Table 2 details the boundary conditions of the computational domain used for both meshes. The 

boundary condition for top and bottom is “slip” whereas for obs1 and w1 “noSlip”. This was based on 

the “Numerical simulation of cavitation erosion on a NACA0015 hydrofoil based on bubble collapse 

strength” performed by Hidalgo et al [24]. 

Table 2.  Boundary conditions for the computational domain of the HFC. 

in out front back top bottom obs1 w1 

patch patch 
     

 

Velocity 

[m/s] 
Pressure [kPa] symmetry symmetry wall wall wall wall 

U∞ = 35.0 p∞= 613.3       

 

3.4. OpenFOAM Simulation 

OpenFOAM 4.1 version was used on the operative system Ubuntu16.04 LTS of Linux based on Debian. 

The hardware used was a Work Station with Xeon (R) Silver4116 processor with 12 cores and 24 

threads, its RAM memory of 128 GB DDR42666 MHz and its interchange memory of 128GB of SSD 

disk. The scheme shown in Figure 4 is divided in two parts. The first corresponds to the use of 

OpenFOAM and the vInterPhaseChangeFoam solver for the study of unsteady cavitating flow. The 

second part is related to results processing with a direct analysis using Paraview o partial analysis using 

Gnuplot. 

 

 

Figure 4. Development of the program on OpenFOAM for the cavitation study 

4. Results and discussion 
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The following results correspond to two study cases. Directories were named as A and B where “mesh1” 

and “mesh2” are found respectively. The average time for each simulation was 12 hours using 12 

processors in parallel. 

 

4.1. Mesh quality 

Parameters used to evaluate the mesh quality were the 𝑦+criterion and the hexahedral distortion 

analysis. The 𝑦+values obtained for “mesh1” were an average of 2.83, a minimum of 0.82; whereas for 

“mesh2” the values were an average of 2.58 and a minimum of 1.80 which are similar to the ones 

obtained by Hidalgo et al. [10][14][16]. The hexahedral distortion was analyzed using ParaView and 

its Mesh Quality filter. Figure 5 shows the distortion results for each mesh. In both cases, the acceptable 

values are between 0.5 and 1, and the normal range is between 0 and 1 [25]. 

 
Figure 5. Hexahedral distortion analysis, a) results “mesh 1” and b) results “mesh 2”. 

4.2. Graphical comparison with previous studies 

Validation in both cases was performed based on the comparison of images obtained experimentally 

and numerically in the studies presented by Hidalgo V [16] and Escaler X [11]. Using the images 

obtained during postprocessing, a cavity separated in a shape of two elongated arms is identified as 

shown in Figure 6a. The cavity causes damage on the material surfaces, leaving its characteristic mark 

described as “rabbit ears”, see Figure 6b. The described image is taken as reference start point for the 

comparison of an unsteady cavitation cycle. 

 

 

Figure 6. Images used to identify the study start point, a) cavity separated in shape of two elongated 

arms b) top view of the hydrofoil with obstacles and eroded samples at the end of the experiment. 

 

Once the start point “i” is located, using the plot Vcav/Vcav, max shown in Figure 7 and the postprocessing 

images, a complete unsteady cavitation cycle is analyzed. Points “ï”, “ii”, “iii”, “iv” and “v” are the 5 

characteristic moments that depict the development of the separated cavity, whereas “vi”, “vii”, “viii”, 

“ix” and “x” describe the development of the adjoint cavity. 
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Figure 7. Vapour fraction plot, a) Case A plot b) Case B plot. 

Figure 8 shows the images corresponding to the point shown on the plot Vcav/Vcav, max. In this case the 

development, growth and placement of the separated cavity are illustrated. Furthermore, the maximum 

cavity cycle, the decrease of vapor volume and the lowest point where the vapor volume collapsed are 

shown. The vapor cavity with elongated arms shape is the shortest along the HFC surface for both cases. 

This is due to the change of the turbulence model. The ILES model generates more turbulence so that 

the cavities during the five moments do not resemble to the previous studies. However, they follow the 

cycle behavior. 

 
Figure 8. Comparison of the separated cavity evolutive cycle, a) previous studies images, b) case “A” 

results and c) Case “B” results. 

 

Figure 9 shows the comparison of the vorticity results during growth, detachment and cavity collapse 

for the three cases. Paraview was used with a Q criterion value of 1 e−7 s−2. The image shows the five 

identified points for the separated cavity analysis. It is observed that the previous studies images have 

a higher vorticy level, the clouds completely cover the flat surface of the HFC and the semicircular 

obstacle. Similarly, in the cases “A” and “B” the clouds of vorticity completely cover the obstacle and 
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show large exposed areas on the flat surface at the back of the HFC. The detachment is low and almost 

null in “A” and “B”. 

 
Figure 9. Vorticity according to the Q criterion of the separated cavity, a) images from previous 

studies, b) results of case A and c) results of case B. 

 

The analysis of the adjoint cavity was performed using the plot Vcav/Vcav, max similar to the one presented 

for the separated cavity. There are no images from previous studies for the comparison of the adjoint 

cavity. Figure 10 compares the results of the vapor cavity and vorticy according to the Q criterion for 

the cases A and B. 

 

 

Figure 10. Results of the adjoint cavitation cycle a) case A vapor cavities, b) case A vorticity, c) vapor 

cavities case B and d) vorticity case B. 

In cases A and B, the images of the vapor cavities are similar to the points “vii”, “viii” and “ix”. 

However, the images in the points “i” and “x” does not coincide by the small deviation in the data 
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obtained. The vortex evolution at point “ix” is the only one that resembles both cases. The rest of the 

images present lightly similar characteristics. 

5. Conclusions 

 

It was determined that the SAS turbulence model, in comparison of studies which use the ILES model, 

reproduce the cavitation phenomenon with less vorticity. In this context, it is possible to identify the 

separated cavity which has a shape of two arms in both cases of the HFC study, the cavities are smaller 

to the ones found in previous studies due to the use of a different turbulence model. Moreover, it was 

found that the meshing disposition influences the results when simulating the HFC cases. Better results 

were obtained when placing the mesh lines parallel and perpendicular to the semicircular surface 

obstacle.  

Finally, the results show that both hybrid meshes used in the HFC cases were able to reproduce in a 

similar way the evolution of the adjoint cavity and it can be used for future studies on hydraulic 

machinery. 
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