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Abstract
JOREK is a massively parallel fully implicit non-linear extended magneto-hydrodynamic
(MHD) code for realistic tokamak X-point plasmas. It has become a widely used versatile
simulation code for studying large-scale plasma instabilities and their control and is
continuously developed in an international community with strong involvements in the
European fusion research programme and ITER organization. This article gives a
comprehensive overview of the physics models implemented, numerical methods applied for
solving the equations and physics studies performed with the code. A dedicated section
highlights some of the verification work done for the code. A hierarchy of different physics
models is available including a free boundary and resistive wall extension and hybrid
kinetic-fluid models. The code allows for flux-surface aligned iso-parametric finite element
grids in single and double X-point plasmas which can be extended to the true physical walls
and uses a robust fully implicit time stepping. Particular focus is laid on plasma edge and
scrape-off layer (SOL) physics as well as disruption related phenomena. Among the key
results obtained with JOREK regarding plasma edge and SOL, are deep insights into the
dynamics of edge localized modes (ELMs), ELM cycles, and ELM control by resonant
magnetic perturbations, pellet injection, as well as by vertical magnetic kicks. Also ELM free
regimes, detachment physics, the generation and transport of impurities during an ELM, and
electrostatic turbulence in the pedestal region are investigated. Regarding disruptions, the
focus is on the dynamics of the thermal quench (TQ) and current quench triggered by massive
gas injection and shattered pellet injection, runaway electron (RE) dynamics as well as the RE
interaction with MHD modes, and vertical displacement events. Also the seeding and
suppression of tearing modes (TMs), the dynamics of naturally occurring TQs triggered by
locked modes, and radiative collapses are being studied.

Keywords: disruptions, edge localized modes, vertical displacement events, ELM control,
disruption mitigation, MHD simulations, tokamak

(Some figures may appear in colour only in the online journal)

1. Introduction

The present article provides a comprehensive overview of
the non-linear extended magneto-hydrodynamic (MHD) code
JOREK, which is among the leading simulation codes world-
wide for studying large scale plasma instabilities and their
control in realistic divertor tokamaks. The article provides a

detailed description of the physics models, numerical methods,
and physics applications of the code.

In the existing literature, references [1, 2] already describe
some aspects of the numerical methods and physics models
of the JOREK code, which has been extended significantly
since these articles were published. Reference [3] contains an
overview of modelling activities worldwide regarding edge
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localized modes (ELMs) and ELM control based on many dif-
ferent simulation codes, and references [4–6] provide a par-
tial overview of JOREK activities regarding plasma edge and
scrape off layer. The present article, in contrast, aims to give
a comprehensive description of the code and its applications,
with a particular focus on recent developments.

In the present section, we describe the motivation for the
research activities (subsection 1.1) followed by a very brief
review of (extended) magnetohydrodynamics (subsection 1.2)
and some words on the historic development of JOREK (sub-
section 1.3).

The rest of the article is organized as follows: section 2
provides a detailed overview of the physics models avail-
able in JOREK and section 3 describes the numerical meth-
ods employed for solving the equations. Selected tests per-
formed for code verification are shown in section 4. After this
‘technical’ part, a detailed picture is drawn of the physics stud-
ies and validation activities performed in particular in the fields
of plasma edge and scrape off layer physics (section 5) as well
as disruption physics (section 6). Further code applications are
described in section 7. Each section contains a brief outlook
towards further plans and developments. Finally, a concise
summary is provided in section 8.

The support received from many entities and useful dis-
cussions with various scientists are acknowledged. Additional
details on the coordinate systems, finite element basis, normal-
ization of quantities, and time stepping scheme are provided in
appendices A–C.

1.1. Motivation and challenges

Among the obstacles, which need to be overcome on the path
towards a magnetic confinement fusion power plant, large
scale plasma instabilities may well be the most critical one.
A plasma configuration suitable for harvesting energy needs
to have good confinement properties, however, a reliable con-
trol29 of plasma instabilities is equally important. Robust pre-
dictions of the properties of such instabilities and of effective
control methods are urgently needed

(a) To provide input to the ITER design, where it can still be
influenced [e.g., the disruption mitigation system (DMS)],

(b) To prepare a robust, efficient, and successful exploitation
of ITER across all phases of the planned operation, and

(c) To answer critical questions regarding the design of a
successful DEMO reactor.

Revealing the underlying physics processes of plasma
instabilities and developing control mechanisms constitutes a
major challenge for experiments, theory, and modelling. While
the suitability of control techniques for present devices may
be tested in a straight forward manner experimentally, their
applicability to future machines, with plasma parameters very
different both quantitatively (e.g., Lundquist number) and
qualitatively (e.g., large amount of fusion-born fast particles)
from present machines, needs to be ensured by developing

29 The term ‘control’ is in this article is meant to include both avoidance and
control strategies.

truly predictive capabilities. In such a holistic approach based
on fundamental plasma theory, experimental studies across
devices, and numerical simulations of the plasma dynamics,
the computational models play a key role. Simulation codes
can provide the capability to predict the relevant processes in
future devices after being carefully validated against theory
predictions and experiments first. Activities with the JOREK
code ultimately aim at reaching that goal.

Key challenges in this respect are the immense scale sep-
arations in both time and space of the involved processes, the
intrinsic highly non-linear multiphysics nature of the problem,
and the complicated magnetic topology of divertor plasmas.
MHD models have become a very robust and reliable frame-
work for describing large-scale plasma instabilities. And via
numerous extensions beyond the classical MHD, more and
more effects can be captured accurately in the simulations.
Worldwide, a number of specialized simulation codes for cal-
culating non-linear MHD dynamics in magnetically confined
tokamak and stellarator plasmas have been developed in the
past years and decades including BOUT++ [7], JOREK (this
article and references [1, 2, 8]), MEGA [9], M3D [10], M3D-
C1 [11–13], NIMROD [14, 15], and XTOR [16, 17] (listed
alphabetically, not a complete list).

Besides the challenges imposed by the multi-scale nature
already mentioned, in particular the large number of differ-
ent physical effects, which need to be treated consistently and
which are mutually interacting in a highly non-linear way,
requires simulation codes that can capture this rich multi-
physics behaviour in a reliable way. In a typical mitigated
disruption scenario, for instance, the dynamics of magnetic
islands, the ablation of (shattered) pellets, the reconnection
of the plasma leading to a stochastic state, the fast losses
of thermal energy along magnetic field lines, the radiative
losses by partly ionized impurities, the generation and trans-
port of runaway electrons (REs), the interaction of REs with
the MHD modes and the electromagnetic interaction of the
plasma with conducting structures in the device may all play
an important role simultaneously. Developing the capability
to describe the non-linear interaction of all these processes
is necessary for unravelling the complete physics picture and
becoming truly predictive regarding the dynamics in future
machines. At the same time, simpler models are needed to
allow faster access to larger parameter studies. JOREK is
an advanced simulation framework for studying large-scale
instabilities in magnetized plasmas. It offers such a hierarchy
from simple and fast to very complex and computationally
demanding models.

1.2. Extended magnetohydrodynamics (MHD)

This article does not give a complete overview of magneto-
hydrodynamics (MHD) and its computational treatment. We
mention only key features in this section, which are directly
relevant as context for this article. For literature on MHD, in
particular the references [18–24] are recommended.

MHDs developed first by H. Alfvén in 1942 [25] describes
a magnetized plasma as an electrically conducting fluid. In
the ideal MHD model, the plasma is assumed to be perfectly
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conducting. Ideal MHD can describe certain stability limits in
tokamak plasmas well (e.g., see references [26–29] for type-I
ELMs). However, 3D non-linear simulations need to be based
on resistive extended MHD models, which include anisotropic
heat conduction, plasma resistivity, diamagnetic flows, finite
Larmor radius effects, neoclassical physics, source/sink terms,
two-fluid effects, neutrals, impurities, sheath boundary con-
ditions, and many more effects depending on the addressed
problem. A certain class of models includes also electron
inertia effects [30].

Tokamak plasmas are typically in approximate force bal-
ance ∇p ≈ j × B, where p denotes (the isotropic component
of) the pressure, j the plasma current vector, and B the mag-
netic field vector. The stability of this equilibrium state deter-
mines whether the plasma will remain in this equilibrium state
or is prone to instabilities. This is traditionally studied by
linearizing the equations and analyzing the eigenvalue spec-
trum of the system along with the associated eigenvectors.
However, linear growth rates may be affected dramatically
by background flows and non-ideal plasma effects, which are
not always accounted for in linear codes. Also, non-linear
dynamics cannot be predicted from the linear stability anal-
ysis in general, and linearly stable eigenmodes might become
non-linearly unstable at sufficiently large ‘seed perturbation’
amplitudes [e.g., neoclassical tearing modes (NTM)]. As a
result, predicting the full consequences of plasma instabili-
ties is only possible by employing advanced non-linear mod-
els. Solving such models in realistic geometries typically is
only possible numerically. MHD involves very different time
scales: the Alfvèn time τA = a

√
μ0mini/B is about 0.3 μs

for ITER like parameters, where a denotes the minor radius
of the plasma, μ0 the vacuum permeability, mi the ion mass,
and ni the ion density. On the other hand, the resistive time
scale τR = μ0a2/η, where η denotes the plasma resistivity,
is �1 s for ITER like parameters. Plasma instabilities typi-
cally develop on mixed time scales of tens of μs to tens of ms.
The resistive time scale of the ITER vacuum vessel is around
τw = 500 ms slowing down some instabilities to that time
scale (e.g. axisymmetric resistive wall modes). Consequently,
the relevant time scales for large scale instabilities are two to
six orders of magnitude longer than the Alfvén time. The fre-
quencies of fast magneto-acoustic waves propagating in the
plane orthogonal to the magnetic field are typically even two
to three orders of magnitude larger than the Alfvén frequency,
thus constituting the most challenging time scale in the system.
The so-called reduced MHD model, described in section 2.3.1,
eliminates the fast waves from the model to facilitate its
numerical solution.

In spatial dimensions, a similarly challenging splitting of
scales can be observed. While the size of the whole system
typically is in the range of several metres (minor radius of 2 m
in ITER), the resistive skin depth is given by

√
2η/(μ0ω) at

a given frequency ω, which can easily drop into the mm or
even sub-mm range at the low resistivity of large fusion devices
(which decreases strongly with temperature)—a separation by
four orders of magnitude. The strong increase of this scale
separation towards larger (and at the same time hotter) fusion
devices is a particular challenge for the modelling.

Anisotropic heat conduction is another particularly chal-
lenging physics aspect to be dealt with in MHD simulations.
While the transport coefficients across field lines determined
by neoclassical or turbulent processes typically are in the range
of 1 m2 s−1, the heat transport along field lines by electrons can
reach values of 1010 m2 s−1 in hot plasmas [31, 32]. Avoiding
overly restrictive time scales, numerical instabilities, or a pol-
lution of cross-field transport by errors in the parallel transport
is a significant challenge for the numerical treatment.

Magnetohydrodynamics is strictly valid only when the
plasma is sufficiently collisional, and many important kinetic
effects are not reflected by the MHD equations. However, a
large number of corrections (e.g., effective parallel heat diffu-
sion coefficients [32]) and extra terms (e.g., two-fluid effects,
or a consistent evolution of the bootstrap current [33]) allow
to apply MHD outside its original boundaries. In many cases,
the full MHD equations can be further simplified to elimi-
nate the fast magneto-sonic waves from the system, reduc-
ing the separation of time scales. A significant number of
reduced MHD models with different levels of approxima-
tion exist (e.g., references [34, 35]), which lower the num-
ber of physical variables in the system. JOREK presently has
several different reduced MHD models (the one described
in section 2.3 with and without parallel velocity; a reduced
MHD model suitable for stellarator applications is in devel-
opment) and a full MHD model (section 2.12) implemented
for tokamak configurations along with numerous physics
extensions.

1.3. Historic development of the JOREK code

The development of a first version ‘JOREK 1’ was started by
G.T.A. Huysmans in 2002 at CEA/IRFM and is described in
reference [36]. Applications of the JOREK 1 code include the
current hole problem, the stability of external kink modes in
X-point plasmas [36], the first nonlinear ELM simulations [1]
and the application of resonant magnetic perturbation (RMP)
fields [37]. The JOREK 1 code was based on so-called gener-
alised, h–p refinable, finite elements [38]. However, in prac-
tice, the p refinement, i.e., adapting the order of the finite
elements was never used. Therefore it was decided to change
the finite elements to cubic Bezier finite elements, an exten-
sion to the iso-parametric bicubic Hermite elements which are
successfully applied in the HELENA equilibrium code [39].
The code ‘JOREK 2’, which has been developed since 2006,
is first described in the references [2, 40, 41] and has succes-
sively evolved into the presently existing JOREK code, which
is described in the article at hand. As major changes in version
2, an iterative solver, and a G1 continuous finite element for-
mulation had been implemented. G1 continuity refers to both
values and real-space gradients being continuous throughout
the computational domain but without continuity in the gra-
dients in the local finite element coordinates. The present
JOREK code is being further developed continuously regard-
ing physics models, numerical methods, and applications as
shown in this article. The JOREK website [42] contains some
regularly updated information. The article at hands intends to
give a complete overview of the code including references
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Figure 1. The base cylindrical coordinate system used in JOREK.
Refer to appendix A for details.

to all original publications which go more into detail than
possible here.

2. Physics models

This section describes the physics models and corresponding
extensions available in JOREK. Before turning towards these
models, the coordinate systems used in JOREK are introduced
briefly.

2.1. Coordinate systems

The base cylindrical coordinate system (R, Z,φ) is given
by x = R cosφ, y = −R sinφ, z = Z, where (x, y, z) denotes
Cartesian coordinates (figure 1). Thus, φ is oriented clock-
wise if viewed from the top. According to the definitions
in reference [43], the JOREK conventions correspond to a
COCOS number of 8. To describe the Bezier elements, the
coordinates R and Z are expanded in the same Bezier basis
functions, that are also used for the expansion of the physics
variables (‘isoparametric’). This introduces a local (s, t,φ)
coordinate system inside each grid element. See section 3.1
and appendix A for more details on the discretization.

2.2. Grad–Shafranov solver

JOREK has a built-in Grad–Shafranov equilibrium solver
which uses the same finite element grid and representa-
tion of the variables used in the nonlinear time evolution.
This guarantees that the discrete initial state used in MHD
equations accurately satisfies the initial equilibrium force bal-
ance, avoiding any initial discontinuous behaviour. JOREK
can solve both fixed boundary equilibria and, through the cou-
pling to the STARWALL code, free boundary equilibria (see
section 2.9).

The solver requires the profiles of pressure (provided by
temperature and density separately, since they are needed
for the initial conditions) and FF′. These profiles are pro-
vided as functions of the normalized poloidal flux ΨN = (Ψ−
Ψaxis)/(Ψbnd −Ψaxis), either via a simple analytical function,
or via a numerical representation. Here Ψaxis and Ψbnd denote
the values of the poloidal magnetic flux at the magnetic axis
and on the boundary of the plasma domain, respectively. In
addition, the poloidal flux Ψ on the boundary of the compu-
tational domain needs to be specified by a numerical list of
(R, Z, Ψ) points (or by coefficients for analytical moments
for simpler cases). This input can be extracted, for instance,
from ‘geqdsk’ files or from equilibria created with the CLISTE

code. Starting from an initial guess, the equilibrium is deter-
mined iteratively by Picard or Newton iterations to a specified
accuracy. After solving the GS equation on the initial finite
element grid, the solution is typically used to create a new grid
aligned to the equilibrium flux surfaces. The GS equation is
solved a second time on this new grid, providing the accurate
initial conditions for the time evolution part.

After the equilibrium calculation, all physical variables are
initialized consistently to it: the poloidal flux Ψ is directly
taken from the equilibrium solution; the toroidal current den-
sity is calculated directly from Ψ via the current definition
equation; density and temperature are initialized according to
the specified profiles. All velocity related quantities (velocity
stream function, vorticity, and parallel velocity) are initialized
to be zero unless background rotation profiles are prescribed.
In case of sheath boundary conditions, the parallel velocity is
initialized to the ion sound speed at divertor targets30.

2.3. Base MHD model

The MHD model is formulated as a set of normalized
equations for the evolution of the magnetic potential (A),
mean velocity (V), total density (ρ) and total pressure (p). The
equations are normalized with respect to the central mass den-
sity ρ0 and the vacuum permeability μ0 such that μ0 does not
appear explicitly. Length scales are not normalized, while the
time is normalized by a factor31 τnorm =

√
μ0ρ0 which is typ-

ically close to the Alfvén time τA = a
√
μ0ρ0/B0. The total

pressure and mass density are normalized by μ0 and ρ0 respec-
tively. Details on the normalization of further quantities are
given in appendix B. The normalized equations are written as

∂A
∂t

= −E −∇Φ, (1)

ρ
∂V
∂t

= −ρV · ∇V −∇p+ J × B +∇ · τ + SV, (2)

∂ρ

∂t
= −∇ · (ρV) +∇ · (D∇ρ) + Sρ, (3)

∂p
∂t

= −V · ∇p− γp∇ · V +∇ · (κ∇T)

+ (γ − 1)τ : ∇V + Sp (4)

The total pressure is defined by the ideal gas law p = pi + pe =
ρT (μ0 disappears due to normalization). This pressure is the
sum of electron (pe) and ion (pi) pressures. Electron and ion
pressures are then assumed in some of the models to be half of
the total pressure, e.g., where the diamagnetic terms are cal-
culated. The model extension described in section 2.5 allows
to separately evolve variables for the electron and ion temper-
atures instead. The magnetic field vector, B, and the current

30 Simulations with sheath boundary conditions typically need to be run axi-
symmetrically for a short while, such that the parallel flows in the SOL can
establish a steady state. Non-axisymmetric Fourier modes are added then, once
SOL flows have equilibrated.
31 In case of ITER with minor radius a ≈ 2 m and magnetic field amplitude on
axis B0 ≈ 5 T, τ norm ≈ 2.5τA. Note that

√
μ0ρ0 does not have the dimension

of a time and it is therefore more exact to say that the numerical value of τ norm

is
√
μ0ρ0.
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vector, J, are defined as:

B = F∇φ+∇× A and J = ∇× B. (5)

Here, the toroidal flux function F (ψ) ≡ RBφ is not essen-
tial for the model but is added for numerical reasons. F (ψ)
is constant in time and typically taken from the initial
Grad–Shafranov equilibrium such that the initial vector poten-
tial in the poloidal plane is zero. This does not constrain B
in any way since the magnetic vector potential A takes into
account the (arbitrarily large) time evolution and perturbations
from the equilibrium.

Ohm’s law includes resistivity and drift-ordered (diamag-
netic) terms [44]:

E = −V × B + η(J − J�) + F0
δ∗

ρ
(∇⊥pi −∇‖pe) (6)

The resistivity η with Spitzer temperature dependence and the
diamagnetic coefficient δ∗ are given by

η = η0 · (T/T0)−3/2 (7)

δ∗ = mion/(eF0
√
μ0ρ0) (8)

with the constant parameter η0 and initial plasma core temper-
ature (T0). mion is the ion mass and e the elementary charge.
The constant F0 = R0Bφ0 is defined as the major radius at the
geometric centre times the vacuum toroidal field. This con-
stant appears due to the definition of the δ∗, for consistency
with the reduced MHD model described below. A more accu-
rate modelling of the diamagnetic effect is possible with the
two pressures extension described in section 2.5. The term
J� = jSeφ denotes a toroidal current source term. It can be
used to preserve the original current profile j0 approximately
throughout the simulation, if one chooses jS = j0.32 The cur-
rent source term is also used to model a consistently evolving
bootstrap current [45]. In that case, the initial current profile
needs to include the initial bootstrap current correctly and the
current source term takes the form: jS = j0 + jB − jB,0, where
jB,0 denotes the initial bootstrap current and jB is the boot-
strap current corresponding to the self-consistent profiles dur-
ing time evolution. For the calculation of the bootstrap current,
the expressions of reference [33] are used.

In the MHD model shown in equations (1)–(4), the gauge
still needs to be defined. In the JOREK full MHD model
(section 2.12), the Weyl gauge, Φ = 0, is used. That implies
that the toroidal component of the magnetic vector potential
changes with time even in steady state.

The tokamak plasma evolves in a low collisionality regime
and the associated viscous stress tensor (τ ) is decomposed into
three main parts

τ � τ f + τ neo + τ gv (9)

These components model the Newtonian-fluid type, neoclas-
sical and gyro-viscous effects respectively. The separation in
the different physical effects contained in the stress tensor

32 For a more consistent treatment, a loop voltage can also be applied at the
computational boundary.

does not imply a possible double counting but rather a rep-
resentation on different time scales and directions. Following
[46], the parallel viscous stress is included as a Braginskii
viscous stress acting on a fast timescale and a residual neo-
classical stress on a slower collisional time scale. The Newto-
nian stress tensor (τ f ) is decomposed into the parallel and the
perpendicular directions to the magnetic field and the associ-
ated coefficients of viscosity are ν‖ and ν⊥. According to the
Chew–Goldberger–Low formulation [47], the parallel stress
tensor τ f ‖ for arbitrary collisionality in a magnetized plasma
is written as [20]:

τ f ‖ = 3ν‖

(
b ⊗ b − 1

3
I

)
⊗
(

b ⊗ b − 1
3

I

)
∇V

The coefficient ν‖ is modelled as a spatial constant but such a
dependency can be changed easily. The explicit formulation of
the perpendicular tensor τ f⊥ can be found in reference [20].
The associated coefficient ν⊥ is typically chosen to have the
same temperature dependence as η in order to keep the mag-
netic Prandtl number spatially nearly constant (except for the
weaker density dependency).

ν⊥ = ν⊥0 · (T/T0)−3/2 (10)

where ν⊥0 is a constant parameter and T0 is the initial plasma
core temperature. The neoclassical viscous tensor (τ neo) is
determined by a heuristic formulation [48]

∇ · τ neo = ρνneo
‖B‖2

‖Bθ‖2
(bθ ⊗ bθ) (V − Vneo) where

bθ =
Bθ

‖Bθ‖
(11)

with Bθ = B − (B · eφ)eφ the poloidal magnetic field. The
neoclassical coefficient νneo and velocity Vneo are given
functions of the temperature and the magnetic field (see ref-
erences [49, 50]). In magnetized plasmas it is usual to assume
gyro-viscous cancelation [20, 51] caused by the finite Larmor-
radius effect. Therefore, to enforce gyro-viscous cancelation,
the gyro-viscous stress tensor τ gv is modelled as

∇ · τ gv = ρ

(
∂v∗

i

∂t
+ V · ∇v∗

i + v∗
i · ∇v‖

)
(12)

where vdia,i is the ion diamagnetic drift velocity defined in
equation (26) and v‖ the parallel velocity. The terms involving
the ion-diamagnetic heat flux (and the associated cancelation
with the density convection due to the ion diamagnetic drift
[52]) have not been implemented to avoid the possible desta-
bilisation of ion temperature gradient (ITG) modes. These
terms are essential to study the interaction of MHD instabil-
ities with underlying ITG turbulence but this is left for future
applications.

The heat diffusion tensor κ is decomposed parallel and
perpendicular to the magnetic field

κ = κ‖b ⊗ b + κ⊥ (I − b ⊗ b) (13)

Note that the factor (γ − 1) in the heat diffusion terms is
absorbed in the coefficients κ‖ and κ⊥. Here, γ is the ratio of
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specific heats (usually γ = 5/3). The vector b = B/B denotes
the unit vector in the direction of the magnetic field. Radial
profiles of κ⊥ are usually specified in an ad hoc manner to
mimic the background transport that cannot be captured with
the present model. For instance, low values are set in the
pedestal region to model the transport barrier. The parallel heat
diffusion coefficient κ‖ is implemented with Spitzer–Härm
[31] temperature dependency according to

κ‖ = κ‖,0 · (T/T0)5/2, (14)

where the central value κ‖,0 is calculated according to the
Spitzer–Härm formula. An optional parameter κ‖, max can be
specified to account for the heat flux limit [32] in a simpli-
fied way by ensuring that the parallel heat conductivity can-
not exceed this maximum value. Realistic anisotropies even
beyond κ‖/κ⊥ ≈ 1010 can be handled without producing large
spurious perpendicular transport provided a grid is used that is
aligned to the equilibrium flux surfaces (see section 4.2). The
particle diffusion tensor D has an analogous form to expression
(13) although the parallel component (D‖) is usually not used
as the parallel particle transport is dominated by convection.
The profile of D⊥ is also specified by ad hoc profiles reflecting
underlying small-scale turbulence that is not included in the
MHD model.

The source term in the momentum equation contains the
contribution of the diffusion and the source of density, as well
as specific source Sm of momentum

SV = Sm −
(
∇ · (D∇ρ) + Sρ

)
V, (15)

The source terms in the pressure equation contain the Ohmic
heating term, thermal energy source and particles source
effects.

Sp = (γ − 1)

(
(E + V × B) · J + SE − V · Sm

+
V · V

2
(Sρ +∇ · (D∇ρ))

)
, (16)

where SE is the thermal energy source and Sρ is the particle
source. Sources are typically specified as radial profiles.

Given equations (1)–(4), a proper mathematical treatment
of this system should specify the functional spaces where the
solutions are sought for. Moreover, since JOREK uses a finite
element method, a weak form of the equation is preferred
which implies to define basis and test functions. In the fol-
lowing, for brevity, the ‘dV’ in all volume integrals is omit-
ted. Thus let VA,VV,Vρ, Vp and V∗

A,V∗
V,V∗

ρ , V∗
p be the chosen

function spaces for the basis and test functions respectively,
a weak form of the MHD problem will be reformulated as:
find (A, V, ρ, T) in VA × VV × Vρ × Vp such that, for any test
functions (A�, V�, ρ�, p�) in V∗

A × V∗
V × V∗

ρ × V∗
p , we have:

∫
∂A
∂t

· A� = −
∫

E · A�, (17)

∫
ρ
∂V
∂t

· V� = −
∫

(ρV · ∇V +∇p− J)

× B −∇ · τ − SV) · V�, (18)

∫
∂ρ

∂t
ρ� = −

∫ (
∇ · (ρV) −∇ · (D∇ρ) − Sρ

)
ρ�, (19)∫

∂p
∂t

p� = −
∫

(V · ∇p+ γp∇ · V −∇ · (κ∇T)

− (γ − 1)τ : ∇V − Sp

)
p� (20)

where p = Tρ. The identity J × B = −∇
(

B·B
2

)
+∇ · (B ⊗ B)

and integration by parts is used to avoid computation of second
order derivatives. Equations (17) and (18) are vector equations.
For numerical purpose, each of them must be transformed into
three scalar equations by projecting the vectors onto some
basis.

Following the representation of A and V in the basis(
eR, eZ , eϕ

)
, and (eR, eZ , B) respectively, the basis for the

vector-test function V� and A� in the weak formulation
(17)–(20) is chosen as:

A = AReR + AZeZ +
1
R

A3eϕ (21)

V = VReR + VZeZ + V‖B (22)

A� = a∗ (eR, eZ , eϕ
)

(23)

V� = v∗ (eR, eZ , B) (24)

where a∗ and v∗ represent the scalar test functions as defined in
section 3.1.1. This choice of projection in the parallel direction
ensures on the discrete level that the Lorentz force V∗ · (J × B)
is exactly vanishing.

2.3.1. Reduced MHD. In order to reduce computational
requirements, one often employs reduced MHD models, which
eliminate fast magnetosonic waves while retaining the rele-
vant physics [12, 34, 35, 53]. The removal of fast magne-
tosonic waves, the fastest waves in the system, allows one to
use larger time steps due to relaxing the CFL condition. Even
when implicit time integration methods are used, and the CFL
condition is no longer a hard limit, using time steps that are
large compared to the shortest time scale can lead to poor accu-
racy [12, 54]. In addition, reduced MHD has less unknowns
compared to full MHD, which decreases the computational
costs and memory requirements for simulations.

Reduced MHD, as first introduced by Greene and Johnson
[55], and later developed by Kadomtsev, Pogutse and Strauss
[56, 57], relied on ordering in a small parameter, often taken
to be the inverse aspect ratio. The ordering itself is a sys-
tem of several approximations and assumptions involving the
ordering parameter that allows one to determine the relative
order (in terms of the ordering parameter) of any quantity with
respect to any other quantity of the same dimension. In this
context, terms corresponding to fast magnetosonic waves have
a higher order than the terms that one wants to keep, allowing
the fast wave terms to be dropped. Naturally, there are many
choices one can make in the ordering assumptions, depend-
ing on which physical effects one wants to keep, all of which
result in different reduced equations [35, 54, 57–59]. The ideas
of reduced MHD have also found use in astrophysics, where
toroidal geometry cannot be assumed, and thus the inverse
aspect ratio cannot be used as an ordering parameter [60].
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Starting in the 1980s, a new ansatz-based approach was
introduced by Park et al [61], where an ansatz form that elim-
inates fast magnetosonic waves is used for the velocity and
terms of all orders are kept (eliminating partially the fluid
compression). Their reduced model corresponds to ideal MHD
in the incompressible limit and was used to resolve internal
kink modes in a cylindrical geometry, something that ordering-
based reduced MHD could not do. Izzo et al used a similar
ansatz in their study [62]. Later papers also adopt an ansatz for
the magnetic field that eliminates field compression [63, 64].
The ansatz approach allows one to make less assumptions and
keep more physical effects, while generally resulting in more
complicated equations than the ordering approach. Thus, while
keeping more physics, the various terms in the equations of
ansatz-based reduced MHD are harder to interpret due to their
complexity. In addition, without an ordering parameter, error
estimation becomes much more difficult. The ansatz method
allows to conserve energy exactly on the equation level. Some
of the ordering-based models also conserve energy, how-
ever it is then often necessary to keep selected higher order
terms to ensure that. The ansatz method thus is an alter-
native way of eliminating fast magnetosonic waves, which
makes energy conservation easier. At the same time, in com-
parison to models which use ε = a/R for the ordering, the
ansatz based reduced MHD model is still fairly accurate in
the spherical tokamak limit as shown in reference [65] by
comparison to full MHD.

The reduced MHD model used in JOREK is derived fol-
lowing the ansatz-based approach. In this approach, instead
of the whole functional spaces used in full MHD, the vari-
ables are constrained to lie in a subset of these spaces and
the equations are established by a Galerkin truncation. Another
way to present this procedure is to say that an ansatz is postu-
lated for some variables. The ansatz considered here assumes
that the time dependent part of the magnetic potential is dom-
inated by the toroidal component. The ansatz for the magnetic
field is deduced by approximating Bφ as the vacuum F0/R
toroidal field.

B =
F0

R
eφ +

1
R
∇ψ × eφ =⇒ A = ψ∇φ (25)

where F0 is constant in space as well as time and eφ is
the normalized toroidal basis vector. In the weak formula-
tion (17), this corresponds to defining VA = {A : ∃ψ ∈ H2

s.t. A = ψ∇φ}. The ansatz (25) implies that the velocity
cannot be arbitrary. Indeed, taking the cross product of
equation (1) with ∇φ, after substituting equations (6) and
(25) for E and A and neglecting resistivity and the poloidal
component of B, we obtain:

vP = −R∇u × eφ︸ ︷︷ ︸
≡vE

− (δ∗ R/ρ)∇pi × eφ︸ ︷︷ ︸
≡vdia,i

. (26)

where u is defined asΦ/F0 and vP = (eφ × v) × eφ denotes the
poloidal component of the velocity. In this expression, E × B
effects are captured by the first term, and the ion diamagnetic
drift velocity by the second one. Given this expression, we
can define the approximation space for the vE poloidal com-
ponent of the velocity variable as VvE = {v : ∃u ∈ H2 s.t. v =

−R∇u × eφ} and according to Ritz–Galerkin method, it is
natural to choose the velocity test functions in the poloidal
direction in the same space:

V�
E = −R∇v� × eφ

A first version of the reduced MHD model can be obtained
using the definition of these spaces. However, for many prob-
lems, flows are not purely poloidal and one must take into
account flows along the magnetic field lines. Therefore an
improved version of the reduced MHD model used in JOREK
defines the velocity approximation space by:

V = vE + vdia,i + v‖B︸︷︷︸
≡v‖

(27)

This reduced MHD model is thus characterized by a mag-
netic potential defined by a single scalar function (ψ) and
a velocity field defined by the two scalars functions (u and
v‖). As done for vE, it will be natural to define the paral-
lel test functions using Ritz–Galerkin recipe as v�B for some
scalar v�.

It is important to point out here that, even if a constant
F0 is used, instead of the function F used in the computa-
tion of the Grad–Shafranov equilibrium (i.e. assuming that
RBφ = const), the reduced model preserves the equilibrium.
Indeed, when focussing on the momentum equation, we can
prove that all the terms associated with the function F (from
the initial Grad–Shafranov equilibrium) are in the kernel of the
momentum projectors: v�B and −R∇v� × eφ. This is a direct
consequence of the fact that R∇v� × eφ = R2∇× (v�∇φ),
B · (J × B) = 0 and ∇× (∇F2/2) = 0. Note that, although
the ansatz (25) neglects toroidal field compression by using
a constant F0 instead of the flux function F(ψ) for RBφ, the
Shafranov shift is retained due to the use of the solution of
the Grad–Shafranov equation with nonzero FF′ as the initial
condition for ψ.

Summarizing, the reduced MHD is defined by the mag-
netic and velocity ansatz given by equations (25) and (26)
respectively. The weak form for the reduced MHD equations
after integration by parts can be directly derived from the
general expressions (17)–(20) taking into account the present
definition of the functional spaces. We detail in the sequel
the expression of the magnetic potential and momentum
equations. For the magnetic potential, it is convenient to use
A�B as test function and we obtain∫

∂A
∂t

· BA� = −
∫

(E − F0∇u) · B A�

that gives the problem: Find ψ ∈ H2 such that for any A� ∈ H2

we have:∫
1

R2

∂ψ

∂t
A� = −

∫ (
1
R

[u,ψ] +
η

R2
( j − j�)

− F0

R2

∂u
∂φ

+
δ∗
2ρ

∇p · B
)

A� (28)

where we have introduced the Poisson bracket [ f, g] = ∇ f ×
∇g · eφ. Note, that the poloidal current component has been
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neglected in the resistive term. To establish the momentum
equation, we first use the expression of the velocity (27)
together with our definition of the gyro-viscous tensor (12) to
obtain the equation:

ρ
∂v
∂t

= −ρv · ∇v − ρv∗
i · ∇vE −∇p

+ J×B +∇ · (τ
f
+ τ

neo
) + SV, (29)

where v = v‖ + vE. Now, using successively v�B and V∗
E as

test functions allows to obtain two scalar equations for the
parallel and poloidal components of the velocity:∫

ρ
∂v
∂t

· B v� =

∫ (v · v
2

∇ρ+ ρv × w −∇p

+∇ · (τ f + τ neo) + SV
)
· Bv�

−
∫

ρ(v∗
i · ∇vE) · Bv� + BTv‖ , (30)

∫
ρ
∂v
∂t

· V∗
E =

∫ (v · v
2R2

∇(R2ρ) + ρv × w

−∇p+∇ · (τ f + τ neo) + SV
)
· V∗

E

−
∫

ρ(v∗
i · ∇vE) · V∗

E +

∫
v∗B · ∇ j + BTvE ,

(31)

where we have used the relation v · ∇v = ∇ v·v
2 − v × w intro-

ducing the vorticity w ≡ ∇× v and j ≡ −RJφ. The equations
for density and temperature are similar to the full MHD
context, but with the prescribed velocity and magnetic field
expressions∫

∂ρ

∂t
ρ� = −

∫ (
∇ · (ρ v) + v∗

i · ∇ρ− Sρ

)
ρ�

−
∫

D∇ρ · ∇ρ� + BTρ, (32)

∫
∂p
∂t

p� = −
∫

(v · ∇p+ γp∇ · v

− (γ − 1)(τ f + τ neo) : ∇v − Sp

)
p�

−
∫

κ∇T · ∇p� + BTp (33)

To derive the final formulation of the pressure equation, gyro-
viscous cancelation assumptions have been used. The bound-
ary integrals appearing after the integration by parts are indi-
cated by the symbol BT and defined as

BTv‖ = −
∮

v∗
ρv · v

2
B · dS (34)

BTvE = −
∮

v∗
(
∇
(

R2ρv · v
2

)
− J × B

)
×∇φ · dS

(35)

BTρ =

∮
ρ�D∇ρ · dS (36)

BTp =

∮
p�κ∇T · dS. (37)

Note that in this derivation, once the ansatz and projection
functions are defined, there are no approximations on geom-
etry. I.e., the reduced MHD derived here is not an aspect ratio
expansion of the full MHD model.

These equations involve some high order derivatives whose
computations can be alleviated by the introduction of interme-
diate variables: the toroidal current density ( j) and toroidal vor-
ticity (ω) satisfying the following partial differential equations

j = Δ∗Ψ ≡ R2∇ ·
(

1
R2

∇polΨ

)
, (38)

ω = Δpolu ≡ ∇ · ∇polu. (39)

Here,∇polu denotes the gradient in the R–Z plane. The reduced
MHD base model consists of seven scalar physical quantities
as variables, see table 1. Five variables are evolved in time
(‘five field model’), while ω and j are coupled to u and Ψ by
definition equations33. The evolution and definition equations
are solved simultaneously at every time step in a fully implicit
numerical scheme (see section 3.2).

2.3.2. Boundary conditions. Boundary conditions can be set
in a flexible way. By default, all variables are kept constant in
time on the computational domain boundary, wherever the lat-
ter is aligned to a flux surface (Dirichlet). Where flux surfaces
are intersecting the boundary (e.g., in the divertor region or
for grids extended to the true physical wall) sheath boundary
conditions are applied as commonly done in divertor physics
codes [66]. The poloidal flux, current density, electric poten-
tial, and vorticity are kept fixed at the boundary, while the
parallel velocity is forced to be equal to the ion sound speed.
For the density no Dirichlet condition is forced and the bound-
ary term (36) is not included. Not including the latter bound-
ary term in the finite element method naturally implies that
D∇ρ · n = 0 and therefore the perpendicular ion flux to the
boundary is purely convective Γ · n = ρV · n. The evolution
of the boundary temperatures are constrained by the following
BCs for the normal ion and electron heat fluxes to the boundary

qi · n ≡
(
ρ

2
V · V +

γ

γ − 1
ρTi

)
V · n − κi

γ − 1
∇Ti · n

= γsh,iρTiV · n, (40)

qe · n ≡ γ

γ − 1
ρTeV · n − κe

γ − 1
∇Te · n

= γsh,eρTeV · n, (41)

where γsh,i ∼ 2–3 and γsh,e ∼ 5–6 are the ion and electron
sheath transmission factors [66]. For the single temperature

33 Via the definition equations, ω and j are projected to the G1 continuous
Bezier basis, while expressing them directly in terms of u and Ψ would
correspond to a discontinuous representation.
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Table 1. Scalar physics variables of the base reduced MHD model. ω and j are
derived variables, connected to u and Ψ by definition equations.

Symbol Description

Ψ Poloidal magnetic flux = RA · eφ with A the vector potential
u Velocity stream function = Φ/F0 with Φ the electric potential
j Toroidal current density = −Rj · eφ = Δ∗Ψ
ω Toroidal vorticity = Δpolu
ρ Mass density = nemion for singly charged ions
T Temperature ≡ Te + T i in the single temperature model
v‖ Parallel velocity = v‖ · B/B2

model (Te = T i), the two latter expressions can be added to
find the total heat flux equation

q · n ≡
(
ρ

2
V · V +

γ

γ − 1
ρT

)
V · n − κ

γ − 1
∇T · n

= γshρTeV · n, (42)

where γsh is the total sheath transmission factor that has typ-
ical values of 7–8. The latter BCs are expressed in the form
κ∇T · n = −(cb − 1)ρTV · n and replaced in the boundary
term (37) in order to implement them as natural BCs. For
the electrons cb,e = (γ − 1)(γsh,e − 1), for the ions cb,i = (γ −
1)(γsh,i − γ − 1) and the total heat flux cb = (γ − 1)(γsh/2 −
γ/2 − 1). Note that sheath boundary conditions are applied
on the whole boundary of the computational domain if grids
extended to the physical first wall are used (see section 3.1.2).
In case of free boundary simulations, the Dirichlet condition
on the plasma current density and poloidal flux is removed,
and a natural boundary condition is implemented instead, like
described in section 2.9. Further extensions of the boundary
conditions have been developed for particular applications,
e.g., a limitation of the current density to the ion saturation
current [67].

2.3.3. Properties of the reduced MHD model. Since a sig-
nificant number of reduced MHD models with very dif-
ferent properties have been proposed in literature, some
confusion exists regarding their capabilities. We explain a few
key features of our reduced MHD model in the following. A
recent discussion of reduced and full MHD models is also
provided by reference [68], and section 2.15 shows reduced
MHD models for stellarator configurations yet to be imple-
mented, including a detailed discussion of the conservation
properties.

In reference [64], it is shown that the model implemented
in JOREK is energy conserving as consequence of the full
MHD being energy conserving and the ansatz based approach
being used. This is strictly valid only for the single-fluid model,
where diamagnetic drift effects are excluded, since the gyro-
viscous cancelation is not exactly energy conserving [65, 69].
The non-conservation introduced by gyro-viscous cancelation
is of the order of δ∗pm/(ρ0vA), where pm and vA denote the
magnetic pressure and Alfvén velocity, respectively. As long
as δ∗ is small, the error should be acceptable. The energy con-
servation test shown in the right panel of figure 17 supports a
good energy conservation also when diamagnetic drift effects

are included. Note that, even without diamagnetic drift, energy
conservation is only exact in the limit of continuous time, and
introducing a finite time step also introduces a small error in
the energy conservation. Another source of error is the trun-
cation of the toroidal Fourier series (see section 3.1.3). More
formally, for a simplified version of the reduced MHD model,
it has been shown in reference [53] that reduced MHD mod-
els are a valid approximation of the full MHD model, i.e., the
solutions of the full MHD system converge to the solutions of
an appropriate reduced model.

Linear momentum is not exactly conserved locally by the
reduced MHD models even in the continuous limit. This
becomes obvious when one acknowledges that each of the
three Cartesian components of the momentum equation gov-
ern momentum conservation in the respective Cartesian direc-
tion, and all three must be satisfied individually in order for
linear momentum to be conserved. However, there are only
two scalar velocity variables, u and v‖, in the reduced MHD
model, and only two scalar equations governing these vari-
ables, namely (30) and (31), remain in the reduced model.
Thus, it is impossible to locally conserve all three components
of linear momentum in reduced MHD, except for some spe-
cial cases. Globally, the z-component of momentum is always
conserved, as can be seen by letting v� = ln R (which gives
V�

E = ∇z) in equation (31). One can also ensure global con-
servation of the x and y components of linear momentum by
excluding the n = 1 term from the Fourier series, which forces
the x and y components of the integrated total momentum to
zero due to symmetry. This topic is considered in more detail
in reference [70]. The full MHD model is conserving momen-
tum exactly on the equation level, comparisons presented in
section 4 between both models provide confidence to some
degree that the introduced error does not affect linear and
non-linear dynamics significantly.

The presented reduced MHD model satisfies ∇ · J = 0. In
fact it can be shown that equation (31) is identical to the weak
form of ∇ · J = 0. This is demonstrated by applying the cross
product ×∇φ to equation (29) in order to obtain the poloidal
current density

F0Jpol = − jBpol − R2∇p×∇φ

− R2

(
ρ
∂v
∂t

+ ρv · ∇v + ρvdia, i · ∇vE

−∇ · (τ f + τ neo) − SV

)
×∇φ (43)
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Then using the latter expression in
∫
v∗∇ ·

(
Jφ + Jpol

)
= 0

and applying integration by parts, equation (31) is recovered.
As it can be inferred from equation (43), even if the toroidal
field is fixed in time, the poloidal currents exist in this model
and evolve according to the momentum equation and conser-
vation of current. The ansatz (25) together with the projection
operator eφ · ∇× projects out, i.e. removes, the poloidal cur-
rents from the system of equations. This does not imply that
the poloidal currents are neglected in the model, but rather
their contribution to the toroidal field is dropped. The poloidal
currents can be calculated, a posteriori, from (43). As men-
tioned above, the reduced ideal MHD momentum equation
is consistent with the Grad–Shafranov equation, even in the
absence of poloidal currents. The force balance J × B = ∇p
appears as [ψ, j] −

[
R2, p

]
in the momentum equation. Substi-

tuting j = FF′ (ψ) + R2 p′ (ψ) shows that the two terms in the
pressure balance cancel. The benchmarks of vertical displace-
ment event (VDE) simulations between the JOREK reduced
MHD model and the M3D-C1 and NIMROD full MHD mod-
els shows the validity of this approach: the agreement regard-
ing plasma dynamics and halo currents is very good (see
section 6.3).

As mentioned above, reduced MHD models aim to elimi-
nate fast magnetosonic waves, the fast propagation of which
can impose restrictive CFL limits for explicit methods and
significantly increase the stiffness of the problem for implicit
methods. In the JOREK reduced MHD model presented here,
the fast magnetosonic waves are eliminated by the velocity
ansatz (27). In reference [71], it is shown that any velocity
field can be decomposed into an E × B term, a field-aligned
flow term and a perpendicular fluid compression term34, which
are responsible for Alfvén waves, slow magnetosonic and
fast magnetosonic waves, respectively. The E × B and field-
aligned flow terms are the first and third terms, respectively,
in the velocity ansatz (27), whereas the perpendicular fluid
compression term is not present in the ansatz.

Finally, it is important to note that the reduced MHD
model presented here cannot correctly reproduce pressure-
driven modes under all circumstances. In particular, the 1/1
internal kink mode at nonzero β is affected. As shown in ref-
erence [68], the term associated with fast magnetosonic waves
in the energy functional can be written as

1
2

∫
V

∣∣δB‖ + δp/B0

∣∣2 dV ,

where B = B0 + δB and p = p0 + δp; the quantities with a ‘0’
subscript correspond to the equilibrium, and quantities with a
‘δ’ prefix are perturbations. Since in our reduced MHD model,
we have set eφ · δB = 0, we have δB‖ = B0 · δB/B0 ≈ 0,
whereas in full MHD simulations, one often finds that
B0δB‖ ≈ −δp. Thus, in the case of pressure-driven instabil-
ities, the term above contributes a stabilizing effect due to

34 The perpendicular fluid compression term is mostly responsible for plasma
compressional motion orthogonal to the background vacuum field, but some
such compression is allowed already by the E × B term. See reference [71]
and the references therein for more detailed discussion.

the δp contribution not being cancelled by B0δB‖ [68]. Tra-
ditional ballooning modes in the plasma edge are an excep-
tion to this rule. As shown in reference [68], the Mercier
criterion is modified as 4εα(1 − q2) > s2q2 + α2, where
α = −2q2R0 p′/B2

0 is the ballooning parameter and s = rq′/q
is the shear. Since q � 1 and α ∼ 1 in the plasma edge,
ballooning modes are largely unaffected, which can be seen
in various benchmarks (section 4.5). In figure 19, the lin-
ear growth rates for the internal kink mode are shown. For
β near zero, the mode is mostly current driven, and the sta-
bilizing effect discussed above is negligible. However, as β
increases, the accuracy of reduced MHD quickly deterio-
rates. Alternate reduced MHD models, such as that by Kruger
et al [54], can better capture most pressure-driven modes
due to the incorporation of the constraint B0δB‖ = −δp into
their model.

2.3.4. Related models and extensions. The various exten-
sions available for the reduced MHD model are described in
the following, sections 2.4–2.11. Note, that also a simplified
version of the reduced MHD model is available, where the par-
allel momentum equation and the variable v‖ have been elim-
inated, while the rest of the description shown above remains
unchanged. This corresponds to a drop of slow magneto-sonic
waves. The full MHD model of JOREK is described briefly
in section 2.12. Formulations of reduced as well as full MHD
appropriate for stellarators presently being implemented are
shown in section 2.15.

2.4. External magnetic perturbations

For simulations of RMPs used typically for ELM mitigation
or suppression, a 3D poloidal flux perturbation at the bound-
ary of the computational domain can be ramped up during the
simulation [50]. The perturbation needs to be pre-calculated
by an external code (vacuum assumption for the boundary
condition). This approach has widely been used for previ-
ous studies of RMPs (see section 5.4) with the drawback that
the magnetic field perturbation at the computational boundary
cannot evolve consistently. Using the free boundary extension
(see section 2.9), RMPs can alternatively be described fully
consistently from 3D coils [72].

2.5. Separate electron and ion temperatures

An extension for treating electron and ion temperatures sepa-
rately [73] introduces one additional variable to evolve both
temperatures independently in time. In particular, different
parallel heat diffusion coefficients can be used for the species,
allowing to capture the temperature evolution across an ELM
cycle more accurately. The parallel heat conductivity does not
only influence the non-linear evolution of the plasma consid-
erably, but also affects linear stability properties (neglected in
most stability codes).

2.6. Neutrals

A model extension is available to include a neutral particle
fluid in the simulations, a development originally started in ref-
erence [74]. The present version was derived and implemented
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in reference [75]. One additional physics variable was intro-
duced to describe the distribution of neutrals across the com-
putational domain. In this model, the neutral transport is purely
diffusive. Ionization and recombination terms, as well as radia-
tive loss terms are implemented. Recycling boundary condi-
tions at the divertor targets have recently been implemented
[76, 77]. The model is used for deuterium massive gas injec-
tion (MGI) or shattered pellet injection (SPI) simulations (see
section 6.2) as well as detachment studies (see section 5.6). A
kinetic treatment of neutrals is also possible using the frame-
work described in section 2.10 with first applications on the
way.

2.7. Impurities

For the modelling of impurities, several options exist. As a par-
ticularly simple model to incorporate some impurity effects, a
radiative loss term can be switched on in the reduced MHD
model with neutrals (section 2.6). Losses are then calculated
under the assumption of a spatially and temporally constant
background impurity distribution with a prescribed radiative
cooling rate.

For a more realistic description, a model exists where impu-
rities are treated as an additional fluid species [78–80]. This
model is applied to massive gas injection or SPI simulations
(see section 6.2), but also to radiative collapse simulations
(see section 6.1.2). One additional variable is introduced to
describe the impurity density distribution. All impurities are
assumed to be convected together with the main plasma inde-
pendently of the charge state, and the impurities are assumed
to be in coronal equilibrium. The latter assumption may lead,
at least in certain cases, to an underestimation of energy dissi-
pation by impurities. For example, for an axisymmetric bench-
mark case on impurity dynamics [81], JOREK (with its coronal
equilibrium model) predicts a roughly two times slower ther-
mal collapse than M3D-C1 and NIMROD which have a more
advanced model tracking the density of each impurity charge
state. The coronal equilibrium assumption also results in an
instantaneous change in the ionization state according to the
electron temperature, resulting in difficulties in treating the
ionization energy and the corresponding recombination radia-
tion which would not be present in a self-consistently evolving
non-equilibrium model. To avoid such artificial recombination
radiation, we currently treat the ionization energy as a poten-
tial energy. A more advanced model, going beyond the coro-
nal equilibrium assumption, is presently in preparation (see
section 2.15).

Also kinetic particles (section 2.10) can be used to describe
impurities. This has already been applied to study the trans-
port of tungsten during ELM crashes (see section 5.1) as
well as the sputtering and SOL transport of tungsten (see
section 6.1.2).

2.8. Pellets

Several pellet ablation models are available in JOREK both
for pellets consisting of the same material as the main plasma
(‘deuterium pellets’) and for pellets consisting of a different

material (‘impurity pellets’, e.g., argon or neon). These abla-
tion models are combined with the neutrals model (section 2.6)
or the impurity model (section 2.7), respectively.

For the particle source corresponding to pellet ablation,
scaling laws from various neutral gas shielding type of mod-
els in a Maxwellian plasma are implemented [82–85]. The
main idea behind these models is that the ablation rate natu-
rally adapts such that the incoming heat flux from the ambi-
ent plasma is almost fully absorbed by the ablation cloud
surrounding the pellet. Literature provides scaling laws for
ablation rates for various pellet materials (including mixtures)
which have been obtained by fitting numerical results of gas
dynamics simulations [83–85].

Ablated atoms are deposited via a volumetric source term
of the form:

Sn ∝
[

0.5 − 0.5 tanh

(
(R − Rp)2 + (Z − Zp)2

δrc

)]

×
[

0.5 − 0.5 tanh

(
φ− φp

δφc

)]
, (44)

where Rp and Zp are the pellet location and δrc and φc charac-
terize the poloidal and toroidal extension of the ablation cloud.
The parameters δrc and δφc determine the width of smooth-
ing of the source profile in poloidal and toroidal direction.
The pellet is presently assumed to move along a straight line
with constant velocity, and its particle content (and physical
size) is evolved according to the ablation. The toroidal exten-
sion δφc of the ablation cloud in simulations is typically far
larger than in reality due to limited toroidal resolution, but tests
shown in reference [86] for a deuterium pellet found that for
a sufficiently small δφc, JOREK results converge, i.e. MHD
dynamics becomes independent of δφc. For impurity pellets,
the same may however not be true because of the radiative loss
term, which scales like nimpne, i.e. like n2

imp in regions where
the impurity density nimp is large, such that the total power
radiated in the ablation cloud scales like 1/δφc. For SPI sim-
ulations [87], the model described above is applied for each
individual shard. Input parameters allow specifying the shard
size distribution, the averaged velocity and velocity spread of
the shards.

2.9. Free boundary and resistive walls

Via a coupling [88] to the STARWALL code [89], JOREK is
capable of free boundary simulations. In the Greens functions
approach applied here, STARWALL discretizes the conduct-
ing structures by triangles (thin-wall approximation),while the
vacuum region surrounding the plasma and conducting struc-
tures is not discretized. The JOREK-STARWALL coupling is
then performed via a natural boundary condition at the edge
of the JOREK computational domain that replaces the Dirich-
let boundary conditions for the poloidal flux and current den-
sity. In a boundary integral, that arises from partial integration
(see section 3.1.4) of the current definition equation, and that
vanishes for fixed boundary simulations, the tangential mag-
netic field is expressed in terms of the poloidal flux values and
the currents in the conducting structures as shown in detail in
reference [88]. The BC is a Neumann type condition for the
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magnetic vector potential, which results from the analytical
solution of the vacuum field given by the Green’s functions.
In terms of the response matrices, the magnetic field has the
form

B × n = Mvac B · n + MI I,

where n is the normal vector to the boundary, Mvac is the
vacuum response matrix and MI is a matrix that calculates
the contribution of the wall and coil currents (I). The evolu-
tion of the wall currents is calculated with resistor–inductor
circuit equations that arise for each of the discretized wall
elements. The ‘response matrices’, which allow to calculate
the evolution of the wall currents and the tangential mag-
netic field at the JOREK boundary, are calculated by STAR-
WALL only once in the beginning of a simulation. Since they
are only dependent on the JOREK grid and wall geometry,
response matrices may even be re-used for further simula-
tions if the geometry remains the same. The response matri-
ces are written out by STARWALL into a file and read by
JOREK using MPI I/O in both codes. In JOREK, the matri-
ces are used to evolve wall currents in time and to implement
the natural boundary condition. The coupling between plasma
and wall currents is implemented in a fully implicit way that
is entirely consistent with the time evolution of the intrinsic
JOREK equations. The dimensionality of the sparse matrix
system is not increased in spite of this fully implicit approach
compared to fixed boundary simulations since the implicit
values of the wall currents are analytically eliminated from
the system35.

JOREK–STARWALL allows to choose a fixed or free
boundary mode independently for each toroidal harmonic.
This is sometimes used to keep fixed boundary conditions
for the axisymmetric n = 0 component, while a free bound-
ary treatment is applied to non-axisymmetric n �= 0 compo-
nents. For simulations, where also the n = 0 component is
treated to be free, the equilibrium solver has been extended
to free boundary cases [88] and has recently been updated for
Newton iterations to enhance convergence (using the meth-
ods described in reference [90]). Magnetic field coils have
been implemented self-consistently in STARWALL, includ-
ing time varying coil currents and their interaction with
conducting structures [91] and recently also arbitrary 3D
coils have been implemented in a self-consistent way [72]
(see also section 4.8). This allows to include active coils
(poloidal field coils, RMP coils, etc) and passive coils (Mirnov
coils, saddle coils, etc) consistently in JOREK–STARWALL
simulations. A functionality is available also, which allows
to create a free boundary equilibrium for a given fixed
boundary case, by automatically determining appropriate coil
currents [92].

Via the derivation shown in references [93–95], plasma
currents flowing directly into conducting structures or out of
them (current sharing between plasma and wall), can be treated

35 Note, that the natural boundary condition, however, leads to a less sparse
matrix structure for boundary degrees of freedom. Local interactions between
neighbouring grid nodes are replaced by global interactions on the bound-
ary. To ensure efficient load balancing also for such simulations, the domain
decomposition is slightly adapted compared to fixed boundary simulations.

consistently with the STARWALL formalism. The respective
derivation for JOREK–STARWALL including the interaction
of eddy and halo currents are shown in reference [92]. How-
ever, the implicit coupling of wall source/sink (halo currents)
with the plasma electric potential has not been implemented
yet. For walls with a low poloidal path resistance, the usual
JOREK BC for the electric potential (Φ = 0) gives the cor-
rect distribution of halo currents as demonstrated in [96]. The
formalism derived in [93–95] has been implemented as a post-
processing tool to calculate wall forces and to visualize the
source/sink currents (see figure 2). This tool has been vali-
dated as well for 3D walls with holes. A formalism for treating
ferromagnetic components in a thin wall model is shown in
reference [97] but integration in JOREK–STARWALL hasn’t
been approached so far.

Some numerical limitations had originally restricted
JOREK–STARWALL to moderate toroidal and poloidal res-
olutions. In particular, STARWALL was originally purely
OpenMP parallelized, the coupling terms inside JOREK were
treated OpenMP parallel only, and the fairly large and sparse
‘response matrices’ were duplicated across all MPI ranks
in JOREK. Within the project described in reference [99],
an MPI parallelization of STARWALL, a hybrid MPI +
OpenMP parallelization of the coupling terms in JOREK,
parallel input/output for the response matrices in both codes
as well as a distributed storage of the response matrices
across the MPI ranks were implemented including the dis-
tributed matrix–matrix operations. With these developments,
high resolution cases are possible now with an excellent per-
formance. For a verification of free boundary simulations,
see section 4.8.

2.10. Kinetic particles

For a number of applications, such as the transport and inter-
action of fast particles, impurities and neutrals with the MHD
fluid, the main fluid model(s) in JOREK have been extended
with a kinetic particle module. Particles are followed in the
time dependent 3D magnetic and electric fields given on the
cubic finite element grid. For the fast ions, impurities and neu-
trals, the well-known Boris scheme is used. The full orbit of
the particles is followed both in real (R, Z,φ) space and in
the local coordinates (s, t,φ) of each element. At every par-
ticle step, the Boris scheme is applied in (R, Z,φ) coordi-
nates including a correction for the toroidal geometry [100].
The updated local element coordinates are found by New-
ton iterations. Following the particles in real space has the
advantage that the crossing of a finite element boundary does
not influence the Boris scheme. The change of element of
a particle position is handled in the update of the local ele-
ment coordinates. For the rare case a particle crosses many
element boundaries, an efficient RTree algorithm is used to
find the particles element. The Boris scheme combined with
a higher order interpolation of the magnetic and electric fields
in time assures accurate particle trajectories with good energy
conservation (see section 4.9). Multiple particle species can
be traced within one simulation allowing for example sim-
ulations combining neutral deuterium, heavy impurities and
fast ions. For the simulation of relativistic REs, a relativistic
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Figure 2. Bottom view of the thin wall used for the 3D VDE benchmark case published in reference [98] showing the distribution of
source/sink (halo) currents (black arrows). The colours indicate the perpendicular current density into the wall respectively out of it (in a.u.).
The BC for the electric potential was Φ = 0 here such that the wall acts ideally conducting for the halo currents.

particle tracer (both full orbit or guiding centre) was imple-
mented [101, 102] with excellent energy and momentum con-
servation properties (see section 4.9). This model was applied
to study various aspects of RE dynamics with a test parti-
cle approach (section 6.4). In addition to the particle fol-
lowing, the charge state of the particles and the ionisation,
recombination and radiation rates are consistently evolved
in time according to the background fluid properties, using
the OPEN-ADAS rate coefficients including all charge states.
A model for particle collisions with the background fluid
or with projected moments of the kinetic particles, follow-
ing references [103–105] has been implemented and success-
fully benchmarked with the cases in references [104, 105].
The collision model includes the thermal force, relevant for
the movement of impurities upwards relative to the temper-
ature gradient in on open field lines. To model the main
source of impurities, the sputtering of divertor/first wall mate-
rial by incoming particles and MHD fluid has been imple-
mented using the sputtering yields from references [106–108]
and benchmarked with the results from reference [109]. The
first application, with test particles, studied the transport of
tungsten impurities during (simulations of) ELM crashes (see
section 5.1), tungsten sputtering during ELMs and scrape-
off layer (SOL) transport of tungsten (see section 6.1.2). For
the modelling of the interaction of the MHD fluid and par-
ticles, coupling terms have been implemented. These terms
appear mostly as additional explicit source terms on the right-
hand side of the fluid equations. To describe the excitation
of MHD instabilities driven by fast particles, both the cou-
pling schemes based on the pressure and the current have been

implemented. To include the neutral and impurity physics,
density, momentum and energy sources resulting from ion-
isation, recombination, charge exchange and radiation have
been added. From the particle distribution, the source terms
are calculated by projecting the moments of the particle dis-
tribution onto the finite element representation. For the mass
density source Sρ:

Sρ (x) =
∫

mi f (x, v) dv (45)

S̃ρ (x) =
∑
i jk

pρ,i jkHi j (s, t) Hφ,k (φ) (46)

where pρ,i jk are the finite element expansion coefficients to be
determined by the projection. The projection uses the weak
form with the same testfunction as the finite element basis
functions v∗ = Hi jHφ,k:∫

v∗S̃ρ (x) dx =

∫
v∗Sρ (x) dx =

∑
i

v∗ (x) mwiδ (x − xi) .

(47)
Here, the integral over the particles becomes a sum over all
particles weighted by the finite element basis functions. The
system of equation (47) is factorised only once and solved at
particle projection. The projection results can be smoothed by
solving instead:∫

v∗
(
1 + α∇4

)
S̃ρ (x) dx =

∫
v∗Sρ (x) dx (48)

Typical values for α are, depending on the application, of the
order of 10−10 to 10−12. The projection is required at every
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time step of the main fluid part. The number of particle steps
for each fluid step varies from 100–1000 for fast particles to
order 1–10 for slow heavy impurities. The sources are either
a time integrated source (typically required for good conser-
vation properties for particle/energy sources), or at one given
time (for fast particle pressures).

2.11. Relativistic electron fluid

A relativistic electron fluid model is available [110], which
allows to simulate generation, transport, and losses of REs.
One additional variable is introduced to describe the spa-
tial distribution of the RE density. Most of the relevant
primary and secondary generation mechanisms have been
implemented, and successfully been benchmarked against
lower-dimensional codes. This fluid approach does not cap-
ture some kinetic aspects (i.e., accurate treatment of the energy
spectrum), but allows to study the mutual non-linear interac-
tion between REs and MHD. In that sense, the approach is
complementary to the RE test particle model described in the
previous section, which captures kinetic effects but does not
account yet for the back-reaction of the REs to the plasma.
The model has so far been applied to the interaction of REs
with internal kinks, VDEs, and TMs as well as RE beam ter-
mination studies (section 6.4). An extension has very recently
been developed, which takes into account the effect of REs
onto the radial force balance of the plasma [111]. The imple-
mentation of the interaction terms with the impurity fluid is
under development.

2.12. Full MHD model

A full MHD model suitable for production simulations is avail-
able in JOREK [65, 112, 113] and can be used for many
applications. The model was, nevertheless, only used for few
physics applications so far, since its final numerically robust
implementation has only been completed recently. Several
important extensions available for the reduced MHD model
have now been implemented in the full MHD model already.

As discussed in section 4, benchmarks of the reduced and
full MHD models of JOREK show that the reduced MHD
model is capturing the key physics very well under many
conditions while reducing computational costs. However, it is
also shown that for certain types of instabilities such as the
internal kink, it is necessary to use the full MHD model as
also has been found in analytical calculations [68]. Further-
more, VDE benchmarks revealed an overall excellent agree-
ment between the reduced MHD JOREK model and full MHD
codes (section 4.8). However, the toroidal variation in the
plasma current is not reflected.

The full MHD model has recently been extended for sheath
boundary conditions and numerical stabilization terms were
implemented [114]. The full-MHD physics model imple-
mented in reference [65] includes plasma flows like the
reduced-MHD model, with diamagnetic terms, neoclassical
poloidal friction, and toroidal rotation. The bootstrap current
source has also been included. A neutrals fluid model like
used for MGI and SPI disruption simulations, has not been
implemented yet and will be addressed in future studies.

2.13. Electrostatic fluid turbulence model

The JOREK code is very flexible for the implementation
of many other physical models not only related to MHD.
The realistic geometry, global equilibrium obtained from the
Grad–Shafranov solver, flux-aligned grid, numerical meth-
ods, sparse matrix solver are common for many applications
of the JOREK code. An electrostatic turbulence model has
been implemented into JOREK which allows to study ITG
driven turbulence in realistic tokamak geometry including
SOL and X-point. Both fluid [115–117] and full kinetic orbits
approaches are under development. Benchmarks with the stan-
dard cyclone case [118, 119] for fluid and kinetic approaches
have already confirmed that the implementation is capturing
the growth rates of the instabilities in simplified configurations
accurately [116, 117]. The model has recently been extended
to model ITGs in X-point geometry with SOL for realistic JET
and COMPASS discharges (see section 7.1).

2.14. Fully kinetic electrostatic model

The particle framework described in section 2.10 has been
used to implement a fully kinetic (electrostatic) model (i.e.,
no fluid part) of the plasma with full orbit ions and adiabatic
electrons. In this case, there is only one equation to solve for
the electric potential Φ in terms of ion density ni:

N > 0 : ΦN (x) = ni,N (x) (49)

N = 0 : ∇ ·
(

meTe

e2B2
∇⊥Φ

)
+

(
Φ− 〈Φ〉〉 = ni − ni0

ne0

(50)

where N is the toroidal harmonic, ni0 and ne0 the initial ion
and electron density. Due to the full orbit ions, there is no ion
polarisation density in equation (50). This equation is solved
as a slightly modified form of the projection operator from
equation (47). The full orbit, full-f model has been success-
fully benchmarked against the linear ITG growth rates and
frequencies from [119] and against the zonal flow frequencies
and damping from [120], see section 7.1. The model can be
used with any of the JOREK finite element grids, allowing ITG
simulations in arbitrary X-point geometry, including the open
field line region (see section 7.1).

2.15. Outlook

Various extensions to the models are in preparation, and only
some of them can be mentioned here. Present plans involve
a more modular structure of the physics models to simplify
combining arbitrary extensions when needed. Sheath bound-
ary conditions will be further refined, in particular allowing
for outflows with Mach numbers larger than one. A fully con-
sistent neoclassical model for the plasma resistivity is being
implemented.

Two types of impurity models going beyond the coro-
nal equilibrium assumption are under development: a fluid
model involving one additional continuity equation per impu-
rity charge state (or bundles of charge states), and a model in
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which impurities are treated as a set of particles, the charge of
each particle being evolved individually.

Regarding the RE fluid model, it is planned to evolve in
time an average parallel momentum of the particles, allow-
ing to capture the effect of the REs onto the radial force
balance, which leads to a major-radial shift between the flux
surfaces and the RE drift-orbit surfaces in the absence of
thermal pressure.

An effort is presently taken to implement an energy con-
serving current-coupling scheme for the kinetic particles and
the MHD fluid allowing to study the energy exchange of MHD
modes with super-sonic particles. Related to that, kinetic MHD
or simplified gyrokinetic models like described in references
[121, 122] are presently evaluated and might be implemented
in JOREK.

In preparation of a 3D extension aiming to simulate
stellarator plasmas, a hierarchy of reduced and full MHD
models with good energy and momentum conservation
properties has been derived in a form suitable for stellarators
[70, 71]. The reduced model with some further improvements
is presently being implemented into JOREK. Further exten-
sions of the numerical methods, in particular regarding spa-
tial discretization and solver, are necessary to achieve well
resolved stellarator simulations and are evolving in parallel
(see section 3.8).

3. Numerical methods

The JOREK code is largely written in Fortran with a few core
routines in C and C++. It has only few library dependen-
cies allowing to port the code easily to new machines. Some
aspects of the code development are described in section 3.7.
The numerical methods used in the code are shown in the fol-
lowing, in particular the spatial and temporal discretization,
numerical stabilization schemes, the construction of the sparse
matrix system, the iterative solver with its preconditioner, and
the hybrid parallelization of the code are described.

3.1. Spatial discretization

JOREK solves the equations of the respective physics mod-
els in weak form on a G1 continuous 2D isoparametric Bezier
finite element grid combined with a toroidal Fourier expan-
sion [2, 40]. The Bezier basis and the finite element grids con-
structed from them are shown in subsections 3.1.1 and 3.1.2,
respectively. The toroidal Fourier expansion is described in
subsection 3.1.3.

3.1.1. Bezier basis. Two-dimensional third order Bernstein
polynomials are defined by

B3
i, j(s, t) = B3

i (s) B3
j(t) i, j = 0 . . . 3, (51)

with

B3
i (s) =

3!
i!(3 − i)!

si(1 − s)3−i (52)

and where 0 � s � 1 and 0 � t � 1 denote the element–local
coordinates, which take values of 0 respectively 1 at the four
element vertices (see figure 3 and appendix A). All physical

Figure 3. Single 2D Bezier element in R–Z space. The
element–local s–t coordinate system is also shown. The mapping
from s–t into the R–Z space is expressed in Bernstein polynomials.
The same basis functions are also used for physical variables like the
temperature (iso-parameteric).

Figure 4. A Bezier element is shown in 3D space. The left plot
represent the control points of the elements (blue). The red points
are the grid nodes. The right plot depicts the resulting surface. The
red structure at the bottom of the plots represents the element in (R,
Z) space. Within each element, a local (s, t) coordinate system is
defined (figure 3). The elevation represents the spatial distribution of
a physical variable, e.g., the temperature.

quantities, and also the R and Z positions of the elements
themselves (i.e., the mapping from element local to global
coordinates) are expressed in this basis:

X(s, t) =
3∑

i=0

3∑
j=0

Pi, j B3
i, j(s, t) (53)

with X being an N-dimensional vector containing R, Z, and
all interpolated variables of the model (e.g., R, Z, Ψ, T, ρ,
etc). Here, Pi, j denotes the Bezier control points in the N-
dimensional space (see figure 4). For all physical variables,
this 2D expression is multiplied with the toroidal Fourier
basis (next section), while for R and Z, axisymmetry is
assumed. The coordinates s and t are orthogonal to the toroidal
coordinate φ.36

36 An ongoing 3D extension of the code will generalize the mapping to be
non-axisymmetric, i.e., R and Z will also be expanded in the Fourier basis.
In addition, the orthogonality of s and t with respect to φ will be given up
depending on the choice of coordinates. See sections 2.15 and 3.8.
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Since first order continuity in real space (G1), i.e. continuity
of the values and the real space gradients, is applied as con-
straint between neighbouring elements, corresponding control
points of adjacent elements need to lie on a common line in
the N-dimensional space through the vertex location, which
reduces the number of degrees of freedom (see figure 5). Effec-
tively, only four degrees of freedom pk, uk, vk, and wk remain
per node k and for each component of the vector X, which
are shared by all elements connected to the respective node.
These degrees of freedom are linked to the value, s-derivative,
t-derivative, and s–t cross-derivative at the location of the grid
node. The relation of the control points with the coefficients
pk, uk, vk, and wk is explicitly shown in reference [2]. Since
metric tensor and Jacobian differ between elements, each ele-
ment e has specific scale factors de

k,l for each degree of freedom
(dof) l at each node k to guarantee G1 continuity. These scale
factors are a geometric grid property and therefore time inde-
pendent and identical for each physical quantity. For any given
quadrangular element e of the mesh, a physical variable, e.g.,
temperature T, is expanded in the G1 continuous basis in the
following way (the Fourier expansion in toroidal direction is
omitted here for clarity):

T(s, t)|e =
nvert∑
k=1

ndofs∑
l=1

Tk,lHk,l(s, t) de
k,l (54)

where nvert = 4 is the number of vertices per element, ndofs = 4
is the number of degrees of freedom per vertex. Hk,l are the
16 basis functions written as a product of 1D basis functions
in s and t: Hk,l(s, t) = Hk(s)Hl(t). The four 1D basis func-
tions Hk(s) are constructed as linear combinations of Bernstein
polynomials to satisfy:

• H1(s = 0) = 1, H′
1(s = 0) = 0, H1(s = 1) = 0, H′

1(s =
1) = 0

• H2(s = 0) = 0, H′
2(s = 0) = 1, H2(s = 1) = 0, H′

2(s =
1) = 0

• H3(s = 0) = 0, H′
3(s = 0) = 0, H3(s = 1) = 1, H′

3(s =
1) = 0

• H4(s = 0) = 0, H′
4(s = 0) = 0, H4(s = 1) = 0, H′

4(s =
1) = 1

i.e., the well-known cubic Hermite finite elements. This way,
the coefficients Tk,l become node properties (nodal formula-
tion) which all elements containing the respective node are
sharing, while the coefficients de

k,l corresponding to the same
node are different for each element to guarantee the G1 conti-
nuity.

G1 continuity is not strictly enforced at the grid axis and in
the direct vicinity of the X-point(s) in a flux surface aligned
grid due to the specific topology at these points (more than
four elements share a common node). Although this is typ-
ically not an issue in the simulations, an implementation of
strict G1 continuity also at these special points is on its way by
locally combining basis functions in an appropriate way (see
section 3.8). In a few cases, the higher order FE formulation
can produce ‘overshoots’ leading to zero or negative values
of density and temperature, in particular in the presence of
strong convection. For that reason, numerical stabilization has

Figure 5. Two neighbouring Bezier elements are shown. The left
plots represent the control points of the elements and the right plots
depict the resulting surface. In the plots at the top, the neighbouring
Bezier elements share the control points at the common boundary
such that values are continuous across the boundary between the
elements (G0 continuity). However, since the control points around
the boundary are not aligned to each other, i.e., green lines exhibit
bends, derivatives are not continuous across the element boundary.
The plots at the bottom correspond to the discretization used in
JOREK, where both values and derivatives are continuous across the
element boundaries (G1). Here, the control points at the element
boundaries are aligned reducing the degrees of freedom, i.e., the
green lines do not exhibit bends.

been implemented as shown in section 3.3. The cubic Bezier
element formulation is a generalisation of the isoparametric
cubic Hermite elements [39], allowing a local refinement of
each element in 2 or 4 sub elements [2].

3.1.2. Finite element grids. All data structures and routines in
JOREK are implemented in a general way suitable for unstruc-
tured grids. Nevertheless, most grids in use are effectively flux
surface aligned grids which are structured within the respective
topological domains. Usually, a JOREK simulation is started
by calculating the equilibrium on an initial grid, which is not
flux surface aligned. Based on this equilibrium, a flux surface
aligned grid is then constructed. For numerical accuracy, using
such a flux surface aligned grid is in general beneficial (see
section 4.2), while the code can be used also with non-aligned
grids where appropriate. The grid types available include sim-
ple rectangular grids, simple polar grids, polar grids with a
rectangular central region. These grids are mostly used as ini-
tial grid and only occasionally for the time evolution, e.g., in
case of VDEs, where the grid would not remain aligned during
the simulation anyways.

Flux surface aligned grid generators are available for plas-
mas without X-point, with an upper X-point, a lower X-point,
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Figure 6. JOREK example grids shown at reduced resolution for
clarity. (Left) Flux-surface aligned grid [123] for a TCV equilibrium
with two X-points (the lower X-point is active). The part in the
closed flux region is shown in light blue, the two separatrices in
black, the grid between the separatrices in grey, the lower private
flux region in dark blue, the upper private flux region in red, the
outer open flux region in orange, and the inner open flux region in
green. (Right) Flux surface aligned X-point grid extended to the true
first wall (using the methods described in reference [124]) for an
MAST Upgrade case with Super-X divertor.

or two X-points. Additionally, an extension of grids to the
true first walls is possible as described in [124]. Grid patches
(which are not flux-surface aligned any more) are added in the
far SOL to cover the space between a flux-surface aligned X-
point grid and plasma facing components. Figure 6 contains
two examples for a double X-point grid and a double X-point
grid extended to the true physical wall (both are shown at
reduced resolutions for clarity).

3.1.3. Toroidal Fourier series. As mentioned before, the
poloidal discretization in 2D Bezier finite elements is com-
bined with a toroidal Fourier expansion for the physical
variables. The toroidal real Fourier harmonics included in a
JOREK simulation are selected by the number of harmon-
ics ntor, where cosine and sine components are counted sepa-
rately—since n = 0 does not have a sine component, ntor must
be an uneven number. In addition, the periodicity nperiod can
be specified. The latter parameter allows to enforce period-
icity in the torus after a fraction 1/nperiod of a full toroidal
turn. This effectively means, that instead of n = 0, 1, 2, . . . ,
the harmonics n = 0, 1 × nperiod, 2 × nperiod, . . . are included in
a simulation. The number of toroidal planes nplane for the inte-
gration along φ direction needs to be chosen large enough to
avoid aliasing. Typically, nplane � 2(ntor − 1) is sufficient, i.e.,
4 planes per period. While fast Fourier transforms (FFTs) per-
formed during the matrix construction using the FFTW library

(see section 3.4) can handle arbitrary integer numbers, best
performance is usually achieved, when nplane is taken to be a
power of two.

3.1.4. Weak form. As a consequence of using the finite ele-
ment approach, the model equations are solved in weak form
such that each equation is multiplied by a test function from
the same space as the basis functions, and then integrated over
the volume V of the computational domain (Galerkin method).
Since the resulting equation needs to be fulfiled for each test
function, many linear relations are obtained, which form the
rows of the matrix system (see section 3.4 for more details on
the matrix construction). In case of operators involving higher
order derivatives, partial integration is performed e.g.,∫

V
dVa∇ · b = −

∫
V

dV∇a · b−
∮

A
dAab · n. (55)

Here, a and b are arbitrary scalar respectively vector expres-
sions, A denotes the boundary of the computational domain
and n the normal vector to that boundary. Depending on
boundary conditions, some of the boundary integrals vanish,
otherwise they are implemented. In particular cases, relations
known from physical properties of the system may be inserted
into the boundary integrals. In such a case, the boundary inte-
gral is expressed in terms of other variables and natural bound-
ary conditions are obtained37. Such a natural boundary condi-
tion is used, for instance, for the JOREK–STARWALL cou-
pling, where the STARWALL expression for the magnetic
field tangential to the boundary is plugged into the boundary
integral of the current definition equation (see section 2.9).

3.2. Temporal discretization

The physical equations expressed in the form ∂A(u)/∂t =
B(u, t), where u denotes the vector of physical variables, are
discretized in time as[

(1 + ξ)

(
∂A
∂u

)n

−Δtθ

(
∂B
∂u

)n]
δun

= ΔtBn + ξ

(
∂A
∂u

)n

δun−1, (56)

where the second order linearised Crank–Nicolson scheme is
selected by (θ, ξ) = (1/2, 0) and the second order BDF2 Gears
scheme is selected by (θ, ξ) = (1, 1/2). The first order implicit
Euler method corresponds to (θ, ξ) = (1, 0) but is normally not
used in practice. Here, δun = un+1 − un denotes the change
of the variables from time step n to n + 1. The definition
equations for current and vorticity are directly implemented
to be satisfied at time point n + 1, the above scheme does not
need to be applied.

Details, and the time stepping scheme suitable for a more
general form of equations is shown in appendix C. The lin-
earization involved in the above time stepping can be replaced

37 Since natural boundary conditions are not enforced, it needs to be checked
whether a simulation actually fulfils the original relation. If they are not
satisfied well enough, smaller time steps are typically required.
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by Newton iterations with a beneficial effect onto non-linear
stability in some cases, as demonstrated in reference [64],
however this is not implemented in the present code ver-
sion as these earlier tests showed that larger time steps are
possible, however at an increased computational cost and
memory consumption such that the overall benefits were
limited.

3.3. Numerical stabilization

When the system considered is dominated by convection, the
finite element method may suffer from numerical instabili-
ties as illustrated on the left-hand side of figure 7. The vari-
ational multi-scale (VMS) is a general framework to avoid
these numerical artefacts [125, 126]. The main purpose of the
VMS is to take into account the effect of the unresolved scales
onto the numerically resolved scales. The consequence is to
complement the physical model by a proper numerical dissi-
pative term that scales with the mesh size. The SUPG and the
Taylor–Galerkin [127] methods are subsets of the VMS. Let
us explain with the mass conservation equation how a simpli-
fied VMS contribution is added to the weak form. Assume the
initial equation is

∂ρ

∂t
+ V · ∇ρ = −ρ∇ · V + Sρ

In order to stabilize the discretization of the convection term
V · ∇ρ, a dissipation term is added to the weak form to remove
numerical artefacts without altering the physical dynamics
(figure 7). With this numerical dissipation, the equation that
is numerically solved now turns into the following form

∂ρ

∂t
+ V · ∇ρ = −ρ∇ · V +∇ · (Dvms∇ρ) + Sρ.

Here, the stabilization tensor Dvms, in the context of magne-
tized plasma, is designed such as to take into account the strong
anisotropy of the flow

Dvms = D‖,vms(b ⊗ b) + D⊥,vms (I − b ⊗ b)

where

D‖,vms = τ ∗‖ (V · b)2 and

D⊥,vms = τ ∗⊥(V · V − (V · b)2).

The scaling factors τ ∗‖ and τ ∗⊥ are positive and of the order
of the mesh size. More precisely, scaling factors correspond
to the ratio of the mesh size over the maximum speed of
the acoustic waves and thus have units of time. This scal-
ing ensures that, under mesh refinement (acoustic speeds do
not change as the same physics is considered), the VMS
numerical dissipation asymptotically vanishes. Therefore, the
modified equation numerically solved is consistent with the
initial physical model. For the Taylor–Galerkin approach [127,
128] τ ∗‖ = τ ∗⊥ = δt/2. Sometimes, we directly fix D‖ and D⊥
to values that scale with the mesh size and the estimated back-
ground turbulence. Similar stabilization is applied to the other
equations. For the full MHD model (section 2.12), a more gen-
eral stabilization has been also developed [129], where the

Figure 7. Example of the effect of the Taylor–Galerkin stabilisation
(TG2) for a simplified model for the vorticity evolution (reference
[130]) in 2D on a grid of 50 by 50 cubic finite elements.

hyperbolic part (acoustic and material waves) of the system is
stabilized globally, to take into account the coupling between
variables. In the context of the reduced MHD without dia-
magnetic effects, the velocity profile is defined by two scalar
variables: the parallel velocity (v‖) and the velocity stream
function (u)

V = −R2∇u ×∇φ + v‖B.

It is then assumed that the parallel velocity is v‖B and
the perpendicular velocity is −R2∇u ×∇φ. In this con-
text, we use the approximations D‖,vms(b ⊗ b) � δt

2 v‖
2B ⊗ B

andD⊥,vms (I − b ⊗ b) � δt
2 R4(∇u ×∇φ) ⊗ (∇u ×∇φ). The

Taylor–Galerkin stabilisation associated to the density
equation can finally be written as:

∂ρ

∂t
+ V · ∇ρ = −ρ∇ · V +

δt
2
∇ ·

(
v‖

2BB · ∇ρ
)

+
δt
2
∇ ·

(
R4∇u ×∇φ(∇u ×∇φ) · ∇ρ

)
+ Sρ.

The associated weak form now becomes:∫
∂ρ

∂t
ρ� = −

∫ (
∇ · (ρV) −∇ · (D∇ρ) − Sρ

)
ρ�

− δt
2

∫
v‖

2B · ∇ρB · ∇ρ�

− δt
2

∫
R4 ((∇u ×∇φ) · ∇ρ)

(
(∇u ×∇φ) · ∇ρ�

)
.

Similar stabilization is applied to the other equations
of the reduced MHD model. Since users perform both
spatial and temporal convergence tests for production
simulations, and since VMS and TG stabilization both
consistently vanish in the limit of high spatial and temporal
resolutions, a significant influence of the stabilization onto
physics results is excluded, in particular energy and momen-
tum conservation is not affected. Furthermore, the energy
conservation diagnostics automatically evaluated during each
simulation allow to check this easily. For instance in a violent
MGI case, for which energy conservation is discussed in
the verification section briefly, the small non-conservation
observed is not associated to stabilization as separate checks
confirmed. Details about numerical stabilization are omit-
ted when discussing simulations in the results sections for
that reason.
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3.4. Matrix construction

The linear system of equations to be solved in each time step
is described by a sparse matrix system. Due to the locality
of the Bezier basis functions, usually only one out of sev-
eral thousand entries in the matrix is non-zero. The matrix is
constructed in a distributed way by a domain decomposition,
where each MPI task is responsible for creating the matrix
entries corresponding to its respective part of the finite element
grid. Note that the full matrix construction could be avoided
by a matrix free evaluation of matrix vector products, how-
ever earlier tests showed a higher computational cost while the
memory consumption dominated by the preconditioner is not
reduced too much. Each MPI task uses OpenMP to parallelize
further. The matrix contributions are calculated separately for
each grid element (‘element matrices’). These element matri-
ces are calculated by carrying out the integrals in the weak
form of the equations over the element–local coordinates s
and t via Gauss quadrature. The integration in toroidal direc-
tion is either carried out by a direct summation over equidis-
tant toroidal planes (for very small problems), or by FFT.
Vectorization and parallel scalability of the matrix construc-
tion has recently been improved [131]. Details on the matrix
construction and properties are shown in reference [132].

3.5. Solver

Several variants are implemented in JOREK for solving the
linear sparse matrix system after it has been assembled like
described in the previous section. In the simplest approach,
which is usually only used for axisymmetric n = 0 sim-
ulations, the whole matrix system is treated by a direct
solver. Interfaces to the PaStiX [133], MUMPS [134, 135],
and WSMP [136] direct sparse matrix solvers are imple-
mented. PaStiX is mostly used in practice. PT-Scotch [137]
or ParMETIS [138] are used internally by the solvers, to mini-
mize fill-in during the matrix factorization and to achieve good
performance. An interface to the STRUMPACK library [139]
has been added very recently [132]. Several of the solvers offer
the possibility to compress the matrix system via block low
rank compression or via hierarchically semiseparable matri-
ces, for which only first tests have been done with JOREK so
far [140].

For non-axisymmetric simulations, a restarted GMRES
variant [141] is usually applied [41]. The necessary linear oper-
ations on the sparse matrix system are implemented directly
in JOREK on the distributed representation of the system of
equations. Since the system is very stiff, good precondition-
ing is mandatory. For this purpose, a physics based approach
is used. Since each linear eigenfunction in a tokamak is asso-
ciated to a single toroidal mode number, the preconditioner
assumes approximate decoupling of the toroidal harmonics.
Consequently, if the matrix is written into blocks correspond-
ing to the toroidal harmonics, the diagonal blocks describing
the interaction of each harmonic with itself are kept while all
off-diagonal blocks are dropped in the preconditioning. This
block-diagonal structure of the preconditioning matrix allows
to treat each block independently of the others. For that pur-

pose, parts of the global matrix, which has been assembled in
a distributed way by domain decomposition (see section 3.4)
needs to be re-distributed by an all to all communication.
The complete distributed matrix remains in memory as it is
needed for GMRES operations. Since this re-distribution can
become inefficient for large problem sizes, an option for re-
calculation of the preconditioning matrices has recently been
implemented using the same routines applied for the global
matrix construction [132].

Each block matrix is solved by one or several MPI tasks on
one or several compute nodes, with the number of cores inside
a compute node being exploited via the built-in thread support
of the sparse matrix libraries (pthreads in case of PaStiX). Note
that the analysis step of the solvers is performed only once in
the beginning of a simulation (or upon a restart). The LU fac-
torization of the block matrices is only performed in the first
time step of a simulation, and again, when the GMRES conver-
gence has deteriorated too much, i.e., the number of GMRES
iterations in a time step exceeds a user defined threshold. Con-
sequently, the factorized preconditioning matrices may be re-
used in several or even many consecutive time steps before an
update is needed.

The solve step, on the other hand has to be carried out in
each GMRES iteration of every time step. In the linear phase of
a simulation, the preconditioning matrix is an extremely good
approximation of the complete system such that an update is
not needed often and the factorization has almost no impact
onto the overall performance. However, in a highly non-linear
state, the factorization may need to be updated almost every
time step and dominates the overall computational costs of
the solver in that case. The preconditioner in such a highly
non-linear state is not approximating the complete system well
any more, since the energy exchange between the toroidal har-
monics becomes strong. For such situations, a recently imple-
mented generalization of the preconditioner [132] can be of
advantage, where each block matrix in the preconditioner can
contain several toroidal harmonics. While this improves the
approximation of the complete system by the preconditioner,
it also increases the computational costs for inverting the block
matrices such that the best configuration for the preconditioner
is case specific. In case these ‘mode groups’ are not mutu-
ally exclusive, several options exist for obtaining the com-
bined result vector. Another recently implemented extension
[132] allows to use complex matrix solvers for the precon-
ditioner, reducing memory consumption and computational
costs considerably.

When PaStiX is used, JOREK exploits a specific feature
of the solver, where the connectivity graph is not considered
separately for each dof. Instead, square blocks of dimension
nvar are treated as dense blocks, where the number of vari-
ables typically is around nvar = 8. Exploiting this structure,
greatly enhances the performance of the analysis and factor-
ization steps and can even improve the performance of the
solve step considerably. Since the result vector of the matrix
system contains the changes of all dofs for all physical vari-
ables, the actual values of the variables need to be updated
after the solve step. However, also the changes of the vari-
ables in the previous time step need to be stored, since those
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are required for some of the time stepping schemes (e.g.,
BDF2 Gears, see section 3.2 for more information on the time
stepping).

Main limitations of the solver strategy are the high mem-
ory consumption associated to the factorized preconditioning
block matrices (partly mitigated by the recently added com-
plex matrix treatment in the preconditioner), the limited paral-
lel scalability of the direct solver used in the preconditioning
(addressed by adapting the code for better optimized or fur-
ther improved solver libraries), and the deteriorating efficiency
of the preconditioning in case of strong toroidal mode cou-
pling (mitigated by the recently implemented generalization of
the preconditioner to integrate the most important non-linear
interactions in the approximation).

3.6. Parallelization

JOREK uses a hybrid MPI plus OpenMP parallelization. The
number of MPI tasks must be a multiple of number of toroidal
harmonics (cosine and sine components are not counted sepa-
rately here). Typically, a few MPI tasks are started per compute
node and the number of OpenMP threads is adapted such that
all CPU cores are exploited. The number of compute nodes
used is primarily determined by the memory consumption of
the simulation. As shown in reference [132], already the matrix
system itself requires significant storage and the LU factor-
ization used in the preconditioner (see section 3.5) increases
this memory consumption further. JOREK is mostly used on
conventional architectures with Intel or AMD CPUs including
Intel Xeon Phi. Exploiting GPUs is considered for the future,
in particular for the kinetic particles (see section 2.10). Base
information about the simulation like the input parameters,
but also the plasma state, i.e., all degrees of freedom of all
physical variables on the whole grid, is duplicated across all
MPI tasks (domain cloning). This duplication is affordable in
terms of memory consumption, and allows an efficient load
balancing for instance for the kinetic particles. The communi-
cation overhead typically associated with PiC methods using a
domain decomposition is avoided since particles do not need
to be transferred from one MPI task to another. An example for
the scaling of the kinetic particle model is shown in figure 8.

MPI rank 0 is responsible for reading the namelist input
file, broadcasting this input to the other MPI ranks, reading and
writing restart files38, printing information to the log file, etc.
The grid construction and equilibrium calculation (section 2.2)
is only carried out on one MPI rank typically as this is not an
expensive part of the simulation. This is executed in a separate
‘job’ from the time evolution such that no CPUs are idling. For
(large) free boundary equilibrium calculations, several MPI
ranks may be necessary due to memory requirements.

The parallelization of the matrix construction during the
time stepping is done by a domain decomposition such that

38 For reading/writing large files in the free boundary extension (section 2.9)
and the kinetic particles framework (section 2.10), parallel I/O (MPI I/O and
parallel HDF5, respectively) is used to achieve good performance. In case of
the free boundary extension, this concerns reading the vacuum response matri-
ces [99]. In case of the particles framework, it allows to avoid unnecessary
communication when reading/writing large amounts of particle data.

Figure 8. Strong scaling of a JOREK particle simulation (with 109

ions) from an entirely kinetic electro-static ITG turbulence
simulation with JOREK on the Marconi-Fusion supercomputer (see
sections 2.14 and 7.1).

the system of equations is assembled in a distributed way (see
section 3.4). For the iterative solver (see section 3.5), an all
to all MPI communication is carried out to extract the precon-
ditioning matrices from the complete system (see section 3.5
for details on the solver and preconditioner). Optionally the
harmonic matrices can be recomputed bringing performance
gains in specific limits [132]. Handling the preconditioning
matrices may be slightly unbalanced since the n = 0 block
is smaller than the others (see section 3.4). However, MPI
rank 0, which is responsible for the n = 0 block, either alone
or together with a few other MPI tasks, usually anyway has
other responsibilities, which can overlap with the solve on the
other MPI ranks, such that this is not affecting performance
in a significant way. The ‘mode groups’ described in the pre-
vious section can lead to a larger imbalance, which can be
compensated by adapting the number of MPI tasks assigned to
each preconditioner block matrix, which is possible in a flexi-
ble way [132]. The sparse matrix libraries applied for solving
the preconditioning matrices employ a hybrid parallelization
internally as well. In case of PaStiX, this is done by an MPI
plus pthread parallelization, for instance. The linear operations
inside GMRES, e.g., sparse matrix vector products, are well
balanced, since they are based on the evenly distributed global
matrix.

An example of the scalability of JOREK is shown in figure 9
for a moderate problem size. Further work to improve the
performance and parallel scalability of JOREK is ongoing,
as shown in section 3.8. The scalability of STARWALL is
shown in figure 10, refer to reference [99] for more informa-
tion about the parallelization of STARWALL and the JOREK-
STARWALL coupling terms.

3.7. Code management

JOREK is written in Fortran 90/95 using Fortran 2003 and
2008 extensions in particular in the kinetic particles part. A
few smaller core routines and interfaces are written in C and
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Figure 9. Strong scaling test of the JOREK parallel efficiency for a
moderate problem size on the Marconi-Fusion supercomputer using
Intel Skylake CPUs. The setup is a JT-60SA ELM simulation
(reference [4]) with a moderate 2D grid resolution of about 5k grid
nodes and a relatively high toroidal resolution including n = 1 . . . 15
included. For a fixed problem size, the number of compute nodes is
increased from 16 (576 cores) to 160 (5760 cores). Note, that only
36 out of the 48 cores per node were used in this test. The relative
efficiency is approximately 50% when comparing the performance
between 16 and 160 compute nodes, which constitutes an excellent
value for a fully implicit code. In practice, the problem size
considered here would not be addressed using more than 32
compute nodes, for which the relative efficiency is around 85%.

Figure 10. Strong scaling test of the STARWALL parallel efficiency
for a small problem size on the Marconi-Fusion supercomputer [99]
with 35 200 wall triangles equivalent to 17 600 degrees of freedom
(size chosen to fit into the memory of a single compute node). The
execution time of the whole STARWALL run is given. When the
number of MPI tasks is increased from 1 to 128, a speed-up of 63.3
can be obtained (parallel efficiency of 50%). At 64 MPI tasks which
would be used in practice, the parallel efficiency is around 60%.
Larger production cases scale to a higher number of cores with a
better efficiency. Note that this figure shows the scaling for response
matrix calculation in STARWALL, not for the time stepping of the
JOREK simulation. Calculating the STARWALL contribution to the
boundary conditions in the JOREK time stepping is usually not
altering the JOREK scaling significantly as this constitutes a
sub-dominant and well parallelized [99] part of the computational
costs except for exotic setups which combine a low plasma
resolution with a very high wall resolution.

C++. JOREK presently consists of more than 250 thousand
lines of source code, to which dozens of developers have con-
tributed over the years. More than 100 pull requests are merged
per year at the moment with a strongly increasing trend. More
than 40 scientists presently use the code world-wide for very

different purposes and a significant fraction of those is actively
contributing to the development. Via modern code develop-
ment techniques and a common shared code repository, a
unique stable code basis is maintained shared by all users
and for all code applications (the code is hosted on the Atlas-
sian Bitbucket system operated by the ITER Organization).
A dedicated Wiki contains the collaboratively written code
documentation.

A particular challenge is posed by the contradictory goals
of code stability and agile development. With the strongly
increasing number of users and developers over the last years,
it became critical to ensure that developments for specific pur-
poses cannot break entirely different code applications. For
guaranteeing this, limited manpower was available such that a
high level of efficiency was required. To achieve these goals to
the best possible extent, the modular structure of the code was
continuously improved and the development work flow was
switched from subversion to a git based repository more than
five years ago. The development work flow starts by describing
issues or planned new features in the Jira issue tracker, dis-
cussing about the planned implementation, creating a branch
for the respective development based on the latest code ver-
sion from the main development branch, implementing the
changes into that branch, raising a pull request with several
code-reviewers, refining the solution iteratively, and merging
the modifications into the main development branch. To ensure
coordination and inform users and developers, all changes to
the code are discussed and communicated in regular develop-
ment meetings. At each meeting, a release version of the code
is created. Smaller developments are usually merged quickly,
large developments are sometimes carried out in a branch over
months or even years. Measures are taken to reduce the num-
ber of long-lived branches and the remaining ones are actively
kept up to date with the main development branch by regularly
merging in all recent changes.

To avoid introducing problems by the numerous smaller and
larger developments which take place in parallel with the large
number of different physics models and code applications, we
introduced a framework for carrying out automatic test cases
in addition to the reviewing of pull requests. Our approach
to these tests is described in the following (reference [142]
explains an older approach, which has been replaced several
years ago). About 50 automatic regression tests are in place at
present, which are executed automatically whenever new mod-
ifications are pushed to any branch on the central repository.
These test cases can also easily be executed locally by each
user. The framework is flexible enough to allow for different
‘versions’ of the same regression test in different branches,
a feature needed in case a bug is detected and resolved, or
a modification is implemented that intentionally changes the
code behaviour (e.g., improved grid construction). The data
required for carrying out a regression test and checking the
result is stored on a separate server and the correct version of
the test is identified via hash keys. All regression tests are car-
ried out with a large set of compiler/linker debugging options
and some regression tests are using a second compiler (gFor-
tran instead of Intel Fortran) to catch as many problems as
possible.
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The majority of the test cases are based on low-resolution
non-linear simulations, which are restarted from an HDF5
restart file and continued for a single time step only. The
result is then compared to a reference result with a specific
absolute tolerance. This has been tested extensively to cap-
ture problems reliably and the execution in the non-linear
phase ensures that all physics terms influence the solution.
Among the test cases, also a few specific ones exist that
work differently. The simplest ones only compile the code
and all diagnostic binaries for the various physics models,
other tests cover the grid construction and equilibrium solver.
Specifically for the kinetic particles module, also unit tests are
in place.

In spite of the considerable number of test cases, not all
applications of the code can be covered, however new regres-
sion tests are continuously added and are introduced for new
code features already before these are merged into the main
development branch. Furthermore, a generalization of the
framework is foreseen to simplify testing all combinations of
different use cases and model extensions.

3.8. Outlook

This section gives a brief outlook onto developments regarding
the numerical methods of the JOREK code.

For future simulations of non-axisymmetric configurations
(stellarators), in addition to the derivation of a hierarchy of
MHD models (section 2.15), the numerical methods also need
to be adapted. In particular, the following assumptions need to
be relaxed:

• The simulation grid is not axisymmetric any more, i.e. R
and Z are not expressed in s and t only, but also expanded
in a toroidal Fourier series. An import of such a 3D config-
uration from GVEC [143] has already been implemented,
as shown in figure 11.

• The assumption that s and t are orthogonal to φ will not be
fulfiled any more in general (for instance in case of PEST
coordinates). In addition, a φ = const surface will in gen-
eral not be planar any more (for instance in case of Boozer
coordinates). This is taken into account in the ongoing
implementation of the new stellarator capable models.

• In a stellarator, the linear eigenfunctions of plasma
instabilities cover a toroidal spectrum instead of being
restricted to a single toroidal mode number. Consequently,
the presently used preconditioner, which relies on the lin-
ear decoupling of toroidal harmonics, cannot be applied
any more and solver developments are important. Work
in this direction is moving forward, in particular see
the ‘mode groups’ in the preconditioner described in
section 3.5 which constitutes a first important step towards
efficient stellarator simulations.

Regarding the solver, several developments are on the way
building up onto previous work, this includes for instance an
assessment for the use of GPUs, enhanced preconditioning via
an integrated iterative refinement, the use of reduced order for
the preconditioner, etc. These efforts are at early stages and are
thus not described here in detail.

Figure 11. Example of a 3D grid (shown with very low resolution
for clarity), imported from the GVEC code for a 5 field period,
elliptical equilibrium, similar to the W7-A stellarator.

For the anisotropic heat transport (see also section 4),
reduced order basis functions for selected quantities are being
studied to further improve the numerical accuracy in particular
when finite element grids are used that are not aligned to the
flux surfaces, e.g., in case of VDEs.

Aiming at simplified data exchange, integrated modelling,
and standardized analysis tools, the adaptation of JOREK to
IMAS is on the way. The ITER Integrated Modelling & Anal-
ysis Suite (IMAS) [144] is a scientific software framework
infrastructure that orchestrates execution of integrated plasma
codes. The physics data model is a basis for coupling the
plasma codes and experimental data at different space and
time scales through its 60+ interface data structures (IDS). A
widely used IDS substructure for description of the computa-
tional domain is the general grid description (GGD), with the
purpose to describe any N-dimensional numerical grid geom-
etry and associated plasma state quantities with time slices
sampled during the simulation. Generally, JOREK couples
to the equilibrium and MHD IDS for input conditions and
nonlinear plasma state output that can be directly compared
with other simulators that use the GGD mapping (see e.g. ref-
erence [145]). Integration of JOREK in IMAS is currently
underway, with a few aspects and methods already available
to allow incorporation of JOREK relevant data in the MHD
IDS employing the GGD representation [146]. Spatial discreti-
sation under GGD in 3D requires Bézier finite elements for
poloidal mesh discretisation (nodes and corresponding values
with derivatives) combined with real Fourier series for toroidal
harmonics. Temporal slices in the MHD IDS are saved as
flux aligned GGD and corresponding values on the grid. Time
slices for GGD and values on GGD can be different to respect
database size growth per simulation. Finally, stored simula-
tion results enable analysis with unified tools and runs under
integrated modelling workflows.

In the present grid structures, G1 continuity is satisfied
across the whole domain except for the magnetic axis and
the direct vicinity of the X-point. The G1 continuity at these
special points will be restored by a special treatment with
locally adapted basis functions. Furthermore, a generalization
of the Bezier FE formulation to higher order basis functions
and higher order continuities across element boundaries was
recently implemented [147]. The implementation of an option
for triangular FEs in JOREK is being considered, operator
splitting or relaxation techniques are being discussed, and fur-
ther refined numerical stabilization methods such as VMS and
higher order Taylor Galerkin methods are being investigated.
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Figure 12. Example of the G1 continuous, i.e., continuous values
and first derivatives in real space, profiles in the poloidal plane for
(left) a density distribution and (right) the perpendicular conductive
heat flux.

4. Verification

In this section, selected verification work done for the JOREK
code is highlighted. This includes code–code benchmarks,
comparisons to analytical solutions, comparisons between
reduced and full MHD, and an assessment of energy conser-
vation in a violent non-linear example. The emphasis here is
on more recent tests, of which many have not been shown in
publications and conference contributions yet. A lot more ver-
ification work can be found in the literature. E.g., the JOREK
pellet model has been successfully benchmarked, for a deu-
terium pellet, with a dedicated code by B. Pégourié, as can
be seen in figure 2 of reference [86]. Note that all the vali-
dation against experiments is included along with the physics
studies in sections 5–7. Figure 12 shows an example to demon-
strate that the finite element solutions are G1 continuous and
(if resolved well) smooth.

4.1. Convergence properties

Convergence of the exponential growth rates with the spatial
grid resolution is shown in the following. Two cases are con-
sidered in circular plasmas for simplicity: a tearing mode (TM)
test-case using the full-MHD model and a ballooning mode
test case with the reduced-MHD model (the so-called CBM18
equilibrium for mode number n = 20). The grid resolution is
scanned homogeneously in the radial and poloidal directions,
from (nflux, ntht) = (27, 180) to (90, 600), where nflux and ntht

are the equidistant number of radial and poloidal elements. The
relative error of the growth rates scales inversely with the 5th
power of the spatial resolution like ∝ (

√
nfluxntht)−5.

With finite elements, the local error is estimated as E ∝ hp

according to reference [148], where h is the element size,
and p is the polynomial order of the finite elements. Here,
(
√

nfluxntht)−1 is used as an approximation of the element size
h, and p = 4 because the Bezier elements are bi-cubic. Since
the value of interest in these tests are the growth rates of the
toroidal modes, which are obtained by integrating the mode
energies over all the elements of the simulation domain, this
adds another factor (

√
nfluxntht)−1 to the error estimate. Hence,

the error of the growth rates is expected to scale with the 5th
power of the spatial resolution, (

√
nfluxntht)−5.

Figures 13 and 14 show the convergence of the growth rate
error, as a function of spatial resolution. For the TM, 5th order

Figure 13. The relative error of the growth rate of a TM is plotted as
a function of the spatial resolution

√
nfluxntht, for the full-MHD

model. The error converges as the 5th power of the spatial
resolution, as expected. Reprinted from [67], with the permission of
AIP Publishing.

Figure 14. The relative error of the growth rate of a ballooning
mode n = 20 is plotted as a function of the spatial resolution√

nfluxntht, for reduced MHD. The error converges as the 5th power
of the spatial resolution, as expected.

scaling is found as expected, and beyond a high enough resolu-
tion, the error diminishes dramatically, suggesting the growth
rate is already fully converged. For this case, since the error
diminishes faster than the expected scaling at high resolution,
the intermediate case of

√
nfluxntht = 2 × 102 is assumed to be

the converged growth-rate. For ballooning modes, using the
CBM18 case, the growth rate convergence also follows a scal-
ing of the expected 5th order with the reduced-MHD model.
For this case, since the error still diminishes at the highest res-
olution, the growth-rates are fitted with the expected scaling,
such that the converged growth-rate is obtained by extrapolat-
ing to infinite resolution. With the full MHD model, only 3rd
order scaling was found for the ballooning mode test case (see
reference [149]). The reason for this different behaviour is still
being investigated.

4.2. Anisotropic heat transport

The numerical treatment of anisotropic heat transport in
JOREK allows to handle experimentally relevant parame-
ters, where the diffusion coefficients along magnetic field
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Figure 15. (Left) Poincaré plot of the magnetic field configuration used to demonstrate anisotropic heat transport in the JOREK reduced
MHD model. (Right) Temperature distribution in a fully converged simulation with a heat diffusion anisotropy of 1010. The temperature
flattening inside the island is clearly visible.

lines and perpendicular to them differ typically by a fac-
tor 108 to 1010. We show only a small demonstration of
the properties here, based on an example with large aspect
ratio circular configuration where R = 100 and a = 1. This
simplified configuration is used to ease interpretation since
it eliminates mode coupling and allows to initialize a single
magnetic island without secondary islands or stochastization.
The anisotropic heat diffusion equation is solved both using
a polar grid (approximately aligned to the flux surfaces) and
a rectangular grid (as example for a grid that is not flux sur-
face aligned at all). A more detailed analysis is planned for the
future in the context of implementing an advanced scheme fol-
lowing reference [150] for particularly demanding cases like
hot VDEs with a grid not aligned at all to the magnetic field
and RE fluid simulations where parallel diffusion is sometimes
used as a computationally less demanding proxy for the fast
parallel advection.

Figure 15 shows the magnetic configuration via a Poincaré
plot as well as the temperature distribution obtained at high
anisotropy. A pure 1/1 magnetic perturbation (MP) is applied
to create a large magnetic island. While keeping the mag-
netic field fixed in time and assuming a spatially uniform den-
sity, the temperature evolution equation is solved for single
large time step with the implicit Euler method to determine
the steady state temperature distribution. A localized Gaussian
heat source is applied in the centre of the plasma (zero inside
the island surfaces). Details of the test case are described in
appendix D.

Figure 16 shows cuts of the temperature distribution across
the mid plane at different anisotropies and different resolutions
for the polar grid (left panel). It also contains a convergence
study (right panel) of the central temperature value with the
grid resolution for both, aligned and unaligned grids. Note that

the error scales with the number of grid points to the third
power in case of an approximately aligned grid and only with
the second order in case of a non-aligned grid. When toler-
ating a relative error of 0.3% in the core temperature, a grid
resolution of 200 × 200 grid points allows to easily resolve
anisotropy values beyond 1010 in the flux surface aligned case.
With the unaligned grid, the limit is around 109 for this reso-
lution and error. The results would naturally change a bit with
different mode numbers. However, the simulation grids tested
here do not make use of any localized refinement, which is
routinely applied in production simulations to concentrate the
grid elements in the MHD active regions and resolve them
better than the remainder of the plasma. Note that in case
of a hot VDE, which corresponds to a highly anisotropic
case that usually needs to be simulated in an unaligned grid,
the ‘spurious perpendicular heat transport’ becomes negligi-
ble as soon as strong 3D MHD activity is triggered and the
physical transport along stochastic field lines dominates over
numerical errors.

4.3. Energy conservation

The set of equations (1)–(4) can be written in a conservative
form and summed up to find the evolution of the total energy
density

∂etot

∂t
+∇ · Γtot = SE (57)

where the total energy density is composed by the kinetic, the
thermal and the magnetic energy densities

etot =
ρ

2
V · V +

p
γ − 1

+
B · B

2
(58)

and the total energy flux is
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Figure 16. (Left) Temperature distribution on the midplane for the polar grid aligned to the unperturbed flux surfaces at different heat
diffusion anisotropies and resolutions. The simulations shown here are done with the toroidal mode numbers n = 0 . . . 4. (Right)
Convergence of the relative error in the core temperature versus the number of grid points per dimension.

Γtot =

[
ρ

2
V · V +

γp
γ − 1

]
V −

κ∇T

γ − 1
+ E × B (59)

equation (57) can be integrated over the plasma volume to
obtain

∂E
∂t

=

∫
SE dV −

∮
Γtot · dS (60)

where E =
∫

etot dV is the total plasma energy,
∫

SE dV is
the total injected power into the plasma and

∮
Γtot .dS repre-

sents the total energy flowing through the boundary (bound-
ary fluxes). An important test for MHD codes is to check that
the previous equation is satisfied also in practice, where small
errors from the numerical discretization of space and time
introduce errors. This can be assessed by calculating the lhs
and the rhs independently. Such a test has been done for a vari-
ety of different cases. We present this comparison here for the
3D VDE case that was used for the 3 code benchmark pre-
sented in [98]. Two tests for energy conservation are shown
in figure 17 (powers), where the time derivative of the total
energy is compared to the sum of boundary fluxes for a 3D
VDE simulation and for an RMP simulation. As the viscous
and Ohmic heating terms were switched off for these partic-
ular cases, they have been calculated via postprocessing and
included in dE/dt. The results indicate that energy is con-
served well including the RMP case with diamagnetic drift that
relies on the model with gyro-viscous cancelation. Note, that
the plasma in the VDE case undergoes a very non-linear phase
with stochastization of the entire domain and that all channels

for energy transport contribute to the losses (anisotropic heat
conduction, Poynting flux, convection, etc). The small discrep-
ancies at the end of the thermal quench (TQ) (t ∼ 1.2 ms)
originate from the calculation of the Ohmic heating term
and are under investigation. Energy is also rather well con-
served, with about 90% precision, in simulations of disrup-
tions triggered by massive material injection (MMI) (described
in section 6.2), which include Taylor–Galerkin stabilization.
The slight imbalance will be investigated. The energy bal-
ance diagnostics have been implemented recently such that
the various terms involved in the kinetic, thermal and mag-
netic energy balances are calculated automatically for any
simulation, allowing an easy and systematic check of energy
conservation properties.

4.4. Core instabilities

This section presents several benchmarks for core instabilities,
to compare the full-MHD model against the reduced-MHD,
as well as established linear MHD codes like MISHKA and
CASTOR [151–154]. The first two linear benchmarks are a
low-β m = n = 1 internal kink mode, and a low-β m = n = 1
tearing-mode. Both cases are run for a scan in resistivity.
The kink mode is run with resistivity alone (without vis-
cosity, and without particle or thermal diffusion), while the
TM is run including all diffusive terms, with viscosity ν0 =
10−8 kg m−1 s−1, particle diffusion D⊥ = 0.7 m2 s−1, and heat
conduction κ⊥ = 1.7 × 10−8 kg m−1 s−1.

26



Nucl. Fusion 61 (2021) 065001 M. Hoelzl et al

Figure 17. (Left) 3D VDE simulated with JOREK. (Top) Poloidal magnetic energy of the different toroidal harmonics. (Middle) Time
derivative of the total plasma energy (E = Wmag + W th + Wkin) and sum of dissipation powers and boundary fluxes (powers representing all
energy losses). (Bottom) Evolution of the edge safety factor (q95) and of βN during the VDE. The case is explained in detail in [98]. (Right)
Time derivative of the total plasma energy and the sum of non-conservative terms and boundary fluxes for a 3D RMP simulation in an ITER
15 MA plasma simulated with JOREK. The simulations includes realistic E × B and diamagnetic flows and undergoes strong MHD activity
between 10 and 35 ms which affects the edge confinement. The case confirms that the error in the energy conservation introduced by
gyro-viscous cancelation is small as expected from analytical estimates.

Figure 18 shows benchmarks for an internal kink mode
and a TM case respectively. Poloidal cross-sections of n = 1
perturbed quantities are shown for the toroidal magnetic poten-
tial Aφ and the temperature (for the full-MHD model), and
the growth rates of the modes are plotted as a function of
resistivity, compared to the reduced-MHD model, and to
calculations from CASTOR3D, which is also a full-MHD
code [153, 154].

Although the agreement between reduced-MHD and full-
MHD is reasonable for both cases, the reduced-MHD model
starts to deviate from the full-MHD solution at low resis-
tivity for the internal kink mode. This is an example where
reduced-MHD becomes insufficient: internal kink modes at
finite-β are not well represented like explained in reference
[68]. Although this is a low βN = 0.4% case, reduced-
MHD already seems to be affected. At higher-β, the deviation
becomes more pronounced as can be seen in the benchmark
between the reduced- and full-MHD model of JOREK and
the CASTOR3D code shown in figure 19. In this case, the
linear growth rate of the internal kink instability is compared
as a function of normalized beta. At finite beta, the reduced-
MHD model clearly fails to reproduce the results of the
full-MHD calculations.

The resistive layer width for a TM was simulated with
JOREK visco-resistively in reference [155] and compared to
analytical scaling laws as well as the Phoenix code show-
ing excellent agreement. Furthermore, a non-linear simple TM
benchmark is shown in the following. JOREK is compared
here to the cylindrical full-MHD code SpeCyl [156] in sim-
ple geometry. The nonlinear verification benchmark of SpeCyl
with another MHD code, PIXIE3D, is reported in reference
[157]. Here, we consider the nonlinear saturation of an m = 2,

n = 1 TM in a circular tokamak with large aspect ratio in the
zero-β limit. The simulations are performed at Lundquist num-
ber S = 106 in the limit of negligible viscosity. The results
from the two codes are compared in figure 20. It is observed
that, despite the different geometry (toroidal vs cylindrical)
and models (reduced vs full-MHD), the two codes agree very
well for this strong guide-field, large aspect-ratio problem. In
particular, both the linear growth and the nonlinear saturation
of the TM resulting from the two codes turn out to be in very
good quantitative agreement (the maximum deviation of about
5% can be attributed to the difference between cylindrical and
large-aspect ratio geometries).

4.5. Edge instabilities

Comparisons have been made between JOREK and BOUT++
with the aim to validate the nonlinear MHD codes. BOUT++
[7] is a framework for plasma fluid simulations, the model
used for the comparison is given in reference [158] and
for JOREK in section 2.3. The comparison was performed
with a largely simplified geometry, a circular plasma with
an aspect ratio of 3.3, q95 = 3.0, a uniform density (1.0 ×
1019 m−3), and a hyperbolic tangent fit is used for the temper-
ature where Te + T i = 19 keV in the core decreasing to 94 eV
at the edge of the plasma. The simulations performed have
a resistivity of 6.1 × 10−6Ω m and the kinematic viscosity is
117 m2 s−1. The differences between the two codes are detailed
in [159] and include some deviations between the actual mod-
els (equations), evolution of equilibrium quantities, numerical
methods, grids and boundary conditions. Despite some dif-
ferences, the linear benchmark showed agreement within 4%
between BOUT++ and JOREK with and without diamag-
netic effects as seen from figure 21. Setting up a non-linear
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Figure 18. 1/1 kink (top) and 2/1 TM (bottom) test cases. Normalized perturbations are shown of the toroidal component of the magnetic
vector potential (left) and the temperature (middle). Linear growth rates from the JOREK reduced and full MHD models are compared to
results from CASTOR3D. Reprinted from [67], with the permission of AIP Publishing.

Figure 19. Linear growth rates of an internal kink instability in a
plasma with circular cross section as a function of normalized beta,
obtained by the reduced- and full-MHD models of JOREK and the
linear full-MHD code CASTOR3D. Reprinted from [67], with the
permission of AIP Publishing.

comparison based on this case would require further efforts
in resolving some of the differences between the codes, e.g.,
regarding the boundary conditions and hasn’t been attempted
as of now.

A benchmark of peeling-ballooning modes (PBMs) is done
using an X-point JET-like plasma. Refer to reference [65]
for details regarding the benchmark configuration. Figure 22
shows the growth rate with and without diamagnetic effects, as

a function of toroidal mode number, for both reduced- and full-
MHD. The agreement between the two models is reasonable
with deviations below 5% (highest deviations for the largest
mode numbers that are most critical in terms of resolution),
particularly considering that this includes E × B, parallel and
diamagnetic flows in the pedestal and SOL.

The ballooning mode rotation obtained in JOREK simula-
tions has been successfully validated against analytical linear
computations in reference [160]. In the laboratory frame, the
E × B velocity should be added to the mode velocity when
comparing with experimental measurements [161].

4.6. Scrape-off layer

The SOL modelling in JOREK at this point is still fairly
simplified, while several attempts are presently on their way
to improve—via a better representation of low temperature
physics in the fluid picture as well as via a kinetic treatment of
neutral particles. In spite of the incomplete picture presently
available, comparisons have been made between JOREK and
SOLPS [162] to get a first assessment of the status of the
JOREK SOL model. The comparison demonstrates the capa-
bilities of the diffusive neutrals model [163], which was used
to perform the simulations. Full details and results are given in
[159].

A double-null H-mode MAST-U Super-X case was used in
an attempt to obtain a detached divertor for ELM burn-through
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Figure 20. Nonlinear verification benchmark between JOREK and the cylindrical full-MHD code SpeCyl. A 2/1 TM is considered in a
circular tokamak with large aspect ratio R/a = 10 in the zero-β limit. Black and red curves are for JOREK and SpeCyl calculations,
respectively. Initial equilibrium profiles along the horizontal diameter are shown in the first row: (a) magnetic field and current components
in the toroidal direction, (b) magnetic field and current components in the Z direction, and (c) safety factor. The TM nonlinear evolution is
shown in the second row: (d) temporal evolution of BR at the q = 2 rational surface, (e) BR profiles along the mid plane at in the non-linearly
saturated state, and ( f ) Poincaré plot at nonlinear saturation from JOREK, with the separatrix of the 2/1 saturated island from SpeCyl
overplotted in red.

studies. This case had a toroidal field of 0.64 T, plasma current
1 MA, q95 = 7.9, a central density and temperature (Te + T i)
of 5.2 × 1019 m−3 and 1.8 keV respectively. Parameter scans
were performed and compared to the SOLPS results in [164] to
test the JOREK diffusive neutrals model. Figure 23 shows the
upstream density scan. Due to the missing physics, in particu-
larly charge exchange, it was not possible to obtain a roll-over
as steep (deeply detached plasma) as the SOLPS simulations.
Nevertheless, a roll-over in the target parallel electron density
flux was obtained as the upstream density increased, the target
electron temperature decreased to a few electron volts and the
ionisation front moved from the target—indicating a detached
regime was obtained.

4.7. Runaway electron fluid

Verification of the RE fluid model in JOREK was performed
with respect to (a) the conversion of thermal current into an
RE beam in a simple axisymmetric plasma via comparison to
a lower dimensional code, and (b) regarding the linear growth
of resistive kink modes. Further efforts are on their way.

Benchmarking for the current conversion was done with
the one-dimensional RE code GO [165], by triggering an arti-
ficial TQ in a large aspect ratio circular plasma (R = 10 m
and a = 1 m) by imposing a large perpendicular thermal

diffusivity. The parameters at the initial equilibrium state of
the plasma were Ip = 0.67 MA, on-axis toroidal magnetic field
Bφ,0 = 1 T, central temperature T0 = 1.7 keV, central den-
sity n0 = 1 × 1020 m−3 and central resistivity η0 = 1.1 ×
10−7 Ω m. The large perpendicular diffusion leads to a drop in
the core temperature of the plasma to about 25 eV in a time of
about 60 ms. Thresholds were set to initiate the Drecier gener-
ation when E‖/ED � 0.01 and the avalanching when E‖/Ec �
1.7. The temperature profile evolution in GO is taken as an
input from JOREK. Figure 24 (left panel) shows an excel-
lent agreement between the result obtained with JOREK and
GO for the evolution of the total and RE currents (deviations
around 1%). The simulations also show the often observed
central peaking of RE current profile, as can be seen in the
pre-quench and post-quench current density profiles shown
in figure 24 (right panel). Advanced source terms that incor-
porate the influence of partially ionized impurities onto the
RE generation [166] are presently being implemented and
validated.

Verification with respect to linear growth of the resistive
internal kink mode is done by considering that a certain frac-
tion of the equilibrium plasma current is assumed to be car-
ried by REs, wherein the RE current density has qualitatively
the same profile as the total current. Both, thermal and RE
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Figure 21. Linear growth rates for the different toroidal mode numbers are compared between BOUT++ and JOREK for visco-resistive
simulations, and for visco-resistive simulations including diamagnetic flows.

Figure 22. The growth rate of the PBMs as a function of toroidal
mode number n, with and without the diamagnetic effects, for both
the reduced- and full-MHD models. Reprinted from [67], with the
permission of AIP Publishing.

background current densities are kept fixed in time. A large
aspect ratio circular plasma (R = 10 m and a = 1 m) in a fixed-
boundary static equilibrium (v = 0) is chosen with parameters
Bφ,0 = 1 T, Ip = 0.31 MA and on-axis temperature T0 = 48 eV.
The equilibrium is (m = 1, n = 1) kink unstable with the q =
1 surface within the plasma. Thermal and mass diffusivities,
all the sources (including RE generation) and RE advection
were set to zero, while the resistivity was assumed to be tem-
perature independent and spatially constant. Figure 25 shows
the linear growth rate of the internal kink mode as a func-
tion of normalized resistivity (inverse Lundquist number S−1)

Figure 23. The target parallel electron density flux and target
electron temperature as a function of upstream density, comparing
JOREK with SOLPS results from [164] for an MAST-U Super-X
H-mode case. Reproduced courtesy of IAEA. Figure from [164].
© EURATOM 2020.

for the various fractions of RE current considered. It can be
observed that an increase in the RE current fraction leads to a
gradual recovery of the low resistivity analytical scaling S−1/3

even at large values of the normalized resistivities. This is pri-
marily due to the reduced effective resistivity in the presence
of REs. That is, when the RE current fraction is increased, the
region outside the resistive layer tends towards the ideal MHD
limit in which the low-resistivity analytical scaling is valid.
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Figure 24. (Left) Time evolution of the total plasma current I and the RE current Ir during the current quench phase. (Right) Midplane
current density profiles before and after the current quench obtained from JOREK, showing a relatively peaked RE current profile. Reprinted
figure with permission from [111], Copyright 2019 by the American Physical Society.

Figure 25. Linear growth rate of the resistive internal kink (1, 1)
mode as a function of the normalized resistivity at various initialized
fractions of runaway current. Here, τA = a

√
μ0ρ0/B is the Alfvén

time and γ is the growth rate in SI units. Reprinted figure with
permission from [111], Copyright 2019 by the American Physical
Society.

Such a behaviour has also been observed by Matsuyama et al
[167] in a similar (but not identical) case.

4.8. Free boundary simulations

Regarding free boundary simulations, a lot of verification work
has been performed. This includes the benchmarks shown in
reference [88] for a free boundary equilibrium and the lin-
ear growth rates of TMs in the presence of a conducting
wall. In reference [168], the growth rate of resistive wall
modes was compared to analytical values and a comparison
of VDEs in a simplified ITER-like geometry was compared
to the CEDRES++ code including realistic wall resistances.
Basic verification tests (not shown here) have been performed
including convergence checks, the induction of currents by
the plasma in a conducting wall or passive coil, the mutual
interaction between conductive structures and a comparison
of an axisymmetric and non-axiymmetric coil field on the
JOREK boundary employing the Biot–Savart law [72, 92,
169]. Further validation work is included in reference [92] and
some more recent and more advanced tests are shown in the
following.

A non-linear benchmark with the DINA code [92] showed
good agreement for the evolution of the LCFS during an ITER
15 MA axisymmetric VDE as shown in figure 26(a) with dif-
ferences between the shapes of the last closed flux surfaces of
only few centimeters.

An international benchmark [96, 170] between the JOREK,
M3D-C1 and NIMROD codes for an axisymmetric VDE in an
NSTX-like plasma has shown excellent agreement not only on
the growth rate of the instability, the evolution of the radial and
vertical position of the magnetic axis as well as of the toroidal
plasma and wall currents, but also on the spatial structure of
the halo currents flowing into the wall (see figure 26(b)). The
agreement is remarkable in particular, since the models imple-
mented in the codes differ significantly (e.g., full MHD ver-
sus reduced MHD; Greens functions approach versus a direct
discretization of the vacuum region with conductors in the
computational domain).

To test the mutual interaction between plasma, coils, and
passive conductors, a benchmark was performed with the
DINA code. The plasma motion resulting from a prescribed
time evolution of currents flowing in coils was simulated to
verify that the plasma dynamics are captured correctly in the
presence of time varying coil currents [171]. For that purpose,
an ITER 7.5 MA/2.65 T case was chosen where the plasma
position was modified in time by the prescribed coil currents
for ELM control studies. The oscillation in the vertical posi-
tion is produced by applying the current waveform shown in
figure 27(a) in the in-vessel vertical stability coils (VS coils).
To get good agreement for the plasma motion (figure 27(b)),
active and passive conductive structures had to be modelled
accurately and the interaction between coils, passive structures
and plasma needed to be captured correctly (see figure 44 for
the setup of the conducting structures) as the time evolving coil
currents induce wall currents which further modify the overall
plasma motion. For this simulation, the ITER vacuum vessel
was modelled as two thin stainless steel toroidal shells with
a width of 6 cm each, the conducting outer triangular support
and divertor inboard rail are also included.

The international three-code axisymmetric benchmark
between the JOREK, M3D-C1 and NIMROD codes shown
above has been recently extended to 3D VDEs [98]. The run
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Figure 26. Non-linear 2D axisymmetric benchmarks for VDEs. (a) JOREK/DINA benchmark where the evolution of the LCFS is compared
[92]. (b) JOREK/NIMROD/M3D-C1 benchmark where the normal component of the current density is compared as a function of the
distance along the wall during the late stage of a VDE. Panel (b) is reprinted from [97], with the permission of AIP Publishing.

Figure 27. Non-linear 2D axisymmetric benchmark for a vertical position oscillation of an ITER 7.5 MA/2.65 T plasma. (a) Current
waveform for the ITER vertical position control coil VS3. (b) Vertical position of the magnetic axis in DINA and in JOREK. Panel (b) is
reproduced courtesy of IAEA. Figure from [172]. © 2018, ITER Organization.

was divided into two phases: an axisymmetric part for the early
evolution of the VDE and a 3D simulation for the MHD active
phase. The 3D run was started when the plasma became lim-
ited by the wall instead of the lower X-point. The toroidal
harmonics that have been included in JOREK and NIMROD
for the 3D phase are n ∈ [0, 10] and M3D-C1 discretized
the toroidal direction with 16 Hermite cubic elements. The
JOREK simulation was run with the reduced MHD model and
the other codes employed full MHD models. In spite of pro-
nounced differences on models for plasma and wall as well as

numerical methods, the three-dimensional features are in very
good qualitative agreement. The three codes show that the
plasma is unstable to low-n external kink modes 0.85–1.1 ms
after the plasma becomes limited by the wall with a domi-
nant n = 1 component of similar amplitude in all codes. This
happens when the q = 2 rational surface moves into the open
field-line region (see figure 17). The development of the kink
modes causes a stochastization of the magnetic field lines trig-
gering a TQ with a duration of 0.14 ms in JOREK, 0.24 ms
in M3D-C1 and 0.18 ms in NIMROD. The evolution of the
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Figure 28. Evolution of the pressure in the φ = 0 plane over time as computed by JOREK (top), M3D-C1 (middle) and NIMROD (bottom)
in arbitrary units. Re-print from reference [98].

thermal pressure during the TQ is shown in figure 28, reveal-
ing similar filamentary structures for the three codes. Figure 29
shows the evolution of the magnetic energy of the n = 1 har-
monic and the vertical and horizontal wall forces in the three
codes. The vertical force is in good agreement between the
codes throughout the simulations except for a small shift in
time and the more sensitive horizontal force is in reason-
able quantitative agreement, with NIMROD showing a fac-
tor two smaller force than the other two codes. In spite of
some differences, the benchmark demonstrates that the very
different numerical descriptions of the resistive wall struc-
tures used in the codes lead to comparable results for such
a violent 3D VDE case and that the ansatz based reduced
MHD model used here for the JOREK simulation is captur-
ing the 3D dynamics of the wall currents, even for the large
β spherical plasma considered here. The full MHD models
of M3D-C1 and NIMROD found maximum toroidal asym-
metries in the plasma current (Ip) of 1%–4%. However such

asymmetries were not found in the JOREK simulations due to
the employed BC for the magnetic field [88].

A benchmark with CASTOR3D was carried out to test the
effect of passive coils on the plasma in an ASDEX Upgrade
case where the main passive stabilization against vertical dis-
placement is due to the PSL. The PSL conductivity was varied
to compare the dependence of the VDE growth rate on this
conductivity. In the setup, no conducting wall was included for
simplicity to only assess the coil effects. A high plasma resis-
tivity in the SOL region was required to get agreement with
CASTOR3D, which treats the SOL as part of the vacuum. The
results in figure 30 show good agreement in the linear growth
rates over many orders of magnitude in the PSL conductiv-
ity with largest deviations around 20% in the limit of high
PSL conductivity where small differences in numerical treat-
ment of the PSL geometry are likely dominating the errors.
This includes the no wall limit, where the growth rate is not
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Figure 29. 3D VDE benchmark between JOREK, NIMROD and M3D-C1. The case and comparison is explained in detail in reference [98].
(Top) Magnetic energy of the dominant mode (n = 1). (Middle) Total vertical force. (Bottom) Total horizontal wall force in JOREK,
NIMROD and M3D-C1. Re-print from reference [98].

depending on the PSL conductivity any more, but on the
plasma inertia.

4.9. Kinetic particles

For non-relativistic particles, solvers are available for both full
orbit and guiding respectively gyro centres. The well-known
Boris method is used for the full orbit following. The imple-
mentation of the Boris method has been verified in detail
in reference [172]. For guiding centres, both the standard
Runge–Kutta (RK4) and the variational method by Qin [173]
in the modified form [174] have been implemented and veri-
fied. For the gyro-center following, RK4 with an orbit averaged
electric field is used. The solvers have been verified follow-
ing a banana orbit for 26 periods in a static tokamak equilib-
rium without electric field. This standard benchmark case has
been described in detail in references [173, 174]. The error is
defined as the time averaged difference with the initial values.
The scalings follow the expected order as a function of the time
step. The Boris method conserves energy to a level close to
machine precision. The error in the toroidal momentum scales
quadratically with the time step. The RK4 method, being a
fourth order method, should yield an error scaling with the 5th
power of the time step, but integrated over a given time inter-
val the error is expected to scale as the 4th power. Figure 31
shows a scaling between 4th and 5th order for the error in both
the toroidal momentum as well as the energy. The variational
method is expected to conserve the toroidal momentum up to

machine precision. The observed error actually decreases with
increasing time step. The error in the energy scales quadrati-
cally up to a time step of 1000 gyro-periods. For larger time
steps the modified Qin method is unstable (in agreement with
reference [174]). As the amount of work (i.e. computing time)
is about equal for the RK4 and Qin methods, it appears that
RK4 is significantly better for all values of the time step. How-
ever the variational method has the advantage that the error is
bound in time, i.e. the error will not increase when the inte-
gration time is increased. This is in contrast with the error in
the RK4 method which tends to increase with time. In this
particular case, the error of the variational integrator becomes
smaller than the RK4 error for an integration time of the
order of 0.1 s.

4.10. Relativistic kinetic particles

The relativistic particle tracing in JOREK has so far mainly
been used to study RE confinement during plasma disruptions
(section 6.4). Similar studies have been done with an orbit-
following code ASCOT5 [175, 176]. In both codes, full gyro-
orbits are solved with the volume-preserving algorithm [177]
and the (fixed time-step) guiding centre orbit is solved with
RK4. The main difference between ASCOT5 and JOREK-
particles is that ASCOT5 does not use finite elements for the
calculation of fields; the magnetic field is interpolated in a uni-
form cylindrical grid with cubic splines instead. Because both
codes are being used to study transport of REs in a perturbed

34



Nucl. Fusion 61 (2021) 065001 M. Hoelzl et al

Figure 30. The figure on the left shows the conductive structures in ASDEX Upgrade including the passive stabilisation loop (PSL)
(massive structures above and below the sketched port marked in dark grey). As the conducting vacuum vessel is located at a large distance
from the plasma, the PSL is needed to reduce the growth rate of the vertical motion. On the right, the growth rate for different PSL
conductivities is shown. For a low conductivity, the growth rate is limited by the inertia of the plasma as the coil resistance is too high to
allow for significant currents. For large conductivities, the PSL resistance determines the growth rate.

Figure 31. Scaling of the relative error on energy and toroidal momentum for the Boris, RK4 and Qin solvers for single banana particle orbit
(as defined in references [173, 174]). The time step is normalised to the ion cyclotron frequency. The total integration time is fixed at 106

(0.01 s).

magnetic field, it is reasonable to verify that the codes yield
equivalent results.

The TQ phase of a JET disruption was chosen as test case,
where the stochastic field line region extended all the way
from the edge to the core. Both electric and magnetic fields
were included and the fields where set to be stationary in time.
JOREK postprocessing tools were used to evaluate the electro-

magnetic field on a cylindrical grid and the data was exported
to ASCOT5. It was verified that the grid was dense enough as
not to affect the benchmark results significantly by repeating
the simulations with different grid resolutions.

For the benchmark, a marker population of 5000 passing
1 MeV electrons was initialized on the outer mid plane on
a fixed radial position. The markers were spread toroidally
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Figure 32. (a) The final marker position (blue and red dots) on the edge shown together with the magnetic field Poincaré plot (small black
dots) and the position where markers where initialized (the black cross). (b) The cumulative losses as a function of time for each case. GO
and GC refer to full gyro-orbit and guiding centre simulations, respectively.

by sampling the initial toroidal coordinate from a uniform
distribution. The markers were traced until they exited the
plasma, which was defined to occur when a marker passed a
the poloidal flux value corresponding to a flux surface inside
the separatrix. The accumulation of the losses in time was used
as measure for transport to compare the results. For guiding
centre simulations, ASCOT5 was used to calculate the guid-
ing centre positions from the particle coordinates, and these
guiding centre positions were exported to JOREK to ensure
that the initial transformation did not bias the results.

The results of the benchmark are shown in figure 32. The
stepwise structure seen in JOREK results is due to the sim-
ple method which had been used here in JOREK storing the
marker status only at fixed time intervals, whereas ASCOT5
stores the exact loss-time of each marker at the end of the simu-
lation. In this test case, there is little difference between the full
gyro-orbit and guiding centre results in both codes. Between
JOREK and ASCOT5 there is a slight deviation, and it is not
certain what is the cause. One possibility is the fact that the
poloidal flux in ASCOT5 is an axisymmetric quantity (the 3D
components of the field are evaluated separately), and so the
markers are not terminated at the same (R, Z)-coordinates as
can be seen in figure 32(b). Nevertheless, the results show good
agreement between the different pushers in both codes.

5. Applications to ELMs and ELM control

Unmitigated type-I ELMs [28, 178] cannot be tolerated in
ITER at least in full current operation [179] and even ELM
types associated with reduced energy losses from the plasma
and lower transient heat loads to plasma facing components,

are likely not acceptable for DEMO [180]. Consequently, the
dynamics of various ELM types, the access to ELM free
regimes, and a robust understanding of ELM control meth-
ods are crucial research topics regarding the successful design
and operation of future fusion devices. In this section, JOREK
simulations regarding the plasma pedestal, edge and scrape off
layer are summarized focussing on recent results. Section 5.1
presents work on natural ELM crashes and cycles, section 5.2
contains results regarding the triggering of ELMs by pellets,
section 5.3 shows the excitation of an ELM crash by a verti-
cal magnetic kick, section 5.4 addresses the control of ELMs
by RMP fields, section 5.5 presents work on the simulation
of ELM free regimes, and section 5.6 shows recent results
on an advanced modelling of the SOL and divertor region as
well as detachment physics. Section 5.7 finally, contains a very
brief outlook. For investigations of ELMs and ELM control
with other non-linear MHD codes, refer to the review pro-
vided in reference [3] and for more recent work to references
[181–191] and references therein.

5.1. Natural ELMs

The phenomenology of ELMs has been studied intensively
since the discovery of H-modes in tokamaks [192]. Sev-
eral experimental observations like magnetic field, density
and temperature perturbations localised on the low field side
(LFS) of the tokamak suggest that MHD instabilities are
involved in ELMs phenomenology [28, 178]. In particular,
linear ideal MHD theory and codes indicate that ballooning
modes driven by large edge pressure gradient and kink-peeling
modes (KPMs) driven by large edge bootstrap current, both
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Figure 33. Perturbed density and temperature in the poloidal plane at the time of the maximum of ELM MP for a JET-like 3 MA plasma.
Reproduced courtesy of IAEA. Figure from [194]. Copyright 2013 IAEA.

Figure 34. The homoclinic tangles forming during an ELM crash in
JET and the resulting strike line splitting are shown. Reproduced
courtesy of IAEA. Figure from [194]. Copyright 2013 IAEA.

typical for the pedestal region in H-mode scenarios, are the
underlying physical instabilities of ELMs destabilisation [28,
29, 178]. However, only non-linear resistive MHD codes could
explain the full non-linear dynamics of ELMs, reproducing in
particular rotation of the modes, the mechanisms of density
and temperature profiles relaxation, ELM cycling behaviour,
heat and particle fluxes the heat deposition structure arriving
in the divertor and many other key experimental observations
during ELMs.

The first non-linear simulations of ELMs with JOREK were
done without two fluid diamagnetic effects and are described in
references [1, 8, 36, 149, 193] for JET-scale plasmas. Indeed,
it was confirmed that ELM offset is due to the destabilisation

of coupled kink-peeling and medium-n ballooning modes and
their linear phase is very close to the ideal MHD predictions.
However, compared to the ideal linear MHD, the presence of
the separatrix and plasma resistivity showed a strong stabi-
lization of the ideal MHD external KPMs replacing them by
the so-called peeling-TM which is much less sensitive to edge
safety factor q value compared to ideal MHD description. The
different transport channels for thermal energy and particles
during an ELM crash and resulting heat and particle fluxes
in divertor were described in reference [1, 8, 193]. The non-
linear evolution of a medium-n ballooning mode shows the
formation of density filaments and, due to non-zero resistivity,
causes magnetic reconnection leading to stochastic magnetic
fields. Thereafter, the density evolution is mostly determined
by the E × B convection cells (figure 33, left), while the tem-
perature evolution (figure 33, right) is mainly dominated by
parallel conduction in the stochastic fields formed during the
ELM crash (figure 34).

The density filaments are sheared off from the main plasma
by a mean n = 0 poloidal flow which is non-linearly induced
via Maxwell stress [8] forming ‘blobs’, expelled from the main
plasma towards the SOL. The amplitude of the ballooning
mode is limited by this mean flow stabilising it and multiple (in
time) density filaments can develop to bring the plasma below
the stability boundary. The importance of poloidal flows onto
ELM crashes on one hand and the generation of poloidal flows
during the crash on the other hand was investigated also in ref-
erences [73, 149]. It was shown that large ELMs are mostly
conductive-type, meaning relatively large losses in pedestal
temperature, because the associated MPs cause ergodisation
of the edge and lead to significant conductive energy losses
along perturbed field lines. The interception of the result-
ing homoclinic tangles with divertor plates (figure 34) deter-
mine the pattern of the ELM heat flux in the divertor. There-
fore explaining the splitting of the strike lines to the diver-
tor during an ELM often observed in the experiments [194].
The smaller ELMs are mostly convective-type with dominant
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density losses. These ELMs have divertor footprints deter-
mined by the radial distance travelled by plasma filaments
expelled by an ELM and the loss of the plasma energy is deter-
mined by the energy stored in the expelled filaments. The sim-
ulated divertor wetted area during the ELM was shown to grow
linearly with the ELM size in agreement with experimental
observations. ITER simulations [193] showed that for ELM
losses up to 4 MJ of energy, the broadening of the wetted area
is similar for conductive and convective ELMs, in spite of the
different origin of the widening.

After the first confirmation of the generic features of full
non-linear ELM dynamics using the JOREK code, extensive
studies of ELMs physics in existing tokamaks (JET, ASDEX
Upgrade, KSTAR, DIII-D, MAST) were performed with the
aim of further validation and improvement of JOREK physi-
cal models for more confident predictive modelling for next-
step machines and in particular ITER. Such extensive studies
have also enabled the JOREK code to contribute to general
ELM physics issues like the role of filamentary structures in
ELM and ELM control [195]. In the following, we briefly
describe some examples and main results. First simulations
of type-I ELMs in the ASDEX Upgrade tokamak [196] were
shown in reference [197], where a spatial and temporal sub-
structure of the ELM were observed leading to several bursts.
This work pointed out the importance of including multiple
toroidal harmonics in non-linear modelling to obtain a realistic
dynamics of ELMs. After the early linear growth phase domi-
nated by the most unstable medium-n ballooning mode, many
other harmonics become destabilized through non-linear cou-
pling while approaching the ELM crash. The non-linear desta-
bilization of the low-n harmonics explained the poloidally
and toroidally localized structures of the ELM crash [198]
observed in experiment [199] as ‘solitary MPs’ (figure 35).
The excitation of low-n harmonics during an ELM crash by
non-linear mode coupling (figure 36) was studied in refer-
ences [200, 201]. Note two limitations of this study: E × B
and diamagnetic background flows were not included and the
toroidal resolution does not include higher harmonics of the
linearly most unstable mode due to computational limitations.
More recent work like [202] has overcome both limitations.
Density filaments and their propagation into the SOL were
compared qualitatively to the experiment in reference [203].
More recent simulations for ASDEX Upgrade were performed
at realistic experimental parameters and with plasma back-
ground flows consistently included [5]. Here, ELM losses,
magnetic measurements [204], and measurements for cold-
front penetration [205] agree well with experiments. Based on
such simulations, the role of density fluctuations onto ECE-
imaging measurements was studied [206] and the excitation
of parametric decay instabilities during electron cyclotron
resonance heating was investigated [207]. Further simulations
confirmed the trend of decreasing dominant toroidal mode
numbers with an increasing edge safety factor like experimen-
tally observed [208].

The two fluid diamagnetic (for electron and ions), neoclas-
sical and toroidal background plasma flows were implemented
and applied to ELM simulations in reference [209] entailing an
important improvement of the physical model. A stabilizing

Figure 35. The poloidally and toroidally localized magnetic flux
perturbation in an ASDEX Upgrade simulation is shown, which has
similarities to so-called solitary MPs observed experimentally [199].
Reprinted from [199], with the permission of AIP Publishing.

Figure 36. For various time points during a JOREK simulation
(times in JOREK units), the toroidal mode spectrum is shown. The
linearly most unstable mode numbers around n = 10 give rise to a
broad mode spectrum in the non-linear phase at the ELM onset
driven by non-linear mode coupling. In particular the linearly stable
n = 1 mode is driven to amplitudes comparable to the linearly
dominant n = 10 mode. Reprinted from [201], with the permission
of AIP Publishing.

effect of poloidal flows and in particular diamagnetic effects
known from the ideal MHD model onto high-n ballooning
modes was confirmed. Moreover, after the first ELM crash,
poloidal flows tend to damp the otherwise continuing balloon-
ing mode turbulence, so the pedestal profiles can be rebuilt
again by heating and particle sources until they again reach
the stability limit producing the following ELM crash. The
numerically obtained multi-cycle ELMs exhibit similarities to
high frequency ELMs in experiments (figure 37). Moreover,
the diamagnetic drifts were found to yield a near-symmetric
ELM power deposition on the inner and outer divertor target
plates, consistent with experimental measurements [210].

38



Nucl. Fusion 61 (2021) 065001 M. Hoelzl et al

Figure 37. High frequency multi-ELM cycles were obtained with
JOREK when background plasma flows were consistently included.
Reprinted figure with permission from [210], Copyright 2015 by the
American Physical Society.

The ballooning mode rotation obtained in JOREK simu-
lations has been successfully validated against analytical lin-
ear computations in reference [160]. In successive studies, the
explanation of the rotating structures in the pedestal region
before type-I ELM crashes and in the inter-ELM periods
(ELM precursors) observed in the KSTAR tokamak [211] was
proposed [161, 212]. The two fluid diamagnetic effects and
toroidal rotations included in the model were found to be
the most important factors in explaining the experimentally
observed rotating structures [161].

Simulations aiming to capture ELMs in the JET toka-
mak [213] as realistically as possible were shown in refer-
ence [214]. The dynamics of filaments, divertor heat fluxes
and the influence of collisionality onto the ELM size was
studied and precursor modes were shown in ELM simula-
tions. Successively, reference [215] addressed simulations for
a series of JET ITER-like wall discharges to perform quan-
titative comparisons with the experiments. It was shown that
the accuracy of the pre-ELM equilibria used for the simula-
tions as well as realistic parallel heat conductivity are both
critical for reproducing experimentally observed ELM energy
losses. Divertor peak heat fluxes were still underestimated
and the ELM duration overestimated in the simulations. Ref-
erence [45] took more accurate pre-ELM equilibrium recon-
structions as basis for the simulations and also investigated the
impact of E × B and diamagnetic background flows onto the
ELM dynamics. Very good agreement with the experimental
scaling law [194] for the energy fluence to the divertor tar-
gets was obtained in general (figure 38), although the values
were slightly underestimated when E × B and diamagnetic
background flows were taken into account, in particular for
configurations corresponding to small ELM sizes in the exper-
iment. Agreement regarding ELM energy losses and divertor
peak heat fluxes improved significantly compared to reference
[215], also here with some deviation when stabilizing back-
ground flows are taken into account. Resolving the remaining

Figure 38. The parallel heat fluence to the divertor targets is plotted
versus the value predicted by the Eich scaling. Good agreement is
obtained in general, while the heat fluence is underestimated in
tendency, when plasma background flows are taken into account
(blue triangles). Note a misprint in the original publication, which
was corrected in the figure shown here: the labels for the black and
blue points had accidentally been swapped both in figures 4(a) and
(b) of reference [45]. Reproduced courtesy of IAEA. Figure adapted
from [45]. © EURATOM 2017.

deviations might require simulations of complete ELM cycles.
Reference [45] also demonstrated, that the threshold for the
onset of edge instabilities in non-linear JOREK simulations
is in better agreement with experimental observations than
predictions from linear codes, which typically neglect many
non-ideal effects.

Using the JOREK code, realistic simulations of multiple
type-I ELM cycles were recently obtained for the first time
[202] (figure 39). The inclusion of pressure-gradient driven
diamagnetic drifts is imperative to obtain the cyclical dynam-
ics. The simulated ASDEX Upgrade plasma corresponds to
a moderate triangularity and high pedestal density. Simula-
tions for different plasma parameters are the subject of ongo-
ing efforts. The simulations find that with increasing heating
power, the ELM frequency rises, consistent to experimental
observations of type-I ELMs [178]. A precursor-like mode
activity is observed before the violent onset of the ELM crash.
It was found that the interaction between this precursor-like
mode and the background plasma is responsible for the explo-
sive ELM onset. The first ELM crash simulated was observed
to be different from the subsequent ELMs because of differ-
ences in the non-axisymmetric seed perturbations that exist
before each ELM crash. For the first ELM, these are simply
noise-level perturbations, while for the subsequent ELMs the
seed perturbations are consistent with the prior existence of
an ELM. This observation stresses the importance of simulat-
ing the entire ELM cycle—particularly for predictive simu-
lations. These simulations were also used as basis for inves-
tigations regarding the scattering of ion cyclotron waves by
filaments and ELMs [216] and for recent studies of pellet ELM
triggering (see section 5.2).

The regime of small ELMs is another topic of current
research with the JOREK code. Experiments with small
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Figure 39. Results from a simulation of several type-I ELM cycles in ASDEX Upgrade adapted from reference [202]. (a) shows the
evolution of the toroidally averaged outer midplane pressure gradient versus time and normalized poloidal flux. (b) contains the evolution of
the magnetic energies of the n = 2, 4, . . . , 12 toroidal harmonics included in the simulation. Finally, (c) shows the magnetic energies of a
simulation with 15% less input heating power starting from 25.2 ms. The ELM repetition frequency is seen to have a direct relation with the
input heating power. The first ELM crash is determined by random seed perturbations and therefore shows different dynamics from the
following ones, which are fully self-consistent. Strong precursor-like modes which already affect the pedestal gradient are observed prior to
the very fast crashes.

ELMs host a quasi-continuous power exhaust and, with appro-
priate plasma shaping, can avoid type-I ELMs completely
[217]. Using the simulation set-up for the type-I ELM cycles
described above, but with a lower heating power, an opera-
tional regime with small ELM-like behaviour has been also
obtained [218], albeit not yet at ITER relevant conditions
which remain a topic for future research. These simulations
highlight the importance of the stabilising effects of plasma
flow onto small ELMs [219].

Based on ELM simulations, fast ion losses were studied by
particle tracing in the fields of the JOREK simulations con-
firming increased losses during the ELM crash [220–222].
Tungsten transport during a large ELM crash in ASDEX
Upgrade was investigated kinetically [223] (figure 40) reveal-
ing that lower-dimensional diffusion–convection models can-
not explain the far reaching interchange driven transport of the
impurities and that high tungsten densities in the ITER SOL

might cause a net inward transport of tungsten during an ELM
crash.

Simulations for double X-point plasmas in the spherical
tokamak MAST [224] were reported in reference [225]. In par-
ticular, the filament dynamics were compared to experimental
observations revealing good qualitative agreement regarding
structure and dynamics (figure 41). The general role of fil-
aments in ELM dynamics and ELM energy losses was also
addressed in reference [195]. The ELM energy losses, and
divertor heat flux profiles were found to agree reasonably well
in spite of using a reduced MHD model in this low aspect-
ratio configuration and neglecting diamagnetic drift effects.
For the MAST Upgrade tokamak, predictive simulations were
reported in references [76, 159, 163, 226]. Particular attention
was paid to studying the effect of the Super-X divertor onto
detachment in the inter-ELM phase, and burn-through dur-
ing the ELM crash and resulting divertor heat fluxes. More

40



Nucl. Fusion 61 (2021) 065001 M. Hoelzl et al

Figure 40. During an ELM crash in ASDEX Upgrade (see reference [5]), the transport of tungsten is investigated. The top figure shows the
evolution of the density profile during the ELM crash, the figures below show the mixing of tungsten particles due to the MHD activity.
Particles are coloured according to their original location. A strong mixing is observed including a strong interchange transport across the
separatrix. Reprinted from [224], with the permission of AIP Publishing.

Figure 41. The signature of ELM filaments in visible light is shown
for ELMs in MAST. Left: virtual diagnostic data based on a JOREK
simulation. Right: visible light picture in the experiment.
Reproduced from [226]. © IOP Publishing Ltd. All rights reserved.

details on this study are given in section 5.6 along with
detachment and burn-through studies for ITER reported in
reference [77].

5.2. Pellet ELM pacing

Pellet injection into the pedestal of H-mode plasmas has exper-
imentally shown to be capable of increasing the ELM fre-
quency significantly above its natural value while decreas-
ing ELM sizes, which may be beneficial for divertor lifetime
and, in particular, for the control of impurity concentrations
in the plasma. In non-linear simulations, such ELM trigger-
ing has first been demonstrated in references [8, 227]. Detailed
comparisons to experimental observations for pellet triggered
ELMs in the DIII-D tokamak were reported in reference [86].
These studies revealed the detailed physical mechanisms for
the destabilization of the ELM by a pellet: ablation leads to a

largely adiabatic increase of the plasma density and decrease
of the plasma temperature in the vicinity of the pellet. Due to
the high mobility of the electrons along field lines, the temper-
ature within a flux surface is equilibrated again on an extremely
fast time scale, while the density transport takes place on the
far slower time scale of the ion sound speed. In combination,
this leads to a helical structure with strongly increased pressure
around the pellet location, which locally exceeds the balloon-
ing threshold. In the further evolution, the initially localized
perturbation spreads poloidally and toroidally such that the
actual ELM crash leads to radial transport across the separatrix
in a far less localized manner. A clear threshold was observed
between a perturbation of the plasma and ELM triggering
(figure 42).

Simulations for ELM triggering in the JET tokamak
revealed a toroidal asymmetry in the peak heat flux to the diver-
tor [228, 229], which constitutes a clear difference between the
non-linear behaviour of a natural and pellet triggered ELM.
The simulation shows good quantitative agreement (within
10%–20%) against the divertor heat flux obtained with exper-
imental thermography measurements at the single toroidal
location where measurements are available. However, sim-
ulations predict a significantly larger divertor heat flux at
a location which was not covered by measurements in the
corresponding experiments.

Recent simulations for pellet triggered ELMs in ASDEX
Upgrade [230] are studying the ELM triggering possibility at
different phases of the pedestal build up, which provides addi-
tional insights into the evolution of the pedestal stability in
the inter-ELM phase. These pellet simulations include self-
consistent E × B and diamagnetic background plasma flows,
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Figure 42. The excitation of MPs during pellet injection is shown.
At a pellet size between 1.5 mm and 1.8 mm, a bifurcation is
observed. For larger pellet sizes, a strong and sudden excitation of
MP energies to higher amplitudes is observed, which is absent for
the smaller pellet sizes. These strong perturbations are associated to
a pellet triggered ELM crash and induce losses from the plasma.
Reproduced courtesy of IAEA. Figure from [87]. Copyright 2014
IAEA.

use realistic plasma parameters and are based on the type-I
ELM cycle simulations of reference [202]. The injection of
pellets during the pedestal build-up is studied varying injec-
tion time, pellet size, and pellet velocity. Figure 43 shows the
divertor heat flux versus time and the divertor length (at the
toroidal position of the pellet injection) for three cases: pel-
lets with 0.8 × 1020 D atoms are injected into the plasma at
8, 10, and 12 ms during the pedestal build-up with an injec-
tion velocity of 560 m s−1, while the natural ELM crash
would occur at around 16 ms. Note that the number of atoms
reaching the plasma is given here; thus the simulation cor-
responds to a pellet with approximately 1.5 × 1020 atoms in
the experiment (assuming 50% losses in the guide tube). A
sharp transition is observed between 10 and 12 ms from no-
ELM response to ELM triggering. Thus, the experimentally
observed [231] lag-time has been reproduced qualitatively
here, during which no ELM triggering is possible by means
of pellet injection. In case of ELM triggering, large transient
heat fluxes are observed in the range of ∼20 MW m−2 for
about 0.4 ms. Furthermore, the ELM triggering cases show a
far broader mode spectrum compared to the no-ELM response
and the triggered ELMs features a toroidally asymmetric heat
deposition with a strong n = 1 component. A detailed com-
parison of the non-linear properties of triggered and sponta-
neous ELMs, e.g., regarding the wetted area, are shown in
reference [232].

5.3. ELM control by magnetic kicks

Besides pellet injection discussed in the previous section, ELM
pacing has experimentally also been demonstrated via so-
called ‘vertical magnetic kicks’, during which the current in

one or several poloidal field coils is evolved in time in such a
way, that the plasma undergoes an excursion above and below
the original location.

A benchmark of the plasma excursion caused by a vari-
ation of the poloidal field coils (figure 27), and fully self-
consistent simulations of ELM triggering by vertical magnetic
kicks were shown in references [92, 171, 233] for an ITER
7.5 MA plasma (figure 44). Consistently with the observa-
tions from several fusion experiments, it was demonstrated
that PBMs are triggered during a downward (towards the X-
point) excursion of the plasma leading to an ELM crash in
an otherwise stable plasma configuration, while an upward
excursion of the plasma does not give rise to such edge insta-
bilities. The edge instabilities were shown to always appear
at a particular vertical displacement of the plasma indepen-
dently of the actual time scale of the applied oscillation, like
also seen experimentally. Detailed analysis of the simulations
and comparisons to analytical considerations allowed to con-
firm that an increase of the plasma edge current density dur-
ing the downward motion of the plasma in the inhomoge-
neous magnetic field is responsible for the destabilization of
the PBMs. A detailed analytical picture of the mechanisms of
the edge current evolution was obtained consistent with the
simulation results.

5.4. ELM control by RMPs

Simulations for the penetration of external MPs into plas-
mas of the DIII-D tokamak were shown in references [37,
234] for the first time, demonstrating that the magnetic topol-
ogy obtained in simulations with plasma rotation considerably
differs from the so-called ‘vacuum approximation’, in which
the vacuum magnetic field of the perturbation coils is sim-
ply added to the equilibrium magnetic field of the plasma
(figure 45). A strong suppression of magnetic islands and
stochastic field regions by the plasma was shown in these
simulations carried out in the ‘zero-beta’ limit and with a
rigid-body rotation. A radial E × B convective transport was
observed in the presence of the MP fields and an important
role of it for the experimentally observed density pump-out
was proposed. However, note that the density pump-out due
to this mechanism was not strong enough compared to the
experiment.

With the implementation of neoclassical, diamagnetic and
toroidal background plasma flows and taking into account also
the self-consistent evolution of the plasma temperature, refer-
ences [49, 235, 236] were able to show in detail the dynamics
of the penetration of the RMPs into the plasma. In particu-
lar, the screening effect by the rotating plasma was studied
in detail. Based on such simulations, reference [237] inves-
tigated the three dimensional lobe-structure of the homoclinic
tangles formed in the presence of the 3D magnetic field per-
turbations in detail revealing a strike-line splitting like it is
also observed in many experiments [238]. References [235,
236] also investigated the effect of the RMP fields onto the
edge instabilities. In particular, it was shown that strong RMP
fields can suppress peeling-ballooning instabilities in the simu-
lations replacing them by saturated modes (figure 46), and that
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Figure 43. The time evolution of the heat flux onto the outer divertor targets which is caused by 0.8 × 1020 D pellet injection with
560 m s−1 is shown. Three cases are compared, where the transition from no-ELM response (8 and 10 ms) to ELM triggering (12 ms) is
observed. Reproduced courtesy of IAEA. Figure from [231]. © EURATOM 2021.

uneven-n modes remain strongly sub-dominant in the pres-
ence of an n = 2 MP, even if these are linearly unstable in the
absence of the perturbation fields.

Furthermore, simulations for RMP experiments in ASDEX
Upgrade showed very good agreement for the penetration of
the external fields into the plasma and the resulting corru-
gation of the separatrix for several investigated ‘coil current
phases’, i.e., different perturbation spectra [239]. The con-
figuration leading to the strongest ELM mitigation effect in
the experiments was identified in the simulation as the one
with the largest kink response of the plasma near the X-point.
In further studies shown in references [240, 241], the inter-
action of the RMP fields with plasma edge instabilities was
investigated in a plasma configuration leading to an ELM
crash in simulations without RMP fields. When increasing

the RMP amplitude at given plasma rotation, and also when
reducing the plasma rotation at fixed RMP amplitude, a tran-
sition was observed from an unmitigated ELM regime into a
mitigated ELM regime with reduced perturbation amplitudes
and losses, and further into an ELM suppressed state. While
the 3D perturbations observed in the unmitigated and miti-
gated state show a ‘bursty’ behaviour and rotate in the electron
diamagnetic direction, the suppressed state is characterized by
saturated modes, which are not rotating in the lab frame due
to a locking with the external perturbation fields (figure 47).
Non-linear mode coupling is shown to be crucial for the ELM
suppression.

Recent simulations for KSTAR [212, 242] investigate a
plasma configuration unstable with respect to PBMs. When
n = 2 RMPs are applied, a formation of islands and a stochas-
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Figure 44. The perturbed density during an ELM crash induced by a vertical magnetic kick is shown. All relevant conducting structures
were included in the JOREK–STARWALL simulation. The figure was generated based on the simulation data published in reference [171].

Figure 45. The magnetic topology caused by RMPs is shown. In the left figure, representing the ‘vacuum field’ perturbation many island
chains and stochastic regions are visible. In the right figure which includes the plasma response, most resonant components are shielded by
the rotating plasma, and only a few penetrated island chains are visible. Reprinted from [37], with the permission of AIP Publishing.

tic field layer is observed at the plasma boundary and a
density pump-out is observed, while the effect onto the
temperature is weaker. The article shows, that the PBMs can
be mitigated and eventually suppressed by the application of
the RMP fields of sufficient amplitude. Consistently with ref-
erence [240], a breaking of the mode rotation is seen in the
suppressed state. Non-linear mode coupling plays an important
role in the suppression, since the PBMs would be still unsta-
ble in the degraded plasma pedestal, when the 3D fields are
removed from the simulation.

5.5. ELM free regimes

Non-linearly saturated external kink modes in X-point plasma
simulations including the SOL were described for the first
time in reference [36]. Dedicated simulations for quiescent
H-mode (QH) plasmas from DIII-D were carried out in ref-
erence [243, 244]. These showed the development of satu-
rated KPMs leading to the characteristic edge harmonic oscil-
lation (EHO), which is observed experimentally in the den-
sity evolution and is caused by the rotating saturated modes
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Figure 46. The MP energies of a natural ELM crash (simulated with
a single toroidal mode number n = 6 are compared to a simulation
with applied RMPs. The n = 6 MP energies are significantly
reduced in the presence of the RMP fields. Instead of the bursts
corresponding to an ELM crash, stationary modes are formed.
Reprinted figure with permission from [236], Copyright 2014 by the
American Physical Society.

(figure 48). The influence of shear flows and resistive wall
effects onto the development of the QH-mode was stud-
ied for DIII-D and predictively for ITER. Linear stability
studies for the DIII-D case showed that the case is close
to the peeling stability boundary. It was demonstrated that
the saturated KPMs are replaced by an ELM crash, if the
edge current density is decreased and the pedestal pressure
increased.

Recently, simulations for experiments in ASDEX Upgrade
have also been performed [245]. A QH-mode experiment of
the carbon wall ASDEX Upgrade was studied and saturated
low-n KPMs were found to be non-linearly dominant at the
edge of the plasma forming a helically perturbed structure.
This is in spite of an initial small crash triggered by high-n
ballooning modes, confirming that the simulations predict the
formation of a QH-mode like state for this plasma configu-
ration. In the same reference, also simulations for the ITER
Q = 10 baseline scenario were performed. Although further
investigations may be necessary, these simulations indicate,
that the bootstrap current may be high enough in this sce-
nario to enter a QH-mode regime. The E × B flows are shown
to have a stabilizing influence on high-n modes in the ITER
plasma. In the ITER relevant range of E × B rotation around
20 km s−1 at the pedestal, the simulations show that low-
n modes n = 1–3 are destabilized and become dominant in
the non-linear saturated state that establishes, while higher-
n modes n = 7–10 are significantly suppressed. The satu-
rated low-n modes lead to density oscillations in the pedestal
which are typical for EHO characteristics. Also, simulations
with the free boundary extension (section 2.9) were shown
in order to investigate the effect of the true geometry of the
vacuum vessel onto the instabilities. Related to the effect
of resistive walls onto the KPM, simplified resistive wall
mode studies had already been performed and benchmarked in
references [168, 246] (figure 49).

5.6. Detachment physics

The simulations presented in references [76, 77] study
detachment/burn-through during an ELM crash in a non-linear
MHD simulation. Using the neutrals fluid model (section 2.6),
simulations of plasma detachment for the MAST Upgrade
tokamak were carried out [76, 163] and reasonable agree-
ment with SOLPS simulations could be shown, although some
discrepancies will require further investigations. In particu-
lar, the characteristic ‘roll-over’ could be qualitative repro-
duced, where the target particle flux first increases and then
decreases for an increasing midplane separatrix density, lead-
ing to a target temperature of only a few electron volts (eV) in
the detached state. Simulations of large type-I ELM crashes
were carried out in such a detached plasma state, showing
the ‘burn-through’ and re-attachment in the Super-X diver-
tor leg. The ELM energy fluence was found to be signifi-
cantly lower than that predicted from the empirical scaling
for the detached Super-X divertor [163]. Similar physics was
studied for ITER [77]. It could be shown that small ampli-
tude ELMs are sufficient to re-attach the plasma in the ITER
high recycling divertor transiently, increasing the electron
temperature at the divertor target from a few eV to several
hundred eV within a fraction of a millisecond (figure 50).
In this reference, also an outlook to refined modelling of
detachment and burn-through using a kinetic neutrals model
(based on the particles framework described in section 2.10)
is given, which will allow to capture the SOL dynamics
even more accurately.

5.7. Outlook

Regarding the modelling of edge instabilities, further empha-
sis will be put onto a more accurate modelling of the SOL and
divertor physics like shown for instance in section 5.6. Simula-
tions of the edge plasmas including such effects, further model
enhancements, and based on further numerical improvements,
aim to extend the modelling of ELM cycles to fully realistic
plasma parameters and describe the physics mechanisms rele-
vant for the transitions between the regimes of different ELM
types and ELM free regimes.

6. Applications to disruptions and their control

In view of ITER, disruptions are presently the highest priority
topic when it comes to large-scale plasma instabilities. Unmit-
igated disruptions are considered intolerable above modest
values (by ITER standards) of the plasma current and ther-
mal energy. The ITER DMS, which is planned to rely on
SPI, needs in particular to avoid substantial damage from heat
loads, RE impacts and electromagnetic forces [247]. The cur-
rent strategy to achieve this consists in: (1) mitigating heat
loads by dissipating most of the plasma energy through uni-
form radiation, (2) avoiding, if possible, the formation of an
RE beam by raising the electron density, (3) should an RE
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Figure 47. Edge temperature perturbations (non-axisymmetric component) for ASDEX Upgrade simulations of a peeling-ballooning
unstable plasma with different RMP amplitudes. The left panel shows different time points during a simulation with moderate RMP
amplitude. Edge instabilities form rotating structures of reduced amplitudes compared to the natural ELM crash (mitigation regime). The
right panel shows, that a higher RMP amplitude causes a locking of the instabilities. In this case, losses from the plasma are strongly reduced
and stationary mode activity is seen (suppression regime). Reprinted from [240], with the permission of AIP Publishing.

Figure 48. The edge density perturbation during a QH-mode simulation is shown. The upper figure contains the time trace of the
perturbation in the outer midplane induced by a stationary and rotating edge mode, the lower figure contains the spectrum analysis of this
signal. The results are in very good agreement to the experimentally observed EHOs. Reproduced from [244]. © IOP Publishing Ltd. All
rights reserved.

beam appear anyway, using SPI into the beam in order to make
its impact as benign as possible, and (4) controlling (via the
plasma impurity content) the Ip decay rate in order to mitigate
electromagnetic loads. Achieving these goals simultaneously
requires a deep understanding of SPI and disruption physics,
and this motivates the many disruption-related investigations

with JOREK which are described in this section. In particular,
section 6.1 discusses pre-disruption physics, i.e., the mecha-
nisms leading to disruptions, section 6.2 covers the dynamics
of disruptions triggered by MMI, section 6.3 deals with VDEs
and halo current dynamics, and finally section 6.4 describes
RE studies.
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Figure 49. The simulation of an ELM crash in MAST Upgrade is shown. The simulations are performed using the neutrals model available
in JOREK. The originally detached state with low target temperatures (left plot) is re-attaching during the ELM crash in the Super-X
divertor (right plots). Reproduced from [77]. CC BY 3.0.

Figure 50. Density, temperature and neutral density profiles along the ITER outer divertor. Reproduced from [78]. CC BY 3.0.

6.1. Pre-disruption physics

6.1.1. Tearing mode dynamics and mode locking. Simula-
tions in ASDEX Upgrade-like geometry have been run in
which the current profile was tailored to make a dominantly
m/n = 2/1 TM strongly unstable [248]. Due to the inhomoge-
neous magnetic field as well as geometrical effects, the n = 1
mode contains sidebands, i.e., components of the type m/1
with m �= 2. In the linear phase, Poincaré cross-sections thus
show the presence of not only a 2/1 island, but also 3/1, 4/1
and 5/1 islands. In the non-linear phase, n > 1 islands (in par-
ticular 3/2 and 5/2) grow fast. An analysis of the growth rate
of the islands width, shown in figure 51, suggests that n > 1
islands result from mode coupling. For example, the growth
rate of n = 2 islands is twice that of n = 1 islands. Island over-
lapping leads to a stochastization of the magnetic field over
roughly the outer half of the plasma. Due to the fast paral-
lel heat transport, the temperature profile flattens across this
region, reproducing a key feature of so-called ‘partial TQs’ in
experiments [249].

The amplitude of the magnetic field perturbation at the
onset of the partial TQ, as measured by synthetic magnetic

Figure 51. Island width as a function of time for various islands,
showing that higher n islands are driven by mode coupling.

sensors localized in the midplane, was compared to the empir-
ical scaling law identified by de Vries et al [250]. Agreement
within the error bars is found for LFS sensors. On the other
hand, the high field side (HFS) synthetic sensors measure a MP
much weaker than expected from the de Vries scaling. This
LFS–HFS asymmetry, which is clearly visible in figure 52,
seems related to the fact that the various m/1 components
interfere constructively on the LFS but destructively on the
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Figure 52. Perturbed radial magnetic field Br at the midplane as a
function of the toroidal angle φ and major radius R. The q = 2
surface (both on the HFS and LFS) and the magnetic axis are
marked by grey lines. An HFS–LFS asymmetry clearly appears.

HFS. A related observation is that the O-points of the various
m/1 islands align on the LFS (a feature also observed exper-
imentally [249]) while on the HFS, the alignment involves
either the O-point or the X-point depending on the parity of m.
These observations could help extract improved scaling laws
in the future.

Furthermore, the locking of a slowly rotating magnetic
island to the vacuum vessel of ASDEX Upgrade was demon-
strated [248]. Scanning the vessel conductivity artificially
shows that mode locking is fastest and most complete when
τ v � m/ω, where τ v is the vessel resistive time and ω is the
mode frequency, as expected from theory [251].

6.1.2. Effect of impurities on island growth and relation
to the Greenwald limit. Using the fluid impurity model
(section 2.7), JOREK simulations show a strong growth of
islands when the local radiation exceeds the Ohmic heating
[252]. The transition to strong island growth occurs in a range
of densities near the Greenwald limit. For a single impurity
species, the critical density depends on the impurity fraction
and the temperature, in contrast to the scaling of the Green-
wald density limit. However, a mixture of impurity species
is found to remove some of these dependencies, consistently
with [253].

6.1.3. Tearing mode seeding via resonant magnetic perturba-
tions (RMPs). In ASDEX Upgrade, experiments have been
conducted using the RMP coils (the same as those used
for ELM mitigation/suppression, see section 5.4) with a coil
configuration optimized to produce m/n = 2/1 perturbations.
Corresponding JOREK simulations show good qualitative
agreement with the experiments and with analytical predic-
tions regarding mode penetration [254]. In particular, thresh-
olds for the mode penetration in the RMP amplitude and
plasma rotation frequency were observed, as well as a fast
transition between the shielded and penetrated states and a
hysteresis of the island size and plasma rotation between the
ramp-up and ramp-down of the RMP. The latter is illustrated
in figure 53.

6.1.4. Tearing mode control with electron cyclotron current
drive (ECCD). A useful tool to control TMs and help avoid
disruptions is electron cyclotron current drive (ECCD). A fluid

Figure 53. 2/1 island width versus RMP coils current, showing the
hysteresis effect: mode penetration occurs slightly above 2 kA in the
RMP ramp-up phase, while mode expulsion occurs below 1.5 kA in
the ramp-down phase. Reprinted from [255], with the permission of
AIP Publishing.

closure reproducing the dominant Fisch–Boozer current gen-
eration mechanism in ECCD has been developed and vali-
dated against full Fokker–Planck calculations of ECCD [255].
This closure model is implemented in JOREK and the stabiliz-
ing influence of ECCD onto a TM has been demonstrated in
simplified geometry [155].

6.2. Dynamics of disruptions triggered by massive material
injection

This section summarizes work performed with JOREK on the
TQ triggering mechanisms (section 6.2.1), the TQ dynamics
and plasma current spike (section 6.2.2), the assimilation and
mixing of injected material (section 6.2.3) and the radiation
fraction and asymmetry (section 6.2.4). For work with other
codes on these topics, see references [256–261] and references
therein.

6.2.1. Thermal quench triggering mechanisms. Disruptions
triggered by a MGI have been studied intensively with JOREK
[74, 75, 78, 262]. An analysis of simulations of deuterium
MGI in JET, illustrated by figures 54 and 55, suggests that the
TQ is triggered through a current profile avalanche effect. The
avalanche is started by the penetration of an MGI-driven cold
front up to the q = 2 surface, at which point a large m/n = 2/1
TM is destabilized (first row of figure 54). The 2/1 mode,
whose growth is boosted by an MGI-induced helical cooling
effect inside the 2/1 island, flattens the toroidal current den-
sity ( jφ) profile around the q = 2 surface, which results in a
steepening of the jφ gradient more inward, as evident in the
blue and red profiles in figure 55. When the steep jφ gradi-
ent passes across the q = 3/2 surface, a 3/2 TM is destabi-
lized (second row of figure 54). The 3/2 mode in turns flattens
jφ locally and propagates the steep jφ gradient more inward,
which destabilizes a 4/3 TM (magenta curve in figure 55 and
last row of figure 54). These combined modes generate global
magnetic stochasticity and thereby provoke the TQ. It is inter-
esting to note that, for these MGI simulations, the n > 1 modes
seem to be destabilized via a current profile effect while in
the study presented in section 6.1.1 they were destabilized by
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Figure 54. Poloidal cross-sections at the toroidal position of the MGI of (from left to right) the n = 1, n = 2 and n = 3 cosine component of
the poloidal flux ψ at times (from top to bottom) t = 4.1 ms, t = 5.1 ms and t = 5.7 ms, for the same simulation of deuterium MGI in JET as
in figure 55. The colour scale is the same for all plots (note the saturation for the n = 1 mode which has a large amplitude compared to the
other modes). Reproduced from [79]. © IOP Publishing Ltd. All rights reserved.
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Figure 55. Toroidal current density profiles at the midplane (LFS) at
different times for the same simulation of deuterium MGI in JET as
in figure 54. The red and magenta profiles correspond to the last two
rows of figure 54. Note that, for clarity, the position of rational
surfaces is indicated (by vertical dashed lines) referring to their
location at the beginning of the simulation. Reproduced from [79].
© IOP Publishing Ltd. All rights reserved.

mode beating. The reason for this difference remains to be
clarified.

SPI is also being investigated in detail with JOREK. Simu-
lations of deuterium SPI in JET [79, 87] and ASDEX Upgrade
[263] have shown that pre-TQ dynamics can vary drastically
depending on parameters. If shards travel across the plasma
relatively fast compared to the current decay time in the SPI-
cooled region, then the main MHD destabilization mecha-
nisms are (1) the helical cooling on low order rational q
surfaces (whereby shards may generate magnetic islands as
they pass across these surfaces, possibly leading to a stochas-
tization front progressing with the shards), and (2) for target
plasmas with a central safety factor q0 < 1, the excitation of
the 1/1 internal kink mode when shards reach the q = 1 sur-
face. This behaviour has been observed in JET deuterium SPI
simulations [79, 87]. In the opposite limit of slow shards with
respect to the current decay time in the SPI-cooled region, the
dynamics resemble that described above for MGI: the cur-
rent profile contracts due to the SPI-induced cooling of the
edge, which destabilizes TMs in cascade from the edge to
the core, leading to a stochastization front progressing faster
than the shards. In this regime, the TQ is typically triggered
when shards reach the q = 2 surface, but it can be triggered
even before for large and slow pellets. This behaviour has
been observed in ASDEX Upgrade deuterium SPI simula-
tions [263] and is also typically observed for any tokamak
when simulating the injection of shattered pellets containing
impurities [80].

The key role of the ordering between the shards penetra-
tion time and the current decay time in the SPI-cooled region
has a number of implications. First, it can be noticed that the

Figure 56. Simulated and experimental time traces of the plasma
current during a massive argon injection in JET (pulse 85 943).
Vertical lines indicate the time of the Poincaré cross sections shown
in figure 57.

resistive current decay time, ∼μ0l2/η, is proportional to the
square of the length scale of interest l. Hence, considering
that l is proportional to the machine size, the current decay
time should grow like the machine size squared, while the
shards penetration time, for a given velocity, increases linearly
with machine size. This consideration is important for compar-
isons or extrapolations between machines of different sizes. It
explains partly the different behaviour found in JET [79, 87]
and ASDEX Upgrade [263] deuterium SPI simulations. Sec-
ond, simulations in which the resistivity is artificially increased
(which is often done for numerical reasons) should be con-
sidered with caution because the current decay time will be
artificially shortened. To avoid this issue, present JOREK sim-
ulations use a realistic resistivity at low Te with a cut-off above
a certain Te threshold. A third important remark is that the cur-
rent decay time depends on the characteristics of the cooling,
i.e. on (1) the timescale of the cooling and (2) the post-cooling
temperature.

This last observation explains the large differences
observed between simulations of pure deuterium versus
impurity-containing MMI, and suggests that deuterium SPI
may be used as a means to promptly and strongly dilute
ITER plasmas without immediately triggering a TQ, thanks
to a relatively high post-cooling temperature. Such a strat-
egy may be instrumental in avoiding RE generation, moti-
vating its investigation with JOREK [264]. It was found that
in the absence of pre-existing islands and provided that the
density of background impurities is low enough, the desired
effect can indeed be obtained. Simulations are on their way
to assess whether pre-existing magnetic islands can have a
detrimental influence for realizing this strategy (first consid-
ering ASDEX Upgrade plasmas). It is assessed in particular
whether the presence of the 2/1 island makes it harder to get
SPI shards across the q = 2 rational surface without triggering
a TQ [265].
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Figure 57. Poincaré cross sections at times 1.19 ms, 1.91 ms, 2.29 ms and 2.46 ms in a simulation of massive argon injection in JET (pulse
85 943). The corresponding times are indicated by vertical lines in figure 56.

6.2.2. Thermal quench dynamics and plasma current spike.
The presence of an Ip spike is a robust experimental obser-
vation associated to the TQ, but a difficult one to repro-
duce quantitatively with 3D non-linear MHD simulations. Ip

spikes in simulations have been reported in the past [78, 266]
but with a significantly smaller amplitude than experimental
spikes. However, in recent JOREK MGI simulations, push-
ing the parameters towards realistic experimental conditions
and studying argon MGI in JET, an Ip spike of comparable
magnitude to the experimental one has been obtained, as can
be seen in figure 56. In these simulations, the mechanisms
leading to the TQ are partly the same as described above for
deuterium MGI but modes are more violently destabilized,
leading to stronger stochasticity throughout the plasma (a
series of Poincaré plots, at times indicated by vertical lines
in figure 56, are shown in figure 57). The fact that modes
are more destabilized is a result of a stronger cooling with
argon than deuterium MGI and of the more realistic (i.e. lower)
resistivity used in the simulation, which generates sharper
skin currents and thus a more unstable current profile. Also,
a seemingly critical feature associated to a large Ip spike [267]
is a radiative cooling strong enough to persist near the O-
point of the 2/1 island, even as the island gets destroyed by
magnetic stochasticity. This promotes a local collapse of the
current density which drives the 2/1 mode to a very large
amplitude. According to theory [268], the Ip spike results from
a relaxation of the current density profile at approximately
fixed magnetic helicity. This relaxation is caused by the mag-
netic field stochastization and may be modelled, in a mean-
field approach, by a hyper-resistivity term in the poloidal flux
evolution equation [268]. Boozer predicts a relation between
the mean-field hyper-resistivity and the field line stochastic
diffusivity (equation (68) in [268]). JOREK mean-field sim-
ulations, i.e. axisymmetric simulations with an ad hoc hyper-
resistivity term of the order of that predicted by Boozer, indeed
match 3D simulations [269]. The Ip spike magnitude and the
modes amplitude (which govern the field line stochastic dif-
fusivity), thus appear to be strongly connected. In order to
progress in the validation of JOREK simulations, ongoing
work aims at comparing both the Ip spike magnitude (and more

generally the time evolution of Ip) and the modes amplitude
with experimental data, in particular by using synthetic saddle
coils in JET simulations [267].

Another important question related to RE generation, is
that of the decay of MHD modes and magnetic stochastic-
ity after the TQ. This point is actually also related to the Ip

spike. Indeed, according to robust theoretical estimates done
by Boozer, if the current profile relaxation during the TQ
was complete, and assuming good magnetic helicity conser-
vation, the Ip spike would be much larger than experimentally
observed [268]. Thus, either helicity dissipation is non negligi-
ble, or the relaxation is incomplete. JOREK simulations seem
to point to the latter explanation. Indeed, they usually display
good helicity conservation during the TQ but a clear decay
of stochasticity (starting from the core of the plasma) before
the current profile has fully flattened, as visible for example in
figures 11 and 12 of [263].

6.2.3. Assimilation and mixing of injectedmaterial. The ques-
tion of the assimilation and mixing of the injected material
is important, both for reducing localized heat fluxes and for
avoiding REs. Indeed, the present ITER RE avoidance strat-
egy relies on raising ne by more than one order of magni-
tude throughout the plasma [270]. This density rise should
be uniform, otherwise REs could be generated in low density
regions.

It is generally observed in JOREK MGI and SPI simula-
tions that the deposited material initially expands in the paral-
lel direction at the speed of sound, as also seen in simulations
of pellet ELM pacing (see section 5.2). After some time, the
part of the cloud expanding in one direction may run into the
part expanding in the other direction, leading to substantial
viscous dissipation.

JOREK simulations of deuterium MGI and SPI in JET
[79, 87] show that SPI is superior regarding material assimila-
tion and mixing, as illustrated in figure 58, thanks to the deeper
penetration of solid shards compared to gas. The same simu-
lations also suggest, for target plasmas with q0 substantially
below 1 and thus with a large q = 1 radius, a key role of the 1/1
internal kink mode for material mixing into the plasma core
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Figure 58. Electron density profile just before (red) and just after
(blue) the TQ for simulations of deuterium SPI (plain) and
deuterium MGI (dashed) in JET. The black plain and dashed vertical
lines indicate the position of the q = 2 and q = 1 surfaces,
respectively. Reproduced courtesy of IAEA. Figure from [88].
© 2018, ITER Organization.

during the TQ. In this respect, the position of the shards at the
time of the internal kink mode crash appears critical: if shards
are ‘within reach’ of the mode’s flow structure, substantial
material mixing into the core happens; otherwise, core mixing
is poor. These observations are related to the 1/1 mode struc-
ture, which exhibits uniform and strong displacement within
the q = 1 surface, but a weak displacement outside of that sur-
face [271]. Simulations in which q0 was elevated above 1 so
as to remove the internal kink mode, also show poor core mix-
ing early in the TQ. Recent impurity SPI simulations of ITER
plasmas show similar results [80].

However, the absence of a 1/1 mode does not necessar-
ily imply bad mixing. Indeed, simulations of deuterium SPI
in ASDEX Upgrade [263], for which the target plasma has
q0 > 1, found good core mixing even if the TQ happens while
shards are still far from the core (e.g. near the q = 2 surface).
More precisely, as shown in figure 59, the density profile is
usually hollow during and shortly after the TQ, but by the time
flux surfaces reappear, the density profile has typically strongly
flattened.

The more pronounced core mixing later into the TQ for
the ASDEX Upgrade simulations is likely related to the much
larger mode amplitudes and stronger magnetic stochasticity
(as described in section 6.2.1), which lead to both stronger
E × B flows and a larger radial transport by parallel flows. An
important observation is that parallel flows are strongly driven
during the TQ due to the heating of the relatively dense and
cold region where the material has been deposited, by the heat
flux coming from the core along stochastic field lines.

6.2.4. Radiated fraction and radiation asymmetry. A uniform
deposition onto the plasma facing components (PFCs) of the
pre-TQ thermal energy W th is critical for efficient thermal load
mitigation during ITER disruptions [247]. To achieve this,
both a large radiated thermal energy fraction (�90% for the
baseline ITER scenario with W th = 350 MJ) and a low radi-

ation asymmetry are required. It is usual to characterize the
radiation asymmetry by a toroidal peaking factor (TPF) and a
poloidal peaking factor (PPF). In this section, we discuss the
TPF, which is defined as the maximal (over the toroidal angle)
over mean radiated power per unit radian. The target for ITER
is a TPF lower than 2. The PPF shall be the subject of future
studies.

With SPI from a single toroidal location, the TPF may be
above the ITER target during the pre-TQ and early TQ stages.
An example of such behaviour is shown in figure 60. In this
JET simulation, the injected fragments consist of pure neon
and are flying along the poloidal plane. It is evident that the
peak radiation power is located close to the toroidal loca-
tion of the fragments, although there is some drift along the
course of the injection. The TPF reaches its peak value, which
is larger than 2, at the time of the TQ onset. It then grad-
ually relaxes over the course of the TQ, until the radiation
power becomes relatively toroidally uniform. The cause of
such asymmetry can be traced back to the unrelaxed impurity
density along the field lines, which is related to the finite ion
sound velocity.

JOREK simulations show that multiple injections may sig-
nificantly mitigate the TPF, as illustrated in figure 61. Here, we
are comparing the toroidal radiation distribution of a single-
SPI and a symmetric dual-SPI, both injecting 2.6 × 1022 neon
atoms along with 2.1 × 1024 deuterium atoms into an ITER
L-mode plasma. For the single-SPI, the injection is done at 0
radian, while for the dual-SPI injections are done at 0 and π
radian. A significant TPF is again exhibited in the single-SPI
case, even during the early stage of TQ at t = 4.24 ms. On the
other hand, for the dual-SPI case, in spite of a strong asym-
metry in the early pre-TQ stage, the asymmetry is strongly
mitigated by the time of TQ at t = 4.08 ms.

6.3. Vertical displacement events and halo current
dynamics

In the case where the vertical control of an elongated plasma is
lost, the plasma column undergoes an axisymmetric instability
referred to as a VDE. The loss of vertical control can be due to
a large MHD perturbation or to a technical failure of the verti-
cal control system. As the plasma drifts vertically towards the
wall, large heat and electromagnetic loads are deposited into
the PFCs and surrounding structures. The extrapolation of the
magnitude and distribution of these loads to larger machines,
in particular the 3D distribution, is still not well established.
In this respect the simulation of these events with 3D MHD
codes is crucial. For other non-linear MHD codes investigat-
ing VDEs, refer, e.g., to references [272–275] and references
therein.

The simulation of VDEs requires free-boundary condi-
tions for the magnetic field and a self-consistent evolution
of currents in the structures surrounding the plasma. This is
possible (including with 3D conducting structures) with the
free-boundary extension of JOREK (see section 2.9). Based
on this extension, a first benchmark of the growth rates
for axisymmetric VDEs in a simplified ITER-like plasma
had been carried out between JOREK and the CEDRES++
code in [168] revealing good quantitative agreement (within
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Figure 59. Colormap of the electron density distribution (black and white) with overlaid iso-contours of the stream function for the
perpendicular plasma velocity (colours) during a simulation of deuterium SPI in ASDEX Upgrade. The 3 plots correspond, from left to
right, to the pre-TQ, TQ, and early CQ phase. Reprinted from [264], with the permission of AIP Publishing.

Figure 60. The relative and absolute radiation power within each
poloidal plane for neon SPI into a JET L-mode plasma. The TQ
occurs at t = 1.98 ms. The fragments are injected at a toroidal angle
of 4.51 radian.

10%–20%) over a large range of wall resistivities (including
fully realistic values). First demonstrations of 3D VDEs using
JOREK were shown in [168, 276].

An important area of research connected to VDEs and dis-
ruptions is the halo current, i.e. the current that flows partly
in the plasma SOL, closing its path via conducting structures
in contact with the SOL [278–280]. Axisymmetric paramet-
ric scans for an ITER 15 MA upward VDE were performed in
[277] by fixing the halo region temperature and width. Scans in
the plasma resistivity showed that when the CQ time is much
smaller than the decay time of the wall currents (τCQ � τw),

the vertical position is a monotonic function of the plasma cur-
rent Z(Ip) as predicted by Kiramov’s wire model [281]. In this
limit the shape of the Z(Ip) curve does not depend on specific
time scales but only on the shape of the toroidal current pro-
file. The implication is that ITER plasmas will transition from
an X-point to a limiter configuration at a large total current
(∼10 MA) regardless of the mitigation scheme used, which
could have important consequences regarding the wall dam-
age caused by a vertically unstable RE beam, if RE mitigation
by SPI does not achieve its goal in ITER.

The latter scans show that the expected halo current fraction
(HF) depends strongly on the τCQ/τw as shown in figure 62. A
minimum HF of∼10% is found at τCQ/τw � 1 and maximum
fractions of ∼50% have been found in the limit τCQ/τw � 1,
similar to the maximum values obtained with the DINA code
[247]. In the fast CQ limit, the maximum HF is below 10%
regardless of halo width and temperature assumptions. Miti-
gated disruptions in ITER will target CQ times in the range of
50–150 ms (to be compared to τw = 0.5 s). The corresponding
predicted HF range is 10%–20%. This suggests that the ITER
DMS could be used to reduce the halo current electromagnetic
loads by more than a factor 2 with respect to their maximum
possible value.

3D simulations for an ITER 15 MA plasma were conducted
in the fast CQ limit [92]. The TPF of the poloidal halo currents
is shown in figure 63 for 3 different values of the plasma resis-
tivity leading to different CQ times. It can be seen that the TPF
(given by an n = 1 kink mode) is very low in the fast CQ limit
(while in experiments, the TPF can reach values of 4). More-
over the maximum TPF does not seem to depend strongly on
the CQ time if τCQ/τw � 1. Note however that CQ times in
these simulations are below 50 ms, which is not allowed in
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Figure 61. Comparison of radiation asymmetries between mixed neon-deuterium single-SPI (left) and dual-SPI (right) into an ITER L-mode
plasma. Reproduced courtesy of IAEA. Figure from [81]. Copyright 2020 IAEA.

Figure 62. Halo fraction versus vertical position of the magnetic axis for different τCQ/τw ratios [277]. The halo current fraction is defined
as HF ≡ (1/Ip,0)

∫
|J · n|/2 dSwall.

ITER due to eddy current constraints on the blanket modules
[247]. These results are therefore presented only for their phys-
ical interest and future work will be devoted to realistic ITER
predictions.

The change of the edge current density and edge safety fac-
tor during a VDE when the plasma moves into the PFCs is
discussed in [282]. Analytical theory and JOREK non-linear
simulations show excellent agreement. When currents are lost
in the scraped-off region of the plasma, a significant fraction
of these currents is re-induced in the edge hot core region of
the plasma. The same mechanisms also apply in case of a loss
of the plasma edge current due to a cooling of the plasma edge
caused by an MMI.

Predictive simulations of VDEs must include several effects
that are relevant for the evolution of the density and of the

temperature in the SOL region. The energy balance given by
perpendicular and parallel transport, Ohmic heating, radiation,
ionisation and other effects determines the plasma tempera-
ture, which in turn has a large impact on the current density
and the VDE dynamics through the plasma resistivity. In [67],
a complete set of sheath boundary conditions was taken into
account together with a neutral fluid model and realistic phys-
ical parameters, e.g., Spitzer resistivity and Spitzer–Härm par-
allel conduction. It was found that it is particularly important
to couple the electrical current density to the particle density
and temperature through a boundary condition that limits the
maximum current density to the ion saturation current. Oth-
erwise large currents can be induced in regions of very low
particle density, leading to non-physical dynamics. Although
the effect of impurity radiation was not included, these
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Figure 63. TPF of the halo current as a function of the vertical
position of the magnetic axis for an ITER 15 MA upward VDE [92].

simulations are the first to provide a fully self-consistent
evolution of halo currents.

6.4. Runaway electron physics

6.4.1. Test electron dynamics during the thermal quench. RE
generation during disruptions is a major concern for ITER
[283]. A key question in this area is that of fast electron losses
along stochastic field lines during a disruption. To study this
question, a relativistic test particle tracer (with 2 options: full
orbit or guiding centre) has been implemented in JOREK (see
section 2.10). It has first been applied to study electron losses
at approximately fixed energy in the electromagnetic fields of
MGI-triggered disruptions (see section 6.2) [101, 102]. Sub-
stantial electron losses were found during the strongly stochas-
tic TQ phase, which increased with the electron energy until
reaching a saturation as the electron velocity approaches the
speed of light. However, a few tens of % of electrons at typical
pre-TQ thermal energies (∼1 keV) were found to remain in
the plasma by the time flux surfaces start reforming after the
TQ. This is by far enough to give birth to a large RE beam,
but this number should be taken with caution since the mag-
netic field stochasticity may have been underestimated in these
simulations, as suggested by the under-predicted plasma cur-
rent spike. In a second study, the full dynamics of test elec-
trons, including acceleration or braking by the parallel electric
field and by collisions, were investigated in the same JOREK
simulations [102, 284]. This revealed that the very large
(∼1 kV m−1) parallel electric field fluctuations during the TQ
can have a key role in RE generation. These fluctuations indeed
rapidly broaden the electron energy distribution, with a typi-
cal energy reaching a few tens of keV after a few tens of μs, as
can be seen in figure 64. This makes electrons less collisional
and therefore promotes RE generation. This is a new effect,
not captured by typical lower-dimensional studies where only
the axisymmetric component of the electric field is considered.
Finally, the magnetic field from a JOREK disruption simu-
lation has been used in a recent test electron study with the
ASCOT code [175].

6.4.2. Runaway electron fluid model applied to VDEs and RE
beam termination. Complementary to the passive test par-
ticles approach, an RE fluid model has been implemented,
which allows to describe the full non-linear interaction of the
REs with the MHD activity [110]. While various applications
of the model are on their way, some studies have already been
performed. Similar approaches are followed by other codes,
see e.g., references [167, 285–287].

Axisymmetric and non-axisymmetric VDEs have been
studied with and without the presence of REs [288], showing
that the vertical motion of the plasma can be slowed down by
the presence of REs if the decay of the plasma current is influ-
encing the dynamics of the vertical instability significantly. It
was also demonstrated that the RE current, peaking off-axis in
this case, may lead to the destabilization of a 1/1 internal kink
instability in a plasma that would otherwise have a dominant
2/1 helical perturbation, as shown in figure 65. Such effects
may have important consequences for the termination of RE
beams.

In a recent study, the benign termination of an RE in a
JET experiment has been simulated [289, 290]. Based on
experimental data, a plateau-phase RE beam with a hollow
current density profile in a low density background plasma
with negligible content of high-Z impurities is considered. It
is found that an n = 1 double TM associated with the pres-
ence of two q = 4 surfaces grow rapidly, with subsequent
non-linear mode interaction causing global magnetic stochas-
tization. This leads to the loss of REs on a timescale of
� 100 μs. Poincaré plots as well as the RE number density are
shown in figure 66. The observed behaviour is in very good
agreement with the experiment as it shows comparable mode
structures and time scales. Simulations also indicate a signif-
icant toroidal variation in the RE flux on the wall dominated
by an n = 1 structure and a poloidally broad RE deposition
zone, partly explaining why no material damage is observed
experimentally.

6.5. Outlook

Concerning current and future work related to disruptions,
like mentioned in section 2.15, the development of a more
realistic impurity model going beyond the coronal equilib-
rium assumption, is ongoing to improve the accuracy of MMI
simulations.

A validation effort on MMI modelling is underway, involv-
ing in particular the simulation of MGI and SPI experiments in
JET. Synthetic diagnostics such as interferometry, bolometry
and saddle loops have been implemented for this purpose.

As described above, a growing effort is also devoted to test-
ing disruption mitigation strategies for ITER. In particular, the
study on the possibility of promptly diluting ITER plasmas
with pure deuterium SPI, described in section 6.2.1, is being
refined, investigating e.g. the effect of pre-existing islands.
Also, the work aimed at optimizing thermal load mitigation
by radiation, described in section 6.2.4, is being pursued, con-
sidering more ITER scenarios and refining the treatment of
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Figure 64. Early evolution of the kinetic energy of a set of electrons initialized in the plasma core with a kinetic energy of 1 keV. Green
lines correspond to lost electrons while red (resp. blue) lines correspond to electrons which remain confined and have a final energy above
(resp. below) 1 MeV. Reproduced courtesy of IAEA. Figure from [285]. © 2018 EURATOM.

Figure 65. Structure in the perturbed (normalized) electric potential u during the non-linear phase of the mode growth. (a) Without REs, the
n = 2 component dominates while (b) with REs an n = 1 mode is developing due to the different q-profile (1/1 internal kink). Reprinted
figure with permission from [111], Copyright 2019 by the American Physical Society.

impurities. The RE fluid model will be applied to further test
RE avoidance or mitigation schemes for ITER.

In the field of VDEs, current and future work involves
experimental validation, implementation of sheath boundary
conditions, a free-boundary extension for full MHD and a
coupling with 3D volumetric wall codes.

7. Further applications

7.1. ITGs

As described in section 2.13, an electrostatic model for ITG
turbulence has been recently implemented. The fluid model
and first benchmark results were shown in reference [116].
The effect of magnetic shear onto the characteristics of global
ITG modes are investigated in reference [117] in global simu-
lations in simplified circular geometry similar to [118]. Typi-
cal up-down asymmetrical eigenmode structure with non zero

ballooning angle is typically observed in the regimes of rel-
atively large magnetic shear due to the increased coupling
between rational surfaces [117]). In the low shear regime, the
unstable eigenmodes become narrowly localized on the cor-
responding rational surfaces and exhibit no up-down asym-
metry. The structure of the generated mean poloidal flow via
Reynolds stress is investigated in more detail in reference
[117].

The first benchmark results for linear ITG modes of the full-
f electrostatic kinetic JOREK model with full orbit ions and
adiabatic electrons are shown in figure 67. For these cases, the
full orbit of 109 ions are traced with a time step of 5 × 10−9 s
in a polar flux surface-aligned finite element grid of 101
radial and 256 poloidal elements. The full orbit ITG growth
rates from JOREK are in good agreement with the gyroki-
netic results from GENE, XGC and ORB5 presented in ref-
erence [119]. Since the kinetic model uses the same grids and
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Figure 66. Poincaré plots along with the RE number density (background colour) during the MHD activity leading to the stochastization of
the magnetic field and subsequent termination of the RE beam. Remaining RE current is also shown in each panel. Reproduced from [292].
© IOP Publishing Ltd. All rights reserved.

Figure 67. (Left) Growth rate of ITG modes as a function of the toroidal mode number from the JOREK kinetic model compared to the
GENE results from the benchmark [119]. (Middle) The ITG mode structure of the potential for the n = 24 case. (Right) Example of the
mode structure of an n = 20 ITG mode in COMPASS X-point geometry L-mode plasma.

equilibria as the fluid models in JOREK, the kinetic model can
also be applied in X-point geometry, including open field lines.
As an illustration of this, figure 67 (right) shows an n = 20
ITG mode in COMPASS X-point geometry, in the non-linear
phase.

7.2. Toroidal Alfvén eigenmodes and fast particles

The excitation of TAE modes with an external antenna was
studied in JET X-point plasmas was studied in references
[291, 292] using the freeboundary extension described in
section 2.9. The paper addresses the question why, in JET
experiments, TAE modes are more difficult to excite in

X-point geometry as opposed to limiter geometry. The JOREK
simulations show the same behaviour as observed experimen-
tally and point to the importance of the SOL with open field
lines with a wider SOL leading to a less efficient antenna
excitation.

The particles framework (section 2.10) includes the interac-
tion of fast particles on the MHD fluid. The fast particle driven
TAE instability has benchmarked against the well-established
ITPA TAE benchmark as described in [293]. In the JOREK
simulations, the pressure coupling scheme was used and the
number of particles was 108. Figure 68 shows a good agree-
ment in the comparison of the JOREK results with several
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Figure 68. The linear growth rate of the n = 6 TAE mode as a function of the temperature of the fast particle population, comparing JOREK
results to other codes (including FLR effects). The data is taken from reference [293] with the JOREK results from reference [294] added.

other codes on the n = 6 TAE mode growth rate as a func-
tion of the fast particle temperature [294]. Note that JOREK is
the only code in this benchmark using full orbit fast ions.

7.3. 3D configurations

3D plasma configurations are becoming an important research
area for JOREK, in particular quasi-axisymmetric (QA) stel-
larators are of interest. A first approach is to simulate an
axisymmetric configuration with properties as close as possi-
ble to the true QA configuration. Linearly, such an approach
has been followed in reference [295] and is presently improved
by including ‘virtual coil currents’ in the simulations, which
provide an externally driven rotational transform like it is
present in the QA-stellarator also for the axisymmetric simula-
tion [296–298]. This allows to incorporate both the influence
of the external rotational transform onto non-axisymmetric
modes and the stabilizing effect onto VDEs. In parallel to
this axisymmetric approach to the QA stellarator, an exten-
sion of JOREK to 3D configurations is presently ongoing. As
a first step, a hierarchy of reduced and full MHD models has
been derived in a form suitable for stellarator devices [70, 71];
implementation is presently on the way. The extension of the

code to 3D grids taking place in parallel is briefly mentioned
sections 2.15 and 3.8. First simulations in simple stellarator
geometry are expected to become possible very soon.

8. Conclusions and summary

A comprehensivesummary of the JOREK simulation code was
given covering the available physics models, the numerical
methods employed and the verification, as well as the broad
range of applications to magnetically confined fusion plas-
mas. An outlook was provided in each section onto further
developments of the code and future applications.

It was shown that JOREK provides a framework which
contains a number of different physics models ranging from
reduced and full MHD models to a fully kinetic treatment of
the plasma (so far electrostatic). Various extensions are avail-
able including separate electron and ion temperatures, diamag-
netic drift, neoclassical effects, fluid and kinetic neutrals, a RE
fluid and test particle model, fluid and kinetic impurities, pel-
lets, free boundary and conducting structures. While the single
fluid reduced and full MHD models are energy conserving on
the equation level, errors can arise from gyro-viscous cance-
lation, temporal discretization and too low toroidal resolution.
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Diagnostics running automatically for each simulation allow
to confirm that energy is conserved reasonably well in prac-
tice. Momentum conservation is exact on the equation level
for the full MHD model, but not for the reduced MHD model.
The error has a higher order as seen from analysis in reference
[70] and confirmed by the good linear and non-linear agree-
ment between reduced and full MHD models shown in direct
comparisons.

The spatial discretization is based on a 2D G1 contin-
uous finite element formulation combined with a toroidal
Fourier decomposition allowing to accurately align to flux sur-
faces improving numerical accuracy and to extend the com-
putational domain across the separatrix up to divertor and
plasma facing components. An extension of the axisymmet-
ric grid to 3D stellarator configurations is under development.
The robust fully implicit time advance allows to use large
time steps where the physics processes allow for it. An iter-
ative solver with a physics based preconditioner is applied
to the large sparse matrix system, for which various options
and library interfaces exist and further improvements are on
their way. The code is very actively developed in an inter-
national community with automatic regression tests and code
reviewing.

A large number of verification activities have been carried
out over the years, while only selected ones could be shown
in this article. This covers basic convergence properties of
the discretization, tests for highly anisotropic heat transport,
a verification of energy conservation, linear and non-linear
benchmarks on core and edge instabilities, comparisons on
the SOL models, benchmarks for the RE fluid model, a vari-
ety of simpler and very advanced benchmarks for the free
boundary extension, and detailed tests of the kinetic particle
framework.

Regarding pedestal/edge simulations, a variety of results
regarding natural ELMs was shown demonstrating that the
JOREK code is able to reproduce key experimental observa-
tions qualitatively and even quantitatively. This is in particular
the case for the divertor heat fluency scaling that is recov-
ered reasonably well and for the explosive onset of type-I
ELM crashes that has recently been reproduced for the first
time in simulations of full ELM cycles. Regarding the con-
trol of ELMs, pellet ELM triggering has been studied exten-
sively and, for instance, the lag-time experimentally observed
in the ELM cycle has been reproduced recently in simulations
with fully realistic parameters and flows. ELM triggering via
vertical magnetic kicks has been demonstrated as well. The
penetration of error fields into the plasma as well as the miti-
gation and suppression of ELMs via RMP fields was investi-
gated in detail including realistic E ×B and diamagnetic flows.
ELM free QH-mode regimes were obtained and the EHO was
explained by a saturated KPM. Using a neutral fluid model, the
ELM burn-through in detached conditions was demonstrated
in non-linear simulations and a more precise description of
the SOL/divertor processes is on the way including a kinetic
treatment of impurities and neutrals.

Regarding disruptions, results were presented on pre-
disruption physics, the dynamics of MMI triggered disrup-
tions, VDEs, halo currents, and REs. Most prominently,

JOREK is able to capture, at least in a qualitative sense,
experimentally observed features of disruptions like the trig-
gering of a TQ via the destabilization of a 2/1 TM and the
ensuing non-linear dynamics, and the Ip spike. It can also
describe accurately 3D VDEs and halo current dynamics in
spite of using a reduced MHD model, as benchmarks with
full MHD codes have shown. While work is ongoing towards
quantitative validation of disruption simulations, JOREK is
already being used to test and optimize disruption mitiga-
tion strategies for ITER, and these efforts will intensify in the
coming years.

Further applications of JOREK include ITG turbulence
simulations, the interaction of TAE modes with fast particles,
and the ongoing extension towards stellarators.
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Appendix A. Coordinate systems

Cylindrical coordinates. As already mentioned in section 2.2,
the basic cylindrical coordinate system (u1, u2, u3) = (R, Z,φ)
of JOREK is given by x = R cosφ, y = −R sinφ, and z = Z,
where (x, y, z) denotes Cartesian coordinates (figure 1). The
tokamak coordinate convention number COCOS [43] used by
JOREK is 8. This implies the COCOS coefficients eBp = 0,
σBp = −1, σRφZ = −1, σρθφ = 1. The covariant basis vectors
aα = ∂X/∂uα are given by

a1 =

⎛
⎝ cos φ
− sin φ

0

⎞
⎠ , a2 =

⎛
⎝0

0
1

⎞
⎠ , a3 =

⎛
⎝−R sin φ
−R cos φ

0

⎞
⎠ .

We use both 1, 2, 3 and R, Z,φ synonymously as sub- or super-
scripts in our notation to identify the co- and contravari-
ant components such that, e.g., aφ ≡ e3. The cross prod-
ucts between these basis vectors are a1 × a2 = a3/R, a1 ×
a3 = −Ra2, a2 × a3 = Ra1, and aα × aα = 0 as well as
aα × aβ = −aβ × aα. The contravariant basis vectors are
given by a1 = a1, a2 = a2, a3 = a3/R2. Of course, aα ·
aβ = δβα and a1 = ∇R, a2 = ∇Z, a3 = ∇φ. Furthermore,
a1 = J∇Z ×∇φ, a2 = J∇φ×∇R, a3 = J∇R ×∇Z. And
a1 × a2 = Ra3, a1 × a3 = −a2/R, a2 × a3 = a1/R. Here the
Jacobian is J = a1 · (a2 × a3) = R. Normalized basis vec-
tors are given by e1 = e1 = a1 = a1, e2 = e2 = a2 = a2,
e3 = e3 = a3/R = Ra3. The co- and contravariant metric ten-
sors are given by gαβ = aα · aβ = diag(1, 1, R2), gαβ = aα ·
aβ = diag(1, 1, 1/R2). The determinant of the covariant met-
ric tensor is g ≡ J2 = det

(
gαβ

)
= R2. Differential operators

are given in the cylindrical coordinates of JOREK by

∇U = ∂1Ua1 + ∂2Ua2 + ∂3Ua3

∇polU = ∂1Ua1 + ∂2Ua2

∇ · V =
1
R
∂1(RV1) + ∂2V2 + ∂3V3

∇× V =
1
R

(∂2V3 − ∂3V2) a1 +
1
R

(∂3V1 − ∂1V3) a2

+
1
R

(∂1V2 − ∂2V1) a3

ΔU = ∇ · ∇U =
1
R
∂1(R∂1U) + ∂2,2U +

1
R2

∂3,3U

ΔpolU = ∇ · ∇polU =
1
R
∂1(R∂1U) + ∂2,2U

Δ∗U = R2∇ ·
(

1
R2

∇polU

)
= R∂1

(
1
R
∂1U

)
+ ∂2,2U

[A, B] = e3 · (∇A ×∇B) = ∂1A∂2B − ∂2A∂1B

The Christoffel symbols defined by

A · ∇B = Ai∂i(B ja j) = Ai(∂B j)a j + AiB j(∂ia j)

= Ai(∂iB
j + Γ j

ikBk)a j

(A · ∇B) j = Ai(∂iB
j + Γ j

ikBk)

are given by the following expressions in the JOREK cylindri-
cal coordinate system:

∂3a1 = R∇φ = Ra3, ∂3a3 = − 1
R

a1, ∂1a3 = − 1
R

a3.

Element local coordinates. Inside each of the quadrangu-
lar finite elements (see section 3.1), a local coordinate sys-
tem (s, t, φ) is defined with s and t taking values in the
range [0, 1]. Both s and t are orthogonal with respect to φ,
but not with respect to each other. The local coordinates
are defined by the cylindrical coordinates R(s, t) and Z(s, t)
being expressed in terms of the local coordinates in the same
finite element basis as the physical variables. When the Pois-
son bracket [a, b] is expressed in terms of the element–local
coordinates, we get [a, b] = (a,sb,t − a,tb,s)/J2 where J2 =
R,sZ,t − R,tZ ,s. Note, that the singularity at the grid cen-
tre, where J2 = 0 does not break the code, since the inte-
gration is carried out on the Gaussian integration points,
where J2 �= 0.

While this mapping does not have a φ dependency at
present, an extension of the code to 3D grids is presently
ongoing (see section 3.8) such that the mapping will become
R(s, t, φ̃) and Z(s, t, φ̃), where φ̃ does not have to be equiva-
lent to φ, but can be a function of (R, Z,φ) (e.g., in the case
of Boozer coordinates). The orthogonality assumption of φ
with respect to s and t might be dropped in the context of this
extension.

Appendix B. Normalization

• The growth rate γn,SI for harmonic n is calculated by
ln[En(t2)/En(t1)]/[2(t2 − t1)] with En the mode energy
and t2 and t1 the corresponding time points at which
the energies are determined. The factor two appears
in the denominator to obtain growth rates for ampli-
tudes instead of energies and be comparable to linear
codes.

• Heat diffusion coefficients in JOREK are defined absorb-
ing the factor γ − 1, which would normally appear in the
energy equation for diffusion terms. This means, JOREK
diffusivities need to be multiplied by a factor 1.5 (at
γ = 5/3) when comparing them to the usual definitions.

• Note that χSI(m
2 s−1) = KSI/ρSI where κSI(m−1 s−1) =

nSIχSI

• Thin wall resistivity: ηwall,thin,SI(Ω) = ηwall,SI(Ω m)/
dwall(m) with wall thickness dwall; e.g. ITER: ηwall,thin,SI =
ηwall,SI/dwall = 8 × 10−7 Ωm/(6cm) = 1.33 × 10−5 Ω.

Appendix C. Time stepping scheme

The time-integration of a set of equations of the form

∂A(u)
∂t

= B(u, t) (61)

can be discretized by the general form (refer to [299, 300])
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Connection between SI and normalized units Description of the quantity

RSI(m) = R Major radius
ZSI(m) = Z Vertical coordinate
BSI(T) = B Magnetic field vector
ESI(V m−1) = E/

√
μ0ρ0 Electric field vector

ΨSI(T m2) = Ψ Poloidal magnetic flux
jφ,SI(A m−2) = − j/(Rμ0) Toroidal current density; jφ,SI = jSI · êφ
nSI(m−3) = ρn0 Particle density
ρSI(kg m−3) = ρρ0 Mass density = ion mass × particle density
TSI(K) = T(kB

−1μ0n0) Temperature = electron + ion temperature
TeV(eV) = T/(eμ0n0) Temperature = electron + ion temperature
FF′

SI (T rad) = FF′ Poloidal current stream function F = RBφ and ′ = d/dψ
pSI(N m−2) = ρT/μ0 Plasma pressure
vSI(m s−1) = v/

√
μ0ρ0 Velocity vector

v‖,SI(m s−1) = v‖ · BSI/
√
μ0ρ0 Parallel velocity component, where BSI = |BSI|

uSI(m s−1) = u/
√
μ0ρ0 Ru is the velocity stream function, F0u is the potential

ωφ,SI(m−1 s−1) = ω/
√
μ0ρ0 Toroidal vorticity

tSI(s) = t · √μ0ρ0 Time
γSI(s

−1) = γ/
√
μ0ρ0 Growth rate of an MHD mode

ηSI(Ω m) = η ·
√

μ0/ρ0 Resistivity
νSI(kg m−1 s−1) = ν ·

√
ρ0/μ0 Dynamic viscosity

ν̃SI [m2 s−1] = ν̃SI/ρSI Kinematic viscosity (ρSI is the local value)
DSI(m2 s−1) = D/

√
μ0ρ0 Particle diffusivity (‖ or ⊥); usually, D‖ = 0

KSI(kg m−1 s−1) = K ·
√

ρ0/μ0/ (γ − 1) Heat diffusivity (‖ or ⊥)

ST ,SI(W m−3) = ST/
√

μ3
0ρ0 Heat source

Sρ,SI(kg s−1 m−3) = Sρ ·
√

ρ0/μ0 Particle source
ηwall,thin,SI(Ω) = ηwall,thin ·

√
μ0/ρ0 Resistivity of conducting structures

Rion/rec,SI(m−3 s−1) = Rion/rec/(
√
μ0ρ0n0) Ionisation and recombination rate

Eion,SI(J) = ξion/( 2
3μ0n0) Ionisation energy

Lrad,SI(W m3) = Lrad/( 2
3

√
ρ0/μ0n2

0
mi

mimp
) Radiation rate (impurity fluid model)

Prad,SI(W m−3) = Prad/( 2
3

√
ρ0/μ0) Radiation power density (impurity fluid model)

qSI(A s) = q
√
μ0ρ0 Particle charge

μneo,SI(s
−1) = μneo/

√
ρ0μ0 Neoclassical friction rate

(1 + ξ)An+1 − (1 + 2ξ)An + ξAn−1

= Δt
[
θBn+1 + (1 − θ − φ)Bn − φBn−1

]
, (62)

which guarantees second-order accuracy, if φ+ θ − ξ = 1/2.
Superscripts like Bn indicate at which timestep the correspond-
ing expression is evaluated. The linearization Hn+1 ≈ Hn +
∂H/∂u|n · δun, with H = A or H = B, which is described
in reference [300], allows to rewrite equation (62) in the
following way, where φ = 0 has been chosen:

(1 + ξ)

[
An +

(
∂A
∂u

)n

δun

]
− (1 + ξ)An − ξAn + ξAn−1

= Δt

[
θ

(
Bn +

(
∂B
∂u

)n

δun

)
+ (1 − θ)Bn

]
. (63)

Here, δun ≡ un+1 − un. After some simplifications, and using
the backward linearization Hn−1 ≈ Hn − ∂H/∂u|n · δun−1,
one obtains [

(1 + ξ)

(
∂A
∂u

)n

−Δtθ

(
∂B
∂u

)n]
δun

= ΔtBn + ξ

(
∂A
∂u

)n

δun−1, (64)

which is the time-integration scheme implemented in JOREK.
Certain parameter choices correspond to well-known time
integration methods: Crank–Nicolson is selected by θ = 1/2
and ξ = 0, BDF2 (Gears) is selected by θ = 1 and ξ = 1/2,
and first order implicit Euler method (not used in produc-
tion) corresponds to θ = 1 and ξ = 0. The linearization shown
above can also be replaced by Newton iterations with a ben-
eficial effect onto non-linear stability in certain situation, as
demonstrated in reference [64]. However, this is not imple-
mented in the present code version.

Appendix D. Setup for testing anisotropic heat
transport

For the tests shown in section 4.2, the following setup was
used. The plasma cross section is circular with a major radius
of Raxis = 100 m and a minor radius of 1 m. The magnetic
configuration is initialized by the poloidal flux distribution
Ψ = 1 − [(R − Raxis)2 + Z2]2 T m−2 and F0 = 200 T m. The
applied perturbation is given by Ψ̃ = 0.01T[Z sin(φ) + (R −
Raxis cos(φ)]. The simulation domain is rectangular 2 m by
2 m for the non-aligned grid and circular with radius 1 m
for the aligned grid. The temperature at the boundary of the
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computational domain is fixed at zero via Dirichlet bound-
ary conditions. For the following, (normalized) pre-factors are
omitted since they do not affect the results due to the self-
similarity of the solution and since only relative errors are
discussed. To establish a steady state temperature distribution,
a source ST = {0.5 − 0.5 tanh[(Ψn − 0.1)/0.1]} is applied in
the plasma centre. The perpendicular and parallel heat conduc-
tion coefficients are spatially constant and their ratio is varied
for the tests. The density distribution is spatially constant. Con-
vergence is tested by assessing the steady state value of the axis
temperature that establishes.
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Guiding-centre theory for kinetic-magnetohydrodynamic
modes in strongly flowing plasmas Plasma Phys. Control.
Fusion 61 074006

[122] Lu Z.X., Lauber P., Hayward-Schneider T., Bottino A. and
Hoelzl M. 2019 Development and testing of an unstruc-
tured mesh method for whole plasma gyrokinetic simu-
lations in realistic tokamak geometry Phys. Plasmas 26
122503

[123] Gruca M. 2020 Simulations of edge instabilities in TCV (pri-
vate communication)

[124] Pamela S., Huijsmans G., Thornton A.J., Kirk A., Smith S.F.,
Hoelzl M. and Eich T. 2019 A wall-aligned grid generator
for non-linear simulations of MHD instabilities in tokamak
plasmas Comput. Phys. Commun. 243 41–50

[125] Hughes T.J.R., Scovazzi G. and Franca L.P. 2004 Multiscale
and Stabilized Methods (New York: Wiley)

[126] Billaud M., Gallice G. and Nkonga B. 2011 A simple stabi-
lized finite element method for solving two phase compress-
ible–incompressible interface flows Comput. Methods Appl.
Mech. Eng. 200 1272–90

[127] Jean D. 1984 A Taylor–Galerkin method for convective trans-
port problems Int. J. Numer. Methods Eng. 20 101–19

[128] Roig B. 2007 One-step Taylor–Galerkin methods for con-
vection–diffusion problems J. Comput. Appl. Math. 204
95–101

[129] Nkonga B., Tarcisio-Costa J. and Vides J. 2016 VMS finite
element for MHD and reduced-MHD in tokamak plasmas
Technical Report, Inria Research Report (https://hal.inria.
fr/hal-01294788/)

[130] Hammett G.W. and Peterson J.L. 2008 Comparison of
(some) algorithms for edge gyrokinetics Gyrokinetic
Turbulence Workshop (Wolfgang Pauli Institute 15–19
September 2008) (https://thphys.physics.ox.ac.uk/people/
AlexanderSchekochihin/wpi/workshop3_pdfs/hammett2.
pdf)

[131] Fehér T.B., Hoelzl M., Latu G. and Huijsmans G.T.A. 2018
Performance analysis and optimization of the JOREK code
for many-core CPUs (arXiv:1810.04413)

[132] Holod I., Hoelzl M., Verma P.S., Nies R. and Huijsmans
G.T.A. (JOREK Team) 2021 New developments regarding
the JOREK solver and physics based preconditioner Plasma
Phys. Control. Fusion (private communication)
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