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ABSTRACT 
 
ENGLISH VERSION 
 
Road asset managers endeavor to forecast the impact of floods in pavement 
deterioration, and therefore establishing maintenance operations, budget allocation, or 
post-flood strategies have yet to be defined in Pavement Management Systems (PMS). 
Flood events have severely impacted the roadway US network during the last decades, 
and this trend is forecasted to keep rising due to climate change in most parts of the 
United States. However, few models assessing the short-term impact of floods were 
identified, most of them very difficult to implement for network analysis, and no post-
flood deterioration trend defined. A comprehensive statistically-based methodology 
approach determining the conceptual evolution of flooded asphalt sections for the case 
study from the 2013 Colorado floods is researched and discussed. The results show how 
the pre-flood road condition influences the loss of pavement condition due to the flood. 
Once the flood occurs, an important decrease in pavement condition assessing the 
International Riding Index (IRI) is registered during the first year after the flood for "Very 
Good" and "Good" pre-flood conditions, a moderate impact for "Fair" pre-flood 
conditions, and no impact is reported for pre-flood conditions graded "Poor" and "Very 
Poor". The long-term pavement deterioration is found to be slightly increased by the 
flood for "Fair" index conditions, and no trend modification is identified for the other 
cases. The analyses use homogeneous discrete-time Markov chains, calibrated and 
validated for several Colorado counties. A risk-based approach, using stochastic Monte 
Carlo simulations and deterministic analyses, is used to quantify the expected loss of 
pavement condition, using the IRI as a proxy for road deterioration (RD). The case study 
quantifies the loss in pavement life for flooded pavements, and report that these 
findings should be considered by road management agencies to optimize its 
expenditure. Post-flood operational strategies are suggested to minimize the flood 
impact on asphalt pavements. Finally, the importance of including the flood hazard and 
their impact on pavement management systems is highlighted.  



   

SPANISH VERSION 
 
Los gestores de redes viarias sufren dificultades a la hora de pronosticar el impacto de 
las inundaciones en el deterioro del pavimento y, por lo tanto, las operaciones de 
mantenimiento, asignación presupuestaria o estrategias posteriores a inundaciones aún 
carecen de integración en los sistemas de gestión de pavimentos. Los eventos de 
inundaciones han impactado severamente la red de carreteras de EEUU durante las 
últimas décadas, y se prevé que esta tendencia siga aumentando en la mayor parte de 
EEUU debido al cambio climático. Sin embargo, se han identificado pocos modelos que 
evalúen el impacto a corto plazo de las inundaciones, la mayoría de ellos muy difíciles 
de implementar a nivel de red y no se ha definido una tendencia clara de deterioro 
posterior a las inundaciones. En la presente tesis, se investigó y discutió un enfoque 
metodológico integral con base estadística que determina el deterioro de las secciones 
asfálticas inundadas, para el estudio de caso de las inundaciones de Colorado de 2013. 
Los resultados muestran cómo la condición de la carretera antes de la inundación influye 
en deterioro de los pavimentos. Una vez que ocurre la inundación, se registra una 
disminución importante en la condición del pavimento, evaluada usando el 
International Roughness Index (IRI), durante el primer año después de la inundación 
para las condiciones previas a la inundación "Muy buenas" y "Buenas", un impacto 
moderado para las condiciones "Regular", y no se registra ningún impacto para las 
secciones que tienen condiciones de IRI "Deficientes" y "Muy Deficientes". Se encuentra 
que el deterioro a largo plazo del pavimento aumenta levemente debido a la inundación 
para condiciones de índice "Regular", y no se identifica modificación de tendencia para 
los otros casos. Los análisis se realizan mediante el uso cadenas de Markov homogéneas 
de tiempo discreto, calibradas y validadas para varios condados de Colorado. Un análisis 
de riesgo, aplicando simulaciones estocásticas de Monte Carlo y análisis determinísticos, 
permite cuantificar la pérdida de condición para pavimentos inundados, utilizando el IRI 
como índice de deterioro. El caso de estudio cuantifica la pérdida de vida útil del 
pavimento para pavimentos inundados, y se recomienda que estos hallazgos sean 
considerados por los gestores de redes viarias. Se sugieren estrategias operativas 
posteriores a la inundación para minimizar el impacto de la inundación en pavimentos 
asfálticos. Finalmente, se destaca la importancia de incluir los peligros de inundaciones 
y sus impactos en los sistemas de gestión de pavimentos.  



   

CATALAN VERSION 
 
Els gestors de xarxes viàries pateixen dificultats a l'hora de pronosticar l'impacte de les 
inundacions en el deteriorament de paviments i, per tant, les operacions de 
manteniment, assignació pressupostària o estratègies posteriors a inundacions encara 
no tenen una clara integració en els sistemes de gestió de paviments. Les inundacions 
han impactat severament la xarxa de carreteres de EUA durant les últimes dècades, i es 
preveu que aquesta tendència continuï augmentant en la major part dels EUA causa de 
el canvi climàtic. No obstant això, s'han identificat pocs models que avaluïn l'impacte a 
curt termini de les inundacions, la majoria d'ells molt difícils d'implementar a nivell de 
xarxa i no s'ha definit una tendència clara de deteriorament posterior a les inundacions. 
En la present tesi, es va investigar i va discutir un enfocament metodològic integral amb 
base estadística que determina el deteriorament de les seccions d'asfalt inundades, per 
al cas d’estudi de les inundacions de Colorado de 2013. Els resultats mostren com la 
condició de la carretera abans de la inundació influeix en deteriorament dels paviments. 
Un cop que passa la inundació, es registra una disminució important en la condició del 
paviment, avaluat mitjançant el International Roughness Index (IRI), durant el primer 
any després de la inundació per a les condicions prèvies a la inundació "Molt bones" i 
"Bones", un impacte moderat per les condicions "Regular", i no es registra cap impacte 
per a les seccions que tenen condicions d'IRI "Deficients" i "Molt Deficients". Es troba 
que el deteriorament a llarg termini del paviment augmenta lleugerament a causa de la 
inundació per a condicions "Regular", i no s'identifica modificació de la tendència de 
deteriorament per als altres casos. Les anàlisis es realitzen mitjançant l'ús de cadenes 
de Markov homogènies de temps discret, calibrades i validades per diversos comtats de 
Colorado. Una anàlisi de risc, aplicant simulacions estocàstiques de Monte Carlo i 
anàlisis deterministes, permet quantificar la pèrdua de condició per a paviments 
inundats, utilitzant el IRI com a índex de deteriorament. El cas d'estudi quantifica la 
pèrdua de vida útil del paviment per a seccions inundades, i es suggereix que aquests 
resultats siguin considerats pels gestors de xarxes viàries. Es suggereixen estratègies 
operatives posteriors a la inundació per minimitzar l'impacte de la inundació en 
paviments asfàltics. Finalment, es destaca la importància d'incloure els perills 
d'inundacions i els seus impactes en els sistemes de gestió de paviments. 
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1 INTRODUCTION 
 
In the new global economy, climate change has become a central issue for a wide range 
of topics, including infrastructure management and the future of the roadway network. 
Proactive adaptation measures are essential to reduce impact costs of infrastructure 
adaptation to climate change (Schweikert et al., 2014) and the road network impacts 
due to climate change are most sensitive to precipitation as well as precipitation and 
runoff variability amongst different models and policies proposed by (Neumann et al., 
2015). For maintaining current levels of services different adaptation measures have 
been proposed in (Chinowsky et al., 2013) showing the effect of rutting from 
precipitation will provoke more frequent resealing for paved roads and more frequent 
re-grading of unpaved roads. The effect of changing levels of precipitation would most 
affect foundation and pavement design, especially if precipitation levels increase 
(Meyer et al., 2014). Flooding impacts have a pivotal role in positive consequences, such 
as aquifer recharge, but inevitably negative consequences like permanent damage in 
infrastructure assets, varying greatly depending on the location, duration, depth, speed, 
vulnerability, and value of the environment. Amongst the negative consequences, the 
deterioration and damage of pavement are found, causing a long-term impact and 
important economic loss (Geoff, 2011). Approximately, 75% of all Presidential disaster 
declarations are associated with flooding (US Department of Commerce, n.d.). A primary 
concern in the US arises from climate models they tend to project increased winter 
precipitation in the Midwest and Northeast, increasing the risk of early spring flooding 
as snowpacks melt (Meyer et al., 2014). Even worse when precipitation intensity is 
projected to increase more, increasing the risk of flooding (Meyer et al., 2014; Tabari, 
2020), and hence stationary climate conditions for pavement design can be disrupted 
(Qiao et al., 2020) under a globally 12% more record-breaking rainfall events registered 
from 1981 to 2010 (Lehmann et al., 2015). 
 
Road deterioration is a major area of interest within the field of infrastructure asset 
management. Road deterioration arises in several forms, and from a structural point of 
view, embankment deterioration and fluvial erosion from intense rain and storms are 
expected, and a loss of structural foundation on roads from greater seasonal 
precipitation variation (Vermont Agency of Transportation (VTrans), 2012). Highlighted 
also by (Meyer et al., 2014) the principal problems to face are greater changes in 
precipitation levels which derive from the following impacts: roadways closing due to 
flooding, washouts, and mudslides, or contract in prolonged precipitation, causing 
pavement heave or cracking. Operations and emergency management and will be more 
frequent and potentially more extensive emergency evacuations, placing further strain 
on highways (Meyer et al., 2014). 
 
Road management agencies may require an increase in their budget expenditure to 
adapt to flooding events (Meyer et al., 2014). Agencies and organizations according to 
(Wall and Meyer, 2013) share the following concerns “(1) Data limitations: limited or 
inaccessible infrastructure data; limited usable climate data. (2) Inadequate treatment 
of risk: reconciling the immediate need for action with the perception of distant 
consequences; the qualitative treatment of risk; defining acceptable levels of risk. (3) 
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Lack of sufficient financial resources. Transportation agencies and organizations, 
particularly independent and private-sector organizations, identified additional 
limitations or barriers: (4) Interdependencies and regulatory barriers. (5) Uncertainty in 
future system demand; this causes uncertainty in the need for adaptation”. 
Transportation agencies, however, try to offset the beforementioned limitations using 
risk standards for climate change adaptation and it becomes promising (Wall and Meyer, 
2013). Beyond the road agencies, other agencies suffer from these adverse effects such 
as in municipalities’ current income balance and annual result (Unterberger, 2018) or 
agricultural productivity (Veettil et al., 2021) among others. 
 
A key aspect of sea-level rise and increased hurricane intensity runs into more frequent 
flooding and damage of coastal roadways (Meyer et al., 2014). An estimated 60,000 
miles of coastal highway in the US are already exposed to periodic flooding from coastal 
storms and high waves (Karl et al., 2009) along with temporary and permanent flooding 
of roads, erosion of coastal road bases is expected due to rising sea levels and storm 
surges (Meyer et al., 2014). Most recent flooding models where environmental factors, 
built with guidance from IPCC RCP curves and the CMIP5 global climate model, are 
included to understand how flood risk has changed show nearly 11% increase in flood 
risk over the next 30 years (2050) in (First Street Foundation, 2020). The data in 2020 
risks 14.6 million properties (10.3% of all properties) for a 100-year return period 
(substantial risk implies 1cm of inundation in the properties) and 21.8 million properties 
(15.4% of all properties) for a 500-year return period. The substantial risk may be highly 
increased in a property-based analysis following (First Street Foundation, 2020) driving 
up dramatic changes in most places, ranging from 8% in 2020 to 14% in Jacksonville, FL 
by 2050 or from 32% to 98% in New Orleans, LA. 
 
Indeed, recovery flood efforts should also consider socio-economic characteristics and 
vulnerable groups including zones with poor health status and low-income people 
(Bubeck and Thieken, 2018) where interdependency amongst infrastructure systems 
and many subsystems were found for developing flood resilient building-roadways 
networks (Kanti Sen et al., 2021). The characterization of pavement deterioration for 
flooded sections may enhance to provide these resilient network-based methodologies. 
There is an urgent need to address the deterioration rates for flooding events and 
include them in pavement management systems and build resilient infrastructure 
systems.  
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2 LITERATURE REVIEW 
 
A literature review was carried out to identify the pavement behavior when flooded, 
results from different case studies, and finally, current models quantifying the loss of 
pavement condition and their limitations. 
 

2.1 Flooding impacts on pavement performance 
 
The importance of proactive maintenance policies and the optimal allocation of 
maintenance resources is fundamental to sustainable pavement design (Torres-Machi 
et al., 2017) and flood risk management plans provide effective non-structural measures 
to mitigate flood risk and its consequences (Martinez et al., 2021) but inevitably, climate 
change forecasts are likely to increase maintenance costs due to several factors such as 
an increase of temperature that may add additional US$26.3 billion by 2040 
(Underwood et al., 2017) to US pavement infrastructure. However, the budget impact 
of the flood is very difficult to quantify due to its nature and the long-term pavement 
performance remains unclear. 
 
Extensive research has shown that asphalt concrete (AC) pavements are those suffering 
the highest deterioration (Gaspard et al., 2007; Helali et al., 2008; Zhang et al., 2008; 
Sultana et al., 2014; Lu et al., 2018) and limited deterioration was found in Portland 
Cement Concrete (PCC) (Gaspard et al., 2007; Helali et al., 2008; Zhang et al., 2008). A 
much-debated question is whether an intermediate deterioration case was found for 
composite pavements occur as reported by (Gaspard et al., 2007; Helali et al., 2008) but 
no clear conclusions were reported in (Zhang et al., 2008). 
 
Existing research recognizes the critical role the thickness, and therefore the structural 
number plays in the flooding deterioration. The thinner the pavements the highest the 
deterioration after the flood (Gaspard et al., 2007; Helali et al., 2008; Zhang et al., 2008; 
Khan et al., 2014; Shamsabadi et al., 2014; Sultana et al., 2016c; Hashemi Tari et al., 
2015; Texas Department of Transportation, 2019; Asadi et al., 2020). Nonetheless, it was 
observed pavements with the same structures may carry different load traffics and 
drainages systems which may highly influence the damage due to flooding (Romanoschi, 
2019). One major issue arises in (Wang et al., 2015) noticing the reduction of AC tensile 
strain is not proportional to the thickness. Strong and high-standard roads amongst AC 
pavements are suggested by (Khan et al., 2019) to be designed as the best flood-
resistance ones, but alarming the environmental costs to offset flooding effects 
increasing pavement thickness have been highlighted in (Achebe et al., 2021) and 
sustainable pavement management requires considering environmental aspects at 
network-level (Torres-Machi et al., 2014). 
 
There is evidence that emergency vehicles carrying high-loading are expected to drive 
through inundated floods, where the moisture content is extreme, and they play a 
crucial role exacerbate the damage in an early stage (Sultana et al., 2016c; Lu et al., 
2018; Texas Department of Transportation, 2019). The prediction of the structural 
number helps to determine how much time is needed for the loading capacity to be 
restored (Mallick et al., 2017) and therefore manage the pavement condition. Strategies 
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to enhance operations for debris removal might identify the best routes to reduce flood 
impact over road conditions, creating resilient post-flood strategies. 
 
Previously published studies on the effect of the flood duration over asphalt pavements 
are not consistent. Controversies arise when they disregard the flood duration as a 
critical factor (Gaspard et al., 2007; Zhang et al., 2008; Texas Department of 
Transportation, 2019), whereas in (Lu et al., 2018) because of the MEPDG 
implementation (MEPDG, 2004) it may not be sensitive to short-term extreme 
precipitations is not clear. In (Wang et al., 2015) the assumption relies on the effect of 
the flood is time-independent. However, contradictorily models proposed by 
(Shamsabadi et al., 2014; Hashemi Tari et al., 2015) define the duration and the depth 
of the flood as an input. Such approaches, however, have failed to address the 
percentage of subgrade saturation as several authors suggest (Elshaer et al., 2019; Asadi 
et al., 2020) instead of the depth or duration, which may be used as a proxy for the 
subgrade saturation but such expositions are unsatisfactory because they fail to address 
layers permeability where strong correlations are found (Yu-Shan and Shakiba, 2021). 
 
Few studies have investigated pavement age in any systematic way, a report published 
by (Texas Department of Transportation, 2019) focusing on the flooding impact in 
Houston showed the older the pavement and found the highest impact on the loss of 
pavement services which up to 3 years where thin AC layers are placed and also non-
linear damage. In comparison, 40 days of reduction is expected according to (Asadi et 
al., 2020) where no consideration about the pavement age is taken. These conclusions 
may suggest the influence of pavement age when flooding occurs, however, there has 
been little discussion addressing the topic. 
 
Other researchers have found that the changes in pavement structural capacity are 
minimal when the water is below the influencing depth and the base course layer had 
the highest influence (Elshaer et al., 2019) or analogously the influence of flood 
gradually diminishes as the water table drops (Wang et al., 2015). Pavement structure 
and subgrade type significantly impacted the surface deflection, modified structural 
number and vertical strain, and therefore the rutting performance (Elshaer et al., 2019) 
if the base layer presents a low-permeability, which leads to longer saturation periods, 
increase the damage on the pavement (Asadi et al., 2020) and surface deflection and 
fatigue (Saad, 2014). The time it takes for the subgrade to dry dictates the amount of 
pavement damage (Texas Department of Transportation, 2019). 
 
Nevertheless, using FWD may show the bearing capacity after flooding but no other 
distresses which are likely to arise in the following months after the flooding occurs 
(Romanoschi, 2019) although most previous studies use the FWD and CBW in order to 
quantify the damage (Gaspard et al., 2007; Helali et al., 2008; Sultana et al., 2016a, 2015; 
Zhang et al., 2008). Experimental tests carried out in (Wang et al., 2015) show the 
subgrade stiffness can be recovered after wet-dry cycles even though almost all 
materials exhibit different patterns between drying and wetting cycles (Nazarian and 
Yuan, 2012) and the network-level analysis is not easy to perform. Hence, the 
importance of the post-flood strategies is also highlighted in (Khan et al., 2017a) or 
alternatively the pre-flood strategies that consider a treatment now to increase 
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pavement strength for better performance with flooding and a second treatment after 
a flood (Khan et al., 2016). 
 
Even though some models and methodologies include advanced models for predicting 
moisture content, they are not able to identify and simulate the real conditions of 
existing drainages and in-situ distress (Romanoschi, 2019). Additionally, damages 
regarding stripping of AC layers or potholes can be expected from flooding events (Texas 
Department of Transportation, 2019) or a rapid localized failure under a heavy load, in 
the form of a sinkhole (Mallick et al., 2017), D-cracking, freeze-thaw cycles or Alkali-Silica 
Reaction (ASR) (Romanoschi, 2019). 
 

2.2 Existing models 
 
Models attempting to quantify the flood impact are review in this section. Different 
approaches and methodologies are reported as well as the data sources and model 
limitations. A comparison of the existing models for our case study was not possible due 
to model limitations. 
 

2.2.1 Models according to methodology 
 
Different methodologies can be used in developing predictive models. In this section, a 
review of the different methodologies used in the researched models is depicted. 
 
Models can be considered probabilistic models such as (Khan et al., 2014) that 
presented the development of new roughness-based and rutting-based road 
deterioration (RD) models with flooding. The author proposed probabilistic empirical 
models with non-homogeneous Markov chains that are much better for RD modeling 
because of uncertainties in pavement performance, materials, and traffic loading. 
Further work developed by (Khan et al., 2017b) proposed also gradients such as 
∆𝐼𝑅𝐼/𝑃𝑟, ∆𝐼𝑅𝐼/𝑀𝑟𝐿, and ∆𝑅𝑢𝑡𝑡𝑖𝑛𝑔/𝑃𝑟 for determining pavement flood resilience 
following the same methodology but limited data were available to use for validation of 
the flood risk consequences in (Khan et al., 2017c) where a risk-based methodology was 
proposed. The risk-based methodology becomes insightful because as different flooding 
probabilities, different consequences in road performance occur (Khan et al., 2017c) and 
other models or methodologies which consider a deterministic approach may not tackle 
this problem conception. Other probabilistic models where the impact of climate change 
was assessed can be found in (Anyala et al., 2014) where a mechanistic-empirical 
approach was considered. 
 
On the other hand, the deterministic models exist, which at the same time can be: 
empirical, mechanistic-empirical or mechanistic models. A regression-based 
mechanistic-empirical can be found in (Sultana et al., 2016b) where proposes a 
deterministic model that expresses the structural strength of pavements as a function 
of time. The model predicts the short-term behavior of a flexible pavement immediately 
after flooding. Similarly, another model proposed by (Sultana et al., 2016c) presents a 
mechanistic-empirical deterministic structural deterioration model to predict the rapid 
deterioration phase of the pavement impacted by river flooding, or the gradual rise of 
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floodwater. The same author also proposed presents two mechanistic-empirical 
deterministic-based models for deterioration of rutting and roughness of flood-affected 
pavements in  (Sultana et al., 2018a). A mechanical is addressed by (Saad, 2014) where 
a coupled finite element analysis was carried out to investigate the effect of the excess 
water in the granular foundations on the structural performance of flexible pavements. 
The mechanistic approach of this model makes it no feasible for network analysis but a 
project one. Note that several authors also remark the empirically or mechanistic-
empirical approaches do not capture the stochastic and relevant flooding effects (Wang 
et al., 2015). Other authors developed deterministic empirical models for flexible 
pavements in  (Hashemi Tari et al., 2015; Shamsabadi et al., 2014) where a stepwise 
regression was proposed in both models, a mechanistic-empirical natural deterioration 
developed by (Jackson and Puccinelli, 2006) was adopted to quantify the expected 
deterioration without considering the flooding event. 
 
Several methodologies and assessments have been proposed by other authors. A 
methodology used in (Wang et al., 2015) proposed the use of binomial distribution to 
estimate the numbers and confidence intervals of floods of different severity for 
pavement analysis and how flood-related damage is sensitive to the severity and 
frequency of flood. Another framework proposed by (Mallick et al., 2017) consisted of 
results from unsaturated hydraulic and layered elastic structural analyses. However, the 
latter is very difficult to apply on network analyses due to the key parameters include 
soil–water characteristics curve variables, such as suction, moisture content, and 
hydraulic conductivity, and saturation versus resilient modulus relationship for base 
course materials. In (Texas Department of Transportation, 2019) researchers translated 
FEMA flood maps describing the extent of 100-year and 500-year floods into maps 
estimating local flood water levels/heights using LiDAR data and DEM maps to provide 
information on the elevation of flexible pavements and used a risk-based methodology 
to quantify the damage using pavement design software. This method of refining flood 
probabilities (i.e., flood depth) can be used to investigate flooding scenarios based on 
an estimate of local floodwater levels (Texas Department of Transportation, 2019) but 
did not provide a clear model to evaluate but a wide methodology to quantify the 
damages regarding a given flooding probability. 
 

2.2.2 Models according to location and data sources 
 
In this section, the data sources and the location of the calibrated models are reviewed.  
 
Flooding in Queensland (Australia) from late November 2010 to mid-January 2011 was 
the main concern for the models proposed by (Sultana et al., 2016b) and (Sultana et al., 
2016c). The author studied the affected roads in the Brisbane City Council, the Roads 
and Maritime Services, New South Wales, and the Department of Transport and Main 
Roads, Queensland (TMR-QLD). The same events motivated the RD model proposed by 
(Khan et al., 2014) where the author took 27 road groups using TMR-QLD’s 34 000 km 
road data. The same author in (Sultana et al., 2018a) principally assessed the effects of 
Cyclone Olga (2010), flooding in January 2011, Cyclone Oswald (2013), and Marcia 
(2015) in Queensland using data ranging from 2009 to 2015. 
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The data collected by (Khan et al., 2014) was retrieved from Long-Term Pavement 
Performance (LTPP) and the National Oceanic and Atmospheric Administration (NOAA). 
Datasets were collected from January 1996 to December 2013 for the states of Florida, 
New Jersey, Ohio, and Illinois. Similarly, (Hashemi Tari et al., 2015) used data compiled 
over twenty years in eight States using the LTPP and NOAA databases as well. It is 
important to highlight that no particular flooding events were reported in (Shamsabadi 
et al., 2014) and (Hashemi Tari et al., 2015). 
 

2.2.3 Models according to input requirements 
 
A review of input requirements is the main goal of this section. The formulation of the 
different models is reviewed to identify the feasibility of its application. In (Sultana et 
al., 2016c) the modified structural number ratio for the rapid deterioration phase of 
pavements after flooding was designated as 𝑆𝑁𝐶𝑟𝑎𝑝𝑖𝑑  (Eq 1). 

 

𝑆𝑁𝐶𝑟𝑎𝑝𝑖𝑑 = 𝑘𝑓 · [1.227 − 0,312 · 𝑒
(0.011·𝑡−0.024·(𝐶𝐵𝑅+𝑀𝐸𝑆𝐴))] (Eq 1) 

 
The model expresses the 𝑆𝑁𝐶𝑟𝑎𝑝𝑖𝑑  as a function of time-lapse in deflection 

measurement after flooding, subgrade 𝐶𝐵𝑅 and 𝑀𝐸𝑆𝐴 (Eq 2). 
 

𝑀𝐸𝑆𝐴 = 365 · 𝐴𝐷𝑇 · (%𝐻𝑉/100) · 𝐷𝐹 · 𝐿𝐷𝐹 · 𝑁𝐻𝑉𝐴𝐺 · (𝐸𝑆𝐴/𝐻𝑉𝐴𝐺) (Eq 2) 

 
Where 𝐴𝐷𝑇 is the average number of vehicles per day, %𝐻𝑉 is the percentage of heavy 
vehicles, 𝐷𝐹 is the direction factors, 𝐿𝐷𝐹 is the lane distribution factor, 𝑁𝐻𝑉𝐴𝐺 is the 
average number of axle groups per heavy vehicle and 𝐸𝑆𝐴/𝐻𝑉𝐴𝐺 is the average number 
of 𝐸𝑆𝐴 per heavy vehicle axle group. 𝑆𝑁𝐶𝑟𝑎𝑝𝑖𝑑  is the ratio of the post-flood 𝑆𝑁𝐶𝑡, at any 

time 𝑡, divided by 𝑆𝑁𝐶𝑖, being 𝑖 the value pre-flood, 
𝑆𝑁𝐶𝑡

𝑆𝑁𝐶𝑖
.  The 𝑆𝑁𝐶 values for pavements 

on granular and cemented bases were calculated using for granular base pavements: 

𝑆𝑁𝐶 = 3.2𝐷0
−0.63 and for cemented base pavements 𝑆𝑁𝐶 = 2.2𝐷0

−0.63. The model 
was developed with a coefficient of determination (R-squared value) of 0.946, sample 
size, N was 34 with a 95% confidence interval. 
 
Similarly, in (Sultana et al., 2016b) it proposes the author proposed the 𝑆𝑁𝐶𝑟𝑎𝑡𝑖𝑜𝑓  (Eq 3) 

to quantify the damage due to flooding which is only time-dependent.  
 

𝑆𝑁𝐶𝑟𝑎𝑡𝑖𝑜𝑓 = 1.032 − 0.034 · 𝑒
(
𝑡
21.5) 

(Eq 3) 

 
Being 𝑆𝑁𝐶𝑟𝑎𝑡𝑖𝑜𝑓  the ratio of the modified structural number of pavements after time 𝑡 

of flooding to the modified structural number before flooding 𝑆𝑁𝐶𝑟𝑎𝑡𝑖𝑜𝑓 = 𝑆𝑁𝐶𝑡/

𝑆𝑁𝐶𝑝𝑟𝑒𝑓𝑙𝑜𝑜𝑑 . The 𝑆𝑁𝐶 values for pavements on granular and cemented bases were 

calculated using for granular base pavements: 𝑆𝑁𝐶 = 3.2𝐷0
−0.63. The model was 

developed with a coefficient of determination of 0.785 when sample size N was 34 with 
a 95% confidence interval. The same author proposes a rutting-based (Eq 4) and 
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roughness-based (Eq 5) proposed in (Sultana et al., 2018a) expressing the deterioration 
as a function of time-lapse. 
 

∆𝑅𝑢𝑡𝑝𝑜𝑠𝑡−𝑓𝑙𝑜𝑜𝑑 = 𝑘𝑟𝑢𝑡 · [0.083 · 𝑡  0.85 + 0.109 · 𝑅𝑢𝑡𝑝𝑟𝑒−𝑓𝑙𝑜𝑜𝑑 − 0.746] (Eq 4) 

 
∆𝐼𝑅𝐼𝑝𝑜𝑠𝑡−𝑓𝑙𝑜𝑜𝑑 = 𝑘𝑟𝑔 · [0.039 + 0.027 · √𝑡] (Eq 5) 

 
The rutting model was developed with a coefficient of determination of 0.67, a 95% 
confidence interval, and sample size, N was 436. The total road sections were 218 and 
each road section contributed two data points. The regression coefficients of the 
independent variables were fitted by minimizing the least standard error. The roughness 
model was developed with a coefficient of determination of 0.319, sample size, N, was 
436 with a 95% confidence interval. The total road sections were 218, and each road 
section contributed two data points. The regression coefficients of the independent 
variables were fitted by minimizing the least standard error. 
 
The model proposed by (Shamsabadi et al., 2014) considers both a natural deterioration 
model and the increase of IRI due to flooding. The natural deterioration model (Eq 6) is 
proposed by (Jackson and Puccinelli, 2006). 
 

ln(∆𝐼𝑅𝐼 + 1) = 𝐴(4.5𝐹𝐼 + 1.78𝐶𝐼 + 1.09𝐹𝑇𝐶 + 2.4𝑃 +
5.39 log(𝐸𝑆𝐴𝐿)

𝑆𝑁
) (Eq 6) 

 
Where ∆𝐼𝑅𝐼 is the change in International Roughness Index, 𝐴 the pavement age, 𝐹𝐼 the 

freezing index, 𝐶𝐼 the cooling index, 𝐹𝑇𝐶 the freeze-thaw cycles, 𝑃 the precipitation, 𝐸𝑆𝐴𝐿 the 

Equivalent Single Axle Load, and 𝑆𝑁 the structural number. Eight parameters were entered 
into a stepwise regression model for 28 sections affected by a single flood, the remaining 
7 sections were used for testing, and the proposed equation (Eq 7) for determining the 
change in the IRI due to the flooding. 
 

%∆𝐼𝑅𝐼 = 10.7 − 1.66𝑁𝐼𝑅𝐼 + 7.30𝑁𝐷𝑒𝑝 − 2.10𝑁𝐷𝑢𝑟𝑎𝑡 + 14.3𝐷𝑒𝑝 ∗ 𝐼𝑅𝐼 (Eq 7) 

 
Where %∆𝐼𝑅𝐼 is the percentage increase due to the flood, 𝑁𝐼𝑅𝐼 the normalized 𝐼𝑅𝐼 of 
the section before the flood, 𝑁𝐷𝑒𝑝 the normalized depth of the flood, 𝑁𝐷𝑢𝑟𝑎𝑡 the 
normalized duration of the flood, the 𝐷𝑒𝑝 and 𝐼𝑅𝐼 are no longer described in the model. 
Similarly, the model proposed by (Hashemi Tari et al., 2015) uses the same natural 
deterioration model proposed by (Jackson and Puccinelli, 2006). A stepwise regression 
was implemented separately on two sets of the acquired data: sections impact by floods, 
sections impacted by snowstorms. It used 28 sections affected by a single flood and 7 
sections used for testing which led to a 93% correlation. The increase due to the flood 
event is expressed by means of a change in the 𝐼𝑅𝐼 (Eq 8). The deterioration considering 
the flood is calculated according to (Eq 9). 
 
%∆𝐼𝑅𝐼𝐹 = −4.47 − 0.48𝐼𝑅𝐼 + 0.23𝑁𝐷𝑒𝑝 − 0.57𝐷𝑢𝑟𝑎𝑡 − 26.49𝑁𝑆 − 0.49𝐷𝑒𝑝 ∗ 𝐼𝑅𝐼 (Eq 8) 
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∆𝐼𝑅𝐼 = ∆𝐼𝑅𝐼𝑁 + ∆𝐼𝑅𝐼𝐹 + ∆𝐼𝑅𝐼𝑆 (Eq 9) 

 
Where ∆𝐼𝑅𝐼𝑁  is the increase in IRI due to natural causes (Eq 6), which used the same as 
(Shamsabadi et al., 2014), the ∆𝐼𝑅𝐼𝐹  the increase in IRI due to a single flood using (Eq 8) 
and ∆𝐼𝑅𝐼𝑆 the increase in IRI due to a single snowstorm, which is not considered relevant 
in this study. 
 
Both authors (Hashemi Tari et al., 2015) and (Shamsabadi et al., 2014) do not clearly 
specify the variables and how they are retrieved nor the differences between the 
normalized variables and the “non-normalized”. Furthermore, no information regarding 
the units can be found in (Hashemi Tari et al., 2015) and (Shamsabadi et al., 2014). 
Lessons learned about the relationships between topography, roads, and flooding are 
highlighted in (Texas Department of Transportation, 2019) but totally disregarded in 
(Hashemi Tari et al., 2015) and (Shamsabadi et al., 2014). Hence, these two models will 
be disregarded for the current study as far as no trustable information from them can 
be retrieved. 
 
Finally, the probabilistic model proposed by (Khan et al., 2014) roughness and rutting 
versus time are assessed to obtain trends on pavement performance for a road group, 
and with and without flooding transition probability matrices are generated from the 
change in trends. These matrices are used applying the Monte Carlo method simulation 
to obtain roughness and rutting-based road deterioration models for a road group. 
random variables are generated to select either with or without flood transition 
probability matrices. Then, another set of random variables is used to compare with the 
condition states. After 10,000 trials for a 20-year period, the average road deterioration 
model is obtained. 
 

2.2.4 Model limitations 
 
All models reviewed include several limitations. In this section, model limitations are set 
and identified as crucial to avoid the applicability of the models. 
 
The limitations on the model proposed by (Sultana et al., 2016b) are 1) the model is only 
applicable to lightly trafficked local roads with thin asphalt surfacing 2) the ratio of the 
modified structural strength of the pavement post-flood to modified structural strength 
pre-flood 𝑆𝑁𝐶𝑟𝑎𝑡𝑖𝑜 must be greater than 0.75 and less than or equal to 1; 3) the post-
flood reduction in deflection should be 25–40%; and 4) the time is less than 42 days i.e., 
6 weeks (t < 42 days) because the original dataset was collected within this time limit. 
 
Limitations in (Sultana et al., 2016c) are highlighted as 1) Applicability to local roads with 
an asphalt layer thickness of 45–60 mm and gravel layer of 135–200 mm, traffic loading 
less than 105(MESA < 0.1) and over 20 years is the design life period considered in the 
model. 2) Data with an increase in the post-flood deflection from 25% to 40% was used 
for the model. 3) The ratio of SNC of the pavement post-flood to SNC of the pavement 
pre-flood must be greater than 0.75 and less than or equal to 1. 4) Data with a decrease 
in the post-flood subgrade CBR of more than 30% was used for the model. 5) Post-flood 
strength was predicted within the time limit of 42 days; that is, within 6 weeks of 
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flooding, as the original dataset was collected within this time limit. 7) The design traffic 
loading, MESA, is a constant for this model. 
 
The same author in (Sultana et al., 2018a) proposed the following boundaries and 
considerations 1) Sections that had pre- and post-flood rutting and roughness data, with 
post-flood values greater than pre-flood values, were selected to quantify the rapid 
deterioration phase after the flooding event. 2) Sections with at least 5% loss of surface 
condition (rutting and roughness). 
 
The models reviewed cannot be either applied and verified to other floods and locations. 
They generally request difficult input requirements and they are very restrictive 
regarding the temporal boundaries. Furthermore, the nature of the mid to long-term 
pavement performance for flooded pavements remains unclear. Very little is currently 
known about the deterioration process for flooded pavements and if the deterioration 
depends on the pre-flood condition and how the deterioration process differs from a 
non-flooded pavement. To address this gap in the literature the central thesis of this 
study gives answers to these uncertainties. A methodology is developed to address and 
giving an answer to these questions. 
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3 METHODOLOGY 
 
The deterioration of pavements due to flooding has been largely analyzed in the 
literature review (Gaspard et al., 2007; Helali et al., 2008; Sultana et al., 2018b) using 
either single measurements or measurements collected within a short period of time 
after flooding. Nevertheless, the impact of flooding on the subsequent performance of 
pavements has not been studied in depth. The main goal of this research is to cover this 
gap and characterizes the performance of flooded pavement in the first 5 years after 
the flood event. The research is aimed at answering four research questions: 
 

1. Does the flood impact the pavement deterioration? 
2. How should we conceptually model the deterioration trend induced by the 

flooding? 
3. How much differ this flooded deterioration trend from the non-flooded trend? 
4. How much the loss of life expected from the flooded sections differ compared 

to the non-flooded ones? 
 

To answer these questions, this research analyzes the floods occurring in Colorado, 
United States, in September 2013. During September 9 and 15th, 2013 a heavy rainfall 
exceeding 450 mm, combined with a multistate flood flowing tributary waters down, 
caused destruction which had not been witnessed in Colorado for decades, impacting 
most of Boulder and Larimer counties (Gochis et al., 2015). 
 
The scope of the analysis covers the pavement deterioration in the most affected 
counties, as well as counties barely affected by the event. The former will be used to 
characterize flooded pavements, while the latter will be used as a benchmark of non-
flooded pavements. Considering these criteria, the analysis considered the counties of 
Adams, Arapahoe, Boulder, Jefferson, Larimer, and Weld (Figure 1). The criteria set to 
define the analysis boundaries pointed to the need to reduce the stationary climate 
uncertainties and the Colorado Front Range counties have been selected. The counties 
included in the analyses contain presumably the highly-impacted flooded road sections 
in counties such as Boulder and Larimer, and counties where the flood and precipitation 
were negligible such as Weld. A major advantage of this approach is to determine 
extreme cases, where the flood highly impact and where was negligible, for similar 
environmental conditions. 
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Figure 1: Colorado counties. In blue Colorado’s Front Range counties. Source: (Chriestenson and Thilmany, 2020) 

 

3.1 Identification of flooded and non-flooded pavements 
 
The first step in the process was to identify flooded and non-flooded road sections. Due 
to a lack of flooding maps or identifiers to delimit sections affected by the flooding, a 
standardized process was developed to determine which pavements in the network 
were flooded and which were not. The process consisted in identifying the flooded 
zones as these zones posed on a “Very High Risk” (VHR) flooding zones with “Heavy 
precipitation” (HP) registered during the storm, and analogously, the “No Risk” (NR) 
flooding zones with “No/few Precipitation” (NP) were considered as non-flooded 
sections. An overall of 9 combinations arose from 3 flooding risks and 3 precipitation 
levels identified (Table 1). The intermediate cases were disregarded and no longer 
considered due to the uncertainty they may carry. 
 

 Flooding Risk Zone 

 No Risk Moderate-High 
Risk 

Very High 
Risk 

P
re

ci
p

it
a

ti
o

n
 

re
gi

st
er

ed
 

No/Few 
Precipitation 

NP-NR NP-MHR NP-VHR 

Moderate 
Precipitation 

MP-NR MP-MHR MP-VHR 

Heavy 
Precipitation 

HP-NR HP-MHR HP-VHR 

Table 1: Flood hazard risk and precipitation matrix 

 
The highway system under analysis consisted of public highways managed by the 
Colorado Department of Transportation (CDOT), including interstates, US highways, and 
state highways. The geographic and spatial data of this network was obtained from 
CDOT’s Online Transportation Information System (“CDOT Online Transportation 
Information System,” 2021). The shapefiles (.shp) were analyzed using an open-source 
geographic information system (GIS) application called QGIS 3.16 (“QGIS,” 2021). The 
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pavement condition dataset was retrieved from the data collected by CDOT as part of 
their annual condition assessment, whose supervision is under the Federal Highway 
Administration (FHWA). Due to the lack of data regarding pavement structure and 
thickness, which may influence the deterioration process, the functional class was used 
as a proxy for the pavement thickness and the annual average daily traffic (AADT).  
 
To determine whether the flood affected or not a given pavement section, the analysis 
considered a combination of risk flooding maps from the Federal Emergency 
Management Agency (FEMA) (“National Flood Hazard Layer (NFHL) Status,” 2021) and 
the storm precipitation from the Weather and Climate Toolkit (WCT) developed by the 
National Oceanic and Atmospheric Administration (NOAA) (“NOAA’s Weather and 
Climate Toolkit,” 2021). 
 
Risk flooding maps from FEMA’s National Flood Hazard Layer (NFHL) were used to 
identify the following four zones: “1. Area of Minimal Flood Hazard”, considered a “No 
Risk” zone in the study, “2. Area of 0.2 PCT Annual change” considered a “Moderate 
Risk” zone, “3. Area of 1 PCT in Future Conditions” considered a “High Risk” zone, and 
“4. Floodway”, which is considered a “Very High Risk” zone. The polygon files defining 
these flood risk zones were intersected with the highways georeferenced file. 
“Moderate Risk” and “High Risk” zones were merged in a single group. 
 
The intensity of the heavy rain event was evaluated using the Digital Storm Total 
Precipitation map from the 160 high-resolution Doppler weather radars NEXRAD-Level-
III from NOAA’s Weather and Climatic Toolkit (“NOAA’s Weather and Climate Toolkit,” 
2021). This evaluation was performed from the map captured on Friday 13th September 
2013 at 15:08:00. to obtain. This date was deemed representative of the flood event 
because the peak precipitation period occurred between September 11th and 12th  
(Hamill, 2014), and the flood duration took days to weeks (Gochis et al., 2015). The 
accumulated precipitation intensity was divided in three raining intensities: (1) “No/few 
precipitation” if the precipitation intensity was less than 2 inches; (2) “Moderate 
precipitation” for intensities between 2 and 5 inches; and (3) “Heavy precipitation” for 
intensities larger than 5 inches. The raster map containing the accumulated 
precipitation was vectorized and intersected with the combined highways and the flood 
hazard zone layers. 
 
Sections experiencing “1. No/few precipitation” and located on “1. Area of Minimal 
Flood Hazard” are considered that sections did not suffer the flood. Contrarily, the 
sections experiencing “3. Heavy rain” and georeferenced over “4. Floodway” zones are 
considered the sections the flooding impacted them heavily.  

 

3.2 Development and validation of pavement deterioration models for 
flooded and non-flooded models 

 
In this research, the pavement deterioration process was modeled as a Markov 
stochastic process. Markov chains have been widely used in a large number of 
applications such as physics, biology, operational research, economics, communication 
networks, among others (Sericola, 2013). Markov models have been also extensively 
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used to predict pavement deterioration (Butt et al., 1987; Pulugurta et al., 2013; Thomas 
and Sobanjo, 2013). To incorporate the uncertainties in this deterioration, stochastic 
Monte Carlo simulations were used (Khan et al., 2017c; Osorio-Lird et al., 2017) and 
equally length states are performed as suggested by (Butt et al., 1987). The good 
performance of using Markov chains to assess pavement deterioration under flooded 
and non-flooded conditions was already reported (Khan et al., 2014). 
 
Markov chains reported in (Yamany et al., 2021) for characterizing pavement 
deterioration are homogeneous Markov chains, staged-homogeneous Markov chains, 
semi-Markov techniques, and non-homogeneous Markov chains. Having 5 yearly 
deterioration measures, the homogeneous Markov chains were found to be the most 
suitable for the research. 
 
The deterioration index chosen to assess the road deterioration was the average 
International Roughness Index (IRI). IRI was deemed appropriate because it is often used 
as a metric of pavement deterioration (Al-Omari and Darter, 1995) and was found to be 
a good proxy to predict the mean Pavement Serviceability Rating (PSR) (Gulen et al., 
1994). Moreover, models proposed by (Shamsabadi et al., 2014; Hashemi Tari et al., 
2015; Sultana et al., 2018b) also used the IRI for assessing the flooding impact. The use 
of Monte Carlo simulations minimizes the pavement age problem, which is a crucial 
variable for IRI evolution (Pérez-Acebo et al., 2020), but homogeneous Markov chains 
cannot deal with the pavement age as a variable (Yamany et al., 2021). Performing 
analysis simulating the deterioration process from the best to the worst condition 
evolution employing stochastic probabilities was found the best solution to minimize 
the lack of pavement age. 
 
Two different deterioration models were developed using transition probability 
matrices for discrete-time homogeneous Markov chains, such that the Markov chain 
𝑋(𝑡) fulfills 𝑃(𝑋𝑛 = 𝑠|𝑋0 = 𝑥0, 𝑋1 = 𝑥1,… , 𝑋𝑚 = 𝑥𝑚) = 𝑃(𝑋𝑛 = 𝑠|𝑋𝑚 = 𝑥𝑚), ∀ 0 ≤
𝑚 < 𝑛 . This assessment is based on the assumption future conditions depends only on 
the current condition, and the transition matrix at any time 𝑛 satisfies (𝑖) 𝑝𝑖𝑗(𝑛) ≥

0,∀𝑖, 𝑗 and  (𝑖𝑖) ∑ 𝑝𝑖𝑗(𝑛) = 1,∀𝑖𝑗  (Figure 2). This probabilistic modeling combined with 

stochastic Monte Carlo simulations allows to capture the associate randomness 
pavement condition evolution (Osorio-Lird et al., 2017) and a deterministic approach 
assuming the pavement deterioration evolves according to the transition probability 
matrix (Yang et al., 2005). The matrices essentially contain the probabilities a section 
has to change the state condition from one year to the following one. 
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Figure 2: Homogeneous Markov chains for pavement deterioration. Condition decreases from State 5 “Very Good” 

to State 1 “Very Poor” 

 
The first Markov model was calibrated using the flooded sections and the second model 
was calibrated using the non-flooded sections. Using this approach, the deterioration 
forecast for the flooded and non-flooded sections was assessed. The method was able 
to perform simulations of the flooded sections as if they never suffered the effects of 
the flood event and therefore, the flood effect was quantified. 

 

The dataset of pavement conditions used to characterize pavement deterioration 
contained a pre-flood measurement (i.e., taken in 2013 before the flood event) and 5 
post-flood measurements (i.e., taken annually between 2014 and 2018). Pavement 
condition is measured every 0.1 miles. 
 
Maintenance operations and anomalies collecting the data were included in the 
deterioration dataset. These data points were disregarded and transition probability 
matrices with states never upgraded were developed. These maintenances and 
anomalies would have provided transition probabilities where the states could have 
improved and provide inconsistent analyses. The Bid Analysis and Management System 
(BAMS) dataset from CDOT contained the maintenance performed in the different 
sections throughout the years. The rehabilitations found in the BAMS dataset from 2013 
onwards are listed as follows. 
 

1. AMDO (Asphalt Medium Overlay) – Standard HMA mix. Typically, 2 to less than 
4 inches thick. 
2. AMFL (Asphalt Mill & Fill) – The existing asphalt is milled (typically up to 2” 
deep, but may vary based on the project), and the milling are removed. Then an 
overlay is placed over the milled surface. 
3. AMJO (Asphalt Major Overlay) – Standard HMA mix. Typically, 4 to less than 6 
inches thick. 
4. AREC (Asphalt Reconstruction) – Asphalt reconstruction. 5. ASMA (Stone 
Mastic Asphalt) – A gap graded mix having essentially no voids and requiring 
more asphalt in the mix. Normally placed on the top surface of a pavement 
structure and acts as a wearing course. May also include milling of the existing 
surface. 
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The BAMS dataset containing registered maintenance was used to determine which 
sections were rehabilitated and the deterioration measurements excluded since the 
rehabilitation was carried out. Similarly, to identify unregistered maintenance in the 
dataset, the criteria for the identification for a given section was that ∀𝑖 where 𝑖 =
2013,2014,… ,2016 if 𝐼𝑅𝐼(𝑖) + 𝑡𝑜𝑙 > 𝐼𝑅𝐼(𝑖 + 1) and 𝐼𝑅𝐼(𝑖) + 𝑡𝑜𝑙 > 𝐼𝑅𝐼(𝑖 + 2) 
occurring simultaneously, sections from 𝑖 + 1 to 2018 were removed. Anomalies 
collecting the data were expected and a criterion to remove them was set according to 
𝐼𝑅𝐼(𝑖) + 𝑡𝑜𝑙 > 𝐼𝑅𝐼(𝑖 + 1) and 𝐼𝑅𝐼(𝑖 + 2) + 𝑡𝑜𝑙 > 𝐼𝑅𝐼(𝑖), being 𝐼𝑅𝐼(𝑖 + 1) the 
anomaly. Once all the filters were done, the sections remaining with only one 
observation were cleared. Extreme values of IRI (i.e., above the 90th percentile) were 
removed from the analysis due to the loss of a sense analyzing IRI extreme values. 
 
A ride index ( 𝑅𝐼𝐷𝑋 ) ranging from 100 to 0 was used to develop the Markovian models 
from 𝐼𝑅𝐼 (Eq 10). This index was used because CDOT classifies its pavement condition in 
using this standardized index (Keleman et al., 2008), and at the same time, this 
standardization allowed to easily segregate the deterioration in different states, clearly 
indicating 𝑅𝐼𝐷𝑋 = 100 indicates a perfect pavement condition and 𝑅𝐼𝐷𝑋 = 0 a very 
poor pavement condition. This ride index also allowed to helpfully define the groups in 
the transition probability matrices qualitatively and providing a comprehensive 
understanding of the state condition regardless of the number of groups and 𝐼𝑅𝐼 values. 
 

 
𝑅𝐼𝐷𝑋 = 100 −

𝐼𝑅𝐼 − min(𝐼𝑅𝐼)

max(𝐼𝑅𝐼) −min(𝐼𝑅𝐼)
 

(Eq 10) 

 

The accuracy of the Markovian models was assessed by means of the root mean square 
error (RMSE) (Eq 11). 
 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑅𝐼𝐷𝑋𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −𝑅𝐼𝐷𝑋𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

2
𝑁

𝑖

 
(Eq 11) 

 

Several matrix sizes were explored, proposed, and analyzed to determine the Markov 
model providing the best results. The 80% of data from each family was used to calibrate 
the transition probability matrix and the remaining 20% is used to validate the model.  
 
For the non-flooded transition probability matrix validation, a non-parametric Wilcoxon 
signed-ranked test was performed to compare the mean differences between paired 
samples at the 5% significance level 𝐻0: 𝜇𝑅𝐼𝐷𝑋,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝜇𝑅𝐼𝐷𝑋,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 . This test was 

found appropriate because the differences between the 𝑅𝐼𝐷𝑋𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  and 
𝑅𝐼𝐷𝑋𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  were not normally distributed when performing a non-parametric one-

sample Kolmogorov-Smirnov test, testing the null hypothesis that the data obtained 
from the difference comes from a standard normal distribution with unknown standard 
deviation at the 5% significance level 𝐻0: 𝜇𝑅𝐼𝐷𝑋,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝜇𝑅𝐼𝐷𝑋,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 0. The data 

for the one-sample Kolmogorov-Smirnov test was normalized such that 𝑥 =
𝑥−𝑥̅

𝜎𝑥
, being 

𝑥 the data 𝑥 normalized, 𝑥 = 𝜇𝑅𝐼𝐷𝑋,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝜇𝑅𝐼𝐷𝑋,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝑥̅ the mean of 𝑥 and 𝜎𝑥 

its standard deviation. The Kolmogorov distribution is 𝐾 =
𝑠𝑢𝑝

𝑡 ∈ [0,1]
|𝐵(𝑡)|, 𝐵(𝑡) is the 
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Brownian bridge and the cumulative distribution of 𝐾 is 𝑃𝑟(𝐾 ≤ 𝑥) = 1 −

2∑ (−1)𝑘−1𝑒−2𝑘
2𝑥2 =

√2𝜋

𝑥
∑ 𝑒−(2𝑘−1)

2𝜋2/(8𝑥2)∞
𝑘=1

∞
𝑘=1 . The non-parametric Wilcoxon 

singed-ranked test uses the W statistic defined as 𝑊 = ∑ [𝑠𝑔𝑛(𝑥2,𝑖 − 𝑥1,𝑖)]𝑅𝑖
𝑁𝑟
𝑖=1 , where 

𝑅𝑖 denotes the pair rank starting with the smallest non-zero pair difference. For the 
flooded transition probability matrix, a paired-sample t-test testing the null hypothesis 
𝐻0: 𝜇𝑅𝐼𝐷𝑋,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝜇𝑅𝐼𝐷𝑋,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  at the 5% significance level was performed. This 
test was found appropriate because the differences between the 𝑅𝐼𝐷𝑋𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  and 
𝑅𝐼𝐷𝑋𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  were normally distributed when performing a non-parametric one-

sample Kolmogorov-Smirnov test, testing the same hypothesis in the non-flooded 

Markov chain. The statistic used in the one-paired t-test is defined as 𝑡 =
𝑥̅−𝜇0
𝑠

√𝑛

, being 𝑥̅ 

the sample mean, 𝜇0 the value to be tested, 𝑠 the sample standard deviation and 𝑛 the 
sample size. 
 
The transition probability matrices were validated once no statistical difference was 
found to reject the null hypothesis, which considers that the average values of predicted 
condition estimated from the Markov model equal the average measured condition. To 
test these hypotheses, a significant level of 5% was considered. 
 

3.3 Quantifying the impact of flood in pavement deterioration 
 
To quantify the impact of flooding on pavement deterioration, the research considered 
different questions. 
 

1. Does the flood impact pavement deterioration? 
2. How can we model the deterioration induced by flooding? 
3. How can we quantify the consequences of flooding? 

 
An illustrative flowchart was developed to graphically show this methodological process 
(Figure 3). 
 

 
Figure 3: Flowchart for flooding deterioration quantification 

Does the flood 
impact pavement 

deterioration?
Yes

No

How can we model 
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Sudden drop + continuous deterioration
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pre-flood condition?

Yes
No

Quantify the jump in 
each state

How is the 
deterioration trend 

after flooding?

Risk-analysis: 
quantify the 

consequences of 
flooding

Quantify the jump
Monte Carlo 

stochastic 
simulations

Deterministic 
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End



   XXV 

 
The reader should bear in mind the asymptotic tendency and therefore, not accurate 
predictions a deterministic Markov process shows when the input condition index is 
within the two worst average state values. The deterministic approach predicts the 
𝑅𝐼𝐷𝑋𝑖+1 (Eq 12). 
 

𝑅𝐼𝐷𝑋𝑖+1 = [𝑣𝑖,1, … , 𝑣𝑖,𝑛] · [

𝑥1,1 ⋯ 𝑥1,𝑛
⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑛

] · [

𝜇1
⋮
𝜇𝑛

] (Eq 12) 

 

The vector form [𝑣𝑖,1, … , 𝑣𝑖,𝑛] transforms 𝑅𝐼𝐷𝑋𝑖 to a vector such that ∑ 𝑣𝑖,𝑗 = 1
𝑛
𝑗=1  and 

𝑣𝑖,𝑘 = 1 ⇔ 𝑅𝐼𝐷𝑋𝑖 = 𝜇𝑘,𝑓. This asymptotic and unrealistic behavior arises when the 

vector form [𝑣𝑖,1, … , 𝑣𝑖,𝑛] → [0, … , 𝑥𝑛−1, 𝑥𝑛], where 𝑥𝑛−1 + 𝑥𝑛 = 1. The Markov chain 

development tend to lim
𝑖→∞
[𝑣∞,1, … , 𝑣∞,𝑛] = [1,0,… ,0] and therefore 𝑅𝐼𝐷𝑋𝑡→∞ = 𝜇𝑛, 

where 𝜇𝑛 is the last average state value of the corresponding transition probability 
matrix. However, the actual pavement deterioration reached indeed the worst 
condition always within a finite period of time. However, the author considered to 
disregard predicted deterministic values such that 𝑅𝐼𝐷𝑋 < 𝐴𝑠,𝑒𝑛𝑑−1, where 𝐴𝑠,𝑒𝑛𝑑−1 
represents the penultimate state boundary, for all the statistical tests performed to 
justify the differences amongst deterioration rates for the flooded and non-flooded 
pavements. For the 5 state transition probability matrices using equal-length state 
conditions for 0 ≤ 𝑅𝐼𝐷𝑋 ≤ 100, 𝐴𝑠,𝑒𝑛𝑑−1 = 20 and hence predictions where 
𝑅𝐼𝐷𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 < 20 were disregarded. Note that predictions above the average best 

state condition are also unrealistic because for 𝑅𝐼𝐷𝑋𝑖 > 𝜇1⟹ [𝑣𝑖,1, … , 𝑣𝑖,𝑛] =

[1,… ,0] ⟹ 𝑅𝐼𝐷𝑋𝑖+1 = 𝐾, where 𝐾 = 𝑐𝑡𝑡 = [𝑥1,1, … , 𝑥1,𝑛] · [

𝜇1
⋮
𝜇𝑛
]. 

 

3.3.1 Does the flood impact pavement deterioration? 
 
The goal of this section was to determine if the flood event impacted the deterioration. 
As described in the literature review by several authors (Gaspard et al., 2007; Helali et 
al., 2008; Sultana et al., 2018b; Zhang et al., 2008) the flood had an impact on pavement 
performance, however, providing statistically-based justifications for the methodology 
proposed in this current study provided stronger shreds of evidences using different 
research approaches. 
 
To achieve that a non-parametric Wilcoxon signed-ranked test was performed to 
compare the mean differences between the measured deterioration in the flooded 
sections and the results predicted by the non-flooded transition probability matrix 
obtained in the same sections from 2014 to 2018 testing the null hypothesis at the 5% 
significance level 𝐻0: 𝜇∆𝑅𝐼𝐷𝑋,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝜇∆𝑅𝐼𝐷𝑋,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, being ∆𝑅𝐼𝐷𝑋𝑗 =

𝑅𝐼𝐷𝑋𝑌𝑒𝑎𝑟,𝑖+1,𝑗 − 𝑅𝐼𝐷𝑋𝑌𝑒𝑎𝑟,𝑖,𝑗 . The rejection of the null hypothesis allows to determine 

the flood impact the pavement deterioration but did not provide enough information to 
guarantee the behavior and trend. This test was found appropriate after carrying out a 
one-sample Kolmogorov-Smirnov test testing the null hypothesis 𝐻0: 𝜇∆𝑅𝐼𝐷𝑋,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −
𝜇∆𝑅𝐼𝐷𝑋,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 0 at the 5% significance level. 
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3.3.2 How can we model the deterioration induced by flooding? 
 
The current section targets the flooded pavement deterioration identification. Different 
deterioration processes were proposed and discussed amongst several alternatives. The 
methodology proposed analyzed statistically-based on each conceptual deterioration 
pattern to determine if the pattern could be rejected or not. 
 
Four different conceptual types of deterioration are proposed (Figure 4). The first 
deterioration approach (Figure 4a) implied considering a delayed increase of 
deterioration due to the flooding over time with no substantial loss of condition when 
the flood occurs. The second deterioration approach (Figure 4b) suggested an important 
loss of the road condition when the flood occurs (i.e., jump in condition) but the flooded 
pavement follows a deterioration trend (i.e., slope) similar to the one of non-flooded 
sections. This model assumes that there is a “translation” (i.e., offset) of the 
deterioration curve driven by the initial jump. The third deterioration approach (Figure 
4c) pointed to a combination of the first and second approaches. A rapid deterioration 
occurs when the flooding event occurs and a delayed increased deterioration of the 
flooded roads arises throughout the time. The fourth deterioration approach (Figure 4d) 
implies a sudden jump of the flooded roads but the condition tends to show no 
differences after a certain time, hence a slower deterioration trend arises for the 
flooded sections.  
 

 
a. Conceptual deterioration I 

b. Conceptual deterioration II 

 
c. Conceptual deterioration III 

 
d. Conceptual deterioration IV 

Figure 4: Conceptual deteriorations. a) Sudden drop and same trend. b) Sudden drop and increased deterioration. 
trend. c) Sudden drop and delayed decreased trend. d) Delayed increased trend. 
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With these conceptual models in mind, the thesis analyzed the actual deterioration of 
flooded pavements and compared it with an estimated deterioration that considered 
that the pavement was not flooded. This estimated deterioration was performed 
applying the non-flooded transition probability matrix over the flooded sections. The 
different conceptual models were analyzed using statistical analysis that seeks to 
respond to the following questions. 
 

1. Is there a sudden drop in the pavement condition right after the flood?  
a. If the sudden drop exists, then the model depicted in (Figure 4a) is not 

adequate and discarded from the next analysis. 
i. If there is a sudden drop in the condition in the first post-flood 

measurement, does it depend on the pre-flood condition? 
1. If the sudden drop depends on the pre-flood condition, a 

quantification of the drop for each state is required. 
2. If the sudden drop is constant a single quantification of the 

drop is measured. 
b. If the sudden drop does not exist, then the model depicted in (Figure 4a) 

is the deterioration model because differences amongst deterioration 
rates were already found previously. Considering the flood impact cannot 
improve or slow the deterioration rate in the imminent post-flood 
measurement, the only feasible conceptual model is a delayed increased 
deterioration rate. Comparing the transition probability matrices 
strength and justifies this hypothesis by showing higher deterioration 
rates in the flooded transition probability matrix.  
 

2. How is the deterioration after flooding? If a sudden drop exists 
a. If the flooded and non-flooded probability transition matrices showed no 

difference in their state-evolution probabilities, the conceptual 
deterioration is the one depicted in (Figure 4b). 

b. If the flooded transition probability matrix showed faster deterioration 
rates, hence higher probabilities to decrease its current state condition, 
the deterioration model is the one proposed in (Figure 4c). 

c. If the flooded transition probability matrix showed slower deterioration 
rates, the conceptual deterioration model is the one depicted in (Figure 
4d).  

 

3.3.3 Does the sudden drop exist? 
 
The first analysis conveyed the need to determine the existence or not of a sudden 
decrease in condition after the first year of flooding. The existence of it allowed the 
author to disregard the model shown depicted in (Figure 4d) and discussed the 
remaining deterioration processes.  
 
To determine statistically-based the existence of a sudden drop from the pre-flood 
measurement in 2013 and the first post-flood measurement in 2014 a non-parametric 
Wilcoxon signed-ranked test was performed to compare the differences between the 
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variation measured in the flooded sections and the variations predicted by the non-
flooded transition probability matrix obtained in the same between 2013 and 2014 
testing the null hypothesis at the 5% significance level 𝐻0: 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =

𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. The rejection of the null hypothesis allowed to determine the 
flood slope variation just after the flood was different than the non-flooded sections, 
hence a sudden condition loss occurs during the first year. This test was found 
appropriate after carrying out a one-sample Kolmogorov-Smirnov test testing the null 
hypothesis 𝐻0: 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 0 at the 5% significance 
level. 
 

3.3.3.1 Does the sudden drop depend on the pre-flood condition? 
 
In this part, an analysis researching whether the sudden drop of condition when the 
flood occurs depends on the pre-flood condition. The sudden loss of condition 𝛿(𝑅𝐼𝐷𝑋𝑖) 
was measured as 𝛿(𝑅𝐼𝐷𝑋𝑖) = 𝑅𝐼𝐷𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 − 𝑅𝐼𝐷𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖 for the first year after 

the flood, typically 𝑖 = 1, and its quantification allowed more precise simulations and 
accurate results for a risk-based analysis. 
 
To determine statistically if either the drop when the flood occurs depends on the initial 
state or not, a non-parametric Kruskal-Wallis test was found to be appropriate for 
testing whether samples are originated from the same distribution. The samples used 
for the grouping sequence in the Kruskal-Wallis test were segregated according to their 
pre-flood condition, classifying them into their pre-flood state. In essence, 4 groups 
were analyzed, these ranging from states 2 to 5. 𝑅𝐼𝐷𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 < 20 were disregarded 

hence state 1 was not included in the analysis. The null hypothesis 𝐻0 tested if the data 
in each state came from the same distribution using a 5%. 
 
𝐻0: 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑆𝑡𝑎𝑡𝑒,𝑖 − 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑆𝑡𝑎𝑡𝑒,𝑖

= 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑆𝑡𝑎𝑡𝑒,𝑖+1 − 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑆𝑡𝑎𝑡𝑒,𝑖+1 = ⋯

= 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑆𝑡𝑎𝑡𝑒,𝑛𝑘 − 𝜇∆𝑅𝐼𝐷𝑋,13−14,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑆𝑡𝑎𝑡𝑒,𝑛𝑘 
 
The statistic used in this test 𝐻, is tested against 𝑘 − 1 degree of freedom using the chi-
square distribution, being 𝑘 the number of different states. The statistic 𝐻 is computed 

as 𝐻 =
12

𝑁(𝑁+1)
∑
𝑅𝑖
2

𝑛𝑖
− 3(𝑁 + 1) where 𝑁 is the total number of observations, 𝑛𝑖 is the 

number of observations in the i-th group, and 𝑅𝑖 is the total sum of ranks in the i-th 
group. 
 
The p-value returned was less than 0.05, the null hypothesis was rejected and hence the 
sudden drop depends on the pre-flood condition. Finally, the mean values, the number 
of observations, and the corresponding standard deviation for each state were 
collected. 
 

3.3.4 How is the deterioration trend after flooding? 
 
The deterioration trend analysis allowed to identify the trend flooded sections and non-
flooded sections followed once the sudden drop occurred. Comparing the transition 
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probability matrices, using exclusively post-flood (i.e 2014-2018) data to calibrate the 
flooded probability matrix and pre-flood and post-flood data (i.e 2013-2018) was done 
to assess the deterioration trend. The Markov matrix for the flooded sections did not 
contain 2013 data because of the sudden drop identified modeled as a discontinuous 
deterioration, and the inclusion of the jump would modify the deterioration trend, 
which is continuous. It is important to note that due to the discontinuity the jump 
provokes data in the best states may not be found and hence the transition probability 
matrix was calibrated for every state but used finally for states 1, 2, and 3. 
 

3.4 Risk analysis: quantifying the consequences of flooding in pavement 
condition 

 
Risk analysis to quantify the flood impact over the network was carried out in this part. 
Two different approaches were set and critically discussed: a stochastic approach using 
the Monte Carlo method and a deterministic deterioration evolution, where no 
randomness was linked to the flooded sections. These analyses were found to be 
suitable for assessing the loss of life condition the flooded sections had compared to the 
non-flooded evolution.  
 
The first analysis was based on applying stochastic Monte Carlo simulations over the 
non-flooded transition probability matrix. This approach allowed capturing the 
randomness associate with pavement deterioration. A limitation using this stochastic 
risk analysis arises when the overall pavement condition can only take the average state 
value of the corresponding matrix. The average state value was estimated by the 50th 
percentile of data observed in the corresponding state. In the cases where the state did 
not vary in more than a consecutive year a linear discretization throughout the state in 
each simulation was carried out rather than maintaining the constant average state 
value. 
 
The 10th, 50th, and 90th percentiles using the non-flooded transition probability matrix 
were simulated. The Monte Carlo method was found to be consistent when there is a 
clear asymptotic tendency measuring the accumulated average deterioration index, and 
this determines the number of required simulations. Once the non-flooded percentiles 
were obtained two different approaches are used to simulate the risk-based analysis 
over the flooding sections: a stochastic approach and a deterministic one. 
 

3.4.1 Monte Carlo Method approach 
 
Monte Carlo simulations were performed to determine the deterioration curves in the 
non-flooded sections and the deterioration curves corresponding to its 10th, 50th, and 
90th percentiles are obtained. A uniform probability distribution was considered to 
develop the simulations. 
 
To evaluate and quantify the flood impact, a flooded simulation for every different state 
"𝑛" was performed, where 2 ≤ 𝑛 ≤ 5. The starting point was computed as 𝑅𝐼𝐷𝑋0,𝑛 (Eq 

13), where 𝜇𝑛,n𝑓  is the flooded average state value for the state "𝑛" and 𝑅𝐼𝐷𝑋𝑖,𝑝 the 

𝑅𝐼𝐷𝑋 for a given year "𝑖" included in the percentile 𝑝 deterioration curve. A single 
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evaluation for each state was carried out based on this premise which in turn gives the 
most realistic simulation for a given state due to its proximity to the average state value. 
 

𝑅𝐼𝐷𝑋0,𝑛 = 𝑅𝐼𝐷𝑋𝑖,𝑝 = min
∀𝑖
|𝜇𝑛,n𝑓 − 𝑅𝐼𝐷𝑋𝑖,𝑝| 

 

 (Eq 13) 

 

For the flooded simulations, the first post-flood measurement 𝑅𝐼𝐷𝑋1,𝑛 considered that 
the sudden drop when the flood occurs, whose value depends on its initial state, was 
applied after running a deterministic case applying the non-flooded transition 
probability matrix (Eq 14) starting from 𝑅𝐼𝐷𝑋0,𝑛. 

 

𝑅𝐼𝐷𝑋1,𝑛 = [𝑣0,1, … , 𝑣0,𝑛𝑘] · [

𝑥1,1,𝑛𝑓 ⋯ 𝑥1,𝑛𝑘,𝑛𝑓
⋮ ⋱ ⋮

𝑥𝑛𝑘,1,𝑛𝑓 ⋯ 𝑥𝑛𝑘,𝑛𝑘,𝑛𝑓

] · [

𝜇1,n𝑓
⋮

𝜇𝑛𝑘,n𝑓

] − 𝛿(𝑅𝐼𝐷𝑋1,𝑛) 
 (Eq 14) 

 

Where 𝑅𝐼𝐷𝑋1,𝑛 is the first post-flood condition at year 𝑖 = 1, [𝑣0,1, … , 𝑣0,𝑛] the pre-

flood vector form at year 𝑖 = 0, [

𝑥1,1,𝑛𝑓 ⋯ 𝑥1,𝑛𝑘,𝑛𝑓
⋮ ⋱ ⋮

𝑥𝑛𝑘,1,𝑛𝑓 ⋯ 𝑥𝑛𝑘,𝑛𝑘,𝑛𝑓
] the non-flooded transition 

probability matrix, where 𝑛𝑘 = max(𝑛), [

𝜇1,n𝑓
⋮

𝜇𝑛𝑘,n𝑓
] the corresponding average state 

vector and, 𝛿(𝑅𝐼𝐷𝑋1,𝑛) the sudden loss of condition due to the flood for the state "𝑛". 
 
A linear deterioration within the same state was carried out when the condition state 
did not vary for more than a year. Otherwise, it took the average state value. The 
linearization provided a vectorial 𝑅𝐼𝐷𝑋𝑛 for a given state using (Eq 15) or (Eq 16). 
 

𝑅𝐼𝐷𝑋(𝑖,… , 𝑖 + 𝑘)𝑛 = 𝐴𝑠𝑡𝑎𝑡𝑒 +
𝐵𝑠𝑡𝑎𝑡𝑒 − 𝐴𝑠𝑡𝑎𝑡𝑒

𝑘 + 1
· (1, … , 𝑘)  

𝑖𝑓 𝑜𝑛𝑙𝑦
⇔    𝑘 > 0 ⋁ 𝑛𝑟 = 𝑛 ∈ 𝑅𝐼𝐷𝑋1,𝑛  (Eq 15) 

 
𝑅𝐼𝐷𝑋(𝑖)𝑛 = 𝜇𝑛𝑟,𝑓  𝑖𝑓 𝑜𝑛𝑙𝑦

⇔    𝑘 = 0 ∧  𝑛𝑟 ≠ 𝑛 ∈ 𝑅𝐼𝐷𝑋1,𝑛 (Eq 16) 

 
𝐴𝑠𝑡𝑎𝑡𝑒  is the corresponding state lower boundary, and 𝐵𝑠𝑡𝑎𝑡𝑒 the upper boundary, 𝑖 the 
time-step where 𝑅𝐼𝐷𝑋 is analyzed and 𝑖 + 𝑘 the last time-step 𝑅𝐼𝐷𝑋(𝑖,… , 𝑖 + 𝑘) has 
not yet downgrade its 𝑛 state, and 𝑖 the first time-step assessed in 𝑛. The reader should 
note whereas 𝐴𝑠𝑡𝑎𝑡𝑒  took the lower state value except in the lowest state where it took 
the average state value, 𝐵𝑠𝑡𝑎𝑡𝑒 took the upper boundary except when 𝑅𝐼𝐷𝑋𝑖=1,𝑛 (Eq 17). 

Otherwise, 𝐵𝑠𝑡𝑎𝑡𝑒 takes the upper boundary of the state 𝑛. 
 

𝐵𝑠𝑡𝑎𝑡𝑒 = 𝑅𝐼𝐷𝑋𝑖,𝑛 𝑖𝑓 𝑜𝑛𝑙𝑦
⇔    𝑖 = 1 (Eq 17) 

 

Note that 𝐵𝑠𝑡𝑎𝑡𝑒(𝑅𝐼𝐷𝑋0,𝑛)
𝑖𝑓 𝑜𝑛𝑙𝑦
⇔     𝐴𝑠𝑡𝑎𝑡𝑒 ≤ 𝑅𝐼𝐷𝑋1,𝑛 ≤ 𝐵𝑠𝑡𝑎𝑡𝑒. The main limitation 

applying this approach was found when the sudden drop led to a deterioration index 
just after flooding close to the lower state boundary. The stochastic simulations were 
not able to recognize the probability to change to the next state depends on the 
condition after the jump but it considered the probability to change based on the 
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deterioration index corresponding to the upper state boundary. To address this issue, a 
temporary modification over the transition probability matrix was performed for the 
post-drop state condition to the flooded transition probability matrix. For a generic 
transition probability matrix 𝑇𝑃𝑀 (Eq 18). 
 

𝑇𝑃𝑀 = [

𝑥1,1 ⋯ 𝑥1,𝑛𝑘
⋮ ⋱ ⋮

𝑥𝑛𝑘,1 ⋯ 𝑥𝑛𝑘,𝑛𝑘

] (Eq 18) 

 
When assessing 𝑅𝐼𝐷𝑋1,𝑛, the corresponding 𝑛 row [𝑥𝑛,1, … , 𝑥𝑛,𝑘 , 𝑥𝑛,𝑘+1, … , 𝑥𝑛,𝑛𝑘] is 
transformed to. 

[𝑥𝑛,1,… , 𝑥𝑛,𝑘 ·
𝐵𝑛(𝑅𝐼𝐷𝑋𝑡−1) − 𝐴𝑛

∆𝑛
, 𝑥𝑛,𝑘+1, 𝑥𝑛,𝑘+1 ·

𝑥𝑛,𝑘 · (1 −
𝐵𝑛(𝑅𝐼𝐷𝑋𝑡−1) − 𝐴𝑛

∆𝑛
)

∑ 𝑥𝑗
𝑛𝑘
𝑗=𝑘+1

, … , 𝑥𝑛,𝑛𝑘 + 𝑥𝑛,𝑛𝑘 ·

𝑥𝑛,𝑘 · (1 −
𝐵𝑛(𝑅𝐼𝐷𝑋𝑡−1) − 𝐴𝑛

∆𝑛
)

∑ 𝑥𝑗
𝑛𝑘
𝑗=𝑘+1

] 

 

Where ∆𝑛=
100

nk
 for 𝑛 < nk and ∆𝑛= 𝐴𝑛−1 − 𝜇𝑛,𝑓 for 𝑛 = nk where 𝜇𝑛𝑘,𝑓 is the worst 

average state value for the flooded transition probability matrix. 
 
This approach allowed to capture how far from the end of the state 𝑅𝐼𝐷𝑋1,𝑛  is located 

and reassigned the whole interval probabilities whereas the state condition remains in 
the post-flood state using a linear approach. Otherwise, inconsistencies assessing the 
yearly 𝑅𝐼𝐷𝑋 arose. Monte Carlo simulations were run beginning on 𝑅𝐼𝐷𝑋1,𝑛 and the 

different deterioration curves were obtained. The results to be analyzed are the paired 
10th-10th percentiles for the flooded and non-flooded results and the 50th-50th and 90th-
90th percentiles.  
 
This analysis allowed to compare the expected deterioration, the 50th percentiles of 
both sections, and the extreme deterioration rates, 10th and 90th percentiles, 
simultaneously. The main insights of the analysis allowed to determine, in percentage 
and absolute value, the loss of life for the fastest, slowest, and mean deterioration rates 
for both flooded and non-flooded sections. 
 

3.4.2 Deterministic approach 
 
The deterministic approach proposed was based on applying the flooded transition 
probability matrix beginning in 𝑅𝐼𝐷𝑋1 after the flood occurs. The analysis was 
performed for the 10th, 50th, and 90th percentile of the non-flooded transition probability 
matrix results and assessed in each state. The starting point for each case was also 
determined according to (Eq 13). 
 
The main limitation of applying this approach was found when the deterioration enters 
the second-to-last state. In this case, the vector form tends asymptotically to the last 
average state value and cannot perform the deterioration evolution over the second-to-
last state. 
 
This analysis allowed to determine the loss of expected life according to the flood year 
since the road was constructed without including randomness to the flooded 
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deterioration. Hence, it was possible to determine how the flooded sections assimilated 
to a given non-flooded percentile deterioration rate. 
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4 RESULTS 
 
The current section shows the case-study results from the proposed methodology. 
 

4.1 Identification of flooded and non-flooded pavements 
 
Shapefiles from the different counties containing geographical identification were 
merged and 21,381 observations were found. Once filtered by route section “ROUTE”, 
reference point “REFPT” and end reference point “ENDREFPT” according to the data 
available in the dataset containing the deterioration measurements, the number of 
observations was reduced to 17,784. The next filter applied was the removal of concrete 
and composite pavements which accounted for 2,755 observations. Road sections 
without flood hazard zone assigned were found to be 1,461. Every section contained 
precipitation data and functional class. A total of 13,568 sections remained and the total 
final miles in were reduced from 1,939 to 1,099 miles. The miles observed in each family 
“Precipitation-Flooding Risk Zone” are shown in (Table 2). 
 

 Flooding Risk Zone 

 No Risk Moderate-High 
Risk 

Very High 
Risk 

P
re
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p
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re
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ed
 

No/Few 
Precipitation 

363.22 7.49 2.61 

Moderate 
Precipitation 

437.44 10.69 3.58 

Heavy 
Precipitation 

250.94 9.13 14.44 

Table 2: Miles registered in different flood-precipitation zones regardless functional class 

 
As expected from good engineering road design practices, most sections were located 
over “1. Area of minimal flood hazard”, representing 1,051.6 miles, and only 20.6 miles 
on a “4. Floodway”. Regarding the precipitation, 373.3 miles were located within the “1. 
No/few Precipitation” category whereas 274.5 miles over the “3. Heavy Precipitation”. 
The precipitation histogram is shown in (Figure 5). 
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Figure 5: Precipitation histogram 

 
Disregarding the AADT levels the numbers a total of 63 families were found. In (Figure 
6). 
 

 
Figure 6: Miles registered in each family 
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Pavement sections in the “3. Principal Arterial - Other” functional class were selected 
for the study due to the relatively small variability in the AADT (Figure 7) and the high 
quantity of miles in the selected counties. The outliers of the dataset, computed the 
lower as 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠𝑙𝑜𝑤 = 𝑄1 − 1.5𝐼𝑄𝑅  and the upper as 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠𝑢𝑝𝑝 = 𝑄3 + 1.5𝐼𝑄𝑅, 

being 𝑄1 and 𝑄3 the 25th and 75th percentiles of the AADT distribution and 𝐼𝑄𝑅 = 𝑄3 −
𝑄1, were found to satisfy 1 · 104 < 𝐴𝐴𝐷𝑇 < 2 · 104. At the same time, the functional 
class “3. Principal Arterial - Other” had the most flooded sections (Figure 6). 
 

 
Figure 7: AADT – Functional Class boxplots 

 
An overall of 153.57 miles for the “3. Principal Arterial – Other” functional class 
contained the dataset before filtering, which could be segregated amongst 141.80 miles 
for the non-flooded sections and 11.77 miles for the flooded sections. The overall miles 
contained in each family for “3. Principal Arterial – Other” functional class is shown in 
(Table 3). 
 

 Flooding Risk Zone 

 No Risk Moderate-High 
Risk 

Very High 
Risk 

P
re

ci
p

it
a

ti
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n
 

re
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ed
 

No/Few 
Precipitation 

141.80 3.63 1.51 

Moderate 
Precipitation 

152.75 6.44 2.08 

Heavy 
Precipitation 

95.21 5.52 11.77 

Table 3: Miles registered in different flood-precipitation zones for functional class “3. Principal Arterial – Other” 
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4.2 Development and validation of pavement deterioration models for 
flooded and non-flooded models 

 
Sections not including continuous measurements from 2013 to 2018 were excluded 
from the analysis for consistency. This action reduced the maintenance dataset from 
14,117 to 12,798 data points. These data points were then analyzed to identify cases of 
registered maintenance, unregistered maintenance, and anomalies. For modeling the 
pavement performance, sections that were treated/rehabilitated and therefore its 
condition improved are no longer under consideration. Otherwise, modeling pavement 
performance using this data would provide unrealistic results. 
 
Registered maintenance: maintenance treatments recorded in the Bid Analysis and 
Management System (BAMS) dataset from CDOT was used to identify segments 
receiving treatments. Generally, there was a clear improvement in the IRI condition in 
the sections found to be rehabilitated and they are no longer considered in the analysis. 
All the rehabilitations were assessed to verify the rehabilitation had improved the IRI 
condition. Generally, there was a clear improvement in the IRI condition in the sections 
found to be rehabilitated and they are no longer considered in the analysis. All the 
rehabilitations were assessed to verify the rehabilitation had improved the IRI condition. 
Sections were reduced from 12,798 to 10,923. 
 
For the unregistered maintenance observations were reduced from 10,923 to 5,659. 
Analogously, the anomalies detected reduced the dataset from 5,659 to 4,941. That led 
to an overall 1,930 remaining sections in 2013 (9.5% reduction), 1,187 in 2014 (44.3% 
reduction), 814 in 2015 (61.8% reduction), 590 in 2016 (72.3% reduction), 247 in 2017 
(88.4% reduction) and 173 in 2018 (91.8% reduction). Most of the sections were from 
the non-flooded family, counting 1,822 in 2013, 1,126 in 2014, 766 in 2015, 558 in 2016, 
235 in 2017 and 163 in 2018. The flooded sections contained 108 sections in 2013, 61 in 
2014, 48 in 2015, 32 in 2016, 12 in 2017 and 10 in 2018. A bar graph depicts the section 
evolution in (Figure 8). 
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Figure 8: Section evolution after filtering 

 
The transition probability matrices were developed using equidistant states ranging 
from a standardized index of 0 to 100 (Figure 9). Different approaches accounting for 
assessing the IRI without any transformation (Eq 19) were found to be unable to validate 
the transition probability matrices due to extreme IRI values that led to states with few 
observations and large intervals. 
 

𝑅𝐼𝐷𝑋𝐼𝑅𝐼 = 𝐼𝑅𝐼  (Eq 19) 

To reduce problems found in the extreme values, a non-linear sigmoidal function (Eq 20) 
to predict the 𝑅𝐼𝐷𝑋 was also tested. Different slopes were tested in the sigmoidal 
function such that 𝑘 = 𝜆 · 𝑖 with 𝜆 = 0.002 and 𝑖 = 1,2,… ,50 However, most slopes 
were unable to provide statistical validation varying greatly with the random points used 
in the validation test, and the different 𝑅𝑀𝑆𝐸 were found not to be stable for small 
slope variations, hence this approximation was disregarded. These problems arose 
because the function provides a steep slope when the 𝐼𝑅𝐼 is close to 𝑥0 and a very 
smooth ∆𝑅𝐼𝐷𝑋𝑠𝑖𝑔 when the 𝐼𝑅𝐼 is far from 𝑥0, where 𝑥0 was defined as the 50th 

percentile of the IRI found in the condition dataset. 
 

𝑅𝐼𝐷𝑋𝑠𝑖𝑔 =
100

1 + 𝑒𝑘(𝐼𝑅𝐼−𝑥0)
 

 (Eq 20) 

 
The use of 6 or more states led to the impossibility to gather data in some states, hence 
they were no longer considered due to the impossibility to derive the discrete-time 
Markov chain in every state. The results here discussed are focused on developing a 5-
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state probability matrix for both flooded and non-flooded sections using (Eq 21) as a 
deterioration index.  
 

𝑅𝐼𝐷𝑋 = 100 −
𝐼𝑅𝐼 −min(𝐼𝑅𝐼)

max(𝐼𝑅𝐼) − min(𝐼𝑅𝐼)
 

 

 (Eq 21) 

Cases over the 90th percentile, which implies IRI values over 223 inch/mile were 
disregarded from the analysis. The linear standardized index (Eq 21) used to analyze the 
pavement condition takes values of 𝑅𝐼𝐷𝑋 = 100 for an 𝐼𝑅𝐼 = 26, which was the lowest 
IRI value found in the dataset. Analogously, when  𝐼𝑅𝐼 = 223 ⟶ 𝑅𝐼𝐷𝑋 = 0.  
 

 
Figure 9: Standardized RIDX 

 
The discrete-time Markov chain used a 1-year timeframe interval. Due to the anomalies 
and maintenances registered the overall data points used to develop the matrices were 
not continuous over time and only continuous data is used. 2,072 transitions are found 
for the non-flooded sections and 112 cases for the flooded sections. 
 

4.2.1 Deterioration of non-flooded pavements 
 
For the non-flooded case, the transition probability matrix took the following state 
intervals [100 − 80, 80 − 60, 60 − 40, 40 − 20, 20 − 0] with an average state, 
assessed as the 50th percentile of the IRI in each state 
[84.80, 70.11, 51.37, 31.61, 11.86]. The percentages of cases registered in each state 
were [24.11,34.32,26.13,12.53,2.90] being them all consistent, where >10% in each 
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state for a 5-state transition probability matrix, according to (Pérez-Acebo et al., 2019).  
States thresholds and extreme boundaries, corresponding to 𝑅𝐼𝐷𝑋 =

[100,80, 60, 40, 20, 0] correspond to 𝐼𝑅𝐼(
𝑖𝑛𝑐ℎ

𝑚𝑖𝑙𝑒
) = [26, 60, 105, 144,183, 223]. From a 

conceptual point of view the states corresponded to a “Very Good”, “Good”, “Fair”, 
“Poor” and “Very Poor” conditions. 
 
The transition probability matrix is represented in (Figure 10). The transition probability 
matrix described the probability of one segment to transition from a given state to a 
different state in one year. Based on the results obtained, non-flooded pavements in 
very good condition (state 5), for example, have a 0.574 probability to stay in this same 
state after one year, and a 0.360 probability to transition to a “Good” condition (state 
4). 
 

𝑇𝑃𝑀𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑𝑒𝑑 =

[
 
 
 
 
 

#5 #4 #3 #2 #1
#5 0.574 0.360 0.047 0.018 0.000
#4 0.587 0.317 0.073 0.028
#3 0.496 0.366 0.137
#2 0.588 0.412
#1 1.000]

 
 
 
 
 

 

 

 
Figure 10: Homogeneous Markov chains for non-flooded sections 

 
The filters applied restraining anomalies and maintenance have limitations and did not 
capture all the IRI improvements. 70 cases were found to improve pavement 
performance in the calibration set and 13 in the validation. These cases have been 
disregarded for consistent analyses. The suggestion of having at least 10% of the 
observations in each state for 5-state Markov chain (Pérez-Acebo et al., 2019) is fulfilled 
except in the worst condition state but it was not found not relevant for assessing the 
trend because once the lowest condition state is reached, there are no more possible 
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transitions. Hence, once the worst state is reached, the Markov chain is not able to 
provide more insights on pavement deterioration. 

 
Figure 11: Validation set for the non-flooded transition probability matrix 

 
From the validation plot (Figure 11), a 𝑅𝑀𝑆𝐸 = 0.90 is obtained, tested over 401 points 

and obtaining a Pearson’s correlation coefficient 𝜌𝑋,𝑌 =
𝐶𝑂𝑉(𝑋,𝑌)

𝜎𝑋𝜎𝑌
= 0.884, being 𝑋 the 

measured 𝑅𝐼𝐷𝑋 and 𝑌 the predicted 𝑅𝐼𝐷𝑋. The Wilcoxon Signed-Rank test failed to 
reject the null hypothesis (p-value 0.168 > 0.05). This allows us to conclude that no 
statistical difference was found between the predicted and measured 𝑅𝐼𝐷𝑋, hence the 
transition probability matrix for non-flooded pavement is validated. The Wilcoxon 
Signed-Rank test was found to be appropriate because the difference between 
predicted and actual conditions was found to be not normal. This was determined from 
a One-Sample Kolmogorov-Smirnov test (p-value 7.19 · 10−7 < 0.05). 
 

4.2.2 Deterioration of flooded pavements 
 
For the flooded case the transition probability matrix took the same state values as the 
non-flooded with an average state, assessed as the 50th percentile of each state 
[−, −, 47.83, 27.31, 12.87]. The percentages of cases registered in each state are 
[−, −, 41.86, 39.53, 11.63]. Due to the sudden decrease of pavement condition after 
the flood, state nº4 “Good” and state nº5 “Very Good” were no longer possible, hence 
the transition probability matrix only made sense for state nº1 “Very Poor”, nº2 “Poor” 
and nº3 “Fair”. For graphical purposes, the transition probability matrix states were 
flipped and the non-flooded represented (Figure 12). 
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TPM𝑓𝑙𝑜𝑜𝑑𝑒𝑑 = 

[
 
 
 
 
 

#5 #4 #3 #2 #1
#5
#4
#3 0.389 0.389 0.222
#2 0.588 0.412
#1 1.000]

 
 
 
 
 

 

 

 
Figure 12: Homogeneous Markov chains for flooded sections 

 
The suggestion of having at least 10% of the observations in each state for the 5-state 
Markov chain (Pérez-Acebo et al., 2019) was fulfilled in each valid state where the 
flooded transition probability matrix was applied. 1 case was found to improve 
pavement performance in the calibration set and 1 in the validation. These cases were 
disregarded for consistent analyses. 
 

 
Figure 13: Validation set for the flooded transition probability matrix 
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From the validation plot (Figure 13) a 𝑅𝑀𝑆𝐸 = 0.1025 is obtained, tested over 10 points 

and obtaining a Pearson’s correlation coefficient 𝜌𝑋,𝑌 =
𝐶𝑂𝑉(𝑋,𝑌)

𝜎𝑋𝜎𝑌
= 0.856, being 𝑋 the 

measured 𝑅𝐼𝐷𝑋 and 𝑌 the predicted 𝑅𝐼𝐷𝑋. The One-Sample T-Test test failed to reject 
the null hypothesis (p-value 0.964 > 0.05). This allows concluding that no statistical 
difference was found between the predicted and measured 𝑅𝐼𝐷𝑋, hence the transition 
probability matrix for flooded pavement is validated. The One-Sample T-Test was found 
to be appropriate because the difference between predicted and actual conditions was 
found to be normal. This was determined from a One-Sample Kolmogorov-Smirnov test 
(p-value 0.932 > 0.05). 
 

4.3 Quantifying the impact of flood in pavement deterioration 
 
Predicted values 𝑅𝐼𝐷𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 < 20 were removed. Once the pavement condition 

reaches a “Very Poor” condition the analysis using deterministic approaches over the 
transition probability matrices were no longer realistic and the state evolution stagnant. 
Furthermore, there is no need to evaluate pavement for “Very Poor” conditions. 
 

4.3.1 Does the flood impact pavement deterioration? 
 
The non-parametric Wilcoxon signed-ranked test failed to reject the null hypothesis (p-
value 0.01 < 0.05). This test was found appropriate after carrying out a One-Sample 
Kolmogorov-Smirnov test where predicted and actual condition was found to be no 
normal (p-value 0.03 > 0.05). Hence, the flood event impacts pavement deterioration, 
the deterioration rate was found to be different when comparing flooded and non-
flooded sections. 

 

4.3.2 How can we model the deterioration induced by flooding? 
 
The T-Test found there was statistical evidence to determine that the deterioration rates 
during the first year using the non-flooded transition probability matrix over the flooded 
sections and the measured observations on the flooded sections were different (p-value 
7.5 · 10−4 < 0.05). Hence, it was possible to model the flooded sections with a sudden 
drop measuring the pavement condition that occurs once the flood occurs. The T-Test 
was found to be suitable after performing a Kolmogorov-Smirnov (p-value 0.26 > 0.05) 
failing to reject the null hypothesis the data came from a standard normal distribution. 
 

4.3.2.1 Does the sudden drop depend on the pre-flood condition? 
 
The Kruskal-Wallis test provided a Chi-square of 12.78, the statistic 𝐻 is tested against 
𝑘 − 1 degree of freedom using the chi-square distribution, being 𝑘 = 4 the number of 
different states ranging from 2 to 5 “Poor” to “Very Good”. The Kruskal-Wallis test 
returned a p-value of 0.004 < 0.05 which rejected the null hypothesis that the sudden 
drop considering the initial state came from the same distribution. Hence, it was 
possible to statistically determine that the sudden drop value depends on the pre-flood 
state. A comprehensive boxplot is developed in (Figure 14). 
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Figure 14: Sudden drop of condition according to its pre-flood state 

 
The sudden mean drop was obtained averaging the state’s drops taking values 
∆𝑅𝐼𝐷𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  of -6.5, 0.5, 11.1, and 27.0 from states 2 to 5, respectively. The 
number of occurrences found was 3, 18, 29, and 4 and 1.7, 11.7, 14.9, and 22.2 its 
standard deviation from states 2 to 5, respectively. The results from state 2 “Poor” are 
inconsistent because an improvement was registered. The problem may arise from just 
having three observations and hence it will be considered no jump is recorded to state 
2, similar to state 3 where the jump is very small and negligible. Note that assessing the 
drop along with state “Very Poor” had no sense for a post-development using the 
transition probability matrix. A correlation was also found assessing the Pearson 

Correlation Coefficient 𝜌𝑋,𝑌 =
𝐶𝑂𝑉(𝑋,𝑌)

𝜎𝑋𝜎𝑌
= 0.477, being 𝑋 the actual measured 𝑅𝐼𝐷𝑋 in 

2013 and 𝑌 the loss of condition due to the flood impact 𝑅𝐼𝐷𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,2014 −
𝑅𝐼𝐷𝑋𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑,2014, which could be interpreted as a sudden drop, hence a sudden loss 
of pavement condition. The results are depicted in (Figure 15). 
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Figure 15: Sudden drop of condition regarding the pre-flood condition 

 

4.3.3 How is the deterioration trend after flooding? 
 
The best way to compare the deterioration trend after flooding was by comparing the 
different transition probability matrices. A slightly faster deterioration rate for state 3 
was found for the flooded sections, whereas the same deterioration rate for state 2. 
These findings suggest when the pavement reached a “Poor” condition, in this case, 
state 2, there was no difference in the deterioration rate between flooded and non-
flooded sections. The pavement had so much accumulated deterioration that the impact 
of the flood did not modify the performance, even a small sudden drop is found, taking 
∆𝑅𝐼𝐷𝑋 = 1.5 which if disregarded small differences would be noticed. 
 

TPM𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑𝑒𝑑 =

[
 
 
 
 
 

#5 #4 #3 #2 #1
#5 0.574 0.360 0.047 0.018 0.000
#4 0.587 0.317 0.073 0.028
#3 0.496 0.366 0.137
#2 0.588 0.412
#1 1.000]

 
 
 
 
 

 

 

TPM𝑓𝑙𝑜𝑜𝑑𝑒𝑑 = 

[
 
 
 
 
 

#5 #4 #3 #2 #1
#5
#4
#3 0.389 0.389 0.222
#2 0.588 0.412
#1 1.000]
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The difference amongst the transition probability matrices showed a slight increase in 
deterioration in the “Fair” state and no difference in the “Poor” state. Hence, the trend 
was only affected during the “Fair” state. 
 

TPM𝑓𝑙𝑜𝑜𝑑𝑒𝑑 − TPM𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑𝑒𝑑 =  

[
 
 
 
 
 

#5 #4 #3 #2 #1
#5
#4
#3 −0.107 0.023 0.085
#2 0.000 0.000
#1 0.000]

 
 
 
 
 

 

 
A boxplot comparing the predicted deterioration (P) using the non-flooded transition 
probability matrix over the flooded sections and comparing these predictions with the 
actual measurements (M) was developed from 2013 to 2015 (Figure 16). A clear 
difference amongst the slopes in the first year was found whereas a very similar slope 
was noticed afterward from the first to the second year as expected when assessing the 
difference amongst the transition probability matrices. From 2016 to 2018 there were 
only 20, 7, and 3 measurements remaining which created inconsistent boxplot 
evolutions and hence have not been depicted in this study. 
 

 
Figure 16: Predicted (P) and measured (M) section evolution 

 
The deterministic boxplot approach was useful to determine the sudden drop, which 
was found in the flooded sections during the first year after the flood where the 25th, 
50th and 75th percentiles of the flooded sections took significantly lower conditions, 
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which confirms the sudden loss of condition previously discussed, but it is noticeable 
when initial good IRI conditions were predominant as shown assessing the 25th, 50th and 
75th percentile in 2013, the pre-flood condition. 
 
The conceptual modeling evolution for the flooded sections becomes state-dependent 
when comparing the transition probability matrices. Due to the state-dependent 
condition, a faster deterioration is shown if the post-flood condition 𝑅𝐼𝐷𝑋1 is in state 3 
“Fair”, such that 40 < 𝑅𝐼𝐷𝑋1 < 60 and the deterioration rate becomes stationary once 
condition reaches state 2 “Poor”. With these premises a deterioration model when the 
pre-flood condition is above 𝑅𝐼𝐷𝑋0 ≥ 60“Good” (Figure 17) or, alternatively when 
𝑅𝐼𝐷𝑋0 < 60 the deterioration model is depicted in (Figure 18). 
 

 
Figure 17: Deterioration when 40 < 𝑅𝐼𝐷𝑋1 < 60 and 𝑅𝐼𝐷𝑋0 ≥ 60 
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Figure 18: Deterioration when 40 < 𝑅𝐼𝐷𝑋1 < 60 and 𝑅𝐼𝐷𝑋0 < 60 

However, the deterioration rate after flooding is not modified if the 𝑅𝐼𝐷𝑋1 condition 
reaches state 2 “Poor”, 20 < 𝑅𝐼𝐷𝑋1 < 40, which conceptually can be modeled 
according to (Figure 19) if 𝑅𝐼𝐷𝑋0 ≥ 60 or (Figure 20) if 𝑅𝐼𝐷𝑋0 < 60. 
 

 
Figure 19: Deterioration when 20 < 𝑅𝐼𝐷𝑋1 < 40 and pre-flood condition  𝑅𝐼𝐷𝑋0 > 60 
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Figure 20: Deterioration when 20 < 𝑅𝐼𝐷𝑋1 < 40 and pre-flood condition  𝑅𝐼𝐷𝑋0 < 60 

The reader should note that when a deterministic approach is applied for values above 
the average vector best state value, 𝑅𝐼𝐷𝑋 > 84.4, the non-flooded transition 
probability matrix returns always a 𝑅𝐼𝐷𝑋 = 77, hence results above this RIDX does not 
deteriorate so fast and the results may be not realistic. 
 

4.4 Risk analysis: quantifying the consequences of flooding in pavement 
condition 

 
The main aim of developing a risk-based analysis was to investigate the loss of life due 
to the flood event. The loss of life was considered when the sections reach the last state 
1, which corresponds to a “Very Poor” condition and is represented by values fulfilling 
𝑅𝐼𝐷𝑋 < 20, corresponding to 𝐼𝑅𝐼 > 183 𝑖𝑛𝑐ℎ/𝑚𝑖𝑙𝑒. Analyses starting over the best 
𝑅𝐼𝐷𝑋 possible were developed, which simulate once the road was open to traffic once 
is constructed/fully rehabilitated. 
 
Two different approaches were set. A first Monte Carlo approach allowed to compare 
the impact of the flood when comparing the same percentiles for both flooded and non-
flooded sections, this can be understood as comparing a paired relationship between 
the highest, lowest, and expected deterioration rates for both sections. Alternatively, a 
deterministic approach provided insightful results when no randomness is associated to 
the flooded sections, allowing to how the expected deterioration of the flooded sections 
assimilates to the non-flooded regarding the three percentiles considered. Even though 
the same tendencies flooding and non-flooding follow from nearly state 3 downwards, 
due to ∀𝑖 𝜇𝑖,𝑛𝑓 ≠ 𝜇𝑖,𝑓, in the different figures shown, especially when assessing 
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percentiles, the deterioration values may not coincide showing similar trends but 
shifted. 
 

4.4.1 Monte Carlo Method approach 
 
10,000 simulations for the Monte Carlo method were developed to obtain the non-
flooded 10th, 50th, and 90th percentiles. 10,000 Monte Carlo simulations were further 
developed for the flooding case for each state and the 10th, 50th, and 90th non-flooded 
percentiles. The analyses were focused on the 10% fastest and slowest deterioration 
rates corresponding to the 10th and 90th percentiles, respectively. 

 
Figure 21: Monte Carlo simulations for the 10th percentile 

The 10th percentile, showing the 10% fastest deterioration rate, shows a loss of life in 
the flooded sections compared to the non-flooded of 1.00 years, 0.00 years, and 0.00 
years, corresponding to a loss of 25%, 0.0%, and 0.0% for the state 4, state 3 and state 
2, respectively (Figure 21). Note that in this case, a pre-flood state with “Very Good” 
condition was not able to be developed because 𝑅𝐼𝐷𝑋𝑦𝑒𝑎𝑟0 = 100, 𝑅𝐼𝐷𝑋𝑦𝑒𝑎𝑟1 = 70 

and the average non-flood state condition 𝜇5,n𝑓 = 84.40 for a state 80 < 𝑅𝐼𝐷𝑋𝑠𝑡𝑎𝑡𝑒,5 <

100. 
 
The reader should note that the state 2 curve starts showing an asymptotic tendency 
around 𝑅𝐼𝐷𝑋 = 20 and the expected results should derive the same tendency the non-
flooded section follows. However, it is important to remark that 𝜇𝑛𝑘,𝑛𝑓 < 𝜇𝑛𝑘,𝑓, but it is 

considered that no loss of life is reported because 𝑅𝐼𝐷𝑋7 ≅ 20 for state 2. This 
drawback is common but the valuable data is not the tendency below 𝑅𝐼𝐷𝑋 < 20 but 
the loss of life. 
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Figure 22: Monte Carlo simulations for the 50th percentile 

 
The 50th percentile, corresponding to the expected deterioration, simulated a loss of life 
in the flooded roads contrasted to the non-flooded of 3.00 years, 1.00 years, 0.00 years, 
and 0.00 years, corresponding to a loss of 42.9%, 14.3%, 0.00%, and 0.0% for states 5 to 
2, respectively (Figure 22). State 2 shows the same problem as the 10th percentile. 
 

 
Figure 23: Monte Carlo simulations for the 90th percentile 
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The 90th percentile exhibits a loss of life in the flooded segments to the non-flooded of 
1.25 years, 0.00 years, -0.00 years, and -0.00 years, corresponding to a loss of 10.4%, 
0.0%, 0.00%, and 0.00% for states ranging from 5 to 2, respectively (Figure 23). This case 
for states 4 to 2 shows the shifting problem due to different ∀𝑖 𝜇𝑖,𝑛𝑓 ≠ 𝜇𝑖,𝑓. However, 

the results are still consistent and the small losses of life are disregarded. A summary of 
the Monte Carlo simulations is shown in (Table 4). 
 

 Percentile 

 10% 50% 90% 

St
at

e
 2 - Poor 0.0% 0.00 0.0% 0.00 0.0% 0.00 

3 - Fair 0.0% 0.00 0.0% 0.00 0.0% 0.00 
4 – Good 25.0% 1.00 14.3% 1.00 0.0% 0.00 

5 – Very Good N/A N/A 42.9% 3.00 10.4% 1.25 
Table 4: Loss of pavement life using Monte Carlo simulations (left: loss of life in %, right: loss of life in years) 

 
The stochastic approach showed a reduction of pavement life is expected for “Good” 
and “Very Good” pavement conditions, and the same deterioration for “Fair” and “Poor” 
condition, hence the flood increases the deterioration in asphalt pavements depending 
on its pre-flood condition, the better the pavement condition the higher the 
deterioration. The expected mean deterioration for both flooded and non-flooded 
sections (Figure 22), assessing in both sections the 50th percentile, provides a dramatic 
decrease of pavement condition when the pre-flood condition is “Very Good” up to 
42.9%. Even it has not been feasible to verify it for the 10th fastest percentile, the 
transition probability matrix suggests an even higher loss of condition, in percentage, 
would be expected for the 10th percentile. The results showed no flood impact when the 
pre-flood condition is either “Fair” or “Poor”, these results were expected because both 
transition probability matrices were very similar for the “Poor” condition and a 
negligible sudden drop was found for “Fair” pre-flood condition and no drop for the 
“Poor”. 
 

4.4.2 Deterministic approach 
 
The deterministic evolution was applied over the 10th, 50th, and 90th percentiles 
obtained from the non-flooded sections stochastic simulations. In order to provide the 
most accurate results, the deterministic starting point in each state was selected as the 
closest 𝑅𝐼𝐷𝑋 to the non-flooded average state value for the selected percentile. This 
approach allowed to capture the flood impact when no randomness is associated with 
the flooded sections in comparison to the 10th, 50th and 90th percentiles when 
randomness is included in the non-flooded pavements. 
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Figure 24: Deterministic flooded evolution over the 10th stochastic non-flooded percentile 

 
The deterministic approach showed the expected deterioration due to the flooding 
practically follows the same deterioration trend the 10th non-flooded percentile does. 
Comparing the results to the 10th non-flooded percentile a loss of life of -1.00 years, -
1.00 years, and 0.00 years is expected (Figure 24) for states 4 to 2, respectively. The 
state “Very Good” was not included for the same reasons exposed in the Monte Carlo 
analysis over the 90th percentile. 
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Figure 25: Deterministic flooded evolution over the 50th stochastic non-flooded percentile 

 
A loss of life of 2.00 years, 0.50 years, 0.00 years, and 0.00 years is expected when 
comparing the deterministic results over the expected non-flooded deterioration, 
corresponding to 28.6%, 7.1%, 0.0%, and 0.0% from states 5 to 2, respectively. These 
results exhibited the pre-flood condition impact over the loss of life (Figure 25). 
 

 
Figure 26: Deterministic flooded evolution over the 90th stochastic non-flooded percentile 
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Finally, a loss of 4.00 years, 2.25 years, 0.00 years, and 0.00 years, corresponding to a 
loss of life of 33.3%, 18.8%, 0.0%, and 0.0% from state 5 to 2, respectively, is expected 
when applying the transition probability matrix over the 10% slowest non-flooded 
deterioration rate. A summary of the results is exhibited in (Table 5). 
 

 Percentile 

 10% 50% 90% 

St
at

e
 2 - Poor 0.0% 0.00 0.0% 0.00 0.0% 0.00 

3 - Fair -25.0% -1.00 0.0% 0.00 0.0% 0.00 

4 – Good -25.0% -1.00 7.1% 0.50 18.8% 2.25 

5 – Very Good N/A N/A 28.6% 2.00 33.3% 4.00 
Table 5: Loss of pavement life using a deterministic approach (left: loss of life in %, right: loss of life in years) 

  
The findings of this approach show that when no randomness is involved in the flooded 
deterioration, the flooded sections deteriorate as the 50th flooded percentile for “Fair” 
condition, which means there is no flood impact. Nevertheless, the tendency shows a 
shift to the 10th percentile to “Good” and “Very Good” conditions, meaning a 
considerable flood impact. The increased deterioration due to flooding in the network 
is reported with these findings, and maintenance costs are likely to increase to recover 
the same pavement condition. The overall maintenance and administration expenditure 
are going to increase when the sections are flooded.  



   LV 

5 CONCLUSIONS, LIMITATIONS AND FUTURE RESEARCH 
 

5.1 Conclusions 
 
The purpose of this study was to determine and quantify the impact of flooding on the 
pavement condition of asphalt roads. This study analyzed the floods impacting Colorado 
in 2013 and developed deterioration models for non-flooded and flooded pavements 
using homogeneous Markov chains and Monte Carlo simulation to quantify the flood 
impact in terms of IRI. 
 
As reported by (Gaspard et al., 2019, 2007; Helali et al., 2008; Sultana et al., 2016c) the 
study revealed the flood affected negatively the pavement condition, however, it is 
possible to identify that from a “Fair” condition upwards only. 
 
The current research reveals the deterioration of flooded pavement can be modeled 
according to its pre-flood and post-flood conditions. The findings show a sudden loss of 
condition in the first year of the flood when the pre-flood condition is “Good” or “Very 
Good”. Otherwise, there is a negligible or no relevant sudden drop of condition. The 
deterioration trend is found to slightly increase for the flooded sections along with the 
“Fair” state but the same trend is found when it reaches a “Poor” state. 
 
Analyzing the stochastic Monte Carlo simulations important pavement condition losses 
arises in every single percentile analyzed. The expected deterioration, which was found 
analyzing the 50th percentile from the Monte Carlo simulations, was translated into a 
loss of the expected pavement life of 42.9% for the flooded sections when the pre-flood 
condition was “Very Good”, 14.3% for “Good” and no reduction is reported for “Fair” 
and “Poor” conditions. The deterministic approach suggests the flooded pavements, 
when no randomness is considered, deteriorates as the 50th percentile of non-flooded 
sections for “Poor” and “Fair” condition but it gradually shifts to the 10th percentile when 
the pre-flood condition is improved. Comparisons among stochastic and deterministic 
analyses are consistent and interdependent. The stochastic allows quantifying the 
deterioration rates probabilistically using the 10th, 50th, and 90th percentiles whereas the 
deterministic shows how no randomness in flooded sections tends to tilt from the 50th 
to 10th non-flooded percentile when the pre-flood condition increases. 
 
The results of this research support the ideas that the flood reduces pavement stiffness 
(Gaspard et al., 2007) and that once the water from the flood is drained, the stiffness is 
recovered (Asadi et al., 2020; Nazarian and Yuan, 2012; Yu-Shan and Shakiba, 2021). This 
research contributes to the body of knowledge by providing insights into the conceptual 
deterioration of flooded pavements and a particular application in Colorado. 
 
The results found in this case study showed that sections with a poor and below pre-
flood conditions (𝑅𝐼𝐷𝑋 < 40 and 𝐼𝑅𝐼 > 144 ) suffer no impact by the flood and when 
analyzing a fair condition (40 < 𝑅𝐼𝐷𝑋 < 60 and 144 > 𝐼𝑅𝐼 > 105) very small impact 
is reported in the transition probability matrix. However, the stochastic approach 
showed no relevant loss of life is expected for 𝑅𝐼𝐷𝑋 < 60. These results were aligned 
with the literature (Sultana et al., 2016c; Lu et al., 2018; Texas Department of 
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Transportation, 2019) during the flood and further post-flood recovery activities, highly 
loaded emergency vehicles are expected to increase these already flood-affected 
pavements. 
 
This new understanding of the impact of floods in pavement conditions will help 
transportation agencies in the design of resilience programs and post-flood strategies. 
The corresponding DOT should propose the use of roads whose 𝐼𝑅𝐼 > 144 to avoid the 
loss of deterioration due to the flood for these heavily loaded vehicles carrying mainly 
debris or 𝐼𝑅𝐼 > 105 to expect very little loss in pavement deterioration due to the flood. 
When the emergency tasks are carried out pavement saturation is very high and hence 
an important decrease of its stiffness modulus is expected for roads in good and very 
good condition, bringing a larger condition loss and translated into higher maintenance 
costs shortly. As highlighted by (Khan et al., 2017a) this research also wants to 
emphasize the importance of post-flood strategies to minimize the increased 
deterioration due to the flood. These findings suggest that in general the pavement age 
plays a key role and the oldest roads should be designated for the emergency vehicle 
routes. Infrastructure asset managers should include flood uncertainty forecasting 
higher budget expenditures according to the results obtained in the current study. 
 

5.2 Limitations and future research 
 
The major limitations of this study are the lack of pavement structure data, pavement 
age, and the lack of significant flooded observations from 2016 onwards. However, good 
engineering practices led to construct roads over non-floodway regions, and proper 
infrastructure asset management will consider rehabilitating the flooded sections that 
suffered most in a brief period of time. The latter may point to consider the flood impact 
could be even greater because the study filtered the sections to check no rehabilitation 
was carried out after the flood, which presumably were the most affected ones. In spite 
of its limitations, the study certainly adds to our understanding of pavement 
management and deterioration rates when a flood occurs. 
 
The homogeneous Markov-chains used in the study are calibrated for a given functional 
class and geographical location. Whilst this study did not confirm the transition 
probability matrices can be applied to other road types and regions, it certainly 
described a methodological process to calibrate them and consider flood modeling. 
 
A natural progression of this work is to analyze the pavement thickness influence and 
the environmental attributes. Another issue not addressed in this study was the 
pavement saturation content and its influence need of further investigation. New 
research analyzing other flood events using similar methodologies to understand the 
influence of different flood characteristics, location, and climate conditions in this 
phenomenon would be the next steps. 
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