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Abstract

In recent years the exponential growth on Deep Learning interest has had a huge impact on
improving the resolution of images. In particular, enhancing the quality of remote sensing
imagery is a field where many models have been proposed by different researchers.

One of this approaches is pan-sharpening, which takes advantage from the satellites im-
agery pairs in order to raise the resolution of multispectral or hyperspectral images.

In this project, a model from the literature will be adapted for WorldView-2 satellite
imagery and modified to improve the current stated results from the model. Experiments
results will be compared between the adapted model and the modified one so the adjust-
ments effectiveness can be proven.
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Resumen

En los últimos años el incremento exponencial del interés por el Aprendizaje Profundo
ha tenido un gran impacto en la mejora de la resolución de imágenes. En particular,
enriquecer la calidad de las imágenes captadas con teledetección es un campo donde
distintos investigadores han propuesto varios modelos.

Uno de estos enfoques es el pan-sharpening, que aprovecha los pares de imágenes de los
satélites para incrementar la resolución de imágenes multiespectrales o hiperespectrales.

En este proyecto, un modelo de la literatura se adaptará para imágenes del satélite
WorldView-2 y será modificado para mejorar los resultados establecidos en la actuali-
dad por el modelo. Los resultados de los experimentos se compararán entre el modelo
adaptado y el modelo modificado para verificar que los cambios realizados son efectivos.
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Resum

En els darrers anys l’increment exponencial de l’interés per l’Aprenentatge Profund ha
tingut un gran impacte en la millora de la resolució d’imatges. En particular, enriquir la
qualitat de les imatges captades per teledetecció és un camp diferents investigadors han
proposat diversos models.

Un d’aquests enfocaments és el pan-sharpening, que aprofita els parells d’imatges dels
satèl·lits per incrementar la resolució d’imatges multiespectrals o hiperespectrals.

En aquest projecte, un model de la literatura s’adaptarà per a imatges del satèl·lit
WorldView-2 i serà modificat per millorar els resultats establerts pel model actualment.
Els resultats dels experiments es compararan entre el model adaptat i el model modificat
per tal de verificar l’efectivitat del canvis realitzats.
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1 Introduction

Remote sensing is based on detecting physical characteristics of an area by measuring its
reflected and emitted radiation at a certain distance [3].

Spatial and spectral resolution are two concepts that define the quality of a remote sensing
image. Spatial resolution stands for “the size of the smallest feature that can be detected
by a satellite sensor”, while spectral resolution refers to the ability of a satellite sensor
to measure specific wavelengths of the electromagnetic spectrum” [4]. In our case, using
WorldView-2 (see Section 3.3) imagery entails that one of the pair of images obtained
is a multi-spectral image, with 8 bands covering a narrow range of the electromagnetic
spectrum (high spectral resolution) but with a lower spatial resolution. The other image
from the pair is called the panchromatic image, which is a high spatial resolution image
that covers a wider range of the electromagnetic spectrum (lower spectral resolution).

Nevertheless, satellites sensors do not have enough resolution to detect small-scale objects
properly. Multispectral images are able to solve this issue if having higher resolutions. In
order to improve MS image resolution, techniques like pan-sharpening are used. Pan-
sharpening is an image processing technique that makes use of the panchromatic band
spatial information to enhance the details and leverage the resolution of the multi-spectral
bands creating a multi-spectral high-resolution image. Deep Learning methods are getting
attention in the remote sensing community for the great performance in computer vision
tasks, being pan-sharpening one of the main research topics tackled.

1.1 Statement of purpose

This project is proposed by the Universitat Politècnica de Catalunya (UPC) to use Deep
Learning techniques to exploit spatial and spectral correlations of remote sensing images
to generate high resolution images from low resolution counterparts.

The project aims at reproducing some pan-sharpening techniques, where the finally pro-
posed neural network will be based on different models in literature and ultimately com-
pared with State of the Art results to validate the functionality of the proposal. In ad-
dition, this project also intends that the author familiarizes with remote sensing, Deep
Learning and pan-sharpening concepts in order to apply the knowledge acquired to the
project development tasks and in future works.

1.2 Requirements and specifications

The main objectives of this project are:

• Analyze the State of the Art in Deep Learning of pan-sharpening for super resolution
of remote sensing images.

• Get familiar with Python language and Pytorch Library for developing and imple-
mentation of the Convolutional Neural Networks.

• Propose, train and test a CNN models to tackle pan-sharpening.
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In order to accomplish these objectives, some specifications may also be defined:

• Achieve a comprehensive State of the Art knowledge about pan-sharpening in favor
of supporting the background of the project.

• Prepare and use a database of WorldView-2 images with a reasonable amount of
samples compared to the literature.

• Implement an alternative model that manages to perform pan-sharpening of input
images successfully.

• Experiments results will be compared with a model based on one of the literature
proposals so as to have quality performance reference for our own alternative model.

1.3 Methods and procedures

This project is based on a modification from [2], adapting the available code to be able
to work with our database and using its structure to build our own models. In addition,
test modifications are done to the original code to fit our needs, such as showing image
results and save metrics. Modifications applied are based on [5] input and output CNN
data treatment.

1.4 Work Plan

The project organization was done in first place taking into account the limited experience
and knowledge in Deep Learning and pan-sharpening concepts. Due to this, first weeks of
work where exclusively assigned to acquire knowledge and complete some Deep Learning
courses. Afterwards, most part of the work time was planned to be spent on some previous
models related to pan-sharpening and design of our own model to compare the results
with. Finally, once final models are prepared to be tested, some time is attributed to
obtain results and elicit comparisons and conclusions.

However, tests on previous models took more time than expected due to inexperience
in coding for Deep Learning purposes and unexpected issues while trying a few training
evaluations with different characteristics. Nevertheless, planned tasks were completed as
initially designed, even with a some changes on timings.

Figure 1 shows the final Time Plan with the tasks as they were finally executed:
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Figure 1: Updated GANTT diagram.

During the development of this project, some milestones are achieved:

• Week 6: Extensive State of the Art knowledge about project’s field of research.

• Week 8: Base model fully analyzed and working properly.

• Week 12: Functional designed model.

• Week 12: Extensive and heterogeneous database.

• Week 17: Final results and conclusions.

1.5 Deviations and incidences

A few incidences occurred during the development of the project. Most of them were
caused by coding issues that stopped some running executions and delayed results analysis.
In addition, limited resources caused to also interrupt executions because of full disk
usage or GPU memory exceeded. In order to solve this issues, more storage allocation was
requested to save the database and output results, as well as the reduction of the input
image sizes to fit the hardware requirements.

Moreover, delays on drafting the designed model caused the final tests to postpone too.
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2 State of the Art

In the recent years, pan-sharpening techniques have been evolving due to Deep Learning
methods variety growing.

Nevertheless, classical pan-sharpening methods such as component substitution [6, 7],
variational optimization [8, 9] and multi-resolution analysis [10, 11] already existed before
DL exponential increasing usage. This methods are based on MS and PAN images fusion
using data transformations, filtering and algorithms that exploit spectral and spatial res-
olution characteristics. However, Deep Learning techniques have ensured better results
over past years than classical methods.

Many architectures have been put forward by different researchers from different start-
ing points, such as converting a previously proposed CNN for super-resolution to pan-
sharpening [12], or a two branches network that extracts spectral and spatial features from
MS and PAN images respectively and subsequently fuses them [13]. Other approaches like
[5] aim to preserve spectral and spatial information by adding up-sampled MS images to
the network output and training the network parameters in the high-pass filtering domain
instead of the image domain. Furthermore, [14] uses a generative adversarial network to
deal with the pan-sharpening concern that handles a two-stream generator designed to
receive MS and PAN images simultaneously.

Despite all this improvements, pan-sharpening has always had to deal with the fact that
generated high-resolution MS images cannot be tested against ground truth images of the
same size, since in most cases they do not exist. To avoid this issue and create the pair of
LR-HR images to train the network, the MS and PAN images are downsampled to a lower
resolution so that the generated image can be compared with its original versions. Some
researchers have proposed a model such as [2] that avoids this issue by using a GAN with
an auxiliary reconstructor network that is able to generate the MS and PAN pair images
from the generator network output employing some features extracted from the satellite
characteristics.

Taking into account this last approach, we aim at improving [2] results by adapting their
model for a different satellite (WorldView-2 for our case) and develop some modifications
on the model considering other approaches.
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3 Preliminaries

For the purpose of understanding the content of this Memory, some important general
concepts and necessary information are described bellow.

3.1 Deep Learning

Deep Learning is a field of computer science that “exploits many layers of non-linear
information processing for feature extraction and transformation, and for pattern analysis
and classification” [15]. It can be supervised, where the algorithm trains using labeled
datasets; or as for our case, unlabeled, where the datasets are not classified and the
network tries to come upon hidden patterns without human intervention.

3.2 Generative Adversarial Network

Generative Adversarial Networks are composed by two neural networks that contest each
other. One of the networks is the generative network, whose function is to generate sam-
ples that are similar to the target distribution., while the other network, named the
discriminator, evaluates the samples coming from the generator and compares with the
samples from the target distribution. The generative network learns from the input data
in order to generate better results, while the discriminative network tries to distinguish
between generative network’s output data from the original data. In the training phase,
the generator is expected to produce generated samples similar to the target distribution,
while the discriminator becomes more skilled in determining which samples come from a
generated distribution and which samples come from a target distribution. Nevertheless,
they are very sensitive to variations on hyper-parameters.

3.3 WorldView2 and its characteristics

WorldView-2 is a satellite used for environmental imaging and monitoring.

Figure 2: WorldView-2. (image credit: European Space Agency)
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It provides commercially available imagery, constituted by panchromatic images of 0.46 m
resolution and eight-band multispectral images of 1.84 m resolution [16]. This resolution
corresponds to the off-nadir resolution, which is the resolution of the images taken from
the satellite aiming perpendicularly to the surface and from where it reaches a swath
width of 16km. In addition, WorldView-2 has the capacity of tilting in order to reach
other areas that are away from its nadir view, but with a counterpart that implies less
resolution for this images, as shown in Figure 3:

Figure 3: Satellite plane view from different tilted perspectives. (image credit: James Dietrich [1])

To perform remote sensing tasks, the satellite carries on-board two sensing instruments,
a multispectral sensor able to generate several spectral bands with high spatial resolution
and a panchromatic sensor that generates a very-high spatial resolution, and with a wide
spectral range that covers most of the multispectral bands. Besides the 4 most frequently
used bands on remote sensing satellites (Blue, Green, Red and NIR), WorldView2 has
a shorter wavelength blue band called Coastal, which is used for water color studies; a
Yellow band that allows more color accuracy on the visible spectrum; a Red Edge band
able to perceive a high reflectivity portion of the vegetation response; and a second NIR
band with longer wavelength that is sensitive to atmospheric water vapor. [17] Figure 4
shows the spectral response of WV2 noramalized bands response:
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Figure 4: Spectral Response of the WorldView2 panchromatic and multispectral imagery. (image
credit: DigitalGlobe)

17



4 Methodology

To set the project basis, the dataset that will be used to train and test our models has
to be defined. Then, different models should be designed and their performances must be
tested once trained.

4.1 Datasets

The dataset that has been used to train the models in our experiments is constituted by
1 pair of MS and PAN images from [18] whose MS image has a size of 4,096×4,096 per
band and a 1.3 m resolution and 4 pairs from [19] whose MS images have a size between
9,868×10,727 and 16,384×16,384 pixels per band and a 1.6 m resolution. Respective PAN
images have a size 4 times higher for each dimension in respect to MS bands images size.
The images that we use have the following specifications:

Table 1: Dataset images general information

Image Location Date Time Pixel resolution Size (MS image)

1 Teide (Spain) 13/06/2017 12 : 16 1.6m 4, 096× 4, 096

2 Dublin (Ireland) 21/04/2015 12 : 08 1.6m 11, 838× 12, 279

3 Wolverhampton rural area (UK) 18/07/2013 11 : 43 1.6m 12, 288× 10, 145

4 Wolverhampton urban area (UK) 18/07/2013 11 : 43 1.6m 12, 288× 10, 065

5 Riga (Latvia) 02/05/2012 09 : 52 1.6m 9, 868× 10, 727

Images may be viewed on Appendix A.

Some images presented black areas on contours or where divided into smaller images.
Thus, to create this database we have used software such as ENVI [20] and SNAP [21]
to blend together image fragments by making image mosaicing and cropping images to
avoid black out-of-bounds pixels and make rectangular images. The mosaicing process
also modifies the fragment images colors (homogeinizing image luminance) so that the
final result does not have sudden color changes between fragments.
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Figure 5: Blending together image fragments with ENVI

Figure 6: Cropping images with SNAP

In order to split our dataset for training, validation and test phases, we generate 10,300
patches of 128×128 pixels from MS images and 512×512 pixels from PAN images. The
number of patches extracted from each image proportionally depends on the size of that
image, so bigger images generate more patches. Afterwards, this database is divided to
8,250 patches (80%) for training and 1,250 patches (10%) for validation and the remaining
1,250 patches (10%) for test. Each patch is generated by selecting a random pixel from the
MS and the corresponding pixel from the PAN image. To ensure data variability, we apply
a data augmentation method, which consists on flipping vertically and/or horizontally
with a 50% probability for each flip and a rotation equiprobably to left or right, with a
probability of a 50% to being rotated to any side. Due to hardware restrictions (GPU
memory), patches were reduced to 64×64 pixels for MS images and 256×256 pixels for
PAN images. In this case, the indices of the pixel from where the patch is generated
are preserved inside a dictionary so the CNN output patch can be compared with the
original patch by using the same procedure and the saved indices. Finally, this patches
are independently normalized by channels using the mean and the standard deviation of
each channel, following this procedure:

XNc =
Xc −MEAN(Xc)

STD(Xc)
(1)

where Xc corresponds to a channel of the MS patch or to the PAN patch and XNc corre-
sponds to a normalized channel of the MS patch or to the PAN patch. In order to be able
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to denormalize the model output images, the mean and the standard deviation of each
channel of every patch are kept inside a dictionary too with the purpose that denormalized
images can be obtained by:

Xc = XNc · STD(Xc) +MEAN(Xc) (2)

4.2 System architecture

This system uses 3 different models. All of them are composed by networks that are build
by a concatenation of layers. We will refer to a layer or a group of layers as blocks. Before
going into the models structure, some important blocks must be commented.

4.2.1 Blocks architectures

Before setting up the global structure of our models, some basic blocks that are used may
be described.

4.2.1.1 Convolutional Block

Convolutional layers are the major building blocks used in convolutional neural networks.
Convolutional layers perform a convolutional operation between an array of input data and
the kernel, which is a bi-dimensional array of weights that the network modifies to improve
its results. This kernel affects every channel of the input data independently, using different
weights for each. For our case, we use a kernel of a size 1×1, 3×3 and 4×4 pixels depending
on the position of the block inside the network. In addition, convolution procedure is done
using zero padding when needed, which involves filling with the input data array borders
with pixels of value 0 so that the output array can be the same size as the input array.
Afterwards, the output can be normalized using batch normalization. This is used to
stabilize the learning process and reduce the amount of epochs required to train the
network. Nevertheless, some experiments like [22] conclude that batch normalization does
not help deblurring images but deteriorates the results because of features normalization.
Finally, an activation function is used in order to increase the non-linearity in the output.
For our case, the LeakyReLu Block is used when needed.

4.2.1.2 ReLu and LeakyReLu Blocks

As previously mentioned, activation functions are used to add non-linearity and therefore
allow the network to learn. In particular, a Leaky Rectified Linear Unit layer performs a
threshold operation where any input value less than zero is multiplied by a fixed scalar
(0.2 for our experiments). That also means that the block parameters/weights are fixed
through the entire training phase. The usage of LeakyReLu grants an extended output
range than using the ReLu block, in addition to hiking the flexibility of the model, since
ReLu block converts the negative values to 0. ReLu usage is reserved for upsampling
blocks.
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Figure 7: ReLu and LeakyReLu activation functions.

4.2.1.3 Upsampling Blocks

An upsampling layer is used to perform a feature map expansion from the input to the
output by increasing the size of the input array. The interpolation that we use to upsample
inside our models is the nearest neighbour, since based on [23] this approach accomplishes
better results. Moreover, a convolutional block with zero padding and a ReLu activation
function are added before the upsampling block to improve the results of the upsampling
method. This block allows the network to generate images of bigger size at the output
than the input images size. Since the latter layer is expected to have the size of the PAN
image, the height and the width of the MS image has to be increased by 4. The upsampling
block does an upsampling by 2, so a pair of block must be concatenated to accomplish
the objective.

4.2.1.4 Residual Dense Blocks

Based on [24], Residual Dense Block extracts abundant local features via dense connected
convolutional layers. The RDB block is used on our models as a basic unit block. This is
formed by the following structure:

Figure 8: Residual Dense Block architecture.

4.2.1.5 Residual in Residual Dense Blocks

Based on [25], Residual Dense Block extracts abundant local features via dense connected
convolutional layers. The RDB block is used on our models as a basic unit block. This is
formed by the following structure:
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Figure 9: Residual in Residual Dense Block architecture.

4.2.2 Networks architectures

The models that we designed for our experiments are based on the PercepPan model used
for pan-sharpening on IKONOS and QuickBird [2], satellites with less resolution than
WorldView-2 that collect PAN imagery and MS imagery of 4 bands.

4.2.2.1 PercepPan

Taking into account PercepPan model, we adapted it to our input data, maintaining the
rest of the network blocks and parameters unchanged. The PercepPan is based on a GAN
model with a generator and a discriminator as general GAN network do, as well as a
reconstructor network. The generative network is based on ESRGAN model [25] and it
is adapted for remote sensing images. This network takes the MS image as input and
extracts learning residual details, which are denoted as σx and µx. Inspired by AdaIN
[26], the MS input image is treated as the style image from where the style features σx
and µx are extracted using the ESRGAN-style generative network, and the respective
PAN image is treated as the content image. Content features σp and µp corresponding
to PAN image are not computed and are assigned as an identity matrix and as a zero
matrix respectively. Thus, the final output of the generative network is computed from
the following operation:

y = σx · p+ µx (3)

where y corresponds to the output generated high resolution MS image and p corresponds
to the original PAN image. This operation is done channel-wise, since both style features
have the dimensions of the high resolution MS image and the PAN image influence is
equally applied on each channel. The generative network has the following structure:
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Figure 10: Generator residual extraction model from PercepPan [2].

As previously mentioned, the out residuals will be used to compute the high resolution
image following the next scheme:

Figure 11: Generator HR MS image computation from PercepPan [2].

The reconstructor network from [2] is also adapted to WorldView2 imagery. This network
aims at generating a prediction of the original pair of images from the generative network
output. In order to recover the LR MS image, a combination of a blurring and downsam-
pling is applied. Blurring is done using filters with cutoff frequencies just as in [27]. For
the reconstruction of the PAN image, the method is more complex. In general, the PAN
image covers all the wavelengths of the MS image spectral bands, so the PAN image can
be approximated by a linear combination of the HR MS image bands. The weight of each
band is computed taking into account MS band distributions over the spectrum in respect
to the PAN frequencies. Therefore, Figure 4 is reproduced approximating its values since
they are not published because they are approximations too. Although seeming subopti-
mal to reproduce these approximated values, with an appropriate sampling frequency we
accomplish a good estimation.
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Figure 12: WorldView-2 band reproduction from Figure 4.

This reproduction allows us to compute intersection areas between the PAN image and the
MS image bands and hence measure the weight of each band. The measured coefficients
are shown in Table 2:

Table 2: Reconstructor network measured coeficients.

Bands Weight

Costal 0.008988

Blue 0.132015

Green 0.213481

Yellow 0.142277

Red 0.234538

Red Edge 0.160831

NIR1 0.107839

NIR2 0.000031

The linear combination applying the weights is done using a 1×1 convolutional block
without normalization neither activation function. Despite being considered a network, it
is initialized with values that will be fixed during the entire training phase. This values
are the cutoff frequencies of the filters used for blurring and the weights of every band in
respect to the PAN image. The output of the reconstructor, which are the reconstructed
images, are compared with the original images in order to compute the Pixel Loss mea-
suring the sum of the L1Loss between MS original image and the MS reconstructed image
and the L1Loss between PAN original image and the PAN reconstructed image.
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Figure 13: Reconstructor network from PercepPan [2]

The discriminative network takes the reconstructed pair of images as input and uses a
feature extractor for the MS reconstructed image and a different feature extractor for the
PAN reconstructed image. The MS image feature extractor is formed by 2 concatenated
convolutional blocks, both with LeakyReLu activation function and the last of them using
batch normalization. The PAN image feature extractor is formed by 4 concatenated con-
volutional blocks that use batch normalization and have a LeakyReLu activation function.
In addition, The PAN image is downsampled to the MS reconstructed image size so the
output of both feature extractor will have the same size. Subsequently, the output of both
extractor is concatenated and features are then compared to the features extracted when
the input of the feature extractors are the original images instead of the reconstructed
images. The L1Loss between features extracted from reconstructed images and original
images leads to the computation of the Feature Loss, that will be added to the already
measured Pixel Loss. Afterwards, a VGG-style network as in [28] receives the computed
features in order to rate the probability of the input features being from real data rather
that generated data. The output of the VGG-style network is a scalar that corresponds to
this probability. This VGG-style network is composed by a concatenation of convolutions
as shown in Figure 14:

Figure 14: VGG-style network from PercepPan [2] without the classifier.

Then this vector is introduced into the classifier of the VGG-style network, which is
the one extracting the probability value. The classifier architecture is conformed by a
Linear Block, which transforms the 8,192 size vector input into a 100 output size vector;
a LeakyReLu Block that reduces the linearity of the data; and another Linear Block that
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transform the vector into a single scalar that corresponds to the mentioned probability.
This probability is compared with the probability obtained by taking the original images
features as the VGG-style input instead of the reconstructed images features. This is used
to compute the GAN Loss.

4.2.2.2 PercepPan modification 1

In order to design a model that may increase the original PercePan model performance,
we propose a set of modification that may be done to the generative network. The recon-
structor and the discriminative network remain unchanged so they will not be mentioned
in this section, since they are already explained on Section 4.2.2.1. First of all, the residual
at the output have been modified for a generated image. This way, we avoid the PAN
multiplication by the σx residual and the ensuing sum with the µx residual. To counteract
this modification, we perform a bicubic interpolation to the MS input image so that it has
the same size as the PAN image. Then we add the PAN image to the MS image as it was
a 9th band. This allows the network to learn about the PAN influence to the MS image in-
stead of performing those stated computations. In addition, the upsampling blocks inside
the generative network are removed. That implies that the generative networks stands
with the following architecture:

Figure 15: Generator model from PercepPan modification 1.

This network does not learn to upsample the original MS image with good resolution
using the residuals but to improve the quality of an already upsampled MS image with
the help of the PAN image.

4.2.2.3 PercepPan modification 2

Despite being a little modification, we decided to implement another change to the al-
ready modified PercepPan model. This modification is based on [5] and consists in adding
the input MS image of the model explained in Section 4.2.2.2 to the output of the gener-
ative network, which is adding the 8 bands of the upsampled MS image. That allows the
network to easily preserve spectral and spatial information and avoid divergence while
training. The modifications implemented on Section 4.2.2.2 are also implemented on this
adaptation, while the reconstructor and the discriminative network remain unchanged
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too, so as on previous Section, they are the ones described in Section 4.2.2.1. Therefore,
the generative network has the following structure:

Figure 16: Generator model from PercepPan modification 2.
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5 Experiments

5.1 Initialization

In our experiments, all the models are initialized with certain parameters.

5.1.1 Generative network

The generator is initialized from a pretrained model. This model is previously trained using
the same dataset as we use for our experiments. Nevertheless, the model is only composed
by the generative network of each respective used model in Section 4.2.2. Using only
the generative networks instead of the GAN model involves same effects as mentioned in
Section 2. This means that no ground truth of the same size as the output generator images
is available. In consequence, images must be downsampled to be used as input images
and the network output must be directly compared to the original image to compute
the pixel loss. For this training, different parameters were tested, such as batch size and
downsampled input image size. In addition, just the first image of the database (Figure
24) was used to create the patches for this model since the rest of the dataset was not
available when these trainings were performed. In order to evaluate the models, some
metrics were used based on the reference model that we have implemented [2]. Given that
I corresponds to the original image and Î corresponds to the predicted image:

• PSNR, which measure the quality of the image and will be the main metric to decide
which will be the final pretained model to use in each case:

PSNR(̂I, I) = 10log10

(
MAXI

RMSE (̂I, I)

)
, (4)

where MAXI is the maximum possible pixel value of I and RMSE(̂I,I) corresponds
to the root of mean squared error between Î and I.

• SSIM, which is used for measuring quality assessment:

SSIM (̂I, I) = 1
C

∑C
c=1

1
B

∑B
i=1

(2µ(p̂c
(i))µ(pc

(i))+c1)·(2σ(p̂c(i))σ(pc(i))+c2)·(Cov(p̂c(i),pc(i))+c3)
(µ2(p̂c

(i))+µ2(pc
(i))+c1)·(σ2(p̂c

(i))+σ2(pc
(i))+c2)·(σ(p̂c(i))+σ(pc(i))+c3)

, (5)

where C is the number of channels of the MS image (c referring to the cth channel). Îc
and Ic are divided into b patches pairs (p̂c

(i), pc
(i)) up to B and c1 = (0.01MAXI)

2,
c2 = (0.03MAXI)

2, and c3 = c2/2. [2]

• SAM, which measures the spectral distortion:

SAM (̂I, I) =
1

HW

H∑
i=1

W∑
j=1

arccos
〈̂Ii,j, Ii,j〉
‖Îi,j‖‖Ii,j‖

, (6)

where H and W correspond to the image height and width respectively and 〈·, ·〉 is
the inner product operator.
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Models are pretrained for at most 100 epochs until the learning stabilizes. This stage is
reached between epoch 20 and 80, depending on the model and the parameters. Figure
17 shows an example of the metrics and loss evolution through the whole training:

Figure 17: Pretraining on model from Section 4.2.2.1 evolution.

For all the models explained in Section 4.2.2, results had a similar pattern even with
different results.

Table 3: Results of testing the generative network from model described in Section 4.2.2.1 pretrained
in function of input patches size and batch size.

Input size Batch size PSNR (∞) SSIM (1) SAM (0)

32x32 4 44.958 0.978 0.047

32x32 8 43.981 0.971 0.050

64x64 4 45.354 0.982 0.046

64x64 8 44.609 0.974 0.047

96x96 4 45.045 0.980 0.046

96x96 8 44.675 0.975 0.048

As it can be seen in Table 3, 64x64 MS downsampled input patches and a batch size of
4 obtain best performance for all 3 measures. That tendency is also observed for models
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described in Sections 4.2.2.2 and 4.2.2.3 Therefore, the 3 designed models used these
parameters for the pretraining, obtaining the following results:

Table 4: Results of testing all pretrained models at input size 64×64 and batch size 4.

Model PSNR (∞) SSIM (1) SAM (0)

PercepPan 45.354 0.982 0.046

PercepPan mod. 1 48.873 0.987 0.043

PercepPan mod. 2 50.192 0.993 0.039

This results show that the modification implemented to [2] model allow for a better
performance, at least for this pretraining. Nevertheless, it is important to mention that
”PercepPan modification 1” from Section 4.2.2.2 model diverged on early training, despite
accomplishing good performance. Although measures differ from one model to another,
visual results are similar. This pretrained models generate upsampled images with and
added blurring, which is supposed to be corrected when using the GAN models. Figure
18 shows some examples of images generated by pretrained models:

Figure 18: Pretraining of model described in Section 4.2.2.1 image results.

As it can be observed in Figure 18, downsampled images correspond to the network inputs,
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the predicted image is the output of the network and the original MS image is used as
ground truth. In these results, the presence of blurring implies the loss of details, such as
contours and tiny objects. The colors of the generated images are also paler. Training with
our mentioned full models should improve this results, correcting blurring and improving
the details.

5.1.2 Reconstructor network

As the 3 models of Section 4.2.2 use the same reconstructor network, all of them are
initialized the same way. Network parameters are obtained through the method explained
in Section 4.2.2.1 and parameter values are shown in Table 2.

5.1.3 Discriminative network

No parameters are previously computed to initialize the discriminative network. There-
fore, it is initialized using Kaiming initialization, since it shows better performance than
random initialization [29].

5.2 Training results

Each model is initialized using its respective generator model parameters mentioned in
Section 5.1.1 and with reconstructor and discriminative networks as described in Sections
5.1.2 and 5.1.3 respectively.

For all trainings, full dataset with 64x64 of size patches are used. Nonetheless, it must
be noted from Sections 4.2.2.2 and 4.2.2.3 that both models use upsampled 256×256 size
patches as input even parting from the same dataset patches.

Since predicted MS images do not have the same size as original MS images, other metrics
that allow comparing images of different size have to be used. Based on [2], these metrics
are the following:

• Dλ, a spectral distortion index:

Dλ =

 2

C(C − 1)

C∑
c=1

C∑
c′>c

|Q(Ic
HRMS, IHRMS

c′
)−Q(Ic

LRMS, ILRMS
c′

)|u
 1

u

, (7)

• Ds, a spatial distortion index:

Ds =

(
1

C

C∑
c=1

|Q(Ic
HRMS, Ic

PAN)−Q(Ic
LRMS, Ic

LRPAN)|v
) 1

v

, (8)

• QNR, a no-reference metric for image quality assessment:

QNR = (1−Dλ)
a · (1−Ds)

b, (9)
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where based on [2], we use u=v=1 and a=b=1 for our experiments in all cases. C is
the number of channels of the MS image, while Ic

LRMS corresponds to each channel of
the original MS image, Ic

HRMS corresponds to each channel of the predicted MS image,
IPAN is the original PAN image and ILRPAN is a degraded version of the original PAN
image. Q(.,.) stands for the Q-index metric, which gathers image contrast, luminance and
structure for quality assessment:

Q(̂I, I) = 1
C

∑C
c=1

1
B

∑B
i=1

(2µ(p̂c
(i))µ(pc

(i)))·(2σ(p̂c(i))σ(pc(i)))·(Cov(p̂c(i),pc(i)))
(µ2(p̂c

(i))+µ2(pc
(i)))·(σ2(p̂c

(i))+σ2(pc
(i)))·(σ(p̂c(i))+σ(pc(i)))

,, (10)

where parameters have the same meaning as for equation 6.

During the training, the models achieve similar results as well, being able to wipe out most
of the blurring that appeared on the previous pretraining phase described in Section 5.1.1.
Although, some unexpected grid artifacts appear from the beginning of the training. Most
of it disappears as the training progresses, but in image areas that contain less detailed
objects these artifacts are still present.

Figure 19: Training on model of Section 4.2.2.3 image results before divergence is reached.

Figure 19 shows this event. Since MS image has 8 bands, all of them have been showed
lumped together using groups of three (shown as RGB=(x,y,z), where x,y,z correspond
to WV2 bands, interpreting Costal band as band 0). This is a method that will be used
for the rest of Section 5. This results also show that details are improved but can be still
enhanced.

Even though, most of the trainings reach divergence before results can be acceptable
for our expectations. In most cases, this divergence is caused because pixels with higher
values (white ones) tend to grow in value on the predicted image as the training progresses.
Afterwards, the difference between these white pixels and the rest is so large that original
colors are completely lost and the image starts distortioning as the iterations advance.
Loss of color can be seen in Figure 20, where the dynamic range of the predicted image
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increases and triggers the color difference observed. The original colors cannot be recovered
by normalizing the predicted image values since histograms peaks would be displaced and
therefore we would generate lots of incorrect pixel values.

Figure 20: Image color prediction difference because of dynamic range expansion.

In order to solve this, many variations on training parameters have been tested. In first
place, MultiStepLR scheduler [30] used in [2] was substituted for CosineAnnealingLR
scheduler [31] using Tmax parameter at 1 epoch (corresponding to learning rate period)
and ReduceLROnPlateau scheduler [32] with patience parameter at 2 epochs (that cor-
responds to the amount of epochs with no improvements after which the learning rate
will be reduced). Traning without scheduler was also tested. CosineAnnealingLR sched-
uler accomplished better results because of reaching diverged slightly after the rest and
having better metrics before that happens.
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Learning rate was also reduced, but even reaching further epochs, results at that number
of epochs were the same as for the previous trainings. Batch size could not be increased
to 4 because of hardware limitations, and decreasing it to 1 did not get any good result.

As commented in Section 5.1.1, model of Section 4.2.2.2 diverged faster than the rest while
pretraining the model. When performing this experiments, this model diverged even before
eliminating blurring from pretraining and did not succeed on generating any comparable
results to the other 2 models.

Despite the unexpected results on training, test where done to compare visual results and
metrics between each model best performance.

5.3 Test results

All models have been tested, obtaining different image results and metrics. As stated in
section 5.2, every model has started to diverge rapidly while training so this test results
have been applied to the model states previous to the divergence. Some image results can
be seen in Figure 21:
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Figure 21: Examples of image results taken from Section 4.2.2.1 model test.

As it can be seen in Figure 21, first bands perceptual view is better than in last bands, this
can be due to perceptual loss only taking into account 3 channels than can be perceived
by the human eye. For our case, feature extractors work on Red, Green and Blue bands
(which for WorldView-2 correspond to bands 4, 2 and 1 respectively if we count the
Coastal band as band 0). Yellow is excluded so the chosen bands seem more likely to the
bands chosen by other researchers from the literature, since other satellites do not provide
a Yellow band.

All images contain the grid-style artifacts that appeared during the training phase. This
kind of effect are common when using GAN [33, 34]. In addition, results seems to perform
worse on bleached images or around white pixels. This are symptoms previously analyzed
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on Section 5.2, so the best training states saved for each model, despite having best results,
they have some evidences of distortion because of divergence inception.

Depending on the model, metrics obtained by these tests are the following:

Table 5: Results of testing all models at best training state accomplished.

Model Dλ (0) Ds (0) QNR (1)

PercepPan 0.101 0.122 0.791

PercepPan mod. 1 0.307 0.342 0.457

PercepPan mod. 2 0.086 0.105 0.819

As is can be seen in Table 5, models from Sections 4.2.2.1 (PercepPan) and 4.2.2.3 (Per-
cepPan mod. 2) outperform Section 4.2.2.2 (PercepPan mod. 1) model on metrics too.
Moreover, our own designed model accomplishes slightly better results than the model
adapted from [2], despite no visual difference can be perceived.

The measured metrics also support the visual results acquired from each model:
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Figure 22: Test images at true color comparison between models.

According to Figure 22, models that obtain better metrics also achieve better perceptual
results.

In addition, following [25] methodology, an equalized model has been designed as a linear
combination of each pretrained model and its respective adversarial training model. This
linear combination is not done on the image results but on the model parameters following
next equation:

Meq = MG · α +MGAN · (1− α), (11)

where Meq is the equalized model created from the linear combination of parameters from
pretrained model MG and adversarial trained model MGAN . The results are calculated
from α=0 to α=1 in steps of 0.1.

Each equalized model is also tested to compute its own metrics.
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Table 6: Results of testing all equalized models for different values of α. Best models and best results
for each metric are marked on red.

α Model Dλ (0) Ds (0) QNR (1)

0.0
PercepPan 0.101 0.122 0.791
PercepPan mod. 1 0.307 0.342 0.457
PercepPan mod. 2 0.086 0.105 0.819

0.1
PercepPan 0.098 0.122 0.793
PercepPan mod. 1 0.256 0.295 0.525
PercepPan mod. 2 0.084 0.099 0.825

0.2
PercepPan 0.095 0.121 0.797
PercepPan mod. 1 0.239 0.287 0.543
PercepPan mod. 2 0.084 0.097 0.828

0.3
PercepPan 0.0926 0.119 0.801
PercepPan mod. 1 0.205 0.216 0.623
PercepPan mod. 2 0.080 0.094 0.834

0.4
PercepPan 0.090 0.114 0.808
PercepPan mod. 1 0.186 0.194 0.657
PercepPan mod. 2 0.078 0.091 0.838

0.5
PercepPan 0.086 0.107 0.817
PercepPan mod. 1 0.164 0.172 0.692
PercepPan mod. 2 0.075 0.088 0.844

0.6
PercepPan 0.082 0.099 0.829
PercepPan mod. 1 0.142 0.166 0.716
PercepPan mod. 2 0.073 0.085 0.848

0.7
PercepPan 0.079 0.091 0.839
PercepPan mod. 1 0.120 0.153 0.745
PercepPan mod. 2 0.071 0.080 0.855

0.8
PercepPan 0.078 0.091 0.840
PercepPan mod. 1 0.118 0.149 0.751
PercepPan mod. 2 0.072 0.078 0.856

0.9
PercepPan 0.077 0.101 0.831
PercepPan mod. 1 0.113 0.149 0.755
PercepPan mod. 2 0.076 0.083 0.847

1.0
PercepPan 0.078 0.111 0.822
PercepPan mod. 1 0.111 0.143 0.762
PercepPan mod. 2 0.080 0.085 0.842

The 3 models proposed follow a similar tendency on metrics as α varies. Best results are
accomplished around α=0.8 for ”PercepPan” model and ”PercepPan modified 2” models,
while ”PercepPan modified 1” model achieves best results when only using the pretrained
model. This means that the influence of the pretrained model is higher than the adversarial
model when acquiring best metrics. Our own design model stands as the model with best
results accomplished during all the experiments that were executed during this project.

These results can also be analyzed visually using generated image by each equalized model:
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Figure 23: Test images comparison between models depending on α value.

In this case, models with best metrics do not achieve the best perceptual results. Equalized
models around α=0.4 are the ones accomplishing best visual results. Just as in [25], the
implementation of equalization on trained models was able to erase those artifacts that
were appearing while training. Since the pretrained model is a PSNR-oriented model that
is specialized on accomplishing better results on parts of the image with less contours,
and the GAN-based trained model is a perceptual-driven model specialized on performing
better on image details while worsen the rest, this results were expected to happen. This
results are not still as good as the results shown by different researchers from the literature
such as [2, 5], but the elimination of those artifacts implies that the results are much more
acceptable than the ones shown on Section 5.2.
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6 Budget

To develop this project, multiple hardware and software have been used. Despite not
being able to know the exact cost of the material and the salary of the personnel that
collaborated during the evolution of the project, an estimated cost can be measured. First
of all, in order to do some tasks locally, a personal computer has been used. Its cost has
been estimated to 12 €/month, since it has an approximate initial cost of 1000 € and
an expected life-time of 7 years. Moreover, most of the computational tasks where done
remotely. Since the cost of the server usage can’t be estimated properly, a 50 €/month
has been assigned to its maintenance. Other fungibles like electricity or Ethernet have
been given a total cost of 10 €/month. Besides that, some of the software that has been
used also have costs because of the licenses of usage. Thus, although SNAP is a free-to-use
software, ENVI has a cost of 220€ annual license fee. The dataset that has been used
also has a cost, even though we have utilized it for free since all imagery was given at
no cost. Taking into account [35], a WorldView2 pair of MS and PAN images has a price
of 24 €/km2 (30% price reduction for academic usage is not discounted). The database
contains a total amount of:

Table 7: Imagery cost computation

Image Pixel resolution Pixel area Number of pixels Image area Price

Teide 1.3m 1.69m2 16, 777, 216 28.35km2 680.40 e

Dublin 1.6m 2.56m2 129, 717, 720 332.08km2 7,969.92 e

W’ton rural 1.6m 2.56m2 145, 358, 802 372.12km2 8,930.88 e

W’ton urban 1.6m 2.56m2 124, 661, 760 319.13km2 7,659.12 e

Riga 1.6m 2.56m2 105, 854, 036 270.99km2 6,503.76 e

Total 31,744.08 e

In last place, the salary of the personnel involved in the project is estimated from the
standard salary of a junior engineer (15 €/hour), a senior engineer (20 €/hour) and a
technical advisor (30 €/hour). Since the project has a total duration of 4 months, the
budget of the project is estimated as follows:
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Table 8: Total cost computation.

Item Cost Time of usage Total cost

Personal computer 12 e/month 4 months 48.00 e

Server hardware 50 e/month 4 months 200.00 e

Fungibles 10 e/month 4 months 10.00 e

ENVI license 200 e/year 1 year 220.00 e

Database 31,744.08 e – 31,744.08 e

Junior engineer 15 e/hour 4 months (15 hours/week) 3,600.00 e

Senior engineer 20 e/hour 4 months (5 hours/week) 1,600.00 e

Technical advisor 30 e/hour 4 months (3 hours/week) 1,440.00 e

Total 38,892.08 e

As Table 8 shows, the total budget of the project is about 32,512.08 €
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7 Conclusions and future development

Final results did not accomplish our initial expectations, since the generated images by all
3 models had not enough quality compared to the results from literature. It must be said
that the pretraining phase did achieve our expectations, not only generating the expected
results according to literature but getting over the stated metrics on Section 2 by [2],
despite the differences on the imagery characteristics (8 bands instead of 4). Nevertheless,
this pretraining results did not help enough to overcome literature experiments. Equal-
ization served as a good solution to solve issues presented on the training phase though,
taking advantage of the pretraining results as well.

Hardware limitations, large training periods and lack of knowledge on the earliest phases
of the project, which delayed the rest of the tasks, did not benefit to accomplish better
results.

Despite the results, it has to be said that I, personally, did learn a lot from mistakes
taken during the project development, and will be able to avoid them in future projects.
I enjoyed the experience of working on a project of that kind, which field I was interested
on but did not have a clear idea of how working on a Deep Learning, or more precisely,
on a pan-sharpening project was.

For future development, models of Sections 4.2.2.1 and 4.2.2.3 still have the possibility
of reaching the expected results since the literature covered in Section 2 demonstrates
that our models are based on concepts that can produce good perceptual results, even
if not being able to get over the rest of results presented in the literature. To do so,
they need more time to be trained using a bigger diversity of parameters, because GANs,
as mentioned in Section 3.2, are very sensitive to that kind of changes. Therefore, tak-
ing advantage of what was tested on our experiments and applying a few more changes
or improvements, this models will accomplish their purpose for sure. To help in future
development, code used for the experiments is available at author’s Github homepage
(https://github.com/miqueljc/Pan-sharpening_experiments)
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Appendices

A Dataset Images

Image 1

Location: Teide (Spain)
Geographical central coordinates: 28°12’42.5”N 16°37’17.0”W
Date: 13thJune2017 at 12 : 16
Image resolution: 1.3 m
Image size: 4, 096× 4, 096

Figure 24: Teide (Spain) image.
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Image 2

Location: Dublin (Ireland)
Geographical central coordinates: 53°29’20.4”N 6°16’12.0”W
Date: 21thApril2015 at 12 : 08
Image resolution: 1.6 m
Image size: 11, 838× 12, 279

Figure 25: Dublin (Ireland) image.
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Image 3

Location: Wolverhampton (United Kingdom)
Geographical central coordinates: 52°37’33.6”N 2°19’19.2”W
Date: 18thJuly2013 at 11 : 43
Image resolution: 1.6 m
Image size: 12, 288× 10, 145

Figure 26: Wolverhampton (UK) first image.
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Image 4

Location: Wolverhampton (United Kingdom)
Geographical central coordinates: 52°38’13.2”N 2°05’09.6”W
Date: 18thJuly2013 at 11 : 43
Image resolution: 1.6 m
Image size: 12, 288× 10, 065

Figure 27: Wolverhampton (UK) second image.
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Image 5

Location: Riga (Latvia)
Geographical central coordinates: 56°43’30.0”N 25°09’21.6”E
Date: 2ndMay2012 at 09 : 52
Image resolution: 1.6 m
Image size: 9, 868× 10, 727

Figure 28: Riga (Latvia) image.
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