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DNN pruning reduces memory footprint and computational work of DNN-based solutions to improve perfor-
mance and energy-efficiency. An effective pruning scheme should be able to systematically remove connections
and/or neurons that are unnecessary or redundant, reducing the DNN size without any loss in accuracy. In
this paper we show that some of the most popular pruning schemes, such as the Near Zero Weights, require an
extremely time-consuming iterative process that requires retraining the DNN many times to tune the pruning
hyperparameters. Then, we propose a DNN pruning scheme based on Principal Component Analysis and
relative importance of each neuron’s connection (PCA+DIRIE) that automatically finds the optimized DNN in
one shot without requiring hand-tuning of multiple parameters. The experimental results show the effectiveness
of our method on several benchmarks. Notably, on ImageNet, PCA+DIRIE can prune up to 60% of ResNet-50

with negligible impact on accuracy.

1. Introduction

DNN pruning has attracted the attention of the research community
in recent years [1-4]. Based on the observation that DNN models tend
to be oversized and include a high degree of redundancy, pruning
aims at reducing the model size by removing unimportant connections
and/or neurons. The pruned model retains accuracy while requiring
significantly less memory storage and computations, resulting in large
performance improvements and energy savings.

Pruning requires the pruned model to be retrained; otherwise, the
effectiveness of pruning is dramatically reduced. Finding the appropri-
ate amount of pruning on each layer is a key factor that determines
the efficiency of the scheme. If the pruning is too aggressive the DNN
will not recover its accuracy after retraining, whereas if the pruning
is too conservative, an opportunity to further optimize the DNN is
lost. Most of the previously proposed DNN pruning schemes set the
amount of pruning based on an expensive design space exploration or
sensitivity analysis [1]. We argue that these approaches are impractical
for very deep neural networks, as they require retraining the DNN a
large number of times, and each one may take several hours or days
even on a high-end GPU for each retraining. To exacerbate the problem,
hyperparameters such as learning rate or weight decay have to be
manually tuned [1,3], further increasing the search space.

In this paper, we present a novel DNN pruning scheme that does
not require such an expensive search to find the percentage of pruning
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for each layer, and it does not require to tune any hyperparameter.
We refer to it as PCA plus Distribution Invariant Relative Importance
Estimation (PCA+DIRIE) pruning. Dimension reduction methods such
as PCA and SVD have recently become very popular for their effective-
ness in DNN pruning [5,6]. Our scheme first applies node (i.e. neuron)
pruning through PCA. We consider each layer as a system that produces
“information” encoded by an N-dimensional array, where N is the
number of neurons. The goal of pruning is to reduce the number of
neurons to M (M < N) without loosing “information”. The optimal
pruning should find the minimum M for each level.

Principal Component Analysis (PCA) is a well-known statistical
procedure that transforms a set of N-dimensional variables to a new
coordinate system in which all coordinates are orthogonal and ordered
from highest to lowest variance. Since variance can be considered as
a good proxy of amount of “information”, our scheme exploits PCA to
determine the amount of neurons that can be safely removed. Although
this is not the first work that proposes PCA for neuron pruning, we show
that prior schemes [7,8] are ineffective for modern DNNs in Section 2,
and propose a different mechanism to effectively apply PCA-based node
pruning in Section 4.1.

Once the percentage of pruning for a layer is set, our scheme has to
select which neurons are removed. We have evaluated prior heuristics
for node pruning [9,10] and found that, if retraining is applied, they
achieve the same results as a blind node pruning that randomly selects
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the nodes to be removed from the model. Our experimental results
show that the only relevant parameter is the amount of pruning,
i.e. percentage of nodes to be pruned, and not which specific nodes
are actually removed, since the topology of the DNN is not affected
by that decision and the retraining will adjust the weights of the non-
pruned nodes. Note that some previous works [11-13] reached similar
conclusions with a different set of applications and DNNs.

Once we determine the minimum number of neurons for each layer,
there are still further opportunities to prune at the connection level.
The first step, i.e. node pruning, results in layers that are not sparse
since full neurons with all their connections are removed or kept.
However, for a given non-pruned neuron there may be connections
that are unimportant. After the PCA-based node pruning, our scheme
estimates the relative importance of each connection with respect to the
other connections of the same neuron. Those connections with a low
importance are removed and the final network is retrained. Unlike the
node pruning step where the heuristic to select neurons is irrelevant,
our results show that the heuristic used to choose the connections to
be pruned has a non-negligible impact, achieving an additional 10%-
30% of pruning over randomly choosing the connections. The overall
scheme is non-iterative: it consists of only two steps and requires a
single retraining after each of these steps. We show that this scheme
produces results similar to or better than previously proposed iterative
approaches that require an expensive (unfeasible for large networks)
search.

To summarize, this paper focuses on DNN pruning methodologies.
We highlight the weaknesses of some popular pruning methods and
solve them by proposing a more effective and practical scheme. The
main contributions of this paper are the following:

» We analyze a selection of popular pruning methods and make two
key observations.

— First, for node pruning the heuristics used to decide what
neurons to prune are irrelevant; the only important param-
eter is how much to prune, since the retraining adjusts the
weights of the remaining neurons. On the other hand, the
heuristic used for pruning connections is relevant as it may
increase the amount of pruning by 10%-30% over a random
selection.

— Second, most of the previous popular pruning methods re-
quire an unrealistic number of parameters to be manually
configured by trial and error for each DNN to be pruned.

» We propose a novel, two-step pruning method that overcomes
the above weaknesses. First, redundant nodes are removed by
performing a PCA analysis of the outcome of each layer. Second,
remaining unimportant connections are removed by taking into
account their contribution relative to the rest of connections for a
given neuron. PCA+DIRIE provides a pruning of 65% on average
after evaluating it for multiple DNNs, and it is not iterative.

The rest of the paper is organized as follows. Section 2 reviews some
popular pruning methods. Section 3 presents an analysis of these prun-
ing methods and a discussion about their effectiveness and practicality.
Section 4 presents a new pruning method based on PCA and relative
connection’s importance. Section 5 describes the evaluation methodol-
ogy. Section 6 discusses the experimental results. Section 7 reviews the
related work. Finally, Section 8 sums up the main conclusions of this
work.

2. Main DNN pruning schemes

A variety of different DNN pruning schemes have been recently
proposed. Pruning reduces both the model size and the number of
computations with the aim of reducing energy consumption and in-
creasing performance. In general, pruning schemes require retraining of
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the pruned network to recover the original accuracy, and the resulting
model becomes sparse which may incur in some overheads depending
on the system, since working with sparse matrices/vectors is more
costly than operating on dense arrays for many current systems.
Although pruning methods have achieved tremendous success for
image classification (e.g. AlexNet [14,15]), there are very few stud-
ies about their effectiveness for other applications such as speech
recognition. More importantly, most of the schemes rely on heuristics
with multiple parameters that require manual tuning, including the
percentage of pruning for each layer. The next subsections provide
more details on some of the most recent and popular pruning methods.

2.1. Near zero weights pruning

Han et al. [1] proposed a pruning method to remove the connections
whose weight has an absolute value lower than a given threshold,
which is computed using the following equation:

T hreshold = std(W)) * qp (€8]

where std(W)) represents the standard deviation of all weights in layer
[ and the quality parameter (gp) determines the degree of pruning. The
main idea of this heuristic is to remove the weights that are closer
to zero. In the paper they report a 90% pruning for AlexNet without
accuracy loss. However, the quality parameter is different per layer
and the paper does not present any methodology to set it up other
than try and error. Note that exploring all possible combinations would
be totally unfeasible for networks with many layers since each trial
must be followed by a retraining, which is extremely expensive. Even
for AlexNet, which has only 8 layers, the exploration of the design
space is huge. For more recent DNNs such as ResNet [16], the winner
of the 2015 Imagenet Large Scale Visual Recognition Challenge [17],
DenseNet [18] or SENet [19], the winner for 2017, this would be
impractical given that they have more than 100 layers.

We implemented this method using a global quality parameter for
all the layers, to reduce the search space to just one parameter, and
the degree of pruning achieved was more moderate, around 70% in
AlexNet. Finally, note that the heuristic they used does not work well if
weights are not distributed around zero. In this case, this heuristic does
not remove any connection, but there still may be connections that are
unimportant compared to the others. For instance, if a neuron has ten
input connections, nine of them have weights with a magnitude around
100 and the remaining one has a magnitude of around 10, this latter
connection will likely be unimportant. However, this heuristic will not
remove it since its weight is much larger than zero.

2.2. Node pruning

He et al. [9] proposed multiple importance metrics to identify which
nodes i are redundant for each layer / of a DNN. After training the DNN,
a score is calculated for each node S(i, /) using one of the metrics. These
importance metrics are defined as below.

« Entropy:

Seoreli.l) dl(0) | di(0)  d(0) | al(0) y

core(i,l) = 0l * log,( 0] )+ o] # log,( 0] ) 2)
where |O] is the total number of inputs (i.e. audio frames, im-
ages...) in dataset O (e.g. the whole training dataset), and aﬁ(O)
and d[.’ (O) are the total number of inputs which activate or de-
activate node i of layer I, respectively (a/(0) + d'(0) = |0|),
after executing the DNN with the corresponding inputs. A node
is activated if the output value is greater than a threshold.
Output Weights Norm (o-norm):

NI

Score(i,) = ﬁ Z] ‘W,5+1| 3)
=

where N'*! is the number of nodes of the layer / + 1.
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+ Input Weights Norm (i-norm):

N1
Score(i,l) = ﬁ Zl ‘W]’l‘ 4)
j=

where N'~! is the number of nodes of the layer / — 1.

The first metric, called Entropy, examines the activation distribution
of each node. A node is considered activated if the output value is
greater than a threshold of 0,5. The idea of this metric is that if one
node’s outputs are almost identical on all training data, these outputs
do not generate variations to later layers and consequently they are
not useful. The second and third metrics, called i/o-norm, determines
the importance of a neuron based on the average of the weights of its
incoming or outgoing connections. Nodes are sorted by their scores and
those with lower scores are removed along all relevant incoming and
outgoing connections. The network is then retrained.

All the metrics achieve similar results, around 60% of pruning on
TIMIT, a DNN for speech recognition. Note that one still has to decide
how much to prune each layer, and they do not provide any heuristic
to determine this other than trial and error. Furthermore, we show in
Section 3 that a blind pruning that randomly selects the nodes to be
removed achieves the same results as the aforementioned heuristics.

2.3. Similarity pruning

Another way to detect redundancy, proposed by Srinivas et al. [10],
is to measure how similar the nodes are by computing the squared
difference of the weights for each pair of nodes (i, j) of layer / using
the following equation:

Saliency(i, j,1) = i(”Wik - Wf"n)z ®
k=1

The neurons with the lowest saliency are pruned. In this scheme,
retraining is not applied but they achieve a rather moderate 35% of
pruning on AlexNet, which is low compared to other methods. This
method is only applied to the fully-connected layers. In short, this
method avoids retraining but it achieves a low percentage of pruning
and requires a huge space exploration to determine the particular
threshold that should be used for each network layer.

2.4. Scalpel

Scalpel [3] is an iterative pruning method that determines which
nodes to prune during training. To this end, a mask node is added
after each original neuron to multiply its output by a parameter alpha
that can be either 1 or 0. The method is divided into two steps, in
the first step the mask layers are trained depending on a weight decay
parameter that determines how much aggressive the pruning is. Then,
the nodes for which the mask becomes zero after the training are
removed and the network is retrained without the masks layers. This
process is repeated multiple times, each time with an increased value
of the weight decay, until a loss in accuracy is observed.

For the training phase when the masks are added, Scalpel uses two
sets of variables, called alphas and betas. Alphas represent the pruning
mask that is applied to the output of the nodes y; during the forward
evaluation of the network. That is:

Y/ =a; %y (6)

where Y/ are the final outputs passed to the next layer.

Alphas cannot be learned by the conventional Backpropagation
method [20], since the cost function is not a continuous function of
alpha. To overcome this, Scalpel associates another parameter called
beta to each alpha. These betas can take any Real value and are learned
during training, as if they were the multiplicative coefficients applied
to the outputs. In each training iteration k, alphas are updated to O or
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1 depending on the betas, a threshold (7') and a epsilon offset as shown
in Eq. (7).

1 T+e<py
G ={%p-1 TSPy <T+e @)
0 P <T

Regularization is applied to the betas during training to penalize
high values by using a weight decay parameter. The weight decay
parameter also determines the amount of pruning since a high value
will increase the penalization to the betas and the backpropagation
algorithm will try to reduce them, and lower betas imply that more
alphas are zero, which results in more pruning. Finally, multiple it-
erations of the algorithm are done by increasing the weight decay
parameter on each iteration to increase the pruning, until a loss in
accuracy is observed. The weight decay and the step that is used to
increase it on each iteration have to be manually set and are different
for each DNN.

The main drawback of Scalpel is that it requires manual tuning of
multiple parameters (threshold, epsilon, learning rate, etc.) for each
particular DNN. Besides, its pruning effectiveness is not better than
using previous methods, since its main target is pruning the DNN while
avoiding sparsity. For instance, Scalpel achieves only 20% of node
pruning for AlexNet.

2.5. PCA pruning

Levin et al. [7] proposed a pruning method to remove the nodes by
using Principal Components Analysis (PCA). PCA can be used to reduce
the number of nodes by computing the correlation matrix of the nodes
activity. We can perform an eigendecomposition of the correlation
matrix of the nodes activity to obtain the eigenvectors and eigenvalues.
The eigenvalues can be used to rank the importance of a node of the
new system.

The algorithm they propose to prune is divided into multiple steps.
Starting from the first layer, the correlation matrix of the nodes ac-
tivity is computed. The nodes activity is measured from multiple in-
puts of the training set and a pretrained network. The eigenvectors
of the correlation matrix (i.e. Principal Components) are ranked by
their corresponding eigenvalue and the effect of removing each node
(i.e. eigenvector) is measured using the validation set. The nodes that
do not increase the error are chosen to be removed. The weights of the
layer are projected into the new subspace by multiplying the original
weights (W) by the significant eigenvectors (C;) as shown in Eq. (8).
The procedure continues until all the layers are pruned. Note that
this algorithm follows an iterative pruning since the validation and
projection is performed after removing each node and stops when the
accuracy of the network decreases. This method is only applied to the
fully-connected layers and does not require any additional retraining.

W=>W xC xCl ®)

Wosl->W xCxCl 1 9

Note that this scheme does not actually prune physical nodes or
connections but reduces the number of parameters and computations
depending on the amount of principal components that are removed.
However, since the inputs (I) also have to be projected using the
significant eigenvectors as shown in Eq. (9), both the non-pruned
eigenvectors and the projected weights have to be stored. Therefore, the
pruning of eigenvectors has to be highly effective in order to actually
reduce parameters and computations of the neural network.

The method was originally evaluated using an small feed-forward
network of two layers with a time series dataset. We implemented
this method for LeNet5 using the MNIST dataset and it achieved only
around 10% of pruning with negligible accuracy loss. We have also
tested this method on a modern Kaldi DNN [21] and the pruning
achieved was less than 1%. These low pruning percentages compared
to previous methods suggest that pruning effectiveness is quite limited
if the pruning method does not include retraining.
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Table 1
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DNNs employed for the pruning comparison. Kaldi [22] is an MLP for acoustic scoring trained on Librispeech [23], AlexNet [15] is a CNN for image classification
trained on ImageNet [17], and LeNet5 is a CNN for digit classification trained on MNIST [24]. The table only includes FC and CONV layers, as these layers take
up the bulk of computations in DNNs. Other layers, such as ReLU or Pooling, are not shown for the sake of simplicity.

Kaldi (18MB) AlexNet (200MB)

LeNet5

(12MB)

Accuracy: 89.51% Accuracy: 57.48%

Accuracy: 99.34%

Layer Input Dim Output Dim Layer In Dim Out Dim Kernel Layer In Dim Out Dim Kernel
FC1 360 360 CONV1 3%224%224 64*55*55 11*11 CONV1 1%28*28 32%28%28 5*5
FC2 360 2000 CONV2 64%27%27 192%27*27 5*5 CONV2 32%14*14 64*14*14 5*5
FC3 400 2000 CONV3 192¥13*13 384*13*13 3*3 FC1 7*7*64 1024 -
FC4 400 2000 CONV4 384*13*13 384*13*13 3*3 FC2 1024 10 -
FC5 400 2000 CONV5 384*13*13 256*13*13 3*3
FC6 400 3482 FC1 5*5*256 4096 -
FC2 4096 4096 -
FC3 4096 1000 -
3. Weaknesses of previous pruning schemes 20 H Near Zero Pruning M Random Pruning

In this section, we highlight the main weaknesses of popular DNN
pruning schemes. For quantitative evaluations, we use three different
DNNs, whose parameters are shown in Table 1. Kaldi is a Multi-
Level Perceptron (MLP) for acoustic scoring, a key task of a speech
recognition system. It takes as input a window of 9 frames of speech
(current frame and the four previous and four next frames), where each
frame is represented as an array of 40 features. Kaldi DNN generates
the likelihoods of the 3482 senones, where a senone represents part
of a phoneme. On the other hand, LeNet5 and AlexNet are popular
Convolutional Neural Networks (CNNs). LeNet5 is a small CNN to
classify written digits. Finally, AlexNet is a CNN for classifying color
images into 1000 possible classes that range from different animals to
various types of objects.

We first evaluate the effectiveness of the schemes previously pro-
posed to select the connections and/or nodes that are removed from the
model, and compared them with a blind pruning scheme that randomly
selects the connections/nodes. We report the accuracy loss and the
amount of pruning achieved for the networks shown in Table 1. More
specifically, we implemented the near-zero pruning (which applies to
connections), and two of the node pruning methods: the similarity
and the i-norm pruning (see Section 2). Although similarity pruning
does not use retraining, we include it in all the methods for a fair
comparison. We report results for different overall pruning percentages
starting from 10% and increasing it by steps of 10%. The parameters
of each pruning scheme are manually adjusted to attain the target per-
centage of global pruning. For instance, for near-zero pruning, we tried
different values of the quality parameter (gp) until the target percentage
of pruning was attained. Note that the percentage of pruning applied
to each individual layer is determined by the particular heuristics used
by each method and is not uniform across layers, i.e. some layers are
pruned more aggressively than others.

Fig. 1 shows the comparison between near-zero and random pruning
of connections in terms of Word Error Rate (WER is the main metric
used in speech recognition; lower is better) for Kaldi DNN. We can
observe that for 10%-20% pruning both methods achieve very simi-
lar accuracy. For 30%-80% pruning, near-zero is slightly better, and
for 90% pruning random is slightly more accurate. Random pruning
achieves up to 50% of pruning with negligible accuracy loss, whereas
near-zero pruning achieves up to 70%. Therefore, the near-zero scheme
can achieve up to 20% more pruning, but the random scheme still
performs quite well. To further reinforce this conclusion, we performed
multiple tests with the random scheme using different seeds to obtain
different pruning patterns. For all the random experiments the accuracy
obtained after retraining was almost the same, with smaller differences
of less than 0.2%.

Fig. 2 shows the comparison between the different methods to prune
nodes for the Kaldi DNN. We observe very minor differences in terms of
accuracy among all the methods, so there is no clear winner. For node
pruning, the last layer cannot be pruned since these neurons generate

WER %
=
o

w

0 II II II II II I| I| || ||
10 20 30 40 50 60 70 8 90

Global Pruning %

Fig. 1. Comparison between near-zero and random pruning of connections of Kaldi on
Librispeech for different percentages of global pruning.
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o
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Fig. 2. Comparison between i-norm, similarity and random pruning of nodes of Kaldi
on Librispeech for different percentages of global pruning.

the output values that are used by the application. For instance, in Kaldi
these are the probabilities used by the Viterbi beam search. Therefore,
the maximum degree of pruning that can be achieved is around 60%
of the nodes. We can see that the differences in WER are less than 1%
in all the cases, random being slightly better when the global pruning
is high (50% and 60%).

Results for LeNet5 are shown in Fig. 3 for link pruning and Fig. 4
for node pruning. In this case, LeNet5 has a high tolerance to errors
and the accuracy is well maintained until pruning 90% of the network
for both types of pruning. At that point, the accuracy starts to decrease,
being the random scheme slightly worse in the case of link pruning, but
only by around 1%, whereas for node pruning there are no significant
differences between random, i-norm and similarity schemes for all
percentages of pruning.

Fig. 5 shows the comparison between near-zero and random pruning
of connections in terms of Top-1 accuracy for AlexNet. We can observe
that up to 50% of pruning the accuracy is largely recovered for both
methods. Then, the random pruning starts to decrease the accuracy
while the near-zero is able to maintain it until 80%, and beyond that
point it drops significantly.
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Fig. 3. Comparison between near-zero and random pruning of connections of LeNet5
on MNIST for different percentages of global pruning.
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Fig. 4. Comparison between i-norm, similarity and random pruning of nodes of LeNet5
on MNIST for different percentages of global pruning.
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Fig. 5. Comparison between near-zero and random pruning of connections of AlexNet
on ImageNet for different percentages of global pruning.

Note that some studies in the literature report results for pruning
that require the exploration of a huge design space, which may be
impractical for some DNNs. For instance, the near-zero pruning scheme
could obtain better results by applying a different quality parameter
(gp) for each network layer, as reported in the original paper [1].
However, trying different values of gp for each layer requires to explore
an exponential number of configurations (exponential with the number
of layers). Taking into account that for each configuration a retraining
is needed, and retraining is extremely costly (can take several days
in large networks), we claim that such strategies based on exploring
an exponential number of configurations are impractical for many
contemporary DNNs, which have hundreds of layers.

In summary, we observed that in terms of accuracy the random node
pruning behaves almost equal to the rest of the methods. On the other
hand, the random pruning of connections is somewhat less effective
than the analyzed schemes. In other words, the heuristics to choose
which neurons to prune are irrelevant while the heuristics to choose
the connections may impact the final result. Previous works [11] have
done a similar analysis with a different set of applications and neural
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networks (i.e. VGG [25], ResNet [16] and DenseNet [18]) which con-
firms our observations. Besides, a main weakness of most of the popular
pruning methods is their need of tuning one or multiple parameters
through a trial and error process. This is extremely costly since each
experiment requires retraining the network, and is impractical if the
number of configurations to explore is too high (e.g. exponential with
number of network layers).

4. PCA+DIRIE pruning method

Our proposed pruning method consists of two main steps. First, it
performs a node pruning based on a PCA analysis of the data produced
by each fully-connected layer. Next, some of the remaining connections
are pruned based on their importance relative to the rest of incoming
connections of the same neuron. The proposed scheme is not iterative
and requires only two retraining operations, one after each of the
two steps. We refer to it as PCA plus Distribution Invariant Relative
Importance Estimation (PCA+DIRIE) pruning (https://github.com/upc-
arco/PCA-DIRIE-Pruning).

4.1. Node pruning through PCA

The first step of the proposed approach is to prune redundant neu-
rons in each layer through a Principal Components Analysis (PCA) [26].
PCA is a well-known statistical method to summarize data, and is
typically used to reduce the dimensionality of a dataset. PCA transforms
a set of observations from different variables with high correlation into
a set of principal components without linear correlation. Therefore, one
of its main usages is to determine redundancy.

In our context, PCA is used to reduce the number of nodes of a
layer. Each layer can be regarded as a system that for each evaluation
generates an output value represented as a n-dimensional vector, where
n is the number of neurons of this layer. PCA allows us to represent a
set of n-dimensional values in a different coordinate system, without
loosing any information, by applying a linear transformation:

New, = Old;  ay +Oldy % by + -+ Old,, % z,
New, = Old; * ay + Oldy % by + - + Old,  z,

10

New, = Old, * a, + Old, * b, + - + Old,, * z,

Besides, in the new system the components are orthogonal (i.e., they
do not contain any redundant information) and are ordered from higher
to lower variance (i.e., from more to less information). If the original
data presents high correlation among some of the n dimensions, in
the transformed coordinate system, the last components will have very
low variance. If we remove these low-variance components, we can
represent the data in a lower-dimensional system with practically no
loss of information.

In our case, we use PCA only to tell us how many neurons we need
to preserve in each layer. The retraining process applied after pruning
will adjust the weights so that the output of the pruned layer is equiva-
lent to computing the original neurons and then applying the linear
transformation dictated by the PCA. In other words, the original n-
dimensional output is not needed, and the pruned network is expected
to produce the same results as if the original n-dimensional output was
computed and the PCA transformation was applied afterwards.

The steps to apply the PCA-based pruning are as follow. First, we
generate a trace of the outputs of the nodes of each fully-connected
layer (outputs are taken after the activation function). A subset of the
training dataset can be used to generate the trace. In our experiments,
we use around 1% of the training set of each DNN to generate these
traces. Then, we apply the PCA to the trace, which gives us the variance
coefficients in the transformed coordinate system. Next, we compute
how many of the lower-variance components can be removed while
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Fig. 6. Cumulative variance of a sample layer of AlexNet, Kaldi and LeNet5.

still keeping 95% of the original variance. The number of remaining
components is the number of neurons that we keep for this layer. Which
nodes to keep and which are removed is irrelevant as demonstrated in
the previous section, so they are randomly chosen. Once we determine
the number of neurons in all layers, a single retraining of the pruned
network is performed.

PCA cannot be directly applied to convolutional layers because a full
feature map is considered as a single node which generates a volume
of data. Since removing entire feature maps also have a high impact
in accuracy we decided not to apply this step to convolutional layers.
Note that previously proposed schemes for node pruning are also very
inefficient for convolutional layers for the same reason.

Fig. 6 shows the cumulative variance of a sample fully-connected
layer of AlexNet, Kaldi and LeNet5. For the sample layer of AlexNet,
we can see that 50% of the nodes keep 95% of the original information,
so 50% can be pruned. For the sample layer of Kaldi, we can see that
60% of the nodes keep 95% of the original information, so 40% can be
pruned. Finally, for the sample layer of LeNet5, the benefits are much
higher since we can remove 70% of the nodes while still keeping 95%
of the information.

4.2. Pruning of connections through DIRIE

The second step of our method consists of pruning connections
through the Distribution Invariant Relative Importance Estimation
(DIRIE) metric after removing the redundant neurons. The rationale
behind this approach is the following. The node pruning performed in
the first step gives us a network with the minimal number of neurons in
each fully-connected layer, while keeping the original accuracy. In the
resulting topology there is no opportunity to remove further neurons;
however, some of the connections may still have minor impact and
can be removed to further reduce the size of the network. The obvious
case are connections whose weight is zero. They clearly can be ignored
without affecting the output. We could also remove all connections
whose weight is close to zero, as the near-zero pruning [1] does.
However, the importance of a connection is not necessarily related to
how close to zero its weight is. For instance, a weight of 0.1 would be
unimportant if the rest of the weights for the same neuron are in the
order of 1 or greater, but will be important if the rest of the weights
are similar or smaller. In a similar manner, a connection with a weight
very different to zero, say for instance 10, will be unimportant if the
rest of the connections of the same neuron are in the order of 100.

We propose to measure the importance of a connection as a function
of the absolute value of its weight and the average absolute value
of all the incoming weights of the same neuron. In other words, a
connection is considered unimportant if the magnitude of its weight is
small compared with the other weights of the same node. This step is
applied to all layers including convolutionals where a full feature map
is considered as a single node.

A first idea to measure the importance of a connection would be
to compute the ratio of the absolute value of its weight to the average
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Fig. 7. Example of the weights distribution translation pruning problem.

absolute value of all weights of the same neuron. This works relatively
well if the distributions of the weights are centered around zero for
all neurons. Besides, this metric is insensitive to scaling. That is, if
all weights are multiplied by a given constant, the pruning scheme
would still affect the very same weights. However, this metric is not
insensitive to displacements (translations). That is, if we have another
neuron whose weights are about the same but with an added offset
(i.e, each weight of the new neuron results from adding a constant to
a different weight of the other neuron), this metric would result in a
different pruning, in spite of the fact that the weight distribution of
the two neurons have exactly the same shape, one being displaced by
a constant with respect to the other. Fig. 7 illustrates the translation
problem with an example of two distributions of weights. Assuming a
threshold of 75% of the mean, the weights on the left side of the red line
would be pruned in each case. We can see that the number of weights
pruned for the distribution centered on three would be much higher
than for the distribution centered on ten, although the only difference
between them is a translation of seven.

We want a metric to measure the importance of a connection that is
insensitive to translation and scaling of the weights, hence, invariant to
the weights distribution. To this end, we first take the absolute value of
all weights. Then, for each neuron, we subtract the minimum absolute
value of the weights of this node to the rest of the weights of that node.
Finally, for each node we compute the mean of the resulting values and
remove the connections whose value is smaller than 75% of the mean.

An observation to make is that after applying the pruning of con-
nections the resulting network model will be sparse. Executing a sparse
model is normally less efficient than a dense model so the pruning ratios
achieved by this step must be significant to compensate for this penalty.

To summarize, the proposed scheme consists of two steps. First, we
perform a node pruning based on a PCA analysis, to keep the minimum
number of nodes that generate practically the same information as
the original ones. Then, we prune the remaining connections based
on a novel metric named DIRIE, removing those connections whose
weight has an absolute value that is small compared with the rest of
the connections of the same node. Retraining is applied only once after
each of the two steps.

5. Evaluation methodology

Our goal is to prove that our pruning scheme, PCA+DIRIE, pro-
vides pruning ratios that are similar or better than some of the most
popular schemes in spite of not being iterative, unlike most of the
previous schemes, which makes them very costly or impractical. The
schemes implemented and used for comparison are the Baseline where
no pruning is applied, the Near Zero Weights using the connection
pruning method described in Section 2.1, the Input Weights Norm
which applies the node pruning method described in Section 2.2, the
Similarity node pruning method described in Section 2.3, and the
Random Weights and Random Nodes which are simplistic methods
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that randomly chooses connections or nodes to prune given a target
percentage. We do not include results for Scalpel (Section 2.4) and
PCA Pruning (Section 2.5) since they perform worse than the above
schemes.

To evaluate the pruning ratios achieved by PCA+DIRIE we apply it
on five state-of-the-art DNNs for three different application domains:
one for acoustic scoring in speech recognition, three for image clas-
sification and one for machine translation. We use the DNNs shown
in Table 1 plus two more recent and larger DNN models that are not
shown in the table due to their complexity in terms of number of layers.
The DNN for acoustic scoring is the one included in the Kaldi [22]
toolkit, a popular framework for speech recognition. We have ported it
to Tensorflow [27] and trained it with the Librispeech [23] dataset that
contains 100 h of speech. To evaluate LeNet5, we use images of digits
from the MNIST [24] dataset. In addition, we employ AlexNet [14] in
its second version [15] trained on ImageNet [17]. Finally, we eval-
uate the ResNet-50 [16] and the Transformer [28] models from the
Tensorflow Model Garden [29] of Google, using the ImageNet dataset
for image classification and the WMT16 dataset for translating from
English to German (EN-DE), respectively. All the networks and pruned
models have been implemented in Tensorflow. For all the DNNs, we
employ the whole test or validation dataset to obtain the accuracy.

Regarding the training and retraining of the DNNS, all the baseline
DNN models have been trained from scratch using the same hyper-
parameters provided in the papers where the models were originally
presented. The retraining performed after each of the steps is conducted
as follow. After the PCA node pruning, the models are trained from
scratch using the same hyper-parameters of the baseline, but adding
static masks at the outputs of each FC layer where the pruning is
applied, which guarantees that the outputs of the pruned nodes are
always zero even during the training. Then, after the pruning with
DIRIE is applied, the DNNs are retrained starting from the previously
trained model of the PCA step and, again, the same hyper-parameters
are used, including another set of static masks that multiply the weights
to ensure that the pruned weights stay at zero during all the retraining.

6. Results

This section evaluates the proposed PCA+DIRIE pruning scheme,
described in Section 4, on different DNNs in terms of accuracy and
amount of pruning. First, we compare our method with some of the
most popular pruning strategies that have been previously proposed.
Then, we discuss the scalability of PCA+DIRIE by showing experi-
mental results on large and recent DNN models, including a brief
quantitative comparison against some of the latest pruning methods.
Finally, we present a sensitivity analysis of our scheme.

The main benefit of PCA+DIRIE is the time required to complete the
pruning. For instance, AlexNet takes around 3 days to finish a retraining
step on a GTX 1080 GPU. PCA+DIRIE requires two retraining steps so
it will take 2x the retraining time, i.e. less than a week for AlexNet.
On the other hand, for the methods that require exploring multiple
configurations per layer such as the Near-Zero pruning, finding the
appropriate pruning percentages for all layers requires n' retraining
steps, being n the number of configurations analyzed per layer and / the
number of layers. Since AlexNet has eight layers, even for a very low
value of n such as 3, the pruning process would take around 54 years in
a high-end GPU, or half a year in a farm of 100 GPUs. Considering that
current DNNs, such as Resnetl52 or Densenet201, include hundreds
of layers the applicability of previous methods may not be feasible.
Note that future pruning methods, or even some of the latest methods
proposed, may have a smaller search space and, hence, require less
training time.

Table 2 shows the pruning effectiveness for the Kaldi DNN. For each
pruning scheme we report the maximum pruning we could achieve
with negligible accuracy loss (less than 0.25% in all cases). We can
see that our method achieves the highest degree of pruning, resulting
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Table 2
Accuracy (WER) and percentage of weights and computations removed
by different pruning schemes for the Kaldi DNN on Librispeech.

Pruning method WER(%) Weights FLOPS
Pruned(%) Removed(%)

Baseline 10.04 0 0

Near Zero Weights 10.18 60 60

Random Weights 10.27 40 40

Input Weights Norm 10.24 40 40
Similarity 10.15 40 40

Random Nodes 10.15 40 40
PCA+DIRIE 10.28 70 70

Table 3
Accuracy (Top-1) and percentage of weights and computations removed
by different pruning schemes for LeNet5 on MNIST.

Pruning method Top-1(%) Weights FLOPS
Pruned(%) Removed(%)

Baseline 99.34 0 0

Near Zero Weights 99.33 80 80

Random Weights 99.31 60 60

Input Weights Norm 99.37 87 20
Similarity 99.4 87 20

Random Nodes 99.29 87 20
PCA+DIRIE 99.41 79 52

Table 4
Accuracy (Top-1) and percentage of weights and computations removed
by different pruning schemes for AlexNet on ImageNet.

Pruning method Top-1 (%) Weights FLOPS
Pruned(%) Removed(%)

Baseline 57.48 0 0

Near Zero Weights 56.55 80 87

Random Weights 56.46 50 63

PCA+DIRIE 59.7 67 51

in a 70% reduction of the weights and 70% reduction of the number
of computations. The next best scheme is the near-zero pruning, which
achieves a 60% reduction in both weights and computations. Since in
Kaldi all the layers are fully-connected, the reduction in weights and
the reduction in computations is the same. Note that our PCA+DIRIE
scheme only requires to retrain the DNN twice whereas for the other
methods we have to carry out an iterative search to find the maximum
percentage of pruning with negligible accuracy loss, and the DNN has
to be retrained for each pruning percentage.

Table 3 shows the results for the LeNet5 DNN. In this case, ac-
curacy is measured as the top-1 so higher is better. Unlike Kaldi,
in LeNet5 there are both convolutional and fully-connected layers.
Most computations come from the convolutional layers while most of
the weights are due to the fully-connected layers. Since some node
pruning methods such as the similarity pruning can only be applied to
fully-connected layers, they achieve a significant reduction in weights,
but quite moderate in computations. We can observe that PCA+DIRIE
prunes 79% of the weights and 52% of the computations, which is the
second best in terms of weight and computation reduction, only slightly
below the near-zero.

Table 4 shows the results for AlexNet. We can observe that PCA+
DIRIE prunes 67% of the weights and 51% of the computations. It does
not prune the convolutionals as much as the previous heuristics so the
reduction in computations is lower, but it achieves higher accuracy.

We have also evaluated our Distribution Invariant Relative Impor-
tance Estimation (DIRIE) connection pruning metric alone to demon-
strate that it is more effective than Near-Zero pruning. Table 5 shows
the results for 70%-90% of pruning of the Kaldi DNN. We can see that
DIRIE achieves better accuracy with the same amount of pruning and,
hence, taking into account the importance of the connections relative
to each node is more effective than just considering the magnitude of
all the weights on each layer.
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Table 5
Link Pruning Comparison for the Kaldi DNN on Librispeech. (Baseline
WER = 10.04%).

Weights Pruned (%)

Near-Zero WER (%) DIRIE WER (%)

70 10.67 10.53

80 11.39 11.10

90 14.62 13.56
Table 6

Accuracy (Top-1) and percentage of weights and computations removed by different
pruning schemes for ResNet-50 on ImageNet. M75% and M100% refer to the threshold
of the mean employed in the DIRIE step.

Pruning method Baseline  Pruned Accuracy  Weights FLOPS
Top-1(%) Top-1(%) Drop(%) Pruned(%) Removed(%)

ThiNet [30] 72.88 72.04 0.84 - 36.7
NISP [31] - - 0.89 - 44.0
CP [32] - - 1.40 - 50.0
SFP [33] 76.15 62.14 14.01 - 41.8
FPGM [34] 76.15 75.59 0.56 - 42.2
ASFP [35] 76.15 75.53 0.62 - 41.8
LW-DNA [13] 76.72 77.00 0.00 7.1 9.4
MetaPruning [36] 76.72 76.20 0.52 - 27.2
AutoSlim [37] 76.72 76.00 0.72 9.6 27.2
DIRIE (M75%) 76.80 76.80 0.00 48.0 49.0
DIRIE (M100%) 76.80 76.60 0.20 60.0 61.0

6.1. Scalability analysis

In order to prove that PCA+DIRIE can be effectively applied to any
type of DNN, and scale properly to large and recent models, in this
subsection we show the evaluation of our scheme for ResNet-50 [16]
on ImageNet and the Transformer [28] model on the WMT 2014
English-to-German translation task. Both networks are state-of-the-art
models for image classification and machine translation, respectively.
ResNet is composed of over 50 CONV layers, while the Transformer is
mainly composed of attention layers and feed-forwards which include
over 90 FC layers in total. In the case of ResNet-50, we only apply
the DIRIE step of our pruning scheme since the PCA cannot be used
for CONV layers. In addition, we compare our results against recent
works pruning ResNet-50 to show the effectiveness of our method. In
contrast to the previous section, note that we have not implemented
and evaluated these pruning methods but the results have been directly
taken from the corresponding papers for comparison purposes. On the
other hand, we apply both pruning steps in the Transformer network
to demonstrate the full applicability and scalability of our method on
one of the latest and largest DNN model architectures.

Table 6 shows the pruning effectiveness of DIRIE for the ResNet-50
model. For each pruning scheme, we report the accuracy (Top-1) of the
baseline model, the accuracy of the pruned model, the accuracy drop in
absolute terms, the percentage of weights pruned, and the percentage
of computations removed. We have performed experiments with DIRIE
corresponding to different thresholds of the mean of the weights of each
node (i.e. M75% and M100%). We can see that our method achieves the
highest degree of pruning, resulting in a 60% reduction of the weights
and 61% reduction of the number of computations with negligible
accuracy loss. The next best scheme in terms of both pruning and
accuracy drop is the FPGM pruning, which achieves a 42.2% reduction
in computations. Note that our DIRIE scheme only requires to retrain
the DNN once whereas for most of the other methods there may be
multiple retrainings.

Table 7 shows the pruning effectiveness of PCA+DIRIE for the
Transformer model. We show the results obtained for a couple of
experiments corresponding to the PCA step with a threshold of 95% for
the coefficient of variance (CV) to remove nodes, and the DIRIE step on
top of the PCA with a threshold of 75% of the mean of the weights of
each node to remove connections. For each experiment we report the
accuracy (BLEU Score Cased), the accuracy drop in absolute terms, and
the percentage of weights pruned. We can see that our method results
in a 50.8% reduction of the weights with negligible impact in accuracy.
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Table 7

Accuracy (BLEU Score Cased) and percentage of weights removed by different pruning
schemes for the Transformer model on the WMT 2014 English-to-German translation
task.

Pruning method BLEU Score Cased  Accuracy drop  Weights pruned(%)

Baseline 27.94 0.00 0.0

PCA (CV95%) 27.66 0.28 15.0

PCA+DIRIE (M75%) 27.88 0.06 50.8
Table 8

Kaldi on Librispeech results after the PCA step (first step) of the proposed
pruning scheme using different coefficients of variance. (Baseline WER

= 10.04%).

CV (%) WER (%) Weights FLOPS
Pruned(%) Removed(%)

99 10.00 15 15

95 10.24 45 45

90 10.62 64 64

6.2. Sensitivity analysis

The proposed pruning scheme uses two thresholds to control the
amount of pruning and the loss of accuracy. Our key goal is to find
values for these parameters that achieve high efficiency, i.e. large
amount of pruning with negligible accuracy loss, for a wide range
of DNNs. Therefore, the user does not have to manually tune these
thresholds for each specific DNN, as it happens with other pruning
schemes.

In our scheme, the first step (node pruning) is applied by keeping
only as many neurons as PCA components are needed to represent 95%
of the original information (coefficient of variance). In the second step,
connections are pruned based on its relative importance compared to
the other connections of the same neuron.

We performed a sensitivity analysis using the Kaldi DNN since the
accuracy of Kaldi is highly sensitive to model changes and the model
size is reasonable. The parameters obtained from this analysis are used
for all the networks, achieving the results shown in Section 6, which
confirms that these parameters work well for different networks.

Table 8 shows the results for the Kaldi DNN after applying the first
step of our pruning method using different thresholds for the coefficient
of variance (CV). The accuracy of Kaldi is measured as Word Error Rate
(WER), so lower is better. As it can be seen, with 99% of variance
we can maintain the same accuracy or even slightly better, but the
percentage of pruning is dramatically reduced to only 15%. In contrast,
if we use 90% of variance, the pruning is quite high (64%) but the
accuracy is slightly affected (0.58% loss). Finally, if we use 95% of
variance the accuracy is almost the same (only 0.2% of loss) and the
percentage of pruning is 45%. Therefore, we use 95% of coefficient of
variance as the by default value for our scheme. In case that a small
loss of accuracy could be assumed, 90% of CV could be a good choice
in order to achieve a higher degree of pruning.

Table 9 shows the results after the second step of our pruning
method using different thresholds for the percentage of the mean
(computed as described in Section 4.2), which determines when a
connection is pruned for the Kaldi DNN. We can conclude that 75%
is the most adequate threshold. A higher threshold can prune more
links but looses some accuracy, whereas a lower threshold has about
the same accuracy but is less effective at pruning.

In summary, we set the by default pruning configuration to work
with 95% for the coefficient of variance to remove nodes and 75% of
the mean of the weights of each node to remove connections. Using this
configuration PCA+DIRIE achieves pruning percentages of 70%(Kaldi),
79%(LeNet5), 67%(AlexNet), 48%(ResNet-50) and 51%(Transformer)
with negligible accuracy loss.
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Table 9

Kaldi on Librispeech results after the unimportant connections prun-
ing step (second step) of the proposed pruning scheme for different
thresholds of the mean. (Baseline WER = 10.04%).

CV(%) Mean(%) WER(%) Weights FLOPS
Pruned(%) Removed(%)

95 100 10.62 77 77

95 75 10.28 70 70

95 50 10.26 63 63

7. Related work

DNNs have become very popular in a wide range of environments
and devices, from large data centers and high performance comput-
ers [38,39] to mobile devices [40,41]. DNNs are computationally and
memory intensive, and consume a significant amount of energy. There-
fore, custom architectures with optimizations such as pruning can
provide important benefits. Some of the most popular applications of
MLPs are speech recognition and machine translation [42,43], whereas
CNNs are commonly used for image classification [44].

DNN Optimizations. Proposals for reducing the memory footprint
and/or computations of DNNs include clustering [45], linear quan-
tization [46] and pruning [47-51]. Clustering uses methods such as
K-means to reduce the number of different weights to K centroids.
Each weight is then substituted by an index that corresponds to the
closest centroid. Since the weights tend to be very similar, the number
of centroids per layer can be kept relatively low (in the order of 16-
256), which significantly reduces the storage requirements and memory
bandwidth for the weights. However, computations still have to be
performed in floating point by using the centroids and the total amount
of computations is not reduced at all. Linear quantization maps each
value, either weights or inputs, to a discrete set of values distributed
over the whole range of possible values. Values are replaced by indexes,
which identify the discrete set of values, and reduces their storage
requirements. Unlike clustering, since the quantization is linear, most
computations can be done by using directly the integer indexes rather
than the corresponding floating point values. The amount of compu-
tations is not reduced, but most computations are simpler since they
operate on integer numbers rather than floating point. Therefore, quan-
tization is particularly efficient in DNN accelerators to not only reduce
the model size but also the energy consumption of most computations.

Iterative Pruning. As described in Section 2 there is a large number
of iterative methods to prune DNNs. Some methods remove connections
depending on the weights’ values [1], others remove nodes taking into
account the weights of each node [9,10]. PCA-based methods for fast
pruning have been previously proposed [7,8,52-56]. However, they
just project the weights and inputs using the principal components
and do not apply retraining. The amount of pruning achieved with
these PCA-based methods is extremely limited for modern DNNs. Most
of these pruning methods are applied after training a baseline non-
pruned network. On the other hand, some methods perform pruning
during the training phase by learning the connections or nodes that are
redundant [3,57,58]. We show in Section 3 that most of these previous
methods are impractical due to the large number of parameters that
have to be tuned for each DNN. Our proposal is inspired in previously
proposed PCA-based techniques and weight pruning schemes and we
show that it is highly effective and, more importantly, practical for a
wide range of DNNs.

Non-Iterative Pruning. Pruning large and complex neural networks
while maintaining their performance is often desirable due to the
reduced space and time complexity. As described above, the majority
of existing methods perform pruning within an iterative optimization
procedure, using heuristically designed pruning schedules that require
additional hyperparameters and many expensive prune-retrain cycles,
undermining their utility and making them non-trivial to extend to new
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architectures and tasks. Similar to this work, in recent years there has
been some studies proposing non-iterative pruning methods to reduce
the number of training iterations to just a single experiment (i.e. one-
shot) with no additional parameters, or very few, simplifying the
pruning procedure, and increasing the versatility to apply these meth-
ods to different neural network architectures. AutoSlim [37] performs
channel pruning of CNNs in a single pass. They train a single slimmable
network to approximate the network accuracy of different channel
configurations, and greedily slim the layer with minimal accuracy
drop. OPQ [59] performs pruning and quantization at the same time
by analytically solving the compression allocation problem with pre-
trained weight parameters only. OTO [60] is a framework for training
and pruning DNNs at once. They partition the parameters of DNNs
into zero-invariant groups, and promote zero-groups by formulating
a structured-sparsity optimization problem along a new optimization
algorithm to solve it. The work in [61] proposes SNIP, a method
that prunes a given DNN once at initialization prior to training. SNIP
employs a saliency criterion based on connection sensitivity to iden-
tify important connections in a data-dependent way before training.
Specifically, SNIP measures the importance of the connections based on
their influence on the loss function at a variance scaling initialization.
Given the desired sparsity level, redundant connections are pruned
once prior to training, and then the sparse pruned network is trained in
the standard way. Compared to PCA+DIRIE, SNIP is heavily reliant on
the network initialization of the weights, as well as the batch of data
employed to measure the saliency score. Moreover, SNIP still requires
the user to manually specify the overall target pruning percentage,
which may end up requiring more than a single experiment to find a
reasonable value, and has not demonstrated its scalability on bigger
and more complex DNNs.

8. Conclusions

In this paper, we show that many of the popular DNN pruning
schemes require that multiple parameters be configured by a trial and
error process, often resulting in an exponential number of configura-
tions to be evaluated, which may be impractical since each experiment
requires a retraining of the network, which is an extremely costly
operation. We propose the PCA+DIRIE pruning scheme that overcomes
this weakness. PCA+DIRIE consists of two steps, one to remove re-
dundancy at the neuron level, and another to remove redundancy at
the connection level. The first step is based on a Principal Compo-
nent Analysis (PCA) to remove nodes while the second step removes
unimportant connections based on a novel metric that measures the
relative importance of each connection (DIRIE). The proposed scheme
requires only two retraining operations and achieves results similar or
even better than state-of-the-art iterative pruning methods.
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