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ABSTRACT For guaranteeing the strict requirements foreseen for 5G, network slicing has been proposed
as a dynamic and scalable mechanism for the allocation of customized resources to service providers. Many
solutions have been proposed in the literature for the scenario where multiple service providers share the
same pool of resources, while the exclusive allocation to different providers is still an open issue due to
the associated complexity. In this work, we define a policy-based admission mechanism for exclusive intra-
service slice allocation, at fine and adaptable timescales. In particular, we consider the case where optimal
admission strategies are pre-computed offline for network state conditions that are representative of typical
traffic loads and resource availability. This offline phase is also used to train a Machine learning algorithm; a
neural network (NN) learns the best admission policies from a more computationally expensive mechanism
in previously studied network conditions. Thus, the NN is used for providing near-optimal admission
decisions at runtime under network conditions for which no optimal policy has been computed. The potential
of the 5G marketplace in terms of revenue and quality of service is demonstrated for the particular case of
services with strict latency constraints by means of a proof of concept tested over network traces from a
real network operator. Different strategies are compared for the computation of the admission strategies and
results are provided in terms of efficiency in resource utilization, fairness to the service providers, network
owners’ revenue and complexity. This study confirms the feasibility of a policy-based approach for exclusive
intra-service resource allocation, especially if computationally-efficient mechanisms are adopted in the case
of missing information about network states.

INDEX TERMS 5G networks, mobile networks, network slicing, admission control, machine learning,
neural networks, clustering, Markov processes, pricing.

I. INTRODUCTION
After one decade since the first studies on next-generation
networks, and a few years since early regulations and
rollouts, 5G deployments are entering into a more mature
phase. Indeed, if research and standardization efforts ini-
tially focused on architectures and enabling technologies,
5G ecosystem’s drive is becoming progressively service-
oriented. On the one hand, manufacturers and network
owners are willing to fully exploit the potential of 5G’s
marketplace, on the other hand, regulation authorities and

The associate editor coordinating the review of this manuscript and

approving it for publication was Yuan Gao .

standardization bodies implement solutions for a healthy
coexistence among parties [1]–[3].

Service requirements defined for 5G are very strict:
i) sub-millisecond latencies for delay-critical services, ii) a
100-fold capacity increase to serve the needs of new
applications and network hyperdensification, and, iii) Qual-
ity of Service (QoS) and policy control for reliable
communications [1], [4]–[6]. In particular, 5G is consid-
ered as the enabling technology for three main service
types: i) Enhanced Mobile Broadband (eMBB) with high
throughput and mobility demands, ii) ultra-low latency and
high reliability (uRLLC) services setting strict require-
ments in terms of delays and reliability, and, iii) Massive
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Machine-to-Machine Communication (mMTC) requiring
low data rates for massive IoT-like deployments.

Recent research and standardization efforts confirm the
role of network slicing as a keystone for next-generation
services, enabling dynamic isolation of physical net-
work resources into QoS-tailored logical networks [7]–[9].
According to this paradigm, infrastructure providers (InPs)
lease to 5G service providers (SPs), namely the slice
tenants, portions of the network resources in a scalable and
programmable manner, in the form of customized virtual
networks, that is, the network slices. In other words, network
slices are the traded commodity within the 5G marketplace,
where InPs are responsible for continuous technology
upgrade, whereas SPs are the middlemen in charge for the
bargain over the network resources and for the provision of
the finished product to the end users. From a contractual point
of view, QoS requirements associated with a specific service
are guaranteed by a service level agreement (SLA) between
InP and SPs detailing the characteristics of the slice leased
(e.g., nominal throughput, maximum delay, resource holding
time, shared/exclusive access to slice resources, etc.) [3].

In this context, one of the greatest challenges lies in
the definition of mechanisms for the management and
orchestration of mobile network slices composed of hetero-
geneous resources from different infrastructures (e.g., access
and core network, transport network, cloud infrastructure),
while guaranteeing, among others: i) end-to-end (E2E)
QoS, ii) isolation from other tenants, iii) efficient resource
utilization, and, iv) timely adaptation to traffic fluctuations
in time and space [1], [2], [5]–[8], [10]. The scenario is
very similar to that of cloud computing where computational,
storage, and communication resources are combined in order
to abstract customized virtual machines out of the same
infrastructure. However, because of the scarcity and high
cost of access network resources, standard over-provisioning
mechanisms, typical of cloud computing, cannot be exploited
for network slice allocation [11].

Twomacro categories for slice allocation approaches exist,
based on different InPs’ business models and target services:
reservation-based and share-based, respectively [11]. The
first category foresees the reservation of exclusive and
customized resources for different network slices, thus
providing tenants with strict and stable QoS guarantees,
at the cost of higher complexity and lower efficiency.
On the other hand, in share-based allocation schemesmultiple
tenants coexist within a given slice according to prearranged
shares, thus improving efficiency and limiting complexity.
However, the sharing of slice resources harms tenants’
isolation and provides guarantees only on a statistical basis.
If fairness is naturally guaranteed in share-based approaches
by fixing prearranged shares among tenants, admission
control mechanisms are needed when adopting reservation-
based solutions, thus leading to a possible degradation in
fairness. Efficient solutions exist in the literature for share-
based slice allocation, on the other hand, the high complexity
associated with reservation-based mechanisms represents

an open issue, as it could harm timeliness, customization
and efficiency, thus preventing InPs from meeting SPs’
requirements [12].

In this article, we make an effort to demonstrate the
feasibility of a reservation-based slicing mechanism for
services characterized by strict QoS requirements (e.g.,
uRRLC), by providing a Proof of Concept (PoC) for the
periodic admission control solution presented in [3]. More
into detail, we perform intra-service slice allocation (i.e.,
slice allocation to SPs providing the same kind of service),
by enforcing a policy based on bid selection at fine and
dynamic timescales, pursuingmaximum revenues to the InPs,
while improving efficiency and guaranteeing timeliness and
fairness towards SPs. An offline implementation is followed1

and optimal admission strategies (i.e., slicing timescale
and bid admission policies) are computed according to the
following approaches: i) an exhaustive search (ES) over a
limited set of network state conditions, and, ii) by using
machine learning (ML) mechanisms for providing near-
optimal admission strategies for untested network conditions.

Performance is assessed in terms of fairness to the SPs,
resource utilization efficiency and InP’s revenue. A com-
parison is provided on network traces from a real mobile
operator with respect to reference solutions applied to urban
cells of different sizes and traffic patterns. In addition,
as centralized architectures are being standardized for 5G
networks, based on software defined networking (SDN) [7]
principles, the room for a further complexity reduction is
investigated by adopting the following procedure: i) cluster-
ing cells according to available network traces, ii) obtaining
the adaptable admission strategies only for a candidate cell
in each cluster, and, iii) comparing the gap in performance
when candidates’ admission strategies are enforced to other
cells within, or outside of, a given cluster.

In conclusion, the main contributions of this work are
a PoC on real network traces for intra-service reservation-
based slicing at timescales suitable for 5G services, and
the assessment of the performance provided by an offline
and dynamic implementation of the methodology in [3].
To the best of our knowledge, this is the first study
considering a variable timescale for improved customization
in slice provision at a reduced increase in complexity.
In particular, we compare the performance for Above
Threshold (AT), First-Come-First-Served (FCFS) and Best
Bid (BB) admission strategies. Results in terms of complexity
and performance extend the conclusions in [3] for the case
with variable timescales, confirming the AT scheme as
an intermediate solution between FCFS and BB strategies,
in terms of fairness guarantees and negotiation power to the
SPs, while providing InPs with near-optimal revenues and
reduced expenditures. Besides, the advantages in adopting
more computationally-efficient solutions are studied. On the

1Online admission control algorithms are trained at runtime, while offline
schemes require an initial training phase, whose computational burden is
typically justified by a better performance [12].
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one hand, the benefits of adopting a ML-based approach
for the computation of the admission strategies has been
demonstrated in case of low congestion levels, or, in absence
of network state statistics. Finally, clustering proved the
possibility of a complexity reduction for the admission
strategy enforcement at a network level, as well as a possible
solution, with a negligible or limited decrease in performance,
when current network state information is not available.

In the remainder of the paper, we first introduce the related
works (Section II) and the system model (Section III). Then,
we provide the system analysis by defining the performance
metrics and studying the complexity corresponding to the
different solutions considered (Section IV). Afterwards,
we define the system setup and compare the results in
terms of strategies enforced and performance provided by
exhaustive search with respect to the case of approaches
based on ML and clustering (Section V). Finally, we present
the conclusions of this work (Section VI).

II. RELATED WORK
In Section I, we introduced some of the open issues related
to 5G slice admission control mechanisms with strict QoS
guarantees, in particular, the high complexity of reservation-
based schemes, which can prevent the enforcement at fine
timescales, thus harming customization and efficiency. In this
section, we first introduce the most relevant solutions in
the literature with focus on timeliness and, afterwards,
we provide a detailed comparison with the approach in this
work.

A methodology for defining a policy-based admission
strategy is provided in [3]. A continuous-time Markov
chain (CTMC) is employed for the computation in an AT
scheme of the optimal admission criterion for slice requests,
that is, the threshold to adopt for bids associated with
incoming requests. In case of admission, bids are registered
in the SLAs as the tariff per unit of time charged by the
InP to tenants throughout their holding time. Slice admission
control is studied both at fixed timescales (i.e., periodic)
and upon each request arrival (i.e., on-demand). While on-
demand approaches allow a faster response to slice requests,
thus minimizing its contribution to delay, periodic admission
control limits technological and complexity requirements.
When sufficiently small timescales (i.e., negligible with
respect to the average service time) are adopted in a way that
it is suitable for short-lived services such as emergency or
surveillance services [5], [6], both schemes show very similar
performance; hence, our interest in the timescales used
for the admission process. Finally, both State Independent
(SI) and State Dependent (SD) policies are studied, which
foresee fixed or adaptable thresholds for different states
of the CTMC. Optimal AT admission policies for specific
congestion levels (i.e., the ratio between the arrival and
departure rates with respect to available resources) are
computed according to exhaustive search. Results show
that, when optimal admission policies are computed with
sufficient granularity in the search space (i.e., accuracy in

the discretization of the bid interval), comparable results
are provided by less complex SI solutions with respect to
more accurate SD alternatives. Besides, when compared with
reference approaches (i.e., on-demand Always Admit, and,
periodic FCFS and BB admission strategies), the AT strategy
is capable of providing near-optimal revenues to InPs,
reducing expenditures and providing a fair slice provision to
competing SPs.

An alternative approach is the one described in [12], where
an online and reduced complexity admission control policy
is derived by means of reinforcement learning, which is
capable of maximizing InP’s revenue while reducing the
penalties due to SLAs’ violation (i.e., on rejection of slice
requests) under different network conditions. One of the key
contributions of this solution is its applicability to a scenario
where slice requests are issued simultaneously over the same
infrastructure for different service types (i.e., eMBB, uRLLC,
and mMTC). Three possible algorithms are considered for
the computation of the optimal admission policies (i.e.,
Q-Learning, Deep Q-Learning, and Regret Matching), and
performance is assessed by means of computer simulation
in terms of: i) maximization of the revenue-to-penalty ratio,
and, ii) learning ability of online and offline strategies.

Most of the solutions in the literature are based on
online schemes, which are typically characterized by a lower
bound for the slice provision promptness set by: i) the time
needed by the traffic forecasting algorithm for collecting
sufficient data on the network conditions, and, ii) the
execution time of ML approaches for efficient enforcement
of the admission strategy at runtime (i.e., including the
learning phase) [11]. Besides, to the best of our knowledge,
slice allocation is typically performed at fixed timescales,
which coincide with SPs’ holding time as specified in
SLAs. This approach alone is generally associated with
low efficiency in resource utilization, mostly if coarse
timescales are used for slice provision [3], [13]. Solutions
exist for improving the efficiency of slice management
mechanisms by implementing resource reallocation within
slices [13].

From a service modeling perspective, a general charac-
terization is provided in the literature for different service
types (e.g., eMBB, mMTC and uRLLC), together with
studies on their coexistence and prioritization [12], [14],
[16], [17]. The majority of the solutions in the literature
adopt a per-SP slicing approach, foreseeing a two level
resource allocation: i) per-SP slice allocation used by each
tenant for serving multiple customers, ii) a lower level,
per-user allocation, adopting more complex mechanisms for
resource allocation within a given slice (e.g., scheduling)
or across multiple slices [11]. In addition, performance
is typically assessed over constant arrival and departure
rates [3], [11], [12], with the exception of [13]–[15], which
provide results on real network traces. Finally, performance
is usually provided by aggregating results from different cells,
which is a reasonable strategy in order to provide a network
representation. However, this approach hides the suitability
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FIGURE 1. System model for the slice admission control mechanism (a) when one InP leases resources to competing SPs [3]. Slice requests are
associated with: bids, resource requirements, and average arrival/departure rates. Colors identify requests/departures of different tenants and
resources used. Rejected requests are marked with a red cross. A possible instance of the periodic admission control policy is represented in (b)
for a single service class.

of a specific approach to cells with different features (e.g.,
coverage, pool of resources, traffic patterns and location).

In our work, we implement an offline and dynamic
implementation of a periodic slice allocation policy, which
exploits the statistical nature of the CTMC-based scheme
in [3] for pre-computing, during a one-time training phase,
the optimal admission strategies for known states of InPs’
networks (e.g., obtained from historical data). Besides,
we include the slicing timescale as one of the admission
control parameters adapted by the InP. Indeed, although
the highest performance in terms of customization and
efficiency is achieved by adopting the smallest timescales
for slicing [3], [11], we propose the adoption of slicing
mechanisms with adaptive timescale with respect to network
congestion. This novel approach enables: i) the limitation of
the overall computational requirements without experiencing
significant losses in performance, ii) congestion reduction
and customization guarantees by adapting the admission
strategy on-the-fly with respect to SPs’ traffic fluctuations
in time and space, and, iii) performance comparable to an
on-demand scheme in a cost efficient manner. This strategy,
combined with edge computing, has the potential to provide
the promptest type of slice provision to services with very
strict time constraints (e.g., uRLLC), while maintaining a
good revenue.

The number and values of network conditions considered
for the pre-computation of the admission strategies sets a
tradeoff between performance and complexity. In this regard,
a neural network is trained with optimal decisions provided
by an exhaustive search algorithm for state conditions that
are representative of the system. Therefore, an efficient
solution is provided for extending the admission strategy to
unexplored network conditions (both in time and/or space),
and customization is improved in exchange for a limited
complexity increase (i.e., the initial learning phase). Besides,
clustering-based solutions for limiting the global complexity
over the network are studied for centralized architectures.
Finally, in this work, we study performance on real network
traces from a real mobile operator, and we provide a

comparison for urban cells of different sizes and traffic
patterns.

III. SYSTEM MODEL
In this section, we present the system model considered
for performance assessment of policy-based slice admission
control mechanisms, performed on real network traces rep-
resenting Y different network nodes. In this regard, we refer
to Fig. 1a, where multiple users (UEs) subscribing services
offered by different SPs coexist within a given geographical
area. SPs issue requests for QoS-tailored network slices
(i.e., slice requests) to the InP providing coverage over the
area, submitting a bid βs for each request, while the latter
takes decisions on which requests to admit. From the InP’s
perspective, requests from different SPs for a specific service
class c are associated with: i) vector rc, specifying resource
requirements for each resource kind e, ii) average arrival
rate λc, iii) average service (or departure) rate µc, and, iv)
maximum waiting time τc accepted, from the slice request
until its provision. Every time a SP is admitted in the network,
it is regarded as a slice tenant with identifier s, with whom
the InP stipulates a SLA containing information on the slice
customization (i.e., c = {rc, λc, µc, τc}) and the agreed
tariff βs in monetary units per second (e.g., [euros/sec]).
Conversely, in case of rejection, requests are dropped, and
no mechanism is implemented for recovery in successive
allocation intervals. In Fig. 1a, different colors are used for
identifying different SPs and corresponding UEs, SLAs and
resources allocated (e.g., assigned portion of the total access
link capacity C).

The heterogeneous resource profiles of different slice
classes are mapped by the InP into a feasibility region F ,
whose contours are defined according to the resource pool
of the InP. In particular, the allocation state at the i-th
slice interval is modeled by position vector n(i) in a multi-
dimensional space, which is defined in each dimension by
the number of slices nc currently allocated to a specific slice
class c. The set of feasible allocation states is formed by the
number of slices that can be simultaneously allocated to each
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class (i.e., n(i) ∈ F ), and a resource sharing vector σ c(i) is
associated to each slice class c, where sharing factor σ ec (i)
indicates the share over total amount of resource e allocated
to c at interval i. If we consider a policy region within F
that limits the actual number of slices that can be allocated
to each class according to InP’s prioritization of different
services (similar to [16]), we can split the joint allocation
of heterogeneous slice classes into c separate allocation
problems. Therefore, the projection of the policy region over
a specific dimension provides a variable maximum number
of slices Nc that can be allocated to a given slice class c at a
given instant (i.e., nc(i+ 1) ≤ Nc(i+ 1)).
We remark that, according to the system model in [3],

the problem is modeled focusing on the aggregate resource
demand to the InP, therefore, multiple slices can correspond
to the same tenant, or even to the same UE subscribing
services from one or multiple SPs. For a given service class,
we assume that bids can vary between a minimum and
maximum tariff: βcm and βcM , respectively. Besides, as the
focus of our work is on the timeliness of the slice admission
control process rather than on strategic bidding, we model
SPs as irrational entities following a random bidding model.
We represent with Tc = 1/µc the average holding time
of slice class c, while we employ Ts for referring to the
exact time interval during which resources are exclusively
retained by a generic tenant with identifier s. In the periodic
case, we remark the difference between the holding time Ts
of a generic s-th tenant and the timescale T slicingi,c adopted
by the InP for periodic slice allocation to service class c.
In particular, Ts is the exact holding time for a generic slice
tenant s, during which the agreed tariff is applied if the SLA
is respected (i.e., the total price paid equals βsTs). On the
other hand, T slicingi,c is the length of the time interval during
which InP collects slice requests for service class c, which
will be admitted or rejected at the beginning of the following
allocation interval. We assume that T slicingmin is the minimum
timescale offered by InP to SPs in order to keep complexity
and overhead costs limited. A possible instance of the slice
allocation process is proposed in Fig. 1b for the case with a
single service class.

From the slice allocation mechanism’s perspective, time
is a discrete variable represented as a sequence of 9 slice
intervals {T slicingi,c }i=1,...,9 . In order to account for InP’s
capability to timely adapt the slicing timescale as a part of the
admission strategy, we adopt the following representation for
the initial time instant of the i-th interval of service class c:
t0i,c = t0 +

∑i
ζ=1 T

slicing
ζ−1,c , with t

0 and T slicing0,c representing,
respectively, the first time instant observed, and the first
interval for slice request collection. For a specific slice class
c, we represent the ρci slice requests received within the i-
th interval with {sci,q}q=1,...,ρci , disposed in order of arrival
according to index q. Assuming that the average arrival rate
varies in time, thus identifying periods with higher or lower
load in terms of traffic, it holds E[ρci ] = λc(i) T

slicing
i .

On the other hand, we assume that departure rates for a given
service class do not vary with time. Similar to the arrival

rate, we assume that resource requirements rc(i) can also vary
with time, thus accounting for QoS customization within a
specific service class. Therefore, every slice allocated for the
i-th interval deduces an amount rc(i) from the resource pool
until departure.

The admission policies Pc
i that InPs can enforce for a

specific service class c at the end of allocation interval i,
are defined below for the sequence {βsci,q}q=1,...,ρci of bids
received within the i-th slice interval. We represent with nac(i
+ 1) the number of slice requests admitted at the beginning of
current slice interval and we remark that policies enforced at
interval i depend on the maximum number of slices Nc(i+ 1)
that can be allocated to class c according to the policy region
defined by the InP.

1) FIRST-COME-FIRST-SERVED (FCFS) AND BEST BID (BB)
FCFS and BB represent two antithetical admission strategies
in terms of fairness towards SPs and revenue to InP because,
although they both maximize the number of admissions by
allowing resource exhaustion, the former admits requests
according to the order of arrival (i.e., independently from
the associated bids), while the latter orders requests from the
highest to the lowest bid (i.e., prioritizes SPs with highest
spending power). In other words, FCFS applies the policy
described below to incoming bids {βsci,q} for increasing values
of index q. On the other hand, BB first sorts bids values from
the greatest to the smallest according to a new listing index
q̂, then, it applies the policy described below to {βsci,q̂} for
increasing values of index q̂.

Pc
i (β

c
si,q ) =

{
Admit, if nc(i+ 1) ≤ Nc(i+ 1)
Reject, otherwise

FCFS: {sci,q}q=1,...,ρci
BB: {sci,q̂}q̂|βsci,q̂≥βsci,q̂+1

(1)

2) ABOVE THRESHOLD (AT)
AT strategy represents a tradeoff between FCFS and BB
solutions in terms of fairness and revenue to the InP. Indeed,
similarly to the FCFS approach, slice requests are admitted
in order of arrival, but only if associated bids are above a
specific threshold β̇ci , which can be set by the InP to any value
within the interval [βcm, β

c
M ] based on the congestion level of

the network. In other words, on the one hand, it enforces a
more conservative strategy in terms of resource utilization
and, on the other hand, it can pursue the maximization of
InP’s revenue by choosing a suitable admission thresholds,
or it can favour fairness by adopting thresholds closer to
β̇ci = βcm (i.e., tending to a FCFS strategy). Consequently,
AT applies to incoming bids {βsci,q} the policy described below
for increasing values of index q.

Pc
i (β

c
si,q ) =

{
Admit, if βsci,q ≥ β̇

c
i ∧ nc(i+1) ≤ Nc(i+ 1)

Reject, otherwise

{sci,q}q=1,...,ρci (2)
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TABLE 1. Table of notations.

IV. SYSTEM ANALYSIS
In this section, we first introduce the metrics used for perfor-
mance assessment, then we adapt and study the optimization
problem introduced in [3] for offline pre-computation of
optimal admission strategies. In particular, the approach
proposed in [3] has to be implemented in parallel for each
of the c service classes supported by the InP. However,
as introduced in Section II, in this context the focus is on
the timeliness of an admission control mechanism suitable
for slice classes with strict requirements in terms of latency
(e.g., short-lived uRLLC). Therefore, rather than studying the
resource allocation and slice provision to different service
classes, we study and provide performance results for the
slice provision to SPs belonging to a specific service class
(i.e., sub/superscript c is omitted in the following). Besides,
in order to achieve the promptest solution in terms of slice
provision, we adopt the periodic scheme proposed in [3]
associated with the lowest complexity (i.e., SI strategies) and
we perform offline pre-computation of the optimal admission
strategies, which are enforced with adaptable timescales
T slicingi .

With respect to the resource profile associated to this
specific service class, we study a simplifiedmodel where only
access network resources are considered for slice allocation
(i.e., channel capacity C of the access link) because, due to
their scarcity, they are the most valuable asset in the slice
marketplace (see Section I) and, therefore, they represent

the bottleneck in the E2E slice provision [3], [12]. For
this specific case, the number n(i) of slices in the system
at i-th instant can take values between zero and N (i) =
bσ (i) C/r(i)c (sub/superscript e is omitted as only one
resource kind is considered).2

We consider the highest levels of customization and
isolation, that is, per-user slice allocation. This choice is due
to two main reasons: i) we consider only access network
resources, therefore, it is possible to enforce slice allocations
by means of scheduling algorithms, thus removing the
complexity deriving from a two-level resource allocation,
and, ii) we want to provide a PoC for short-lived uRLLC
services expecting timely slice allocations, avoiding the
delays related to the aggregation of slice requests coming
from multiple users.

Finally, we assume that slice requests arrivals can be
modeled as a Poisson stochastic process with average rate
λ(i), and SPs’ departures as a general stochastic process with
average rate µ. With respect to the SPs’ bidding strategy,
we assume that bids βs can be modeled as a random variable
following a general distribution fβ over the sample space
[βm, βM ].

2We remark that r(i) only depends on the resource requirements of the
considered slice class, while σ (i) is obtained from the policy region defined
by the InP and depends on the allocation state n(i).
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A. PERFORMANCE METRICS
The analytical definitions provided in [3] for the performance
metrics of the on-demand case can be easily adapted to the
periodic case and expressed as a function of the system
model’s variables introduced in Section III. In particular,
assuming that the admission strategy ξi enforced at the end of
slice interval i can be fully described by tuple (Pi,T slicingi+1 ),
we represent with Ai+1 = na(i + 1)/ρi the admission ratio
at the next slice interval, expressed as the ratio between
slice requests admitted and total number of arrivals. Until
its departure, an admitted slice s (received at slice interval
i) implies a decrease of ri from the available capacity C
at slice interval i + 1, and a contribution to InP’s revenue
equal to βsTs (paid proportionally at each of the following
slice intervals). Consequently, for a specific service class,
if we represent with Cav

i the portion of network capacity
available out of σ (i)C at slice interval i, we define the
percentage of resource utilization of the service class asUi =
1 − Cav

i /(σ (i)C). Finally, if R
tot
i represents the aggregate

revenue paid by all tenants at a specific slice interval i,
we can compute the total revenue rate as Rtoti /T

slicing
i .

An average or aggregate version of the same metrics is also
provided over the whole observed time interval. In particular,
the average admission rate Ā, the average percentage of
resource utilization Ū , and the average admitted bid β̄s are
computed averaging over the 9 slice intervals considered.
On the other hand, the total aggregate revenue is provided
as Rtot =

∑9
i=1 R

tot
i . Finally, as a measure for the timeliness

of the slice admission control method, we employ the average
waiting time from themoment a slice request is received, until
an admission decision is made,3 that is, τ̄i = T slicingi /2, which
has to be lower than the maximum timescale τ accepted by
SPs to meet latency requirements for the slice allocation.

B. OPTIMAL STRATEGY AND COMPLEXITY
For the pre-computation of the optimal admission strategies
at specific network conditions, we follow the approach
presented in [3], which aims at the maximization of InP’s
revenue rate. The maximization problem extended to the
periodic and adaptive case can be defined as follows:

ξoptν = argmax
ξ

Rβ
(
ν, fβ , ξ

)
FCFS, BB: ξ ≡ T slicing

AT: ξ ≡ (β̇,T slicing)

T slicing ∈ [T slicingmin , τ ]

β̇ ∈ [βm, βM ] (3)

where Rβ , represents the revenue rate that InP would obtain
in the long term by enforcing a given admission strategy ξ
over a network node with state condition ν = (λ/µ,N ).
In particular, we remind from the system model that the triple

3According to [3], the properties of Poisson processes can be exploited
for computing the average value for the arrival instant tai within the i-th slice

interval, that is, E[tai ] = T slicingi /2. Then, τ̄i = T slicingi − E[tai ].

(λ/µ, r, fβ ) represents SPs’ model, in terms of traffic load,
resource requirements and bidding behavior. On the other
hand, N is a measure of the maximum resource availability at
a specific network location with respect to SPs’ requirements
at a specific time instant. Finally, ξ represents test strategies in
the search space for the considered continuous optimization
problem, which is mono-dimensional in the case of FCFS
and BB strategies, where only the slicing timescale T slicing

can be tuned, and bi-dimensional in the case of AT approach,
where we can configure both slicing timescale and admission
threshold for incoming bids βs. Because we implement an
offline strategy for the pre-computation of the admission
policies, the optimization process is performed only once
and its outcome can be used for building a lookup table
that will be used on-the-fly for different network nodes and
time instants. Justified by the computational power of current
technologies, we explore in this study the exhaustive search of
the optimal strategies, and we compare its performance with
more computationally-efficient and flexible methods based
on ML.

In order to limit the complexity of the offline pre-
computation of optimal admission strategies, we discretize
the search space independently over its dimensions, trans-
forming the problem in (3) into a combinatorial optimization
problem. More into detail, we assume that InP can arbitrarily
choose for T slicing a finite number l of sample values in
[T slicingmin , τ ]. On the other hand, for AT strategies only,
we consider a uniform discretization of β̇ into a finite number
h of intervals over the sample space [βm, βM ], that is, β̇ =
βm + j(βM − βm)/h, j = 0, . . . , h − 1. In conclusion,
the candidate admission strategies ξ are defined over a
space W of cardinality |W| = l, or |W| = l · h
in FCFS and BB case, or in AT case, respectively. The
discretization of the search space could lead to the curse of
dimensionality, where a higher number of sample values is
translated into increased complexity, although not necessarily
associated with a better statistical significance. Therefore,
the particular choice of the sample admission strategies
(considering both cardinality |W| and selected values)
could lead to very different performance and, in general,
the adoption of a decomposition algorithm is recommended
for the discretization of the sample space according to its most
representative features. However, in this study, we decide to
limit complexity by choosing few sample strategies, while
relying on the NN for extending the admission strategies to
unexplored regions of the sample space. Indeed, the NN is
trained by using the input-target pairs (ν, ξoptν ) for providing
near-optimal strategies ξ in correspondence of generic state
conditions ν.
As remarked in [3], the InP is responsible for pre-

computing convenient strategies in correspondence of net-
work conditions that are representative of real SPs’ behavior
and resource availability at different nodes of the network.
Therefore, InP has to properly choose the tuples ν over
the discrete sample set V to be used for the offline
solution of problem in (3). In order to limit complexity
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while improving the versatility of pre-computed strategies,
rather than solving the optimization problem separately
for all possible conditions of different nodes at different
times, we select sample state conditions that are statistically
representative of thewhole network (e.g., observing historical
data gathered from different locations and time instants).
Strategies need to be employed for mitigating the curse of
dimensionality, which could lead to the overfitting of the
neural network if the input state conditions selected for the
initial training do not have statistical significance for all
the network nodes in different hours. In this case, we first
compute the unionV ′ of all the tuples (λ/µ,N ) obtained from
network traces over different nodes’ location. Afterwards,
we perform an initial coarse and homogeneous sampling over
V ′ and, finally, we run a fine scale sampling over the most
occurring tuples.

1) EXHAUSTIVE SEARCH
The complexity of the offline pre-computation for a specific
network condition by means of exhaustive search is linear
with respect to the cardinality |W| of the search space for
ξ (i.e., O(|W|)). The overall time required for the admission
strategies’ pre-computation strictly depends on the number of
samples states considered (i.e., on the cardinality |V| of V),
which also determines the complexity of implementing the
lookup table at runtime. In particular, for an arbitrary network
condition νi at a specific node location and time interval i,
we enforce the admission strategy ξopti corresponding to the
tuple ν in V that minimizes the squared euclidean distance
d(νi, ν)2. Assuming that the minimization is performed
by implementing the quicksort algorithm over the squared
euclidean distances plus the selection of the smallest value,
the average complexity is O(|V|) independently from the
admission strategy considered.

InP needs to implement the runtime process described
above in parallel for all the Y network nodes, thus, with a
network complexity at runtime equal to O(Y · |V|). As a
possible solution for the reduction of the complexity over the
network, we consider the approach introduced in Section I,
that is, performing offline clustering of network nodes
according to historical data, and applying optimal admission
strategies of few candidates (i.e., nodes corresponding to
clusters’ centroids) to the rest of the nodes in the network.
In particular, we perform clustering according to k-means
implementation, that partitions Y nodes into k clusters
based on δ-dimensional features extracted from network
traces, while considering as objective function the global
minimization of the squared euclidean distance to the
clusters’ centroid.

Although clustering requires an increase in the overall
computational complexity, this process is performed only
once offline, in exchange for a complexity reduction at
runtime by a factor k/Y , which is the dominant component of
adopting a policy-based solution on the long-term. However,
in scenarios where the network is expected to experience
drastic changes, clustering can be repeated according to

a given periodicity in order to maintain an updated and
accurate representation of clusters and centroids that fits the
network.

2) ML-BASED SEARCH
As detailed in the previous subsection, the exhaustive
search approach is used to generate a discrete solution set
for different network conditions. This solution set is then
used to train a neural network, which will be capable of
providing effective strategies for new network conditions, not
previously explored by the exhaustive search (i.e., ν /∈ V).
In particular, we consider the sample network conditions (i.e.,
ν ∈ V) as features, and the corresponding optimal strategies
ξ
opt
ν as the labels in a supervised learning approach. Further-
more, we perform K -fold cross-validation for optimizing the
NN training over the following hyperparameters: i) number of
hidden layers nHL , ii) number of neurons per layer sHL , and,
iii) training function. Besides, in the case of AT strategies,
we compare the option where a single NN is used for
computing both admission threshold and timescale, with the
alternative approach where two parallel NNs are used for
computing separately β̇i, and T

slicing
i . The outputs of the pre-

trained NN represent a sub-optimal solution of the problem
in (3) and are used for enforcing admission strategies at
runtime in correspondence of untested conditions.We remind
that the NN can be applied to any node in the network,
because it is trained with sample conditions that represent
statistically behaviors that could be observed throughout the
whole network.

The complexity corresponding to the training phase of
a NN depends on all the parameters introduced above,
in addition to the stop criterion adopted. Finding a strict
definition is out of the scope of this study because, similarly
to the case of clustering, the training of the NN is performed
offline only once. Besides, justified by the computational
power offered by existing technologies, we neglect the
corresponding increase in the overall complexity count.
On the other hand, the enforcement of NN-based admission
strategies at runtime at a specific node location and time
interval i requires linear algebraic operations over the input
network condition νi, whose complexity depends only on the
NN’s topology, that is, O(nHL log(sHL)) [18]. In this work,
we consider NN with reduced topology, therefore, the corre-
sponding computational burden at runtime is expected to be
lower when compared to the implementation of a lookup table
over the pre-computed |V| admission strategies as described
above (see Section V-A).
We remark that, in the case of BB admission strategy,4 by

definition, additional burden is required at runtime for the
ordering of incoming slice requests with respect to bid values,
when compared with FCFS and AT approaches. In particular,
assuming that a quicksort algorithm is used, the average

4BB is the most greedy and unfair strategy from the InP’s and SPs’
perspectives, respectively.

127602 VOLUME 9, 2021



M. Vincenzi et al.: Timely Admission Control for Network Slicing in 5G With ML

FIGURE 2. Daily averages of network traces from a real mobile operator from 5AM to 4:45AM of the next day: (a) average number of active UEs NUE ,
(b) maximum throughput S of network nodes in downlink, and (c) aggregated data M sent to UEs in downlink. Different colors are used for different
cells.

complexity associated with the BB’s bid selection at the end
of slice interval i is O(ρi).

V. RESULTS EVALUATION
In this section, we first describe the system setup, then we
compare the performance obtained when different admission
strategies are adopted. Finally, we study the case where
ML strategies are employed for efficient computation of
admission strategies, as well as the possible reduction in
complexity offered by the offline clustering of network nodes.

A. SYSTEM SETUP
For the performance assessment, we consider the system
setup described in the following. SPs slice request arrivals
are realized according to a Poisson distribution with average
arrival rate λ extracted from network traces, as explained
below. On the other hand, for departures we consider an
exponential distribution, with average service rate µ = 1/60
set according to the upper limit on the holding time at link
layer provided in [19]. SPs’ bids follow a uniform distribution
within the range [βm, βM ] = [0, 100]. Finally, both channel
capacity C of the access link and resource requirements r are
extracted from network traces as explained next.

1) NETWORK TRACES
Network traces are provided by a mobile operator for an
operational 4G network over a time interval of one week for
eleven network nodes (i.e., Y = 11) at a regular periodicity,
with trace intervals of size Ttrace = 900[s]. For each network
node, information is provided on the average number NUE
of active UEs, maximum throughput and aggregate amount
of data exchanged with UEs. In the following, and without
loss of generality, we only consider downlink resources.
We represent with S the maximum throughput in [Mbit/s]
considering all UEs, and with M the total amount of data
in [MB] sent by the network node. In Figure 2, we provide
the daily averages computed over the network traces, which
clearly show that different nodes support diverse volumes of
traffic, although with similar patterns, as it will be studied in
detail in Section V-B.

2) CLUSTERING
We perform k-means clustering on the Y network nodes
by considering different values of the number of clusters
k and different combinations of δ-dimensional parameters
from traces. The maximum number of iterations is set to
γ = 100, and the algorithm is run ten times with random
initial centroids in the attempt to filter out the dependence on
the starting point. The highest separation in terms of squared
euclidean distance between clusters is provided when k = 2
is used, and when clustering is performed over the average
and the variance ofNUE computed over the week (i.e., δ = 2),
respectively, 〈NUE 〉 and Var(NUE ). This result shows a high
correlation between NUE , S and M . Resulting clusters are
represented with different colors in Figure 3a, with triangle
and circle star markers representing, respectively, network
nodes and geometrical centroids for each cluster. In the
following, we consider as centroids the network nodes in
each cluster that minimize the squared euclidean distance to
the geometrical centroid (i.e., Centr1 and Centr2). Note that
the coordinates for each node are normalized with respect
to the network’s mean value and standard deviation. We can
conclude from Figure 3, that one particular cell in the studied
data set shows a very unique behavior and is therefore isolated
in its own cluster, perhaps corresponding to the macro cell
over the considered geographical area. For cluster 1, we also
compute over its nodes the average characterization in terms
of 〈NUE 〉 andVar(NUE ) and we identify the network node that
minimizes the squared euclidean distance to this coordinate
(i.e., avNode1). Besides, we represent in Figure 3b the
values of the silhouette coefficients for each network node,
representing the similarity of nodes within a cluster, with
respect to those in the other cluster. With a mean silhouette
value in cluster 1 equal to 0.98 we are sure that a good
similarity is achieved among nodes in that cluster, as well as
an excellent separation with respect to Centr2.

3) ADAPTATION OF NETWORK TRACES TO
THE SYSTEM MODEL
In order to adapt 4G network traces to network conditions
that take into account the high traffic demands expected for
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FIGURE 3. k-means clustering on network nodes’ traces with k = 2: a) clustering with respect to average and variance of NUE over the week, and, b)
silhouette plot. In a) coordinates are normalized with respect to mean and standard deviation computed over the network. Besides, nodes of
cluster 1 and 2 are represented in red and green triangles, respectively, while a circle star marker is used for the centroids within each cluster.

5G networks, we introduce a scaling factor α = 40 such
that λ/µ = αNUE . Besides, for the resources available at a
specific node’s location, we assume that the channel capacity
of the access link can be approximated by C = max

t
S(t).

Finally, SPs’ resource requirements in [Mbit/s] at a specific
slice interval are computed as r = 8 · M/(NUE · Ttrace).
For simplicity and without lack of generality we assume
for access network resources a sharing factor σ (i) = 1
(i.e., N (i) = bC/r(i)c and all the capacity reserved for the
considered service class). Indeed, as introduced in Section IV,
our focus is in the slice provision to SPs of the same service
class, rather than between different service classes. However,
the study of the adaptability of this approach to variable levels
of resource availability is still guaranteed by the fluctuations
of the resource requirements in time, according to the model
defined above.

In Figure 4, we compare the levels of congestion5

(λ/µ)/N , for network conditions corresponding to traces of
clusters 1 and 2, with respect to the values studied in [3].
In particular, we represent in colored lines the values of
(λ/µ)/N when α = 40, specifically, for centroids of
cluster 1 and 2, as well as for the network node with
average characterization within cluster 1. On the other hand,
we represent in dashed lines the values of (λ/µ)/N ∈

{0, 0833, 1.667, 16.667} used for Figure 10 in [3], which
define the higher limits for (λ/µ)/N when scaling factors
α ∈ {0.5, 10, 100} are set, respectively. Therefore,
the congestion levels considered in this study range between
low (i.e., nowadays overscaled networks) and medium
values.

5The average traffic load λ/µ with respect to the maximum number of
available slices N .

For the discretization of the search space for optimal
InP’s admission strategies ξoptν , we study and compare the
performance offered by a fine, intermediate and coarse slicing
timescale. In particular, we assume l = 3 possible values
for the slice intervals T slicing ∈ {0.1/µ, 1/µ, 3/µ}, where
the extreme values represent, respectively, T slicingmin and τ .
Besides, for AT strategies, we consider h = 4 possible
admission thresholds because, according to results in [3],
it is sufficient for enabling the full potential in terms of
revenue maximization for any network condition. For the
selection of the state conditions to be used for the offline
solution of the problem in (3), we first perform a coarse
selection of 100 samples chosen homogeneously over V ′, that
is, the union of the state conditions according to network
traces of different nodes. Afterwards, we run a fine scale
sampling over themost occurring state conditions and achieve
a sample set with cardinality |V| = 268.

4) OFFLINE PRE-COMPUTATION OF OPTIMAL
ADMISSION STRATEGIES
For the offline pre-computation of the optimal admission
strategies by means of exhaustive search, we develop in
Matlab a simulator that generates instances of request
arrivals, tenants’ departure and bidding processes, on which it
enforces FCFS, BB and AT admission strategies accordingly,
making sure that at least 500 thousand arrivals are detected for
each of the tested network conditions. To this aim, we employ
an Intel(R) Core(TM) i9-7900X CPU@3.30GHz with 64GB
of RAM. On the other hand, when a NN-based solution of
the problem in (3) is performed, we reserve 20% of pre-
computed strategies for final test while, at each fold of the
K -fold cross-validation process, we use 70% and 10%
of the pre-computed strategies for training and validation,
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respectively. In other words, K -fold cross-validation with
K = 8 is used for the optimization of the NN training over the
following hyperparameters: i) number of hidden layers nHL ∈
{1, 2}, and, ii) number of neurons per layer sHL ∈ {5, 10}, and
when the following training functions are tested: Levenberg-
Marquardt backpropagation, Bayesian Regularization, and
Bayesian Regularization.

In case of AT admission strategies, the outcome of cross-
validation highlights that the best performance in terms of
convergence time and output to target error minimization
is obtained when two different NNs are used in parallel
for computing independently ξoptν components (i.e., β̇ and
T slicing), both with nHL = 2 hidden layers and, respectively,
with sHL = 10 and 5 neurons per hidden layer. Finally,
Levenberg-Marquardt backpropagation training function is
the one that provides the best performance in terms of
convergence to error ratio. Optimal T slicing provided by the
NN for AT are also applied for the cases of FCFS and BB.

5) RUNTIME ENFORCEMENT
For the performance assessment, we use a simulator similar
to the one described above, with the main difference that
optimal strategies are enforced this time over dynamic
network conditions obtained from real traces. Given that
those traces have a periodicity of Ttrace = 900 seconds,
we assume that network conditions remain constant within
each trace interval.We remark that, due to time discretization,
an intrinsic delay is introduced when enforcing periodic
admission strategies with respect to on-demand ones. Indeed,
optimal admission strategies ξopti are enforced at allocation
interval i, over the vector {βsci−1,q} of bids received during the
previous allocation interval. Finally, because we implement
slice allocation at fine timescale, we assume that network
conditions remain approximately constant within a given
slice interval, therefore, no traffic forecastingmechanisms are
needed at instant t0i (i.e., the beginning of i-th allocation inter-
val) for guaranteeing the optimality of admission strategies
within the slice interval.

B. PERFORMANCE EVALUATION
Below,we first present the admission strategies pre-computed
by means of exhaustive search and NN-based search, as well
as corresponding performance with respect to different
admission strategies. Afterwards, we compare results with the
case of admission strategies optimized on a per-node and a
per-cluster basis.

1) OPTIMAL STRATEGIES
In Fig. 5, we can observe the fluctuation of the optimal
strategies ξopti in time, expressed as: i) the timescale for
slice allocation normalized to the average service time
(i.e., T slicingopt /(1/µ)), and, ii) the admission threshold for
incoming bids when AT strategies are studied (i.e., β̇opt ).
Optimal strategies are provided over different network nodes’
traces: a) avNode1, b) Centr1, and, c) Centr2. The strategies

FIGURE 4. Values of (λ/µ)/N over the weekly traces in colored lines for
Centr1 and Centr2, as well as for avNode1. As a reference, the levels of
congestion studied in [3] are also represented in dashed lines.

computed by means of exhaustive search and NN-based
approach are provided in solid black line and discontinuous
blue line, respectively.

We can observe in the figure how the chosen admission
strategies change in presence of different average levels of
congestion, increasing from Fig. 5a to Fig. 5c. In particular,
according to Fig. 5c, for high levels of congestion the
recommendation to InPs is to adopt very fine timescales
(i.e., small values for T slicingi ) in such a way that more slice
requests can be served in time. Furthermore, in the case
of AT strategy, admission thresholds are set to the 25% of
the bidding range for most of the time, while it mimics
the FCFS scheme (i.e., the minimum admission threshold
is adopted; β̇opt = βm) only when very low congestion
levels are perceived; note that the lowest threshold values
β̇opt observed in Fig. 5c correspond to nightly hours, during
which the utilization of the network is low. On the other
hand, according to Fig. 5a and 5c, more relaxed strategies are
preferred when congestion levels get lower. Indeed, if arrivals
are less frequent, less resolution is needed in time for serving
all incoming slice requests, consequently coarser timescales
can be adopted. Besides, in those cases, lower admission
thresholds are preferred on average by the AT strategy.

Finally, we can observe that more flexible admission
strategies are adopted by the NN-based approach, indeed,
intermediate admission strategies are provided in the con-
tinuous domain for state conditions that were not explored
for optimal strategy pre-computation. This phenomenon is
particularly visible in the case of low congestion levels
(see Fig. 5a), where coarser timescales are provided and
combined, in the case of AT strategy, with lower values of
the admission thresholds. However, we can see that NN’s
recommended strategies follow quite well those found by the
exhaustive search approach. This means that the NN model
is well adjusted to the training data provided by the ES study
(cf. Section IV-B).
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FIGURE 5. Optimal strategies ξopt
i (i.e., the timescale T slicing

i for slice allocation normalized to the average service time 1/µ and, for AT strategies,
admission threshold β̇i ) computed over different network nodes’ traces: (a) avNode1, (b) Centr1, and, (c) Centr2. Results are compared for ES
and NN-based approaches in solid black line and discontinuous blue line, respectively. The moving average over one hour is used for a clearer
representation.

2) PERFORMANCE EVALUATION WITH EXHAUSTIVE SEARCH
Aswe introduced in Section III, a measure of the timeliness of
a slice admission control method is provided by the average
waiting time τ̄i, equal to half of the admission timescale
T slicingi . Besides, we remind that the minimum timescale
T slicingmin allowed by InP is defined by technological and com-
plexity factors, while its maximum value τ depends on SPs’
latency constraints. In Fig. 5, we observed how the optimal
admission strategies tend to provide relaxed timeliness for
decreasing values of congestion level. Therefore, we remark
the importance of defining in the SLA both τ and the penalty
to the InP when this condition is not met, especially in the
case of SPs with very strict requirements in terms of τ̄i and in
presence of very low congestion levels (e.g., see Fig. 5a).

In Fig. 6, performance is assessed for different admission
schemes (i.e., BB, FCFS, and AT) when strategies are
computed by means of exhaustive search. In particular,
different nodes’ traces are considered: a) avNode1, b)Centr1,
and, c) Centr2, and, from left to right, we represent the
results for the rest of the performance metrics introduced
in Section III: i) the admission ratio Ai, ii) the percentage
of resource utilization Ui, iii) the revenue rate Rtoti /T

slicing
i ,

and, iv) the accepted bids βs. Finally, in order to have
a quantitative measure of performance over the week,
we provide in Fig. 7 the average admission rate Ā, the average
percentage of resource utilization Ū , and the total aggregate
revenue Rtot .
It can be observed in both figures that BB and FCFS

always provide the same values for the admission rate, as they
both allow slice allocation up to resource-exhaustion. On the

other hand, the AT strategy reduces utilization by rejecting
bids below a given threshold, which also corresponds to a
lower admission ratio. This is particularly evident in the
case of low congestion levels (e.g., avNode1 according to
Fig. 4), as the relative ratio of rejections increases with
respect to the number of arrivals. Similar considerations hold
for the percentage of resource utilization because, thanks to
the lower number of admissions, less resources are used on
average by the AT strategy when compared with FCFS and
BB schemes.

In terms of revenue to the InP, any strategy provides
similar revenues in case of low levels of congestion (e.g.,
avNode1). Indeed, because resources are overdimensioned
with respect to the economic opportunities, each of the
considered schemes tries to admit every incoming request.
When congestion increases, the choice of the bids to admit
becomes crucial for the revenue maximization, however, only
AT and BB strategy can exploit the potential offered by
the bigger number of incoming slice requests for achieving
higher revenues. Comparing into more detail the revenue
offered by different admission schemes, FCFS strategy
provides the minimum revenue at zero complexity for its
enforcement at runtime (i.e., it admits every new slice request
up to resource saturation). On the other hand, BB approaches
allow InPs to always select the highest bids at the cost
of higher complexity in the long term, as explained in
Section IV-A. Finally, AT approaches represent a tradeoff
between FCFS and BB schemes in terms of revenue and
complexity. Indeed, they always offer intermediate revenues
between FCFS and BB schemes. Besides, strategies can
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FIGURE 6. Performance assessed by adopting strategies ξopt
i computed by means of exhaustive search over different network nodes’ traces:

(a) avNode1, (b) Centr1, and, (c) Centr2. A comparison is provided between different admission strategies (i.e., BB, FCFS and AT) in terms of admission
ratio Ai , percentage of resource utilization Ui , revenue rate Rtot

i /T slicing
i and accepted bids βs. The moving average over one hour is used for a clearer

representation.

be computed offline only once and enforced at runtime by
comparing incoming bids with a threshold.

Together with complexity, admission rate, resource uti-
lization and revenue, another term of comparison for the
admission strategies is represented by the admitted bids βs,
which are shown in Fig. 6 with respect to the order of arrival
s normalized to the total number of arrivals over the week.
As explained for revenue, in case of low congestion levels,
all admission schemes admit slice requests independently
from the associated bids due to the scarcity of incoming
revenue opportunities with respect to resources available.
Consequently, according to the figure, the average admitted
bid equals the mean value of βs (i.e., β̄s = (βM − βm)/2
for a uniform bid distribution).6 On the other hand, when
the congestion level increases, FCFS does not change its
admission strategy, while both AT and BB schemes become
more selective and admit slice requests with higher associated
bids.

The admission rate together with the average value
for admitted bids can be interpreted as a measure of

6We remark that the moving average over one hour is used for a clearer
representation in Fig. 6.

the fairness of InPs towards SPs accounting for: i) InP’s
greediness in resource usage for revenue maximization,
and, ii) fair treatment of SPs’ spending power, respectively.
In conclusion, FCFS is the admission strategy with lower
complexity and highest level of fairness, as it provides highest
admission rates and lowest average values for the admitted
bids. On the other hand, BB scheme maximizes revenues at
the cost of increased complexity and lowest fairness towards
SPs’ spending power, as it sets the highest average value for
the admitted bids. Finally, AT approach represents a tradeoff
between the other considered schemes, as it provides slightly
lower admission rates while requiring less resources. Besides,
it is capable of providing higher revenues than FCFS strategy
and, when compared with BB approach, it limits complexity
and provides a more fair solution in terms of SPs’ spending
power, by setting lower average value for the admitted bids.

3) PERFORMANCE EVALUATION WITH ML-BASED
STRATEGIES
In Sections I and II, we introduced the possibility of adopting
ML-based solutions for providing near-optimal admission
strategies for network conditions that have not been directly
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FIGURE 7. Performance over the week when adopting different admission
schemes, with strategies computed for different network nodes by means
of ES: average admission rate Ā, average percentage of resource
utilization Ū , and total aggregate revenue Rtot . For Rtot , values are
normalized to the maximum over the three strategies and network nodes.

FIGURE 8. Performance over the week for different network nodes and
admission schemes, with NN-based strategies. For Rtot , values are
normalized to the maximum over the three schemes and network nodes
when optimal strategies are adopted.

explored by the InP during the pre-computation phase.
In particular, in Section IV-B, the advantages in terms of
computational efficiency have been detailed for the case of a
NN trained on the exhaustive search’s output, thus providing
custom admission strategies for different network nodes and
congestion levels. In Fig. 8, we provide the performance
study when strategies are chosen by means of a NN-based
approach, which can be compared to that in Fig. 7 for optimal
strategies.

In the case of network nodes with low congestion levels
(e.g., avNode1), it can be observed that FCFS and BB
strategies do not have much margin for improving the
admission rate due to the very low number of slice requests

FIGURE 9. Performance over the week for different admission strategies,
when Centr1’s optimal strategies are applied to avNode1 and Centr2. For
Rtot , values are normalized to the maximum over the three schemes and
network nodes when optimal strategies are adopted.

arriving. This does not hold for the AT scheme as an increase
in admission rate can still be achieved by adopting lower
admission bids (see Fig. 5a). On the other hand, a great benefit
in terms of revenue is offered by the adoption of a NN-based
approach independently of the admission strategy. This can
be explained by the better customization achieved in terms
of admission timescales with respect to the input network
conditions. The revenue increase comes at the cost of an
increase in resource utilization for all admission schemes,
which is more evident in the case of AT strategy because of
the adoption of lower admission thresholds. More precisely,
BB is the strategy experiencing the higher gain thanks to
the increase in the average timescale adopted (see Fig. 5a),
because a better opportunity is provided for selecting the
highest bids among the arrivals. However, we remind that a
more unfair behavior is experienced by SPs with respect to
their spending power (see Fig. 6).
When considering network nodes with medium congestion

level (e.g., Centr1), the NN-based approach provides only
a slight performance improvement with respect to the
exhaustive search approach, which is confirmed by the fact
that very similar strategies are adopted by the two approaches
(see Fig. 5b). Finally, in the case of very high congestion
levels (e.g., Centr2), admission rate can be improved by
the better customization of admission timescales in time,
although, with a slight increase in the average timescale used
(see Fig. 5c). Consequently, a worse timeliness is achieved
when serving incoming requests, which corresponds to a
slightly lower resource utilization and revenues over the
week.

In conclusion, the adoption of a NN-based solution
for the computation of optimal admission strategies is
recommended for network nodes with low or medium
congestion levels. In particular, it can provide great gains
in terms of revenue, mostly if a BB strategy is adopted
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and some flexibility exists in terms of fairness towards SPs.
Besides, NN-based approaches are suitable for improving
AT scheme’s admission rate when fairness is preferred
over revenue maximization. On the other hand, in case of
high congestion levels, there is no incentive in adopting
NN-based strategies due to the suboptimal nature of their
solutions.

From a different perspective, the limited drop in per-
formance when compared to optimal strategies motivates
the adoption of a NN-based approach in case of lack
of information on the precise statistics on the network
conditions. Indeed, because the NN has been trained on a
collection of state conditions from different network nodes
with different congestion levels, it represents a suboptimal
but more general solution for any network node under any
circumstance. Consequently, the trained NN itself could
be used by InPs as a computationally-efficient way to
provide admission strategies for newly deployed nodes, or for
adapting to changes in the congestion levels of already
deployed nodes. On the other hand, it could also be used as
a tradable asset leased among InPs, or, as a possible object
of standardization for guaranteeing comparable performance
across different InPs’ networks.

4) PERFORMANCE EVALUATION WITH CLUSTERING
In Section I, we discussed the possible reduction in com-
plexity offered by clustering solutions when performing
the computation of admission strategies at a network level.
In particular, in Section V-A2, we described the methodology
for clustering network nodes according to traces, allowing
the computation of the admission strategies only for one
candidate within each cluster (i.e., the centroid of the cluster).
Below, we assess the difference in performance obtained
when the optimal strategies of one cluster’s centroid are used
both for a different node within the cluster and for a node
belonging to another cluster. In Fig. 9, we show performance
when Centr1 strategies are enforced at different network
locations (i.e., avNode1 and Centr2), which can be compared
to that in Fig. 7 for optimal strategies.
When applying Centr1’s strategies to the network node

with average characterization within cluster 1 (i.e., avN-
ode1), we can observe that the admission rate slightly
increases for FCFS and BB strategy thanks to the average
decrease in the admission timescales adopted (see Fig. 5a
and 5b). This does not hold for AT approach as the
improved timeliness is counterbalanced by the choice of
higher average admission thresholds. On the other hand,
resource utilization considerably decreases for all strategies,
because of the choice of strategies that are not optimal
for the low congestion levels typical of avNode1. For the
same reason, a negligible reduction in revenue is also
registered. Finally, the enforcement of Centr1’s strategies in
presence of other clusters’ conditions (i.e., Centr2) provides
lower admission rates, resource utilization and revenues,
as expected by observing the difference in the admission
strategies represented in Fig. 5b and 5c.

In conclusion, adopting clustering strategies represents a
valid option for reducing the complexity associated with
the enforcement at runtime of optimal strategies over InPs’
networkswith centralized architectures.Moreover, it could be
used in the case of network nodes with well-known statistics
on congestion levels and uncertain information about current
states. Indeed, in both cases, instead of monitoring and
adapting optimal strategies independently for each network
node, the InP can alternatively divide network nodes into
clusters and apply the strategies that are optimal for a
candidate node (e.g., Centr1) to the rest of the nodes within
the cluster (e.g., avNode1), with a negligible difference in
terms of performance. Besides, if InP’s priority is placed on
the maximum reduction in complexity, the same strategies
could be also adopted for nodes belonging to other clusters
(e.g., Centr2) with limited decrease in performance.

VI. CONCLUSION
In this work, we target the potential offered by 5G’s
marketplace both to network owners and SPs, in terms
of revenue and QoS guarantees for services with strict
latency constraints (e.g., uRLLC services). In particular,
an intra-service reservation-based slicing mechanism has
been defined for fine and adaptable timescales, with optimal
strategies pre-computed offline for state conditions that are
representative of both SPs’ behavior, and resource availability
in the network. A PoC on real network traces is implemented
for studying and comparing complexity and performance
of three reference admission strategies (i.e., FCFS, AT,
and BB), the latter expressed in terms of efficiency in
resource utilization, fairness to the SPs and InP’s revenue.
Finally, results obtained for optimal admission strategies
are compared with those of more computationally efficient
solutions.

In this context, our study proves that FCFS and BB
strategies provide the minimum and maximum revenue to the
InP, respectively, while the opposite holds true in terms of
fairness towards SPs and complexity required for enforce-
ment. On the other hand, the AT scheme provides a tradeoff
in terms of complexity and performance, while reducing
the average resource utilization when variable timescales
are used. Furthermore, in case of low congestion levels,
the improvement in terms of admission rate and revenue has
been demonstrated when using ML-based solutions, at the
cost of slightly higher resource utilization and lower fairness
with respect to SPs’ spending power.

Results show that, if InP’s objective is a reduction in
complexity, or, the computation of near-optimal strategies
in absence of full information about network conditions,
approaches based on ML and clustering are good solutions
that come at the cost of a negligible or limited decrease in
performance. In our future studies, we plan to extend our
solution to include the case with different service classes,
each with different resource requirements, and to model
SPs as rational entities that can react to the fluctuations in
price and admission rate by adapting their bidding strategy.
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Besides, we foresee the implementation of the proposed
methodology on real testbeds for proving the feasibility of
adopting adaptive timescales in existing technology.
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