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Abstract 

Satellite soil moisture provides a wider range of spatial data than in-situ observations. 

Satellites are sensitive to measuring soil moisture in a few centimetres of the soil layer. 

However, root zone soil moisture is more important, especially in vegetated areas. 

Therefore, it is necessary to invert the near-surface soil moisture collected by satellite 

missions to estimate root zone soil moisture. This study quantified the association 

between near-surface and root zone soil moisture using in-situ data from the 

REMEDHUS network in Spain and Soil Moisture Ocean Salinity (SMOS) mission from 

2014-2018, comparing SMOS with in-situ observations based on an exponential filter 

approach, optimizing an optimal characteristic time length (Topt) by computing the 

correlation coefficients (R) of the filtered satellite time series with in-situ time series. The 

results show that the exponential filter's main factor T is sensitive to soil moisture and 

varies depending on the climate. When using this method to infer root zone soil moisture, 

the eight stations' average R-value reached 0.71, meeting the "Strong correlation" 

standard. The root zone soil moisture obtained by SMOS surface inversion is compared 

with in situ soil moisture. The mean R-value of soil moisture in the root zone based on 

SMOS is 0.58, which is approximate to the "baseline error (0.6)" -- the accuracy of the 

surface soil moisture estimated by SMOS. However, attention should be paid to the 

effects of soil moisture season and soil texture on the experimental results.  
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1. Introduction 

1.1. Motivation and Goals 

Soil moisture is an essential climate variable (ECV) and of great importance in processes at the 

atmosphere-vegetation-soil boundary. Previous studies point out that soil moisture influences land-

atmosphere interactions by modifying the boundary layer's energy moisture fluxes (Basara et al., 

2002; Taylor et al., 2007). Koster (2004) demonstrated that the variation of the soil moisture could 

predict drought in semi-arid environments such as North America Great Plains. Frye and Mote 

(2010) found that under weather conditions that are not conducive to convection, soil moisture and 

soil moisture gradients significantly influence convective initiation. Taylor and his colleagues 

(2012) found that the convective precipitation in the Sahel region of Africa in the afternoon 

preferentially falls on the drier soil, which is probably caused by the abnormally low soil moisture.  

Soil moisture can also reflect the water demand of crops, which has important guiding significance 

for agricultural production. Soil textures influence water storage and soil moisture content. 

Therefore, soil moisture affects the dissolution and transfer of nutrients in the soil and the 

activities of microorganisms. The amount of soil moisture is related to the growth of plants and 

crop yield. Timely monitoring is helpful to grasp the diverse requirements of plants on soil water 

content to provide suggestions for various agricultural measures such as tillage, irrigation and 

fertilization, which will directly affect the growth of plants and crops.  

It can be seen that the measurement of soil moisture plays an indispensable role in human 

production and the natural environment. However, in some cases, such as drought monitoring and 

agricultural modelling, the estimate of root zone soil moisture is essential because the root zone is 

the reservoir of available water for plants. One of the methods used to estimate root zone soil 

moisture is based on the Soil Moisture Index (SWI), an exponential filter developed by Wagner 

(1999) and improved by Albergel (2008). The method uses only one parameter T (timescale of the 

soil moisture variation) to estimate soil moisture from surface observations and studies the delay 

between surface and root zone soil moisture. In addition, Gill M K et al. (2006) used support vector 
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machines to make the soil moisture prediction. After that, Carranza C et al. (2021) used the 

random forest method to estimate the root zone soil moisture. 

In recent years, with the development of satellite missions, many researchers have begun to 

measure soil moisture through satellite data. Compared with in-situ soil moisture monitoring, 

satellite missions have the advantages of all-weather, wide coverage area and convenient operation. 

For example, Brocca L et al. (2010) improved runoff prediction by assimilating the ASCAT 

(Advanced Scatterometer, deployed on Meteorological Operational satellite) soil moisture product. 

Wagner W et al. (1999) used European Remote Sensing Satellites (ERS-1 and ERS-2) data 

monitoring soil moisture over the Canadian Prairies. Jackson et al. (2011) inverted in-situ soil 

moisture values and SMOS data. The results show that SMOS estimates are similar to in-situ 

observations. Sanchez et al. (2012) inverted that SMOS can detect temporal anomalies and the 

temporal evolution of surface soil moisture.  

Soil moisture products are derived from microwave remote sensing missions, which need to be 

verified through in-situ soil moisture observations (Rüdiger et al., 2009). Many in-situ soil 

moisture networks can be operated at present. The relevant information can be found on the 

website of the International Soil Moisture Network (ISMN). Such as the Goulburn River 

experimental catchment area in Australia (Rüdiger et al., 2007) or SMOSMANIA in southwestern 

France (Soil Moisture Observing System – Meteorological Automatic Network Integrated 

Application, Calvet et al., 2007; Albergel et al., 2008). 

In this study, REMEDHUS network soil moisture data will be used as a network to compare 

satellite and in-situ time series, using soil moisture index model and exponential filtering to 

examine the fluctuation of main parameter T, including its dependence on space, depth, soil 

moisture season and soil conditions. Thus, improving root zone soil moisture estimation from 

surface remote sensing measurements. Finally, the evaluate the accuracy of root zone soil moisture 

predicted from SMOS surface soil moisture based on exponential filter and confirmed the 

feasibility of SMOS mission for root zone soil moisture prediction. 
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1.2. Thesis Outline 

This master's thesis consists of six chapters. The work is organized as follows: 

Chapter 2 introduces the surface and root zone soil moisture. 

Chapter 3 accounts material and methodology of this study. 

Chapter 4 presents the most relevant obtained results for this study. 

Chapter 5 discusses the result along with suggesting future work and lines of research. 

Chapter 6 provides the main conclusion drawn from this thesis. 
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2. Surface and Root Zone Soil Moisture: in-situ and 

satellite measurement 

2.1. Soil Moisture Measurement 

The methods of soil moisture measurement can be divided into non-invasive geophysical 

measurement and invasive in-situ measurement. Non-invasive geophysical measurement is 

represented by airborne and spaceborne remote sensing technologies, which uses remote sensing 

to obtain soil moisture data from the air with the Ground Penetrating Radar (GPR) and 

Electromagnetic Induction (EMI). Spaceborne remote sensing techniques for soil moisture are less 

labour-intense, which cannot be achieved by in-situ measurements (Jackson, 2002). Remote 

sensing also has the advantage of large coverage areas (Ochsner et al., 2013), providing 

information about soil moisture temporal and spatial variability. However, the non-invasive 

geophysical measurement has a limited investigation depth, making it difficult to get moisture data 

from the deep soil layer. Moreover, satellite missions have fixed operation periods, which makes 

data exist collection intervals. Another soil moisture measurement (invasive in-situ measurement) 

has the advantage is that soil moisture can be continuously monitored through point-scale multi-

depth measurements, with better time resolution and real-time uninterrupted data acquisition. This 

method can obtain direct soil moisture data at different depths by the probes. However, it is 

undeniable that the limited station selection and the cost of labour force limit the universality of 

this method. Figure 1 is the diagrammatic drawing of this method, which generally requires the 

selection of observation areas and stations, and the installation of detection devices in the soil to 

collect soil moisture data of the network. 

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
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Figure 1 Diagrammatic drawing of invasive in-situ measurement. 

Mission Temporal Resolution Spatial Resolution (km) Type EMR-Band 

SSM/I Daily 25 Passive C 

TRMM TM Daily 50-56 Passive C 

Aqua AMSR-E Daily 56 Passive C 

ERS 1-2 SCAT 35 days 25-50 Active C 

SMOS 3 days 50 Passive L 

SMAP 2-3 days 10-40 Both L 

MetOp ASCAT 29 days 50 Active C 

Table 1 Synopsis of recent and future satellite soil moisture missions. 

Many efforts have been made by researchers to get ideal measurement data from satellites. Thirty-

five years ago, Schmugge et al. (1986) found that the L-band frequency range was identified as the 

best choice for soil moisture retrieval using microwave radiometers. The first spaceborne mission 

that mainly focused on collecting soil moisture data was the Soil Moisture Ocean Salinity (SMOS) 

satellite, which was initiated by the European Space Agency (ESA) in 2009 and used microwave 

radiometry to estimate soil moisture at global coverage (Kerr et al., 2010). The Y-shaped MIRAS 

(Microwave Imaging Radiometer by Aperture Synthesis) instrument on SMOS can be clearly 

identified in the left picture of Figure 2 left. Soil Moisture Active Passive (SMAP) is the second 

spaceborne mission to monitor soil moisture (Figure 2 right). The SMAP mission uses L-band 

radar and radiometer instruments sharing a rotating 6-meter mesh reflector antenna to provide 

high-resolution and high-precision global maps of soil moisture and freeze-thaw every 2 or 3 days. 

It was launched by the National Aeronautics and Space Administration (NASA), but the active 

sensor failed after three months of operation. Table 1 summarizes the main satellite mission 

javascript:;
javascript:;
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information used for soil moisture. It can be seen that most missions use the C-band (4-8 GHz), 

only SMOS and SMAP use the L-band (1-2 GHz). 

   

Figure 2 3D render of SMOS satellite (left) and SMAP satellite (right). 

2.2. Root Zone Soil Moisture 

Soil depth is the most direct factor affecting soil moisture. In general, the 0-100cm soil layer is 

divided into the following three characteristic layers. The topmost layer is a variable layer (0-

20cm), which is usually the surface soil of the ground. This part of the soil is greatly affected by 

meteorological conditions and agricultural technical measures. The content depends on many other 

factors such as soil texture, season, layering, topography vegetation, etc. The soil moisture in this 

layer has a significant variation, and the coefficient of variation is also large. The middle part is the 

layer with slowly changing (20-50cm). This layer is less affected by meteorological conditions and 

agricultural technical measures, and the water coefficient of variation is also small. But it has a 

more significant impact on the water supply for crop growth. The deepest layer is homogeneous 

(50-100cm). Soil moisture in this layer is in a relatively stable state. 

Due to the main percentage of the plants' roots being usually located in 20-100 cm, this study used 

the soil located in this depth interval as root zone soil based on the actual situation in the study 

area. The soil moisture in this part is more stable, and the water exchange and absorption of roots 

and soil are more active, which directly affects the plant's growth.  

Numerous studies have also proved that it is possible to estimate root zone soil moisture based on 
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near-surface soil moisture, and most studies will also use surface soil moisture to explore root soil 

moisture. Georgakakos and Bae (1994) evaluated soil moisture variability in the Midwestern 

United States in their research. They found the stability of root zone soil moisture is much better 

than near-surface. Mahmood and Hubbard (2007) indicated that the correlation between surface 

and root zone soil moisture shows high variability due to differences in soil texture, land use, and 

climate conditions. Mahmoud and his colleagues (2012) also studied the predictability of soil 

moisture at different depths. They found that the soil moisture in the root zone can be estimated 

with observations of 10 cm near the surface, but this is also affected by the climate conditions. Wu 

and Dickinson (2004) and some researchers examined the variability in soil moisture through the 

National Center for Atmospheric Research Community Climate Model. They found that seasons 

affect the correlation between near-surface and root zone soil moisture. 
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3. Material and Methodology 

3.1. Study Area 

This study uses the REMEDHUS network which set up by Centro Hispano Luso de 

Investigaciones Agrarias (CIALE) Universidad de Salamanca. It was deployed in 2005 and has 

been in use ever since. REMEDHUS area is located in Spain's Duero Basin, a semi-arid flat 

agricultural area with about 1,300 square kilometres between 41.1-41.5°N and 5.1-5.7°W, with an 

average elevation of about 800 meters. Statistics show that 80% of the area is winter wheat and 

barley cereals, 12% is forest pastures, 5% and 3% is irrigated crops and vineyards. The soil 

textures are mainly sandy loam and sandy clay loam. This study selects five years from 2014 to 

2018 as the research period. Various data used in this study will be introduced as follows. 

3.1.1. REMEDHUS soil moisture  

 

Figure 3 Location of the REMEDHUS network. 

The REMEDHUS network has 24 automated stations equipped with capacitance probes (Hydra 

Probes, Stevens Water monitoring System, Inc.) and environmental probes (Sentek Pty). This 

study selected 8 (E10, F6, H13, J12, L3, M5, M9 and CAR) as research stations. The location of 

each station is present in Figure 3. The capacitance probe measures the soil moisture at 5 cm, 25 
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cm, 50 cm and 100 cm per hour, with a nominal accuracy of 0.01 m3m−3. REMEDHUS is part of 

the ISMN International Soil Moisture Network, and it has been used in many validation studies of 

remote sensing soil moisture products (Sánchez et al., 2012; González Res-Zamora et al., 2015) 

includes SWI research (Ceballos et al., 2005; Paulik et al., 2014). Furthermore, due to the different 

soil volume monitored by the two probe types, a weighted average of the 0–50 cm soil moisture 

was also calculated (Martínez-Fernández et al., 2015): 

 𝑆𝑀0−50𝑐𝑚 =
𝑆𝑀5𝑐𝑚
5

+
2𝑆𝑀25𝑐𝑚

5
+
2𝑆𝑀50𝑐𝑚

5
 (1) 

Therefore, four in-situ time series from the eight stations resulted for 5, 25 and 50 cm soil depths, 

together with the weighted 0–50 cm.  Soil water parameters: field capacity (θFC), wilting point 

(θWP) and total water capacity (θTWC) of each station and soil layer (Table 2) were obtained from 

each station's water holding retention curve. The retention curves were estimated using sandboxes 

and pressure membrane by applying the Van Genuchten (1980) method, measuring the soil 

moisture contents at nine soil–water potential values (from 0 to 1500 kPa). 

Station Land use Depth (cm) Texture θFC θWP θTWC 

E10 Vineyard 5 Sandy loam 0.088 0.028 0.410 

  25 Sandy loam 0.108 0.047 0.367 

  50 Sandy clay loam 0.193 0.099 0.397 

F6 Vineyard 5 Sandy loam 0.229 0.111 0.324 

  25 Sandy clay loam 0.207 0.113 0.294 

  50 Sandy loam 0.108 0.063 0.347 

H13 Forest-Pasture 5 Sandy loam 0.158 0.075 0.424 

  25 Sandy loam 0.138 0.071 0.446 

  50 Sandy loam 0.113 0.076 0.447 

J12 Rainfed 5 Sandy clay loam 0.236 0.096 0.483 

  25 Sandy clay loam 0.228 0.113 0.456 

  50 Sandy clay loam 0.265 0.168 0.415 

L3 Vineyard 5 Loamy sand 0.125 0.04 0.427 

  25 Loamy sand 0.146 0.056 0.348 

  50 Loamy sand 0.130 0.043 0.370 

M5 Rainfed 5 Loamy sand 0.100 0.057 0.357 

  25 Loamy sand 0.125 0.042 0.406 

  50 Loamy sand 0.071 0.043 0.507 

M9 Rainfed 5 Sandy clay loam 0.226 0.137 0.519 

  25 Sandy clay loam 0.238 0.124 0.527 

  50 Loam 0.214 0.146 0.508 
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CAR Rainfed 5 Loam 0.256 0.137 0.505 

  25 Sandy clay loam 0.239 0.127 0.515 

  50 Sandy clay loam 0.218 0.109 0.500 

Table 2 Land use, texture, field capacity (θFC), wilting point (θWP) and total water capacity (θTWC) at the different 

depths of each station used in this study. 

3.1.2. REMEDHUS climate 

The REMEDHUS region has a semi-arid continental climate with an average annual temperature 

of 12°C. The annual precipitation in the past ten years is 385±100 mm. However, the intensity and 

time of weather conditions vary during the year. Climate factors combined with the growing and 

dormant periods can define seasons with similar soil moisture recharge and utilization processes. 

In this study, the estimation of the soil moisture season is based on the relationship between PET 

(potential evapotranspiration) and precipitation. The comparison results of PET and precipitation 

are given in section 4.3.1. PET is calculated based on the Penman-Monteith equation as a 

reference for the direct estimation of actual crop evapotranspiration. It is derived from solar 

irradiance, relative humidity, average temperature and wind speed. The average PET values were 

calculated by four climate stations (Villamor, Granja, Canizal and Carrizal). The location of each 

station is present in Figure 3. Figure 4 and Figure 5 show the annual changes in PET and 

precipitation observed at four stations in 2017-2018. This method has been used as a standard 

method by the United Nations Food and Agriculture Organization. 

 

Figure 4 Potential evapotranspiration (PET) change in REMEDHUS network from 2017 to 2018. 
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Figure 5  Precipitation changes in REMEDHUS network from 2017 to 2018. 

3.1.3. REMEDHUS location 

Table 3 details the longitude and latitude of each station and is used to match the stations with the 

SMOS data to analyze soil moisture. 

Station Latitude Longitude 

E10 41.27473 -5.5919 

F6 41.37338 -5.5485 

H13 41.18264 -5.47708 

J12 41.20548 -5.41558 

L3 41.44649 -5.3587 

M5 41.39392 -5.32146 

CAR 41.28671 -5.52843 

Table 3 Latitude and longitude of each station used in this study. 

3.2. SMOS Soil Moisture 

According to the measurement, application and processing degree of SMOS, several products 

listed in Table 4 are available to use. 

Level of data Data introduce 

L0 SMOS Payload data in their original format (CCSDS packets) 

L1A Reformatted and calibrated observation and housekeeping data in engineering units. 

L1B The output of the image reconstruction of the SMOS. It consist of Fourier components 

of brightness temperatures in the antenna polarisation reference frame. 

L1C Multi-incidence angle brightness temperatures at the top of the atmosphere, geolocated 

in an equal-area grid system. 
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L2 Soil Moisture Near Real Time Neural Network data 

L3 Sea-ice product 

L4 Downscaled versions of the original resolution to a 1km grid. 

Table 4 Synopsis of SMOS data at all levels 

Barcelona Expert Center (BEC) regularly distributes its Soil Moisture and Salinity research 

products on its web page (http://bec.icm.csic.es). Including high-resolution Soil Moisture maps 

from the Iberian Peninsula at 1 Km and L3 and L4 global salinity maps at several space 

resolutions. This study used the 1 km high-resolution SMOS L4 soil moisture product (2014-2018) 

researched and produced by the BEC. It is obtained by merging microwave and visible infrared 

sensor data with different spatial resolutions and modelling data through a linear downscaling 

algorithm. The relationship between SMOS L3 soil moisture products and auxiliary data is derived 

from the so-called universal triangle that uses adaptive moving Windows to ensure similarity of 

climatic conditions. Auxiliary data includes SMOS L1C brightness temperature, MODIS NDVI 

and European Center for Medium-Range Weather Forecast (ECMWF) surface temperature. Some 

studies have indicated a slight difference between the SMOS brightness temperature measured by 

the ascending and descending orbits (Martín-Neira et al., 2016). In this study, ascending orbits data 

were used. 

 

Figure 6 1 km high-resolution SMOS L4 soil moisture product researched and produced by the BEC (Barcelona Expert 

Center).  

http://bec.icm.csic.es/
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3.3. Calculation of Soil Water Index 

It is mentioned in chapter 2 that root zone soil moisture is related to soil moisture near the surface. 

To further explore the connection between them, Albergel et al. (2008) used a recursive 

exponential filter to predict root zone soil moisture from near-surface observations. There is a key 

parameter T in the model, which can be interpreted as the characteristic time length. It is related to 

the diffusivity of water. Sometimes, it represents the wetting front after a rain event. The 

experimental accuracy of predicting root zone soil moisture will change with the T value. There is 

an optimal T-value (Topt) for each station, which has the highest prediction accuracy. Besides, 

different metrics are needed to evaluate the T-value and lock the Topt. In the whole process，the 

recursive formulation is used to predict the soil wetness index (SWI) and standardizes volumetric 

soil water content by the minimum and maximum values attained over the entire period of record 

at each location. SWI is calculated using the following recursive formula. (The filter is initialized 

to SWI (1) = SM(t1) and K1 = 1.) 

 𝑆𝑊𝐼𝑛 = 𝑆𝑊𝐼(𝑛−1) + 𝐾𝑛(𝑆𝑀(𝑡𝑛) − 𝑆𝑊𝐼(𝑛−1)) (2) 

Where SWI (n-1) is the estimated value of predicted root zone soil moisture at tn-1, SM(tn) is the 

estimated value of surface soil moisture at t n, and the gain Kn at tn can be obtained by  

 
𝐾𝑛 =

𝐾𝑛−1

𝐾𝑛−1 + 𝑒
−
𝑡𝑛−𝑡𝑛−1

𝑇

 
(3) 

Where T is the key parameter required in this study represents the timescale of the soil moisture 

variation (in days), this parameter can be interpreted as the characteristic time length at each 

station and depth, which increases with the depth and decreases with the soil diffusion coefficient 

constant. There are three methods for obtaining the optimal T value (Topt). The first is compares 

remotely sensed SWI with in-situ soil moisture measurements at different depths. The second is to 

compare remotely sensed SWI with simulated soil moisture data at different depths. The third is to 

compare the SWI from the surface in-situ soil moisture measurement with the deep layer in-situ 

soil moisture measurement. This research belongs to the last group. Alberger (2008) showed that 

each research could be found an optimal T, characterized by the highest prediction accuracy 



         21 

evaluated based on the Nash-Sutcliffe (NS) score. In this study, a variety of metrics were used to 

conduct a comprehensive exploration of Topt. Because of the maximum period of the seasons, the 

range is from 1 to 120 days. Topt was determined using these metrics to evaluate the comparison 

between the in-situ observations at the 25cm, 50cm, and 0-50cm layers at eight stations and the 

SWI calculated using surface soil moisture. The SWI calculated according to the in-situ surface 

soil moisture measurement is compared to soil moisture 25cm, 50cm and 0-50cm obtaining the 

different metrics for each T used. The Topt is selected based on the better metric in the different 

cases. 

3.4. Metric of Soil Moisture  

This study will use correlation coefficient (R), root mean square difference (RMSD), centred root 

mean square difference (cRMSD), Bias and Nash–Sutcliffe (NS) score as the validation metrics to 

select Topt. For R and NS, Topt corresponds to the highest value. For RMSD and cRMSD, Topt 

corresponds to the lowest value. For the Bias, T opt corresponds to the deviation value closest to 

zero. Finally, the most appropriate Topt estimation metric method will be selected and applied in 

the subsequent research according to the obtained results. Each of these metrics is described below. 

3.4.1. Correlation coefficient (R) 

The correlation coefficient is a statistical index used to reflect a measure 

of linear correlation between two sets of data, generally represented by r. The correlation 

coefficient can be defined in various ways, and the most commonly used Pearson correlation 

coefficient is used in this study.  

Pearson correlation coefficient between two variables is defined as the quotient of covariance and 

standard deviation. 

 𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=
𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑋)]

𝜎𝑋𝜎𝑌
 (4) 

The above formula defines the overall correlation coefficient, usually represented by the Greek 

https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Correlation_and_dependence
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lowercase letter ρ. Pearson correlation coefficient can be obtained by estimating the covariance 

and standard deviation of samples, which is generally defined by the r: 

 𝑟 =
∑ (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)
𝑛
𝑖=1

samples,
 (5) 

In general, the correlation strength of variables can be judged by the following value range (0< r 

<1 ) :  

0.8-1.0: Exceeding strong correlation 

0.6-0.8: Strong correlation 

0.4-0.6: Medium correlation 

0.2-0.4: Weak correlation 

0.0-0.2: Exceeding weak correlation or no correlation 

3.4.2. Root mean square difference (RMSD) 

RMSD is the root-mean-square deviation between filtered satellite observations and the 

corresponding in-situ measurement， which can be used to evaluate the similarity between two 

samples and can be expressed as: 

 𝑅𝑀𝑆𝐷 = √
∑ (�̂�𝑡 − 𝑦𝑡)

2𝑇
𝑡=1

𝑇
 (6) 

RMSD is very sensitive to very large or minor errors in a set of measurements, so the Root mean 

square error is a good indicator of measurement precision. cRMSD (Centered Root Mean Square 

Difference) has the similar function and computational process as RMSD. It is also used to 

measure the deviation between the observed value and the actual value. The smaller the result, the 

more similar the samples. 

3.4.3. Bias 

Bias is a measure of the dispersion of the sample distribution. It is a non-symmetric error caused 
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by a systematic deviation. Generally used to measure the degree of deviation of the sample value 

from the arithmetic mean, representing the degree of agreement between the results of multiple 

determinations of a sample. The smaller the deviation, the less the sample deviates from the 

average. Bias is generally expressed as: 

 𝜎 = √
1

𝑁
∑(𝑋𝑖 − 𝜇)

2

𝑁

𝑖=1

 (7) 

Where N is the sample amount, and μ represents the mean value of the sample population X. The 

closer the deviation value is to 0, the higher the precision of the measurement result. 

3.4.4. Nash–Sutcliffe (NS) score 

NS Score is often used to quantify the prediction accuracy of simulation models (such as 

hydrological models), which can be expressed as 

 𝑁𝑆𝐸 = 1 −
∑(𝑦𝑖 − 𝑦𝑖

𝑝𝑟𝑒𝑑
)2

∑(𝑦𝑖 − �̅�)
2

 (8) 

Where, 𝑦𝑖
𝑝𝑟𝑒𝑑

 is the predicted value of variables by the model. For a perfect model, the variance of 

the estimated error is 0, then NSE=1. Conversely, if the variance of the estimated error generated 

by a model is equal to the variance of the observed value, then NSE=0. When the variance of the 

estimation error obtained by the prediction model is significantly greater than that of the observed 

value, NSE< 0. Therefore, the value of NSE ranges from (− ∞, 1]. When the NSE value is closer to 

1, the model's prediction ability is better. 

3.5. Sample Cross-Correlation 

The cross-correlation function measures the similarity between a time series and lagged versions 

of another time series as a function of the lag. 
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 𝑐𝑦1𝑦2(𝑘) =

{
 
 

 
 1

𝑇
∑(𝑦1𝑡 − �̅�1)(𝑦2,𝑡+𝑘 − �̅�2); 𝑘 = 0, 1, 2, …

𝑇−𝑘

𝑡=1

1

𝑇
∑(𝑦2𝑡 − �̅�2)(𝑦1,𝑡−𝑘 − �̅�1); 𝑘 = 0,−1,−2,…

𝑇+𝑘

𝑡=1

 (9) 

where y1 and y2 are the sample means of the series, the sample standard deviations of the series are: 

 𝑠𝑦1 = √𝑐𝑦1𝑦1(0), where 𝑐𝑦1𝑦1(0) = 𝑉𝑎𝑟(𝑦1). (10) 

 𝑠𝑦2 = √𝑐𝑦2𝑦2(0), where 𝑐𝑦2𝑦2(0) = 𝑉𝑎𝑟(𝑦2). 
(11) 

An estimate of the cross-correlation is 

 
𝑟𝑦1𝑦1(𝑘) =

𝑐𝑦1𝑦2(𝑘)

𝑠𝑦1𝑠𝑦2
; 𝑘 = 0,±1,±2,… 

(12) 

The ordinary correlation coefficient first aligns the two sequences, then subtracts the average value 

of the samples in the same position from the average value of the respective sequences, then 

multiplies the difference, and finally sums it according to the number of samples. Cross-correlation 

is to stagger the two series by k positions to perform the above steps. T is the length of the series. 

After subtracting the staggered k positions, only T - k elements are left in a one-to-one 

correspondence. Now, k represents the lag. The difference between the correlation coefficient and 

the ordinary correlation coefficient is reflected in the numerator of the formula. The two series are 

not calculated for the corresponding elements but shifted, and the shifted overlapping elements are 

combined and calculated. 

3.6. Coefficient of Variation 

The coefficient of variation, like range, standard deviation and variance, is the absolute value 

reflecting the degree of data dispersion. When it is necessary to compare the dispersion degree of 

soil moisture data of two stations, if the measurement scale difference between two series of data 

is too significant, it is not appropriate to directly use standard deviation for comparison. The 

coefficient of variation is affected by the degree of dispersion of variable values and the average 

level of varying values. It is defined as the ratio of standard deviation to mean： 
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 𝐶𝑉 =
𝜎

𝜇
 (13) 

The advantage of the coefficient of variation over standard deviation is that it does not need to 

refer to the mean of the data. The coefficient of variation is a dimensionless quantity, so when 

comparing two series of data with different dimensions or different mean values, the coefficient of 

variation rather than the standard deviation should be used as a reference for comparison. However, 

when the average value is close to 0, small perturbations will also have a massive impact on the 

coefficient of variation, resulting in poor accuracy. 

3.7. Soil Moisture Season 

SM Season Period 

 (In general) 

Criterion Prevailing Processes SM Condition 

Recharge November-

February  

Precipitation>PET; 

initial plant growth 

Precipitation SM storage increases 

Utilization February - 

Mid June 

Precipitation<PET; 

main growing season 

Strong root-water uptake 

and evapotranspiration 

SM decreases due to 

consumption 

Deficit Mid June- 

October 

Precipitation<<PET; 

crops are harvested 

Evaporation at maximum Continuous drying; SM 

at minimum in the end 

Table 5 Estimated soil moisture seasons from 5-year, and the typical growing season within REMEDHUS, including the 

prevailing processes of SM change. 

The soil moisture season divides the year into three seasons: recharge, utilization and deficit. It is 

defined by the relationship between monthly accumulated precipitation and potential 

evapotranspiration (PET). Recharge begins when the cumulative precipitation is above PET and 

roughly coincides with crop harvest dates (around November). Although the amount of 

evaporation is less in winter due to the climate, the soil moisture starts to recharge and has been 

used by early plant development and transpiration. The utilization period begins when the PET 

value exceeds the precipitation (usually in spring). The amount of water available for precipitation 

cannot make up for the loss caused by plant water evapotranspiration. At this time, the vegetation 

mainly uses stored groundwater. If the rainfall decreases and the plant growing season continues to 

consume water, the soil will begin to dry out at this time. The boundary between utilization and 

deficit is defined as approximately mid-June, when plants' soil moisture in the root zone is 
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intensively used, with inter-annual variability. When water becomes scarce in the autumn, crops 

are harvested quickly. The summer is usually too dry, with insufficient moisture in the 

underground soil, to grow crops on a pure rain basis. Table 5 summarizes the main characteristic 

information of the soil moisture season. 

After the series is divided according to soil moisture season, the original complete series would be 

decomposed into three main categories of soil moisture season (recharge, utilization and deficit). 

Each year will contain these three stages, but this will cause the same soil moisture seasons of 

different years to be discontinuous with each other, so Topt estimation cannot be carried out. There 

are two methods to solve this problem, numerical average and time series splicing. 

 

Figure 7 Diagram of numerical average. 

As the Figure 7, the numerical average method is to use metric standard R to calculate each soil 

moisture season of each year for (15 soil moisture seasons in 5 years), and then classify the results 

according to different seasons and take average value to generate, and finally, select Topt. 

 

Figure 8 Diagram of time series splicing. 
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The time series splicing method splices five time series of the same season into a long time series 

(Figure 8). This new time series contains all the sub-series of the same season in different years of 

a single station. Then, estimating Topt for the long series. 

3.8. Root Zone Soil Moisture Estimation 

Figure 9 shows the research flow in this part. In general, it is divided into three steps. First, the 

near-surface error is calculated by using in-situ observation data and SMOS. One of the original 

goals of the SMOS mission was to collect surface soil moisture data, so this process provides 

"baseline error". Second, SMOS root zone SWI and in-situ root zone SWI were used to calculate 

the matching accuracy. In this process, the previous phase Topt value will be used (obtained by SWI 

from the surface in-situ soil moisture measurement with the root zone layer in-situ soil moisture 

measurement). Finally, the two precision values are compared. If the final results are similar to the 

"baseline error", it proves that using SMOS data to estimate root zone soil moisture is feasible. 

 

Figure 9 Estimating root zone soil moisture using SMOS. 
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4. Results 

4.1.  Depth Effect on Soil Moisture 

This part will analyze the influence of the depth of in-situ measurement on soil moisture. It will 

explore the difference in soil moisture at depths of 5cm, 25cm and 50cm. Stations L3, M5, J12 and 

H13 will be picked as example stations.  

4.1.1. SMOS and in-situ soil moisture 

 

Figure 10 In situ soil moisture time series and SMOS time series at L3, M5 and J12 from 2014 to 2018 (left), and in situ 

monthly average soil moisture for each station (right). 
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In-situ soil moisture data were presented together with SMOS mission measurements (Figure 10 

left). It can be seen that the SMOS series has a more extensive dynamic range than the in-situ soil 

moisture. For the time series of the three stations in-situ measurements, as expected, the depth of 5 

cm has a higher dynamic range, which is more evident at the M5 and L3 stations. The deeper the 

measurement depth, the more limited and smoother the fluctuation range of the curve.  

Station Depth Average Maximum Minimum Range CV 

J12 5cm 0.303 0.440 0.194 0.245 0.203 

 25cm 0.158 0.276 0.096 0.179 0.392 

 50cm 0.230 0.390 0.152 0.237 0.277 

L3 5cm 0.077 0.131 0.020 0.111 0.347 

 25cm 0.109 0.168 0.061 0.106 0.263 

 50cm 0.068 0.090 0.043 0.047 0.219 

M5 5cm 0.141 0.218 0.089 0.130 0.247 

 25cm 0.092 0.137 0.058 0.079 0.247 

 50cm 0.078 0.105 0.049 0.056 0.220 

Table 6 Station L3, M5 and J12 maximum, minimum, range and CV of in situ soil moisture at each depth from 2014 to 

2018. 

Figure 10 right provides the time series of the monthly average soil moisture of the three stations 

near the surface (5 cm) and the root zone (25 and 50 cm) from 2014 to 2018. Generally speaking, 

near-surface soil moisture content has a strong correlation with root zone soil moisture. The 

monthly average soil moisture content of the J12 station is higher than the M5 and L3, and the 

fluctuation range is also extensive. The monthly average soil moisture of M5 showed a similar 

pattern to that of L3. However, the change of J12 soil moisture in early spring was a few weeks 

later than that of M5 and L3, and it has had a relatively steady performance over the summer, 

while the soil moisture at each depth of M5 and L3 was decreasing at this time. The above 

phenomenon may be that the J12 station is far from the other two stations, which is caused by 

different geological and climatic reasons. This situation can also be seen from Table 6 that the 

coefficient of variation (CV) of J12 is higher than that of the others, which confirms that the range 

of soil moisture at J12 is more extensive. It can be seen from Figure 6 that both the SMOS soil 

moisture data and the soil moisture obtained from in-situ observations show apparent seasonality, 

which corresponds to the climate conditions of the region. The monthly mean soil moisture at each 

station peaks in early spring, and then it is dry during the summer. High temperature and surface 
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evaporation keep soil moisture at a higher content, and the difference in in-situ soil moisture at 

different depths was more significant than the cold and rainy periods. 

In contrast, shortly after rainfall in autumn and winter, soil moisture rechargement begins. Due to 

the time delay to reach deeper layers, the water at 5 cm is more than 25 cm or even 50 cm. These 

patterns are similar to the report of Illston and his colleagues (2004). Mahmood et al. (2012) did a 

similar study and finally found that the coupling between the Nebraska root zone and near-surface 

soil moisture is stronger in locations where the climate is wetter. 

4.1.2. Sample cross-correlation 

The relationship between soil moisture is not instant, and there may be a certain time lag. It can 

see the degree of correlation between the two series under different lags by calculating the cross-

correlation coefficient. It is more valuable to find the relationship between two series. 

The 5-25 cm cross-correlation of H13 has a pronounced intensity peak, and it peaked on the first 

day (Figure 11 left-top), while the cross-correlation of 5-50 cm (Figure 11 right-top) is weak and 

lags 1-2 days to reach its peak. Not surprisingly, the maximum cross-correlation of 5-50 cm is 

usually weaker than 5-25 cm. This supports the findings of Wu (2002). The coupling strength 

between soil layers decreases as the depth increases. The decrease in cross-correlation strength 

with depth is consistent with the findings of Mahmood (2012). A similar situation also occurs at 

the M5 station, where the 5-25 cm cross-correlation lags about 1-2 days (Figure 11 left-bottom), 

and the 5-50 cm lags about 3-4 days (Figure 11 right-bottom). This is similar to the result of H13, 

as the depth increases, the cross-correlation tends to decrease, and the lag time tends to increase. 
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Figure 11 Sample cross-correlations of 5–25 cm (left) and 5–50 cm (right) at H13 and M5 stations. H13 at the top and 

M5 at the bottom. 

Other stations cross-correlation of soil moisture are also calculated, founding that is similar to H13 

and M5. At 5-25 cm, most autocorrelation functions show strong autocorrelation of surface soil 

moisture on a time scale of 1-5 days, but the autocorrelation intensity decreases significantly after 

ten days. This suggests that the strong cross-correlation between surface and root zone soil layers 

is partly due to the strong serial autocorrelation of surface soil moisture. However, autocorrelation 

quickly decreases beyond several days, and cross-correlations are more strongly a function of the 

coupling between soil layers. 

4.2. T-optimal Estimation 

This part presents the experimental results of soil moisture estimation in the root zone based on in-

situ 5cm surface soil moisture. The aim is to find the most appropriate validation metric for 

estimating root zone soil moisture and whether Topt results were affected by the target depth. 

As an example, Figure 12 illustrates the time evolution of soil moisture at the depth of 25 cm from 

the ground at station M5 and the results of SWI with T parameters of 8, 50, and 100 days. In this 

case, it can be seen that as the T parameter increases, the time series curve becomes smoother. 

Therefore, the correlation coefficient reflecting the time series similarity seems to be suitable for 

estimating Topt. As shown, the smaller the T value (8 days) calculated for SWI, the better the 

definition of in-situ evolution of soil moisture at 25 cm. 

javascript:;
javascript:;
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Figure 12 In situ soil moisture measurements and SWI time series from M5 station calculated with different T (8, 50 and 

100 days) at 25 cm depth. 

To discriminate Topt with different metrics, it is necessary to compare in-situ soil moisture at 

different depths. In addition, the T range of calculating SWI is 1-120 days. Table 7-9 shows the 

different Topt obtained by different metrics at each station with different depths. Overall, the T 

value increases with the soil depth (Tables 7 and 8), the same as previous model assumptions and 

research results of SWI (Albergel et al., 2008; Paulik et al., 2014). However, the Topt of 0-50 cm 

(Table 9) shows similar results to those obtained at 25 cm (Table 7). It is most likely because the 

weighted average of the 0-50 cm estimate (1) gives more weight to 0 and 25 cm depths. 
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Figure 13 T parameter following the different metrics after the comparison between SWI in-situ and in situ soil moisture 

measurements at 25 cm depth.  

Regarding the validation metrics used, when R is used as a decision metric, the value of Topt is 

lower. For each station, Topt based R values for 25 cm depth ranged from 1 to 23, from 1 to 61 for 

50 cm, and from 1 to 27 for 0-50 cm. For example, only R can help the L3 station to determine its 

Topt value. There is no variation of Topt value obtained by the remaining four metrics. Topt = 1 at 

25cm, Topt = 120 at 50cm, and Topt = 1 at 0-50cm. The same problem that produced the same Topt 

results occurred on F6 and E10 stations when using different metrics. It was confusing. To sum up, 

the Topt obtained based on other metrics ranges from 1 to 120 and does not propose an ideal T. For 

the depth of 50 cm (Table 8), the Topt values of the R and NS scores increase with depth. With 

RMSD, cRMSD, and Bias, the Topt of some stations remained constant at all depths, or the 

variation was so irregular that it was difficult to refer to. 

Figure 13 depicts the evolution of T values from 1 day to 120 days. When R is used to measure the 

optimum T value (Figure 13a), all stations show similar curve shapes and have similar R ranges. 

All the stations are divided into two types. L3 and E10 belong to the first type. T optimal appears 

when T=1, and then R-value decreases gradually with the increase of T, presenting a downward 

trend on the whole. The remaining stations belong to the second type. They do not obtain the 

optimal T when t=1, and the R-value increases with the increase of T and reaches the peak at a 

certain point to meet the Topt, then begins to decline. The R-value curves of these stations all show 

an increase first and then a decrease. All the above shows the consistency of R as a Topt 

measurement method. For most application scenarios, the correct time model for obtaining the soil 

moisture in the root zone may be more important than the absolute value, making R (Figure 13a) 

javascript:;
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the most appropriate measurement metric. In contrast, the degree of dispersion of other decision 

metrics is very high. 

When using RMSD and cRMSD as the metric, there is a lack of apparent criteria. Because in most 

stations, the range between the maximum and minimum values of RMSD and cRMSD is tiny 

(approximately 0.02), making the task of choosing Topt tough (Figure 13b and c). The same 

situation also appears in obtaining Topt by using Bias and NS scores as the measurement metric. 

Most stations make no discernible difference at all depths (Table 7-9, Figure 13d and e). When the 

Bias is used to estimate the entire period, the difference between the SWI estimate and in situ soil 

moisture is negligible, resulting in a curve that looks like a straight line. It can be inferred that this 

may be due to the balance of negative and positive values. Therefore, RMSD, cRMSD, and Bias 

are considered unsuitable for calculating Topt, so the possibility of further analysis of them is 

abandoned. 

 E10 F6 H13 J12 L3 M5 M9 CAR 

R 1 20 3 12 1 4 23 19 

RMSD 1 30 30 10 1 120 30 25 

cRMSD 1 30 30 10 1 120 25 20 

Bias 1 40 25 10 1 5 30 15 

NS-score 1 30 30 10 1 120 30 25 

Table 7 T opt obtained by the different metrics at 25 cm depth. 

 E10 F6 H13 J12 L3 M5 M9 CAR 

R 1 57 44 61 8 26 42 59 

RMSD 5 120 45 40 120 120 70 110 

cRMSD 120 120 45 40 120 120 55 70 

Bias 1 120 120 25 120 75 120 120 

NS-score 5 120 45 40 120 120 70 115 

Table 8 T opt obtained by the different metrics at 50 cm depth. 

 E10 F6 H13 J12 L3 M5 M9 CAR 

R 1 20 18 24 1 4 24 27 

RMSD 1 45 30 20 1 35 35 40 

cRMSD 1 45 30 20 1 40 30 35 

Bias 1 120 25 10 1 25 35 25 

NS-score 1 45 30 20 1 35 35 40 

Table 9 T opt obtained by the different metrics at 0-50 cm depth. 

The SWI SMOS is calculated with SMOS data and Topt value in Table 7 used metric R. As shown 

in Figure 14, results of F6 station T= 1, 20 and 40 at 25cm depth, where T=20 is Topt. It can be 
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seen that when the value of T is less than Topt, SMOS data distribution is extremely scattered on 

both sides of in-situ observation data, which is very unfavourable to judge the relationship 

between two data sets. When the T value is above than Topt value, SMOS data distribution will be 

highly concentrated, and the curve tends to be flat, but at this time, SMOS data will lose too many 

data details and comparison points, which is also not conducive to judging the relationship 

between two data sets. However, after using Topt, the problem of data distribution being too 

scattered is solved, and the loss of accuracy caused by the curve being too smooth is also avoided.  

 

Figure 14 Results of the comparison between the time series of the SWI SMOS (using T obtained with R) with the in-

situ measurement stations at F6 station 25 cm depth. Top: T=1; Mid (Topt): T=20; Below: T=50. 
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4.3. T-optimal Estimation for Soil Moisture Seasons and Soil Textures 

The previous section confirmed that soil root zone moisture could be inferred using an exponential 

filter from surface soil moisture. Correlation coefficient (R) was evaluated as the most suitable 

decision metric for Topt estimation, so R was taken as the only metric method for optimal T 

estimation of soil moisture season. Meanwhile, there may be many factors affecting the final result 

of Topt estimation. So this part will use the same data as the last part to analyze whether different 

soil moisture seasons and soil textures would impact Topt estimation or not.  

4.3.1. Soil moisture season 

 

Figure 15 Division of soil moisture seasons in REMEDHUS from 2014 to 2018. 

Figure 15 shows the average monthly cumulative precipitation and estimated potential 

evapotranspiration (PET) of REMEDHUS from 2014 to 2018. Water enters the soil in the form of 

precipitation and is released into the atmosphere through evapotranspiration. From this 

relationship (Table 5), the soil moisture season is defined, including recharge (November - February 

10th), utilization (February 10th - Mid June) and deficit (Mid June - October).  

Figure 16 shows the results of three soil seasons obtained by numerical average. It can be seen that 

compared with recharge and deficit, the overall results of utilization is better with the optimal R 

values of all stations are above 0.7, indicating that there is a strong or extremely strong correlation 

between the root zone and surface soil moisture in utilization. Besides, most stations' best R-value 
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in recharge is between 0.4-0.7 and between 0.5-0.8 in deficit season, both of which are inferior to 

utilization. 

 E10 F6 H13 J12 L3 M5 M9 CAR 

Recharge 12 9 2 34 1 1 15 12 

Utilization 30 14 4 13 2 3 10 30 

Deficit 17 100 1 1 1 6 41 17 

Table 10 Topt obtained by the different soil moisture seasons at 25 cm depth used numerical average method. 

 

 

Figure 16 T parameter obtained by the different soil moisture seasons at 25 cm depth used numerical average method. 

Figure 17 shows the results of three soil seasons obtained by time series splicing. It can be seen 

that the optimal R-value of utilization at each site is between 0.5-0.9, which is better than 0.3-0.8 

of recharge and the results obtained at each station in deficit. 

 E10 F6 H13 J12 L3 M5 M9 CAR 

Recharge 1 6 1 17 1 1 4 5 

Utilization 1 8 3 11 1 3 15 7 

Deficit 1 17 1 1 1 8 3 1 

Table 11 Topt obtained by the different soil moisture season at 25 cm depth used time series splicing method. 
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Figure 17 T parameter obtained by the different soil moisture season at 25 cm depth used time series splicing method. 

The above analysis proves that soil moisture season affects the optimal R-value, the utilization is 

significantly better than the other two seasons. It can be seen from Table 7, Table 10 and Table 11 

that the Topt results of Utilization at each site are similar to the annual Topt. Utilization is the main 

growing season of plants when the strong root water absorption and evapotranspiration make the 

soil water activity reach the highest value in the year. It can be said that the Topt value of 

Utilization can replace the annual Topt value to some extent. However, recharge and deficit do not 

have such representation. But after averaging the Topt results of the three seasons, similar results of 

annual Topt were obtained.  

4.3.2. Soil textures 

The stations with the most similar seasonal and annual estimates, L3, M5, and H13, have different 

land uses. As Table 2 shown, M5 is rainfed, L3 is the vineyard, and H13 is forest-pasture. It seems 

that there is no significant relationship between the stability of T optimal estimation for soil 
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moisture seasons and land use. However, coincidentally, the soil textures of these stations are 

homogeneous (L3 and M5: Loamy Sand, H13: Sandy Loam), and the soil textures in each layer 

are the same. Such stable soil structure may lead to a very stable soil water demand, making it 

easier to obtain ideal results when estimating Topt. The results of the stations with large fluctuation 

(F6, M9 and CAR) were significantly higher than those of other stations without exception, which 

seems to indicate that field capacity (θFC) can affect the results of T-optimal estimation for soil 

moisture seasons. However, the value of θFC  is usually affected by soil textures, usually clay< 

loam sandy< sandy soil, so that the soil textures may affect the results of Topt estimation to a 

certain extent. 

4.4. Estimating Root Zone Soil Moisture Using SMOS 

The results show that near-surface soil moisture is medial to strongly coupled with soil moisture in 

the root zone and that near-surface SWI. The data based on in-situ observations can be used to 

provide reasonable predictions of root zone SWI. Next, we will use SMOS derived surface soil 

moisture for each station to infer root zone soil moisture to evaluate the effectiveness of the 

exponential decay filter. SMOS data were collected every two days between January 2014 and 

December 2018. M9 station is not included in the following experiments due to data loss.  

4.4.1. Station–SMOS surface soil moisture comparison 

The corresponding relationship between the SMOS surface inversion and the near-surface in-situ 

soil moisture observation provides the "baseline" error, which will compare the accuracy of SMOS 

estimation of soil moisture in the root zone. The station data is directly compared with SMOS, and 

the same metric (R, RMSD, cRMSD, Bias, NS-Score) as before is used to evaluate the strength of 

the relationship between the two data sets. Due to the scale differences between the station and 

satellite footprints, all error metrics are based on SWI rather than the raw volumetric water content. 

This ensures that the two data sets have the same mean and value range so that the error evaluation 

is only based on the covariance of the data set. 

As Table 12 shown. The R values of the seven stations ranged from 0.51 to 0.64, and the 
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fluctuation range of each station was minimal, with an overall average of 0.58, although it was in 

the "Medium correlation" range（0.4 < R < 0.6）, but it is very close to the "Strong correlation" 

range （0.6 < R < 0.8）. This shows that there is a good correspondence between the two data sets. 

In the evaluation of RMSD, the average RMSD of the seven stations is 0.27. Except for J12, which 

is slightly larger (0.39), the results of the remaining six stations are all between 0.2-0.3. The same 

situation appeared in the results of Bias. Similarly, the value of the J12 station was significantly 

higher than that of other stations, which may further confirm the particularity of this station. When 

cRMSD was used for evaluation, the results of each station showed significant consistency with a 

small value, indicating that the evaluation results were very positive and the consistency between 

the two data sets was good. Due to the value range of NS-score is (− ∞, 1], the results of the seven 

stations are scattered, so it is inconvenient to estimate. 

  E10 F6 H13 J12 L3 M5 CAR 

R Surface 0.51 0.59 0.61 0.57 0.53 0.64 0.60 

Root Zone 0.66 0.53 0.61 0.76 0.54 0.50 0.60 

RMSD Surface 0.20 0.25 0.26 0.39 0.27 0.26 0.23 

Root Zone 0.20 0.29 0.39 0.30 0.38 0.29 0.26 

cRMSD Surface 0.19 0.18 0.18 0.19 0.20 0.19 0.19 

Root Zone 0.17 0.16 0.16 0.15 0.18 0.18 0.18 

Bias Surface 0.22 0.29 0.31 0.51 0.33 0.31 0.27 

Root Zone 0.23 0.36 0.53 0.37 0.48 0.37 0.30 

NS-score Surface -0.19 -0.73 -0.98 -3.90 -0.90 -0.32 -0.09 

Root Zone 0.09 -1.58 -4.47 -0.66 -3.50 -1.90 -0.42 

Table 12 Statistics showing the correspondence of SMOS and station SWI data sets.  Surface values are calculated from 

the in-situ surface – SMOS surface, while values under the root zone are computed from the in-situ root zone – SMOS 

root zone. All values are SWI unitless. 

4.4.2. Station–SMOS root zone soil moisture comparison 

The exponential decay filter described in section 3.3 is used to estimate root zone soil moisture 

based on SMOS surface data. The Topt value of each station has been obtained in the previous 

experiment, and the SWI of the SMOS root zone is estimated from surface data using the Topt 

obtained by R in Table 7. The SMOS root zone SWI estimated value was compared with the in-

situ root zone SWI value, and the accuracy was measured by R, RMSD, cRMSD, Bias and NS-

Score. 
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SMOS root zone SWI estimates are compared with 25cm in situ SWI measurements at all stations. 

The prediction results of the root zone using SMOS were evaluated based on the relationship 

between SMOS surface inversion results and 5 cm soil moisture observation. It can be used to 

determine the error in the SWI estimation of the root zone is due to the exponential filtering 

method or the uncertainty of SMOS. Table 12 shows the evaluation results. The R-value ranges 

from 0.50 to 0.76, and the overall average value is 0.6, similar to the R result of SMOS data and 

in-situ surface observation data in the previous section. In the evaluation of RMSD, the minimum 

value of the seven stations is 0.20, the maximum is 0.39, and the average value is 0.30, which is 

not much different from 0.27 in the previous experiment. When cRMSD was used to evaluate the 

results, the results were still highly concentrated, with an average of 0.17. All the above results 

indicated that there was a good agreement between the in-situ root soil moisture and root zone 

SMOS SWI. 

Figure 18 top shows the R-value for all stations. R is calculated between in-situ surface 

observations and in-situ root zone (blue triangles), in-situ surface observations and SMOS surface 

inversion (green squares), and in-situ root zone observations and SMOS root zone estimation (red 

circles). It can be seen that the red circles and the green squares have a very similar distribution 

and are lower than the blue triangles. This indicates that the accuracy between in-situ surface 

observations and in-situ root zone estimates is highest, which is obvious since their values are 

derived from actual in-situ measurements. However, the remaining two data sets also had good 

estimation accuracy, with values above 0.5 at each station. This indicates that it is feasible to 

estimate soil moisture in the root zone from SMOS data. Although the accuracy is not as high as 

that between in-situ surface observation and in-situ root zone estimation, it is similar to the 

"baseline" error (the accuracy between in-situ surface observation and SMOS surface inversion). A 

similar conclusion can be drawn from the RMSD results (Figure 18 below), the blue is 

significantly better than the green and red, but the green and red also have good accuracy. 
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Figure 18 The figure shows R-value (top) and RMSD value (below) at all stations. Blue triangles are calculated with the 

in-situ surface observations and in-situ root zone, green squares are the in-situ surface observations and SMOS surface 

inversion, and red circles are the in-situ root zone observations and SMOS root zone estimation. 

The results in Section 4.3 indicate that soil moisture season will affect Topt selection. Next, it will 

explore whether different soil moisture seasons will affect the Station-SMOS root moisture 

comparison results. Here, the method in Section 4.3.1 and the Topt value in Table 10 are selected. 

The Correlation coefficient (R) results are shown in Table 13 and Figure 19.  

 E10 F6 H13 J12 L3 M5 CAR MEAN 

Annual 0.66 0.53 0.61 0.76 0.54 0.50 0.60 0.60 

Recharge 0.59 0.35 0.75 0.53 0.48 0.55 0.71 0.56 

Utilization 0.89 0.90 0.77 0.86 0.59 0.69 0.84 0.79 

Deficit 0.60 0.32 0.61 0.22 0.34 0.53 0.54 0.45 

Table 13 The R-value of station-SMOS root zone soil moisture estimation in different soil moisture seasons. 

There is a big difference in the results across the three soil moisture seasons. The average of the 

annual correlation coefficient is 0.60, but Utilization is the highest, reaching 0.79, with a range of 
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0.59-0.90. Recharge is slightly better than deficit, with an average of 0.56. The lowest result is the 

deficit, 0.45 on average, and even the J12 station recorded 0.22. The histogram can very clearly 

reflect this situation, the green column (utilization) is significantly higher than that of the other two 

soil moisture seasons at all stations. Thus, it can be said that different soil moisture seasons will 

significantly affect the accuracy of soil moisture estimation in the root region using SMOS, and 

the Utilization result is obviously better than the other two soil moisture seasons. Selection of 

Utilization for soil moisture estimation can improve the accuracy of the results. 

 

Figure 19 The histogram when estimating station-SMOS root zone soil moisture in different soil moisture seasons used 

Correlation coefficient (R). 
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5. Discussion 

Satellite soil moisture inversions are valuable because they provide better spatial coverage than in-

situ soil moisture observations. SMOS measures water content in a few centimetres of soil at the 

top, so it cannot directly determine soil moisture status in the root zone. Therefore, it is essential to 

evaluate the degree of association between near-surface and root-soil moisture when retrieving soil 

root zone moisture by satellite. This study is located in a specific area. Therefore, any results 

obtained cannot directly generalize all cases. 

5.1. T-optimal Estimation 

Researchers used simulated soil moisture data to obtain the Topt value of 30-90 days with ASCAT 

soil moisture and used correlation coefficient as the estimated metric of Topt for a layer depth of 1–

1.5 m (Brocca et al., 2010). Pellarin (2006) used ERS soil moisture data to obtain the Topt is 39 

days, which is higher than the Topt t obtained in this study. Other studies use different depths of in-

situ soil moisture to estimate Topt. For example, Albergel et al. (2008) and Ford et al. (2014) used 

NS statistics to find that Topt has a low value. Su (2015) pointed out that since the in-situ data is 

less noisy than satellite retrieval, the lower T value is not surprising. In particular, Albergel et al. 

(2008) obtained Topt = 6 days in the 30 cm layer in SMOSMANIA and SMOSREX in France, and 

Ford et al. (2014) found that Topt = 8 days and nine days in Messonet, Oklahoma and Nebraska 

Auto Weather. The results obtained in these two different studies are similar to the Topt value 

obtained in this study. 

Paulik et al. (2014) used different T values and ASCAT surface soil moisture data to obtain SWI at 

different depths, but they did not find a clear Topt value. But they concluded that the observed soil 

Topt generally increases with soil depth increase. It is also similar to the results obtained in this 

study. 

Alberger et al. (2009) found that the Topt using 30 cm ASCAT soil moisture data is 14 days. Broca 

et al. (2010) found that Topt = 19.5 days (10cm), Topt = 23 days (20cm), and Topt = 29 days (40cm), 

also using ASCAT soil moisture. These results of those Topt are higher than the value obtained 
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using R in this study (9 days for 25 cm). In addition, in a study on the same area using ERS data 

(Ceballos et al. 2005), Topt values (40 days) at a depth of 0-25 cm were also obtained. The time 

interval can explain the difference between the two studies in situ data measurements. The latter 

study is once a day, the former is once every two weeks, and the soil moisture probes are 

inconsistent. 

In terms of the length of the experimental data, Broca et al. (2010) believe that the high variability 

of Topt may be due to the different lengths of data used. However, the time period used to calculate 

Topt in our study and that of Albergel et al. (2008) is very different, but Topt is similar. Therefore, 

questioning the length of the series is not that important. 

Regarding the selection of the database used to calculate the Topt, the use of in-situ soil moisture or 

remote sensing series may result in a significant difference in the estimated value of T, which is 

more important than the length of the series. Many little-known factors seem to affect Topt 's search. 

Theoretically, soil texture and climate will be the key factors.  

5.2. Effects of Soil Moisture Season and Soil texture 

Soil moisture season is a special seasonal division that reflects soil moisture variation, which 

requires more accurate PET and precipitation data support. In the absence of this data, the same 

purpose can be achieved to a certain extent by using the natural division of the four seasons of 

spring, summer, autumn and winter. 

The REMEDHUS network used in this study is not very large, and the data of four climate 

collecting stations can reflect the climate change of this network. But from the analysis of the 

actual situation, different stations should have different soil moisture season periods, if the soil 

moisture season can be divided according to different stations, the result will be more accurate in 

theory. In addition, the five years PET and precipitation data were integrated in this study to obtain 

a uniform seasonal period of soil moisture and apply it to each year. This facilitates the experiment 

to some extent, but it also ignores the unique climate differences of different years. 

Previous studies have shown that soil texture does not affect Topt (Paulik et al., 2014). However, 

javascript:;
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there are very few research materials related to this issue, and further exploration is needed in the 

follow-up, and the results need to be further verified. In this study, whether the soil structure of the 

station is uniform or not seems to indicate the results of the experiment. When the soil 

characteristics vary greatly with depth, the performance of the exponential filter will also fluctuate. 

But this is just a conjecture. This study only discovered the possibility of this influencing factor, 

and a lot of research must be combined with geological knowledge to verify it further. Whether θFC 

or soil textures will affect the Topt results also needs further investigation. 

It can be seen from this study that the Topt of the exponential filter is very sensitive to soil moisture 

and varies greatly according to climate conditions. Detailed and thorough research of this problem 

will certainly be conducive to the study of Topt in the future.  

5.3. Numerical Average and Time Series Splicing 

The two methods used in seasonal Topt estimation of soil moisture, numerical average and time 

series splicing, are both trying to solve the problem that time series of the same season in different 

years are not connected. In essence, there are only different data processing methods, so it is 

temporarily impossible to find appropriate indicators to judge the merits of the two schemes. In 

principle, numerical averaging is more reasonable because splicing time-discontinuous series as a 

continuous series to calculate SWI is inconsistent with the initial conditions of SWI. The method 

of numerical average will be adopted to calculate the average value, which will reduce the impact 

of random situations on the results. To analyze the influence of the two methods on experimental 

results, it is necessary to set up more complete practical steps for verification. However, this issue 

is of limited value, and the scientific nature and merits of the two methods will not be explored 

here. 

5.4. Future Work 

The coupling relationship between surface soil moisture and root zone soil moisture was 

emphatically verified in this study. This laid a foundation for the inversion of zone soil soil 

moisture using SMOS satellite data. Future work can be divided into two main directions. 
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The first option is to continue exploring the factors that influence the correlation between surface 

soil moisture and zone soil soil moisture, including climatic conditions, seasonal factors, soil 

textures, water content, etc. Although this study reached some preliminary conclusions, it did not 

establish a significant control group throughout the study. Future work can select one or multiple 

of the potential influencing factors for targeted research so that the relationship between surface 

soil moisture and root zone soil moisture becomes predictable. 

The second option is to use SMOS satellite data to inverse zone soil soil moisture. This direction 

can obtain zone soil soil moisture from satellite missions and generate many branches from it. The 

method can calculate plant water use, predict crop growth, monitor regional rainfall and even 

respond to floods and droughts caused by unusual weather conditions. 
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6. Conclusion 

Satellite soil moisture inversions are valuable because it provide better spatial coverage than in-

situ soil moisture observations. SMOS measures the moisture content of several centimetres on the 

soil surface, so it cannot directly determine the soil moisture status in the root zone. Therefore, 

when using satellites to retrieve soil moisture in the root zone, it is essential to assess the degree of 

correlation between near-surface and root zone soil moisture. This study quantified the coupling 

strength between the surface soil moisture and root zone soil moisture. It also evaluated whether 

the exponential filtering method can predict soil moisture in the root zone. Finally, the in-situ 

observations are used to evaluate SMOS root zone soil moisture estimation accuracy based on 

exponential filtering. 

The study analyzed the correlation between the near-surface and root zone soil moisture at eight 

stations of the REMEDHUS network. Through the sample cross-correlation, it proved that the 

coupling strength decreases with the soil depth. The exponential filter's main factor (Topt) is very 

sensitive to soil moisture and varies greatly depending on the climate. T selection based on RMSD 

and cRMSD metrics should be ignored because the range between the maximum and minimum 

values of these metrics is too small, making selection difficult or even impossible. The resulting 

curve is almost a straight line when Bias is used as the metric, it cannot give a clear Topt. The shape 

of the metric R curve is similar in all stations, and the R range of each station is also similar, which 

is significantly better than the NS score result. 

Therefore, when using exponential filtering to infer root zone soil moisture, R is considered to be 

the most suitable decision metric for Topt estimation. SMOS soil moisture data and in-situ soil 

moisture have obvious seasonality. Different soil moisture seasons will affect the selection result 

of T. In the study of soil moisture season, the result of utilization is better than the other two 

seasons. The study did not find that land use is a factor that affects the Topt, but choosing the 

station with the homogeneous soil texture is conducive to the development of the experiment. 

Because when the soil characteristics vary greatly with depth, the exponential filtering method also 

performs poorly. Different soil textures may make the final experimental results different from 
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expectations. Therefore, it is better to choose the stations with uniform and homogeneous soil 

textures when making preliminary inferences on the network. 

After establishing a strong correlation between near-surface and root-zone soil moisture, the 

exponential filtering method of Albergel et al. (2008) was used to estimate root-zone soil moisture 

based on near-surface observation data. This method is proved effective. Based on SMOS surface 

inversion, the exponential filtering method is used to estimate the root zone soil moisture. The 

estimated value of the root zone was compared with the observed value of 25cm soil moisture. The 

SMOS root zone soil moisture correlates with the observed in-situ root zone values, and the 

correlation of all stations has reached the standard of "medium correlation" or "strong correlation". 

But different soil moisture seasons can significantly affect this result. 

In summary, the main conclusions of this study are: (1) The near-surface and root zone soil 

moisture is strongly coupled; (2) The exponential filter method can provide an accurate estimation 

of root zone soil moisture, but it is necessary to pay attention to the influence of soil moisture 

season and soil texture on parameter T; (3) SMOS surface soil moisture can be used to estimate 

root-zone soil moisture using exponential filter method however the accuracy of prediction varies 

greatly in different soil moisture seasons. 
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