
1

An Efficient Algorithm for Fast Service Edge
Selection in Cloud-based Telco Networks

Javier Baliosian∗, Luis M. Contreras†, Pedro Martı́nez-Julia‡, Joan Serrat§
∗Universidad de la República, Uruguay; † Telefónica CTIO Madrid, Spain; ‡National Institute of Information and

Communications Technology (NICT) Tokyo, Japan; §Universitat Politècnica de Catalunya, Spain.

Abstract—Telecommunication operators are increasingly in-
tegrating computational infrastructure into their networks at
different location levels, including the network edge. This makes
a highly distributed processing environment a reality, which is
expected to enable next-generation services. This article proposes
a novel and efficient algorithm to determine the best service
execution locations through the “service edge”, a concept that
groups services in categories according to their requirements
and benefits from the flexibility of distributed cloud resources.
The paper is focused on describing the algorithm so that it
can be integrated into the telco operators’ management and
orchestration systems. Simulation results underpin the practical
feasibility of the proposed algorithm.

I. INTRODUCTION

Traditionally, telco networks (including both fixed and mo-
bile networks) were designed following a hierarchical struc-
ture, with a precise function of traffic aggregation, having
as a principal purpose the distribution of contents from the
peering and transit points. This conventional design is being
questioned due to the need to support different advanced ser-
vices compelling a wide variety of performance requirements,
traffic profiles, and connectivity types. Future telco networks
will integrate cloud computing infrastructure [1] within several
types of sites or Points of Presence (PoPs) of the operator’s
network, creating a topology that can satisfy Service Level
Objectives (SLOs) such as throughput, delay, and processing
capacity. In that context, the objective for the telco operator
will be to facilitate an efficient distribution of the workload in
the network, improving the overall network efficiency at the
time of provisioning the services, accomplishing the expected
user’s service experience, and maximizing its profit. We un-
derstand profit here as the numerical expression of a given
business policy. These PoPs will be distributed across different
locations of the network [2], such as the operator’s core
network, central aggregation offices, base stations, or even on-
premise or on-device. Figure 1 sketches the envisaged network.
In the horizontal axis, we show the order of magnitude of the
number of available cloud computing facilities quantified in
three distinct domains. In the vertical axis, we show the order
of magnitude of latency, expressed in milliseconds, that some
services may require, hence being constrained to be deployed
in the edge, regional, or centralized computing facilities.

Nevertheless, latency is not the only SLO that can impact
the location of services at deployment time. We are consid-
ering 3GPP service scenarios [3][4], with the three types of
5G service categories, namely enhanced Mobile Broadband

(eMBB), ultra Reliable Low Latency (uRLLC) and massive
Machine Type Communications (mMTC). Services in these
categories are characterized through different latency, jitter,
or traffic density. All these performance parameters can be
considered as constraints for deciding where to instantiate a
given service. In addition, minimization of energy consump-
tion, balancing network and cloud workloads, maximization of
profit, and geographic or regulatory constraints, are examples
of complementary decision criteria. The adoption of a specific
subset of these criteria is up to the telco operator.

Without lack of generality, the work presented in this paper
considers that services are characterized by the following four
technical dimensions:

• Throughput (T), as the data rate at which the service
generates or consumes data,

• Latency (L), characterized by the end-to-end delay of the
data transmission,

• Computation (C), associated with the processing needed
by the number of sessions to be established and

• Storage (S), identified by the memory size of the data to
be stored.

The motivation to select these four dimensions is that they
are key differentiating parameters of the three types of 5G
service categories mentioned above and, at the same time,
they are directly related to the capabilities of the hosting
infrastructure (both, cloud and network infrastructures).

Moreover, in line with 5G, we assume that services are
deployed on top of cloud-network slices. A cloud-network
slice is constituted by slice parts, where each slice part is
a bundle of computing and/or networking resources [5]. For
illustrative purposes, a slice part could be represented utilizing
the picture of Figure 1, i.e., a set of different types and
locations of computing and networking resources, which are
shared among several isolated slice parts. On the other hand,
a 5G service is usually deployed as a bundle of microservices,
on top of the computing resources of one or several slice
parts, to satisfy specific computation and storage requirements,
being connected through network-slice parts, guaranteeing
throughput and latency bounds. It is worthy to say that
different microservices of a given service can have different
requirements, and therefore they may need to be placed on
different service edges. In that framework, the problem faced
by the telco operator that we deal with in the article can be
sketched as follows: given a set of services or parts of services
(i.e., microservices), each specified by a set of requirements in



2

terms of throughput, latency, computation, and storage needs,
find the computing resources to host them, satisfying these
requirements and maximizing the associated profit. In other
words, our problem consists of finding the service edge,
as described in our former work [6], for each one of these
services or microservices. The grouping of microservices into
deployment units, i.e., to be deployed jointly in the same
computing facility, is service-specific and falls outside the
scope of this paper.

Having a service orchestration tool to solve, fully automated,
the above problem will become a must for telco operators
aiming to rationalize the investment needed to support a high
number of computing facilities on the network. Selecting the
most appropriate execution environment for each service is,
in essence, an exercise of efficiency and optimization. This
paper describes an efficient mechanism for service deployment
on computational infrastructures, taking into consideration
parameters like throughput, latency, computation, and storage.
With that aim, it extends and complements the work in [6] by
modeling the problem as a multidimensional flow problem and
proposing a new heuristic technique to solve it. This heuristic
leverage realistic assumptions on the number of service and
infrastructure types that can be encountered, addressing the
typically intractable problem of optimally allocating multi-
requirement services on hosting infrastructure. Its principal
characteristic is that the time needed to solve the problem is
short enough to be used in practical decision-aided systems in
operational networks with results very close to the optimum.
We envisage the proposed mechanism as part of the service
management and orchestration system used by telco operators
for the deployment of services, when transitioning towards a
softwarized network approach.

The paper is organized as follows. The section after this
introduction brings the necessary background to pave the way
to describe our proposed heuristic; then, we present the first
contribution of the paper, which consists of an extension of
the conventional Successive Shortest Path algorithm (SSP) to
a multidimensional space, which is called Vectorial Successive
Shortest Path (VSSP) algorithm, setting the grounds of the
following section where we show how the proposed VSSP
algorithm can be used to decide the allocation of services
on the existing computing environments. That is the second
contribution of the paper. Later, we provide a simulation-based
evaluation comparing the results of the proposed heuristic
with the optimum solution given, when possible, by a Mixed
Integer Linear Programming (MILP) solver. The final section
concludes the paper and presents some future steps.

II. THE PROBLEM OF ASSIGNING SERVICES TO HOSTING
INFRASTRUCTURE

As stated in the previous sections, our contribution is an
algorithm that maximizes the profit of telco operators de-
ploying services, or microservices, in their respective optimal
service edges. As described in [6], the concept of service
edge is an extension of the physical network edge. In fact,
a service edge is characterized by a set of characteristics,
which in this work are materialized as the throughput at which

the service will be working, its end-to-end latency, and the
computation and storage capabilities offered to that particular
service. Services hosted in their optimal service edges will also
fulfill their respective SLAs in terms of the above mentioned
four characteristics.

The problem we are solving by means of the proposed
algorithm is a particular case of the well-known Assignment
Problem [7]. Although later in the article we will address more
complex versions, we start the description of our proposal with
a simple version of the problem; in it, services require only
one type of resources (e.g., storage).

A common way to solve this kind of problem is through a
modeling strategy that uses flow networks. Flow networks are
used in [8] to minimize the cost of virtual switching induced by
an NFV service chain deployment. This is a different problem,
albeit related to ours, and showing the power of that modeling
instrument.

A flow network is a graph constituted by a set of nodes
and a set of edges; on this graph, a hypothetical flow emerges
from one of the nodes (the source), flows through the edges
passing through intermediate nodes, and disappears in the
sink node. (see [9] for more details). Following a common
way of using this abstraction, the Assignment Problem can be
modeled as a flow network with four layers as in Figure 2; one
layer composed of a single source node s; a layer of nodes
representing each one a different type of services; another
layer of nodes representing types of computing infrastructure,
and finally, a layer corresponding to the sink node t. Nodes
representing service types and infrastructure types are intercon-
nected through a full mesh of graph edges. Please note that to
avoid confusion with the edges of the telco network or even its
communication links, we refer to the edges of the flow network
graph as graph edges. Each graph edge is characterized with
a weight and a capacity whose roles are described hereafter.

Essential to understand how a flow network works are the
flows between service type nodes and resource type nodes.
A flow between a given service type and resource type is an
integer that accounts for the total amount of resources needed
by services of this type. These flows are indeed determined
by the algorithm adopted to solve the problem. The flow
conservation property must hold at each node, meaning that
the flow entering into a service type node must be equal to the
sum of flows leaving that node. It is also worth mentioning that
the flow leaving a given infrastructure type node towards the
sink node, representing the total amount of resources needed
of that type of infrastructure, can not exceed the resources
available of that specific type of infrastructure. The weight of
a graph edge linking a service type with an infrastructure type
(i.e., from layer 2 to 3) is the one minus the normalized profit
that the telco operator obtains deploying that service type in
that infrastructure type. Graph edges where either the source
or sink nodes are involved have no weight assigned. This way,
looking for the minimum weight flow from source to target is
equivalent to look for the flow that maximizes the profit.

A well-known algorithm to compute the minimum weight
flow is the Successive Shortest Path algorithm (SSP) [10]. The
SSP looks for the maximum flow with the minimum weight
that can be injected from the source node to the sink node on



3

a flow network graph as represented in Figure 2.
This algorithm aims to iteratively look for the path of

minimum aggregated weight between the source and the sink
and then “send” as much flow as possible through that path.
Observe that the weight of a graph edge can also be seen
as a distance from one end to the other of that edge; that is
the reason to talk about “shortest path” as synonymous with
minimum weight path. This is exemplified by the red flow
shown in the first step of Figure 3 that carries a maximum
flow of two units through a path whose accumulated weight is
1+ 1+ 1 = 3 units. This maximum flow reduces the capacity
of the graph edges that constitute the path to support other
flows. In the following iteration, to allocate the subsequent
flow, we can realize that it would be better to send the initial
flow through a higher weight path and avoid blocking the
second flow, which is a stream that shares some links of the
path mentioned above. To solve that, the idea is to allow the
algorithm to “push backward” some already established flow to
make space for a new one that would add more flow. Observe
that allowing a higher flow means allocating more resources
and, therefore, get a higher profit. That is represented in the
second step of Figure 3, where the green flow of two units is
pushing back the red flow to leave the solution as represented
in the third step of Figure 3.

The advantage of this algorithm is in terms of its complexity
from the point of view of the runtime, which has been demon-
strated to be the lowest among the set of known approaches to
solve the minimum weight maximum flow problem. A detailed
description of the algorithm can be found in [10].

III. VECTORIAL SUCCESSIVE SHORTEST PATH

The one-dimensional (only one type of resources) assign-
ment problem is not enough to model our 5G scenarios because
they require to specify several simultaneous service require-
ments and the availability of different resources. Elaborating
a similar idea, but for multidimensional flows (each flow is
characterized by a vector of flows), it is not straightforward.
Those different dimensions of the flow must be conveyed
together. A key contribution of this paper is to extend the
solution described for a one-dimensional flow network to a
multidimensional one.

To highlight our approach, let us consider the main differ-
ences of the model with respect to the one-dimensional case.
We depart, as before, from a graph constituted by a subset of
nodes representing service types, another subset representing
resource types, a source, and a sink. Flows are also from
the source to the sink going through different links in the
graph. One difference is that now, flows are vectors with as
many components as dimensions we consider. Recall that such
dimensions are related to throughput, latency, computation, and
storage, as described above. In addition, another difference is
that now, as the flows injected into the graph network are
vectors, the graph edge’s capacity is a vector with components
in each of the dimensions.

Similar constraints to the uni-dimensional case can be for-
mulated. In particular, flows have to be routed through the
graph so that those passing through a given graph edge must

carry an accumulated flow that is lower than or equal to
the graph edge capacity in each dimension. In addition, the
incoming flow at each node must be equal to the flow leaving
it, except for the source and sink nodes.

The idea to extend the SSP algorithm to a multidimensional
setup and thus the base of a novel algorithm called Vectorial
Successive Shortest Path (VSSP) is that as in SSP, VSSP
successively searches for the path of minimum weight between
the source and the sink, and then “sends” as much flow as
possible through that path, this is, as much flow as can pass
through the thinner path’s edge.

To illustrate how VSSP works, let us consider a simplifying
example, with vectors of only two dimensions. Any of the
graph edges will look like the one represented in Figure 4
with two different pipes, namely, the red and the green one.
These two pipes have capacities as those shown in the cut
highlighted in the top-right. The figure also shows two different
types of services to be allocated, the yellow and emerald types;
each type has red and green requirements and a number of
service instances each. As in SSP, VSSP has to pass through
this graph edge some flows corresponding to service instances
selected so that the maximum number of instances is taken
without exceeding the capacities of both of the two pipes. That
is a well-known combinatorial optimization problem called
the Multi-knapsack problem [11]. This combinatorial problem
is known to exhibit non-polynomial (NP) time complexity;
however, as the size of the problem is bounded by the number
of dimensions of each infrastructure type, the problem can be
solved in practice as a Mixed Integer Linear Programming [11]
utilizing a solver like Matlab’s intlinprog, among others.

As in SSP, we can realize that it would be globally better to
send part of the previous flow through a higher weighted path
and avoid blocking a more significant stream at each iteration.
In this case, we proceed as the SSP does “pushing” backward
some flow that is already passing through some graph edges
and make space for a new one that would add more flow.
The particularity in VSSP is that this flow retraction has to
be performed for all dimensions in the proportions defined
by the services represented by those flows. In the pictorial
representation of Figure 4, the amount of red flow and green
flow retracted from the graph edge must be equal to the
amounts used by some combination of the yellow and emerald
services crossing that graph edge.

Contrariwise SSP, we can not guarantee that VSSP ends
up with the optimum solution. In addition, the complexity of
the VSSP is higher than SSP, but as shown in the evaluation
section, the time needed for the computation in practical
scenarios is short enough to be considered a feasible solution.

IV. SOLVING THE EDGE ASSIGNMENT PROBLEM WITH
VSSP

5G infrastructures, such as those considered in this paper,
might be potentially sized in some thousands of nodes, and
the number of services to be allocated can be of a simi-
lar order. To reduce the size of the problem and make it
computationally tractable, we assume that each infrastructure
element, i.e., computation server, belongs to a type, like those



4

in Figure 1, with common characteristics in terms of storage
capacity, computation power, and available throughput. Hence,
we have a set of different infrastructure element types, each
constituting what we call a service edge [6]. Each of these
infrastructure element types will be characterized by a three-
dimensional vector of available resources corresponding to its
maximum bandwidth, computation, and storage capacity (the
delay dimension is accounted for differently, as explained later
on). In addition, we also assume that each service, or service
component, to be allocated belongs to a type with common
requirements such as bandwidth, computation power, storage,
and delay. Consequently, we have a set of different service
types. We also assume that when a service of a particular type
is deployed on a particular type of infrastructure element, it
generates a given profit for the operator. Hence, we model
the service edge selection as a vectorial, minimum-weight,
maximum-flow problem, suitable to be solved employing the
proposed VSSP heuristic.

Therefore, we build a graph organized into four layers as
in Figure 2. Layers 1 and 4 contain just the source and sink
nodes, s and t. The flow generated by s consists of a vector
with integer components, each representing the total resources
in each dimension. The sink node t at layer 4 absorbs the vector
flow generated at the source. Layer 2 has as many nodes as
service types, whereas layer 3 has as many nodes as different
infrastructure element types.

All the graph edges have the same format, namely, a scalar
representing the weight of that edge and a three-dimensional
vector with the flow capacities of that edge in each of the
three dimensions. In the following paragraphs, we describe the
values adopted for each graph edge.

Each graph edge between layers 1 and 2 is assigned a
zero weight and a capacity vector that allows carrying the
total aggregated flows of the service type that this graph
edge connects. The reason to assign a zero weight to those
graph edges is that the routing of a given amount of flow to
a particular service type node is dictated by the number of
services of that particular service type and therefore has not
to be decided by the optimization algorithm.

The graph edges from layer 2 to layer 3, between a given
service type and an infrastructure type, are weighted with a
scalar that is the profit induced by deploying that service type
on that infrastructure type with a negative sign. In that way,
we play with weights derived from telco operator profits and
leave the algorithm to select the graph edges that minimize
weights (maximize profits). The capacity vector, in that case,
is infinity in each one of the three dimensions, i.e., the capacity
is not constrained here because the constraints posed by the
infrastructure types in each dimension are better represented
by the subsequent graph edges as explained hereafter.

Graph edges between layers 3 and 4 have assigned zero
weight and a capacity vector representing the total capacity in
each dimension, supported by the infrastructure type at which
each graph edge is connected. Observe that, in this way, we
include the resource capacity constraints in our model. On the
other hand, the reason to assign zero weight to these graph
edges is similar to assign zero weight to graph edges between
layers 1 and 2.

Finally, to model the delay constraints, we remove all graph
edges between services and those infrastructure element types
not fulfilling the delay requirements. It is worthy to say that
our approach would allow the modeling of more fine-grained
delay specifications, but for that case, it would be necessary to
create additional infrastructure element types quantifying the
delay attribute.

A. Service Allocation at Service Request Time

As the reader may have noted, the process described above
works allocating a complete set of services at the same time
(e.g., all services requested within a given time window are
deployed together at a given time). Nevertheless, in a more
realistic scenario, services have to be allocated as soon as
requested by their customers. It would be service disruptive
to re-allocate all the services every time a new request arrives;
however, the method presented here permits assigning a new
service request by just recomputing the flow of its particular
service type. VSSP permits to do that very fast because it
requires only a single iteration to compute the augmented
flow. The same idea and complexity are valid for removing
a service. The reader may notice that just recomputing a
restricted number of flows may end up with results that may not
be as good as if we were running the algorithm from scratch
again. Nevertheless, the accuracy of that approximation is out
of the scope of the paper and left for future work.

V. EVALUATION

In order to compare the performance of our approach, we se-
lected a ground-truth reference provided by a well-established
solver of Mixed Integer Linear Programming (MILP) prob-
lems. With ground truth we refer to an ideal value or gold
standard that might not be found with the available resources
of a real deployment. With this purpose, we use Matlab’s
intlinprog [12], which uses a sequence of strategies that have
been accepted as very effective solving MILP problems [13].
Although this solver might find the optimum solution (when
it does not, it can detect and inform this situation), it does not
scale well with the problem’s size. Therefore, the comparison
we present in this section was made in the problem size range
where intlinprog was able to find a solution in a reasonable
time.

This evaluation aims to show that VSSP finds the service
edges acceptably close to the actual optimum (given by our
ground truth) in a period of time that is compatible with the
management and orchestration processes of cloud-based telco
networks. Thus, we present the results of two experiments: i) a
comparison between the time spent by VSSP and MATLAB’s
intlinprog to solve problems of the same size, and ii) a
comparison between the profit obtained through the solution
of VSSP and this solver.

The experiments made for this evaluation were performed on
a synthetic network where only relevant aspects of topology
and resources were simulated. The setup was configured to
have always ten service types with 100 service instances each.
Service types ranged from three to 30 normalized units of stor-
age, throughput, and computing requirements in intervals of



5

three units. The number of infrastructure types was swept from
5 to 15. Infrastructure types range from 240 to 430 normalized
available units of storage, throughput, and computation, in
intervals of, at most, 25 units. The number of infrastructure
elements inside each infrastructure type is set such that all
their resources together can support 90% of the total service
demand.

For this evaluation, we avoided lineal profit schemes to stress
the edge selection method’s time complexity; lineal schemes
would make the problem easier to solve. Thus, the telco op-
erator profit scheme is logarithmic in the number of resources
required by a service type and inversely logarithmic in the size
of the resources available in a particular infrastructure element.

The tests were run on an Intel® Core™ i7-8550U CPU, at
1.80GHz, with 16GB of RAM.

Figure 5 depicts in logarithmic scale the running time to
achieve the solution for VSSP and Matlab’s intlinprog solver
as a function of the number of infrastructure types. The plots
are the mean of 10 experiments, and the error bars represent
the 95% confidence interval. The circles correspond to cases in
which the intlinprog solver gives up timing out before reaching
the optimum, which is normal behavior for this solver.

In this graph, it is possible to appreciate the significant run
time difference between solving the problem using the MILP
solver and VSSP. As mentioned, the 15 infrastructure types
boundary was set to let the MILP solver finish in a reasonable
time, but VSSP can deal with a much larger problem size.
Although not included among the results for the sake of brevity,
VSSP’s scales well, as inferred from the trend of the figure’s
plot.

Figure 6 shows the total profit induced by the solutions
computed by VSSP and Matlab’s intlinprog solver. Again, the
plots are the mean of 10 experiments, and the error bars are
the 95% confidence interval. The number of service instances
per service type is always 100, and the number of servers per
infrastructure type changes to keep a ratio demand/offer of 0.9.

From this graph, we conclude that VSSP computes a sub-
optimal solution close to the optimum computed by MAT-
LAB’s MILP solver; however, this is made in a time, which
in some cases, is several orders of magnitude shorter, enabling
its use in cloud-network orchestration systems.

VI. CONCLUDING REMARKS

This paper proposes a technique for allocating services to
computational resources spread over all network domains to
fulfill heterogeneous service requirements in the context of 5G
and beyond.

We formulate this service allocation problem and elaborate
on how to solve it by extending the solution of a similar but
simpler problem. This extension is called Vector Successive
Shortest Path (VSSP), a heuristic derived from the well-known
Successive Shortest Path (SSP) algorithm, which constitutes a
contribution of the paper to state of the art. In addition, as
a second contribution, we describe how to use VSSP to solve
the allocation problem when services are characterized by four
requirements: throughput, latency, computation, and memory
storage.

Simulations have been conducted to compare the results
obtained with VSSP against a conventional Mixed Integer
Linear Programming (MILP) solver, which gives the optimum
allocation. Results show relatively close telco operator profit
for both but with orders of magnitude less computation time
when obtained by VSSP. This shows that our solution approach
is precise enough and scalable to be used in more complex
scenarios. The impact of incrementally assigning/de-assigning
services as soon as these services are requested or terminated
is also addressed without disrupting those already deployed.
However, its accuracy analysis is a significant challenge that
is left for future work.

Solutions like our approach are needed to efficiently select
the execution environment for services on distributed cloud
facilities of different characteristics. This is a challenging
problem that is going to be faced soon by telco operators.
Even for delay-sensitive services, the service location is not
necessarily the physical edge of the network but some other
location yet convenient for respecting the committed SLOs,
what is called the service edge. The performance of the VSSP
algorithm reported in this paper makes it a firm candidate to
find the service edge and therefore to be integrated on cloud-
network orchestration systems (e.g., [14]).

ACKNOWLEDGMENT

The European Commission has partly funded this work
through the projects NECOS (Grant Agreement No 777067)
and 5G-DIVE (Grant Agreement No 859881).

REFERENCES

[1] L. M. Contreras, V. Lopez, O. G. De Dios, A. Tovar, F. Munoz,
A. Azanon, J. P. Fernandez-Palacios, and J. Folgueira, “Toward cloud-
ready transport networks,” IEEE Communications Magazine, vol. 50,
no. 9, pp. 48–55, Sep 2012.

[2] Telefonica, “Telefónica Open Access and Edge Computing,” no. Febru-
ary, 2019. [Online]. Available: https://www.telefonica.com/documents/
737979/144981357/whitepaper-telefonica-opa-mec-feb-2019.pdf (Ac-
cessed on 2021-05-06).

[3] 3GPP, “TS 122 261 - V15.5.0 - 5G; Service requirements for
next generation new services and markets (3GPP TS 22.261 version
15.5.0 Release 15),” Tech. Rep., 2018. [Online]. Available: https:
//portal.etsi.org/TB/ETSIDeliverableStatus.aspx (Accessed on 2021-05-
06).

[4] 3GPP, “TS 123 501 - V15.2.0 - 5G; System Architecture
for the 5G System (3GPP TS 23.501 version 15.2.0
Release 15),” Tech. Rep., 2018. [Online]. Available: https:
//portal.etsi.org/TB/ETSIDeliverableStatus.aspx (Accessed on 2021-
05-06).

[5] “Novel Enablers for Cloud Slicing - NECOS Project.” [Online].
Available: http://www.h2020-necos.eu (Accessed on 2021-05-06).

[6] L. M. Contreras, J. Baliosian, P. Martı́nez-Julia, and J. Serrat, “Com-
puting at the edge: But, what edge?” in NOMS 2020 - 2020 IEEE/IFIP
Network Operations and Management Symposium, 2020.

[7] J. N. Hooker, “Chapter 15 - Operations Research Methods in Constraint
Programming,” in Handbook of Constraint Programming, ser. Founda-
tions of Artificial Intelligence, F. Rossi, P. van Beek, and T. Walsh, Eds.
Elsevier, 2006, vol. 2, pp. 527–570.

[8] M. C. Luizelli, D. Raz, and Y. Sa’ar, “Optimizing nfv chain deployment
through minimizing the cost of virtual switching,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018, pp. 2150–
2158.

[9] D. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ,
USA: Princeton University Press, 2010.

[10] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.



6

[11] H. Kellerer, U. Pferschy, and D. Pisinger, “Multidimensional Knapsack
Problems,” in Knapsack Problems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 235–283.

[12] The MathWorks, “Optimization Toolbox™, User’s Guide,” The Math-
Works, Natick, MA, Tech. Rep., 2019.

[13] H. D. Mittelmann, “Latest Benchmarks of Optimization Software,” in
INFORMS Annual Meeting 2017, Huston,TX, 2017.

[14] L. Contreras, D. Lachos, and C. Rothenberg, “Use of ALTO for
Determining Service Edge,” Internet Engineering Task Force, Internet-
Draft draft-contreras-alto-service-edge-02, Nov. 2020. [Online]. Avail-
able: https://datatracker.ietf.org/doc/draft-contreras-alto-service-edge/
(Accessed on 2021-05-06).

BIOGRAPHIES

Javier Baliosian (M.Sc. 1998, Ph.D. 2005) Associate Professor,
at University of the Republic, Uruguay.

Luis M. Contreras (M.Sc. 1997, M.Sc. 2010) Technology Expert
at Telefonica, Spain.

Pedro Martinez-Julia (M.Sc. 2010, Ph.D. 2015) Researcher at
NICT, Japan.

Joan Serrat (M.Sc. 1977, Ph.D. 1983) Full Professor at UPC,
Spain.



7

Fig. 1: Potential placement options depending on the type of service.



8

Fig. 2: The Assignment Problem modeled as a Network Flow Problem.



9

Fig. 3: Three consecutive steps solving the assignment problem utilizing SSP. Labels are pairs (w, r) where w is the weight
of the graph edge and r is its capacity.



10

Fig. 4: At each graph edge, accommodating different services to optimize the use of the different resources is equivalent to
solve a multi-knapsack problem.



11

Fig. 5: Running times for VSSP and Matlab’s intlinprog solver in a logarithmic scale. Green circles correspond to cases in
which the intlinprog solver gave up per time before reaching an optimum.



12

Fig. 6: Total profit induced by VSSP and Matlab’s intlinprog solver.


