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Abstract— Many studies have focused on novel noninvasive
techniques to monitor respiratory rate such as bioimpedance.
We propose an algorithm to detect respiratory phases using
wearable bioimpedance to compute time parameters like
respiratory rate, inspiratory and expiratory times, and duty
cycle. The proposed algorithm was compared with two
other algorithms from literature designed to estimate the
respiratory rate using physiological signals like bioimpedance.
We acquired bioimpedance and airflow from 50 chronic
obstructive pulmonary disease (COPD) patients during an
inspiratory loading protocol. We compared performance of
the algorithms by computing accuracy and mean average
percentage error (MAPE) between the bioimpedance
parameters and the reference parameters from airflow. We
found similar performance for the three algorithms in terms
of accuracy (>0.96) and respiratory time and rate errors
(<3.42 %). However, the proposed algorithm showed lower
MAPE in duty cycle (10.18 %), inspiratory time (10.65
%) and expiratory time (8.61 %). Furthermore, only the
proposed algorithm kept the statistical differences in duty
cycle between COPD severity levels that were observed using
airflow. Accordingly, we suggest bioimpedance to monitor
breathing pattern parameters in home situations.

Clinical relevance— This study exhibits the suitability of
wearable thoracic bioimpedance to detect respiratory phases
and to compute accurate breathing pattern parameters.

I. INTRODUCTION

Respiratory measurement has an important role in the
assessment of physiological conditions, like in respiratory
disease diagnosis and monitoring. In particular, spirometry
is the gold standard in the diagnosis of several respiratory
diseases like chronic obstructive pulmonary disease (COPD).
Spirometry requires the patients to wear facemasks or mouth-
pieces that could modify their breathing [1]. Accordingly,
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many novel techniques are currently investigated to obtain
respiratory information and monitor the patients’ condition
more comfortably [2]-[4] using noninvasive physiological
signals like thoracic bioimpedance, electrocardiogram, or
photoplethysmogram. Most of these previous studies have
focused on estimating respiratory rate [3]—[5] since it is used
as an indicator of clinical events.

Respiratory rate is the most commonly used parameter, but
breathing can be characterized by other parameters as well.
Breathing pattern is affected by age, physical condition, or
diseases [6]. Therefore, obtaining other breathing parameters
can provide relevant information to monitor respiration in
healthy and respiratory patients. The present study proposes
an algorithm to detect respiratory phases using wearable
thoracic bioimpedance to compute respiratory rate and other
time parameters such as duty cycle, inspiratory and expira-
tory time.

This study assessed the performance of the respiratory
cycle detection using bioimpedance and applying different
preprocessing. For that, we evaluated the performance of
the proposed algorithm and two literature algorithms [7], [8]
using detections from respiratory airflow as reference. The
novelty of this study is the inclusion of inspiratory time,
expiratory time, and duty cycle in the analysis of a respiratory
cycle detection providing a more complete breathing charac-
terization. The final objective of the proposed algorithm is
its applicability in wearable respiratory monitoring.

II. MATERIALS AND METHODS
A. Respiratory protocol and data acquisition

The study population included fifty COPD patients who
were recruited at Ziekenhuis Oost-Limburg (Genk, Belgium).
The study followed the Declaration of Helsinki and was
approved by the local institutional medical ethics committee
from Ziekenhuis Oost-Limburg with reference 18/0047U.

The study consisted of measuring physiological signals
while the COPD patients performed an inspiratory threshold
loading protocol. During the loading protocol, we imposed
inspiratory loads proportional to the maximal inspiratory
pressure of the patients. The details of the protocol have
been explained previously in [9].

The physiological signals acquired during the protocol
were thoracic bioimpedance (bioZ) and respiratory airflow.
The signals were acquired using two systems, a wearable
research prototype device [10], and a standard wired acqui-
sition system, respectively. The signals were acquired using
the same setup presented in [9].
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Performance of the three algorithms under study, the proposed algorithm, original counting [7], and advanced counting [8] algorithms. Each point

corresponds to a parameter-based outcome of the preprocessing sweep, the color and size of the marker are related to the portion of data used.
TABLE I

PERFORMANCE OF THE RESPIRATORY CYCLE DETECTION ALGORITHMS

Mean Average Percentage Errors of Respiratory Parameters (%)

Mean Execution

Accuracy  Data used (%) tror t te tiltror RR Time (ms)
proposed algorithm 0.9909 85.30 2.90 10.64 8.61 10.18 2.86 1.88
original counting [7] 0.9672 83.90 2.84 15.48 11.10 14.93 2.82 45.95
advanced counting [8] 0.9868 86.12 342 16.89 12.39 16.14 3.10 49.60

tror: respiratory time; t;: inspiratory time; tg: expiratory time; t;/tror: duty cycle; RR: respiratory rate.

B. Respiratory phase detection algorithms

We propose an algorithm for respiratory cycle segmenta-
tion using thoracic bioimpedance. We compared it with two
time-domain algorithms from previous studies, the original
counting [7] and advanced counting [8].

Preprocessing: The respiratory airflow was low-pass fil-
tered to avoid aliasing before the decimation from 10 kHz
to 100 Hz. Afterwards, the resulting airflow signal was low-
pass filtered (zero-phase 4" order Butterworth, f. = 1 Hz).
Finally, airflow signal was smoothed with a moving average
filter of 0.25 s. This preprocessing was selected to reduce
the high-frequency content without affecting the DC, that it
is important to get respiratory cycles accurately. Respiratory
cycles obtained after thresholding and visual correction of
miss-detections were used as the reference.

The bioimpedance signals were upsampled from 16 Hz
to 100 Hz by cubic interpolation. Preprocessing has an
effect on the accuracy of the cycle detection. The parameter
sweep described below was used to analyze this effect.
Accordingly, the following parameters are not specified as
numerical values and were swept between common values
for breathing analysis. The preprocessing steps were similar
to [11] and included: 1) a band-pass filtering (fioyer and
Supper), 2) a moving average filter of wy s, 3) a Savitzky-
Golay differentiation of 250 ms and finally, 4) another
moving average filter of wy s. The filtered bioZ signals
were obtained after step 2) step, whereas the derivative bioZ
signals were the result of the final step. The sweep comprised
the following parameter values: fj,.: 0.01, 0.05, 0.1 Hz,
Supper: 1, 2.5, 5, 10 Hz, wy and wy: No-filter, 0.25, 0.5, 0.75,
1, 1.25, 2 s.

Respiratory cycles detection: The proposed algorithm
uses the derivative bioZ signal to detect the zero crossings
corresponding to the local extrema of the bioZ signal. Firstly,
from all the detected extrema, only the pairs separated more
than 0.2 s in time are selected. The inspiratory phases are the
segments between the consecutive minimum and maximum

extrema, on the contrary, the expiratory phases are the
segments between maxima and minima. Therefore, this time
restriction is connected to the minimum respiratory phase
duration used in previous studies. Secondly, the algorithm
aims to reject false detections by constraining the respiratory
phases to include at least one zero-crossing. If a segment
does not meet this condition, it will be integrated into an
adjacent phase or rejected depending on the slope between
its start and the end of the next segment. The slope sign gives
the increasing or decreasing trend of the segment, thus, the
segment will be combined with the adjacent segment with
the same trend.

1) If a segment without zero-crossings has a positive
slope, it will be combined with the adjacent inspira-
tion since bioimpedance is regularly increasing during
inspiration.

Alternatively, a segment with a negative slope will be
integrated into an expiratory phase.

Finally, a segment will be rejected only if it is an
inspiratory segment (i.e., between a minimum and a
maximum) and the angle generated by its slope is
mostly flat, between -10 and 10 degrees.

This constraint is justified by the conventional waveform of
bioimpedance after the DC filtering.

We wanted to compare this new detection algorithm with
state-of-the-art options. The selected algorithms are based on
counting and have been previously used to detect respiratory
rate in several physiological signals such as bioimpedance
[5]. These algorithms detect local extrema and reject the
wrong ones based on the amplitude statistics of the detected
extrema. The constraints of Original and Advance Counting
algorithms are different and can be consulted in [7], [8].
These algorithms were designed to estimate the respiratory
rate by the time difference between the selected adjacent
peaks. Therefore, we adapted the algorithms and we also kept
the troughs to get the start of a respiratory cycle/inspiration.
If a segment had more than one troughs, we selected the one

2)

3)



with the highest absolute magnitude.

Signal quality index: We used the signal quality index
[12] to identify high-quality signal segments and get more
robust estimations from bioimpedance signal. We computed
the index on 32s segments with 75 % overlap. Only the
segments marked as low-quality in all the corresponding
overlapping segments were rejected.

Performance comparison: We calculated common time
parameters related to the breathing pattern, such as inspi-
ratory time (t7), expiratory time (tg), respiratory time (tror),
duty cycle (t;/tror) and respiratory rate (RR). These param-
eters were computed for all detections from each algorithm,
and also for the airflow detections considered as the reference
values. The performance of the three algorithms was assessed
by calculating the accuracy of the detections compared to the
airflow ones and the mean absolute percentage error (MAPE)
between the parameters computed from bioimpedance and
the ones from airflow. Additionally, we included in the
analysis the amount of rejected data after we applied the
signal quality index and the mean execution time. The cycle
detections were executed for each subject load signal on an
Intel Core 17-7700 CPU @ 3.60 GHz RAM 16 GB.

We performed the Kruskal-Wallis statistical test to evaluate
the differences in the respiratory parameters between two
COPD groups. The grouping was on the COPD severity
level using the spirometry parameter FEV|. We computed
two representative values for each patient, the values were
the median of the parameters for quiet breathing and loaded
breathing (i.e., 12 % to 60 % of MIP).

IIT. RESULTS

Fifty COPD patients were recruited in the study. 7 patients
were excluded from the analysis because of an allergic
reaction (1), technical device problems (4) and, low signal-to-
noise ratio of the bioZ (2). The resulting population included
9 females and 34 males, their age was 64.63 +6.60 years,
and their body mass index was 25.71 +4.48 kg/m?.

The study consisted of detecting respiratory phases using
bioZ signal and varying its preprocessing. Common time
respiratory parameters were used to evaluate the performance
of the detections by comparing them with the detections from
the airflow signal. The reference (median (1 - 3" quartile))
values of the respiratory parameters were: tror 3.41 (2.76 -
4.36) s, t7 1.48 (1.17 - 1.89) s, tg 1.91 (1.54 - 2.48) s, ti/tror
0.43 (0.39 - 0.48), and RR 17.60 (13.76 - 21.74) breaths/min.

588 parameter-based outcomes were evaluated from the
sweeping parameters for the proposed algorithm and 84 for
the other two algorithms. Note that the counting algorithms
do not need the second moving average filter since they do
not use the derivative of bioZ, so they had fewer outcomes.
Fig. la shows the accuracy and the MAPE of respiratory
time calculations of all the sweep steps run in the study.
The proposed algorithm and the original counting had similar
performance in terms of MAPE but the proposed algorithm
slightly improved the accuracy. Fig.1b and c focused on the
30 best outcomes based equally on accuracy and MAPE.
These panels exhibit the MAPE of the inspiratory and
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Fig. 2. Example of the respiratory phase detections for the three algorithms.
The detections are represented as grey boxes, darker boxes for inspirations
and lighter ones for expirations. The segments with red backgrounds were
marked as low-quality ones and were not used for the analysis. If no
breathing was detected, the background is not colored.

expiratory times. In this case, the MAPE errors from the
proposed algorithm substantially improved the ones from the
other two algorithms. The portion of data used after applying
the signal quality index is represented by the color and size
of the markers and went from 0.63 to 0.89.

Henceforth the reported results correspond to the best
performance of each algorithm. The proposed algorithm
exhibited its best performance with a bandwidth of the bioZ
of fiower = 0.05 Hz, fupper = 2.5 Hz, a moving average
filter before the differentiation of w; = 0.25 s, and after
the differentiation of wy 0.75 s. For the original counting,
the best performance was when using similar bandwidth of
Jiower = 0.01 Hz and f,pper = 2.5 Hz, but without the moving
average filter. The advanced counting best preprocessing
included a broader bandwidth, fi,y.r = 0.01 Hz and f,pper
= 10, but a wider moving average filter, w; = 0.75 s. To
exemplify the differences in preprocessing, Fig. 2 shows the
same segment with the detections from the three algorithms
under study. Table I shows the detailed performance for
each algorithm, confirming what is shown in Fig. 1. Note
that the lower errors were for the respiratory time and rate
since we selected the best preprocessing parameters based
on respiratory time and accuracy. Note also that the mean
execution time is higher in the literature algorithms than in
the proposed one.

Finally, we divided the patients into moderate (FEV; > 50
%) and severe (FEV| < 50 %) resulting in 21 and 22 patients,
respectively. Firstly, we performed the statistical test on the
reference breathing parameters values (i.e., computed using
airflow signal) and only the duty cycle parameter exhibited
significant differences in both quiet and loaded breathing.
We repeated the same test on the detections from the bioZ
signal, and only the proposed algorithm showed significant
differences also in the duty cycle values. In this case, the
duty cycle values only exhibited the statistical differences
during quiet breathing as Fig. 3 shows.
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Fig. 3. Duty cycle values of the airflow detections and the detections
from the proposed algorithm using bioZ during loaded and quiet breathing
(QB). The statistical differences between groups were evaluated by Kruskal-
Wallis” test with Bonferroni’s correction. **: p-value < 0.01 and ***: p-
value < 0.001.

IV. DISCUSSION

This study aims to propose and evaluate an algorithm
to detect respiratory phases depending on different prepro-
cessing. The detection was performed using three different
algorithms: the proposed algorithm and two algorithms from
literature [7], [8]. The differences in performance between
the outcomes of the parameter sweep show the importance
of the preprocessing to get accurate detections.

Jeyhami et al. [5], also compared different algorithms
using bioimpedance for estimating respiratory rate. Their
comparison showed that the advanced counting algorithm
was the best algorithm for estimating respiratory rate. How-
ever, they used the same method for bioZ and the reference
(flow thermography), whereas we employed manually cor-
rected detections from airflow. In addition, we computed the
MAPE of all the respiratory times from the correct detections
and Jeyhami’s study computed an average estimation of
the respiratory rate in time windows of 15 s. Having the
respiratory rate for each respiratory cycle gives more time
resolution to track dynamic changes. Despite the differences,
both studies conclude that bioimpedance is promising for
noninvasively estimate of respiratory time/rate.

We applied a signal quality index that has been recently
presented in [12] which rejects segments based on the
plausibility of valid breath durations and similarity of cycle
morphologies. Using 32s segments with 75 % overlap, we
were able to use like 6 % more of data than without it with
slightly lower performance (0.0024 decrease in accuracy and
0.20 % increase in error). We acknowledge that both the seg-
ment and preprocessing selections are not static parameters
and may be adjusted depending on the application.

Most of the previous studies on novel noninvasive tech-
niques have focused on the estimation of respiratory rate [3],
[5], [13], [14]. Respiratory rate is an important marker used
to monitor the progression of illness. However, other respi-
ratory parameters can provide relevant information about the
breathing pattern of the patients [15]. One novelty of this
study is including other time parameters from the detections
on bioimpedance signal. We found significant differences
in the reference duty cycle values between moderate and
severe COPD patients. The differences were maintained only
when using the detections of the proposed algorithm in
quiet breathing. Tracking these parameters over time could
be a useful clinical application to home monitor COPD
patients. Therefore, these results are the first step for further

B noderate  Studies to confirm the suitability of these parameters for

noninvasive monitoring of respiratory patients. Regarding
the results on loaded breathing, we hypothesize that the
different contributions of bioimpedance cause delay [16].
Thus, the inspiratory and expiratory phase detections were
affected by that and we did not observe the same differences
as airflow parameters. But, the total respiratory time was
robust showing less error probably because by adding the
two phases, the differences were counteracted.

Our results open up the way to use the proposed algo-
rithm to monitor breathing parameters using bioimpedance.
However, further studies are needed to validate the algorithm
under other conditions like walking and confirm its suitability
to provide relevant information about COPD condition.
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