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Abstract. In this paper a mathematical model describing the heat transport in a spherical
nanoparticle subject to Newton heating at its surface is presented. The governing equations
involve a phonon hydrodynamic equation for the heat flux and the classical energy equation that
relates the heat flux and the temperature. Assuming radial symmetry the model is reduced to
two partial differential equation, one for the radial component of the flux and one for the
temperature. We solve the model numerically by means of finite differences. The resulting
temperature profiles show characteristic wave-like behaviour consistent with the non Fourier
components in the hydrodynamic equation.

1. Introduction
It is well known that Fourier law breaks down at length scales of the order of the phonon
mean free path and time scales of the order of the relaxation time of the heat carriers. Recently,
solutions of the classical heat transfer model describing melting and solidification were compared
with molecular dynamics simulations [1, 2], observing deviations at times below 100 ps and
length scales ranging from 20 to 40 nm. The breakdown of the Fourier law has important
ramifications due to the current trend of miniaturization of electronic devices [3]. Understanding
the fundamentals of heat flow at the nanoscale is necessary to improve thermal management of
micro/nano electronic devices and for the design of new materials for energy conversion.

The phonon hydrodynamic model, derived from the Boltzmann transport equation [4, 6,
7, 8, 9, 10], is an effective macroscopic heat equation that accounts for non Fourier deviations
occurring at extremely small scales and ultrafast heating conditions. The phonon hydrodynamics
equation for the heat flux q is
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where τR is the phonon relaxation time, k the thermal conductivity, Λ the phonon mean free
path, ρ the density and c the specific heat [5]. The connection between the heat flux and the
temperature T is established by means of the energy equation

ρ c
∂T

∂t
+∇ · q = 0 . (2)



2. Radially symmetric problem and solution method
In the current paper we are concerned with the heat transport in a spherical nanoparticle. Thus,
we assume radial symmetry and write the equations for the radial component of the heat flux
as
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and the equation for the temperature as
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We assume radial symmetry at r = 0 and a Newton heating boundary conditions at r = R,
so

q(0, t) = 0 , q(R, t) = h(T (R, t)− TH) , (5)

where h is a heat transfer coefficient. The initial conditions are

q(r, 0) = 0 , T (r, 0) = T0 . (6)

Operating (3) with ∇2 and using equation (4), equations (3)-(4) can be written in a single
equation for the temperature as follows
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Although we will not use (7) when solving the model, it is illustrative to understand the wave-like
phenomena observed in the results section.

2.1. Nondimensional form and numerical solution
We take the dimensionless variables
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where ∆T = TH − T0, Q = h∆T and τ = ρcR∆T/Q. Dropping the hat notation, the equations
now read
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with the boundary and initial conditions

q(0, t) = 0 , q(1, t) = T (1, t)− 1 , q(r, 0) = 0 , T (r, 0) = 0 . (11)

The nondimensional parameters are
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. (12)

The problem (9)-(11) is solved numerically using a forward in time and central in space finite
difference scheme that we implement in Matlab.



Figure 1. Temperature maps in space and time for γ = 8, Kn = 0.5, λ = 0.5.

3. Results
In Figure 1 we show space-time maps of the temperature for the set of parameters γ = 8,
Kn = 0.5 and λ = 0.5. The left panel shows a wave-like temperature evolution consistent with
a second time derivative in (7). The panel on the right shows a clear periodic patter, with
temperature peaks occurring at around t ≈ 4, t ≈ 13 and t ≈ 20.

In Figure 2 we present the evolution of the temperature at the centre and at the surface
of the nanoparticle (left panel) and temperature profiles along the radius at different times
(right panel). In the left panel we observe a large temperature peak at very early times, which
periodically appears increasingly attenuated at times t ≈ n tc, where tc ≈ 4 is a characteristic
time and n a positive integer number. The temperature profiles in the right panel show a wave
front that travels inwards towards the center of the particle first and outwards towards the
nanoparticle surface after.

Figure 2. Temperature evolution at r = 0 and r = 1 (left panel) and temperature profiles at
several times (right panel) for the parameter set γ = 8, Kn = 0.5, λ = 0.5.

4. Conclusions
In this work, we have formulated the spherically symmetric version of the phonon hydrodynamic
equation to model the temperature evolution in a nanoparticle. The equation is solved
numerically by means of finite differences for a specific set of parameters that illustrate a situation



where the phonon mean free path and the heat relaxation time are the representative length
and time scales of the system, respectively. In this situation, the memory and nonlocal effects
play a dominant role in the heat propagation, and the temperature reveals a strong wave-like
behaviour.

Acknowledgments
The author acknowledges financial support from the Juan de la Cierva programme (grant
IJC2018-038463-I) of the Spanish Ministerio de Ciencia e Innovación, and thanks the CERCA
Programme and the Serra-Hunter Programme of the Generalitat de Catalunya.

References
[1] Font F and Bresme F 2018 Transient Melting at the Nanoscale: A Continuum Heat Transfer and

Nonequilibrium Molecular Dynamics Approach J. Phys. Chem. C 122 17481-17489
[2] Font F, Micou W and Bresme F 2021 Non-equilibrium molecular dynamics and continuum modelling of

transient freezing of atomistic solids Int. J. Heat Mass Transf. 164 120601
[3] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2020 Size-dependent phononic thermal transport

in low-dimensional nanomaterials Phy. Rep. 860 1-26
[4] Guo Y and Wang M 2015 Phonon hydrodynamics and its applications in nanoscale heat transport, Phys. Rep.

595 1
[5] Guo Y and Wang M 2018 Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures Phys.

Rev. B 97 035421
[6] Joseph D D and Preziosi L 1989 Heat waves Rev. Mod. Phys. 61 41
[7] Guyer R A and Krumhansl J A 1966 Thermal conductivity, second sound, and phonon hydrodynamic

phenomena in nonmetallic crystals Phys. Rev. 148 778
[8] Guyer R A and Krumhansl J A 1966 Solution of the linearized phonon Boltzmann equation Phys. Rev. 148

766
[9] Dreyer W and Struchtrup H 1993 Heat pulse experiments revisited Continuum Mech. Therm. 5 3
[10] Fryer M J and Struchtrup H 2014 Moment model and boundary conditions for energy transport in the phonon

gas Continuum Mech. Therm. 26 593


