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Abstract—Simultaneous Localization And Mapping (SLAM)
is a key component for autonomous navigation. SLAM consists
of building and creating a map of an unknown environment
while keeping track of the exploring agent’s location within
it. An effective implementation of SLAM presents important
challenges due to real-time inherent constraints and energy
consumption.

ORB-SLAM is a state-of-the-art Visual SLAM system based
on cameras that can be used for self-driving cars. In this
paper, we propose a high-performance, energy-efficient and
functionally accurate hardware accelerator for ORB-SLAM,
focusing on its most time-consuming stage: Oriented FAST
and Rotated BRIEF (ORB) feature extraction. We identify
the BRIEF descriptor generation as the main bottleneck, as
it exhibits highly irregular access patterns to local on-chip
memories, causing a high performance penalty due to bank
conflicts. We propose a genetic algorithm to generate an opti-
mal memory access pattern offline, which greatly simplifies the
hardware while minimizing bank conflicts in the computation
of the BRIEF descriptor. Compared with a CPU system, the
accelerator achieves 8x speedup and 1957x reduction in power
dissipation.
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I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) [1] [2]
is a crucial component in autonomous navigation systems
and has attracted a lot of interest from both academia and
industry in recent years. SLAM is a fundamental task for
higher-level activities such as path planning and navigation,
and is widely used in applications such as self-driving
cars [3]. SLAM techniques build a map of an unknown
environment and localize the exploring agent in that map
using the on-board sensors. Vision sensors are the most
promising alternative because cameras are inexpensive and
compact, providing a vast amount of information of the envi-
ronment. Among Visual SLAM solutions, feature-based ones
have received particular attention because of its robustness
to large motions and illumination changes compared with
other approaches. However, these methods present important
challenges mainly due to real-time inherent constraints and
energy consumption budget available on potential targets [3].

In this work, we focus on a state-of-the-art SLAM so-
lution: ORB-SLAM [4]. This system combines Features
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Figure 1: Average relative execution time of each part of
ORB-SLAM running on a CPU. ORB feature extraction
takes the majority of execution time.

from Accelerated Segment Test (FAST) [5] and Binary
Robust Independent Elementary Features (BRIEF) [6]. The
former identifies the features in an image, whereas the latter
generates a robust descriptor for each feature. These two
parts, together with an orientation estimator, give rise to Ori-
ented FAST and Rotated BRIEF (ORB) [7]. These features
identify corners on the processed images and apply a rotation
to generate their descriptors with the objective of providing
viewpoint and rotational-invariant properties. According to
our experiments, more than 60% of the execution time (see
Figure 1) in ORB-SLAM is spent extracting features (ORB
Extraction).

In this paper, we propose a heterogeneous architecture
for ORB-SLAM that combines a hardware accelerator for
ORB feature extraction and a mobile CPU for the remaining
tasks such as tracking, local mapping and loop closing [4].
Computing the rBRIEF descriptor is the most challenging
part due to the irregular memory access patterns. Once
a pixel has been identified as a corner, i.e. a feature in
the image, a 256-bit descriptor has to be computed by
performing 256 comparisons between pairs of pixels in the
neighborhood of the corner. The locations of the 256 pairs
of pixels do not follow any regular pattern and, in addition,
they change dynamically due to the rotation angle. Previous
ORB accelerators modify the rBRIEF algorithm to obtain a
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more hardware-friendly version, but at the cost of significant
accuracy loss [8], [9]. We believe that reducing precision for
a simpler implementation is not an acceptable trade-off in the
context of self-driving cars and, hence, we take a completely
different approach. Our solution stores the neighbor pixels
in a multi-banked memory and, instead of using complex
logic to dynamically schedule which pairs of pixels are
accessed on every cycle, we develop a static scheduling
based on a genetic algorithm that minimizes the number of
conflicts in the banks for any rotation angle. The 256 pairs
of pixels are processed in the order determined statically,
which largely reduces the conflicts while requiring simple
hardware. Due to the low cost of the rBRIEF unit, it can be
replicated multiple times to achieve the target performance
required to meet real-time constraints. Furthermore, our
approach obtains an accuracy comparable to the software-
based solutions.

In this paper we make the following contributions:
• We analyze the performance and energy consumption

of ORB-SLAM on a state-of-the-art CPU. Our results
show that the feature extraction is the main performance
and energy bottleneck.

• We propose a high-performance, energy-efficient and
functionally accurate hardware accelerator for ORB
feature extraction, which is the main bottleneck of
ORB-SLAM.

• We present a technique to generate a new rBRIEF static
scheduling of the required operations that minimizes
the number of conflicts when accessing the on-chip
memory structures required for the descriptor compu-
tation. The technique is based on a genetic algorithm.

• The experimental results obtained show that the acceler-
ator provides 7.8x speedup and 1957x power reduction
on average compared with a CPU-only system. Addi-
tionally, we verify that the localization of the vehicle
has no deviation with respect to the reference software
implementation.

II. BACKGROUND

ORB-SLAM [10] [11] estimates the real trajectory of an
agent equipped with a camera while building a representa-
tion of the surroundings. We are interested in its performance
in the context of self-driving cars, where it has been ranked
at the top of the available open source algorithms [12]. The
algorithm is divided into three parts executed in different
threads for Tracking, Local Mapping and Loop Closing.

Frames coming from the visual system are first processed
by the Tracking thread which localizes the camera within the
environment and decides when to insert a new key frame in
the map. For every incoming frame, ORB Extraction has to
be performed. This process spends up to 60% of the total
algorithm processing time per frame.

ORB extraction can be divided into four main steps [7]:
pyramid building (subsection II-A); FAST Keypoint De-

tection (subsection II-B); orientation estimation (subsec-
tion II-C) and rBRIEF generation (subsection II-D).

For each image, ORB algorithm first builds a scale
pyramid, in which the higher scale is down-sampled from
the previous lower scale. After this, the FAST corner de-
tection identifies features at each scale. Then Non-Maximal
Suppression (NMS) is applied in order to filter out some
features and select those with the higher score within a
defined neighborhood. Next, the orientation angle of each
feature is computed using patch moments and the associated
centroid [7]. Finally, each feature is encoded using the
BRIEF descriptor rotated by the angle.

A. Pyramid Building

FAST does not produce multi-scale features but scale
invariance is desirable. To achieve this, a scale pyramid
of the images is used. At each level, the image from
the previous level is subject to repeated smoothing and
subsampling.

B. FAST Keypoint Detection

Features From Accelerated Segment Test (FAST), first
introduced in [13], is a corner detector that can be used
to extract feature points. FAST performs a test to classify a
candidate pixel, p, as corner/no corner. This test consists in
comparing the intensity of p with the intensities of the 16
pixels that form a Bresenham circle around the candidate,
as shown in Figure 2a. A corner is detected at the candidate
pixel p if the intensities of at least n = 12 contiguous pixels
out of the 16 are all above or all below the intensity of p
by a threshold, t.
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Figure 2: (2a) Bresenham circle of radius 3 showing the
pixel access pattern for FAST around the candidate pixel P .
(2b) ORB pattern positions for a rotation of 0º. Each pair of
points required for an intensity test is connected by a line.

ORB-SLAM employs an additional technique. Each frame
is divided into a grid of approximately 30 × 30 pixel tiles.
In each tile of the grid, the algorithm tries to extract FAST
corners using a default threshold. If no corners are found,
the algorithm tries again to extract corners but now using a
lower threshold.

Finally, Non-Maximal Suppression (NMS) is applied as a
post-processing method that removes some corners based on



a measure or score. Only the corners with the local maxima
score within a neighborhood prevail. Typically, the NMS
candidate’s neighborhood is defined as the area within a
fixed-sized, in particular 3 × 3, square patch centered on
the considered pixel. There are alternative definitions of the
score, V , of a corner but ORB-SLAM uses the sum of
absolute difference between p and the 16 surrounding pixels
values used for FAST (OpenCV implementation).

C. oFAST: FAST Keypoint Orientation

ORB uses the intensity centroid [7] to compute the orien-
tation component of FAST. The intensity centroid assumes
that a corner’s intensity is offset from its center, and this
vector can be used to impute an orientation.

The moment of a patch can be defined as [14]:

mpq =
∑
x,y

xpyqI(x, y) (1)

where I(x, y) is the intensity of the pixel at the relative
position x, y within the patch and p and q are naturals
indicating the moment order in each dimension. With this
definition it is possible to compute the orientation centroid:

C = (
m01

m00
,
m10

m00
) (2)

An then compute the angle of the vector formed between
the center point of the corner, O, and the centroid C, ~OC.

θ = atan2(m01,m10) (3)

Atan2 is the quadrant-aware version of the arctangent.
In addition, it is possible to compute the sin(θ) and

cos(θ) using the moments in the following way:

sin(θ) =
m10√

m2
01 +m2

10

, cos(θ) =
m01√

m2
01 +m2

10
(4)

oFAST is the combination of the segment test that de-
termines if a pixel is a corner and the computation of the
orientation. This information is used to generate a set of
features.

D. Rotation-Aware BRIEF Descriptor Generation

The Rotation-Aware BRIEF (rBRIEF) descriptor [6] is a
bit string description of an image patch constructed from a
set of binary intensity tests. A binary test, τ , is defined by:

τ(p1, p2) =

{
0 , I(p1) < I(p2)

1 , I(p1) ≥ I(p2)
(5)

where p1 and p2 are two 2D points and I(pi) is the
intensity of the point pi. The feature is defined as a vector
of n binary tests:

fn(p) =
∑

1≤i≤n

2i−1τ(p1i , p2i) (6)
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Figure 3: The architecture of the ORB accelerator.

It is recommended to smooth the image before performing
these tests, for example with a Gaussian blur filter. The
vector length usually is n = 256.

One of the most attractive features of ORB is its in-plane
rotation invariance. To achieve this, the binary test coor-
dinates of rBRIEF are rotated according to the orientation
obtained previously by oFAST. To this goal, for any feature
set, let us define a matrix of dimension 2 × n that contain
the coordinates of the n locations (xi, yi) that will be used
by the binary tests:

S =

(
x1, ..., xn
y1, ..., yn

)
(7)

Using the patch orientation θ, the coordinates of the
locations to be used after rotation are given by:

Sθ = RθS (8)

III. HARDWARE ACCELERATED ORB

In this section, we describe the architecture of the pro-
posed accelerator for ORB feature extraction, since this task
represents the vast majority of execution time as shown
in Figure 1. The rest of ORB-SLAM tasks can run on an
embedded processor in parallel with the accelerator. Further
details are provided in the next sections.

A. Hardware Architecture Overview

Figure 3 shows the architecture of the proposed accelera-
tor. The overall design employs a streaming based dataflow
inspired by previous works in the field [8], [9], [15], [16].
Note that our solution is significantly different from these
previous proposals as explained in Section VI. A stream
of input pixels, coming from memory or image sensors,
is processed through the extensive use of several hardware
structures that provide a sliding window access pattern,
which allows an efficient exploitation of the temporal and
spacial locality of the operations. The pixel stream is fed into
the accelerator at a ratio of one pixel per cycle in raster scan
order, which is the usual arrangement of image data. The
memory bandwidth required by this stream is extremely low
(381 MiB/s when the accelerator is clocked at 400 MHz).

The pixel stream follows two cooperative data paths
that are responsible for feature detection and computation
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of rBRIEF descriptor respectively. The first path is com-
posed of two functional units: FAST feature detector and
non-maximal suppression (NMS) unit. The second path
is divided into a Gaussian image smoothing, orientation
computation and rBRIEF descriptor generator units. The
rBRIEF unit architecture proposed in this work, combines
replication with a static pattern reordering technique. The
D-FIFO allows to delay the pixel stream to keep the two
paths synchronized. Note that the accelerator accesses each
pixel of input images just once and it keeps synchronized
all the sliding windows necessary for the correct operation
of the mentioned functional units.

Another important aspect of the design is the use of
tiling to reduce the on-chip memory storage while providing
high performance and flexibility to process different image
resolutions. Tiling segments an image into a number of
smaller rectangular areas, a.k.a tiles. The accelerator is
able to process each of those fixed-size tiles transparently
since it is not relevant whether the input data is part of a
single image or a subset of a larger one. Tiling improves
locality and reduces the on-chip memory requirements in
the accelerator. The tile size is an important parameter,
since tiling introduces some overheads due to the required
overlap among neighbor tiles, i.e. borders may be fetched
multiple times for different tiles. Furthermore, tiling requires
sliding window re-alignment when the window changes to
the bottom row. Properly sizing the tiles largely reduces the
overheads, while improving locality by a large extent.

B. Basic Sliding Window Structure

The sliding window is a structure commonly used to
support 2D convolutions, particularly in image processing
hardware. This structure is used as a temporary storage and
synchronization mechanism, and its use has a great impact
on the design. Figure 4 illustrates a sliding window similar
to the ones used by the FAST and Gauss Filter units.

A sliding window stores W + (W − 1)×Cols elements,
where W is the square window size (7 in the example) and
Cols is the numbers of columns of the processed tile. The
pixel stream flows through the elements that are organized
according to the input data format, typically raster order.

There is a difference in the way the data is accessed
depending on whether it is in the window or not. For this
reason, actual implementations are composed of storage that

allows direct access for the window elements (in the example
of Figure 4, a set of flip-flops) and D-FIFOs for the rows.

The D-FIFO structure allows elements to leave the struc-
ture in FIFO order a number of fixed cycles after their
entrance. It can be efficiently implemented through the
use of a memory and a circular index pointing to the
position from which to read and write. Note that this D-
FIFO implementation requires just one element read and one
element write per cycle.

A sliding window initially takes a fixed number of cycles
until it can be used because it is necessary to fill the entire
structure before computations can begin. We usually refer
to this as warm-up time. Warm-up is performed only once
at the beginning of each tile and represents around 9% of
the processing time for the tile size selected in our tests.
After warm-up, each cycle the pixels will be shifted one
position, providing access to a moving window of pixels
that iteratively covers every position of the image.

C. rBRIEF Unit

The rBRIEF unit is responsible for implementing the most
challenging part in the ORB extraction, as it requires to
provide memory accesses to 512 positions that depend on
the feature angle, in order to compute the rBRIEF descriptor.
The angle depends on the input data, which makes it difficult
to find a good schedule for these accesses since they depend
on the particular angle. Figure 2b shows a representation of
the pairs of points that must be accessed in order to compute
the 256 binary intensity tests (each test entails comparing
two pixels) for a rotation of 0º.

Figure 5 shows the basic architecture of the rBRIEF unit.
The implementation employs a 37 × 37 sliding window
that holds the data required to perform the tests (Eq. 6) of
each feature point candidate. This window is synchronized
with the rest of units so that it holds a patch centered
into the feature candidate. The structure must support the
sliding window dataflow mechanism and at the same time a
random access to 512 points to generate the descriptor. The
baseline implementation allows one pair of accesses (two
points) per cycle, meaning that a total of 256 cycles are
needed in order to generate a descriptor. This design has a
significant penalty in performance because of the imbalanced
latencies of FAST Feature Extraction and rBRIEF descriptor
generation. Such a bottleneck makes it difficult to meet
real-time requirements or forces to drop features, which
ultimately would have negative effects on the operation of
the ORB-SLAM algorithm.

To mitigate this bottleneck, replication of the window is
typically performed, with each of the replicas computing
descriptors of different features in parallel. An Arbitrer
decides how to distribute the descriptor requests among the
windows sending the rotated coordinates to a buffer that
holds this information until the process finishes. The Co-
ordinate Rotation module computes the rotated coordinates
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Figure 5: rBRIEF Unit architecture overview.

for the tests. Note that coordinates values can take only 36
different values since the coordinates are expressed taking
the center of the patch as reference (Coordinate components
x, y ∈ [−18, 18]). The required multiplications are computed
using a Multiplierless Constant Multiplication approach
based on [17], obtaining an efficient implementation that
utilizes just additions and shifts.

The ORB pattern is stored in a LUT codified as a sequence
of indexes to select one of the 19 possible rotated coordinates
from the Window buffer and a bit indicating the sign.

We opt to design a unit that does not drop any features
for the sake of keeping the original accuracy. This unit is
the main accelerator pipeline bottleneck and, hence, latency
of the rBRIEF unit has a direct impact in overall latency of
the ORB accelerator and thus it is crucial to find an efficient
implementation. If there was no bottleneck due to this unit,
the accelerator could process the tiles with a throughput of
one pixel per cycle, obtaining a speedup of 1.25x compared
to the accelerator version with bottlenecks.

Replication is an effective way to reduce the rBRIEF
bottleneck but it has a relevant impact on the area and power
consumption. For this reason, we argue that it is necessary
to consider alternatives that deliver the required performance
at a much lower cost.

1) Exploiting Parallelism: As stated above, one way to
reduce the latency of the descriptor generator consists in
replicating the data allowing parallel access to each copy.
Replicas can be used to reduce the latency of one descriptor
generation or can increase the throughput dedicating each
replica to a different feature point candidate. Our exper-
iments show that the latter is more effective because it
enables a better exploitation of the parallelism available
between the FAST and rBRIEF data paths. FAST features
typically are very sparse and NMS reduces its density,
therefore, allowing FAST unit to continue processing the tile
while the rBRIEF Unit is processing one or more descriptors
is beneficial. In case the replicas were used to compute a
single descriptor, the FAST unit must block every time a
feature is found.

However, it is possible to increase the granularity of the
exploited parallelism since the computation of each intensity
test is completely independent of the rest. Figure 6 illustrates
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Figure 6: ORB Window architecture that allow parallel
access to multiple pairs per cycle.

the basic architecture that allows each patch replica to access
more than one pair per cycle. The proposed design consists
of a streaming-friendly architecture that segments the storage
structure for each row in a separated bank of memory with
two read ports. We decided this number of ports to reduce
the conflicts taking into account that two points from the
same row could be required for a particular intensity test. In
this way, conflicts of a pair with itself are avoided. A custom
interconnection network is needed to route each point pair to
the appropriate bank based on its coordinates. In addition,
another interconnection network is required to gather the
results and perform the intensity tests at the other end.

With this approach, we could potentially access to 37× 2
points or 37 pairs in one cycle. However, the cost of the
interconnection and routing for such solution is prohibitive.
Instead, we propose a design that allows parallel access to
a group of pairs of a given size each cycle. The appropriate
group size is experimentally determined in Section V.

Conflicts between pairs that, for a given rotation angle,
need to access to the same row, are the main problem that
arises in that solution. We define this as a structural hazard
or conflict that the custom interconnection network must
resolve. Furthermore, we put a constraint that consists in
pinning each point of a pair always to the same port of every
bank. This reduces the complexity of the interconnection
infrastructure as the operands required for the intensity tests
come one from each port of the banks. Taking into account
these restrictions, it is possible to design a control unit that
detects conflicts between pairs and orchestrates a sequential
access to the row resource. This implies that the unit needs
to introduce a stall to serialize the access of conflicting
pairs. Non-conflicting pairs can be routed directly to the
appropriate row bank. The output of each row bank is routed
to a register that holds each operand of the intensity test until
all points are read from the patch and all the tests can be
performed.

The rest of the optimizations detailed in the following
sections are focused on reducing the number of conflicts.

2) Reducing Conflicts: Static Pattern Reordering: The
number of conflicts varies according to the order of the ORB
pattern as this affects the static scheduling and composition
of the pair groups. Rearranging statically the order of the



pattern does not cause any issues with the quality of the
descriptor, since Hamming distance defines the metric space
of the ORB descriptor set [7]. As long as the same order
is maintained across different features, the metric space will
remain intact. Finding an optimal order of the pairs that
minimizes the number of conflicts when accessing to the
banks of the proposed architecture (Figure 6) is an NP-
Hard problem. For this reason, we propose to compute a
static scheduling based on an optimization performed with
a genetic algorithm (GA).

The Static Pattern Schedule problem consists of a set of
pairs P :

P = {P1, P2, ..., PN},

and a set of groups G:

G = {G1, G2, ..., G N
gsize
},

where gsize is a fixed parameter that indicates the size of
the group of pairs that can access the banks concurrently.
An assignment is represented by a tuple < P,G > and a
solution consists of an assignment for every element of P .

Furthermore, we have the following set of constraints:
1) No pair can be in more than one group.
2) All groups must have size pairs assigned.
On the other hand, the objective function, F , is defined

as the average latency of the unit for every possible rotation
angle using the set of assignments as a static scheduling. The
objective function includes additional constraints derived
from the characteristics of the proposed architecture (e.g.
port pinning of pair points). Note that this objective function
does not depend on the contents of the patch and we assume
an equiprobable distribution of angles. In addition, we know
that the number of plausible angles is bounded. According
to OpenCV documentation [18], the fastatan2, used in ORB-
SLAM, uses a precision of ”about 0.3 degrees”.

In order to apply a GA approach as a meta-heuristic, we
need to encode a candidate solution as a chromosome repre-
sentation and define the Initialization and genetic operators
for Fitness Evaluation, Selection, Crossover and Mutation.
The chromosome chosen to represent a Static Schedule
solution is a one dimensional array Ai where 0 ≤ i < 256
such that each element of the array represents an element
of P . The group assignment is determined by Ai, the
position within the array, as: b i

gsizec. This representation
is chosen because the constraints are automatically satisfied
by construction.

The initial population is generated by choosing random
permutations of P . The genetic operators applied in each
generation to this initial population are:

• Fitness Evaluation: Fitness in biological sense is a
quality value which is a measure of the reproductive
efficiency of chromosomes. Because our goal is to
minimize the number of cycles we use as a fitness
function the negation of the objective function, −F .
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Figure 7: Example of convergence of the genetic algorithm
to a local minimum for a gsize = 8.

• Selection: Individual solutions are selected based on its
Fitness Evaluation. Fitter solutions are more likely to be
selected trying to spread the best chromosomes to the
off-springs. Among all selection operator alternatives,
we choose Tournament selection. Tournament selection
involves running several ”tournaments” among a few
individuals chosen at random from the population. The
winner of each tournament, defined as the individual
with the best fitness, is selected for crossover.

• Crossover: Partially Matched Crossover (PMX) is cho-
sen. This recombination operator generates two off-
springs by matching pairs of values in a certain range
of the two parents and swapping the values of those
indexes [19]. The off-springs hopefully contain the best
pair ordering of the two parents.

• Mutation: The mutation is performed each generation
shuffling each chromosome of individuals with a given
probability. The mutation swap pairs between groups.

The parameters used for the GA are summarized in
Table I. Figure 7 shows the evolution of the fitness of the
best individual of all generations and the fitness of the best
individual of the current generation. In the example the GA
converges to a local optimum in 500 iterations. A 18%
reduction in latency is obtained with respect to a random
ordering. The optimization process takes in the order of
hours using an AMD Opteron 6338P with 24 threads. The
results of the optimization are detailed in the Section V.

Table I: Parameters used for the GA optimization of con-
flicts.

Parameter Value
Crossover probability 70%
Mutation probability 20%
Population size 300
Crossover Operator Partially Matched Crossover
Mutation Operator Partial Shuffle Mutation
Selection Operator Tournament Selection



3) Reducing Conflicts: Point Intensity Bypass: An addi-
tional approach proposed to reduce conflicts is based on
exploiting the potential temporal locality of the points of
the ORB pattern as there are many points that are accessed
more than one time (i.e. not all points of the original pattern
are unique). The original ORB pattern is composed of 375
unique points out of the 512 total points. We investigate
an improvement of the previous design leveraging this
observation that we call Point Intensity Bypass.

Point Intensity Bypass consists in a reformulation of the
definition of a conflict that takes into account the reuse of
points. In this way, two pairs of a group are in conflict if they
access the same bank but to a different address within it. If
the address is the same, that means that they need to read the
same point and we can save one access. To implement this
alternative, the control of the unit must consider both point
coordinates when detecting conflicts. If two pairs access
to the same coordinates, the control does not consider that
as a conflict and simply suppresses one of the requests. A
modification of the output routing must be done to send the
read value to two output registers of the associated pairs.

D. FAST Detector Unit

Figure 8 illustrates the architecture of the FAST Unit.
The module employs a Sliding Window structure with a
patch size of 7× 7, achieving a throughput of a pixel tested
per cycle. The FAST implementation used by ORB-SLAM
applies an adjustment of the threshold at run-time increasing
the sensibility if no features are found inside a region of
size 30×30. The algorithm uses two thresholds, one for the
default feature extraction (IniThr) and another with higher
sensitivity (MinThr).

The accelerator detects in parallel corners with the two
thresholds. The module detects speculatively corners with
the MinThr until at least one corner of IniThr is found (if
any) inside each region. While no corners or MinThr corners
are detected, the accelerator works under normal operation
generating ORB descriptors for such corners. Those corners
are stored in the ORB Store Buffer until the region is
completed. If at least one corner with the default threshold
is found, the descriptors generated in that region with the
MinThr are discarded. The Dynamic Threshold module
keeps track of the status of each region and is responsible
to set the dirty bit high when an IniThr corner is detected.

In order to perform the segment test and score compu-
tation, we use a similar solution as other works [20]. Each
pixel intensity of the Bresenham circumference is compared
with the central pixel obtaining a 16 bit string. To classify
a pixel as a corner it is necessary to search for a sub-string
with 12 consecutive set bits. This can be done efficiently by
using an AND tree with a depth of ten levels. Finally, an OR
reduction of the bits of the last level of the tree is needed
to determine if any of the searched patterns is found.

7x7 registers D-FIFO

FAST
String Search

      ...

IniThr_corner?
Dirty?

Pixel

Dynamic ThresholdMinThr_corner?

score

Figure 8: Architecture of the FAST unit.

E. Non-Maximal Suppression Unit

A 3×3 Sliding Window is used to filter the FAST features.
The sliding window is fed with the FAST scores. Each cycle,
the center pixel of the window is compared with the eight
surrounding pixels to determine if it is the local maximum.
This operation is implemented with eight comparators and
an AND reduction.

F. Gauss Unit

In order to generate the feature descriptor, the patch
around the feature point must be smoothed before computing
the intensity tests. The Gauss Filter Unit applies this smooth-
ing to every pixel of the image achieving a throughput of
one filtered pixel per cycle.

The unit employs a Sliding Window similar to Figure 4.
Each cycle a pixel flows through the structure. The convolu-
tion is performed multiplying each element of the window
by the corresponding element of the Gaussian kernel and
adding all the products.

We employ fixed point arithmetic to represent the values
of the Gaussian kernel and intermediate results before round-
ing to obtain the filtered value. Fixed point arithmetic allows
the use integer functional units while keeping accuracy
under control. The unit generates every cycle a pixel and
its Gaussian smoothed version.

G. Rotation Unit

The rotation unit is in charge of calculating the sine
and the cosine of the angle that the centroid of the patch
centered at a candidate feature point forms. This angle
is required to rotate the coordinates of the ORB pattern
applying Equation 8. The precision of the calculations is key
since errors in the rotation of the points in the ORB pattern
produce severe degradation of the quality of the generated
descriptors. We propose the use of the inverse square root
to compute it instead of a LUT of precomputed values used
in state-of-the-art solutions [9], [16], [21]. The unit uses a
37× 37 Sliding Window that receives the raw pixel stream
from the previously described Gauss Unit, meaning that this
stream is synchronized with the rBRIEF Unit input stream.
In addition, the unit is pipelined into several stages as shown
in Figure 9. The unit can compute an accurate estimation of
the sine and cosine of a patch per cycle.
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Figure 9: Pipelined architecture of the Rotation Unit.

The first pipeline stage of the Rotation Unit computes the
moment of a window. To do so efficiently, Equation 1 can
be reformulated as follows:

m01n+1 = m01n + 18× (Cn + Cn−37)− Sn

m10n+1
= m10n + xCn − xCn−37

m00n+1
= m00n + Cn − Cn−37 (9)

where,
Sn+1 = Sn + Cn − Cn−36

Cn =
∑

1≤x≤37

px,n

xCn =
∑

1≤x≤18

x× (p38−x,n − px,n) (10)

and px,n is the intensity of the pixel at the coordinates
within the patch indicated by row x and col n. The moment
computation consists of an adder tree used to compute Cn.
Furthermore, an optimized Multiple Constant Block [17]
(MCM) is used to compute xCn.

The next two stages perform the centroid division. Image
moments, m01 and m10, computed in the previous stage
could be directly used to determine the trigonometric func-
tions. However, we divide these values by m00. This reduces
the number of bits to hold the value and, therefore, the cost
of its manipulation in later stages. Efficient division circuits
are employed for integer and fixed-point division, with a
precision of 1

32 .
The next stage is the summation of squares and estimation

computation. A first estimation of the inverse square root is
performed considering the Most Significant Bit (MSB) of
the previous square sum. This results in a good estimation
considering the following:

log2(
1√
x
) = −1

2
log2(x) (11)

Next, the fast inverse square root is computed in three
stages. The inverse square root of x, the summation of

squares previously determined, is computed using an ap-
proximation based on the Newton–Raphson method. Three
iterations of the following formula are employed using as
y0 the MSB-based estimation:

yn+1 = yn(
3

2
− x

2
yn

2) (12)

The final stage computes the sine and cosine applying
Equation 4 and updating the signs of the final values.

IV. EVALUATION METHODOLOGY

We have developed Register-Transfer-Level (RTL) models
of the ORB accelerator described in Section III by leveraging
PyMTL [22] framework. We tested different versions of the
architecture varying the number of rBRIEF window replicas
and comparing the results with the improved architecture
and the modifications detailed in Section III-C3 and Sec-
tion III-C2. Table II shows the parameters employed in
the experiments. In order to estimate area and critical path
delay, we translate the PyMTL models into Verilog and
synthesize them using Yosys [23] with the open-source 45
nm FreePDK45 1.4 [24]. Moreover, we obtain the energy
consumption of the gate-level netlist of the accelerator using
Synopsys Design Compiler [25].

As the software baseline we use an open source ORB-
SLAM implementation [10]. We measure the performance
of this implementation on a CPU with parameters shown in
Table III. We use Intel RAPL [26] to measure CPU energy
consumption.

On the other hand, the experimental evaluation is per-
formed using the KITTI dataset [12]. We use the odometry
benchmark that comprises various recordings from drivings
around the city of Karlsruhe. This benchmark consists of 22
grayscale stereo sequences. In particular we use the sequence
0, which comprises a set of 4541 frames with a resolution
of 1241× 376 pixels.

Finally, we use an evolutionary computation framework
for rapid prototyping and testing of ideas called DEAP [27]
to implement the genetic algorithm described in Sec-
tion III-C2.

Table II: Hardware parameters for the accelerator.

Parameter Value
Technology, Frequency 45 nm, 400MHz
Tile width 210
Target number of features 2000

Table III: CPU parameters.

Parameter Value
CPU Intel(R) Core(TM) i7-7700K
Number of cores / threads 4 / 8
Technology, Frequency 14 nm, 4.2 GHz
L1, L2, L3 0.25 MiB, 1 MiB, 8 MiB



V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance and energy
consumption of the CPU and different versions of the
ORB accelerator presented in Section III. The configuration
labeled as CPU corresponds to a high-performance software
implementation of ORB feature extraction running on a CPU
with parameters shown in Table III. On the other hand,
configurations labeled with ASIC represent different versions
of the accelerator. We use the following nomenclature: ASIC-
GN-RM, where N indicates the group size for BRIEF de-
scriptor computation and M shows the degree of replication.
For example, ASIC-G4-R2 indicates a configuration of the
ORB accelerator with a group size of 4, i.e. 4 bits of the
BRIEF descriptor are computed at a time, whereas the entire
BRIEF unit is replicated 2 times. If the group size is greater
than one, a static scheduling of the 256 pairs of pixels is
employed in order to minimize the number of bank conflicts,
using a genetic algorithm as described in Section III-C2.

Figure 10a shows the speedup achieved by the accelerator
with respect to the CPU. All systems achieve real-time
performance. Configurations ASIC-G1-R4 and ASIC-G1-R8
achieve speedups of 4.8× and 8.1× respectively. On the
other hand, ASIC-G4-R1 and ASIC-G8-R1 deliver 4.37× and
5.24× speedups respectively. Finally, ASIC-G8-R2 obtains a
7.8× speedup. The performance of the accelerator is higher
as it has a pipeline tailored to the requirements of the
ORB feature extraction algorithm. Increasing the group size
and rescheduling the pixel pairs for BRIEF computation
based on the static ordering provides significant benefits,
delivering performance comparable to configurations with
more replicated hardware.

The accelerator provides a significant reduction in power
dissipation as illustrated in Figure 10b. The results include
both static and dynamic power. Configuration ASIC-G1-
R4 achieves a reduction in power dissipation of 1690×
compared to the software-based solution, whereas ASIC-G8-
R2 achieves a 1957× power reduction. This huge power
reduction is due to several reasons. First, the accelerator
includes a specifically designed streaming architecture for
ORB extraction that exhibits a high throughput and a large
data reuse. Second, the improved BRIEF unit with the static
scheduling further improves power dissipation by reducing
the required on-chip structures, avoiding conflicts between
pairs of pixels, decreasing the underlying data movements.
ASIC-G8-R2 consumes 9.9% less energy per frame on
average than ASIC-G1-R8.

Figure 11 reports the effectiveness of the genetic algo-
rithm (Section III-C2) to reduce bank conflicts. The figure
shows the number of penalty cycles due to bank conflicts.
To compute the extra cycles, we define a lower bound for
the latency estimated as the number of accesses of the
bank with the most accesses (critical) and assuming that
the rest of the accesses can be done in parallel. The lower
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Figure 10: (10a) Speedup achieved by the accelerator com-
pared with the CPU. (10b) Power dissipation of the CPU
and the accelerator.
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Figure 11: Average number of penalty cycles due to bank
conflicts when computing an rBRIEF descriptor, with and
without the GA optimization.

bound is not guaranteed to be a feasible global optimum,
but it allows us to have a reference of how much room
for improvement could be. Our static scheduling technique
(ASIC+GA) reduces the penalty cycles due to conflicts
by 51.8% and 40.9% for group sizes of 4 and 8 pairs
respectively, as shown in Figure 11.

To sum up, the experimental results show the benefits
of the proposed architecture and the technique to optimize
the rBRIEF ordering. ASIC-G8-R2 is the best configuration
tested in our experiments, since its performance is similar to
a configuration with a higher degree of hardware replication,
while it achieves significant lower power and area footprint.
In this configuration, the use of the pattern ordering obtained



Table IV: Comparison with previous works. PPW stands for Performance Per Watt.

Work Algorithm Streaming Implementation Performance Power (mW) PPW
[28] FAST-BRIEF No ASIC, 130nm, 78.3k gates, 128kB SRAM 122fps, FHD, 200MHz 182 670
[29] ORB-like No ASIC, 65nm, 127k gates, 205kB MEM 135fps, FHD, 200MHz 87.5 1542
[16] ORB Yes FPGA, Arria V GX, 449 DPS, 206000 LEs, 231973 REGs, 1047kB BRAM 110.9fps, FHD, 230MHz 5340 20
[30] ORB Yes FPGA, Stratix V, 8 DPS, 25648 LUTs, 21791 REGs, 1208kB BRAM 67fps, VGA, 203MHz 4559 14
[15] FAST-BRIEF Yes ASIC, 65nm, 28kB SRAM 2170fps, VGA 1131 1918
[9] ORB No FPGA, XCZU9EG, 33 DPS, 28168 LUTs, 9528 REGs, 188kB BRAM 108fps, FHD, 200MHz 873 123
[8] FAST+RS-BRIEF No FPGA, XCZ7045, 111 DPS, 56954 LUTs, 67809 REGs, 78 BRAM 55.87fps, VGA, 100MHz 1963 28

This work ORB Yes ASIC, 45nm, 32kB SRAM 120fps, FHD, 400MHz 10.34 11605

with the GA technique translates into a 7.2% reduction in
overall execution time compared with the use of the orig-
inal pattern ordering. A corresponding reduction in energy
consumption is also achieved, taking into account that the
power dissipation is not affected by the static reordering.

A. Comparison with Previous Works

Table IV provides a quantitative comparison with previous
works. Our solution achieves high performance and shows
the best energy efficiency, achieving a large improvement
in performance/W. The next section provides a qualitative
comparison with related works.

VI. RELATED WORK

Prior research used stream-based implementations on FP-
GAs. Work in [16], [31] propose a streaming architecture
similar to ASIC-G1-R4 to extract ORB features using Harris-
Stephens corners. Moreover, they propose an architecture
for multilevel feature extraction with a replicated version of
the accelerator per pyramid level. The rBRIEF bottleneck is
solved through the use of replicas with a different replica-
tion factor depending on the pyramid level. This solution
employs an angle discretization of 64 values per sector.
Our solution is different as it is based on an ASIC instead
of FPGA, and we avoid angle discretization to preserve
accuracy.

Work in [21] propose a streaming architecture for rBRIEF
on FPGA, leveraging replication of window buffers to re-
duce latency of descriptor generation. Our proposal avoids
replication by a large extent, and it exploits parallelism in
the computation of the rBRIEF descriptor by processing
multiple pairs of pixels at a time.

An SLAM accelerated solution is introduced in [8],
proposing an architecture for feature extraction and matching
on an FPGA while the rest of the components of SLAM
run on a CPU. Authors propose a hardware-friendly pattern
to generate BRIEF descriptors. This pattern reduces the
rotation operation to a bit vector rotation operation instead
of a costly trigonometric calculation. The drawback of this
approach is the accuracy degradation and the unpredictable
effects derived from changing the functional properties of
rBRIEF.

Another architecture for ORB extraction is proposed
in [9], [20]. The architecture comprises a streaming front-end
to generate the image scale pyramid and feature detection.

The rBRIEF generation is carried out by a non-streaming
back-end. This back-end consists of a four issue super-scalar
architecture that dynamically schedules points to compute
the descriptor bits. However, a large discretization of the
angles is used. Our solution is different as we do not sacrifice
accuracy to simplify the hardware implementation, and we
solve the issues with BRIEF computation by using a static
ordering found with a genetic algorithm that minimizes bank
conflicts.

VII. CONCLUSIONS
In this paper we propose a low-power and high-

performance accelerator for ORB feature extraction, a key
component of camera-based self-driving cars. Unlike previ-
ous proposals, our solution achieves the same accuracy of
reference software implementations, avoiding accuracy loss
for the sake of simpler hardware. Furthermore, we propose a
novel solution to implement rBRIEF descriptor computation
in hardware. Our system evaluates multiple pairs of pixels
at a time, and it reorders the pairs of pixels based on a static
scheduling that minimizes the bank conflicts for any angle.
The static reordering is found offline by using a genetic
algorithm. Our experimental results show that the proposed
accelerator achieves a speedup of 7.8× and a reduction in
power dissipation of 1957× with respect to a high-end CPU.
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