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NEW INTERIOR-POINT APPROACH FOR ONE- AND TWO-CLASS LINEAR
SUPPORT VECTOR MACHINES USING MULTIPLE VARIABLE SPLITTING∗

JORDI CASTRO †

Abstract. Multiple variable splitting is a general technique for decomposing problems by using copies of variables
and additional linking constraints that equate their values. The resulting large optimization problem can be solved with a
specialized interior-point method that exploits the problem structure and computes the Newton direction with a combination
of direct and iterative solvers (i.e., Cholesky factorizations and preconditioned conjugate gradients for linear systems related
to, respectively, subproblems and new linking constraints). The present work applies this method to solving real-world
binary classification and novelty (or outlier) detection problems by means of, respectively, two-class and one-class linear
support vector machines (SVMs). Unlike previous interior-point approaches for SVMs, which were practical only with
low-dimensional points, the new proposal can also deal with high-dimensional data. The new method is compared with
state-of-the-art solvers for SVMs, that are based on either interior-point algorithms (such as SVM-OOPS) or specific
algorithms developed by the machine learning community (such as LIBSVM and LIBLINEAR). The computational results
show that, for two-class SVMs, the new proposal is competitive not only against previous interior-point methods—and
much more efficient than they are with high-dimensional data—but also against LIBSVM; whereas LIBLINEAR generally
outperformed the proposal. For one-class SVMs, the new method consistently outperformed all other approaches, in terms
of either solution time or solution quality.

Key words. interior-point methods, support vector classifier, one-class support vector machine, multiple variable
splitting, large-scale optimization

AMS subject classifications. 90C51, 90C20, 90C90, 62H30

1. Introduction.
Machine learning applications require the solution of a—usually large—optimization problem [1]. In

the case of support vector machines (SVM, one of the preferred tools in machine learning), the optimiza-
tion problem to be solved is convex and quadratic [9]. SVMs can be used for either binary classification or
novelty detection. When used for binary classification, they are referred to as a support vector classifier
or two-class SVM [8]; for novelty (or outlier) detection, they are called one-class SVM [16, 7]. Although
in recent years they have been replaced by neural networks in some applications (e.g., for image detection
and classification), SVMs are still one of the preferred techniques for text classification [1].

In this work we present a new approach for solving real-world two-class and one-class SVMs. It
is based on reformulating the SVM problem by decomposing it into smaller SVMs and using linking
constraints to equate the values of the split variables. The resulting optimization problem has a primal
block-angular structure which can be efficiently solved using the specialized interior-point method (IPM)
of [2, 3, 4, 5]. The extensive computational experience in Section 4 shows that the new approach can be
competitive against state-of-the-art methods for two-class SVM and that it outperformed all of them for
one-class SVM.

Briefly, SVMs attempt to find a hyperplane separating two classes of multidimensional points (two-
class SVM), or points with some distribution from a set of outliers (one-class SVM). For either one-class
or two-class SVMs we are given a set of p d-dimensional points ai ∈ Rd, i = 1, . . . , p. Each point could be
related to some item, and the d components of the point would be related to variables (named features
in machine learning jargon) for that item. In two-class SVMs we also have a vector y ∈ Rp of labels
yi ∈ {+1,−1}, i = 1, . . . , p, indicating whether point i belongs to class “+1” or class “−1”. In some
applications, points ai need to be previously transformed by function φ : Rd → Rd′ , especially if the
two classes of points cannot be correctly separated by a hyperplane. When dimension d is high, such a
transformation is usually not needed, since a good separation hyperplane can be found. That is, φ(x) = x,
and we refer to this problem as the linear SVM. In this work, we focus on linear SVMs.

1.1. The two-class SVM optimization problem. For the two-class SVM (or support vector
classifier), we compute a plane w>x + γ = 0, w ∈ Rd, γ ∈ R, such that points ai with yi = +1 should
be in the half-plane w>x + γ ≥ 1, and those points with label yi = −1 should be in the half-plane
w>x + γ ≤ −1. Slack variables s ∈ Rp are introduced to account for possible misclassification errors if
the data points are not linearly separable. At the same time we also attempt to maximize the distance
between the parallel planes w>x+ γ = 1 and w>x+ γ = −1, such that the two classes of points are far
enough from each other. This distance, named separation margin, is 2/‖w‖ [9]. Using A ∈ Rp×d to define
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the matrix storing row-wise the p d-dimensional points ai, i = 1, . . . , p, and Y = diag(y) to define the
diagonal matrix made from the vector of labels y, the primal formulation of the two-class SVM problem
is

min
w,γ,s

1

2
w>w + νe>s(1.1a)

subject to Y (Aw + γe) + s ≥ e(1.1b)
s ≥ 0,(1.1c)

where e ∈ Rp is a vector of 1s, and ν is a fixed parameter to balance the two opposite terms of the objective
function: the first quadratic term maximizes the separation margin, and the second term minimizes the
misclassification errors.

Defining the vectors of Lagrange multipliers λ ∈ Rp and µ ∈ Rp, respectively, for constraints (1.1b)
and (1.1c), the Lagrangian function of (1.1) is

(1.2) L(w, γ, s, λ, µ) =
1

2
w>w + νe>s− λ>(Y (Aw + γe) + s− e)− µ>s,

and the Wolfe dual of (1.1) becomes

max
w,γ,s,λ,µ

L(w, γ, s, λ, µ)(1.3a)

subject to ∇wL(·) = w − (λ>Y A)>= 0(1.3b)

∇γL(·) = λ>y = 0(1.3c)
∇sL(·) = νe− λ− µ = 0(1.3d)
λ ≥ 0, µ ≥ 0.(1.3e)

Using relations (1.3b)–(1.3e) in (1.3a), we obtain the dual problem (in minimization form)

min
λ

1

2
λ>Y AA>Y λ− λ>e(1.4a)

subject to λ>y = 0(1.4b)
0 ≤ λ ≤ νe.(1.4c)

The dual (1.4) is a convex quadratic optimization problem with only one linear constraint and simple
bounds. The linear constraint (1.4b) comes from ∇γL(·). Therefore, if a linear (instead of an affine)
separation plane w>x = 0 is considered in the primal formulation (that is, without the γ term), the
dual is only defined by (1.4a) and (1.4c). Such a problem can be effectively dealt with by gradient
and coordinate descent methods [21]. This fact is exploited by some of the most popular and efficient
packages in machine learning (such as LIBLINEAR [10]). We note, however, that both problems are
slightly different, since they compute either a linear or an affine separation plane.

1.2. The one-class SVM optimization problem. The purpose of the one-class SVM problem
(introduced in [16]) is to find a hyperplane w>x − γ = 0, w ∈ Rd, γ ∈ R, such that points in the
half-plane w>x− γ ≥ 0 are considered as belonging to the same distribution, and the separation margin
with respect to the origin is maximized. Points that are not in the previous half-plane are considered
outliers. Defining, as in the two-class SVM problem, the matrix A ∈ Rp×d whose row i contains point ai,
i = 1, . . . , p, the primal formulation of the one-class SVM problem is

min
w,γ,s

1

2
w>w − γ +

1

νp
e>s(1.5a)

subject to Aw − γe+ s ≥ 0(1.5b)
s ≥ 0,(1.5c)

where the positive components of s in the optimal solution would be associated with outliers, and ν ∈ [0, 1]
is a fixed parameter. It was shown in [16] that ν is an upper bound on the fraction of detected outliers
in the optimal solution.
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As in the two-class SVM problem, we can use Wolfe duality to compute the dual of (1.5), thereby
obtaining:

min
λ

1

2
λ>AA>λ(1.6a)

subject to λ>e = 1(1.6b)

0 ≤ λ ≤ 1

νp
e.(1.6c)

One significant difference with respect to the two-class SVM problem is that the linear constraint (1.6b)
cannot be avoided by removing γ from the primal formulation (1.5) (that is, by computing a linear instead
of an affine plane): if γ was removed, problem (1.5) would have the trivial and useless solution w∗ = 0,
s∗ = 0. As will be shown in the computational results of Section 4, this fact has far reaching implications
for methods that solve (1.6) by means of coordinate gradient descent [7], as they may provide a poor
quality solution that is far from the optimal one.

1.3. Alternative approaches for SVMs. Several approaches have been developed for solving the
two-class SVM problem by using either (1.1) or (1.4). We will avoid giving an extensive list and will focus
instead on only those based on IPMs (like ours) and those implemented in the current state-of-the-art
packages for SVMs that will be used in the computational results of this work.

Since (1.1) and (1.4) are convex quadratic linearly constrained optimization problems, they can be
solved by a general solver implementing an IPM. However, when using either the primal or dual formula-
tion, computing the Newton direction would mean solving a linear system involving matrix AΘA> ∈ Rp×p
(where Θ is some diagonal scaling matrix that is different for each IPM iteration). For datasets with a
large number of points p the Cholesky factorization can be prohibitive because matrices A are usually
quite dense. However, for low-rank matrices A which involve many points and just a few variables (that
is, p� d) a few very efficient approaches have been devised. The first one was that of [11], who consid-
ered the dual problem (1.4) and solved the Newton system by applying the Sherman-Morrison-Woodbury
(SMW) formula. In [11] the authors solved problems with millions of points but only d = 35 features.
The product form Cholesky factorization introduced in [12] for IPMs with dense columns was applied
in [13] for solving the dual SVM formulation. This approach was shown to have a better numerical
performance than those based on the SMW formula, but no results for real SVM instances were reported
in [13]. State-of-the-art IPM solvers including efficient strategies for dealing with dense columns (such as
CPLEX) can also be used for solving the primal formulation (1.1). Indeed the computational results of
Section 4 will show that CPLEX 20.1 is competitive against specialized packages for both one-class and
two-class SVMs when d is small.

More recently, [19] suggested a separable reformulation of (1.4) by introducing the extra free variables
u. The resulting problem

min
λ

1
2u
>u− λ>e

λ>y = 0
A>Y λ = u
0 ≤ λ ≤ νe, u free,

was efficiently solved when A is low-rank. This approach was implemented in the SVM-OOPS pack-
age, and [19] extensively tested it against state-of-the-art machine learning packages for SVMs, showing
competitive results (but only for problems with a few features). SVM-OOPS can be considered one of
the most efficient specialized IPM approaches for linear SVMs when d is small, and it will be one of the
packages considered in Section 4 for the computational results (but only for classification, since it does
not deal with one-class SVMs).

The two likely best packages for SVMs in the machine learning community are LIBSVM [6] and
LIBLINEAR [10]. Both will be used for comparison purposes in the computational results of Section 4.
LIBSVM solves the duals (1.4) and (1.6) (and can thus be used for both two-class and one-class SVMs)
without removing the linear constraint (that is, it considers the γ term of the primal formulation). It
applies a gradient descent approach combined with a special active set constraint technique named se-
quential minimal optimization (SMO) [18], where all but two components of λ are fixed, and each iteration
deals only with a two-dimensional subproblem. Each iteration of SMO is very fast, but convergence can
be slow. As will be shown in Section 4, LIBSVM is generally not competitive against the other methods.
On the other hand, it is the only one that can efficiently deal with nonlinear SVMs—that is, when φ(x)
is a general transformation function.
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LIBLINEAR [10] is considered the fastest package for linear SVMs. For two-class SVMs, it solves
either the primal or the dual formulation without the γ variable. For the primal formulation, it considers
the following approximate unconstrained reformulation:

min
w

1

2
w>w + ν

p∑
i=1

max(0, 1− yiw>ai)2.

The nondifferentiable max() term (known as hinge loss function in the machine learning field) must
be squared to avoid differentiability issues with the first derivative (this term, however, has no second
derivative at 0). This unconstrained problem is solved by a trust-region Newton method based on
conjugate gradients while further using a Hessian perturbation to deal with the second derivatives at 0.
Due to the lack of γ, LIBLINEAR solves the dual formulation (1.4) without the linear constraint:

(1.7)
min
λ

1
2λ
>Y AA>Y λ− λ>e

0 ≤ λ ≤ νe.

This problem is solved using a coordinate gradient descent algorithm. For one-class SVM, LIBLINEAR
solves only the exact dual (1.6) (which includes the linear constraint) by means of a coordinate descent
algorithm [7].

The rest of the paper is organized as follows. Section 2 introduces the multiple variable splitting
reformulation considered in this work for linear SVMs. Section 3 presents the specialized IPM that will
be used for the efficient solution of the multiple variable splitting reformulation of the SVM problem.
Finally, computational results for one-class and two-class SVMs using real datasets will be provided in
Section 4, showing the efficiency and competitiveness of this new approach.

2. Multiple variable splitting reformulation of linear SVMs.
The approach introduced in this work consists of partitioning the dataset of p points into k subsets

of, respectively, pi, i = 1, . . . , k, points (where
∑k
i=1 pi = p). The points in each subset and their

labels are assumed to be stored, respectively, row-wise in matrices Ai ∈ Rpi×d and diagonally in matrices
Y i ∈ Rpi×pi , i = 1, . . . , k. Considering k smaller SVMs, each with its own variables (wi, γi, si), i = 1, . . . , k
(where wi ∈ Rd, γi ∈ R and si ∈ Rpi), problem (1.1) is equivalent to the following multiple variable
splitting formulation with linking constraints:

min
(wi,γi,si)

1

2

(
k∑
i=1

wi
>
wi

)
/k + ν

k∑
i=1

ei
>
si(2.1a)

subject to Y i(Aiwi + γiei) + si ≥ ei i = 1, . . . , k(2.1b)

si ≥ 0 i = 1, . . . , k(2.1c)

wi = wi+1, γi = γi+1 i = 1, . . . , k − 1,(2.1d)

where ei ∈ Rpi is a vector of ones. Linking constraints (2.1d) impose the same hyperplanes for the k
SVMs. Slacks si represent the potential misclassification errors, so they are particular to the points of
each subset and do not have to be included in the linking constraints.

Similarly, the one-class SVM problem (1.5) can be reformulated as

min
(wi,γi,si)

1

2

(
k∑
i=1

wi
>
wi − γi

)
/k +

1

νp

k∑
i=1

ei
>
si(2.2a)

subject to Aiwi − γiei + si ≥ 0 i = 1, . . . , k(2.2b)

si ≥ 0 i = 1, . . . , k(2.2c)

wi = wi+1, γi = γi+1 i = 1, . . . , k − 1.(2.2d)

The constraints of problems (2.1) and (2.2) exhibit a primal block-angular structure. Putting aside
the linking constraints (2.1d) and (2.2d), the solution of either (2.1) or (2.2) with an IPM requires k
Cholesky factorizations involving AiΘiAi

> ∈ Rpi×pi , i = 1, . . . , k, at each IPM iteration (Θi being a
diagonal scaling matrix that depends on the particular iteration). If each subset has the same number of
points, that is pi = p/k, the complexity of the k Cholesky factorizations is

(2.3) O

(
k
(p
k

)3)
= O

(
p3

k2

)
� O

(
p3
)
,
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where O
(
p3
)
is the complexity of the Cholesky factorizations of the original formulations (1.1) and (1.5).

Of course, to benefit from (2.3), we need an IPM that can efficiently deal with the linking constraints of
primal block-angular optimization problems. Such an approach is summarized in the next section.

3. The IPM for the multiple variable splitting reformulation of SVMs. After transforming
(2.1b) and (2.2b) into equality constraints by adding extra nonnegative variables ξi ∈ Rpi ,

Y i(Aiwi + γiei) + si − ξi = ei, ξi ≥ 0, i = 1, . . . , k

Aiwi − γiei + si − ξi = 0, ξi ≥ 0, i = 1, . . . , k,

problems (2.1) and (2.2) match the following general formulation of primal block-angular optimization
problems:

min

k∑
i=0

fi(x
i)(3.1a)

subject to

M1

M2

. . .
Mk

L1 L2 . . . Lk I




x1

x2

...
xk

x0

 =


b1

b2

...
bk

b0

(3.1b)

0 ≤ xij ≤ uij j 6∈ F i, xij free j ∈ F i, i = 0, . . . , k.(3.1c)

Vectors xi = (wi
>
γi
>
si
>
ξi
>

)> ∈ Rni=d+1+2pi , i = 1, . . . , k, contain all the variables for the i-th
SVM; and C2 3 fi : Rni → R, i = 0, . . . , k, are convex separable functions. For SVM problems, they are
quadratic functions:

(3.2) fi(x
i) = ci

>
xi +

1

2
xi
>
Qix

i, Qi � 0 and diagonal, i = 1, . . . , k,

whereas for i = 0 we have f0(x0) = 0. Matrices Mi ∈ Rmi×ni and Li ∈ Rl×ni , i = 1, . . . , k, respectively
define the block-diagonal and linking constraints, where mi = pi (the number of points in the i-th SVM)
and l = (d + 1)(k − 1) is the number of linking constraints defined in either (2.1d) or (2.2d). Vector
bi ∈ Rmi , i = 1, . . . , k, is the right-hand side for each block of constraints, whereas b0 ∈ Rl is for the
linking constraints. In our case bi = ei for two-class SVM and bi = 0 for one-class SVM, i = 1, . . . , k,
whereas b0 = 0 in both problems. x0 ∈ Rl are the slacks of the linking constraints. The sets F i contain
the indices of the free variables for each block (corresponding to wi and γi). The upper bounds for each
group of variables are ui ∈ Rni , i = 0, . . . , k; these upper bounds apply only to the components of xi that
are not in F i (that is, they apply only to si and ξi), and in our problem ui = +∞ for all i = 1, . . . , k. For
the linking constraints, we have F0 = ∅, that is, slacks x0 are bounded—otherwise the linking constraints
could be removed. For problems with equality linking constraints, as in our case, u0 can be set to a very
small (close to 0) value.

The total numbers of constraints and variables in (3.1) are thus, respectively, m = l +
∑k
i=1mi and

n = l+
∑k
i=1 ni. Formulation (3.1) is a very general model which accommodates to many block-angular

problems. In this work, problem (3.1) is solved by the specialized infeasible long-step primal-dual path-
following IPM, which was initially introduced in [2] for multicommodity network flows and later extended
to general primal block-angular problems [3, 5]. For the solution of SVM problems, we extended the
implementation of this algorithm in order to deal with free variables, as described in [4].

A general description of primal-dual path-following IPMs can be found in the monograph [20]. Our
focus here is to summarize how the Newton direction is efficiently solved by the specialized IPM. Briefly,
at each interior-point iteration, this approach requires solving the normal equations system

(3.3) MΘM>∆ζ = g,

where
• M ∈ Rm×n is the constraints matrix of (3.1b);
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• Θ = (Q+Ω(U−X)−1+ΥX−1)−1 ∈ Rn×n is a diagonal scaling matrix computed from the current
primal-dual point, where X = diag(xi, i = 0, . . . , k), U = diag(ui, i = 0, . . . , k), Ω = diag(ωi, i =
0, . . . , k), Υ = diag(υi, i = 0, . . . , k) (ωi and υi being the Lagrange multipliers associated with,
respectively, the upper and lower bounds); and Q ∈ Rn×n is the matrix with the quadratic costs
Qi, i = 0, . . . , k;

• ∆ζ ∈ Rm is the direction of movement for the Lagrange multipliers ζ of equality constraints;
• and g ∈ Rm is a right-hand side.

Free variables do not have associated Lagrange multipliers in Ω and Υ. For the variables wi that define
the normal vector of the SVM hyperplane, this is not an issue, since those variables have a nonzero entry
in matrix Q of the quadratic costs. However, the intercept γi of the SVM hyperplane has neither a
multiplier in Ω and Υ nor a quadratic entry in Q; thus, its associated entry in the scaling matrix Θ is 0,
making it singular. This can be fixed by using the regularization strategy for free variables described in
[15]. A derivation and additional details about the normal equations can be found in [20].

Exploiting the block structure of M and Θ we have:

(3.4)

MΘM>∆ζ =



M1Θ1M
>
1 M1Θ1L

>
1

. . .
...

MkΘkM
>
k MkΘkL

>
k

L1Θ1M
>
1 . . . LkΘkM

>
k Θ0 +

∑k
i=1 LiΘiL

>
i


∆ζ

=

[
B C
C> D

] [
∆ζ1
∆ζ2

]
=

[
g1
g2

]
,

where ∆ζ1 ∈ R
∑k

i=1mi and ∆ζ2 ∈ Rl are the components of ∆ζ associated with, respectively, block
and linking constraints; Θi = (Qi + Ωi(Ui − Xi)

−1 + ΥiX
−1
i )−1, i = 0, . . . , k, are the blocks of Θ; and

g = (g>1 g
>
2 )> is the corresponding partition of the right-hand side g. We note that matrix B is comprised

of k diagonal blocks MiΘiM
>
i for i = 1, . . . , k, each of them associated with one of the subsets in which

the dataset of points was partitioned. By eliminating ∆ζ1 from the first group of equations of (3.4), we
obtain

(D − C>B−1C)∆ζ2 = (g2 − C>B−1g1)(3.5a)
B∆ζ1 = (g1 − C∆y2).(3.5b)

The specialized IPM for this class of problems solves (3.5) by performing k Cholesky factorizations
for the k diagonal blocks of B and by using a preconditioned conjugate gradient (PCG) for (3.5a). System
(3.5a) can be solved by PCG because matrix D − C>B−1C ∈ Rl×l of (3.5a) (whose dimension is the
number of linking constraints) is symmetric and positive definite, since it is the Schur complement of the
normal equations (3.4), which are symmetric and positive definite. A good preconditioner is, however,
instrumental. We use the one introduced in [2], which is based on the P -regular splitting theorem [17].
D − C>B−1C is a P -regular splitting, i.e., it is symmetric and positive definite; D is nonsingular; and
D + C>B−1C is positive definite. Therefore, the P -regular splitting theorem guarantees that

(3.6) 0 < ρ(D−1(C>B−1C)) < 1,

where ρ(·) denotes the spectral radius of a matrix (i.e., the maximum absolute eigenvalue). This allows
us to compute the inverse of D − C>B−1C as the following infinite power series (see [2, Prop. 4] for a
proof).

(3.7) (D − C>B−1C)−1 =

( ∞∑
i=0

(D−1(C>B−1C))i

)
D−1.

The preconditioner is thus obtained by truncating the infinite power series (3.7) at some term. In theory,
the more terms that are considered, the fewer PCG iterations that are required, although at the expense
of increasing the cost of each PCG iteration. Including only the first, and only the first and second terms
of (3.7), the resulting preconditioners are, respectively, D−1 and (I +D−1(C>B−1C))D−1. As observed
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in [4], D−1 generally provided the best results for most applications, and it will be our choice for solving
SVM problems.

Although its performance is problem dependent, the effectiveness of the preconditioner obtained by
truncating the infinite power series (3.7) most often depends on two criteria:

• First, the quality of the preconditioner relies on the spectral radius ρ(D−1(C>B−1C)), which is
always in (0, 1): the farther from 1, the better the preconditioner [5]. The value of the spectral
radius strongly depends on the particular problem (even instance) being solved. Therefore, it is
difficult to know a priori if the approach will be efficient for some particular application. However,
there are a few results that justify its application for solving SVMs: Theorem 1 and Proposition
2 of [5] state that the preconditioner is more efficient for quadratic problems (such as SVMs)
than for purely linear optimization problems.
• Secondly, the structure of matrix D = Θ0 +

∑k
i=1 LiΘiL

>
i , since systems with this matrix have

to be solved at each PCG iteration. Therefore, D has to be easily formed and factorized. We
show in the next subsection that building and factorizing the matrices D that arise in SVMs are
computationally fast operations.

3.1. The structure of the preconditioner D. According to (3.4), the preconditioner D is defined
as

(3.8) Rl×l 3 D = Θ0 +

k∑
i=1

LiΘiL
>
i

where, from (2.1d) and (2.2d), the structure of
[
L1 . . . Lk

]
is

(3.9)
[
L1 . . . Lk

]
=

w1, γ1 w2, γ2 w3, γ3 · · · wk−1, γk−1 wk, γk
I −I

I −I
. . .

I −I

 .

From (3.9) by block multiplication we get

(3.10)
k∑
i=1

LiΘiL
>
i =


Θ1 + Θ2 −Θ2

−Θ2 Θ2 + Θ3 −Θ3

. . . . . . . . .
−Θk−2 Θk−2 + Θk−1 −Θk−1

−Θk−1 Θk−1 + Θk

 .

Therefore, from (3.8), the preconditioner D is a t-shifted (symmetric and positive definite) tridiagonal
matrix, where t is the number of split variables (in the SVM problem, t = d+1 is the number of components
in (w, γ) defining the separation hyperplane). A t-shifted tridiagonal matrix is a generalization of a
tridiagonal matrix where the superdiagonal (nonzero diagonal above the main diagonal) and subdiagonal
(nonzero diagonal below the main diagonal) are shifted t positions from the main diagonal, i.e., elements
(i, j) are non-zero only if |i−j| is either 0 or t. Matrices with such a structure can be efficiently factorized
with zero fill-in by extending a standard factorization for tridiagonal matrices. The algorithm in Fig. 1
shows the efficient factorization of matrix (3.10).

The above discussion is summarized in the following result:

Proposition 3.1. For any two-class or one-class SVM problem based, respectively, on the splitting
formulations (2.1) and (2.2), the preconditioner D defined in (3.8) is a (d+ 1)-shifted tridiagonal matrix
of dimension (d + 1)(k − 1), where d + 1 is the number of components in (w, γ) and k is the number of
subsets in which the points of the SVM were partitioned.

Proof. It is immediate from the discussion in the previous paragraphs.

4. Computational results.
The specialized algorithm for SVMs detailed in Section 3 has been coded in C++ using the BlockIP

package [4], which is an implementation of the IPM for block-angular problems. The resulting code will
be referred to as SVM-BlockIP. SVM-BlockIP solves both the two-class and one-class SVM models (2.1)
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Algorithm Factorization of
∑k
i=1 LiΘiL

>
i (matrix (3.10))

Input: Θi, i = 1, . . . k

Output: Matrix R :
∑k
i=1 LiΘiL

>
i = RR>, where

R =


D1

S2 D2

. . . . . .
Sk−2 Dk−2

Sk−1 Dk−1

, Si and Di � 0 diagonal

D1 = (Θ1 + Θ2)1/2

for i = 2 to k − 1
Si = −ΘiD

−1
1

Di =
(
(Θi + Θi+1)− S2

i

)1/2
end_for

End_algorithm

Fig. 1. Algorithm for efficiently computing the factorization of matrix (3.10).

and (2.2). The executable file of SVM-BlockIP can be downloaded at http://www-eio.upc.edu/~jcastro/
SVM-BlockIP.html.

SVM-BlockIP is compared with the following solvers:
• The standard primal-dual barrier algorithm in CPLEX 20.1. In general this interior-point variant

is faster than the homogeneous-self-dual one, especially when a loose optimality tolerance is
considered (which is our case, as discussed below). For a fair comparison, both the original
compact SVM models (1.1) and (1.5) as well as the new splitting ones (2.1) and (2.2) will be
solved with CPLEX 20.1.

• SVM-OOPS [19] is a very efficient IPM based on a separable reformulation of the dual of the
two-class SVM compact model (1.4). SVM-OOPS does not solve one-class SVM problems.

• LIBSVM [6] solves the dual compact models (1.4) and (1.6), so it can be used for both two-class
and one-class SVMs. It is based on a specialized algorithm developed in the machine learning
community for SVMs, which is called sequential minimal optimization [18].

• LIBLINEAR [10] solves the compact models of two-class and one-class SVMs. For two-class
SVMs it can solve either the dual or the primal model, but without the γ variable (so the models
solved by LIBLINEAR are a bit different—and simpler—than those considered by the other
solvers). For one-class SVMs it solves the dual (1.6) with a coordinate descent algorithm.

The same parameters (e.g., optimality tolerance) were used for all the solvers.
It is in general not desirable (and indeed, not recommended) to compute an optimal solution to an

SVM optimization problem using a tight optimality tolerance because, otherwise, the plane (w∗, γ∗) may
excessively fit to the dataset of points ai, i = 1, . . . , p (named the training dataset), and it might not be
able to properly classify a new and different set of points (named the testing dataset). This phenomenon
is named overfitting in the data science community [9]. For this reason SVM-BlockIP and the rest of
solvers will be executed with an optimality tolerance of 10−1. It is worth noting that loose optimality
tolerances are more advantageous for SVM-BlockIP than for the other interior-point solvers that rely
only on Cholesky factorizations (CPLEX 20.1 and SVM-OOPS), namely because it has been observed
[2, 3, 5, 4] that SVM-BlockIP needs a greater number of PCG iterations for computing the Newton
direction when approaching the optimal solution. A loose tolerance thus avoids SVM-BlockIP’s last and
most expensive interior-point iterations.

A loose optimality tolerance also allows using loose tolerances for solving PCG systems. Indeed, the
requested PCG tolerance is one of the parameters that most influence the efficiency of the specialized
IPM. The PCG tolerance in the BlockIP solver is dynamically updated at each interior-point iteration
i as εi = max{βεi−1,minε}, where ε0 is the initial tolerance, minε is the minimum allowed tolerance,
and β ∈ [0, 1] is a tolerance reduction factor at each interior-point iteration. For SVM-BlockIP, we used
ε0 = 10−2 and β = 1, that is, a tolerance of 10−2 was used for all the interior-point iterations. It is known
that the resulting inexact Newton direction does not seriously affect the convergence properties of IPMs
[14].

http://www-eio.upc.edu/~jcastro/SVM-BlockIP.html
http://www-eio.upc.edu/~jcastro/SVM-BlockIP.html
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Table 1
Dimensions of SVM instances

Instance p d k n.vars. n.cons. l

sm
al
l
d
(f
ew

fe
at
ur
es
)

a9a 32561 123 1 65246 32561 0
100 77522 32561 12276

1000 189122 32561 123876
australian 690 14 1 1395 690 0

2 1410 690 15
covtype 581012 54 1 1162079 581012 0

1000 1217024 581012 54945
10000 1712024 581012 549945

ijcnn1 49990 22 1 100003 49990 0
100 102280 49990 2277

1000 122980 49990 22977
madelon 2000 500 1 4501 2000 0

10 9010 2000 4509
mnist-ge5-lt5 60000 780 1 120781 60000 0

200 276200 60000 155419
2000 1682000 60000 1561219

mnist-odd-even 60000 780 1 120781 60000 0
200 276200 60000 155419

2000 1682000 60000 1561219
mushrooms 8124 112 1 16361 8124 0

20 18508 8124 2147
sensit 78823 100 1 157747 78823 0

100 167746 78823 9999
1000 258646 78823 100899

usps 7291 256 1 14839 7291 0
10 17152 7291 2313

100 40282 7291 25443
w1a 2477 300 1 5255 2477 0

10 7964 2477 2709
w4a 7366 300 1 15033 7366 0

30 23762 7366 8729
w8a 49749 300 1 99799 49749 0

200 159698 49749 59899

la
rg
e
d

colon-cancer 62 2000 1 2125 62 0
10 20134 62 18009

gisette 6000 5000 1 17001 6000 0
10 62010 6000 45009

100 512100 6000 495099
leu 38 7129 1 7206 38 0

2 14336 38 7130
news20 19996 1355191 1 1395184 19996 0

40 54247672 19996 52852488
rcv1 20242 47236 1 87721 20242 0

40 1929964 20242 1842243
400 18935284 20242 18847563

real-sim 72309 20958 1 165577 72309 0
100 2240518 72309 2074941

1000 21103618 72309 20938041

For the computational results we considered a set of 19 standard SVM instances. Their dimensions
are reported in Table 1. Columns p and d show the number of points and features, respectively. The
instances are divided into two groups according to their number of features, since previous interior-point
approaches for SVM could handle only instances with a few features. Column k is the number of subsets
of points considered, and each instance was tested with different values. Rows with k = 1 (that is, without
splitting) refer to the compact formulations (1.1) and (1.5), while for k > 1 the row is associated with
the splitting models (2.1) and (2.2). The cases with k = 1 (compact model) were solved with CPLEX,
SVM-OOPS, LIBSVM and LIBLINEAR; when k > 1, only CPLEX and SVM-BlockIP can be used. Since
very dense matrices AiAi> in the interior-point method may be provided by submatrices Ai (which are
related to the splitting model’s i-th subset of pi points), the value of k > 1 was selected so that p/k
(≈ pi) was always less than 1000 (we observed that the dense factorization of AiAi> was too expensive
for dimensions greater than 1000). For instances with a large number of points two values of k were tested
(one being ten times greater than the other); increasing k reduces the dimensions of systems AiAi> at
the expense of increasing the number of variables and linking constraints of the splitting formulation. As
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a rule of thumb, as as will be shown below, the best results with the splitting formulation are obtained
with the greatest k when d is small, and with the smallest k when d is large. Finally columns “n.vars.”,
“n.cons.” and l give, respectively, the numbers of variables, constraints (excluding linking constraints)
and linking constraints, which are computed, also respectively, as (d + 1)k + 2p, p, and (d + 1)(k − 1).
This set of SVM instances includes the full version of the four largest (out of the five) cases tested in
[19]. It is worth noting that SVM-BlockIP was extended with dense matrix operations (in addition to the
default sparse ones in the BlockIP IPM package) in order to handle problems with very dense matrices of
points Ai. Executions with both sparse and dense matrices were considered only for four of the instances
in Table 1 (namely, “gisette”, “madelon”, “sensit”, and “usps”).

The instances tested are in the format used by the standard SVM packages LIBSVM [6] and LIB-
LINEAR [10], and they were retrieved from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
Points ai ∈ Rd, i = 1, . . . , p in those instances were properly scaled by the authors of LIBSVM and
LIBSVM, such that most features are in the range of [−1, 1]. In those instances, for two-class SVM the
value of parameter ν was 1 for all the solvers; for one-class SVM ν = 0.1 was used.

From the previous original instances we generated a second set of cases by applying an alternative
(linear) scaling to the original features. In most cases of the new linear scaling, features were concentrated
within the interval [0, 0.001]. This second set of instances has the same dimensions as those in Table 1.
As a result of the new scaling, the optimal normal vector w∗ will take larger values, so the quadratic term
in the objective function will be larger. To compensate for this fact, a value of ν = 1000 was used for two-
class SVM. For one-class SVM, we used the same value of ν = 0.1 that was used for the original instances,
since ν is related to the upper bound on the fraction of detected outliers in the one-class SVM problem.
The increase in the quadratic term due to the new scaling turned out to be very advantageous for SVM-
BlockIP, since (as was proven in [5, Prop. 2]) the quadratic terms in the objective function of (3.1) reduce
the spectral radius (3.6), thus making the preconditioner more efficient. The set of scaled instances can
be retrieved from the SVM-BlockIP webpage http://www-eio.upc.edu/~jcastro/SVM-BlockIP.html.

The next two subsections show the computational results for, respectively, two-class SVM and one-
class SVM, using both the original datasets, and those with the new scaling. All the computational
experiments in this work were carried out on a DELL PowerEdge R7525 server with two 2.4 GHz AMD
EPYC 7532 CPUs (128 total cores) and 768 Gigabytes of RAM, running on a GNU/Linux operating
system (openSuse 15.3), without exploitation of multithreading capabilities.

4.1. Results for two-class SVM instances. Tables 2 and 3 show the results obtained for two-
class SVM with, respectively, the original and scaled instances. For all the solvers (namely, SVM-BlockIP,
CPLEX 20.1, LIBSVM, and LIBLINEAR) the tables provide: the number of iterations (columns “it”),
solution time (columns “CPU”), objective function achieved (columns “obj”), and accuracy of the solution
provided (columns “acc%”). The accuracy is the percentage of correctly classified points (of the testing
dataset) using the hyperplane provided by the optimal solution (which was computed with the training
dataset); that is, the accuracy is related to the the optimal solution’s usefulness for classification purposes.
For SVM-BlockIP, the tables also provide the overall number of PCG iterations (columns “PCGit”). The
CPU time of the fastest execution for each instance is marked in boldface, excluding the LIBLINEAR
time, since it solved the simpler problem (1.7) whereas the other solvers dealt with (1.1) or (1.4).

SVM-BlockIP allows computing both the Newton direction (3.3) and the predictor-corrector direction
[20], both of which were tried for solving SVM problems. Although, in general, predictor-corrector
directions are not competitive for PCG-based IPMs because they force using twice the PCG at each
interior-point iteration, in some cases they provided the fastest solution. Those cases are marked with
an “∗” in their “CPU” columns.

From Table 2 it is observed that SVM-BlockIP was not competitive against the other solvers for
instances with a small number of features (first rows in the table). In general, SVM-OOPS provided the
fastest executions in six of these instances, CPLEX in four, and LIBSVM in three. All solvers converged
to solutions of similar objective functions for all the instances but three (namely “covtype”, “madelon”,
and “mushrooms”), in which LIBLINEAR and LIBSVM (after a large number of iterations) stopped at
non-optimal points. However, it is worth noting that the accuracy of LIBLINEAR and LIBSVM in two
of these three instances was still good. Furthermore, when the number of features increase (last rows
of Table 2 ), SVM-OOPS was unable to solve five out of the six instances; LIBSVM was the fastest
approach in three of these instances; and CPLEX in two (but in those two, SVM-BlockIP reported a
similar time). In two cases (namely “rcv1” and “real-sim”) SVM-BlockIP obtained the fastest solutions in
23.5 and 524.9 seconds while CPLEX 20.1 needed 2086.1 and 91482.1 seconds. Plot (a) of Figure 2 shows
the accuracy of the solutions obtained with SVM-BlockIP, LIBLINEAR (whose accuracies are similar to

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www-eio.upc.edu/~jcastro/SVM-BlockIP.html
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Fig. 2. Accuracies (in %) provided by solutions with SVM-BlockIP, LIBLINEAR and SVM-OOPS for two-class SVM,
with the original instances in Table 2 (plot (a)) and the scaled instances in Table 3 (plot (b)).

those of LIBSVM), and SVM-OOPS. It is evident that, in general, all methods provided similar accuracies
(unlike for “covtype” and “mushrooms”, where SVM-BlockIP underperformed the other solvers).

The results in Table 3 show a different behaviour of the solvers in the scaled dataset. For the instances
with a few features, CPLEX, SVM-OOPS and LIBSVM were not significantly affected; for the instances
with large d (last rows in the table), the CPU times increased notably for CPLEX and LIBSVM, whereas
SVM-OOPS was once again unable to solve most of the problems. The coordinate gradient descent
algorithm of LIBLINEAR significantly increased the CPU time for all the instances, independently of
the number of features. However, the CPU times for SVM-BlockIP dropped drastically, thereby allowing
it to solve the scaled dataset in a fraction of the times it required for the original dataset, which were
reported in Table 2. SVM-BlockIP was the most efficient approach (including LIBLINEAR) in most
cases, especially when the number of features was large. For example, for the instances “rcv1” and “real-
sim”, SVM-BlockIP required, respectively, 7.9 and 14.4 seconds whereas CPLEX needed, respectively,
1236.7 and 40484.8 seconds for k = 1, and 3223.8 and 320107.0 seconds for the same k > 1 used with
SVM-BlockIP. This fact can be explained by the higher importance of the quadratic term in the objective
function due to the scaling (which is reflected in the larger objective values in Table 3 as compared to
those in Table 2). The downside of the scaling was that the accuracy decreased slightly in several instances
(although it increased in a few, such as for problem “leu”), as can be observed in plot (b) of Figure 2.

4.2. Results for one-class SVM instances. Tables 4 and 5 give the results of one-class SVM for,
respectively, the original and scaled instances. SVM-OOPS does not solve the one-class SVM problem,
so it is excluded from the comparison in those tables. The meaning of the columns is the same as in the
previous Tables 2 and 3. For one-class SVM, the accuracy is measured as the percentage of dataset points
that are not considered novelty or outliers; that is, 100 minus the accuracy is the percentage of detected
outliers or novelty points. Since a value of ν = 0.1 was used for one-class SVM (which is an upper bound
on the fraction of detected outliers), accuracies should theoretically be greater than or equal to 90%.

Looking at Tables 4 and 5 it is clearly observed that LIBSVM and LIBLINEAR could not solve any
instance, and their objective values were very different from those reported by CPLEX and SVM-BlockIP
(which, in addition, were similar). Indeed, the solutions reported by LIBSVM and LIBLINEAR had very
poor accuracy, usually around 50%, which means that the reported hyperplane is not useful for outlier or
novelty detection. Such a different behaviour of LIBSVM and LIBLINEAR between two-class (where they
provided high-quality hyperplanes) and one-class SVM is likely explained by the existence of constraint
(1.6b), which complicates solving (1.6) by means of a coordinate gradient algorithm.

Unlike LIBSVM and LIBLINEAR, SVM-BlockIP was able to compute a fast and good solution for all
the instances. For the original datasets in Table 4, SVM-BlockIP and CPLEX had similar performance
for the instances with few features. However, for the instances with a large number of features (last
rows in Table 4), SVM-BlockIP was generally much more efficient than CPLEX. For example, for the
cases “gisette”, “news20”, “rcv1”, and “real-sim” the best SVM-BlockIP times were, respectively, 40.5,
109.8, 7.4 and 22.2 seconds, whereas CPLEX required, respectively, 1104.9, 3141.7, 2624.1 and 71227.9
seconds. This difference in performance between SVM-BlockIP and CPLEX slightly increased even for
the scaled instances in Table 5. As for the accuracies, it can be observed in plot (a) of Figure 3 that
SVM-BlockIP generally provided values of around 90% (as expected by theory) for the runs in Table 4,
except for the instances “madelon” and “colon-cancer” (in the latter it was outperformed even by LIBSVM
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Fig. 3. Accuracies (in %) provided by solutions with SVM-BlockIP, LIBLINEAR and LIBSVM for one-class SVM,
with the original instances in Table 4 (plot (a)) and the scaled instances in Table 5 (plot (b)).

and LIBLINEAR). For the scaled instances in Table 5, SVM-BlockIP accuracies were even higher, about
100% in most cases, as shown in plot (b) of Figure 3. Whether or not hyperplanes with such high
accuracies are useful in practice for outlier or novelty detection is a question beyond the scope of this
work, which focuses on the efficient solution of the resulting SVM optimization problems.

5. Conclusions. For large-scale optimization problems arising from data science and machine learn-
ing applications, first-order coordinate descent algorithms are traditionally considered to be superior to
second-order methods (in particular, to interior-point methods). For the particular case of two-class and
one-class SVMs, we have shown in this work that a specialized interior-point method for an appropriate
multiple variable splitting reformulation of the SVM problem can provide decent results when compared
to the best machine learning tools (i.e., LIBLINEAR). More importantly, when the optimization problem
involves at least a single linear constraint (as in the dual of the one-class SVM problem), we have shown
that the second-order interior-point method is very efficient and provides high-quality solutions, whereas
the (far from optimal) solutions obtained by first-order algorithms (i.e., LIBSVM and LIBLINEAR) are
not useful in practice. In addition, when working with high-dimensional data, the new approach presented
in this work outperformed to a large degree the best interior-point methods for SVM (namely, CPLEX
20.1 and SVM-OOPS).

Acknowledgments. We thank Diego Juárez for his help in the implementation of some routines of
SVM-BlockIP.
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