

Design of an image acquisition and processing system
using configurable devices

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Miquel López Muñoz

In partial fulfilment

of the requirements for the degree of

MASTER IN ELECTRONICS ENGINEERING

Advisor: Juan Manuel Moreno Arostegui

Barcelona, June 2021

 1

Title of the thesis: Design of an image acquisition and processing system

using configurable devices

Author: Miquel López Muñoz

Advisor: Juan Manuel Moreno Aróstegui

Abstract

This thesis consists of the evaluation of the possibility to implement a Neural Network in
an FPGA instead on the more used GPU. Theoretically, an FPGA is a better choice in
terms of processing power, latency, or flexibility but its configuration is harder.

In this report, the implementation process for an FPGA is followed, including the creation
of an embedded Operating System, video capture and display pipelines, testing of the
chosen model and the final implementation of the model in the board.

As a result of the evaluation, the conclusion is that nowadays the way to implement a
neural network in an FPGA is not mature enough to compete with GPU alternative. The
tools needed to achieve this implementation are very limited and the process is confusing.
In the other hand, the GPU implementations has a huge catalogue of HW options and
one can choose the better solution for its model.

 2

Acknowledgements

This project would not have been possible without the help of my Idneo partners Rubén

Veloso and Aitor Sanchez, as well as my supervisor Martí Cobos. With special thanks to

Ruben for proposing me this topic and for helping me in the first steps of the project to

understand and install all the required tools.

I must thank also my Idneo partners Joan Sintes and Biel Tura for their patience in

explaining me the basis of Machine Learning from my absolute lack of knowledge in

these field.

I must also thank Ignacio Espinel and Stefano Tabanelli from Avnet for providing me a

large amount of Documentation, Trainings and project examples to manage the ZCU104

Development board and all the Xillinx development tools.

Finally, I have to thank my project supervisor Juan Manuel Moreno Aróstegui to help me

to understand the complexity of the project and advise me in the steps of the

development project and its structure. Also, to the project follow up which it has been

exactly the kind of tracing that I need.

 3

Revision history and approval record

Revision Date Purpose

0 13/05/2021 Document creation

1 30/08/2021 Document corrected

2 03/10/2021 Document revised

3 05/10/2021 Document approved

Written by: Reviewed and approved by:

Date 13/05/2021 Date 05/10/2021

Name Miquel López Name Juan Manuel Moreno

Position Project Author Position Project Supervisor

 4

Table of contents

Abstract .. 1

Acknowledgements .. 2

Revision history and approval record .. 3

Table of contents .. 4

List of Figures ... 6

List of Tables .. 7

1. Introduction .. 8

2. State of the art of the technology used or applied in this thesis 10

3. Project development .. 12

3.1. System architecture and description ... 12

3.1.1. System architecture ... 12

3.1.2. HW Components description ... 13

3.2. Embedded PetaLinux Image .. 18

3.2.1. Basic Programable Logic ... 21

3.2.2. Create PetaLinux project, export HW and set general configuration 21

3.2.3. Rootfs generation .. 22

3.2.4. Build project and generate Boot Image .. 23

3.2.5. Configure boot SD card ... 24

3.3. Capture, display and store video image from USB camera 25

3.3.1. Programable logic ... 25

3.3.2. PetaLinux project changes .. 26

3.3.3. GStreamer video pipelines .. 28

3.4. Processing image in host PC using a Convolutional Neuronal Network 32

3.4.1. SegNet .. 32

3.4.2. SegNet Image processing code ... 33

3.5. Implementing Convolutional Neuronal Network in embedded system 35

3.5.1. Full System Programable logic .. 36

3.5.2. PetaLinux changes .. 38

3.5.3. CNN files generated with DNNDK ... 42

3.5.4. XSDK Bare metal application .. 44

3.5.5. Boot the Application ... 47

 5

4. Results .. 49

4.1. Results Embedded PetaLinux .. 49

4.2. Image Capture .. 51

4.2.1. Image Displayed in Screen .. 51

4.2.2. Captured Video ... 51

4.3. CNN capture in host PC ... 52

4.3.1. Single frame .. 52

4.3.2. Sample Video .. 52

4.3.3. Captured Video ... 53

4.4. Final PL Vivado Block Design reports ... 53

4.4.1. Utilization Report ... 53

4.4.2. Timing Report .. 60

4.5. Full system Implementation .. 63

4.5.1. PetaLinux built ... 63

4.5.2. DPU utilities available .. 64

4.5.3. DNNDK SegNet error .. 64

5. Budget ... 66

6. Conclusions and future development ... 67

Bibliography .. 69

Appendices ... 72

APPENDIX A: PetaLinux Configuration .. 72

PetaLinux HW configuration window ... 72

Rootfs configuration Windows ... 73

APPENDIX B: VCU Demo files ... 74

vcu-demo-camera-encode-decode-display.sh ... 74

vcu-demo-camera-encode-file.sh .. 77

APPENDIX C: Image Capture Vivado Block Design ... 80

APPENDIX D: Full System Vivado Block Design .. 81

Glossary and Acronyms .. 82

 6

List of Figures

Figure 1-1: Gantt diagram of the project. .. 8

Figure 3-1: System architecture draft. ... 12

Figure 3-2: See3CAM CU30_CHL_TC_BX Cam. Source: [12] 13

Figure 3-3: ZCU104 development board main components for this project. Source: [7] .. 14

Figure 3-4: USB interface. Source: [7] .. 16

Figure 3-5: JTAG Chain Block Diagram. Source: [7] ... 16

Figure 3-6: Embedded Linux boot process. Source: [25] .. 19

Figure 3-7: Boot.bin container file diagram. Source: [25] .. 20

Figure 3-8: PetaLinux Embedded Image project steps diagram. 20

Figure 3-9: Basic Programable Logic Vivado Block Design... 21

Figure 3-10: SW6 SD boot configuration. .. 24

Figure 3-11: Image Capture PL Diagram. ... 25

Figure 3-12: Software stack. Source: [26] ... 28

Figure 3-13: GStreamer custom capture-encode-store_file pipeline 30

Figure 3-14: H.264 (AVC) frame distribution. .. 31

Figure 3-15: SegNet architecture. Source: [33] ... 32

Figure 3-16: SegNet project code file architecture. ... 33

Figure 3-17: Development Flow of an Edge-based AI Application example. Source: [48]35

Figure 3-18: Full system PL Diagram. ... 36

Figure 3-19: dpu module file structure. It includes the recipe and the source code files. . 39

Figure 3-20: DNNDK app file structure. It includes the recipe, the DPU utilities and the

required libraries. .. 41

Figure 3-21: DECENT Pruning and Quantization Flow. Source: [46] 42

Figure 3-22: DNNC Components. Source: [46] ... 42

Figure 3-23: DECENT Workflow. Source: [46] .. 43

Figure 4-1: Terminal capture showing success in build PetaLinux project. 49

Figure 4-2: Terminal capture showing success in generating PetaLinux image files 49

Figure 4-3: BOOT and rootfs partitions of the boot SD card. ... 50

Figure 4-4: Terminal capture when using minicom to log in the embedded PetaLinux in

the zcu104 Board ... 50

file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855792
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855793
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855794
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855795
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855796
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855797
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855798
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855799
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855800
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855801
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855802
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855803
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855804
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855806
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855807
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855808
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855809
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855810
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855811
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855812
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855812
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855813
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855814
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855815
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855816
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855817
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855818
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855819
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855819

 7

Figure 4-5: foto taken when the USB camera is capturing image of the balcony and

displaying in the monitor. .. 51

Figure 4-6: Frames from the captured video. .. 51

Figure 4-7: Input-output of a single image to the SegNet. ... 52

Figure 4-8: Input and output video of SegNet in host PC. Sample Video. 52

Figure 4-9: Input and output video of SegNet in host PC. Captured Video. 53

Figure 4-10: Screen captured showing success in building the project. 63

Figure 4-11: Screen captured showing success in building the project with sdk. 63

Figure 4-12: Screen captured showing success in packaging the rootfs for XSDK. 63

Figure 4-13: Screen capture showing the DPU utilities in their folder. 64

Figure 4-14: Screen captured when truing to quantize the model with DNNDK. 64

List of Tables

Table 3-1: Switch Configuration. Source: [7] ... 17

Table 3-2: petalinux-create Command Line Options. Source: [14] 22

Table 3-3: VCU Encoder features. Source: [26] .. 29

Table 3-4: Camera Video features. Source [11] .. 29

Table 3-5: Display Port Live Video Format. Source: [8] ... 29

Table 3-6: Supported layers order in DPU IP. Source: [48] ... 37

file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855820
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855820
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855821
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855822
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855823
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855824
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855825
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855826
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855827
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855829
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855830
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855831
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855832
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855833
file:///D:/TFM/Docs/3.Report/Report_TFM_corrected_JMMA.doc%23_Toc84855834

 8

1. Introduction

The main objective of this project is to explore the possibility to implement a

Convolutional Neural Network in an FPGA instead of in the most used solution GPU,

testing the availability and the difficulty of the process and apprise if it could be a better

solution.

This project is realized in collaboration between ETSETB-UPC and Idneo Technologies

Vision team. Vision is an engineering team that is focused on computer video

applications, developing from the automotive cameras until Machine Learning algorithms

to process the captured video. In this context, it is reasonable to explore the possibility to

get a more efficient way to implement the Convolutional Neural Network that applies the

algorithm. However, since this new implementation is so recent and still under

development and because there is nobody in the company with an expertise regarding

FPGA, there is no know-how about the needed knowledge of this project. This has

caused that the objectives of the project and its process are splitted into steps.

The main scope of the project is to develop an image capture system embedded in a

development board with an embedded Linux-based OS and process this acquired video

with a Deep Learning algorithm. Since the main field of work of Vision team is the

automotive cameras, it has been decided to implement a Deep Learning algorithm that

can be used in autonomous driving such as Semantic Segmentation of a video captured

with a car front camera.

The first implementation is based in an embedded Linux-based OS in a development

board that captures video with a USB camera and stores a video file that is then

processed with a CNN in the host PC. The second and final implementation consists on

implement this CNN in the FPGA of the development board and write a C++ application

running in the board that captures the video, process each frame in the CNN and shows

the resulting video in an external monitor.

To do so, numerous Xilinx trainings and project examples which are mentioned in the

Bibliography, have been followed. As mentioned, this kind of implementation is under

development so it is not as flexible as they should be, and this has been caused some

troubles and delays.

Figure 1-1 shows the original Gantt diagram of the project.

Figure 1-1: Gantt diagram of the project.

 9

At first, the project is intended to be finished in one semester, but due to the complexity of

each step and the lack of know-how regarding every configuration to be performed,

remarkable delays have been added. Despite this, the project could be finished in time,

but as already mentioned, this kind of implementation is under development and this

implies that the process works fine in the trainings and examples but when trying

something different, unexpected errors occur which do not have a known solution. These

issues caused that the project could not be finished in a single semester and an

additional one has been needed to realize some workarounds.

The chapters that this thesis document contains are briefly described below:

State of the art of the technology used or applied in this thesis

In this step, the context of the field of study regarding Machine Learning and the most

used implementation are introduced. Also, the alternative of implement the NN with

FPGA and the set of tools used to explore this possibility are explained.

Project development

This is the core chapter of the thesis. In this chapter there is first a description of the

architecture of the system. Then, each step of the project development is described.

These steps are: Embedded PetaLinux Image; Capture, display and store video image

from USB camera; Processing image in host PC using a Convolutional Neuronal

Network; Implementing Convolutional Neuronal Network in embedded system.

Results

The results of the study are collected in this chapter, this includes screen captures and

reports. To represent a video in this report, it has been decided to make a collage with a

set of the frames of the video.

Budget

In this chapter, a summary of the required budget is included in a table.

Conclusions and future development

The conclusions of the project are described in this chapter including a brief discussion of

the availability to implement the NN in an FPGA instead of a GPU. Also, some future

developments are commented to motivate future thesis or research projects.

At the end of the project, there is detailed the literature consulted in this thesis, as well as

the project examples and trainings followed in the Bibliography chapter. And finally, there

are a set of Appendixes and a section defining the Acronyms and Glossary appearing in

the report.

 10

2. State of the art of the technology used or applied in this

thesis

Machine Learning Algorithms are mathematical algorithms that, with the help of a training

process, learn how to perform a specific task. Nowadays, this field of study is growing

and every day is used more to develop applications. These algorithms have the

advantage in front of the traditional algorithms that the developer does not need the way

to reach the solution. In this project, Convolutional Neural Network machine learning

algorithms are used. This kind of algorithms are a multi-layer bidimensional matrix

algorithm used in the Deep Learning algorithms specifically to process images.

Most of the video processing applications realized nowadays are implemented in a

Graphics Processing Unit (GPU) to free the CPU from the large number of calculations

needed by the algorithm. The two main suppliers of Deep Learning platforms are NVIDIA

and AMD. They have development boards to use one or more GPUs along with the CPU,

to implement neural networks in the board or in the cloud, training all frame kind of

models with all the available frameworks, etc…

Since the implementation in the GPU is so advanced, most of the main frameworks like

TesnorFlow, Caffe, PyTorch and so on, are intended to be used with Python. Also, the

computer vision libraries like OpenCV or CUDA works better with Python. Even if they

have C++ version, they are not working as good as they do in Python.

In this field lead by Graphics Processing Unit, it arises the possibility to implement the

Neural Network in a FPGA instead. Since both solutions fulfil the main objective which is

free the CPU to the large amount of processing, the idea to use a FPGA instead of GPU

is quite interesting. Since the FPGA is programable HW, it has some advantages in front

of a GPU that could make them a better solution to implement the Neural Network. FPGA

can process more operations per second, is more flexible since the HW can be changed

by programming so it can be adapted better to each application, the latency is lower

because it is not instruction-based execution but parallel HW execution and the

connection between components and peripherals can be more efficient since is

programmed by the developer. The drawback is that configuring an FPGA is much more

difficult than a GPU. In addition, the GPU implementation is so stablished that it is easier

to find a suitable GPU for your certain application.

This is the reason why nowadays almost every developer is using a GPU instead of the

theoretically better solution FPGA. Nevertheless, Xilinx is trying to launch an easy way to

implement the NN in an FPGA and perform a Deep Learning Video Processing

application, but it is still under development, and it is not as robust and as flexible as

advertised. There are a lot of incompatibilities between software versions, and a lot of

tools to each task and it is not clear what can be done and what is not compatible.

The following tools are used in this project. The version of each tool has to be the

specified or it would be incompatible with the rest:

• Host Operating System: Ubuntu 16.04 LTS

• FPGA development software: Vivado Design Suite v2018.3

 11

• Embedded OS: PetaLinux v2018.3

• Software to compile NN model to be used by the FPGA IP: DNNDK 3.0

• FPGA IP to implement model: DPU IP v2.0

• Software environment to compile Application: Xilinx SDK (XSDK) 2018.3

And the Hardware used in the project is the following:

• Host PC: Lenovo ThinkPad L560

• Development board: Zynq UltraSCALE+MPSoC ZCU104

• USB Camera: See3CAM_CU30_CHL_TC_BX e-con Systems

• SD card: SanDisk Ultra 16GB

• DP Monitor: BenQ GW2780 27 LED IPS Eye Care

 12

3. Project development

The development of the project is divided into different steps in order to easily focus each

part of the whole system and make it work itself as a smaller system. This way, at the end

of the project, the whole system will be merged using the acquired know-how from the

previous steps. This working methodology has been selected because of the complexity

of the work field and the lack of knowledge about it from the company.

Accordingly, this section is composed by first a description of the final system and its

architecture and then all the steps required to complete the work.

3.2. Embedded PetaLinux Image,

3.3. Capture, display and store video image from USB camera

3.4. Processing image in host PC using a Convolutional Neuronal Network

3.5. Implementing Convolutional Neuronal Network in embedded system

3.1. System architecture and description

3.1.1. System architecture

The architecture of the final system is described in Figure 3-1 below:

Figure 3-1: System architecture draft.

 13

The reference numbers in Figure 3-1 are the same than in Figure 3-3 to easily relate

these components to their descriptions in section below.

In Host PC, PetaLinux Embedded Image is configured and build and properly mounted in

a boot SD card. This SD card is introduced in its ZCU104 Board slot (6) and SW6 (30) is

set to realize the system boot from the SD card.

After powering the development board trough Power connector (23), being power switch

(22) in ON position, the Processing system of the Zynq UltraScale+ MPSoC (1) boots

from SD card and launches de PetaLinux OS and the bare-metal application.

System can be monitoring by the host PC through JTAG connection using a software

such as Minicom. This way we can introduce the user and password of the OS in the host

PC terminal.

Using the Linux drivers and the open-source multimedia framework GStreamer, a Video

pipeline for the video stream can be defined. The first half of his pipeline starts from the

USB Camera sending the video trough USB Video Class driver, this stream is received in

the Programable Logic and either routed to the VCU to be encoded and stored as a file or

passed through the VCU to the PS.

The C++ code running in the PS sends each frame to the DPU in the PL to be processed

by Segnet CNN. The processed frame returns to the PS and it is sent to the second half

of the video pipeline, in which the processed video is sent to an external monitor via

Display Port.

3.1.2. HW Components description

Apart of the host PC which is Lenovo Think Pad L560 with Ubuntu 16.04 LTS OS and an

external monitor with Display Port input, there are two basic HW components needed in

the project:

1. USB Camera: See3CAM_CU30_CHL_TC_BX e-con Systems [11] (picture in

Figure 3-2)

• 1/3” On Semiconductor AR0330 CMOS + Image

Signal Processor (ISP)

• 3.4 Mp, color. Uncompressed UYVY format and

Compressed MJPEG format

• USB 3.1 Gen 1 Super Speed1

• USB type-C connector

• Operating Voltage: 5V ± 5%, Current: 433mA

• High compatible with Linux OS. Plug and Play

V4L2 driver.

1 This nomenclature is a little bit confusing. USB 3.1 Gen 1 is also known as USB 3.0 (up to 5 Gbit/s), may

not be confused with USB 3.1 Gen 2 which allows data transfers up to 10 Gbit/s.

Figure 3-2: See3CAM

CU30_CHL_TC_BX Cam. Source: [12]

 14

2. Development Board: Xilinx ZCU104 (picture in Figure 3-3)

This is a very complete board with a large number of capabilities intended to be used in a

lot of different applications. Only the most relevant for this project are listed below.

 The ZCU104 board is populated with the Zynq UltraScale+ XCZU7EV-2FFVC1156

MPSoC, which combines a powerful processing system (PS) and programmable logic

(PL) in the same device. The PS in a Zynq UltraScale+ MPSoC features the Arm®

flagship Cortex®-A53 64-bit quad-core processor and Cortex-R5 dual-core real-time

processor [7].

PS

The Zynq UltraScale+ MPSoC PS block has three major processing units [7]:

• Cortex-A53 application processing unit (APU)-Arm v8 architecture-based 64-bit

quad core multiprocessing CPU.

• Cortex-R5 real-time processing unit (RPU)-Arm v7 architecture-based 32-bit dual

real-time processing unit with dedicated tightly coupled memory (TCM).

• Mali-400 graphics processing unit (GPU)-graphics processing unit with pixel and

geometry processor and 64 KB L2 cache.

PL

The Xilinx® UltraScale™ architecture in the programmable logic (PL) provides an

extensive set of functions and resources. The Zynq® MPSoC devices include several

peripherals controllers and functional units [8]. The relevant ones for this project are:

• DisplayPort Video and Audio Interfaces

1

7

LED DS2

Zynq UltraScale+ XCZU7EV

MPSoC

USB 3.0 Transceiver and

USB 2.0 ULPI PHY

SD Card Interface connector

Programmable Logic JTAG

SW1: power on/off

Power Connector

Display Port connector

SW6: U1 MPSoC PS bank

503 4-pole mode DIP switch

7

6

5

1

27

23

30

22

Figure 3-3: ZCU104 development board main components for this project. Source: [7]

 15

• USB Interfaces

• Video Codec Unit (VCU). It provides multi-standard video encoding and decoding,

including support for the high-efficiency video coding (HEVC) H.265 and

advanced video coding (AVC) H.264 standards. The main features are:

o H.264 and H.265 standards encoding/decoding.

o Up to eight simultaneous streams.

o 8K x 4K at a reduced frame rate.

o Progressive video only (no interlace support).

o I, IP, and IPB encoding/decoding.

o 8-bit and 10-bit color depth, YCbCr 4:2:2 and 4:2:0 video formats, and up

to a 4K x 2K@60/8K x 2K@15 Hz rate.

• DPU. The Xilinx® Deep Learning Processor Unit (DPU) is a programmable engine

dedicated for convolutional neural network. The unit contains a register configure

module, a data controller module, and a convolution computing module. There is

a specialized instruction set for DPU, which enables DPU to work efficiently for

many convolutional neural networks [12].

USB Controller

The USB 3.0 controller consists of two independent dual-role device (DRD) controllers.

Both can be individually configured to work as host or device at any given time. The USB

3.0 DRD controller provides an eXtensible host controller interface (xHCI) to the system

software through the advanced eXtensible interface (AXI) slave interface. An internal

DMA engine is present in the controller, and it utilizes the AXI master interface to transfer

data. The three dual-port RAM configurations implement the RX data FIFO, TX data

FIFO, and descriptor/register cache. The AXI master port and the protocol layers access

the different RAMs through the buffer management unit [8]. Its most important features

are:

• Two USB 2.0/3.0 controllers.

• Supports a 5.0 Gb/s data rate.

• 64-bit AXI master port with built-in DMA.

• Supports 12 endpoints (six out and six in).

Display Port Controller

The DisplayPort controller can source data from memory (non-live input) or the (live

input) programmable logic (PL). The DisplayPort processes data and sends it out through

the DisplayPort source-only controller block to external display devices or to the PL (live

output). The DisplayPort pipeline consists of the DisplayPort direct memory access

(DMA) for fetching data from memory, a centralized buffer manager, a display rendering

block, an audio mixer block, and the DisplayPort source controller, along with the PS-

GTR block, which contains the multi-gigabit transceivers that provide high-speed

communication link between the media access controllers of the peripherals and their link

partners outside the board. The DisplayPort pipeline supports an ultra-high definition

(UHD) aggregate video bandwidth of 30 Hz [8].

 16

It provides support for the following video formats:

• Resolution up to 4K x 2K at 30Fps.

• Y-only, YCbCr444, YCbCr422, YCbCr420, and RGB video formats.

• 6, 8, 10, or 12 bits per color components.

• Progressive video.

• A 36-bit native video input interface to capture live video.

• Non-live video from frame buffers using local DPDMA.

 The ZCU104 board uses a Standard Microsystems Corporation USB3320 USB 2.0

ULPI transceiver at U116 to support a USB connection to the host computer (see Figure

3-4). In this project, the USB 3.0 (USB 3.1 gen 1) connection to Zynq UltraScale USB

GTR is used [7].

 The ZCU104 board includes a secure digital input/output (SDIO) interface to provide

access to general purpose non-volatile SDIO memory cards and peripherals. The

ZCU104 SD card interface supports the SD1_LS configuration boot mode documented in

the Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [8][7].

 The ZCU104 board JTAG chain is shown in Figure 3-5.

5

6

7

Figure 3-4: USB interface. Source: [7]

Figure 3-5: JTAG Chain Block Diagram. Source: [7]

 17

 The ZCU104 board power switch is SW1. Sliding the switch actuator from the off

to the on position applies 12V power from J52, a 6-pin mini-fit connector. Green LED DS2

illuminates when the ZCU104 board power is on [7].

 The Zynq UltraScale+ MPSoC provides a VESA DisplayPort 1.2 source-only

controller that supports up to two lanes of main link data at rates of 1.62 Gb/s, 2.70 Gb/s,

or 5.40 Gb/s. The DisplayPort standard defines an auxiliary channel that uses LVDS

signaling at a 1 Mb/s data rate. [7]

 Configuration switch with 4-bit position. Boot mode is selected setting the 4 stitches

as shown in table Table 3-1.

27

22

23

30

Table 3-1: Switch Configuration. Source: [7]

 18

3.2. Embedded PetaLinux Image

As shown in 3.1. System architecture and description, Zynq UltraSCALE + MPSoC

ZCU104 board is intended to be driven by an embedded OS called PetaLinux. So, the

first step is focused in understanding and mounting an embedded OS image in an SD

card and boot the ARM Cortex-A53 from it. The OS used in this step is composed with

the minimal features and applications for simplicity. The chosen embedded Operating

System is PetaLinux, it is the one recommended by Xilinx® due to its compatibility with

the HW and the rest of the tools.

PetaLinux is an Embedded Linux System Development Kit targeting Xilinx® FPGA-based

System-on-Chip designs [2]. It uses Yocto Project, which allows the developer to

customize the embedded image and adapt it to a certain HW architecture.

PetaLinux contains [2]:

• Yocto Extensible SDK (e-SDK): allows the user to add new libraries and apps in

the project. E-SDK consists of all the layers for the architecture (core, meta-oe…),

sstate-cache that allows incremental project builds and the sysroots of the

embedded OS.

• Minimal downloads: use of premirrors to download the needed source files.

• XSCT and tool chains: The PetaLinux tool uses XSCT underneath for all

embedded SW apps. Linux tool chain for all architectures is from Yocto.

• PetaLinux CLI tools: This contains all the required PetaLinux commands.

The followed steps to successful build a PetaLinux Image to be used in Zynq UltraSCALE

+ MPSoC ZCU104 board are described below. However, to understand these steps it is

necessary to know the structure of the Embedded OS Image and its required files, as well

as the boot process of a Linux OS.

The basic boot process of a Linux OS starts with the named Stage 0. In this Stage, the

ROM code detects boot mode and loads the executable code of First Stage Boot Loader

(FSBL) from selected interface, in this case the SD card. Then, in Stage 1, the FSBL

initializes an external memory and system clocks allowing to load a larger bootloader file,

in this case U-Boot. In Stage 2 the U-Boot file loads the Linux Kernel and passes him the

device tree. Finally, the Kernel initializes the Hardware and mounts the root file system.

[25]

Figure 3-6 shows a summary of the basic Linux boot process

 19

To go through these stages, there are some files that needs to be generated and stored

in a certain mode in the SD card. These files are:

• PL Bitstream: Stored in boot.bin container. Definition of the PL (Programable

Logic) exported by Vivado in the wrapper_file.hdf. After adding it to PetaLinux

project, the file is automatically stored with the name: system.bit

• FSBL: Stored in boot.bin container. Generated by building PetaLinux project with

name: zynq_fsbl.elf.

• PMU (Platform Management Unit) Firmware: Stored in boot.bin container. This is

an optional file only for Zynq UltraScale+ MPSoC that controls the power-up,

reset, and monitoring of resources within the system. Generated by building

PetaLinux project with name: pmufw.elf.

• ATF (Arm Trusted Firmware): Stored in boot.bin container. It provides a reference

to secure software for ARMv8-A architecture, and it provides implementations

of various interface standards and Secure monitor code for interfacing to

Normal world software. This firmware is for Zynq UltraScale+ MPSoC only.

Generated by building PetaLinux project with name: bl31.elf.

• U-Boot: Stored in boot.bin container. Generated by building PetaLinux project with

name: u-boot.elf.

• Kernel: Stored in Image.ub. Generated by building PetaLinux project.

• Root file System: Generated by building PetaLinux project with name: rootfd.tar.gz.

• Device tree: Stored in Image.ub. Generated by building PetaLinux project.

Some of these files are stored in a bigger file called boot.bin container. After the

PetaLinux project build, when all the required files have been generated, this container is

mounted. This is the last step of the embedded PetaLinux Image.

Figure 3-7 Shows the structure of the boot.bin container.

Figure 3-6: Embedded Linux boot process. Source: [25]

 20

Once it is known the structure of a PetaLinux Image, the required steps to create,

configure and build a PetaLinux project can be detailed.

In Figure 3-8 a summary of the steps to go through and the flow of the generated files is

shown:

Figure 3-7: Boot.bin container file diagram. Source: [25]

Figure 3-8: PetaLinux Embedded Image project steps diagram.

 21

In this project step, the simplest PetaLinux image has been generated because the

objective at this point is to learn the basic needs of the embedded PetaLinux and how to

create the image, properly configure the SD boot and be able to have the OS running in

the board. Therefore, some of the previous steps are not followed in this project step, the

scheme above is the full project process. Specifically in this step there is no custom

library, application or module addition, and default kernel and device tree are used.

3.2.1. Basic Programable Logic

As already mentioned, this project step is kept as simple as possible. No peripherals are

used, or PL functionality is required. Only the processing system IP (Zynq UltraScale+

MPSoC) is added to Vivado project as shown in Figure 3-9.

After creating an HDL wrapper, compile, build and generate Bitstream, it is necessary to

export HW to use it in the next step.

3.2.2. Create PetaLinux project, export HW and set general configuration

Once the programmable logic is defined and exported, the PetaLinux project can be

created. Due to the difficulties at download and install all the tools with the certain

versions it is highly recommended to use a virtual environment. In this project, the default

Python virtual environment for Linux has been used.

Before start using PetaLinux, the file settings.sh from the PetaLinux installation file needs

to be sourced to Ubuntu using this command line:

$: source <path to petalinux .sh file>/settings64.sh

Then the system is able to use PetaLinux commands. Then, the easiest way is to create

a project from a template using the next command (parameters explained in Table 3-2):

$: petalinux-create --type project --template zynqMP --force –name

<project name>

Figure 3-9: Basic Programable Logic Vivado Block Design.

 22

A new folder with the name “project name” will be created. After entering this folder, we

can export the HW writing the following command:

$: petalinux-config --get-hw-description=<path to .hdf directory in

Vivado project folder>

A new window with the HW configurations will open and the following parameters must

be specified (see APPENDIX A):

• DTG Settings → (zcu104-revc) MACHINE_NAME

• u–boot Configuration → (xilinx_zynqmp_zcu104_revC_defconfig) u-

boot config target

• Image Packaging Configuration → Root file System type → SD card

• Yocto Settings → (zcu104-zynqmp) YOCTO_MACHINE_NAME

In this way, we are configuring properly the HW configurations with our development

board and telling PetaLinux that rootfs will be stored in a SD card. When pressing the ok

button, the window automatically closes itself and PetaLinux may configure all and

generate the system.bit file to be later included in the BOOT.BIN container. Also, FSBL,

ATF, PMU and uboot files are prepared to be built. These files are configured by default,

so no special configuration needs to be specified apart of u-boot configuration.

3.2.3. Rootfs generation

As already mentioned, in this first PetaLinux image there is no custom application or

module, so directly we can configure rootfs using this command:

$: petalinux-config -c rootfs

Table 3-2: petalinux-create Command Line Options. Source: [14]

 23

-c term indicates that the configuration to be open refers to a component. A component

can be rootfs, kernel, bootloader, device-tree, etc.

A new window will open to customize the rootfs of the PetaLinux image (see APPENDIX

A). At this point, we don’t need any specific library or application because it is only a test

to set-up the PetaLinux image, but to display the default GUI in a monitor we activate the

following:

• filesystem Packages → misc → python3 → all

• filesystem Packages → misc → python3-async

• filesystem Packages → misc → python3-git

• filesystem Packages → misc → python3-gitdb

• filesystem Packages → misc → python3-setuptools

• filesystem Packages → misc → python3-smmap

• filesystem Packages → x11 → base → libdrm → libdrm

• filesystem Packages → x11 → base → libdrm → libdrm-tests

• filesystem Packages → x11 → base → libdrm → libdrm-kms

• Petalinux Package Groups → packagegroup-petalinux-matchbox

• Petalinux Package Groups → packagegroup-petalinux-x11

After pressing ok in the window, PetaLinux prepares rootfs to be built.

3.2.4. Build project and generate Boot Image

When all the files are ready and well configured, the following command launches the

build of the whole project:

$: petalinux-build

This will take a significant amount of time, the larger the project, the slowest the building.

Once the building finishes, the generated files will appear in their corresponding folders

inside the project folder. These files are: system.bit, zynq_fsbl.elf, pmufw.elf, b131.els, u-

boot.els, image.ub and rootfs.tar.gz.

The first five ones are then combined to form the boot.bin container using the following

command:

$: petalinux-package --boot --format BIN –fsbl

images/linux/zynqmp_fsbl.elf --u-boot images/linux/u-boot.elf --pmufw

images/linux/pmufw.elf –atf images/linux/bl31.elf --fpga

images/linux/system.bit –force

 24

When the process finishes, boot.bin is also generated and ready to mount the boot SD

card.

3.2.5. Configure boot SD card

To boot from SD card, it is necessary to properly configure it and store the files. In this

project, 2 partitions are needed for the SD card:

• boot partition: FAT32 format. ≥ 60 MB. boot.bin and image.ub files.

• root partition: Ext4 format. ≥ 3 GB. rootfs.tar.gz file.

Files in the boot partition stores required files for booting the image and in root partition,

the rootfs will be mounted.

Finally, in the zcu104 board, the SW6 should have a specific configuration indicated in

Table 3-1 of section 3.1.2. HW Components description in order to boot from SD card.

This is 1110 (ON, ON, ON, OFF) as shown in Figure 3-10.

Figure 3-10: SW6 SD boot configuration.

 25

3.3. Capture, display and store video image from USB camera

This second project step is focused on modifying the PetaLinux Embedded Image to be

able to capture image from a USB camera, display a Video stream in an external monitor

via Display Port, and store a video file to be processed in the host PC.

With this objective, it is necessary to develop a complete HW design in the FPGA to

capture video, process it in the VCU and Display the video. Also, some changes in the

PetaLinux project may be introduced to add more functionality than in the basic one.

Lastly, one need to know how to define video pipelines from the host PC terminal.

Since the camera is a USB camera compatible with UVC driver, we can use the V4L2

driver to enumerate and manage the device. Also, the external monitor can be managed

with the GStreamer video sink kmssink so both devices and the VCU can be connected

and configured using the open-source multimedia framework GStreamer.

3.3.1. Programable logic

In the previous project step, the definition of the HW in the FPGA was only the Zynq

UltraScale+ MPSoC IP. In this step, it is necessary to add some peripherals in order to

manage the video pipeline. Figure 3-11 shows a simplified diagram of the PL design, and

each part is explained below. This project is based on rdf0428-zcu106-vcu-trd-2018-3

and zcu102-dpu-trd-2018-2-190531 [6] projects, but for simplification purposes only the

main IPs needed to properly understand the system are shown in the diagram, omitting

the reset circuitry, the AXI communication interconnections and an unused GPIO (see full

diagram in APPENDIX C).

The main IP is the Zynq UltraScale+ MPSoC where PetaLinux OS is running. In the PS,

the USB3.0 camera is enumerated and configured, and the video stream is captured.

This stream can be sent to the Display port through DMA Video Frame buffers or to VCU

to encode it. Zynq UltraScale+ MPSoC has four bidirectional AXI interfaces with VCU to

exchange video data, one Master AXI interface to control VCU and DMA buffers, one

Figure 3-11: Image Capture PL Diagram.

 26

Master AXI to control VCU DDR4 Controller and one Slave AXI interface coming from

VCU.

VCU IP is composed by two modules, the Encoder and the Decoder and each implement

a 32-bit MCU to run the firmware, control both blocks and handle interaction between

hardware blocks and with APU [26].

• The Encoder module data path is built with two 128-bit AXI4 interconnections to

fetch and write video data from external DDR memory attached to either the

Processing System (PS) or the Programmable Logic (PL). [26]

• The Decoder module data path is built with two 128-bit AXI4 interconnections

used to fetch video input data and store video output data from/to the system

memory in the Processing System (PS) or in the Programable Logic (PL). [26]

• Control path for both modules is processed by MCU using two 32-bit AXI4

interconnections. One AXI-Lite slave used by the APU to control the MCU and

one master interface used by MCU to communicate with the APU.

Finally, the video stream is sent to the Display Port Controller in two ways:

• Using DMA Video Frame Buffers. (Live-Video)

• Storing the frames in the DDR4 to be read by DPDMA, Display Port DMA. (Non-

live Video)

3.3.2. PetaLinux project changes

Once the HW is defined and exported from Vivado, it is time to create and configure the

PetaLinux project. The main difference between the previous PetaLinux image and the

new one is in the rootfs libraries. In this new set of libraries, gstreamer, V4L2, OpenCV

and OpenAmp functionalities are added to successfully build the desired video pipelines.

First, we create the project and export HW in the same way than in previous project step

and with the same configuration:

$: petalinux-create --type project --template zynqMP --force –name

<project name>

$: petalinux-config --get-hw-description=<path to .hdf directory in

Vivado project folder>

Then, there are a set of VCU functions using GStreamer that needs to be added in a

recipe file to make it selectable later in the rootfs configuration by means of this code line:

$: echo 'IMAGE_INSTALL_append = " gstreamer-vcu-examples"' >> <project

root>/project-spec/meta-user/recipes-core/images/petalinux-image-

full.bbappend

 27

This way, when preparing the set of libraries of rootfs to be build, we can select all the

needed functionalities.

Rootfs configurated is called as in previous section:

$: petalinux-config -c rootfs

In addition to all the libraries selected in the basic project, the following ones must be

added too:

• filesystem Packages → libs → opencv → opencv, opencv – apps

• filesystem Packages → misc → gst-player

• filesystem Packages → misc → gst-plugins-base → base, apps

• filesystem Packages → misc → gst-plugins-good

• filesystem Packages → misc → gstreamer1.0-meta-base → base,

video, x11

• filesystem Packages → misc → gstreamer1.0-plugins-bad

• filesystem Packages → misc → gstreamer1.0-plugins-base → base,

apps

• filesystem Packages → misc → gstreamer1.0-plugins-good

• filesystem Packages → misc → openamp-fw-echo-testd

• filesystem Packages → misc → openamp-fw-mat-muld

• filesystem Packages → misc → openamp-fw-rpc-demo

• filesystem Packages → misc → v4l-utils → v4l-utils, libv4l, ir-

keytable, media-ctl, rc-keymaps

• filesystem Packages → multimedia → all gstreamer

• Petalinux Package Groups → packagegroup-petalinux-gstreamer

• Petalinux Package Groups → packagegroup-petalinux-openamp

• Petalinux Package Groups → packagegroup-petalinux-opencv

• Petalinux Package Groups → packagegroup-petalinux-v4lutils

• user packages → gstreamer-vcu-examples

After configuring the rootfs, the project needs to be built and Image files needs to be

packaged with the same commands:

$: petalinux-build

$: petalinux-package --boot --format BIN –fsbl

images/linux/zynqmp_fsbl.elf --u-boot images/linux/u-boot.elf --pmufw

 28

images/linux/pmufw.elf –atf images/linux/bl31.elf --fpga

images/linux/system.bit –force

Then, the SD card can be configured and the new OS launched in the board.

3.3.3. GStreamer video pipelines

Using a text-based serial port communications program like Minicom, one can navigate

into the root file system of the OS and manage some functions. To generate the video

pipelines, GStreamer functions already added are needed among with V4L2 driver and

KMSSINK plugin. Also, VCU is used to encode and/or decode the incoming video. The

needed Software/Hardware stack is shown in Figure 3-12:

In the GStreamer VCU Demo functions there are two that can be used directly to display

and store video (see APPENDIX C). The first one is vcu-demo-camera-encode-decode-

display.sh in which the only parameter that may be changed is the resolution Full HD

(1920x1080). This function is called by typing:

$: vcu-demo-camera-encode-decode-display.sh -s 1920x1080

The function directly enumerates the camera and the display, configures the devices

parameters, and builds the pipeline. The Video Stream should be playing in the monitor

after calling this function.

The second one is vcu-demo-camera-encode-file.sh. This function stores a video file

called camera_output.ts in the current directory. In this function one can specify the

resolution and the number of frames to be captured and stored.

$: vcu-demo-camera-encode-file.sh -s 1920x1080 -n 1000

V4L2 KMSSINK

USB 3.0 Video Class

Camera
DP External Monitor

Figure 3-12: Software stack. Source: [26]

VCU Functions called in Terminal

 29

Again, by calling the function, the camera and display are enumerated and the pipeline is

mounted.

These two functions are useful but GStreamer allows the developer to directly build and

configure the pipeline in the terminal. This way one can simplify or modify the parameters

and devices used. For example, in the first function it is not needed to encode and

decode the video and the second pipeline can be improved controlling the quality of the

encoding. To do so, the developer will need to know how to enumerate the devices, the

supported parameters of each one and how to build the pipeline.

To enumerate the USB camera and know its properties, two V4L2 commands can be

used:

$: v4l2-ctl --list-devices → to enumerate devices

$: v4l2-ctl –list-formats-ext → to list devices input formats

To know the display modes supported for the decive one can consult the modes file using

the command:

$: cat /sys/class/drm/card0-DP-1/modes

And check the kmssink capabilities with the command:

$: gst-launch-1.0 videotestsrc ! kmssink

Once the video source and the video sink are determined, the capabilities of the VCU

encoder can be checked with the command:

$: gst-inspect-1.0 omxh264enc

Tables 3-3, 3-4 and 3-5 show the specifications summary of each device:

Table 3-3: VCU Encoder features. Source: [26]

Table 3-5: Display Port Live Video Format. Source: [8]

Table 3-4: Camera Video features. Source [11]

 30

The video specifications of the camera need to match with the supported specifications of

the VCU and Display Port controller.

To display the video without encoder and decoder, it is only needed to list the video

source (camera) and its settings and the video sink (external monitor). For this test, the

video format chosen is 8-bit YUV 422 at FHD (1920x1080) at 60fps.

$: gst-launch-1.0 v4l2src device=/dev/video0 ! video/x-raw, \

> format=\(string\)UYVY, width=1920, height=1080, framerate=60/1 ! \

> kmssink bus-id=fd4a0000.zynqmp-display fullscreen-overlay=1

To improve the quality of the encoded video [26], the following pipeline has been used:

$: gst-launch-1.0 -e v4l2src device=/dev/video0 num-buffers=300 ! \

> video/x-raw,width=1920,height=1080,framerate=30/1 ! \

> videoconvert ! video/x-raw, format=\(string\)NV16 ! \

> omxh264enc control-rate=constant gop-mode=low-delay-p gdr-

mode=vertical \

> gop-length=0 target-bitrate=5500 ! \

> video/x-h264, profile=high-4:2:2 ! h264parse ! queue ! \

> mpegtsmux name=mux mux. ! filesink location=/home/improved.ts

In Figure 3-13, the pipeline is shown identifying each configuration with its meaning:

Figure 3-13: GStreamer custom capture-encode-store_file pipeline

• 300 frames of the video source set as default video format (YUYV 422 8-bit) at

FHD, 30 fps are captured.

• These frames are converted into NV16 format: YUV file contains 4:2:2 8-bit video

samples stored in planar format with all picture Luma (Y) samples followed by

interleaved U and V Chroma samples [26].

• Encoder is configured using H.264 (AVC) high 4:2:2 profile and optimized

parameters to be stored at maximum quality with the better performance:

o Control rate = constant.

o Gop-mode = low-delay-p. Specifies group of pictures configuration. low-

delay-p (IPPPPP….). [26]

 31

o Gdr-mode = vertical. When gop-mode is set to low_delay_p, gdr-mode

specifies which scheme should be used for Gradual Decoder Refresh:

vertical option means that a vertical bar moving from left to right is used.

[26]

o Gop-length = 0. Distance between two consecutive Intra frames. Specify

integer value between 0 and 1,000. Value 0 and 1 corresponds to Intra-

only encoding. [26]

For better understanding of Gop-mode and Gop-length, some knowledge of H.264 Video

Codec is required.

To reduce the size of a video, the frame is divided into independent sections called slices,

that are also divided into smaller sections called Macro Blocks (MBs). These MBs are

groups of blocks containing Luma pixels (Y) or croma pixels (Cb, Cr). See Figure 3-14

This way, MB of some frames can be predicted using different techniques instead of

recording and storing each full frame.

The H.264 video codec defines three main types of frames which are I-frames, P-frames

and B-frames. A Gop (group of pictures) is a set of combined frames of different type.

• I-frames: Intra prediction frames. Is independent of the other frames and its MBs

are predicted based on adjacent MBs of the same frame.

• P-frames: Predicted frames. Uses Intra prediction and motion estimation to predict

its MBs. It depends on previous frames that can be either I-, P- or B-frames.

• B-frames: Bidirectional predicted frames. It uses bidirectional motion estimation to

predict its MBs. It depends on previous and/or future frames.

Figure 3-14: H.264 (AVC) frame distribution.

 32

3.4. Processing image in host PC using a Convolutional Neuronal

Network

This project step is focused on processing the captured images taken with the system

configured in the previous one in the host PC to validate the CNN before implementing it

in the development board.

Once the CNN is chosen, it is tested first with a single image to understand the

performance. Then, the code is adapted to process a downloaded sample video and

validated with own captured video.

The original code can be downloaded from the Cornell University website [40].

3.4.1. SegNet

Basing in the objectives and the scope of the project, any of the CNN may be used since

the main issue is how to successfully implement a system running this NN in an FPGA.

However, the main purpose is to make the first move to finally achieve an automotive

application using FPGA in front of GPU to run ML algorithms. So, even if this final

application is out of the scope of the project, it seems appropriate to work with a

Semantic Segmentation Neural Network, for instance SegNet.

SegNet is a Deep fully convolutional Neural Network for semantic pixel-wise

segmentation. The architecture of its core trainable segmentation engine consists of an

encoder network with its corresponding decoder network followed by a final pixel-wise

classification layer. (See Figure 3-15). The encoder network is built with 13 convolutional

layers which corresponds to the first 13 convolutional layers in the VGG16 network [38]

designed for object classification. Each encoder layer has a corresponding decoder layer,

so the decoder network is also composed with 13 convolutional layers. The output of the

decoder network is fed to a multi-class soft-max classifier to produce class probabilities

for each pixel independently. [33]

Figure 3-15 shows the architecture of SegNet, its layer types and an example of input-

output images:

Figure 3-15: SegNet architecture. Source: [33]

 33

Figure 3-16: SegNet project code file architecture.

3.4.2. SegNet Image processing code

To test the SegNet CNN, sample images have been processed in a python project. This

project consists in a main file that reads the image from a folder and calls the SegNet to

process it. Its file structure is shown in Figure 3-16:

The main file reads images from a specified

path using the OpenCV command

cv.imread(). This command, by default,

converts from the YUV colour space to BGR

colour space. Since SegNet class expects

RGB image, before calling it, the image

should have another colour space

transformation from BGR to RGB using the

command cv2.cvtColor(image,

cv2.COLOR_BGR2RGB). Then, SegNet is

called and the output image is stored in a

specified folder.

The code of the main function is:

def main():

for arg in sys.argv[1:]:

 print('Analysis of file: ',arg)

 if os.path.isfile(arg):

 im = cv2.imread(arg)

 im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

pred_tot, var_tot, inference_time, im =

SegNet().visual_results_external_image(im,

FLAG_MAX_VOTE=False)

 cv2.imwrite('res_image/img.jpg', im)

 else:

 print('File ', arg, ' is not found.')

 exit()

if __name__ == "__main__":

 main()

The SegNet.py file is in charge to resize the image to its required size (480x360), process

the image with the help of inputs_object.py, evaluation_object.py and layers_object.py,

draw the output image with drawing_objects.py and return the image.

This code has been tested with sample images and works properly. This may be enough

since in the ZCU104 development board, in the ideal case, it may work frame by frame.

But since the processing time for each frame predictably will exceed the required timing

to get real time operation, it may be useful to leave open the possibility to process a video

file stored in the system.

 34

To do so, first the code of main file needs to be modified to read and write a video file

instead of a single image. Instead of opening a single image with cv.imread() function,

now the video needs to be opened with the OpenCV function cv2.VideoCapture(). Then,

go through the video frame per frame processing each and store all the frames in a

selected folder. Finally, a custom function to build the video from the stored frames is

called and the resulting video is stored. The modified code is as follows:

def main():

 for arg in sys.argv[1:]:

 print('Analysis of file: ',arg)

 if os.path.isfile(arg):

 cap = cv2.VideoCapture(arg)

 i = 1

 while (cap.isOpened()):

 ret, frame = cap.read()

 if ret == False:

 break

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

pred_tot, var_tot, inference_time, im =

SegNet().visual_results_external_image(frame,

FLAG_MAX_VOTE=False)

cv2.imwrite('res_frames/frame'+ str(i).zfill(4)

+'.jpg',im)

 i += 1

 cap.release()

 cv2.destroyAllWindows()

 createVideo('res_frames')

 else:

 print('File ', arg, ' is not found.')

 exit()

if __name__ == "__main__":

 main()

def createVideo(frames_path):

 img_array = []

 frame_array = glob.glob(frames_path+'/*.jpg')

 frame_array.sort()

 for filename in frame_array:

 img = cv2.imread(filename)

 height, width, layers = img.shape

 size = (width, height)

 img_array.append(img)

out = cv2.VideoWriter('output.avi', cv2.VideoWriter_fourcc(*'DIVX'),

15, size)

 for i in range(len(img_array)):

 out.write(img_array[i])

 out.release()

 return

 35

Using the new code, two video samples are checked. The first one is a sample video

downloaded from internet captured with a car front camera recording a journey through a

city. The point to use this video is to simulate the output of the CNN when an autonomous

driving camera is used.

Then, the second video is one recorded with the capture image system built in the

previous step in order to verify that the output images from the capture pipeline are a

proper input for the processing stage.

See the results in the section 4.3. CNN capture in host PC

3.5. Implementing Convolutional Neuronal Network in embedded system

Finally, this is the last stage of the project. At this stage, all the previous subsystems and

the acquired knowledge are merged and applied to build the final full system.

This stage may result in a complete embedded system that captures video from a USB

camera, process either each frame in real time or a stored video file with a segmentation

CNN and shows the image in a screen via display port. Nevertheless, it cannot be

completed because the Xilinx process to implement the CNN in its DPU IP using its

software DNNDK is not as robust as advertised. It is explained later but, in this report, the

process has been followed properly and at the end an error that even the Xilinx specialist

doesn’t know how to fix occurs.

Even so, the process to implement an embedded PetaLinux operating system with a

capture, process and display a video pipeline implementing a CNN in PL is the shown in

Figure 3-17 and explained below.

The first step is, as in previous project stages, to define de HW in the PL side, and export

it to be included in the PetaLinux project. Then, the OS image is built in a same way than

done until now but adding the DPU capabilities and modifying the device tree. The main

difference is that before configuring the rootfs, the CNN needs to be implemented in the

Figure 3-17: Development Flow of an Edge-based AI Application example. Source: [48]

 36

DPU using the DNNDK Xilinx software. Finally, the resulting files along with the bare

metal code to call the Net are managed in the Xilinx SDK.

3.5.1. Full System Programable logic

The block design in the PL side is almost the same as that used in the Image Capture

subsystem. All its functionalities have been kept and only the Deep Learning Processing

Unit (DPU) has been added in order to implement the CNN and process the obtained

images using that IP. Figure 3-18 illustrates the final HW Diagram. (See Appendix D for

the complete Block Design).

When adding the DPU in the project, there are some aspects to consider.

1. The chosen CNN can be implemented in the DPU.

The DPU has a set of layer operations that are supported and not in any order. One

needs to ensure that the layers in the chosen Network and its order are supported. In the

case of this project, this verification has been done at the moment of selecting the

SegNet network. The supported operations in the DPU are:

• Conv

o Dilation

• Pooling

o Max

o Average

• ReLU/Leaky Relu/ Relu6

• Full Connected (FC)

• Concat

• Elementwise

• Deconv

• Depthwise conv

• Batch Normalization

Figure 3-18: Full system PL Diagram.

 37

• Mean scale

• Upsampling

• Split

• Reorg

• Softmax (additional core)

Since as shown in Figure 3-15, SegNet uses Conv, Batch Normalisation, ReLU, Pooling,

Upsampling, Deconv and Softmax layers, it seems a suitable Net.

Regarding the order, Table 3-6 can be consulted to check the availability of the

operations order:

Table 3-6: Supported layers order in DPU IP. Source: [48]

One can see that in these tables there are not all the available nets. It Is a resume of the

more relevant ones but to be sure, the compatibility of SegNet with the DPU has been

asked to the Xilinx contact and he confirms that the net is suitable also regarding the

layers order.

2. The DPU configuration.

The DPU IP has a few parameters that can be configured when adding it to the block

design. The more relevant are:

• The number of DPU cores: DPU can run with multiple cores (up to 3) to achieve

higher performance. This also implies more resources consumption of the

programable logic. In this case, considering the trade-off between the required

performance and the available resources, only one core has been decided to use.

• The Arch of DPU: The DPU has different architecture configurations depending on

the level of parallelism of the convolution unit. It depends also on the board used.

In the case of the Zynq UltraScale +MPSoC and the performance required for

SegNet, the chosen architecture is B2304.

 38

• Number of SFM cores: The Softmax function is a layer of a CNN that converts the

output vector of n real numbers into a vector of n real numbers that sum to 1. This

operation is supported using an additional core to handle it, so since the SegNet

uses Softmax operation, this parameter needs to be set as 1.

3. Connect DPU with Zynq UltraScale +MPSoC and Assign register address for

DPU.

The DPU IP has only one slave interface and a variable number of master interfaces

depending on the number of used cores. Each DPU core has three master interfaces,

one for instruction fetch and two for data. The SFM core, if enabled, has one additional

master interface.

In the project use case, only one DPU core is used and Softmax is enabled so there are

one slave interface and four master interfaces in total.

Xilinx recommends connecting the slave port with the M_AXI_HPM0_LPD port of the

Zynq UltraScale +MPSoC. This recommendation has been followed since that port was

unused in the previous block design.

Regarding the Master interfaces, Xilinx recommends avoiding AXI_interconnections if

possible because it may add some delay in comparison with direct connection with the

PS. Nevertheless, due to the high number of interconnections it is not possible in this

design. When this is not possible, Xilinx recommends connecting the master port for

instruction fetching to the S_AXI_LPD port of the PS due to its low bandwidth

requirements and the data master ports to the higher priority (low number) port of the PS

high bandwidth ports. In this project, the three data master ports are connected with

S_AXI_HP0_FPD port of the PS so both recommendations have been fulfilled.

In addition, it is important to properly connect the interruption, reset and clocking signals.

Once all the connections are well configured, the base address of the AXI slave interface

must be assigned to any of the accessible address by the CPU in the Vivado address

editor. Xilinx recommend setting the DPU slave interface to 0x8F00_0000 for MPSoC

devices allowing a minimum space of 16 MB. This recommendation has been followed.

Finally, the HW needs to be exported to later adding it to PetaLinux project.

See Programable Logic Reports in section 4.4.Final PL Vivado Block Design reports

3.5.2. PetaLinux changes

This is the final PetaLinux project configuration for the complete system. The main

difference with the previous one is that now some libraries and recipes are added to

support DPU and DNNDK behaviour, and the Device tree may be modified. Also, the

resulting sysroot will be exported to merge all the software using Xilinx SDK.

First, we create the project and export the new HW the same way as before.

 39

Then, it is time to add all the new features:

1. DPU driver:

The DPU driver needs to be added to allow the kernel to handle it. To do so, a recipe for

a new module must be included in PetaLinux_project_folder/project-spec/meta-

user/recipes-modules. Thus, the system will include this module when building the project.

The DPU module is sourced by Xilinx in the xilinx-zcu104-v2018.3-final-v2.bsp [4] and its

content is that shown in Figure 3-19.

In addition to including the dpu module, the Linux kernel requires an indication to properly

insert the DPU kernel driver (dpu.ko) at boot.

The file PetaLinux_project_folder/project-spec/meta-user/recipes-kernel/linux/linux-

xlnx_%.bbappend should be modified by adding the line:

LINUX_VERSION_EXTENSION = "+"

2. DPU Device tree definition

Until now, the default device tree has been used. Now, it needs to be modified to add the

details of the DPU core and DPU softmax core. The new device tree may have the

system-user-dtsi name and must be placed in the folder PetaLinux_project_folder/project-

spec/meta-user/recipes-bsp/device-tree/files/

The code to be added in the current device tree is the one bellow. This code is a template

code provided by Xilinx for the DPU instantiation in the device tree. There are three

memory addresses that needs to be changed to the defined in the programable logic.

They are marked in black in the below code and they are the DPU base address and the

interrupt values for both softmax and DPU cores.

Figure 3-19: dpu module file structure. It includes the recipe and the source code files.

 40

amba {

 dpu {

 compatible = "xilinx,dpu";

 base-addr = <0x8f000000>;

 dpucore {

 compatible = "xilinx,dpucore";

 interrupt-parent = <&gic >;

 interrupts = <0x0 0x5C 0x1>;

 core-num = <0x1>;

 };

 softmax {

 compatible = "xilinx, smfc";

 interrupt-parent = <&gic>;

 interrupts = <0x0 0x5D 0x1>;

 core-num = <0x1>;

 };

 };

};

The DPU base address is the one selected in the Vivado address editor when adding the

DPU IP in the block design. That is, the recommended by Xilinx for UltraScale +MPSoC

devices 0x8F000000.

Regarding the interruptions, its value will depend on their connections on the Vivado

block design. In the final design of the project, the dpu interruption dpu_interrupt_[0:0]

and the softmax interruption sfm_interrrupt are connected through a Concat IP with other

interruptions to the pl_ps_irq0(3) and pl_ps_irq0(4) respectively. Looking at the UG1058

(Zynq UltraScale+ Device Technical Reference Manual) [8] one can find the IRQ number

(GIC) of the PL_PS_Group0 which corresponds to the port pl_ps_irq0[7:0]. That numbers

are from 121 to 128, DPU and softmax interruptions are connected to 3 and 4

respectively, if IRQ number for GIC are 124 and 125. However, the number to be placed

in the device tree is not the GIC IRQ number but the PetaLinux IRQ number and to find

these numbers one must subtract 32 to the GIC numbers (this is because reserved

interruption numbers for the OS). So, the PetaLinux IRQ numbers for DPU and Softmax

are 92 and 93, in hexadecimal 0x5C and 0x5D.

3. DPU run-time libraries and utilities

Finally, the dnndk app must be added as a recipe in the path PetaLinux_project-

folder/project-spec/meta-user/recipes-apps to get the DPU utilities and libraries. The

folder dnndk provided by Xilinx contains the file.bb that contains the recipe for including

the software components required for the DPU core, including driver, header files, as well

as utilities.

The file structure of the dnndk folder is shown in Figure 3-20

 41

Once these modifications are included in the meta-user folder, the recipes need to be

included in PetaLinux_project-folder/project-spec/meta-user/recipes-core/image-

full.bbappend to make them selectable in the rootfs configuration. To do so, the following

commands are used:

$: echo 'IMAGE_INSTALL_append = " dpu"' >>./project-spec/meta-

user/recipes-core/images/petalinux-image-full.bbappend

$: echo 'IMAGE_INSTALL_append = " dnndk"' >>./project-spec/meta-

user/recipes-core/images/petalinux-image-full.bbappend

Then the rootfs should be called as in previous steps

$: petalinux-config -c rootfs

and select the new applications in the pop-up windows.

• modules → dpu

• user packages → dnndk

Then, build the project in the same way as explained and rebuilt again activating the sdk

option to build Yocto e-SDK taping the following command:

$: petalinux-build –sdk

Figure 3-20: DNNDK app file structure. It includes the recipe, the DPU utilities and the required libraries.

 42

Finally, package the sysroot to be used by SDK with the command:

$: petalinux-package --sysroot -d ../sdk

3.5.3. CNN files generated with DNNDK

Next step consists of translating a pretrained model based on Caffe or TensorFlow

frameworks into the needed files to be implemented in the DPU IP. The one in charge of

that is the Xilinx software tool called Deep Neuronal Network Development Kit (DNNDK).

DNNDK is a software to deploy deep learning inference applications on the DPU and it is

composed by two models: the model compression called DECENT and the model

compilation called DNNC.

The Deep Compression Tool DECENT has two stages. The first stage is an optional

stage of pruning, in which the Neuronal Network is simplified to get a small one and to

reduce the number of operations. This simplification is done by removing connections

and nodes with near zero weights. After this stage, even if the resulting NN is equivalent

to the original one, a retraining process is required to ensure the performance is actually

equivalent. One has to paid to get available his first stage and since it is optional, it will be

skipped in this project. The second stage is the Quantization stage, in which the 32-bit-

floating-point weights used when training neuronal networks are converted into 8-bit

integer (INT8) to allow the DPU to process it.

Figure 3-21 shows the DECENT flow.

The Deep Neural Network Compiler DNNC is composed by three stages. A front-end

parser that is responsible for parsing the Caffe/TensorFlow model and generates an

intermediate representation (IR) of the input model. The optimizer, which handles

optimizations based on the IR. And the code generator that maps the optimized IR to

DPU instructions.

The architecture of the DNNC is represented in Figure 3-22 below:

Figure 3-21: DECENT Pruning and Quantization Flow. Source: [46]

Figure 3-22: DNNC Components. Source: [46]

 43

So, first step to be realized is the Quantization with DECENT. With the resultant fixed-

point network model, the memory bandwidth requirement and the computing complexity

are reduced, and it provides a faster speed and higher power efficiency than the original

model. In this process, a calibration data set will be needed to analyse the distribution of

activation values for calibration. This data set is a small set of images compared with the

training data set.

The wotkflow of this process is shown in

Figure 3-23. It takes a float model as

input, in this project use case, a frozen

GraphDef file since the used model is

trained in TensorFlow. DECENT_Q does

some pre-processing removing useless

nodes or folding batchnorms and then it

quantizes the weights/biases and

activations. Then is when the calibration

dataset is needed, DECENT runs some

iterations of inference to calibrate the

activation and improve the precision of

the resulting quantized graph. Finally, the

quantized model is transformed into a DPU deployable model named deploy_model.pb.

ready to be used in the model compiler DNNC. [46]

To execute the DECENT quantization and configure the required parameters, Xilinx

provides a script called decent_q.sh with the following code:

decent_q quantize \

--input_frozen_graph deployfinal.pb \

--input_nodes input \

--input_shapes ?,480,360,3 \

--output_nodes conv/classifier/output \

--method 1 \

--input_fn SegNet_input_fn.calib_input \

--gpu 0 \

--calib_iter 100 \

--output_dir ./quantize_results \

• In the input_frozen_graph, directory of the frozen GraphDef file of the TensorFlow

model must be included as the input system.

• The calibration dataset is called by the function in the parameter input_fn and set it in

the variable included in input_nodes parameter.

• The shape of the input images expected from the net must be specified in

input_shapes.

• The output directory is specified in output_dir and the output node in output_nodes.

• Finally, one can choose if a gpu is used to accelerate the process, the number of

iterations of the calibration and the followed method which is always leaved as

default (1= min-diffs).

Figure 3-23: DECENT Workflow. Source: [46]

 44

After that compilation an error due to the different version of TensorFlow between the

trained model and the supported by DNNDK occurs. This error happens at the end of the

project and with all the previous and current steps well configured and performed. This

limitation is not advised and will represent to repeat the previous steps regarding the

neuronal network in the host and the DPU IP configuration and requisites. This is an

amount of hours that can not be taken up by the time slot of an academic work. However,

the last steps of the project will be explained as they need to be implemented because

they were in the scope of the project and a lot of research has been done to understand

them.

Regarding the compilation step, Xilinx provides another script called dnnc.sh with some

parameters to adjust. This step will convert the deploy_model.pb obtained in the previous

step to a comp_model.elf file for the DPU kernel. The content of the file is the following:

dnnc-dpu1.4.0.1 \

–-parser=tensorflow \

--frozen_pb=./quantize_results/deploy_model.pb \

--dpu=2304FA \

--cpu_arch=arm64 \

--mode=normal \

--net_name=SegNet \

--output_dir=./compile_results

• The parser needs to be set to tensorflow and the net_name to SegNet.

• In frozen_pb needs to be specified the path to the deploy_model.pb file and in the

output_dir parameter, the output directory to store the generated files.

• The DPU architecture configured in the IP must be specified in dpu parameter, the

CPU architecture in the cpu_arch parameter and the mode is leaved as “normal”.

Once the compilation is finished, the .elf file to be included in the XSDK is generated.

3.5.4. XSDK Bare metal application

Once the neural network model is compiled into the comp_model.elf file to be stored in

the DPU, it is also needed to define a bare metal application running in the CPU to call

the DPU and perform if needed a pre or post processing of the images. This CPU code is

in charge also to handle the different kernels needed depending on the type of operations

in the model. For example, in the project use case there is a kernel for all the net layers

but softmax and then another kernel specific for softmax operation. If there were any

operation not supported by DPU (which is not the case in this report), it may be

implemented by the CPU.

So, last step is to compile in XSDK the neural network .elf file among with the C++ bare

metal application and the sysroot resulting in compiling PetaLinux. When this compilation

is finished, an image_clas.elf file is ready to be placed in the boot SD as a description of

the application. This is called hybrid compilation.

 45

Before launching XSDK and compiling the application, the rootfs of the project must be

specified in an environment variable to easily indicate the software where it is located.

This can be done with the export command:

$: export SYSROOT=<path to PetaLinux project>/sdk/sysroots/aarch64-

xilinx-linux

Then, the comp_model.elf file may be converted to a Linux shared library to be included

in XSDK. To do so, the gcc linker needs to be used by the following command:

$: aarch64-linux-gnu-gcc -fPIC -shared <path to .elf file

>/comp_model.elf -o libdpumodel.so

Once these preparations are made, the XSDK software can be sourced and launched.

In the software, a new application project may be imported with the following main

settings:

• OS platform: linux

• Processor: psu_cortexa53

• Language: C++

A new empty application is imported, and the code can be written.

But before that, there are some configurations that need to be modified to success in

working with an opencv code, using the proper root file system and with all the required

libraries. These configurations are:

• C++ Build Settings/ ARMv8 Linux g++ compiler/ Miscellaneous

➔ append the parameter --sysroot=${SYSROOT} in Other Flags

• C++ Build Settings/ ARMv8 Linux g++ linker/ Miscellaneous

➔ append the parameter --sysroot=${SYSROOT} in Linker Flags

• C++ Build Settings/ ARMv8 Linux g++ linker/ Libraries

➔ Add lib n2cube

➔ Add lib dputils

➔ Add lib opencv_core

➔ Add lib opencv_imgcodecs

➔ Add lib opencv_highgui

➔ Add lib opencv_imgproc

➔ Add lib oipencv_videoio

➔ Add lib pthread

Finally, once all are well configured, the code can be written.

 46

The C++ code is composed by three main parts: The pre-processing of the acquired

images, the handling of the DPU using the proper DNNDK API functions [46] and the

post-processing of the images.

The main function is in charge of configuring all the required elements, launch the main

task calling the Model and close all.

First, a DPUKernel and DPUTask variables must be initialized as:

DPUKernel *kernelSegNet;

DPUTask *taskSegNet;

Then, the DPU driver needs to be opened and the kernel and task properly created using

DNNDK API commands:

dpuOpen();

kernelSegNet = dpuLoadKernel(comp_model.elf);

taskSegNet = dpuCreateTask(kernelSegNet, 0);

The model task can be now called with the command:

runSegNet(taskSegNet);

This function is the one in charge to do the pre-processing, call the DPU and realize the

post-processing. It consists in a capture thread, a worker thread and a display thread.

First, the capture thread can work in two modes. It captures an image from camera and

puts it to input queue or it captures n frames and sends it to the VCU to be encoded and

stored as a video file, which is put into the input queue.

Then, the worker thread is called and performs three operations: gets an image from

input queue and realizes the pre-processing, processes it with the model and performs

the post-processing before putting the image back to the display queue. The performance

of this thread is equivalent to the SegNet project code used in the host PC.

For the first operation, the dpuInput() function is called. It gets the image from the

input queue and resizes it to the already commented expected shape by the SegNet

function. If the input is a video file, it splits the video into frames and reshapes each frame.

Then, prepares a set of images.

When the input is prepared, the task calling the DPU is called with the command:

dpuRunTask(taskSegNet);

When the video file mode is used, this set of commands are called recursively.

This task manages the DPU to process the input images. To get the output from the DPU

in DPU INT8 format, and the data pointer from this output the following commands are

used:

 47

DPUTensor* dpuOutTensorInt8 = dpuGetOutputTensorInHWCInt8(taskSegNet,

OUTPUT_NODE);

DPUResult = dpuGetTensorAddress(dpuOutTensorInt8);

This is needed because the Softmax operation needs a separate call, so the final layer is

applied using the command:

dpuRunSoftmax(DPUResult, softmax, channel, 1, scale);

After that, the last operation of the worker thread is performed by the CPU with the

function dpuOutput(). This function draws the input image as the drawing_objects.py

function and puts the processed image to the display queue. In case the video file option

is used, it picks up all the frames, process them as described and then mounts again the

video file.

Finally, the display thread gets the output image from the display queue and sends it to

be displayed by the external monitor.

Once the runSegNet function ends, the main function destroys the kernel and the task

and closes the DPU driver with the following lines:

dpuDestroyTask(taskSegNet);

dpuDestroyKernel(kernelSegNet);

dpuClose();

Lastly, when the code is finished, the project can be built and the image_clas.elf file is

generated to be used in the system.

3.5.5. Boot the Application

At this point, all the required files are generated and prepared to be placed in the SD card.

First, in the boot partition, the BOOT.bin and image.ub files need to be placed as in

previous configurations.

Then, after deploying the root file system in the root partition, the generated library file

and the application file for our model must be included in the suitable directory. The

previously generated library file libdpumodel.so must be placed under /usr/lib/ directory

and the application file image_clas.elf may be placed in the working directory to be called

by the user when the application in the PetaLinux OS is launched.

By doing these modifications, the SD card is properly configured and can be placed into

the development board and power on the system.

After logging in the board, before calling the application, the following command need to

be written to properly configure the dpu to use the shared library stored in /usr/lib/:

$: export DPU_COMPILATIONMODE=1

 48

Finally, the system is ready to run the application by writing:

$: <path_to_.elf_file>/image_clas.elf

 49

4. Results

4.1. Results Embedded PetaLinux

Figures 4-1, 4-2, 4-3 and 4-4 show the success in the different steps of the generating

and booting a PetaLinux embedded OS image.

1. PetaLinux build

In this image, there is a warning that is not relevant. Xilinx contact confirms that it can be

ignored, and the project is working well. Also, there is a Fail to copy built images to tftp.

This is also correct, because in this project tftp is not used.

2. Image files generated

There is again a warning referred to the tftp usage.

Figure 4-1: Terminal capture showing success in build PetaLinux project.

Figure 4-2: Terminal capture showing success in generating PetaLinux image files

 50

3. SD card with partitions

In Figure 4-3 there are two windows related to the two partitions of the SD card. In one it

can be seen the boot files BOOT.BIN and Image.ub and in the other the root file system.

4. Boot in zcu104 Board

Using Minicom via JTAG, the host PC can access to the development board and log in to

the PetaLinux embedded OS. Figure 4-4 show the log in and navigation through the root

file system mounted.

Figure 4-3: BOOT and rootfs partitions of the boot SD card.

Figure 4-4: Terminal capture when using minicom to log in the embedded PetaLinux in the zcu104 Board

 51

4.2. Image Capture

4.2.1. Image Displayed in Screen

Figure 4-5 shows the zcu104 powered and booted, connected to the host PC via JTAG,

and with the USB camera and display port monitor connected. It is displaying a video

stream using the GStreamer function explained in section 3.3. Capture, display and store

video image from USB camera.

4.2.2. Captured Video

Figure 4-6 shows a collage mounted with frames of the captured video using the

GStreamer pipeline explained in section 3.3. Capture, display and store video image from

USB camera.

Figure 4-5: foto taken when the USB camera is capturing image of the balcony and displaying in the monitor.

Figure 4-6: Frames from the captured video.

 52

4.3. CNN capture in host PC

4.3.1. Single frame

Figure 4-7 shows an input image to the CNN and its corresponding output to verify the

right performance of the SegNet in the host.

4.3.2. Sample Video

In Figure 4-8 there is a sequence of frames from input and output sample video of the

SegNet in host PC.

Figure 4-7: Input-output of a single image to the SegNet.

Figure 4-8: Input and output video of SegNet in host PC. Sample Video.

 53

4.3.3. Captured Video

In Figure 4-9 there is a sequence of frames from input and output captured video of the

SegNet in host PC.

4.4. Final PL Vivado Block Design reports

4.4.1. Utilization Report

Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.

| Tool Version: Vivado v.2018.3.1 (lin64) Build 2489853 Tue Mar 26 04:18:30 MDT 2019
| Date: Sun Oct 3 15:13:07 2021
| Host: vision-ThinkPad-L560 running 64-bit Ubuntu 16.04.7 LTS
| Command: report_utilization -file
/home/vision/Documents/TFM/workspace/Hardware/ERROR/xilinx-zcu104-
2018.3_Hardware/xilinx-zcu104-2018.3.runs/impl_1/utilization.txt -name utilization_1
| Design: design_1_wrapper
| Device: xczu7evffvc1156-2
Design State: Fully Placed

Utilization Design Information

Table of Contents

1. CLB Logic
 1.1 Summary of Registers by Type
2. CLB Logic Distribution

Figure 4-9: Input and output video of SegNet in host PC. Captured Video.

 54

3. BLOCKRAM
4. ARITHMETIC
5. I/O
6. CLOCK
7. ADVANCED
8. CONFIGURATION
9. Primitives
10. Black Boxes
11. Instantiated Netlists

1. CLB Logic

+--+-----------+--------+-------------+---------+
| Site Type | Used | Fixed | Available | Util% |
+--+-----------+--------+-------------+---------+
CLB LUTs	81860	0	230400	35.53
LUT as Logic	75352	0	230400	32.70
LUT as Memory	6508	0	101760	6.40
LUT as Distributed RAM	3130	0		
LUT as Shift Register	3378	0		
CLB Registers	136459	0	460800	29.61
Register as Flip Flop	136458	0	460800	29.61
Register as Latch	0	0	460800	0.00
Register as AND/OR	1	0	460800	<0.01
CARRY8	1759	0	28800	6.11
F7 Muxes	3107	0	115200	2.70
F8 Muxes	531	0	57600	0.92
F9 Muxes	0	0	28800	0.00
+--+-----------+--------+-------------+---------+

1.1 Summary of Registers by Type

+----------+-------------------+------------------+--------------------+
| Total | Clock Enable | Synchronous | Asynchronous |
+----------+-------------------+------------------+--------------------+
1	_	-	-
0	_	-	Set
0	_	-	Reset
0	_	Set	-
0	_	Reset	-
0	Yes	-	-
625	Yes	-	Set
890	Yes	-	Reset
2437	Yes	Set	-
132506	Yes	Reset	-
+----------+----------------- -+------------------+--------------------+

2. CLB Logic Distribution

+--+-----------+--------+-------------+---------+
| Site Type | Used | Fixed | Available | Util% |
+--+-----------+--------+-------------+---------+
CLB	18418	0	28800	63.95
CLBL	9747	0		
CLBM	8671	0		
LUT as Logic	75352	0	230400	32.70
using O5 output only	1404			
using O6 output only	54140			
using O5 and O6	19808			

 55

LUT as Memory	6508	0	101760	6.40
LUT as Distributed RAM	3130	0		
using O5 output only	0			
using O6 output only	498			
using O5 and O6	2632			
LUT as Shift Register	3378	0		
using O5 output only	2			
using O6 output only	3101			
using O5 and O6	275			
CLB Registers	136459	0	460800	29.61
Register driven from within the CLB	65689			
Register driven from outside the CLB	70770			
LUT in front of the register is unused	54349			
LUT in front of the register is used	16421			
Unique Control Sets	4340		57600	7.53
+---+-----------+--------+--------------+----------+
* Note: Available Control Sets calculated as CLB Registers / 8, Review the Control Sets Report for
more information regarding control sets.

3. BLOCKRAM

+-----------------------------+--------+--------+-------------+--------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------------------+--------+--------+-------------+--------+
Block RAM Tile	302	0	312	96.79
RAMB36/FIFO*	279	0	312	89.42
FIFO36E2 only	5			
RAMB36E2 only	274			
RAMB18	46	0	624	7.37
FIFO18E2 only	5			
RAMB18E2 only	41			
URAM	50	0	96	52.08
+-----------------------------+--------+--------+-------------+--------+
* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate
only one FIFO36E2 or one FIFO18E2. However, if a FIFO18E2 occupies a Block RAM Tile, that
tile can still accommodate a RAMB18E2

4. ARITHMETIC

+-----------------------------+--------+--------+-------------+--------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------------------+--------+--------+-------------+--------+
| DSPs | 426 | 0 | 1728 | 24.65 |
| DSP48E2 only | 426 | | | |
+-----------------------------+--------+--------+-------------+--------+

5. I/O

+-----------------------------+--------+--------+-------------+--------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------------------+--------+--------+-------------+--------+
Bonded IOB	118	118	360	32.78
HPIOB_M	63	63	144	43.75
INPUT	1			
OUTPUT	14			
BIDIR	48			
HPIOB_S	54	54	144	37.50
INPUT	1			
OUTPUT	13			

 56

BIDIR	40			
HDIOB_M	0	0	24	0.00
HDIOB_S	0	0	24	0.00
HPIOB_SNGL	1	1	24	4.17
INPUT	0			
OUTPUT	1			
BIDIR	0			
HPIOBDIFFINBUF	9	9	192	4.69
DIFFINBUF	9	9		
HPIOBDIFFOUTBUF	0	0	192	0.00
HDIOBDIFFINBUF	0	0	48	0.00
BITSLICE_CONTROL	22	0	64	34.38
BITSLICE_RX_TX	106	106	416	25.48
RXTX_BITSLICE	106	106		
BITSLICE_TX	22	0	64	34.38
RIU_OR	11	0	32	34.38
+-----------------------------+--------+--------+-------------+--------+

6. CLOCK

+--+--------+--------+-------------+--------+
| Site Type | Used | Fixed | Available | Util% |
+--+--------+--------+-------------+--------+
GLOBAL CLOCK BUFFERs	16	0	544	2.94
BUFGCE	15	0	208	7.21
BUFGCE_DIV	0	0	32	0.00
BUFG_GT	0	0	144	0.00
BUFG_PS	1	0	96	1.04
BUFGCTRL*	0	0	64	0.00
PLL	3	0	16	18.75
MMCM	3	1	8	37.50
+--+--------+--------+-------------+--------+
* Note: Each used BUFGCTRL counts as two global buffer resources. This table does not include
global clocking resources, only buffer cell usage. See the Clock Utilization Report
(report_clock_utilization) for detailed accounting of global clocking resource availability.

7. ADVANCED

+-----------------------------+--------+---------+-------------+----------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------------------+--------+---------+-------------+----------+
GTHE4_CHANNEL	0	0	20	0.00
GTHE4_COMMON	0	0	5	0.00
OBUFDS_GTE4	0	0	10	0.00
OBUFDS_GTE4_ADV	0	0	10	0.00
PCIE40E4	0	0	2	0.00
PS8	1	0	1	100.00
SYSMONE4	0	0	1	0.00
VCU	1	0	1	100.00
+-----------------------------+--------+---------+-------------+----------+

8. CONFIGURATION

+-----------------------------+---------+--------+-------------+---------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------------------+---------+--------+-------------+---------+
BSCANE2	1	0	4	25.00
DNA_PORTE2	0	0	1	0.00
EFUSE_USR	0	0	1	0.00

 57

FRAME_ECCE4	0	0	1	0.00
ICAPE3	0	0	2	0.00
MASTER_JTAG	0	0	1	0.00
STARTUPE3	0	0	1	0.00
+-----------------------------+---------+--------+-------------+---------+

9. Primitives

+-----------------------------+-----------+-----------------------------+
| Ref Name | Used | Functional Category |
+-----------------------------+-----------+-----------------------------+
FDRE	132506	Register
LUT6	29735	CLB
LUT3	28359	CLB
LUT5	14033	CLB
LUT4	11656	CLB
LUT2	9415	CLB
RAMD32	4562	CLB
MUXF7	3107	CLB
SRL16E	3077	CLB
FDSE	2437	Register
LUT1	1962	CLB
CARRY8	1759	CLB
FDCE	890	Register
RAMS32	704	CLB
FDPE	625	Register
SRLC32E	576	CLB
MUXF8	531	CLB
RAMD64E	496	CLB
DSP48E2	426	Arithmetic
RAMB36E2	274	Block Ram
RXTX_BITSLICE	106	I/O
IBUFCTRL	81	Others
OBUFT_DCIEN	72	I/O
INBUF	72	I/O
URAM288	50	Block Ram
RAMB18E2	41	Block Ram
OBUF	28	I/O
TX_BITSLICE_TRI	22	I/O
BITSLICE_CONTROL	22	I/O
OBUFT	16	I/O
BUFGCE	15	Clock
RIU_OR	11	I/O
INV	9	CLB
DIFFINBUF	9	I/O
HPIO_VREF	8	I/O
FIFO36E2	5	Block Ram
FIFO18E2	5	Block Ram
PLLE4_ADV	3	Clock
MMCME4_ADV	3	Clock
VCU	1	Advanced
PS8	1	Advanced
BUFG_PS	1	Clock
BSCANE2	1	Configuration
AND2B1L	1	Others
+-----------------------------+-----------+---------------------------+

 58

10. Black Boxes

+---+--------+
| Ref Name | Used |
+---+--------+
design_1_vcu_ddr4_controller_0_0__RateMeasurement__parameterized0__7	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__parameterized0__6	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__parameterized0__5	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__parameterized0__4	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__parameterized0__3	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__parameterized0__2	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__parameterized0__1	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__parameterized0	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__55	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__54	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__53	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__52	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__51	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__50	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement__49	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_482	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_481	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_480	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_470	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_469	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_468	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_461	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_460	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_459	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_449	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_448	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_447	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_336	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_335	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_334	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_324	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_323	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_322	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_315	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_314	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_313	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_303	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_302	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_301	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2190	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2189	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2188	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2178	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2177	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2176	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2169	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2168	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2167	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2157	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2156	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2155	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2060	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2059	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2058	1

 59

design_1_vcu_ddr4_controller_0_0__RateMeasurement_2048	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2047	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2046	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2039	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2038	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2037	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2027	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2026	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement_2025	1
design_1_vcu_ddr4_controller_0_0__RateMeasurement	1
+---+--------+

11. Instantiated Netlists

+---+---------+
| Ref Name | Used |
+---+---------+
vcu_ddr4_controller_v1_0_0_ddr4_0_phy	1
design_1_zynq_ultra_ps_e_0_0	1
design_1_xbar_5	1
design_1_xbar_4	1
design_1_xbar_3	1
design_1_xbar_2	1
design_1_xbar_1	1
design_1_xbar_0	1
design_1_vcu_ddr4_controller_0_0	1
design_1_vcu_0_0	1
design_1_v_frmbuf_wr_0_0	1
design_1_v_frmbuf_rd_0_0	1
design_1_s01_regslice_0	1
design_1_s01_mmu_0	1
design_1_s00_regslice_7	1
design_1_s00_regslice_6	1
design_1_s00_regslice_5	1
design_1_s00_regslice_4	1
design_1_s00_regslice_3	1
design_1_s00_regslice_2	1
design_1_s00_regslice_1	1
design_1_s00_regslice_0	1
design_1_s00_mmu_4	1
design_1_s00_mmu_3	1
design_1_s00_mmu_2	1
design_1_s00_mmu_1	1
design_1_s00_mmu_0	1
design_1_proc_sys_reset_4_0	1
design_1_proc_sys_reset_3_0	1
design_1_proc_sys_reset_2_0	1
design_1_proc_sys_reset_1_0	1
design_1_proc_sys_reset_0_0	1
design_1_m01_regslice_2	1
design_1_m01_regslice_1	1
design_1_m01_regslice_0	1
design_1_m00_regslice_3	1
design_1_m00_regslice_2	1
design_1_m00_regslice_1	1
design_1_m00_regslice_0	1
design_1_dpu_eu_0_0	1
design_1_clk_wiz_1_0	1
design_1_clk_wiz_0_0	1

 60

design_1_auto_us_0	1
design_1_auto_rs_w_0	1
design_1_auto_pc_0	1
design_1_auto_ds_0	1
design_1_auto_cc_6	1
design_1_auto_cc_5	1
design_1_auto_cc_4	1
design_1_auto_cc_3	1
design_1_auto_cc_2	1
design_1_auto_cc_1	1
design_1_auto_cc_0	1
dbg_hub	1
+---+--------+

4.4.2. Timing Report

Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.
--- ------
| Tool Version: Vivado v.2018.3.1 (lin64) Build 2489853 Tue Mar 26 04:18:30 MDT 2019
| Date: Wed Sep 29 19:56:27 2021
| Host: vision-ThinkPad-L560 running 64-bit unknown
|Command: report_timing_summary -max_paths 10 -file
design_1_wrapper_timing_summary_routed.rpt -pb
design_1_wrapper_timing_summary_routed.pb -rpx
design_1_wrapper_timing_summary_routed.rpx -warn_on_violation
| Design: design_1_wrapper
| Device: xczu7ev-ffvc1156
| Speed File: -2 PRODUCTION 1.23 10-29-2018
Temperature Grade: E

Timing Summary Report

--
Timer Settings
 Enable Multi Corner Analysis: Yes
 Enable Pessimism Removal: Yes
 Pessimism Removal Resolution: Nearest Common Node
 Enable Input Delay Default Clock: No
 Enable Preset / Clear Arcs: No
 Disable Flight Delays: No
 Ignore I/O Paths: No
 Timing Early Launch at Borrowing Latches: false

 Corner Analyze Analyze
 Name Max Paths Min Paths
 ------ --------- ---------
 Slow Yes Yes
 Fast Yes Yes

check_timing report

Table of Contents

1. checking no_clock

 61

2. checking constant_clock
3. checking pulse_width_clock
4. checking unconstrained_internal_endpoints
5. checking no_input_delay
6. checking no_output_delay
7. checking multiple_clock
8. checking generated_clocks
9. checking loops
10. checking partial_input_delay
11. checking partial_output_delay
12. checking latch_loops

1. checking no_clock

 There are 0 register/latch pins with no clock.

2. checking constant_clock

 There are 0 register/latch pins with constant_clock.

3. checking pulse_width_clock

 There are 0 register/latch pins which need pulse_width check

4. checking unconstrained_internal_endpoints
--
 There are 0 pins that are not constrained for maximum delay.
 There are 0 pins that are not constrained for maximum delay due to constant clock.

5. checking no_input_delay

 There are 0 input ports with no input delay specified.
 There are 0 input ports with no input delay but user has a false path constraint.

6. checking no_output_delay

 There is 1 port with no output delay specified. (HIGH)
 There are 0 ports with no output delay but user has a false path constraint
 There are 0 ports with no output delay but with a timing clock defined on it or propagating through
it

7. checking multiple_clock

 There are 0 register/latch pins with multiple clocks.

8. checking generated_clocks

 There are 0 generated clocks that are not connected to a clock source.

9. checking loops

 There are 0 combinational loops in the design.

10. checking partial_input_delay

 There are 0 input ports with partial input delay specified.

11. checking partial_output_delay

 62

 There are 0 ports with partial output delay specified.

12. checking latch_loops

 There are 0 combinational latch loops in the design through latch input

--
Design Timing Summary

WNS(ns) TNS(ns) TNS Failing Endpoints TNS Total Endpoints WHS(ns) THS(ns)
------------ ----------- ------------------------------ ---------------------------- ------------ ------------
 0.079 0.000 0 395384 0.010 0.000

THS Failing Endpoints THS Total Endpoints WPWS(ns) TPWS(ns) TPWS Failing Endpoints
------------------------------ ---------------------------- ---------------- -------------- ---------------------------------
 0 394310 0.011 0.000 0

TPWS Total Endpoints

 147605

All user specified timing constraints are met.

--
Clock Summary

Clock Waveform(ns) Period(ns) Frequency(MHz)
-------- -------------------- -------------- ----------------------
clk_pl_0 {0.000 5.000} 10.000 100.000
dbg_hub/inst/BSCANID.u_xsdbm_id/
SWITCH_N_EXT_BSCAN.bscan_inst/
SERIES7_BSCAN.bscan_inst/INTERNAL_
TCK {0.000 25.000} 50.000 20.000
design_1_i/clk_wiz_0/inst/clk_in1 {0.000 5.000} 10.000 100.000
 clk_out1_design_1_clk_wiz_0_0 {0.000 15.000} 30.000 33.333
 clk_out2_design_1_clk_wiz_0_0 {0.000 1.513} 3.025 330.556
 clk_out3_design_1_clk_wiz_0_0 {0.000 5.042} 10.084 99.167
design_1_i/clk_wiz_1/inst/clk_in1 {0.000 5.000} 10.000 100.000
 axi_aclk_design_1_clk_wiz_1_0_1 {0.000 5.000} 10.000 100.000
 axi_dpu_aclk_design_1_clk_wiz_1_0_1 {0.000 2.500} 5.000 200.000
 dpu_2x_clk_design_1_clk_wiz_1_0_1 {0.000 1.250} 2.500 400.000
mig_sys_clk_p[0] {0.000 1.668} 3.335 299.850
 mmcm_clkout0 {0.000 1.876} 3.752 266.533
 pll_clk[0] {0.000 0.234} 0.469 2132.267
 pll_clk[0]_DIV {0.000 1.876} 3.752 266.533
 pll_clk[1] {0.000 0.234} 0.469 2132.267
 pll_clk[1]_DIV {0.000 1.876} 3.752 266.533
 pll_clk[2] {0.000 0.234} 0.469 2132.267
 pll_clk[2]_DIV {0.000 1.876} 3.752 266.533
 mmcm_clkout2 {0.000 1.876} 3.752 266.533
 mmcm_clkout5 {0.000 7.504} 15.008 66.633
 mmcm_clkout6 {0.000 3.752} 7.504 133.267

 63

4.5. Full system Implementation

4.5.1. PetaLinux built

Figure 4-10 shows a capture of the terminal with the successful build of the full PetaLinux

project. As in the previous results, there is a failure referred to TFTP because it is not

used. Also, there are two warnings that can be ignored.

Then, in Figure 4-11 there is a screen capture with the messages generated at rebuilding

the project with the sdk option.

Finally, Figure 4-12 shows the success in packaging the roofs to be opened with XSDK.

Figure 4-10: Screen captured showing success in building the project.

Figure 4-11: Screen captured showing success in building the project with sdk.

Figure 4-12: Screen captured showing success in packaging the rootfs for XSDK.

 64

4.5.2. DPU utilities available

Figure 4-13 shows that the required utilities to run the model in the DPU IP are properly

placed in their corresponding directories.

Figure 4-13: Screen capture showing the DPU utilities in their folder.

4.5.3. DNNDK SegNet error

When trying to quantize the SegNet model, an error shown in Figure 4-14 occurs.

At first, this error seems to refer to some data type misunderstanding. After consulting

with the Xilinx developer, navigating through lots of forums and trying many workarounds,

I conclude that the error root case is due to a mismatch in the TensorFlow version

supported by the DNNDK and the one used to train the model. SegNet is working with

version 1.11.0 while DNNDK only works with version 1.9. It is a hard issue because

changing the DNNDK version may lead to a set of incompatibilities between all the Xillinx

tools, libraries versions, Ubuntu version and maybe can force to use VITIS. Otherwise, it

could imply to train the net with the right TensorFlow version or changing the net. When

asking the Xilinx developer, it tells that all the steps and configurations are correctly

Figure 4-14: Screen captured when truing to quantize the model with DNNDK.

 65

followed but they do not guarantee that these tools may work with any other Net but the

ones in their examples. In addition, the advertising, they make about their tools is that

they are robust tools able to implement any net trained in caffe, tensorflow, pytorch… but

the reality is that a small deviation from its example project with its recipe will result in

errors that they are not able to solve or understand due to the complexity of the

operations that they have tried to simplify in a short sequence of instructions.

 66

5. Budget

 67

6. Conclusions and future development

As mentioned in the introduction, the development of this thesis is divided in two

implementations. The first implementation has been successfully performed and the

video images have been processed with the SegNet in the host PC. Unfortunately, the

second implementation fails when trying to quantize and compile the Neural Network to

introduce it in the DPU IP.

This thesis has completed successfully the steps regarding the first implementation and

some of the second implementation:

1. Configuring and packaging an embedded operating system including customizing

the kernel, root file system and device tree and add applications, libraries and

modules to the system.

2. Customizing and building a block design using the needed IP to capture video,

encode it with the VCU, store a video file and use the DPU IP along with display

the results in a display port external monitor.

3. Use video capture libraries such GStreamer to build pipelines from the terminal

and configure each element to get a video stream from USB camera to external

monitor and to directly store a video file from the USB camera.

4. Understand and execute the CNN SegNet to process the captured video in the

host PC adapting the original code to the desired features.

Also, even if the implementation fails at trying to compile the neural network into the DPU

IP, the research done regarding this and the next steps has been realized and they may

work if the incompatibility error does not appear. The DECENT quantization script and the

DNNC compilation script are made based on the trainings and the example codes

provided by Xilinx and they have been checked by the Xilinx developer and they should

be correct. After that, the configuration of the XSDK is also checked by the developer and

the later steps are just compile, boot and execute. Thus, even though the practical

implementation has been failed, the scope of the project regarding the evaluation of the

complexity to implement the NN in an FPGA instead of GPU is completed and useful

conclusions can be extracted. Also, the first implementation is completed so the objective

of processing images captured with an embedded system in a neural network is achieved.

As a conclusion to the availability to implement a Neural Network in an FPGA instead of a

GPU, even if the only drawback for the FPGA is the complexity of the configuration

process, nowadays it is still better to use GPU. In this project only Xilinx alternative has

been explored. In that specific case, they say that this implementation works with most of

the frameworks, with most of models and customizing the applications. In reality, the

single issue to discriminate between tools and versions of each tool is a hard task and

requires a significant research time. In addition to that, it is not trivial which model can be

used in which version. When asking Xilinx, they only provide tutorials and project

examples, but not a clear explanation of what is happening and how everything is

working. This may make easier to work without the need of understand everything, but it

is only useful if the specifications of your project are the same than in the training. If not,

unexpected errors may occur and there is not a clear explanation of how to solve it

because it seems that there is not a clear understanding of how it is working. In the order

 68

hand, there are a lot of development boards that can be used as an alternative to easily

adapt the HW to the needs of your model using a GPU with a good performance.

Regarding future implementations, there is a new software called VITIS that could be a

better choice for this implementation. It is intended to be a merge of all the tools used in

this thesis in a single software and it may provide the possibility to program the

application directly in python. This alternative has been discarded in this thesis because it

is very recent and the needed workflow and requirements are even more confusing.

 69

Bibliography

Tools installation:

[1] UG973 (v2018.3) “Vivado Design Suite User Guide.” Release Notes, Installation, and

Licening.

[2] UG1144 (v2018.3) “Petalinux Tools Documentation.” Reference Guide.

[3] UG1294 (v2018.3) “SDSoC Development Environment.” Release Notes, Installation,

and Licensing Guide.

Project Examples:

[4] xilinx-zcu104-v2018.3-final-v2.bsp

[5] zcu104-rv-ss-2018-3.zip

[6] zcu102-dpu-trd-2018-2-190531.zip and rdf0428-zcu106-vcu-trd-2018-3.zip

Hardware Support:

[7] UG1267 (v1.1) “ZCU104 Evaluation Board.” User Guide.

[8] UG1085 (v2.1) “Zynq UltraScale+ Device.” Technical Reference Manual.

[9] e-con_See3CAM_CU30_CHL_TC_BX. Getting Started Manual.

[10] e-con_See3CAM_CU30_CHL_TC_BX. Datasheet.

[11] e-con_See3CAM_CU30_CHL_TC_BX. Product Datasheet

[12] https://www.e-consystems.com/ar0330-lowlight-usb-cameraboard.asp

[13] https://www.xilinx.com/products/intellectual-property/dpu.html

Linux Image Building:

[14] UG1157 (v2018.3) “PetaLinux Tools Documentation.” PetaLinux Command Line

Reference.

[15] UG1209 (v2018.3) “Zynq UltraScale+ MPSoC: Embedded Design Tutorial.” A Hands-

On Guide to Effective Embedded System Design

[16] UG1283 (v2018.2) Bootgen User Guide

[17] UG1156 (v2017.3) “PetaLinux Tools Documentation.” Workflow tutorial

[18] https://xilinx-

wiki.atlassian.net/wiki/spaces/A/pages/18841937/Zynq+UltraScale+MPSoC+Ubuntu

+part+2+-+Building+and+Running+the+Ubuntu+Desktop+From+Sources

[19] https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841724/PMU+Firmware

https://www.xilinx.com/products/intellectual-property/dpu.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841937/Zynq+UltraScale+MPSoC+Ubuntu+part+2+-+Building+and+Running+the+Ubuntu+Desktop+From+Sources
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841937/Zynq+UltraScale+MPSoC+Ubuntu+part+2+-+Building+and+Running+the+Ubuntu+Desktop+From+Sources
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841937/Zynq+UltraScale+MPSoC+Ubuntu+part+2+-+Building+and+Running+the+Ubuntu+Desktop+From+Sources
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841724/PMU+Firmware

 70

[20] https://xilinx-

wiki.atlassian.net/wiki/spaces/A/pages/18842107/Arm+Trusted+Firmware

[21] https://www.yoctoproject.org

[22] https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto

[23] https://forums.xilinx.com/t5/Forums/ct-p/XlnxProd

[24] https://xilinx-

wiki.atlassian.net/wiki/spaces/A/pages/18842385/How+to+format+SD+card+for+SD+

boot

Xilinx Trainings:

[25] https://www.xilinx.com/training/customer-training/developing-xilinx-ai-solutions-edge-

applications.html

Image Capture:

[26] PG252 “H.264/H265 Video Codec Unit v1.2.” LogiCORE IP Product Guide.

[27] UG1085 “Zynq UltraScale+ Device.” Technical Reference Manual

[28] UG1228 (v1.0) Zynq UltraScale+ MPSoC Embedded Design Methodology Guide

[29] https://github.com/Xilinx/meta-petalinux/tree/master/recipes-

multimedia/gstreamer/gstreamer-vcu-examples

[30] https://www.mankier.com/1/v4l2-ctl

[31] https://gstreamer.freedesktop.org/documentation/tutorials/basic/index.html?gi-

language=c

[32]https://developer.ridgerun.com/wiki/index.php?title=Zynq_Ultrascale%2B_Capture_se

ttings_and_Gstreamer_pipelines

NN in host:

[33] https://github.com/PINTO0309/SegNet-TF

[34] https://www.tensorflow.org/install/pip

[35] https://www.ffmpeg.org/

[36] https://www.jetbrains.com/es-es/pycharm/

[37] https://www.learnopencv.com/read-write-and-display-a-video-using-opencv-cpp-

python/

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[40] https://paperswithcode.com/paper/segnet-a-deep-convolutional-encoder-decoder

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842107/Arm+Trusted+Firmware
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842107/Arm+Trusted+Firmware
https://forums.xilinx.com/t5/Forums/ct-p/XlnxProd
https://forums.xilinx.com/t5/Forums/ct-p/XlnxProd
https://forums.xilinx.com/t5/Forums/ct-p/XlnxProd
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842385/How+to+format+SD+card+for+SD+boot
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842385/How+to+format+SD+card+for+SD+boot
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842385/How+to+format+SD+card+for+SD+boot
https://www.xilinx.com/training/customer-training/developing-xilinx-ai-solutions-edge-applications.html
https://www.xilinx.com/training/customer-training/developing-xilinx-ai-solutions-edge-applications.html
https://developer.ridgerun.com/wiki/index.php?title=Zynq_Ultrascale%2B_Capture_settings_and_Gstreamer_pipelines
https://developer.ridgerun.com/wiki/index.php?title=Zynq_Ultrascale%2B_Capture_settings_and_Gstreamer_pipelines
https://developer.ridgerun.com/wiki/index.php?title=Zynq_Ultrascale%2B_Capture_settings_and_Gstreamer_pipelines
https://developer.ridgerun.com/wiki/index.php?title=Zynq_Ultrascale%2B_Capture_settings_and_Gstreamer_pipelines
https://developer.ridgerun.com/wiki/index.php?title=Zynq_Ultrascale%2B_Capture_settings_and_Gstreamer_pipelines
https://developer.ridgerun.com/wiki/index.php?title=Zynq_Ultrascale%2B_Capture_settings_and_Gstreamer_pipelines
https://developer.ridgerun.com/wiki/index.php?title=Zynq_Ultrascale%2B_Capture_settings_and_Gstreamer_pipelines
https://arxiv.org/pdf/1511.00561.pdf
https://arxiv.org/pdf/1511.00561.pdf
https://arxiv.org/pdf/1511.00561.pdf
https://arxiv.org/pdf/1511.00561.pdf
https://www.learnopencv.com/read-write-and-display-a-video-using-opencv-cpp-python/
https://www.learnopencv.com/read-write-and-display-a-video-using-opencv-cpp-python/
https://paperswithcode.com/paper/segnet-a-deep-convolutional-encoder-decoder

 71

Tensorflow in PS:

[41] https://docs.python.org/3/tutorial/venv.html

[42] https://docs.bazel.build/versions/master/install-ubuntu.html

[43] https://www.tensorflow.org/install/source

DPU + DNNDK:

[44]https://github.com/Xilinx/Embedded-Reference-Platforms-User-

Guide/blob/master/README.md

[45] PG338 (v2.0) “DPU for Convolutional Neuronal Network v2.0.” DPU IP Product

Guide

[46] UG1327 (v1.6) DNNDK User Guide

[47] UG1331 (v1.0) DNNDK User Guide for the SDSoC Developement Environment

[48] Avnet Technical Training Course. Introduction to Deep Learning with Xilinx SoCs

https://www.tensorflow.org/install/source
https://www.tensorflow.org/install/source
https://www.tensorflow.org/install/source
https://github.com/Xilinx/Embedded-Reference-Platforms-User-Guide/blob/master/README.md
https://github.com/Xilinx/Embedded-Reference-Platforms-User-Guide/blob/master/README.md

 72

Appendices

APPENDIX A: PetaLinux Configuration

PetaLinux HW configuration window

 73

Rootfs configuration Windows

 74

APPENDIX B: VCU Demo files

vcu-demo-camera-encode-decode-display.sh

#!/bin/bash

Get RAW YUV frames from Camera, encode it, decode it and display it

Copyright (C) 2017 Xilinx

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

type vcu-demo-functions.sh > "/dev/null"

if [$? -ne 0]; then

 echo "Copy vcu-demo-functions.sh to /usr/bin/ or append it's path to PATH variable

and re-run the script" && exit -1

fi

source vcu-demo-functions.sh

scriptName=`basename $0`

declare -a scriptArgs=("inputPath" "videoSize" "codecType" "sinkName" "numFrames"

"targetBitrate" "showFps" "audioType" "internalEntropyBuffers" "v4l2Device"

"displayDevice" "alsaSrc" "pulseSrc" "audioOutput" "alsaSink" "pulseSink" "frameRate")

declare -a checkEmpty=("codecType" "sinkName" "targetBitrate" "v4l2Device" "displayDevice"

"frameRate")

Name: usage

Description: To display script's command line argument help

usage () {

 echo ' Usage : '$scriptName' -i <device_id_string> -v <video_capture_device> -s

<video_size> -c <codec_type> -a <audio_type> -o <sink_name> -n <number_of_frames> -b

<target_bitrate> -e <internal_entropy_buffers> -r <capture_device_rate> -d

<display_device> -f --use-alsasrc --use-pulsesrc --audio-output <Audio output device> --

use-pulsesink --use-alsasink'

 DisplayUsage "${scriptArgs[@]}"

 echo ' Example :'

 echo ' '$scriptName''

 echo ' '$scriptName' -a aac'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -d "fd4a0000.zynqmp-display" -a aac'

 echo ' '$scriptName' -v "/dev/video1"'

 echo ' '$scriptName' -n 500 --use-alsasrc'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -n 500 --use-alsasrc -b 1200 -a aac'

 echo ' '$scriptName' --use-pulsesrc -i "alsa_input.usb-

046d_C922_Pro_Stream_Webcam_FCD7727F-02.analog-stereo" -n 500 -b 1200 -a aac'

 echo ' '$scriptName' -f'

 echo ' '$scriptName' -o fakevideosink'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -s 1920x1080 -c avc -a aac'

 75

 echo ' '$scriptName' -s 1920x1080 -c avc -e 3'

 echo ' '$scriptName' -s 1280x720 -c avc'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -s 1280x720 -c avc -a aac'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -s 1280x720 -c avc -a vorbis'

 echo ' '$scriptName' -s 1280x720'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -s 1280x720 -c avc -a aac'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -s 1280x720 -c avc -a aac --audio-

output "hw:0"'

 echo ' '$scriptName' --use-pulsesrc -i "alsa_input.usb-

046d_C922_Pro_Stream_Webcam_FCD7727F-02.analog-stereo" -n 500 -b 1200 -a aac'

 echo ' "NOTE: This script depends on vcu-demo-settings.sh to be present in

/usr/bin or its path set in $PATH"'

 exit

}

Name: CameraToDisplay

Description: Get RAW data from camera, encode it, decode and display it

CameraToDisplay() {

 if [$SHOW_FPS]; then

 SINK="fpsdisplaysink name=fpssink text-overlay=false video-

sink=\"$SINK_NAME\" sync=true -v"

 else

 SINK="$SINK_NAME"

 fi

 if [$NUM_FRAMES]; then

 V4L2SRC="$V4L2SRC num-buffers=$NUM_FRAMES"

 AUDIO_BUFFERS=$(($NUM_FRAMES*100/$FRAME_RATE))

 fi

 AUDIO_SRC_BASE="$AUDIO_SRC"

 AUDIO_SINK_BASE="$AUDIO_SINK"

 case $AUDIODEC_TYPE in

 "aac")

 AUDIODEC="faad"

 AUDIOENC="faac";;

 "vorbis")

 AUDIODEC="vorbisdec"

 AUDIOENC="vorbisenc";;

 *)

 if ! [-z $AUDIODEC_TYPE]; then

 ErrorMsg "Invalid audio codec type specified, please specify either

vorbis or aac"

 fi

 esac

 IFS='x' read WIDTH HEIGHT <<< "$VIDEO_SIZE"

 CAMERA_CAPS="video/x-raw,width=$WIDTH,height=$HEIGHT,framerate=$FRAME_RATE/1"

 VIDEOCONVERT="videoconvert"

 VIDEOCONVERT_CAPS="video/x-raw, format=\(string\)NV12"

 if [-z $SET_ENTROPY_BUF]; then

 INTERNAL_ENTROPY_BUFFERS="6"

 fi

 OMXH264ENC="omxh264enc num-slices=8 control-rate="low-latency" target-

bitrate=$BIT_RATE prefetch-buffer=true"

 OMXH265ENC="omxh265enc num-slices=8 control-rate="low-latency" target-

bitrate=$BIT_RATE prefetch-buffer=true"

 OMXH264DEC="$OMXH264DEC internal-entropy-buffers=$INTERNAL_ENTROPY_BUFFERS latency-

mode="reduced-latency""

 OMXH265DEC="$OMXH265DEC internal-entropy-buffers=$INTERNAL_ENTROPY_BUFFERS latency-

mode="reduced-latency""

 case $CODEC_TYPE in

 "avc")

 76

 PARSER=$H264PARSE

 ENCODER=$OMXH264ENC

 DECODER=$OMXH264DEC

 CAMERA_CAPS_ENC="video/x-

h264,width=$WIDTH,height=$HEIGHT,framerate=$FRAME_RATE/1";;

 "hevc")

 PARSER=$H265PARSE

 ENCODER=$OMXH265ENC

 DECODER=$OMXH265DEC

 CAMERA_CAPS_ENC="video/x-

h265,width=$WIDTH,height=$HEIGHT,framerate=$FRAME_RATE/1";;

 esac

 restartPulseAudio

 setAudioSrcProps

 if ! [-z $AUDIO_OUTPUT] && [$AUDIO_SINK_BASE != "autoaudiosink"]; then

 AUDIO_SINK="$AUDIO_SINK device=\"$AUDIO_OUTPUT\""

 fi

 if [-z $AUDIODEC_TYPE]; then

 pipeline="$GST_LAUNCH $V4L2SRC ! $CAMERA_CAPS ! $VIDEOCONVERT !

$VIDEOCONVERT_CAPS ! $ENCODER ! $QUEUE ! $DECODER ! $QUEUE max-size-bytes=0 ! $SINK"

 else

 if ["$AUDIO_SRC_BASE" == "pulsesrc"] && ["$AUDIO_SINK_BASE" ==

"pulsesink"]; then

 pipeline="$GST_LAUNCH $V4L2SRC ! $CAMERA_CAPS ! $VIDEOCONVERT !

$VIDEOCONVERT_CAPS ! $ENCODER ! $QUEUE ! $DECODER ! $QUEUE max-size-bytes=0 ! $SINK

$AUDIO_SRC ! $QUEUE ! $AUDIOENC ! $AUDIODEC ! $AUDIO_SINK"

 else

 pipeline="$GST_LAUNCH $V4L2SRC ! $CAMERA_CAPS ! $VIDEOCONVERT !

$VIDEOCONVERT_CAPS ! $ENCODER ! $QUEUE ! $DECODER ! $QUEUE max-size-bytes=0 ! $SINK

$AUDIO_SRC ! $QUEUE ! $AUDIOCONVERT ! $AUDIOENC ! $QUEUE ! $AUDIODEC ! $AUDIOCONVERT !

$AUDIORESAMPLE ! $AUDIO_CAPS ! $AUDIO_SINK"

 fi

 fi

 runGstPipeline "$pipeline"

}

Command Line Argument Parsing

args=$(getopt -o "i:v:d:s:c:o:a:b:n:e:r:fh" --long "input-path:,video-capture-

device:,display-device:,video-size:,audio-type:,codec-type:,sink-name:,num-frames:,bit-

rate:,internal-entropy-buffers:,audio-output:,frame-rate:,show-fps,help,use-alsasrc,use-

pulsesrc,use-alsasink,use-pulsesink" -- "$@")

[$? -ne 0] && usage && exit -1

trap catchCTRL_C SIGINT

parseCommandLineArgs

checkforEmptyVar "${checkEmpty[@]}"

if [-z $VIDEO_SIZE]; then

 VIDEO_SIZE="640x480"

 echo "Video Size is not specified in args hence using 640x480 as default value"

fi

if [-z $BIT_RATE];then

 BIT_RATE=1000

fi

if ! [-z $AUDIODEC_TYPE]; then

 audioSetting

fi

RegSetting

DisableDPMS

CameraToDisplay

restoreContext

 77

vcu-demo-camera-encode-file.sh

#!/bin/bash

#Get RAW YUV frames from Camera, encode it

Copyright (C) 2017 Xilinx

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

type vcu-demo-functions.sh > "/dev/null"

if [$? -ne 0]; then

 echo "Copy vcu-demo-functions.sh to /usr/bin/ or append it's path to PATH variable

and re-run the script" && exit -1

fi

source vcu-demo-functions.sh

scriptName=`basename $0`

declare -a scriptArgs=("inputPath" "v4l2Device" "videoSize" "codecType" "outputPath"

"numFrames" "targetBitrate" "audioType" "showFps" "compressedMode" "alsaSrc"

"pulseAudiosrc" "frameRate" "gopLength" "periodicityIdr")

declare -a checkEmpty=("v4l2Device" "codecType" "targetBitrate" "sinkName" "frameRate"

"gopLength" "periodicityIdr")

Name: usage

Description: To display script's command line argument help

usage () {

 echo ' Usage : '$scriptName' -i <device_id_string> -v <video_capture_device> -s

<video_size> -c <codec_type> -o <output_path> -n <number_of_frames> -b <target_bitrate> -a

<audio_type> -r <capture_device_rate> -f --compressed-mode --use-alsasrc --use-

pulseaudiosrc --gop-length <gop_length> --periodicity-idr <periodicity_idr>'

 DisplayUsage "${scriptArgs[@]}"

 echo ' Example :'

 echo ' '$scriptName''

 echo ' '$scriptName' -o /mnt/sata/op.ts'

 echo ' '$scriptName' -v "/dev/video1"'

 echo ' '$scriptName' -v "/dev/video1" --gop-length 45'

 echo ' '$scriptName' -v "/dev/video1" --gop-length 45 --periodicity-idr 45'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -n 500 -a aac'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -n 500 -b 1200 -a aac'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -f -a aac'

 echo ' '$scriptName' --use-pulseaudiosrc -i "alsa_input.usb-

046d_C922_Pro_Stream_Webcam_FCD7727F-02.analog-stereo" -f -a aac'

 echo ' '$scriptName' -f -o fakevideosink'

 echo ' '$scriptName' -s 1920x1080 -c avc'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -s 1280x720 -c avc -a aac'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" -a aac'

 echo ' '$scriptName' --use-alsasrc -i "hw:1" --compressed-mode -a vorbis'

 78

 echo ' '$scriptName' --use-pulseaudiosrc -i "alsa_input.usb-

046d_C922_Pro_Stream_Webcam_FCD7727F-02.analog-stereo" --compressed-mode -a vorbis'

 echo ' "NOTE: This script depends on vcu-demo-settings.sh to be present in

/usr/bin or its path set in $PATH"'

 exit

}

Name: CameraToFile

Description: Get RAW data from camera, encode it

CameraToFile() {

 case $AUDIODEC_TYPE in

 "aac")

 AUDIODEC="faad"

 AUDIOENC="faac";;

 "vorbis")

 AUDIODEC="vorbisdec"

 AUDIOENC="vorbisenc";;

 *)

 if ! [-z $AUDIODEC_TYPE]; then

 ErrorMsg "Invalid audio codec type specified, please specify either

vorbis or aac"

 fi

 esac

 OMXH264ENC="$OMXH264ENC control-rate=constant b-frames=2 gop-length=$GOP_LENGTH

periodicity-idr=$PERIODICITY_IDR prefetch-buffer=true target-bitrate=$BIT_RATE ! video/x-

h264, profile=high"

 OMXH265ENC="$OMXH265ENC control-rate=constant b-frames=2 gop-length=$GOP_LENGTH

periodicity-idr=$PERIODICITY_IDR prefetch-buffer=true target-bitrate=$BIT_RATE ! video/x-

h265, profile=main,level=\(string\)6.2,tier=main"

 IFS='x' read WIDTH HEIGHT <<< "$VIDEO_SIZE"

 case $CODEC_TYPE in

 "avc")

 ENC_PARSER=$H264PARSE

 DEC_PARSER=$H264PARSE

 ENCODER=$OMXH264ENC

 CAMERA_CAPS_ENC="video/x-

h264,width=$WIDTH,height=$HEIGHT,framerate=$FRAME_RATE/1";;

 "hevc")

 ENC_PARSER=$H265PARSE

 DEC_PARSER=$H265PARSE

 ENCODER=$OMXH265ENC

 CAMERA_CAPS_ENC="video/x-

h265,width=$WIDTH,height=$HEIGHT,framerate=$FRAME_RATE/1";;

 esac

 if [-z $OUTPUT_PATH]; then

 DIR_NAME=$(pwd)

 OUTPUT_PATH="$DIR_NAME/camera_output.ts"

 fi

 SINK="$FILESINK=$OUTPUT_PATH"

 OUTPUT_FILE_NAME=$(basename "$OUTPUT_PATH")

 OUTPUT_EXT_TYPE="${OUTPUT_FILE_NAME##*.}"

 if [$SHOW_FPS]; then

 SINK="fpsdisplaysink name=fpssink text-overlay=false video-sink=fakesink

sync=true -v"

 fi

 MUX="mpegtsmux name=mux"

 if [$NUM_FRAMES]; then

 V4L2SRC="$V4L2SRC num-buffers=$NUM_FRAMES"

 AUDIO_BUFFERS=$(($NUM_FRAMES*100/$FRAME_RATE))

 fi

 79

 setAudioSrcProps

 CAMERA_CAPS="video/x-raw,width=$WIDTH,height=$HEIGHT,framerate=$FRAME_RATE/1"

 VIDEOCONVERT="videoconvert"

 VIDEOCONVERT_CAPS="video/x-raw, format=\(string\)NV12"

 restartPulseAudio

 GST_LAUNCH="$GST_LAUNCH -e"

 if [-z $AUDIODEC_TYPE]; then

 if [$COMPRESSED_MODE -eq 1]; then

 pipeline="$GST_LAUNCH $V4L2SRC ! $CAMERA_CAPS_ENC ! $DEC_PARSER !

$QUEUE ! $MUX mux. ! $SINK"

 else

 pipeline="$GST_LAUNCH $V4L2SRC ! $CAMERA_CAPS ! $VIDEOCONVERT !

$VIDEOCONVERT_CAPS ! $ENCODER ! $ENC_PARSER ! $QUEUE ! $MUX mux. ! $SINK"

 fi

 else

 if [$COMPRESSED_MODE -eq 1]; then

 pipeline="$GST_LAUNCH $V4L2SRC ! $CAMERA_CAPS_ENC ! $DEC_PARSER !

$QUEUE ! mux. $AUDIO_SRC ! $AUDIOCONVERT ! $AUDIOENC ! $QUEUE ! $MUX mux. ! $SINK"

 else

 pipeline="$GST_LAUNCH $V4L2SRC ! $CAMERA_CAPS ! $VIDEOCONVERT !

$VIDEOCONVERT_CAPS ! $ENCODER ! $ENC_PARSER ! $QUEUE ! mux. $AUDIO_SRC ! $AUDIOCONVERT !

$AUDIOENC ! $QUEUE ! $MUX mux. ! $SINK"

 fi

 fi

 runGstPipeline "$pipeline"

}

Command Line Argument Parsing

args=$(getopt -o "i:v:s:c:o:n:r:b:a:fh" --long "input-path:,video-capture-device:,video-

size:,codec-type:,output-path:,num-frames:,bit-rate:,audio-type:,frame-rate:,gop-

length:,show-fps,help,compressed-mode,use-alsasrc,use-pulseaudiosrc" -- "$@")

[$? -ne 0] && usage && exit -1

trap catchCTRL_C SIGINT

parseCommandLineArgs

checkforEmptyVar "${checkEmpty[@]}"

if [-z $VIDEO_SIZE]; then

 VIDEO_SIZE="640x480"

 echo "Video Size is not specified in args hence using 640x480 as default value"

fi

if [-z $BIT_RATE];then

 BIT_RATE=1000

fi

RegSetting

CameraToFile

 80

APPENDIX C: Image Capture Vivado Block Design

 81

APPENDIX D: Full System Vivado Block Design

 82

Glossary and Acronyms

Acronyms /
Terms

Description

API Application Programming Interface

APU Application Processing Unit

ARM Acorn RISC (Reduced instruction set computer) Machines

ATF Arm Trusted Firmware

AVC Advanced Video Coding

AXI Advanced eXtensible Interface

BGR
Pixel colour space composed by three chroma coordinates (Blue,
Green, Red)

CLI Command-Line Interface

CMOS Complementary Metal Oxide Semiconductor

CNN Convolutional Neuronal Network

CPU Central Processing Unit

DDR4 Double Data Rate Fourth Generation

DECENT Deep Compression Tool

Device tree
Device Tree is a data structure that describes the HW components of
the board and it is used by the kernel to handle them.

DIP Dual In-line Package

DMA Direct Memory Address

DNNC Deep Neural Network Compiler

DNNDK Deep Neuronal Network Development Kit

DP Display Port

DPDMA Display Port Direct Memory Address

DPU Deep Learning Processor Unit

DRD Dual-Role Device

FHD Full High Definition

FIFO First Input First Output

FPGA Field-Programmable Gate Array

FPS Frames Per Second

FSBL First Stage Boot Loader

 83

GDR Gradual Decoder Refresh

GIC Generic Interrupt Controller

GOP Group Of Pictures

GPIO General Purpose Input Output

GPU Graphics Processing Unit

GStreamer
GStreamer is a pipeline-based multimedia framework that links
together a wide variety of media processing systems to complete
complex workflows.

GUI Graphical User Interface

H.264 Video compression standard also known as Advanced Video Coding.

H.265
Video compression standard also known as High Efficiency Video
Coding

HD High Definition

HDL Hardware Definition Language

HEVC High-Efficiency Video Coding

HW Hardware

IP Intellectual Property

IR Intermediate Representation

IRQ Interrupt Request

ISP Image Signal Processor

JTAG Joint Test Action Group

Kernel
Kernel is a part of a Linux Operating System that manages the HW
resources used by the Software.

LTS Long Term Support

LVDS Low-Voltage Differential Signal

MB Macro Blocks

MCU Machine Control Unit

MJPEG Motion-JPEG (Joint Photographic Experts Group)

ML Machine Learning

Mp Mega pixels

MPSoC Multi-Processor System on Chip

NN Neural Network

OS Operative System

PHY Physical layer

PL
Programable Logic. Description of the HW implementation in the
FPGA.

 84

PMU Platform Management Unit

PS Processing System

RAM Random Access Memory

RGB
Pixel colour space composed by three chroma coordinates (Red,
Green, Blue)

ROM Read-Only Memory

rootfs
Root File System. It is the top of the hierarchical file tree. It contains
the files and directories critical for system operation, including the
device directory and programs for booting the system.

SD Secure Digital

SDIO Secure Digital Input Output

SDK Software Development Kit

SFM Softmax

sysroots
Sysroots are the folder structures of the embedded image that
contains the essentials for a system to run.

TCM Tightly Coupled Memory

TFTP Trivial File Transfer Protocol

UHD Ultra-High Definition (4K, 8K, 16K)

ULPI Utmi+ Low Pin Interface

UVC USB Video Class

UYVY
Variant of YUV pixel colour space. It is a 4:2:2 subsampling with luma
coordinate (Y) in each pixel and only one of the chroma coordinates
(U or V) each pixel.

V4L2 Video for Linux 2

VCU Video Codec Unit

VESA Video Electronics Standards Association

VGG16
VGG16 is a convolutional network for classification and Detection. Its
structure is included in the more complex SegNet architecture.

XSCT Xilinx Software Command-line Tool

XSDK Xilinx Software Development Kit

YCbCr
Pixel Colour space composed by one luma coordinate (Y) and two
chroma coordinates (Cb, Cr)

Yocto
The Yocto Project (YP) is an open-source collaboration project that
helps developers create custom Linux-based systems regardless of
the hardware architecture.

YUV
Pixel Colour space composed by one luma coordinate (Y) and two
chroma coordinates (U, V)

