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Abstract A lightweight optical constellations modeling method based on concatenating ANNs is 

proposed. Statistical validation of the reproduced constellations is shown. The method accelerates data 

generation and facilitates detecting (un)intentioned misconfigurations, among others. 

Introduction 

In the recent years, Machine Learning (ML) 
algorithms have been extensively applied to 
optical communications to enhance their 
performance [1]. Applications range from 
identifying, predicting, and monitoring optical 
transmission parameters to mitigate different 
physical layer impairments, such as chromatic 
dispersion and non-linearities. Those 
applications require large data sets for training 
ML models; although such data should come 
from experimental setups, much research is 
being carried out using accurate heavy 
simulation environments (e.g., VPIphotonics) and 
analytical models (e.g., GNPy). Besides, some 
ML applications use an expected signal as a 
reference, e.g., to detect degradations [2]. 

In this paper, we propose an accurate lightweight 
modeling of the physical layer impairments 
introduced by Reconfigurable Optical Add/Drop 
Multiplexers (ROADM) and optical links including 
intermediate Optical Amplifiers (OA) on the 
optical constellation; it is based on feedforward 
Artificial Neural Networks (ANN). The key 
advantage of our approach is that such ANNs can 
be concatenated to reproduce the impairments of 
an end-to-end lightpath, connecting one 
transmitter (Tx) and one receiver (Rx). 

Methodology 

Fig. 1 illustrates the proposed concatenation 
model. A typical lightpath is represented in Fig. 
1a, connecting a Tx to a Rx. Between them, the 
signal may cross several ROADMs and optical 
links. ROADMs are modelled with two 
Wavelength Selective Switches (WSS), and 
every intermediate ROADM, except the last one 
before the Rx (drop), includes a booster OA that 
compensates for WSSs insertion losses. 
Typically, the insertion losses in the drop ROADM 
are compensated by digital signal processing 
(DSP) at the digital coherent Rx. The optical links 
consist of a pair of optical fibers followed by inline 
OAs set to compensate the losses of the fiber 
spans. We assume that the pre-OA at ROADM’s 
input is a part of the link model, as shown in insets 
of Fig. 1a. The received optical constellation 
contains information about the devices that the 

optical signal has crossed and it can be used, for 
example, to detect degradation. 

The concatenation model abstracting the 
lightpath is presented in Fig. 1b. In this case, the 
ROADMs and optical links in Fig. 1a are modeled 
as ANNs. The resulting ANNs are concatenated 
in the same order as they appear in the route of 
the lightpath to create the end-to-end 
concatenation model, therefore reproducing the 
complete lightpath. To achieve an accurate 
concatenation model, the ANN models use input 
features related to the optical constellation and 
output the resulting features after crossing the 
modeled optical system, i.e., a ROADM or a fiber 
link. 

Two operations are key to implement the 
proposed approach: i) the generator modelling 
the Tx and ii) the constellation reconstruction at 
the end of the chain. The generator uses an input 
bit sequence to generate optical signal samples 
following a Tx model, which can be implemented 
using analytical equations, simulation, or ML 
models. After the Tx model computes the initial 
optical constellation, a feature extraction block 
computes the input features of the concatenation 
model. Features include mean and variance of 
selected constellation points (detailed in the next 
section). The output of the concatenation model 
is used by the constellation reconstruction 
module to generate the optical constellation from 
the received features of the selected 
constellation points after propagation through the 
concatenation model. 

The proposed approach can be used as a 
lightweight optical system simulator. Note that the 
constellation at intermediate points in the 
lightpath can be also obtained by just 
reconstructing the constellation from the desired 
features. It is worth noting that the time to 
generate the resulting optical constellation is 
noticeably short as it entails propagating values 
through a set of ANNs, i.e., only a very limited 
number of simple calculations is required [3]. 

Feature Extraction and Modeling 

We model the constellation points as bivariate 
Gaussian distributions. Therefore, constellation 
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Fig. 1: Concatenation modeling 
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Fig. 2: Feature computation 

 

points features are computed by applying 
Gaussian Mixture Models (GMM)[4], as shown in 
Fig. 2. This approach characterizes every 
constellation point p with a two-dimensional 
vector µp representing the mean in the 
constellation and with a 2×2 matrix Σp, which 
captures the variance (diagonal of Σp, hereafter 
referred to as σp) and the covariance that the 
symbols belonging to the constellation point p 
experienced around the mean position. In order 
to find accurate ANN models for a wide range of 
scenarios (including those not considered during 
training), a common practice is to select a 
reduced number of model inputs [5]. Hence, we 
limit the number of constellation points to the 
minimum providing enough information to 
capture the overall constellation behavior; 
specifically for 16QAM, we selected two outer (-
3+3i, 1-3i) and two inner (1+1i and -1-1i) 
constellation points (see Fig. 2). 

We consider that both the models for the optical 
fiber links and ROADMs follow the same 
architecture characterized by: i) 24 input neurons 
(6 features per constellation point); ii) two hidden 
layers, each one with 12 neurons and hyperbolic 
tangent activation function [3]; and iii) one output 
layer with 24 neurons that estimates the output 
constellation’s features. For example, when the 
lightpath crosses two ROADMs and one link, the 
proposed approach entails concatenating 3 ANN 
models, which results into 216 neurons, from 
which 72 are hidden neurons implementing an 
activation function. 

Constellation reconstruction is done by firstly 
computing all constellation point features by 
means of linear combinations of the propagated 
features (to be fitted during ANN training phase). 
Then, the simulated constellations can be 
obtained by randomly sampling bivariate 
Gaussian distributions for all constellation points. 

Illustrative Results 

To evaluate the performance of the proposed 
approach, a MATLAB-based digital coherent 
system simulator has been implemented. We 
assume a 11 channel WDM system, where all 
channels are configured with 16QAM@64GBd 
and 75 GHz channels spacing. At the transmitter 
side, pseudo-random binary sequences of 215 
bits are modulated and shaped by a root-raised 
cosine filter with a roll-off factor of 0.06. Next, an 
optical multiplexer aggregates the individual 
signals and creates the WDM signal to be 
propagated through the lightpath. A per channel 
launch power of -1 dBm is assumed. The optical 
fiber spans are composed of standard single 
mode fiber modelled by an attenuation factor of 
0.21 dB/km and a chromatic dispersion 
parameter of 16.8 ps/nm/km. The pulse 
propagation is modeled by solving the nonlinear 
Schrödinger equation using the split-step Fourier 
method with a propagation step size of 100 m. 
Erbium doped fiber amplifiers with noise figure of 
4.5 dB are considered. The WSSs inside the 
ROADMs are based on commercially available 
ones and modelled as described in [6]. Finally, 
DSP blocks capable to perform ideal chromatic 
dispersion compensation and carrier phase 
recovery are considered in the Rx. 

The simulator was used to generate the datasets 
needed for training, testing, and validating the 
models. Four different optical link configurations 
in terms of total length and number of spans are 
considered: 100-km (2×50-km spans), 240-km 
(4×60-km spans), 400-km (5×80-km spans), and 
560-km (7×80-km spans). For each one, up to 4 
hops were considered leading to a maximum total 
lightpath length of 400, 960, 1600, 2240 km, 
respectively. To train the models, 30 signal 
samples with around 8200 symbols each were 
generated for each link and ROADM 
configuration. 
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Fig. 3: Relative model error vs distance Fig. 4: Comparison simulator/model   Fig. 5: Fine detection and localization 

Each ANN was trained during 5,000 epochs; the 
overall absolute and relative errors for all link 
configurations, lightpath lengths, and selected 
constellation points are shown in Fig. 3. Since 
covariance terms in Σ are nearly 0, we focus on 
the average and maximum errors of features µ 
(Fig. 3a) and σ (Fig. 3b). While the µ prediction 
errors are negligible independently of the link 
length (max error < 2%), the σ max error is 
around 30% for low σ values. However, as soon 
path length increases, maximum error decreases 
below 15%, which is, in general, a good enough 
performance to validate the models. For 
illustrative purposes, Fig. 4a plots the Gaussian 
distributions for the selected constellation points, 
obtained with the concatenation model and 
simulator for a 1,600-km lightpath (4 hops of 
400km). Strong similarities between both cases 
are evident. 

The constellation reconstruction performance is 
now analyzed. To this aim, the features obtained 
with the model (including reconstruction) are 
compared to those extracted from the simulator. 
The comparison between model-based and 
simulator-based features was statistically carried 
out by means of the Chi-Square test to evaluate 
whether the two independent data sets are 
similar or conversely, significantly different [7]. We 
first compared the case when the simulation and 
model were configured with the same lightpath 
length and link configuration; for all the 
combinations, the hypothesis of equality was 
largely accepted (with decision error < 0.01%). 
Second, we compared different configurations of 
4-hop lightpaths to check if the value of the Chi-
Square test statistic serves as indicator of 
misleading configuration of the model. Fig. 4b 

reports these results, showing that a threshold of 
0.5 allows to clearly distinguish all cases when 
simulation and model were configured differently 
(orange) from cases with the same setup (green). 

Additionally, the impact of considering just slightly 
different scenarios in the simulation and 
concatenation model was tested. Specifically, a 
4-hop lightpath with 240-km links was configured 
in the simulation, whereas model was configured 
with the same number of hops and link 
configuration except for only one of the hops, 
where a 400-km link was selected. The four 
different positions in the path for the 400-km link 
were evaluated; Fig. 5a shows that all cases 
stayed above the 0.5 threshold, which implies 
that the small difference was correctly detected. 
Note that localization of the longer link can be 
done by performing the test at intermediate links. 
Finally, Fig. 5b shows the result of applying this 
intermediate analysis when the 400-km is in the 
third link. As it can be observed, the link is 
localized as the Chi-Square test value exceeds 
the selected threshold when evaluating the 
features right after the third link. 

To conclude, we have proposed and assessed a 
lightweight method to generate optical 
constellations by concatenating ANN models. 
Statistical evidence of similarity between 
simulated and modeled constellations as well as 
a solid and robust detection method to recognize 
differences have been shown. 
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