
Towards stochastic methods in CFD for
engineering applications

Riccardo Tosi

Ph.D. thesis in Civil Engineering

Universitat Politècnica de Catalunya

Departament d’Enginyeria Civil i Ambiental

Supervisors: Prof. Riccardo Rossi
Dr. Jordi Pons-Prats

Barcelona, November 2021





I’ll try and try again! I won’t ever give up!
Look out across the moor – there’s another omen!

And I’ll remember it, poppa! There’s always another rainbow!
Scrooge McDuck, The Life and Times of Scrooge McDuck

Don Rosa





Abstract

Recent developments of high performance computing capabilities allow solving mod-
ern science problems employing sophisticated computational techniques. However, it
is necessary to ensure the efficiency of state of the art computational methods to fully
take advantage of modern technology capabilities. In this thesis we propose uncertainty
quantification and high performance computing strategies to solve fluid dynamics sys-
tems characterized by uncertain conditions and unknown parameters. We verify that
such techniques allow us to take decisions faster and ensure the reliability of simulation
results.
Different sources of uncertainties can be relevant in computational fluid dynamics appli-
cations. For example, we consider the shape and time variability of boundary conditions,
as well as the randomness of external forces acting on the system. From a practical point
of view, one has to estimate statistics of the flow, and a failure probability convergence
criterion must be satisfied by the statistical estimator of interest to assess reliability.
We use hierarchical Monte Carlo methods as uncertainty quantification strategy to solve
stochastic systems. Such algorithms present three levels of parallelism: over levels, over
realizations per level, and on the solution of each realization. We propose an improve-
ment by adding a new level of parallelism, between batches, where each batch has its
independent hierarchy. These new methods are called asynchronous hierarchical Monte
Carlo, and we demonstrate that such techniques take full advantage of concurrency capa-
bilities of modern high performance computing environments, while preserving the same
reliability of state of the art methods. Moreover, we focus on reducing the wall clock
time required to compute statistical estimators of chaotic incompressible flows. Our ap-
proach consists in replacing a single long-term simulation with an ensemble of multiple
independent realizations, which are run in parallel with different initial conditions. The
error analysis of the statistical estimator leads to the identification of two error con-
tributions: the initialization bias and the statistical error. We propose an approach to
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systematically detect the burn-in time to minimize the initialization bias, accompanied
by strategies to reduce the simulation cost. Finally, we propose an integration of Monte
Carlo and ensemble averaging methods for reducing the wall clock time required for
computing statistical estimators of time-dependent stochastic turbulent flows. A single
long-term Monte Carlo realization is replaced by an ensemble of multiple independent re-
alizations, each characterized by the same random event and different initial conditions.
We consider different systems, relevant in the computational fluid dynamics engineering
field, as realistic wind flowing around high-rise buildings or compressible potential flow
problems. By solving such numerical examples, we demonstrate the accuracy, efficiency,
and effectiveness of our proposals.

Key words: uncertainty quantification · Monte Carlo · multilevel Monte Carlo · asyn-
chronous algorithms · ensemble averaging · statistical analysis · computational fluid
dynamics · turbulent flows · high performance computing · distributed computing.



Resumen

Los desarrollos relacionados con la computación de alto rendimiento de las últimas dé-
cadas permiten resolver problemas científicos actuales, utilizando métodos computacio-
nales sofisticados. Sin embargo, es necesario asegurarse de la eficiencia de los métodos
computacionales modernos, con el fin de explotar al máximo las capacidades tecnológi-
cas. En esta tesis proponemos diferentes métodos, relacionados con la cuantificación de
incertidumbres y el cálculo de alto rendimiento, con el fin de minimizar el tiempo de
computación necesario para resolver las simulaciones y garantizar una alta fiabilidad. En
concreto, resolvemos sistemas de dinámica de fluidos caracterizados por incertidumbres.
En el campo de la dinámica de fluidos computacional existen diferentes tipos de incerti-
dumbres. Nosotros consideramos, por ejemplo, la forma y la evolución en el tiempo de las
condiciones de frontera, así como la aleatoriedad de las fuerzas externas que actúan sobre
el sistema. Desde un punto de vista práctico, es necesario estimar valores estadísticos del
flujo del fluido, cumpliendo los criterios de convergencia para garantizar la fiabilidad del
método. Para cuantificar el efecto de las incertidumbres utilizamos métodos de Monte
Carlo jerárquicos, también llamados hierarchical Monte Carlo methods. Estas estrategias
tienen tres niveles de paralelización: entre los niveles de la jerarquía, entre los eventos
de cada nivel y durante la resolución del evento. Proponemos agregar un nuevo nivel
de paralelización, entre batches, en el cual cada batch es independiente de los demás
y tiene su propia jerarquía, compuesta por niveles y eventos distribuidos en diferentes
niveles. Definimos estos nuevos algoritmos como métodos de Monte Carlo asíncronos y
jerárquicos, cuyos nombres equivalentes en inglés son asynchronous hierarchical Monte
Carlo methods. También nos enfocamos en reducir el tiempo de computación necesa-
rio para calcular estimadores estadísticos de flujos de fluidos caóticos e incompresibles.
Nuestro método consiste en reemplazar una única simulación de dinámica de fluidos,
caracterizada por una ventana de tiempo prolongada, por el promedio de un conjunto
de simulaciones independientes, caracterizadas por diferentes condiciones iniciales y una
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ventana de tiempo menor. Este conjunto de simulaciones se puede ejecutar en parale-
lo en superordenadores, reduciendo el tiempo de computación. El método de promedio
de conjuntos se conoce como ensemble averaging. Analizando las diferentes contribu-
ciones del error del estimador estadístico, identificamos dos términos: el error debido
a las condiciones iniciales y el error estadístico. En esta tesis proponemos un método
que minimiza el error debido a las condiciones iniciales, y en paralelo sugerimos varias
estrategias para reducir el coste computacional de la simulación. Finalmente, propone-
mos una integración del método de Monte Carlo y del método de ensemble averaging,
cuyo objetivo es reducir el tiempo de computación requerido para calcular estimado-
res estadísticos de problemas de dinámica de fluidos dependientes del tiempo, caóticos y
estocásticos. Reemplazamos cada realización de Monte Carlo por un conjunto de realiza-
ciones independientes, cada una caracterizada por el mismo evento aleatorio y diferentes
condiciones iniciales. Consideramos y resolvemos diferentes sistemas físicos, todos rele-
vantes en el campo de la dinámica de fluidos computacional, como problemas de flujo del
viento alrededor de rascacielos o problemas de flujo potencial. Demostramos la precisión,
eficiencia y efectividad de nuestras propuestas resolviendo estos ejemplos numéricos.

Palabras clave: cuantificación de incertidumbre · Monte Carlo · Monte Carlo multinivel
· algoritmos asincrónicos · promedio de un conjunto · análisis estadística · dinámica de
fluidos computacional · flujos turbulentos · computación de alto rendimiento · compu-
tación distribuida.



Abstract

Gli sviluppi del calcolo ad alte prestazioni degli ultimi decenni permettono di risolvere
problemi scientifici di grande attualità, utilizzando sofisticati metodi computazionali.
È però necessario assicurarsi dell’efficienza di questi metodi, in modo da ottimizzare
l’uso delle odierne conoscenze tecnologiche. A tal fine, in questa tesi proponiamo di-
versi metodi, tutti inerenti ai temi di quantificazione di incertezze e calcolo ad alte
prestazioni. L’obiettivo è minimizzare il tempo necessario per risolvere le simulazioni
e garantire alta affidabilità. Nello specifico, utilizziamo queste strategie per risolvere
sistemi fluidodinamici caratterizzati da incertezze in macchine ad alte prestazioni.
Nel campo della fluidodinamica computazionale esistono diverse tipologie di incertezze.
In questo lavoro consideriamo, ad esempio, il valore e l’evoluzione temporale delle con-
dizioni di contorno, così come l’aleatorietà delle forze esterne che agiscono sul sistema
fisico. Dal punto di vista pratico, è necessario calcolare una stima delle variabili sta-
tistiche del flusso del fluido, soddisfacendo criteri di convergenza, i quali garantiscono
l’accuratezza del metodo. Per quantificare l’effetto delle incertezze sul sistema utiliz-
ziamo metodi gerarchici di Monte Carlo, detti anche hierarchical Monte Carlo methods.
Queste strategie presentano tre livelli di parallelizzazione: tra i livelli della gerarchia,
tra gli eventi di ciascun livello e durante la risoluzione del singolo evento. Proponiamo
di aggiungere un nuovo livello di parallelizzazione, tra gruppi (batches), in cui ogni batch
sia indipendente dagli altri ed abbia una propria gerarchia, composta da livelli e da even-
ti distribuiti su diversi livelli. Definiamo questi nuovi algoritmi come metodi asincroni
e gerarchici di Monte Carlo, il cui corrispondente in inglese è asynchronous hierarchi-
cal Monte Carlo methods. Ci focalizziamo inoltre sulla riduzione del tempo di calcolo
necessario per stimare variabili statistiche di flussi caotici ed incomprimibili. Il nostro
metodo consiste nel sostituire un’unica simulazione fluidodinamica, caratterizzata da un
lungo arco temporale, con il valore medio di un insieme di simulazioni indipendenti, ca-
ratterizzate da diverse condizioni iniziali ed un arco temporale minore. Questo insieme
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di simulazioni può essere eseguito in parallelo in un supercomputer, riducendo il tempo
di calcolo. Questo metodo è noto come media di un insieme o, in inglese, ensemble
averaging. Calcolando la stima di variabili statistiche, commettiamo due errori: l’errore
dovuto alle condizioni iniziali e l’errore statistico. In questa tesi proponiamo un me-
todo per minimizzare l’errore dovuto alle condizioni iniziali, ed in parallelo suggeriamo
diverse strategie per ridurre il costo computazionale della simulazione. Infine, propo-
niamo un’integrazione del metodo di Monte Carlo e del metodo di ensemble averaging,
il cui obiettivo è ridurre il tempo di calcolo necessario per stimare variabili statistiche
di problemi di fluidodinamica dipendenti dal tempo, caotici e stocastici. Ogni realizza-
zione di Monte Carlo è sostituita da un insieme di simulazioni indipendenti, ciascuna
caratterizzata dallo stesso evento casuale, da differenti condizioni iniziali e da un arco
temporale minore. Consideriamo e risolviamo differenti sistemi fisici, tutti rilevanti nel
campo della fluidodinamica computazionale, come per esempio problemi di flusso del
vento attorno a grattacieli, o sistemi di flusso potenziale. Dimostriamo l’accuratezza,
l’efficienza e l’efficacia delle nostre proposte, risolvendo questi esempi numerici.

Parole chiave: quantificazione di incertezze · Monte Carlo · Monte Carlo multilivello ·
algoritmi asincroni · media di un insieme · analisi statistica · fluidodinamica computa-
zionale · flussi turbolenti · calcolo ad alte prestazioni · calcolo distribuito.
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Chapter 1

Introduction

1.1 Importance of estimating uncertainties

Since the beginning of time, humans have always tried to describe the surrounding
nature. Nowadays, it is possible to describe complex physical systems using sophisticated
mathematical models. However, several questions are still standing, and their associated
research fields are active. Are these models accurate? Can we obtain the same amount
of information faster? How can we describe our system if some data is not known or,
better said, is uncertain?
Uncertainty refers to states, or systems, of which we have limited knowledge, with un-
known or even multiple outcomes [68]. The field of science that studies how to charac-
terize and reduce uncertainties is called uncertainty quantification (UQ). Uncertainties
arise in environments that are stochastic or that can be only partially described by an
observer. Uncertainties are an important factor in many different fields, spacing from
statistics and economics to physics and engineering.
It is common to predict outcomes of uncertain systems using probability. As commented
by Carlo Rovelli, when all of the details of a system are not available, we cannot know
what will happen in the future. Probability is the tool we use to predict their output1.
One of the most important achievements of the last century is the development of com-
putational methods, which allow describing systems through mathematical models. Such
developments are parallel to the development of high performance computing (HPC) ca-
pabilities of last decades. Nowadays we assume that the results of a single simulation

1C. Rovelli, Helgoland, Adelphi, Milano, 2020, p. 41.
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run on HPC machines are accurate enough for engineering purposes. The interest of
academia and industries is therefore moving into new directions. New topics of inter-
est are, for example, the quantification of uncertainties on systems characterized by
unknown data, the exploration of design alternatives for optimization purposes, or the
development of computational methods that minimize the wall clock time required to
solve simulations, to take decisions faster.
A large number of uncertain components are usually involved in the description of
complex engineering systems since both geometry features and operational conditions
are of difficult calibration and identification. It is therefore crucial for an engineer to
quantify how these uncertainties affect the system they are dealing with, and this is
exactly the purpose of this thesis.
This is also the objective of the European project ExaQUte (EXAscale Quantification
of Uncertainties for TEchnology and science simulation), that supports this work. The
ExaQUte project aims at "constructing a framework to enable uncertainty quantifica-
tion and optimization under uncertainties in complex engineering problems, exploiting
computational simulations on forthcoming exascale systems"2.

1.2 Uncertainty quantification

We describe and quantify uncertainties within a probabilistic framework. This implies
uncertainties can be considered as random variables. Therefore, given a system charac-
terized by randomness, we can propagate uncertainties into the computational model of
the system to assess their effect on the problem. Usually, some statistics of an output
quantity of interest (QoI) of the system are estimated to assess the impact of uncer-
tainties on the computational model. This operation is called forward UQ, and, in this
work, we refer to it simply with UQ.
Different methods are available in the literature to perform UQ. Many of them, as
stochastic Galerkin, stochastic collocation or polynomial chaos methods [57, 87, 138],
suffer the curse of dimensionality, which means the convergence rate degrades as the
number of random variables grows. In the most general scenario, for complex engineer-
ing problems, we may expect to deal with many uncertainties, thus with a stochastic
space arbitrarily big. For this reason, in this work we decide to use Monte Carlo (MC)
sampling-based approaches [59], that do not suffer the curse of dimensionality since their

2ExaQUte Consortium. (2021). ExaQUte. Retrieved from http://exaqute.eu/.

http://exaqute.eu/
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(a) Thai Airways Boeing 747-400 HS-TGB air-
foil [97].

(b) 30 St Mary Axe in London, a modern high-
rise building [9].

Figure 1.1: Examples of systems we consider in this thesis work.

convergence rate is independent of the number of random variables. These methods rely
on the idea of solving different realizations of the same problem, each characterized
by different random variable values. MC methods also are non-intrusive, which means
the solver can be considered to be a black box. This is an important feature since it
simplifies the integration of the MC methods and the developments of our work with
other existing software. Moreover, the MC methods present the property that estimated
statistics of a QoI converge to the exact statistics as the number of realizations tends to
infinity, independently from the dimension of the stochastic space.
The main drawback of the standard MC method is its slow convergence rate, which
implies a high computational cost and a high wall clock time are required to solve the
problem. To improve this bottleneck, other methods have been derived from standard
MC, as multilevel Monte Carlo (MLMC) [62, 64, 63, 58, 59] or continuation multilevel
Monte Carlo (CMLMC) [38]. Both approaches exploit a hierarchy of levels of increasing
accuracy to solve the problem under consideration. Using a large number of coarse
realizations and only a few fine samples reduce the overall computational cost with
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respect to standard MC, where all realizations are run on the finest level. We remark
that the name hierarchical MC methods comes from using a hierarchy of approximations
to solve the system and we use it in this work to refer to the class of MC methods.
In literature, many applications of the MC methods already exist. These have been
successfully applied to hyperbolic conservation laws with stochastic input data [103, 102],
to elliptic partial differential equations [34], in engineering applications [101, 111, 23] and
in software [26]. However, using MLMC for solving time-dependent partial differential
equations with random parameters is rather uncommon. We refer for example to [122,
54], where stochastic differential equations are solved by extending the MLMC method.
The systems we aim at solving are computational fluid dynamics (CFD) problems.
It is known that the simulation of highly turbulent flows represents a well-established
challenge in CFD, with predictions becoming more difficult as the Reynolds number (Re)
increases. This situation is explained by Kolmogorov’s theory which establishes that
turbulent flows are characterized by multiple temporal and spatial scales, with an energy
transfer cascade from larger eddies to smaller ones [112]. According to the theory, the
ratio between the largest and smallest length scales is proportional to Re3/4, while the
ratio between the timescales is proportional to Re1/2. When multiple spatial scales are
involved, issues may arise for discretizing the spatial domain, since different regions
require different accuracy. Even though it is standard for multi-level MC methods (MC
methods with more than one level, as MLMC and CMLMC) to use meshes with uniform
discretization, adaptive mesh refinement (AMR) procedures based on error estimation
techniques [1, 3, 2, 55] can be preferred over uniform meshes to describe multiple spatial
scales. AMR permits to have a finer resolution where needed, and a coarser discretization
elsewhere, thus saving computational resources.
We aim at exploring different strategies for integrating AMR with hierarchical MC
algorithms. Few attempts are present in the literature, and we refer for example to [65,
51]. Moreover, in this work, we observe that the usability of standard MLMC and
of CMLMC methods depends strongly on whether or not the underlying problem is
time-dependent and chaotic in nature.
Finally, we comment that engineers normally take advantage of risk measures to take
decisions [115]. Such quantities can for example be computed on top of statistics esti-
mated by means of UQ analyses.
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1.3 Distributed computation

Figure 1.2: The MareNostrum 4 supercomputer, located at the Barcelona Supercomputing
Center [93].

In this work, we aim at developing an UQ framework for running on HPC systems,
exploiting concurrency capabilities of modern supercomputers and of next-generation
exascale supercomputers, that will reach hundreds of thousands of cores [7] and will
follow a "mega-node, kilo-core, giga-hertz rule" [82].
Hierarchical MC algorithms are known to be highly parallelizable, since they present
three levels of parallelism: over levels, over realizations per level and at solver level [48].
However, an efficient implementation of hierarchical MC algorithms for running on HPC
systems is challenging. In fact, different aspects must be taken into account, as the
scalability of the solver or the fact that tasks may be heterogeneous, which means their
runtime may easily vary.
To solve such issues, a dynamic scheduling approach is exploited for running on su-
percomputers, since it provides higher adaptability and is faster than a static schedul-
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ing [48, 128].
Additionally, running in a distributed environment introduces synchronization points
that deteriorate the computational efficiency of the algorithm. For this reason, in this
thesis we introduce a new class of asynchronous hierarchical MC algorithms, which are
specifically designed to run on modern supercomputers, maximizing the computational
efficiency and exploiting distributed computations.

1.4 Ensemble averaging

When solving turbulent CFD problems, one has to estimate statistics of the flow, e.g.
mean or variance quantities. Such estimations typically require very long simulations
which include the initial transient dynamics, required for the flow to develop, followed
by the effective dynamics, required for the estimator to converge. Unfortunately, de-
spite decades of hardware improvements, such simulations require prohibitive runtimes.
While the use of HPC systems may reduce these runtimes, practical limits exist on the
achievable speedup for a given problem size. The most important feature controlling
the runtime is that time evolution in a single simulation is intrinsically sequential [90].3

In order to control the bias associated to the initial conditions, the estimation of statis-
tics of a turbulent flow entails collecting data starts only at some point in time after the
flow has developed [85, 83], i.e. once the solution has been drawn to the attractor [120].
We refer to the discarded initial time interval as the burn-in time and the remainder as
the effective time.
We explore the possibility of reducing the time to solution for solving CFD problems by
exploiting ensemble-based approaches, that consist of estimating statistics by averaging
over numerous independent simulations. This technique has been investigated in the
literature in two different settings. In one setting [84], the focus is on reducing the wall
clock time on constant hardware resources4. Approaches to this problem typically consist
of solving linear systems with multiple right-hand sides [76, 75]. In the other setting,
which our work considers, the focus is on exploiting the concurrency capabilities of HPC

3A potential solution could be parallel-in-time methods [56], which received much attention in the
last years exactly due to their potential in providing a solution for the latter problem. Unfortunately,
their application does not seem to be viable in chaotic problems [136], that is the class of problems we
are interested in.

4For example, in [84] the author focuses "on attempt to speedup the simulations by increasing the
efficiency of computations on the same hardware resources, discussing an idea of simultaneous modeling
of multiple independent flow realizations".
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systems [90]. Such approaches can be seen to target the direction of next-generation
exascale computers. In addition, in this thesis, we extend ensemble-based approaches by
presenting strategies for reducing the overall computational cost of the burn-in phase.
We are also interested in solving generic stochastic turbulent flow problems by exploit-
ing ensemble averaging to minimize the runtime. Therefore, two possibilities can be
considered for the integration of UQ and ensemble-based methods. One scenario is de-
scribed in [89], where the authors propose an ensemble-based MC method that makes
use of multiple right-hand sides to solve stochastic second-order parabolic partial differ-
ential equations. However, such an approach is intrusive, in the sense that it requires
changes in software that are not designed to solve partial differential equations with
multiple right-hand sides. In our work we propose another scenario, that consists of a
non-intrusive integration of UQ and ensemble-based methods and exploits concurrency
capabilities of modern HPC systems.

1.5 Aim

The aim of this thesis is to perform efficient and accurate uncertainty quantification of
CFD problems. To reach this goal, the following objectives are set.

• Extend hierarchical MC methods to efficiently run on HPC environments and a
new class of asynchronous hierarchical MC algorithms is introduced.

• Integrate hierarchical MC methods with AMR strategies for performing UQ.

• Introduce different strategies for minimizing the overall computational cost and
the time to solution of ensemble-based methods.

• Integrate ensemble-based and hierarchical MC methods for solving time-dependent
stochastic problems.

To achieve such objectives, the development of high performance and modular software
in Python and C++ is required. We remark that all the implementations of this work
must remain as open source software. In order to fulfil this requirement, the UQ frame-
work is developed within the Kratos Multiphysics (Kratos) open source software [44, 43]
and the XMC open source software [13].
In parallel, other goals are set. For example, we need to ensure that our software
developments are compatible with open multi-processing (OpenMP) parallelism and
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with message passing interface (MPI) parallelism and we need to run simulations on
multiple supercomputers.

1.6 Scientific production

In this section, we present all of the scientific production of this thesis work.

Publications

• In the article [128] we present the asynchronous hierarchical MCmethods, we verify
their computational efficiency when running on HPC systems and we perform a
strong scalability test of our implementation.

• In the conference proceeding [131] we briefly apply the asynchronous MC method
to solve problems of wind engineering interest.

• We comment that we have an article in preparation, which will cover the topics
presented in chapters 8 and 9.

Conference presentations

• In the conference presentation [129] we first present the asynchronous hierarchical
MC methods and some preliminary validation tests, run on HPC systems.

• In the conference presentation [81] we present shape-optimization problems with
uncertainty in the data parameters. Two-dimensional benchmark problems are
considered and solved.

• The conference presentation [130] is related to the conference proceeding [131],
and we talk about the application of the asynchronous MC method to solve wind
engineering problems on HPC systems.

• In the conference presentation [119] the statistical ensemble averaging framework
is briefly presented and applied to solve problems of wind engineering interest on
supercomputers.

• In the conference presentation [134] the ensemble-based MC method is discussed
and applied to solve wind engineering problems on HPC systems.
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Software Since the starting of this thesis, we have contributed to developing Kratos
[95] and XMC [13].

• Kratos "is a framework for building parallel, multi-disciplinary simulation soft-
ware, aiming at modularity, extensibility, and high performance".

• XMC "is a Python library for parallel, adaptive, hierarchical Monte Carlo algo-
rithms, aiming at reliability, modularity, extensibility and high performance".

ExaQUte reports Within the ExaQUte project, we worked on different reports and
we present here the main content of these deliverables, highlighting their connection
with the objectives of this thesis.

• In [127] the first version of the UQ framework, developed within the Kratos soft-
ware, is released.

• In [4] a first version of XMC is publicly released. Part of the UQ framework is
moved from Kratos to XMC.

• In [10] the UQ framework containing asynchronous hierarchical MC methods is
publicly released. The integration between Kratos, XMC and the remeshing soft-
ware Mmg [45] is complete. Unit tests checking their integration are run on Kratos
continuous integration.

• In [11] the integration of the MC method and ensemble averaging is publicly
released.

• In [5] we profile the UQ framework by running different benchmarks on HPC
environments using PyCOMPSs [88, 16, 126] as underlying programming model
and dynamic scheduler of the tasks involved in the executions.

• In [14] we comment that the MLMC method can be used successfully for low Re
flows when combined with AMR strategies. However, the hypotheses for optimal
MLMC performance are found to not be satisfied at high turbulent Re despite the
use of AMR strategies.

• In [15] we report on the use of the MLMC method for time-dependent problems.
For time-dependent non-chaotic systems, optimal MLMC hypotheses are found to
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be satisfied. For time-dependent chaotic cases with high Re the MLMC hypotheses
are not satisfied.

• In [22] the UQ workflow is tested against a challenging wind engineering problem,
that is wind flowing past a high-rise building.

• In [78] we present a simple and efficient strategy for AMR and a posteriori error
estimation for the transient incompressible Navier-Stokes (NS) equations.

• In [132] we comment on the ensemble averaging method, its associated statistical
framework and its applications for solving chaotic time-dependent fluid dynamics
problems.

• In [133] we comment on the calibration of the ensemble-based MC method for wind
engineering problems and on the identification of the most relevant parameters
when solving stochastic chaotic time-dependent fluid dynamics problems.

• In [52] we profile the UQ framework (specifically the asynchronous MC method)
by solving a high-rise building problem on HPC systems. We use PyCOMPSs
[88, 16, 126] and Quake [33] as underlying programming models and Kratos as
MPI parallel solver.

• In [12] we comment on the application of hierarchical MC methods to solve
wind engineering problems, namely wind flowing past a high-rise twisted building.
Specifically, we focus on the applicability of the multifidelity Monte Carlo method
[109] to solve such a problem.

1.7 Contents

The remainder of the thesis is structured as follows. In chapter 2 we describe the CFD
method and the wind model we use. In chapter 3 we introduce the probabilistic frame-
work and we present different techniques to efficiently estimate statistics. In chapter 4
we discuss state of the art hierarchical MC methods together with considerations on
their execution on HPC systems. In chapter 5 we introduce the asynchronous hierar-
chical MC methods and we verify the computational efficiency of these methods. In
chapter 6 we introduce AMR strategies and we propose our integration of AMR and
MLMC. In chapter 7 we apply hierarchical MC method to solve stochastic problems of
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wind engineering interest. In chapter 8 we introduce the statistical ensemble averaging
framework, together with techniques to accelerate the burn-in phase. We compare en-
semble averaging and standard time averaging by solving problems of wind engineering
interest. In chapter 9 we present the ensemble-based MC method and we calibrate such a
method for the class of wind engineering problems considered in this thesis. Concluding
remarks close the thesis in chapter 10.





Chapter 2

Computational fluid dynamics
foundations

In this chapter, we describe the implicit large eddy simulation (LES) model we use for
simulating incompressible fluid flows. The NS equations describing fluid systems are
introduced and summarized in section 2.1. The NS equations are numerically solved by
applying the variational multiscale (VMS) method [69, 70], and their numerical formu-
lation is presented in section 2.2. The final discrete problem is discussed in section 2.3.
Moreover, we describe in section 2.4 the wind model we apply for describing wind flows.
We remark that the probabilistic framework we introduce in next chapters treats the
solver as a black box. This implies that systems, models and methods different from the
ones discussed in this chapter can be employed as well, as in the case of section 5.3.1.
The CFD model we describe in this chapter is used in chapters 5 and 7–9.
We acknowledge that the implementation of the NS equations described in sections 2.1–
2.3 and of the wind model of section 2.4 within the Kratos software has been done
by colleagues working in the Kratos software and the ExaQUte project. We refer to
[95, 79, 80] for details.
The content of this chapter is taken from a manuscript in preparation and is adapted
wherever needed.
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2.1 The Navier-Stokes problem

We restrict ourselves to incompressible flows, which are described by the incompressible
NS equations and cover a wide range of applications in CFD. The strong form of such
a problem consists of finding a velocity field u and a pressure field p, defined for a
time window [0, T ] in a bounded domain D⊆Rd, where d = 2, 3 is the domain space
dimensions. The system of equations reads

∂tu + u · ∇u− ν∆u +∇p = f in [0, T ]×D
∇ · u = 0 in [0, T ]×D,

(2.1)

where f is the force vector, ν the kinematic viscosity and, as usual, we denote vectors and
tensors using bold characters. These equations must be complemented with appropriate
boundary conditions, which can be of Dirichlet type, i.e. u = ug applied on a boundary
ΓD, or of Neumann type, i.e. (−pI + ν∇u) · n = tN applied on a boundary ΓN, for all
t ∈ [0, T ]. In this chapter we consider ∂D = ΓD and ug = 0 to simplify the notation, but
in general ΓD∪ΓN = ∂D and ΓD∩ΓN = ∅, that is the case of the numerical experiments
of following chapters. Equation (2.1) must be supplemented with appropriate initial
conditions. For example, in section 8.1.3 we propose two strategies to generate initial
conditions.
As usual, we denote by Lp(D), 1 ≤ p <∞, the spaces of functions whose p-th power is
Lebesgue integrable in D. The space of functions whose first-order distributional deriva-
tives are in L2(D) and have zero trace on ∂D is denoted by H1

0 (D) and its topological
dual by H−1(D). We write (·, ·) to denote the integral over D of the product of any two
functions f and g, whenever it makes sense. When the integral is computed in a region
ω⊆D, we will denote it with (·, ·)ω. Given a Banach space X, Lp(0, T ;X) denotes the
space of functions whose X-norm is in Lp(0, T ) whereas D′(0, T ;X) denotes the space
of distributions in time with values in X.
The weak form of the NS problem consists of finding u ∈ L2(0, T ;V ) and p ∈ D′(0, T ;Q)

such that [39]

(∂tu,v) + (u · ∇u,v) + ν(∇u,∇v)− (p,∇ · v) = (f ,v) for all v ∈ V
(q,∇ · u) = 0 for all q ∈ Q,

(2.2)

where V = H1
0 (D)d and Q = L2

0(D) := L2(D)/R (L2 functions with zero mean).
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2.2 The variational multiscale method

The discrete form of equation (2.2) is obtained using linear triangles and tetrahedra
elements in the framework of the VMS method, which incorporates LES concepts in the
numerics, giving an implicit LES method for the simulation of turbulent incompressible
flows. The VMS method was originally introduced in [69, 70] as a framework for the
development of stabilization methods, which are designed to overcome the two main
problems of the numerical approximation of equation (2.2). The first one is the com-
patibility required between the velocity and pressure spaces which need to satisfy an
inf-sup condition [25] to guarantee the stability of the approximation. The second one
is the lack of robustness of the Galerkin method in the advection-dominated regime.
There are many VMS methods and we refer for example to [36] for details.
The starting point of VMS formulations is a splitting of the solution space as V = Vh⊕Ṽ ,
into a finite element (FE) space Vh and a space of subgrid scales Ṽ . The FE space Vh
is built on top of a partition Th of the domain D and is used to represent resolvable
scales. In this way, a function u ∈ V is decomposed as u = uh + ũ. The same splitting
can be considered for the pressure space although this is not necessary to develop stable
methods and the simplest approach is to consider p̃ = 0, that is what we assume.
Alternatively, a model for the pressure subscale depending on the velocity divergence is
commonly used, see e.g. [40, 74].
The VMS decomposition of the test function v in equation (2.2) gives rise to an equation
for the resolved scales (tested by vh) and an equation for the fine scales (tested by
ṽ). However, these two equations are coupled and, because the space Ṽ is infinite-
dimensional, some modeling assumptions for the fine scale equation are required to
close the system. This modeling step is the algebraic approximation of the differential
operator acting on the fine scales, and the terms involving subscales are integrated by
parts within each element K ∈ Th. Using the notation

(·, ·)h =
∑

K∈Th
(·, ·)K and (·, ·)∂h =

∑

K∈Th
(·, ·)∂K (2.3)

we obtain

(∂tuh,vh) + (u∗ · ∇uh,vh) + ν(∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh)
+ (∂tũ,vh)− (ũ,u∗ · ∇vh + ν∆vh +∇qh)h
+ (ũ, νn · ∇vh + qhn)∂h = (f ,vh)

(2.4)
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and
(∂tũ, ṽ) + (u∗ · ∇ũ− ν∆ũ, ṽ)h + (νn · ∇ũ, ṽ)∂h

+ (∂tuh + u∗ · ∇uh − ν∆uh +∇ph, ṽ)h

+ (νn · ∇uh − phn, ṽ)∂h = (f , ṽ).

(2.5)

These discrete variational equations must hold for all test functions vh ∈ Vh, qh ∈ Qh

and ṽ ∈ Ṽ and the choice of u∗, that is discussed below. Apart from taking the pressure
subscale to be zero, no approximations have been made to arrive to equations (2.4)
and (2.5) and therefore these equations cannot be solved. Because the space Ṽ is
still infinite dimensional and equations (2.4) and (2.5) are coupled, a modeling step is
required to close the system. A common approximation made in most VMS methods is

(u∗ · ∇ũ, ṽ) + ν(∇ũ,∇ṽ) ≈ (τ−1ũ, ṽ), (2.6)

where τ is a piecewise constant function, computed within each element K ∈ Th as

τ−1
K =

c1ν

h2
K

+
c2‖uh + ũ‖K

hK
. (2.7)

Here, hK is a characteristic length of K, c1 and c2 are algorithmic constants that depend
only on the degree of the finite element approximation being used, and ‖ · ‖K is some
norm defined on each element, e.g. the L2(K)-norm. Equation (2.7) can be motivated
also by a heuristic Fourier analysis argument [35], although the important point is its
asymptotic behavior in terms of hK , ν and ‖uh + ũ‖K . Another usual approximation is
to neglect boundary terms in equation (2.5), which actually vanish for the exact solution.
Sometimes, the stronger assumption ũ = 0 on ∂K is made, which can also be exploited
to develop two level approximations, e.g. the residual free bubbles. The crucial point
is that equation (2.5) is split into elementwise equations that can be solved locally, i.e.
without a global assembly. After this approximation, the fine scale equation to solve at
each element becomes

∂tũ + τ−1
K ũ = P(R) (2.8)

where
R = f − (∂tuh + u∗ · ∇uh +∇ph − ν∆uh) (2.9)

and P is the projection onto the space of subscales discussed below. After this approx-
imation, the system can be solved with appropriate time integration schemes.
Some further modeling choices lead to different VMS models.
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Static/Dynamic subscales From the VMS decomposition it follows that ∂tu =

∂tuh + ∂tũ. Considering dynamic subscales, introduced in [35, 37], has some advantages
such as a correct behavior of time integration schemes and better accuracy. In particular,
stability and convergence for the Stokes problem can be proved without any restriction
on the time step size and the stabilization parameters on which the formulation depends.
The typical approach, however, is the use of quasistatic subscales to neglect ∂tũ.

Linear/Nonlinear subscales Applying the VMS decomposition to the nonlinear
convective term, four different contributions are obtained on each equation, that is,
u · ∇u = (uh + ũ) · ∇(uh + ũ). After the approximation in equation (2.6) it is possible
to keep all the contributions, as proposed in [35, 37]. A simpler alternative is to perform
the approximation u ·∇u ≈ uh ·∇(uh+ ũ), which is enough to have numerical stability.

The space of subscales The choice of a space for the approximation of the subscales
defines a projector P to be used in the fine scale equation. One option is to choose Ṽ
as the space of the residual, that is to simply take P = I (the identity). We refer to
this space of subscales as the algebraic subscales. Another possibility is to consider the
space of the subscales orthogonal to the FE space, that is, to take P := Π⊥h = I − Πh,
where Πh is the projection onto the FE space [35].
A complete assessment of these modeling choices can be found in [39]. In this thesis
work we use static, linear, orthogonal subscales. Using nonlinear and/or dynamic sub-
scales requires tracking them along the iterative and time integration loops, with the
consequent increase in memory demands and computational cost (the simplest option
is to store the subscales at the integration points). Although using dynamic, nonlinear
orthogonal subscales provides better accuracy, these subscales also imply a higher com-
putational cost. The evaluation of this problem-dependent trade-off is outside the scope
of this thesis.
However, even if it is simpler to consider algebraic subscales, orthogonal subgrid scales
enjoy a number of important properties that are worth having, such as stability without
restrictions on the time step size [37], a clear scale separation in the energy transfers
and the possibility of predicting backscatter with a stable numerical method [113] and
convergence towards weak solutions [17]. After the introduction of orthogonal subgrid
scales, different projection-based methods appeared [36, section 4.1]; their difference is
the number of terms involving fine scales which are kept in the resolved scale equation.
The method we use in this work retains only the advective and pressure terms and
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projects them separately, and it is usually referred to as term-by-term orthogonal subgrid
scales.
With all these modeling choices the final semi-discrete problem to be solved consists of
finding uh ∈ Vh and ph ∈ Qh such that

(∂tuh,vh) + (uh · ∇uh,vh) + ν(∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh)
+ (uh · ∇vh, τP(uh · ∇uh))h + (∇qh, τP(∇ph))h = (f ,vh),

(2.10)

for any vh ∈ Vh and qh ∈ Qh.

2.3 Final discrete problem

Equation (2.10) is integrated in time using a second-order backward differentiation for-
mula scheme. The projections onto the FE space are handled explicitly, that is, given
unh we first obtain the projection of the convective term ηh (which satisfies (qh, ηh) =

(qh,u
n
h · ∇unh) for any qh ∈ L2) and the projection of the pressure ξh (which satisfies

(qh, ξh) = (∇qh,∇pnh) for any qh ∈ L2). We use linear finite elements for the velocity,
the pressure, and the projections.
The final system is solved iteratively by a predictor-corrector scheme with a block
preconditioner which permits us to separate the computation of the velocity and the
pressure variable. It is a variant of the classical fractional step method [31, 32] obtained
algebraically [53]. This algebraic view opens the door to other options, like performing
an iterative correction, eventually converging to the monolithic solution.

2.4 Wind modeling

In this thesis work, we are interested in solving problems of wind flows around high-rise
buildings. Such buildings reside entirely within the atmospheric boundary layer; a layer
of Earth’s atmosphere, extending vertically from its surface, which is characterized by
constant shear stress in the vertical direction [77]. This region is generally recognized to
be neutrally stable at high wind speeds. That is, the buoyancy forces due to temperature
gradients are negligible in comparison to surface-driven friction forces.
As is typical in the wind engineering community, we model the natural wind effects in
the atmospheric boundary layer by decomposing the incoming velocity field, u = u+u′,
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into its stationary mean profile u and its unsteady turbulent fluctuations u′. The mean
wind profile is a contribution to the velocity field which only changes gradually over
the span of several hours or days. It is generally considered constant with respect to
the scale of most numerical simulations. On the other hand, the turbulent fluctuations
introduce short-term wind gusts with a time span of seconds or minutes. This term
induces temporary states of maximum overall wind loading and can induce resonant
effects in large structures if their structural eigenfrequencies coincide with frequencies
in the gust-induced wind load pattern.
Depending on the local terrain, the variety of obstacles affecting ground friction can
vastly change. For instance, consider that different friction forces will arise from flow
across grasses, forests, open water, or urban canopies. In our studies, we consider cases
in which the local terrain type can be characterized by a fixed or a varying roughness
height parameter z0 > 0. Intervals of validity for this parameter, for various terrain
categories, can be found in numerous engineering code books; e.g., [73]. In addition,
one must specify the friction velocity u∗, which can be derived from the shear stress on
the ground τ0 by the simple formula τ0 = ρu2

∗.
Let D denote a section of the atmospheric boundary layer lying above a flat section
of Earth’s surface, parameterized by the Cartesian coordinates (x, y, z). Let e ∈ R3

be a unit normal vector which denotes the mean wind direction, u ‖ e. Under the
assumptions of neutral stability, homogeneous roughness, the mean velocity u is function
of the vertical coordinate (u = f(z), with f(·) being a generic function useful to highlight
dependencies) and is often modeled by the following logarithmic profile [125] when
z > z0:

u =
u∗
κ

ln
( z
z0

)
e, (2.11)

where κ ≈ 0.41 is the von Karmán constant.
In this thesis work, we assume that e = (1, 0, 0), that corresponds to an equal prob-
ability that the incoming wind will arrive from a fixed horizontal direction. In some
environments, this is a poor assumption because geographic features may make the in-
coming wind arriving from any horizontal direction. In addition, we assume that the
three mean profile parameters u∗, z0, and e are independent. In specific application
scenarios, this may also be a poor modeling assumption.
Modeling turbulent fluctuations with physical wind gust statistics is significantly more
challenging than modeling the mean profile. Numerous techniques have been proposed
in the engineering literature to tackle this issue and we refer the interested reader to
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the review article [123] for an overview. In this study, we choose to model the velocity
fluctuations using the stochastic atmospheric boundary layer turbulence model proposed
in [91, 92, 118]; hereafter referred to as the Mann model.



Chapter 3

Probability and statistics foundations

In this chapter, we start by introducing probability, which allows treating uncertainties
as random variables. The reference we rely upon is [117]. Therefore, a focus on dis-
crete, continuous, and joint random variables is provided. We continue introducing the
most important statistics that we consider in this thesis. Then, the problem of forward-
ing propagation of uncertainties is discussed, together with associated risk measures
computation. Finally, we focus on accurate and computationally efficient estimation of
statistics, which is fundamental for the target algorithms we aim at building.

3.1 Probability framework

In this work, we assume that it is possible to treat uncertain parameters as random
variables. A random variable is characterized by its probability space (Ω,A,P), where
Ω⊆Rn. We assume the existence of such a probability space for all random quantities
without loss of generality.
A complete probability space is characterized by the triplet (Ω,A,P), where

• Ω is the sample space,

• A is the σ-algebra,

• P is the probability measure.

The sample space Ω contains all the possible values the uncertain parameter can assume.
The σ-algebra collects the so-called events, which are subsets of Ω. The probability
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measure is a function P : A → [0, 1] returning the probability of each event of the
σ-algebra.
We define now the σ-algebra and the probability measure. A is a σ-algebra if it satisfies
the following properties:

• A 6= ∅, with ∅ being the empty set,

• given an event X ∈ A, then its complement Ω \X ∈ A,

• given two events X ∈ A and Y ∈ A, their union X ∪ Y ∈ A.

A probability measure is a function P : A → [0, 1] that satisfies the following properties:

• ∀A ∈ A, 0 ≤ P[A] ≤ 1,

• P[Ω] = 1 and P[∅] = 0,

• for all families of mutually disjoint events A1, A2, . . . , AN , i.e. events that cannot
occur at the same time, it holds P

[
∪Nn=1An

]
=
∑N

n=1 P[An].

Other properties follow from the axioms defined above. One of these is the monotonicity
property, which reads: given two events X ∈ A and Y ∈ A, A⊆B, P[A] ≤ P[B].
Even though random variables can be identified by their sample space, σ-algebra and
probability measure, typically other quantities are used when working with random
variables, as for example the cumulative distribution function (CDF).

3.2 Discrete random variables

Before discussing continuous random variables, which are the unknown parameters we
deal with in this work, we prefer to first introduce discrete random variables. This
random variable can assume a finite or countable infinite number of possible values.
We introduce now the concepts of CDF and of probability mass function (PMF). The
CDF of a discrete random variable X is a function FX : R→ [0, 1], defined as

FX(x) = P[X ≤ x], x ∈ R. (3.1)

The PMF of a discrete random variable X is a function pX : R→ [0, 1], defined as

pX(xi) = P[X = xi], x ∈ R. (3.2)
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pX(xi) is the probability of having X = xi. The sum of the probabilities associated to
all possible values xi is 1.
Let X = {x1, x2, . . . , xN} be a discrete random variable, the expected value of X is
defined as

E[X] =
N∑

n=1

xn P[X = xn]. (3.3)

Another statistical value we want to introduce is the P th central moment, which is
defined as E[(X − E[X])P ]. The second central moment (P = 2) is the variance, which
is an indicator of the dispersion of events around the expected value. We denote the
variance as

V[X] = σ2[X] = E[(X − E[X])2] = E[X2]− (E[X])2 , (3.4)

where σ[X] is the standard deviation of X.

3.3 Continuous random variables

We introduce now continuous random variables, which can assume an infinite number
of values. A random variable X is continuous if it exists a function % : R→ [0,∞) such
that

P[X ∈ B] =

∫

B

%(x) dx, (3.5)

for any measurable set B of real numbers. % is the probability density function (PDF)
of the random variable.
The CDF of a continuous random variable X is a function FX : R→ [0, 1] and reads

FX(x) =

∫ x

−∞
%(x) dx. (3.6)

The expected value of a continuous random variable X is

E[X] =

∫ ∞

−∞
x%(x) dx. (3.7)

Central moments of order P of continuous random variables are defined as for discrete
random variables. The definition of variance for a continuous random variable X follows
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from the definition of the expected value, and reads

V[X] = σ2[X] = E[(X − E[X])2] = E[X2]− (E[X])2

=

∫ ∞

−∞
(x− E[X])2%(x) dx =

∫ ∞

−∞
x2%(x) dx−

(∫ ∞

−∞
x%(x) dx

)2

.
(3.8)

It is worth remarking once and for all that in this thesis we work with continuous
random variables. For this reason, unless otherwise specified, the random variables are
considered by default to be continuous.

3.4 Jointly distributed random variables

In our applications we normally deal with more than one random variable at once.
For this reason, it is important to introduce jointly distributed random variables, or
random vectors. Hereafter we consider only two random variables; however, it is easy
to generalize for more random variables.
Let X and Y be two random variables. We first define their joint CDF, that reads

FX,Y (a, b) = P[X ≤ a, Y ≤ b], a, b ∈ R. (3.9)

Then, let X and Y be continuous random variables and A and B be two sets of real
numbers. X and Y are jointly continuous if

P[X ∈ A, Y ∈ B] =

∫

B

∫

A

%X,Y (x, y) dx dy (3.10)

holds, where the non-negative function %X,Y (x, y) is the joint PDF of X and Y .
Finally, we introduce the concept of independent random variables, which are variables
that do not affect each other. More formally, X and Y are independent if for any two
sets A and B of real numbers, the following holds

P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B]. (3.11)

It follows that
FX,Y (a, b) = FX(a)FY (b), a, b ∈ R, (3.12)
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and, if X and Y are jointly continuous,

%X,Y (x, y) = %X(x)%Y (y), (3.13)

where %X(x) and %Y (y) are the PDF of X and Y , respectively.

3.5 Properties of principal statistical values

We present now the main properties of the principal statistical values we deal with in
this work, that are the expected value, the variance and the covariance.
Let X, Y be two random variables defined on (Ω,A,P). If |E[X]| <∞, it follows that

• if Y < X then E[Y ] < E[X],

• |E[X]| ≤ E[|X|],

• E[aX + bY ] = aE[X] + bE[Y ].

The covariance of two random variables X and Y is defined as

coV[X, Y ] = E[(X − E[X])(Y − E[Y ])]. (3.14)

Some of the most important properties of the variance and of the covariance operators
are

• V[X] > 0,

• V[aX] = a2 V[X],

• V[aX + bY ] = a2 V[X] + b2 V[Y ] + 2ab coV[X, Y ],

• coV[X,X] = V[X].

More generally, for N random variables X1, . . . , XN ,

V[
N∑

n=1

Xn] =
N∑

n=1

V[Xn] +
N∑

i,j=1
i 6=j

coV[Xi, Yj]. (3.15)
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It is possible to estimate the correlation between two random variables X and Y by
computing the cross-correlation coefficient, which is defined as

ρ(X, Y ) =
coV[X, Y ]√
V[X]V[Y ]

. (3.16)

The cross-correlation coefficient takes values in [−1, 1]. The random variables are
perfectly uncorrelated if ρ(X, Y ) = 0, while the variables are perfectly correlated if
ρ(X, Y ) = 1, and perfectly uncorrelated if ρ(X, Y ) = −1.

3.6 Propagation of uncertainties

UQ is the field of science which studies how uncertainties propagate within a system
where some parameters are not stochastic. This implies that all output observables of
such a system are random variables. We aim at estimating statistics of these quantities.
Let us denote the unknown input values of the system with the generic term w, which
may be a scalar or a vector. The solution of the system u is therefore function this
unknown input

u(w) = S(w), (3.17)

where S represents the system (or solver) and only the dependency on w is made explicit.
Of course, other dependencies as space x or time t can be present. We are interested
in computing quantities which depend on the solution of the system, that we denote as
Q(w) ≡ Q(u(w)). A quantity like this is called quantity of interest.
An example of uncertainty propagation is shown in figure 3.1, where the uncertainty w
is propagated to the quantity Q(w) in the system S.

3.7 Decision models

One of the main purposes of UQ is to provide the tools for making decisions on top
of statistical values of the QoI. Many different decision models (or risk measures) are
available in the literature, and we refer for example to [114, 115] and references therein
for details. A decision model is a functional R : X → R(X) that assigns a number
R(X) to a random variable X, to quantify the random variable associated risk. Some
of the decision models presented in [115] are reported next.
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Figure 3.1: Propagation of uncertainties between the random input parameter w and the out-
put quantity Q(w) via the system S. The probability density functions are plotted.

Expected value The expected value risk measure is R(X) = E[X]. It is not sensitive
to high values, nor to oscillations, since they are damped in the computation of the
expected value.

Worst case scenario The decision model R(X) = supX only considers the highest
value of X, ignoring the PDF distribution. Such a criterion may be too restrictive, since
for distributions as the normal or the exponential supX =∞ [115].

Safety margin This risk measure adds safety margins to the expected value, and
reads R(X) = E[X]± cσ[X], where c > 0 is a constant and σ[X] the standard deviation
of the random variable. This risk measure is symmetric, since both E[X] and σ[X] are
symmetric operators. For this reason, R(X) may be insensitive to high values in the
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tail [115].

Failure probability The decision model evaluates P[X > X̄], that is the probability
thatX is larger than a critical value X̄. This risk measure may present the issue that two
random variables can have the same probability, but different distributions, in particular
in the upper tail of the PDF [115].

Value at Risk The Value at Risk (VaR) risk measure is R(X) = VaRα[X], where
α ∈ (0, 1) is a probability and VaRα[X] is the smallest x such that F−1

X (x) is not
smaller than α. When the CDF FX(x) is strictly increasing, it is true that VaRα[X] =

F−1
X (x) [115]. The name quantile is widely used as well in literature to refer to the VaR

value.

Conditional Value at Risk The Conditional Value at Risk (CVaR) risk measure
R(X) = CVaRα[X] is particularly interesting when the PDF is not symmetric, since
it measures the weight of the tail of the probability density function. Given α ∈ (0, 1),
the CVaR of X at probability α is defined as

CVaRα[X] =
1

1− α

∫ 1

α

VaRβ[X]dβ. (3.18)

When the CDF of X has no discontinuities, the CVaR can be computed as the condi-
tional expectation [114]

CVaRα[X] = E[X|X > VaRα[X]]. (3.19)

In other words, CVaRα splits the area beneath the PDF curve between [VaRα[X],+∞]

into two balancing parts. An alternative name which can be found in the literature for
the CVaR is superquantile.
To ease the understanding of the multiple risk measures presented, we consider a
standard Gaussian (or normal) distribution with mean 0 and variance 1, which reads

X ∼ N (µ, σ2) = N (0, 1). The PDF of such a random variable is e−
x2

2√
2π

, and its CDF

is 1√
2π

∫ +∞
−∞ e−

t2

2 dt. Let c = 1, X̄ = 1.0 and α = 0.86. Results for all considered risk
measures are reported in table 3.1. We present in figures 3.2 and 3.3 the CDF and
the PDF of the standard normal random variable X. Such plots help understanding



Estimation of moments 29

E[X] supX E[X]± cσ[X] P[X > X̄] VaRα[X] CVaRα[X]

R(X) 0.0 +∞ 0± 1 0.16 1.0 1.53

Table 3.1: Risk measures for a standard normal random variable.
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Figure 3.2: Expected value, VaR and CVaR, with α = 0.16, of a standard normal random
variable. Statistics are computed from the CDF of the random variable.

the meaning of the some statistical values, and consequently of related risk measures.
For example, by looking at figure 3.3 it is clear that the probability that X > 1 is 0.16.
Moreover, we can observe that the CVaR is a conditional expectation, since CVaRα[X]

splits the area between [VaRα[X],+∞] and the PDF into equal parts.

3.8 Estimation of moments

The exact statistics of a random variable are known only when the PDF or the CDF are
known. This is, of course, not always possible, especially for complex problems, whose
output quantities are the output of some system function, as shown in figure 3.1. In this
section we focus on the estimation, i.e. approximation, of raw and central moments.
Raw moments are defined as

E[XP ] (3.20)
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Figure 3.3: Expected value, VaR and CVaR, with α = 0.16, of a standard normal random
variable. Statistics are computed from the PDF of the random variable.

and central moments as
E[(X − E[X])P ], (3.21)

where X is a random variable and P is the order. We remark that the vast major-
ity of traditional applications of descriptive statistics usually require the estimation of
expected value, variance, skewness and kurtosis, and not of higher-order moments, as
commented in [20, 108].
LetN be the number of independent and identically distributed realizations of a random
variable X. The simplest way to approximate the expected value and the variance of X
is by computing the sample average (or sample mean), which reads

E[X] ≈ EN [X] =
1

N

N∑

n=1

Xn, (3.22)

and the sample variance, defined as

V[X] ≈ VN [X] =
1

N − 1

N∑

n=1

(Xn − EN [X])2. (3.23)
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It follows that the covariance between two random variables X and Y can be approxi-
mated by the sample covariance, which reads

coV[X, Y ] ≈ coVN [X, Y ] =
1

N − 1

N∑

n=1

(Xn − EN [X])(Yn − EN [Y ]). (3.24)

Sample formulas to estimate higher-order central moments are not reported here for the
sake of simplicity.
It is straightforward to understand the bottleneck of these estimations for large-scale
computations. First, the sample mean is computed only once all the N realizations are
available. Then, sample central moments can be estimated. This approach is highly
inefficient and can easily become impractical in a large-scale distributed environment,
since the cost of accessing each data n ∈ [1, N ] twice massively dominates the compu-
tation cost [20]. Additionally, such an approach also requires storing in memory and/or
saving to file the system results, and this can easily become a bottleneck for complex
problems. For this reason, updating statistical estimators on the fly and accessing mem-
ory only once is the preferred strategies, since it reduces the overall time to solution,
increasing the computational efficiency of the algorithm.

3.8.1 Estimation by updating difference from the current mean

The first formula to estimate the variance on the fly by passing a new realization and
accessing memory once is introduced in [137]. Let EN−1[X] be the sample average at
the previous step,MN−1

2 the sum of squares of differences at the previous step and XN

the new realization. We first update the sample average with the new realization

EN [X] = EN−1[X] +
XN − EN−1[X]

N
(3.25)

and then update the sum of squares of differences from the current mean

MN
2 =MN−1

2 + (XN − EN−1[X])(XN − EN [X]), (3.26)

where M presents order 2 and set N . The sample variance can then be computed as
VN [X] =

MN
2

N−1
.

A generalization is proposed in [29, 30], where the authors extend above equations to
update the variance estimate with any number of new realizations. Specifically, let N
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be the number of samples at the previous step and let M be the new realizations. We
first update the sample average

EN+M [X] = EN [X] +M
EM [X]− EN [X]

N +M
(3.27)

and then the sum of squares of differences from the current mean

MN+M
2 =MN

2 +MM
2 +NM

(EM [X]− EN [X])2

N +M
. (3.28)

The extension to any arbitrary order P > 1 is proposed in [20]. One can compute
the difference from the current mean for any power P , namelyMN+M

P =
∑N+M

i=1 (Xi −
EN+M [X])P . The formula to update it is

MN+M
P =MN

P +MM
P

+
P−2∑

p=1

(
p

P

)[(
− M

N +M

)p
MN

P−p +

(
N

N +M

)p
MM

P−p

]
(EM [X]− EN [X])p

+

(
NM

N +M
(EM [X]− EN [X])

)P [
1

MP−1
−
(−1

N

)P−1
]
,

(3.29)

where
(
p
P

)
is the binomial coefficient.

Moreover, in [20] the authors propose a formula to update on the fly co-moments (which
involve more than one random variable), as the covariance. Such formulas access memory
once, thus being suitable for large-scale scenarios. LetX and Y be two random variables,
and let N and M be two subsets of realizations. We report here the formula to estimate
the covariance. First, we compute

CN+M
2 = CN2 + CM2 +NM

(EM [X]− EN [X])(EM [Y ]− EN [Y ])

N +M
, (3.30)

and then the unbiased covariance estimate as CN+M
2

N+M−1
. We refer to [20, 108] for higher-

order co-moments estimation.
We remark that above results for the incremental estimation of moments and co-
moments of arbitrary order are extended in [108], where arbitrary weights are introduced.
Moreover, the framework proposed in this section 3.8.1 is proven to be "numerically sta-
ble and presents near-optimal linear scalability and speed-up properties", as commented
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by the authors in [20, section 6].

3.8.2 Estimation by updating power sums

Another possibility to estimate central moments is by updating power sums on the
fly and then computing the so-called h-statistics, which are unbiased estimators with
minimal variance, compared to other unbiased central moment estimators [50, 60, 86].
Using unbiased estimators is particularly convenient when working with hierarchical MC
methods, as multilevel Monte Carlo or multifidelity Monte Carlo, since telescopic sums
of estimators can be easily written by using h-statistics [110, 86]. Moreover, power sums
can be exploited to estimate also the sample average, that is the main raw moment we
are interested in.
In this work, we follow the same approach of [110, 86], where sample-based central
moment estimators are computed directly from power sums.
Let X be a random variable and N its number of realizations. The power sum of order
P of X is defined as

SNP [X] =
N∑

n=1

(Xn)P . (3.31)

Power sums allow for the computation of h-statistics, which are estimators of central
moments. Therefore, the central moment of order P is estimated by the h-statistic of
order P , which is expressed in terms of the power sums and of the number of realizations.
In other words

hNP [X] = f(SNp [X], N), p ∈ [1, P ], (3.32)

where f(·) is a generic function operator, useful for highlighting function dependencies.
In the following, we may use the shorthand notation SP ≡ SNP [X] and hP ≡ hNP [X].
It follows that we can approximate the expected value and the variance of X as [110, 86]

E[X] ≈ EN [X] =
S1

N

V[X] ≈ hN2 [X] =
NS2 − S2

1

(N − 1)N
.

(3.33)

For the sake of completeness, we report as well the equations for the estimation of central
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moments of order 3 and 4 [86]

h3 =
N2S3 − 3NS2S1 + 2S3

1

(N − 2)(N − 1)N

h4 =
(−4N2 + 8N − 12)S3S1 + (N3 − 2N2 + 3N)S4 + 6NS2S

2
1 + (9− 6N)S2

2 − 3S4
1

(N − 3)(N − 2)(N − 1)N
.

(3.34)
Above estimation of the central moments through h-statistics present an associated
statistical error (SE), that is the variance (or the standard deviation) of the moment
estimator, which decreases as the number of realizations N grows. For example, the
variance of expected value and variance estimators read [86]

V[EN [X]] =
σ2[X]

N

V[hN2 [X]] =
E[(X − E[X])4]

N
− E[(X − E[X])2]2(N − 3)

(N − 1)N
,

(3.35)

where we recall that E[(X − E[X])P ] denotes the central moment of order P . As
commented in [86, section 2.1], "the naive approach of replacing central moments
E[(X − E[X])P ] with their unbiased estimate hNP [X] will not result in an unbiased esti-
mator for V[hNP [X]], since V[hNP [X]] depends non-linearly on the central moments". We
therefore follow the approach proposed in [110, 86] to estimate the variances of equa-
tion (3.35), that consists of "not only substituting hNP [X] for E[(X − E[X])P ] but also
introducing an additional multiplicative coefficient for each substitution". We therefore
obtain the following unbiased estimators [86]

V[EN [X]] ≈ h2

N

V[hN2 [X]] ≈ N((N − 1)2NS4 − (N2 − 3)S2
2) + (6− 4N)S4

1

(N − 3)(N − 2)(N − 1)2N2

+
4N(2N − 3)S2S

2
1 − 4(N − 1)2NS3S1

(N − 3)(N − 2)(N − 1)2N2
.

(3.36)

We refer to [86, section 2.1] for details about unbiased variance estimators of higher-order
central moments, which are V[hNP [X]], P > 2.
We remark that expressing h-statistics in terms of power sums can lead to numerically
unstable formulas, for p large. A possible solution could be expressing h-statistics in
terms of centered power sums SNP [X − E[X]] =

∑N
n=1(Xn − E[X])P , somehow similarly
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to what is discussed in section 3.8.1. However, we do not focus on such a topic in this
thesis work.

3.8.3 Estimation of combined moments by updating combined
power sums

We focus now on the estimation of combined moments, which are moments of time-
dependent quantities. The simplest way to compute such combined moments is by
storing the whole historical data for all realizations and then computing statistics from
the available information. However, this is not computationally viable. For example, it
would imply storing the whole time history of the pressure on every point on the skin
surface of a building. This becomes inviable when we have hundreds of thousands of
points to evaluate and thousands of time steps. We present here a tentative extension of
the equations presented in section 3.8.2 for the estimation of combined moments. Our
idea consists of updating at each time step the power sums of the random variable, and
then computing h-statistics with the available combined power sums.
Let X(t) be a process random variable, N its number of realizations, andM the number
of time steps discretizing the time window. The update of power sums is done as

SN,MP [X] =
N∑

n=1

M∑

m=1

(Xn,m)P . (3.37)

An example of update of combined power sums is shown in figure 3.4, where a generic
realization n ∈ [1, N ] of a process is represented. The time window of this process is
[−6, 6] and information is collected for 30 time steps, thus M = 30. Of course, such an
update must be repeated for all N realizations. We remark that, by updating power
sums at each time step, all fluctuations and peaks that may appear during the time
history of a single realization affect the moment estimation.
Expected value and variance of X(t) are estimated as

E[X] ≈ EN,M [X] =
S1

NM

V[X] ≈ hN,M2 [X] =
NMS2 − S2

1

(NM)2
,

(3.38)

where SP ≡ SN,MP [X].
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Figure 3.4: Process X(t) plotted as function of time. Each circle represents a sample updating
combined power sums.

Although a formal proof of minimal variance for hN,M2 [X] could not be reached, nu-
merical examples have shown its consistency compared to the standard computation of
statistics from data stored to file.
A simple validation of the proposed approach is presented in table 3.2, where statistics
of observables of section 7.1 are estimated using both the combined power sums approach
and the NumPy Python library [61]. We observe that the difference we obtain is minimal,
thus giving consistency to the method we propose.

X
|EN,M [X]−EN,M,ref.[X]|

EN,M [X]+EN,M,ref.[X]
2

|hN,M2 [X]−VN,M,ref.[X]|
h
N,M
2 [X]+VN,M,ref.[X]

2

Fd 6.9 · 10−15 5.3 · 10−13

Mb 6.9 · 10−15 5.3 · 10−13

Table 3.2: Relative difference of expected value estimation and of variance estimation, com-
puted using the combined power sums approach and the NumPy Python library [61],
that is the reference solution in this comparison. N = 100 and M = 10000 are con-
sidered. Fd is the drag force and Mb the base moment, and the data used for the
comparison are taken from the problem of section 7.1.



Chapter 4

Hierarchical Monte Carlo methods

In this chapter, we start reviewing the current state of the art of hierarchical MC meth-
ods in sections 4.1–4.4. We focus on the standard MC method and on other algorithms
that enhance standard MC, as MLMC or CMLMC. These methods solve stochastic
problems by propagating uncertainties within the system and allow performing a sta-
tistical analysis of an output QoI, which can be both a scalar or a field. Then, the
integration of hierarchical MC algorithms with the strategies presented in section 3.8 to
compute statistical moments on the fly is discussed in section 4.5. We continue intro-
ducing a convergence criterion and analyzing it in the context of both single-level (MC)
and multi-level (MLMC, CMLMC) methods in section 4.6. In sections 4.7 and 4.8 we
present the algorithms of the main methods discussed in the chapter, together with
considerations on their execution on HPC systems. We conclude the chapter validating
the implemented framework in section 4.9.
Let us introduce some preliminary notation. We refer to the solution of the problem
under consideration with u = f(w), where w is the random variable of the system
and f denotes a generic function and is useful to highlight function dependencies. The
physical problems considered are solved exploiting the FE solver Kratos. This implies
that a discretized domain DH is exploited, where D is the problem domain and H is a
discretization parameter of the domain. An example of a discretization parameter is for
example the minimal size.
The content of this chapter is taken from the preprint of our work [128] and is adapted
and integrated with additional content wherever needed.
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4.1 The Monte Carlo method

The MC method is the reference technique for the stochastic analysis of multi-physics
problems with uncertainties in the data parameters. As previously mentioned, it gives
origin to a wide class of different algorithms, whose main idea is to repeat many times the
realization with uncorrelated random variable w, and to estimate the desired statistics
of the QoI a posteriori.
We are interested in estimating the expected value of a generic scalar quantity of interest
Q = f(u(w)), that is E[Q]. This means that the expected value estimator must satisfy
some criterion for achieving convergence. However, we remark that other statistical
estimators are computed to assess convergence, as we will see next.
The MC potential lies in its basic property of convergence to the exact statistics as
the number of samples N tends to infinity, independently of the dimensionality of the
stochastic space. It also presents the advantage of considering the solver as a black
box, since it is non-intrusive and directly applicable to any simulation code, making it
suitable for any kind of problem.
Considering Q ≈ QH , where QH is the approximation on the discretized domain DH ,
the MC expected value estimator of the output quantity of interest is

E[Q] ≈ EMC[QH ] =
1

N

N∑

n=1

QH(w(n)), (4.1)

where QH(w(n)), n = 1, . . . , N , are N independent, identically distributed values com-
puted on DH .
The MC estimation accuracy of the expectation can be evaluated through the mean
square error, that reads

e2
MC = E[(EMC[QH ]− E[Q])2] = (E[QH −Q])2 +

V[QH ]

N
, (4.2)

where E[Q] is the true expected value of the QoI and V[Q] = E[Q2]−E[Q]2 is the variance
of the QoI. The term (E[QH − Q]) is the discretization error (DE), it is independent
of the statistics of the QoI and only depends on the accuracy of the domain we are
exploiting to solve the problem [111, section 2]. On the other hand, V[QH ]

N
is the squared

SE, which decreases as long as the number of samples grows, and is an indicator of the
variance of the expected value estimator [111, section 2].



The multilevel Monte Carlo method 39

(a) Mesh discretization of level
0.

(b) Mesh discretization of level
1.

(c) Mesh discretization of level
2.

Figure 4.1: Hierarchy of three levels.

The main drawback of the MC method is its computational cost, which makes it very
expensive for the stochastic analysis of industrial problems with complex geometries. In
fact, e2

MC decreases proportionally to N−1. To try to overcome this limitation, different
algorithms have been derived from standard MC, as MLMC and CMLMC.

4.2 The multilevel Monte Carlo method

The MLMC method was first introduced in [62, 64, 58]. MLMC reduces the computa-
tional cost of solving stochastic problems by standard MC method through a variance
reduction technique.
The main idea of the MLMC algorithm is to draw MC instances simultaneously on a
sequence of levels of increasing accuracy, and consequently of increasing computational
cost. Many MC samples are run on the coarsest levels, in order to capture the statistical
variability, and only a few are run on the finest ones, to reduce the so-called discretization
error. This way, the computational effort relies mainly on the coarsest levels, while for
standard MC the computational effort is all concentrated on the finest. Therefore, this
leads to notable computational savings.
The standard procedure to build the hierarchy of levels is to perform uniform refinement
in space. By defining the mesh parameter H equal to the reciprocal of the mesh size, H
grows as long as the level increases, i.e. H0 < H1 < . . . < HL, where L is the maximum
number of levels the current simulation may reach. An example of hierarchy of three
levels with uniform refinement is shown in figure 4.1.
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The linearity of the expectation operator allows writing the mean of the QoI as a
telescopic sum of expectations. Therefore, the MLMC expected value of the QoI reads

E[Q] ≈ EMLMC[QH ] = EMC[QH0
] +

L∑

l=1

EMC[QHl
−QHl−1

]

=
L∑

l=0

EMC[Yl] =
L∑

l=0

1

Nl

Nl∑

n=1

Yl(w
(n,l)),

(4.3)

where Yl = QHl
− QHl−1

and Y0 = QH0
. For the sake of simplicity, the dependence

on the random variable w is made explicit only in the last expression, from which we
observe that the two quantities QHl

and QHl−1
are computed using the same random

variable realization w(n,l).
Analogously to the MC algorithm, the mean square error of the MLMC expectation
estimator is the sum of a discretization error and a statistical error:

e2
MLMC = E[(EMLMC[QH ]− E[Q])2] = (E[QH −Q])2 +

L∑

l=0

V[Yl]

Nl

, (4.4)

where the first term represents the squared DE and the latter the squared SE. We can
observe matching equations (4.2) and (4.4) that the only difference in the mean square
error evaluation is the SE contribute. In fact, in equation (4.2) the variance of QH

is computed, while in equation (4.4) we consider the difference Yl on two consecutive
levels, whose variance is consistently smaller with respect to the one of QH .
Since the MLMC method works with a hierarchy of levels, it is important to calibrate
well the number of realizations per level, to avoid wasting unnecessary resources on the
finest levels. For this reason, adaptive strategies can be employed. However, as we
comment in section 4.3, a bad hierarchy calibration can easily lead to oversampling,
resulting in a wrong resources usage. To avoid such an issue, other algorithms, as the
CMLMC method, can be employed.

4.3 Adaptivity

Three important considerations lie at the basis of both MC and MLMC algorithms (see
[111] and references therein).

• The cost of computing one realization QHl
grows exponentially with the level
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accuracy Hl. This means C[QHl
] ≤ cγH

γ
l , where C is the computational cost and

cγ, γ > 0.

• The discretization error
∣∣E[QHl

−Q]
∣∣ decreases exponentially as Hl grows. In

other words,
∣∣E[QHl

−Q]
∣∣ ≤ cαH

−α
l , where cα, α > 0.

• – MC: V[QH ] constant with respect to H,

– MLMC: V[Yl] decreases exponentially as the level grows. Therefore, V[Yl] ≤
cβH

−β
l , where cβ, β > 0 and α ≥ min{β, γ}.

If the above hypotheses are satisfied, it is known [58] that MLMC reduces the compu-
tational cost required to achieve the same mean square error of MC, or the same failure
probability criterion, described next in section 4.6.
The hierarchy, that is the number of levels and the number of realizations per level, of
hierarchical MC methods can be determined both non-adaptively1, thus defined prior
to the start of the simulation, or adaptively, computed on top of some statistics. Two
examples of non-adaptive hierarchies are:

• keep the number of levels L and of realizations per level Nl, l = 0, . . . , L constant
at each MC/MLMC iteration,

• increase the number of levels by one and double the number of realizations per
level at each MC/MLMC iteration.

On the other hand, the evaluation of the computational cost associated to each level, the
discretization error and the variance of the QoI allows estimating the optimal adaptive
hierarchy for reaching the desired accuracy of the statistical estimator. We refer for
example to [111, sections 2.1 and 2.2] for details about how to compute adaptively
hierarchies for MC and MLMC.
A screening phase is needed in order to calibrate adaptively the hierarchy of the simu-
lation. This setup takes place before the execution of the main algorithm, and normally
few samples per level are run. Nevertheless, this setup is an expensive and challenging
phase, since, if wrongly calibrated, it may lead to oversampling or to bad hierarchy
estimations. An alternative approach is proposed in [38] and is presented in section 4.4.

1In the preprint of our work [128], we use the expression deterministic to refer to non-adaptive
hierarchies. However, a reviewer suggested replacing deterministic with non-adaptive, and since we
believe this change increases the clarity of the text, we keep such a suggestion.
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It consists of updating on the fly the adaptive hierarchy of the simulation, exploiting a
decreasing sequence of tolerance. However, an initial screening phase is still needed.

4.4 The continuation multilevel Monte Carlo method

In [38], the authors introduce the CMLMC algorithm, whose idea is to update the
optimal hierarchy on the fly, to decrease the risk of oversampling. The idea of CMLMC
is to run, after the initial screening phase, I MLMC iterations and to use a decreasing
sequence of tolerances ε0 > ε1 > . . . > εI . This implies updating on the fly the optimal
hierarchy, increasing its accuracy and decreasing the risk of oversampling. We refer to
[38, 111] for further details.
However, as we will see later in section 4.7 and chapter 5, the main problem of CMLMC
and of the other approaches discussed above (MC and MLMC), in the context of super-
computers, is their intrinsically serial nature.

4.5 Computation of moments

Computing statistics of QoIs is a crucial step for having high efficiency frameworks.
Different techniques are possible to update central and raw moments on the fly, and the
two possibilities analyzed are:

• online update of differences from current mean (see section 3.8.1),

• online update of power sums (see section 3.8.2).

For the sake of simplicity, we define the central moment estimator of order P > 1,
estimated with N samples, as µNP ≡ µNP [Q] ≈ E[(Q− E[Q])P ].

4.5.1 Online update of central moments

The first possibility is to update the differences from the current mean with one-pass
formulas and then to compute the central moments, where one-pass means that we
update by adding one value per time. We refer to section 3.8.1 and references therein
cited. We report here the dependencies for computing moments with one-pass formulas
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for an arbitrary order P :

µNP = f(µN−1
p ,Q(w(i)), N, P ), p ∈ [1, P ], (4.5)

where f(·) is a generic function useful to highlight dependencies. Update formulas with
arbitrary set decomposition exist, and the dependencies for an arbitrary order P read
as

µNA+NB
P = f(µNAp , µNBp , NA, NB, P ), p ∈ [1, P ], (4.6)

where NA, NB are the sizes of the two sets.

4.5.2 Online computation of power sums

A second possibility is to update power sums with one-pass strategies, where a power
sum of order p is defined as SNP ≡ SNP [Q] =

∑N
i=1 Q(w(i))P . We refer to section 3.8.2

and references therein for details. From the power sum definition definition, we can
derive the dependencies of updating power sums. Given any arbitrary order P , such
dependencies are

SNP = f(SN−1
P ,Q(w(i)), N, P ). (4.7)

Power sums allow computing h-statistics, which are unbiased estimators with minimal
variance of central moments. The h-statistics, for an arbitrary order P , is just function
of the power sums and of the number of samples N , therefore

hNP [Q] = f(SNp , N), p ∈ [1, P ]. (4.8)

4.6 Stopping criteria

Convergence is said to be accomplished if the estimator of the expected value (EMC[QH ]

or EMLMC[QH ]) achieves a desired tolerance ε, with respect to the true estimator E[Q],
with a confidence (1−φ). In other words, we define a failure probability criterion (often
denoted simply as failure probability), and we want it to be met with a certain level
of confidence. The failure probability criterion for the MC expected value estimator is
defined as

P
[∣∣EMC[QH ]− E[Q]

∣∣ ≥ ε
]
≤ φ, φ� 1, (4.9)
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where ε > 0 and (1 − φ) ∈ (0, 1). For obtaining the failure probability criterion of the
MLMC expected value estimator, it is sufficient to replace EMC[QH ] with EMLMC[QH ].
The total error can be bounded, with confidence (1−φ), by the sum of the discretization
error and the statistical error, where the latter is multiplied by a confidence factor [38,
111]:

τ = |E[QH ]− E[Q]|
≤ |E[Q−QH ]|+ |E[QH ]− E[QH ]|
≤ |E[Q]− E[QH ]|+ Cφ

√
V[E[QH ]],

(4.10)

where Cφ = Φ−1(1 − φ
2
) and Φ is the cumulative distribution function of the standard

normal distribution N (0, 1).
The variance of the MLMC expected value estimator is

V[EMLMC[QH ]] =
L∑

l=0

V[Yl]

Nl

, (4.11)

while for MC it simplifies to

V[EMC[QH ]] =
V[QH ]

N
. (4.12)

In both cases, these variances have to be estimated. One can use the sample variance
or other estimators, as the h-statistics described above.
Therefore, the estimate of the total error is τ = DE + CφSE, and the convergence
criterion is

τ ≤ ε. (4.13)

While for MLMC it is possible to approximate the DE as EMC[QHL
−QHL−1

] [111], for
MC the same approximation is not possible. Then, in this case, we will consider just
the SE for assessing the convergence criterion, which will read

CφSE ≤ ε. (4.14)



Algorithms 45

4.7 Algorithms

We report MC and MLMC algorithms. To simplify comparisons with chapter 5, we
exploit h-statistics to estimate central moments.
We define Sl,p as the power sum of level l and power p, where p ∈ [1, P ], P is the
maximum order we need and the number of realizations N is omitted. Similarly, the
h-statistic of level l and power p is defined as hl,p. Since for MC there is just one level,
the dependency on l is omitted. The number of iterations it is updated each time a
convergence check is performed. The number of levels, of samples per level and the
mesh parameters are represented by L,N and H, respectively. The left horizontal arrow
denotes the update or the computation of the left value as a function of the right values.
Non-adaptive and adaptive MC algorithms are described in algorithm 1, while non-
adaptive and adaptive MLMC are reported in algorithm 2. Concerning the adaptive
version, the initial screening phase is represented by the first iteration inside the while
loop. Afterward, central moments are computed and then it is possible to estimate
the optimal hierarchy. As mentioned in section 5.3, upper and lower thresholds may
be applied in order to be able to control the number of levels and of samples per level
estimated. This allows us to better check and compare the results obtained from different
algorithms.

Algorithm 1 MC
N,H initial hierarchy
while convergence is not True do
if non-adaptive then
N ←− N, it

else if adaptive then
N ←− N, it, hp, p ∈ [1, P ]

end if
for n = 0 : N do

Q(n)
H ←− solver(w(n))

Snp ←− Sn−1
p ,Q(n)

H , n, p, p ∈ [1, P ]
end for
hp ←− Sp, N, p ∈ [1, P ]
convergence←− equation (4.9)
it = it+ 1

end while
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Algorithm 2 MLMC
L,N,H initial hierarchy
while convergence is not True do
if non-adaptive then
L←− L, it
N ←− N, it

else if adaptive then
L←− L, it, hl,p, l ∈ [0, L], p ∈ [1, P ]
N ←− N, it, hl,p, l ∈ [0, L], p ∈ [1, P ]

end if
for l = 0 : L do
for n = 0 : Nl do

Q(n)
Hl
←− solver(w(n,l))

Q(n)
Hl−1
←− solver(w(n,l))

Y
(n)
Hl

= Q(n)
Hl
−Q(n)

Hl−1

Snl,p ←− Sn−1
l,p , Y

(n)
Hl
, n, p, p ∈ [1, P ]

end for
end for
hl,p ←− Sl,p, Nl, l ∈ [0, L], p ∈ [1, P ]
convergence←− equation (4.9)
it = it+ 1

end while

4.8 Distributed computing

Hierarchical MC methods are highly parallelizable. In standard approaches, three dif-
ferent layers of parallelism are available: between levels, between samples per level, and
on each realization at solver level. In order to exploit such parallelisms when running
in distributed environments, different scheduling strategies can be adopted, depending
on the problem under consideration. In [48], the authors propose and discuss different
static scheduling approaches for running MLMC on supercomputers. The hierarchy is
defined before the execution starts and optimizes the computational efficiency and the
time to solution. Although efficient, this procedure is problem-dependent and only al-
lows to run one iteration, without a check of the convergence criterion on the fly. In
addition, it does not take into account the fact that the sampling in MC algorithms is
always stochastic, so the execution time of each realization is random. Hence, a static
planning cannot adapt the scheduling, as the execution goes, in order to optimize the
usage of the available resources. In fact, as discussed in [48], dynamic scheduling suites
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best for simulations whose runtime may vary, resulting to be faster than their static
counterparts.
Therefore, in [128] we propose using a dynamic scheduling approach for both single-level
and multi-level methods, as problem independent as possible, which optimally adapts
to the length of each execution. Our dynamic approach re-evaluates the scheduling each
time a task2 execution finishes, while the static scheduling approach introduced in [48]
defines the scheduling once, when all tasks are launched. Even though this last approach
can successfully handle heterogeneity in the task duration and adapt the scheduling on
it, it cannot react when the actual duration differs with respect to the precomputed
estimation. Instead, with our dynamic approach, the scheduling decisions are taken on
the fly, providing higher adaptability. Moreover, dynamic scheduling is preferred when
the workload can vary depending on the partial results of the computation, and therefore
not predictable statically.
Knowing that MLMC has more levels and MC just has one, the amount of central
processing units (CPUs) used by the solver at each level should be tuned accordingly
to the scalability limits of the solver for the considered problem size. As a general rule,
since scalability improves as the problem grows in size, the amount of assigned resources
should be as high as possible, while keeping a reasonable efficiency. In addition, it must
be taken into account that the amount of CPUs set for each MLMC level should be
defined in such a way that the available memory per processor is enough to perform a
typical execution of that level. This way, it is possible to keep a good efficiency while
reducing as much as possible the imbalance between the different levels. Concerning the
overall performance, the hierarchy size is the most impacting factor, and it needs to be
tuned accordingly to the problem under consideration.
Standard algorithms require the presence of synchronization points. For this reason, we
refer to them as synchronous algorithms, also to remark the difference with asynchronous
algorithms, introduced in chapter 5. Hence, synchronous algorithms need to wait until
a certain parameter is computed in order to resume the execution. At this exact point,
the full machine is idle. This is highly inefficient when running on supercomputers,
since it may occur that the machine remains idle for long periods of time. This fact is
particularly important in UQ, where the runtime of each realization depends on some
random data, and may result in the whole algorithm waiting for a single realization to
end before going on.

2A task is a method or a function that is run on a HPC system.
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We also present the dependency graph of one MC iteration in figure 4.2. The circles
denote tasks, that are the execution units that are sent to worker nodes to be executed
in parallel. Task executions are uniquely identified through a number, while the arrows
mean that the following task needs to wait for the previous one to finish before being
launched, since it requires some data produced by the previous task.
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Figure 4.2: Graph connections of synchronous algorithm dependencies. The first iteration is
represented. Each gray tonality identifies a different action: ExecuteInstance the
simulation task, AddResults and UpdateOnePassPowerSums the power sums up-
date, ComputeHStatistics the h-statistics computation and CheckConvergence the
convergence check. Each circle represents a different task and is uniquely identified
by a number.

It is important to realize how the dependencies shown in figure 4.2 contain an unavoid-
able synchronization point. In fact, we observe the requirement of waiting for the whole
single hierarchy to finish before performing the statistical analysis of the QoI. Therefore,
to compute the convergence (task 18), we need to wait for all the realizations to finish,
and this may be highly inefficient if, for example, we are waiting for a single execution
to end that is taking longer due to its random variable input value.
Figure 4.3 represents the theoretical trace of a synchronous algorithm execution, i.e.
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batch tasks
synchronization point
convergence achievement

Figure 4.3: Theoretical trace of the synchronous framework. The gray rectangles represent
all the different tasks, from the execution of the instances (ExecuteInstance) to
the check of the convergence (CheckConvergence), which implies a synchronization
point. The black rectangles are the synchronization points. The dashed vertical
line denotes the achievement of the algorithm convergence after four iterations.

shows how well we are filling up the machine. The bottleneck of synchronous algo-
rithms is clearly visible: at each iteration there is a period in which the machine is
empty, therefore not executing any computation, and this moment corresponds to the
synchronization point towards which all tasks need to converge at the end of each iter-
ation. In the case of figure 4.3 we have four iterations, then four periods in which only
a small part of the machine is busy. As previously mentioned, these idle times can be
very costly, since we cannot know a priori their time length. As a consequence, to gain
computational efficiency, the idea is to minimize as much as possible the idle times, by
developing an asynchronous framework, introduced in chapter 5. The dependency graph
of MLMC follows as a consequence, and for the sake of simplicity we choose to report
only the MC dependency graph.

4.9 Validation

To validate our implementation of synchronous, state of the art, hierarchical MC meth-
ods, we solve a stochastic two-dimensional diffusion problem with the MC and the
MLMC methods. The problem is taken from [86, section 5.2] and reads

−∆φ = f in D, (4.15)
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where D = [0, 1]× [0, 1] is the domain, f = −432ζ(x2 + y2 − x− y) and ζ ∼ Beta(2, 6)

is a random variable described by the Beta distribution. The system is integrated with
homogeneous Dirichlet boundary conditions in the boundaries. The solution of the
problem for ζ = 0.25 is represented in figure 4.4. The QoI we consider is the integral of

0

2.0 · 10−1

4.0 · 10−1

6.0 · 10−1

8.0 · 10−1

1

1.2

1.4

1.6

1.8

2

2.2

φ

Figure 4.4: Domain and values of the solution variable φ of the diffusion problem.

the solution φ over the whole domain, that is

Q =

∫

D

φ dx dy, (4.16)

whose analytical value is 6ζ. Such a problem is particularly interesting because it
is possible to analytically estimate the statistical moments of the QoI. We aim at
estimating the expected value of Q, whose correct value is 1.5.
We start analyzing the available mesh discretizations and observing how the DE and
the variance decay as levels increase. We consider 8 levels with uniform discretization.
We start from a mesh size of 0.337 m for the first level, and the mesh size decreases as 2−l

as the level l grows. The DE is computed as
∣∣EN [QHl

]− 1.5
∣∣, with N large enough, and

its decay can be observed in figure 4.5. The variance is estimated with the h-statistics
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estimator, again with enough realizations N , and its decay is plotted in figure 4.6. It
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Figure 4.5: DE decay of the diffusion problem.
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Figure 4.6: Variance decay of the diffusion problem. The variances are estimated using the
h-statistics estimator, that is hl,p ≡ hNl,p[Q].

is interesting to observe the following points about MLMC hypotheses (see section 4.3,
[58, complexity theorem 3.1] and [111, section 2.2]).

• Both convergence rate exponents (α = 1.6 and β = 4.0) are greater than 0.

• The computational cost of each levels grows with rate 21.405l, therefore γ = 1.405.
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• The constraint α ≥ min{β, γ} holds.

• β > γ implies that the computation effort is primarily on the coarsest levels.

Therefore, the convergence rate exponents we obtain are in agreement with MLMC
hypotheses and it follows that the MLMC method is more convenient than the MC
method for solving this stochastic problem.
We can then solve the problem using the MC method. A tolerance ε of 0.13 and a con-
fidence 1−φ of 0.99 are considered. The convergence criterion we use is equation (4.13).
The problem is run on the finest available mesh. For satisfying the failure probability
criterion, N = 320 realizations on the finest mesh are run. The overall computational
cost of solving the problem with the MC method is 1404 s.
Then, we solve the problem using the MLMC method. The same tolerance, confidence
and convergence criterion of the MC case are considered. For satisfying the failure
probability criterion, N = (500, 200, 100, 75, 50, 25, 25, 25) realizations per level are run,
where members of N are sorted in ascending order. The overall computational cost of
solving the problem with the MLMC method is 148 s, thus showing the superiority of
MLMC over MC for solving this problem.



Chapter 5

Asynchronous hierarchical Monte
Carlo methods

In this chapter, we introduce and develop asynchronous hierarchical MC methods, which
are designed to fully exploit concurrency capabilities of modern HPC systems. The pro-
posed framework allows bypassing the expensive screening phase, preserving statistical
reliability and avoiding the presence of classical synchronization points, thus improv-
ing the overall computational efficiency. In section 5.1 we present the asynchronous
framework, focusing on its workflow and on its differences with respect to standard,
synchronous algorithms of chapter 4. Some computational considerations on the update
of statistics are presented in section 5.1.1. In section 5.2 the asynchronous MC and
the asynchronous MLMC algorithms are described. Results comparing synchronous
algorithms of chapter 4 and asynchronous algorithms of chapter 5 are presented in
section 5.3. Scalability tests of the implemented asynchronous methods are shown in
section 5.4. Concluding remarks end the chapter in section 5.5.
The content of this chapter is taken from the preprint of our publication [128] and is
adapted and integrated wherever needed.

5.1 The asynchronous framework

As we have seen in chapter 4, a single slow simulation, for example due to particular
random variable values or to system malfunctions, can simply lead to a huge hardware
usage inefficiency, caused by a high percentage of the available resources being idle
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during a long time. We present here an asynchronous framework that can be applied to
hierarchical MC algorithms, allowing for a continuous feed of the machine, when running
in a distributed environment.
The main idea is to add a new level of parallelism, between batches, where each batch is
defined by its own hierarchy, and to fill the idle resources while finishing a batch compu-
tation, just in case the convergence is not achieved. This way, part of the work needed
for a hypothetical new batch will be already started when checking the convergence. It
is clear that, when converging, we will always be discarding some work already done
under the non-convergence hypothesis. Nevertheless, this methodology allows having a
much better usage of the resources. This can be interpreted as a sort of pre-fetching,
which consists of optimistically performing computational work that may turn out to
be useful. Pre-fetching has been already applied with success to other Monte Carlo
methods, as shown in [27, 8].
The update of the statistics of all QoIs and the convergence check of the algorithm are
performed on the fly. As it is shown in section 4.5, we consider two possible ways of
computing the central moments, respectively equations (4.5) and (4.8). The strategy
we follow is to update the central moments using the second option, and the advantage
of this choice is that in both equations (4.7) and (4.8) there is no dependency on the
central moment values of previous steps.
The idea we follow is to work in batches, each one with its own hierarchy, hereafter
called batch hierarchy. Each batch updates its local power sums, which afterward add
their contribution to the global power sums. In order to preserve the correctness of the
statistical analysis, it is important to avoid introducing bias, i.e. to consider only the
fastest samples of our problem. Then, the update from local (of a single batch) to global
takes place only after all the simulations of a single batch finish, and the batches are
considered in the same order that they are spawned. Therefore, we are able to update
the statistics and to check the convergence of the scheme, while in the meanwhile other
batches are running. This way, we avoid synchronization points that can leave idling the
hardware. Each time convergence is not achieved, a new batch is launched in order to
guarantee that the resources are kept busy. On the contrary, if converged, the remaining
analyses are unnecessary and can be stopped, and all the executions of the incomplete
batches are discarded, in order to avoid the bias of considering only the fastest solutions
of a batch.
We see the described behavior in figure 5.1. Here we start the simulation by running
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Figure 5.1: Graph connections of synchronous algorithm dependencies. Each gray tonality
identifies a different action: ExecuteInstance the simulation task, ComputeBatch-
esPassPowerSums and UpdateBatchesPassPowerSums the in-batch power sums up-
date, UpdateGlobalPowerSums the global power sums update, ComputeHStatistics
the h-statistics computation and CheckConvergence the convergence check. Each
circle represents a different task and is uniquely identified by a number.

three batches: tasks 1− 10, 16− 25 and 31− 40 stand for batch number one, two and
three, respectively. Focusing now only on the first batch, we observe that its instances
update on the fly the local power sums, and all the contributions are taken into account
to check the convergence. Then, there is the synchronization point of the first batch,
but, differently from what happens in the synchronous framework, this runs in parallel
with other batches. In fact, the local power sums of the second batch (task 55) are
directly updating the global power sums of the successive iteration (task 84), guaran-
teeing asynchronicity. Therefore, the difference between figures 4.2 and 5.1 is clear, and
we see how this framework allows having more executions running while the statistical
analysis of a single batch hierarchy is being computed.
As before, we can appreciate how the machine is being filled up through a trace in
figure 5.2. With the current framework, the parallelism between the single-batch syn-
chronization point and other batches can be observed. Moreover, we acknowledge that all
the tasks that would have been executed after the convergence achievement are stopped,
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batch tasks
synchronization point
convergence achievement
discarded instances
stopped instances

Figure 5.2: Theoretical trace of the asynchronous framework. Different gray colors of the rect-
angles represent different bacthes. Each batch contains all the tasks from the exe-
cution of the instances (ExecuteInstance) to the check of the convergence (Check-
Convergence). The black rectangles are the synchronization points. The dashed
vertical line denotes the achievement of the algorithm convergence after four iter-
ations. The two types of parallel diagonal lines indicate that the instances of the
unfinished batches are discarded (left with respect to the dashed line) or stopped
(right with respect to the dashed line).

while the ones already computed and belonging to unfinished batches are discarded, thus
preserving the efficiency and the accuracy of the framework.
This asynchronous approach adds one new level of parallelism to the MC family, which
now are:

• between batches,

• between levels,

• between samples per level,

• on the simulation of each sample.

The advantages of having many small batches running give efficiency and reliability to
the method we propose. The former is guaranteed since the expensive screening phase is
no more needed and the number of samples is not exceeding much the optimal hierarchy
to achieve convergence, considering it is directly related to the batch size hierarchy, which
is non-adaptively updated. Reliability is ensured by the stopping criterion conditions
and the fact that unbiased estimators are exploited to estimate central moments.
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5.1.1 Parallel in-batch analysis

Considering that the convergence parameters are computed from a sum that is both
associative and commutative, it is possible to compute the central moments following
a tree scheme. To fully exploit the power sums potentiality, the in-batch and in-level
update of the power sums Sb,l,p are performed in parallel, as we observe in figure 5.1, in
tasks 11−15, 46−49. This way, we increase the parallelism and we reduce substantially
the sequentially dependent code.
We remark that the tasks updating power sums can be grouped together, to reduce
the overall number of tasks and the number of parameters that the programming model
needs to handle at runtime. This permits large reductions of memory usage when many
realizations and many QoIs are considered. For instance, figure 5.3a shows that the
memory used by the simulation exceeds the maximum memory threshold (100%) and
the job is therefore stopped. On the other hand, the same simulation is successfully run
when tasks are grouped, as we see in figure 5.3b, where the memory usage is kept low.
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(a) Memory usage without grouping of in-batch and in-level update tasks. The simulation is run on
the MareNostrum 4 HPC system, using 40 worker nodes (1920 cores).
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(b) Memory usage with grouping of in-batch and in-level update tasks. The simulation is run on the
MareNostrum 4 HPC system, using 40 worker nodes (1920 cores).

Figure 5.3: Memory usage with and without grouping of tasks.
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5.2 Asynchronous algorithms

The update of the number of batches B, of the number of levels L and of the number of
samples per level N are only functions of the iteration counter it and of their previous
values. We define Sb,l,p as the local power sum of batch b, level l and power p, where
p ∈ [1, P ], P is the maximum order we need and the number of realizations N is omitted.
The global power sum of level l and order p is defined as SG,l,p. Analogously, the h-
statistic of level l and power p is denoted with hl,p. The left horizontal arrow denotes
the update or the computation of the left value as a function of the right values.
We present in algorithm 3 the asynchronous MC algorithm, where we omit to specify
level l = 0.

Algorithm 3 Asynchronous MC
B,N,H initial hierarchy
while convergence is not True do
B ←− B, it
N ←− N, it
for b = 0 : B do
for n = 0 : Nb do

Q(n)
H ←− solver(w(n))

Snb,p ←− Sn−1
b,p ,Q(n)

H , n, p, p ∈ [1, P ]
end for
N = N +Nb

SG,p = SG,p + Sb,p, p ∈ [1, P ]
end for
hp ←− SG,p, N, p ∈ [1, P ]
convergence←− equation (4.9)
it = it+ 1

end while

MLMC follows the same idea, as shown in algorithm 4.

5.3 Comparisons between synchronous and asynchronous
methods

In order to verify the accuracy, the efficiency and the computational improvements of
the proposed methods, two different test cases are solved. The first, presented in sec-
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Algorithm 4 Asynchronous MLMC
B,L,N,H initial hierarchy
while convergence is not True do
B ←− B, it
L←− L, it
N ←− N, it
for b = 0 : B do
for l = 0 : Lb do
for n = 0 : Nb,l do

Q(n)
Hl
←− solver(w(n,l))

Q(n)
Hl−1
←− solver(w(n,l))

Y
(n)
Hl

= Q(n)
Hl
−Q(n)

Hl−1

Snb,l,p ←− Sn−1
b,l,p , Y

(n)
Hl
, n, p, p ∈ [1, P ]

end for
Nl = Nl +Nb,l

SG,l,p = SG,l,p + Sb,l,p, p ∈ [1, P ]
end for

end for
hl,p ←− SG,l,p, N, l ∈ [0, L], p ∈ [1, P ]
convergence←− equation (4.9)
it = it+ 1

end while

tion 5.3.1, describes the two-dimensional steady-state compressible flow of a fluid around
an airfoil NACA 0012. Successively, in section 5.3.2, a two-dimensional analysis sim-
ulating a high viscosity fluid flow past a square obstacle is analyzed. Both examples
are characterized by the presence of random parameters, which lead to the necessity
of analyzing and studying their uncertainty propagation across the system and their
influence on the QoI of the problem.
The analysis is carried out comparing the computational cost and the time to solution
needed by each algorithm for satisfying the convergence criterion. The asynchronous
framework is compared against two synchronous approaches: the standard non-adaptive
method and one replicating the adaptive behavior, which minimizes the number of
iterations. For the two non-adaptive approaches, the hierarchy update is non-adaptive,
while for the adaptive method the number of iterations is reduced, and the update of the
number of levels and realizations per level is controlled by lower and upper thresholds,
which balance the hierarchy of the execution to properly compare the computational
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efforts. In all these cases the initial number of levels L and the amount of samples per
level Nl is the same, and is the result of an a priori strategy which optimizes the batch
execution. For MLMC, this is integrated with a MLMC estimate based on precomputed
variance and computational cost estimates.
For solving the CFD problems, we use Kratos [44, 43] as FE solver software, XMC [13]
as hierarchical MC library and PyCOMPSs [16, 88, 126] as programming model for
distributed computing. The integration of these software has been an important part of
this thesis work, as documented in [127, 10, 11, 5, 4, 22].
The analyses were run on MareNostrum 4. This supercomputer has 11.15 Petaflops
of peak performance, which consists of 3456 compute nodes equipped with two Intel R
Xeon Platinum 8160 (24 cores at 2.1 GHz each) processors. The analyses are performed
exploiting 16 worker nodes, which account for 768 cores. Moreover, for the latter and
more challenging problem, a scalability test is provided.
In the tables presenting the results, B identifies the initial number of batches, defined
by the initial hierarchy, it the number of iterations, that is the amount of convergence
checks executed, N the total number of realizations computed per level at the end of the
execution, EMC[QH ] or EMLMC[QH ] the expected value estimation, SE the statistical
error, time to solution the total time the simulation required to finish, measured in
seconds, and C the computational cost of the algorithm run, expressed in CPU hours.
The considered algorithms are summarized in table 5.1.

algorithm abbreviation

asynchronous non-adaptive MC AMC
synchronous non-adaptive MC SMC
synchronous adaptive MC SAMC
asynchronous non-adaptive MLMC AMLMC
synchronous non-adaptive MLMC SMLMC
synchronous adaptive MLMC SAMLMC

Table 5.1: Summary of considered algorithms.

Even though the aim of this work is not to show the superiority of MLMC over MC,
some considerations regarding this topic are provided. We remark that a DE estimation
is not available when running the MC method standalone (if an analytical solution is not
available), and for this reason we exploit equation (4.14) for assessing MC convergence.
On the other hand, we use equation (4.13) to assess MLMC convergence. For this reason,
the tolerance ε presents different values when solving the stochastic problems with MC
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or with MLMC.

5.3.1 Compressible potential flow problem

Governing equations

D

ΓD ΓN

ΓN

ΓN −2

−1

0

1

Cp

Figure 5.4: Domain and pressure coefficients of the compressible potential flow problem.

It is known that when the fluid proceeds at high Re and small angle of attack with
respect to the airfoil, the flow can be considered steady-state, compressible and isen-
tropic. Therefore, the analysis of such a two-dimensional flow around a NACA 0012,
whose sketch can be observed in figure 5.4, is governed by the steady-state potential
equation. The pressure coefficient shown in figure 5.4 is an adimensional number and is
computed as Cp = p−p∞

1
2
ρ∞u2∞

, where p∞, ρ∞ and u∞ are the freestream pressure, density
and velocity, respectively [47, chapter 8]. The partial differential equation describing
the physical system is:

∇ · (ρ∇Φ) = 0 in D, (5.1)

where ρ is the density and Φ the velocity potential. A stochastic inlet boundary condition
on ΓD is considered:

Φ = Φ∞ on ΓD, (5.2)

where Φ∞ = f(M∞, α) is function of the Mach number M∞ and of the angle of attack
of the airfoil α, and both these quantities are random. The PDF of the two stochastic
variables are M∞ ∼ N (0.3, 0.003) and α ∼ N (5.0, 0.05), respectively. N (µ, σ2) denotes
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a normal distribution of mean µ and variance σ2, and the angle of attack measures are
expressed in degrees. Moreover, a Neumann condition is defined on ΓN and a wake
boundary condition is imposed in order to properly describe the wake generated by the
airfoil. We refer to [46] for further details about the problem definition.
The output quantity of interest of the problem is the lift coefficient Cl of the airfoil,
and the problem is studied with both MC and MLMC strategies. MC realizations are
performed on the finest MLMC level, therefore the two strategies present the same
discretization error.
Even though the physical analysis of the results is outside the scope of this work, we
want to remark that in both scenarios the lift coefficient expected value estimation
(EMC[Cl] or EMC[Cl]) is consistent with literature results.

MC analysis

B it N EMC[QH ] SE time to
solution [s] C [CPU h]

AMC 4 15 2700 0.6331 1.549e-6 177.7 37.9
SMC 1 15 2700 0.6340 1.538e-6 280.3 59.8
SAMC 1 3 2700 0.6340 1.525e-6 211.3 45.0

Table 5.2: Results of the MC algorithms running the compressible potential flow problem. QH

is the lift coefficient Cl, time to solution is measured in seconds, and the computa-
tional cost C in CPU hours.

The problem is run considering a confidence (1−φ) = 0.99 and a tolerance ε = 0.004. We
exploit equation (4.14) for assessing convergence and results are presented in table 5.2.
The asynchronous algorithm is faster and cheaper compared to the other two syn-
chronous strategies. The reason relies on the fact that asynchronous MC spawns many
small batches at the beginning, therefore the machine is continuously fed and the idle
time is reduced to the minimum. On the other hand, this is not happening in the other
two scenarios, in which the synchronization points leave the machine underutilized for
longer times, producing computational inefficiencies.
In addition, considering the synchronous algorithms, we can state that the compu-
tational efficiency, for a given amount of samples, grows as the number of iterations
it decreases. This happens because we reduce the amount of synchronization points.
Nevertheless, since the convergence check is done less frequently, we risk to do much
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more computations than the ones really needed to achieve the desired accuracy, if the
hierarchy estimation is not accurate enough.
Even though we assess convergence for the lift coefficient expected value, other physical
quantities are computed when solving the system, as the pressure coefficient. We report
in figure 5.5 the risk measure expected value ± standard deviation of the pressure
coefficient.

x

C
p

Figure 5.5: Risk measure E[Cp(x)]± 3σ[Cp(x)], where x denotes the horizontal coordinate.

MLMC analysis

For running MLMC, the tolerance is set to ε = 0.03 and the confidence is (1−φ) = 0.99.
Convergence is assessed with equation (4.13).
We report in table 5.3 the results of the analyses for the different strategies. The asyn-
chronous non-adaptive MLMC outperforms the two synchronous algorithms, requiring
less than half of their computational cost and time to solution. Therefore, spawning
many small batches from the beginning is the best strategy.
Comparing MC and MLMC runs, the two strategies provide a comparable discretization
error, since MC analyses are run on the finest MLMC level. On the other hand, the



64 Asynchronous hierarchical Monte Carlo methods

B it N EMLMC[QH ] SE time to
solution [s] C [CPU h]

AMLMC 4 7 4620,70,35 0.6319 8.983e-7 192.8 41.1
SMLMC 1 7 4620,70,35 0.6321 9.023e-7 466.3 99.4
SAMLMC 1 3 4620,70,35 0.6314 8.749e-7 448.1 95.6

Table 5.3: Results of the MLMC algorithms running the compressible potential flow problem.
QH is the lift coefficient Cl, time to solution is measured in seconds, and the com-
putational cost C in CPU hours.

best MLMC strategy provides a smaller statistical error than the best MC approach,
for the same computational cost. Then, for the same computational cost, asynchronous
non-adaptive MLMC gives a smaller total error than asynchronous non-adaptive MC.

Traces

(a) Execution trace of AMC running with 16
worker nodes.

(b) Execution trace of SMC running with 16
worker nodes.

(c) CPU usage of AMC running with 16 worker
nodes.

(d) CPU usage of SMC running with 16 worker
nodes.

Figure 5.6: Execution traces of asynchronous and synchronous algorithms running the com-
pressible potential flow problem.

Apart from looking at the results of tables 5.2 and 5.3, a computational efficiency
comparison can be done also looking at how the algorithms feed the HPC machine.
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In figure 5.6a we report the execution trace of the AMC algorithm, run with 16 worker
nodes, i.e. 768 cores, and performing 15 iterations. The black spaces denote when the
CPU has not received any task to execute. The absence of these spaces in the middle
of the execution shows that the algorithm has no apparent synchronization points when
analyzing its behavior.
Figure 5.6c shows the CPU usage of the AMC run. We observe the machine is constantly
working at its maximum potential for the whole simulation, confirming we obtained
the desired behavior. In fact, the main point here is that the asynchronous batch
spawning and the dynamic scheduling of the tasks produce an excellent level of resources
utilization. Indeed, the real behavior is the one expected, maximizing the computational
efficiency and reducing to the minimum the idle time. On the other hand, SMC trace
and CPU efficiency are reported in figures 5.6b and 5.6d. We can observe that at each
convergence check, the machine is idle, and this is the cause of the larger time to solution
required by synchronous approaches. Since in figure 5.6 all plots have the same time
scale, a black space is present in figure 5.6a at the end of the execution, and means the
simulation finishes before. Similar traces are obtained for synchronous adaptive MC and
the three MLMC executions.

5.3.2 Simplified CFD problem

Governing equations

Ω

Γin Γout

ΓupΓup

Γsurf

ΓdownΓdown
0

5

10

15

m s−1

‖u‖L2(D)

Figure 5.7: Domain and velocity field of the simplified CFD problem.



66 Asynchronous hierarchical Monte Carlo methods

In the second numerical example, we aim at studying the two-dimensional flow past a
square obstacle in a domain D and a time interval [0, T ], whose behavior is described by
the incompressible Navier-Stokes equations, introduced in chapter 2 and reported here
for the sake of simplicity:

∂u

∂t
+ u · ∇u− ν∆u +∇p = f in [0, T ]×D

∇ · u = 0 in [0, T ]×D,
(5.3)

where u is the velocity field, p the pressure field, ν the kinematic viscosity and f the
vector field of body forces. The Re of the problem is 1.
The boundary condition defined in the inlet Γin is stochastic and constant in time. The
flow in the inlet follows the power law

u · n = u
( z
z0

)α
on Γin

u · n⊥ = 0 on Γin,
(5.4)

where n is the unit normal on ∂D, u ∼ N (10, 1.0), α ∼ N (0.12, 0.012), z and z0

the vertical coordinate and a reference height, respectively, and N denotes a normal
distribution. Wall boundary conditions are applied to Γsurf , free slip conditions to Γup,
zero flux boundary conditions to Γout and no slip conditions to Γdown [6].
The output QoI of the system is the drag force Fd computed on the surface Γsurf .
Our goal is to compare the synchronous and asynchronous approaches for both MC and
MLMC. MC is run on the finest MLMC level, thus all algorithms will have a comparable
discretization error.
The choice of a case like this is particularly relevant, since it is a realistic and challenging
simplification of CFD engineering problems, and we aim at showing how adopting the
asynchronous framework increases the overall computational efficiency.

MC analysis

The tolerance is set to ε = 0.5 and the confidence is (1− φ) = 0.99. We remark that ε
is a dimensional quantity. Equation (4.14) is exploited for assessing convergence.
In table 5.4 the results of the MC algorithms are reported. We can see that the asyn-
chronous algorithm is faster and cheaper than the two synchronous approaches. The
reason is the same as before: spawning many small batches at the beginning of the
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B it N EMC[QH ] SE time to
solution [s] C [CPU h]

AMC 4 15 2700 5018.9 0.0335 1034.0 220.6
SMC 1 15 2700 5019.2 0.0306 1193.3 254.5
SAMC 1 3 2700 5019.1 0.0322 1116.5 238.2

Table 5.4: Results of the MC algorithms running the simplified CFD problem. QH is the drag
force Fd, time to solution is measured in seconds, and the computational cost C in
CPU hours.

simulation is more convenient than launching one per iteration, even in the case of a
reduced number of synchronization points.

MLMC analysis

B it N EMLMC[QH ] SE time to
solution [s] C [CPU h]

AMLMC 4 15 3600,1200,600 5019.0 0.0217 958.5 204.4
SMLMC 1 15 3600,1200,600 5019.0 0.0225 2534.3 540.6
SAMLMC 1 3 3600,1200,600 5019.3 0.0211 1042.4 222.3

Table 5.5: Results of the MLMC algorithms running the simplified CFD problem. QH is the
drag force Fd, time to solution is measured in seconds, and the computational cost
C in CPU hours.

For the MLMC analysis, the tolerance is set to ε = 2.5 and the confidence is (1− φ) =

0.99. Convergence is assessed with equation (4.13).
In table 5.5 we can observe the results obtained with the three different MLMC strate-
gies. Once more, the asynchronous method is the cheapest and fastest, compared to the
synchronous algorithms. Even reducing a lot the number of iterations, the asynchronous
strategy is the most efficient.
Similarly to the previous problem, we compare MC and MLMC. We can observe that,
for the same computational cost, MLMC presents a smaller statistical error, thus asyn-
chronous MLMC is the preferred strategy. The discretization error of MC and of MLMC
is the same, since MC realizations are run on MLMC finest level.
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(a) Execution trace of AMLMC running with
16 worker nodes.

(b) Execution trace of SAMLMC running with
16 worker nodes.

(c) CPU usage of AMLMC running with 16
worker nodes.

(d) CPU usage of SAMLMC running with 16
worker nodes.

Figure 5.8: Execution traces of asynchronous and synchronous algorithms running the simpli-
fied CFD problem.

Traces

In figures 5.8a and 5.8c, the executing trace of the asynchronous MLMC algorithm and
its CPU usage are reported, while in figures 5.8b and 5.8d we observe the trace and the
CPU usage of the synchronous adaptive MLMC algorithm. The time scale is the same
for all plots.
One important observation to be made is that simulations on higher levels are running
on multiple threads. On the other hand, the trace only shows the main thread that
actually receives the task execution order. The rest of the working threads are shown
as idle. This means that for each line corresponding to a 2 CPU task, there is one
apparently idle CPU that is working. For the tasks running on 4 CPUs, there are 3
CPUs that seem idle but are actually busy. In order to ease the comprehension of this
fact, we have included CPU usage graphs, that take into account the real amount of
CPUs that are working. Looking at both figures at the same time, it can be deduced that
the yellow tasks occupy a single CPU, the red tasks 2 and the blue tasks 4. Keeping
that in mind, it is possible to state that the resource usage of the MLMC algorithm



Scalability of the asynchronous framework 69

is more efficient. Indeed, figure 5.8d shows that the hardware is getting idle at some
points while new batches are still not launched. On the other hand, we see how the
asynchronous framework continuously feeds the machine, improving the computational
efficiency of the execution.

5.4 Scalability of the asynchronous framework

5.4.1 Scalability with solver using OpenMP parallelism

N CPUs T Speedup Ideal
Speedup ζ ξ

2 96 187347.8 1.0 1 1.0 -
4 192 95515.2 1.96 2 0.98 0.02
8 384 48093.9 3.90 4 0.97 0.01
16 768 24016.9 7.80 8 0.98 0.00
32 1536 12236.2 15.31 16 0.96 0.02
64 3072 6397.7 29.28 32 0.92 0.04
128 6144 4106.1 45.63 64 0.71 0.22

Table 5.6: Scalability results of asynchronous MLMC algorithm running the simplified CFD
problem. T is expressed in seconds and is the total time the algorithm required to
be run, and is expressed in seconds. ζ represents the performance efficiency, and ξ
the performance lost with respect to the previous level.

In addition to the previous results, a strong scalability test of the asynchronous MLMC
algorithm is presented in figure 5.9 and table 5.6. The algorithm runs the simplified
CFD problem described above. Different settings and batch hierarchies with respect to
previous executions are considered, thus results are not comparable.
Figure 5.9 reports the speedup of the problem, i.e. the ratio between the execution
time with N worker nodes, N = {2, 4, 8, 16, 32, 64, 128}, and the execution time with 2

worker nodes. In the table, N indicates the amount of worker nodes, T is the execution
time of the simulation, measured in seconds, ζ represents the performance efficiency,
and ξ stands for the performance lost with respect to the previous level. Both ζ and
ξ are expressed in percentage, the former is given by ζ = speedup

ideal speedup , while the latter
is ξ = 1 − ζN

ζN−1
. In addition, when computing the ideal speedup, we have considered

that the full code is parallelizable. Indeed, we have estimated that the initial serial part
takes less than 0.01% of the execution time. Moreover, the initial amount of batches and
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Figure 5.9: Strong scaling results of the asynchronous MLMC method integrated with the
solver Kratos and the programming model for distributed computing PyCOMPSs.
The baseline for calculating the scalability is the execution time obtained for 2
worker nodes. The test is run on the MareNostrum 4 supercomputer and each
node has 48 CPUs.

their size are large enough to fill the whole machine at every moment. In this scenario,
the Amdahl’s law states that augmenting the available resources in a given ratio should
decrease the execution time in the same exact linear proportion.
We can observe that the proposed algorithm implementation scales pretty well up to
128 worker nodes. Indeed, we scale almost linearly until 64 worker nodes, and only at
128 worker nodes we start to observe some parallel efficiency loss.

5.4.2 Scalability with solver using MPI parallelism

In [52] we assess the performance of the asynchronous MC method when running with
Kratos as MPI parallel solver and PyCOMPSs as programming model for distributed
computing. The problem we solve is the three-dimensional wind flow past a high-rise
building and is presented in section 9.2.3.
We report in figures 5.10 and 5.11 the strong and weak scalability results, respectively.
In both cases, the baseline for calculating the scalability is the execution time obtained
for 16 worker nodes. The test is run on the MareNostrum 4 supercomputer and each
node has 48 CPUs. We can observe that optimal efficiency up to 128 worker nodes (6144
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CPUs) is achieved.
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Figure 5.10: Strong scalability results of the asynchronous MC method integrated with the
MPI parallel solver Kratos and the programming model for distributed computing
PyCOMPSs. The image is taken from [52].
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Figure 5.11: Weak scalability results of the asynchronous MC method integrated with the
MPI parallel solver Kratos and the programming model for distributed computing
PyCOMPSs. The image is taken from [52].
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5.5 Summary

In this chapter, we have proposed a new asynchronous strategy for performing UQ
analyses, built on top of hierarchical MC methods. The proposed method is particularly
interesting when running on HPC environments, exploiting the concurrency capabilities
of modern supercomputers.
The key feature of the asynchronous framework is the new level of parallelism, between
batches, which is added to the existing parallelism between levels, samples per level, and
on the solver of each realization of state of the art methods. The asynchronous methods
possess both reliability and efficiency, as discussed and demonstrated.
We have analyzed the behavior of the asynchronous framework against state of the art
hierarchical MC methods. In all cases, the asynchronous approach was the one with
the best performance for satisfying the convergence criterion. The gain is huge against
non-adaptive methods. On the other hand, if the number of iterations is minimized, the
computational efficiency improves, since the idle time decreases, but never reaches the
efficiency of the asynchronous approach. Moreover, we remark that the asynchronous
method does not require any screening phase in order to run, since the batch hierarchy
can be as small as desired.



Chapter 6

Adaptive mesh refinement for
hierarchical Monte Carlo methods

In this thesis, we are interested in solving problems of engineering interest, which are
computationally expensive. It may happen that some complex features take place only
in some part of the domain. For this reason, using uniform meshes could be discouraged,
since they provide high accuracy in regions of the domain where it may not be required.
A potential solution could be using domain discretizations with multiple layers. How-
ever, such layers should be defined a priori, thus can easily be inaccurate if the system
does not behave as expected. On the contrary, solution-based adaptively refined meshes
do not present such issues, since they are adapted depending on features of the system
we are interested in. AMR can be understood as a preprocess phase with respect to the
solution of the problem.
The remeshing software we exploit is Mmg [45], which employs a metric-based adaptive
refinement. In our case, we focus on Hessian-based metrics, that make use of some
error indicator to refine the mesh. Details about the metric computation are provided
in section 6.1, while the possibility of using different error indicators is described in
section 6.2. Moreover, we propose an integration of AMR and the MLMC method in
section 6.3, where AMR can optionally be performed on the fly.
As for other software implementation, we acknowledge that the AMR process described
in section 6.1 is part of the Kratos software, developed by Kratos colleagues [94, chapter
6].
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6.1 Hessian-based metric computation

In this thesis, we are interested in computing Hessian-based metric tensors. To per-
form AMR, we therefore need to construct a d × d nodal metric tensor M, where d
is the domain dimension of our system. The metric tensor is symmetric positive, non-
degenerated, diagonalizable and its purpose is setting sizes and directions of the refined
mesh. The metric tensor can be written as [3, 2, 41]

M = RΛ̂tR, (6.1)

where

Λ̂ = diag(λ̂i), (6.2)

λ̂i = min

(
max

(
cd|λi|
ε

, h−2
max

)
, h−2

min

)
. (6.3)

R is the eigenvector matrix and λi are the eigenvalues of the Hessian Hu of a scalar
variable u (twice differentiable), that is representative of the system. We refer to such
a variable u as error indicator. The metric tensor is function of a constant cd (which
depends on the system dimension), of the interpolation error ε and of hmax and hmin,
respectively the maximum and minimal mesh sizes of the refined mesh. The interpolation
error is defined as

ε = ‖u− uh‖K , (6.4)

where ‖ · ‖K is some norm defined on each element, e.g. the L2(K)-norm. In other
words, it is the error we commit when estimating u with uh, where uh is computed on
top of a discretization of the domain with characteristic size h.
In the case of tetrahedrons (denoted by K) with 6 edges, the interpolation error is
bounded as [55, 2]

||u− uh||L∞(K) ≤ cd max
x∈K

max
j=1...6

〈ej, |Hu(x)|ej〉. (6.5)

Citing [2], "a bound of the interpolation error in L∞ norm is given by the square length
of the largest edge of the tetrahedron computed with respect to the metric of the max-
imal absolute value of the Hessian". Such a relation permits to avoid computing equa-
tion (6.4), which is not viable if an analytical expression of u is not available. In fact,
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by using equation (6.5), the interpolation error can be set and the optimal edge lengths
of the tetrahedrons can be estimated.
In case of multiple error indicators u, it is necessary to intersect the metric tensors into
a final one. Each error indicator generates a metric, and when intersecting we keep the
most restrictive size constraints for all directions [2].

6.2 Error indicators

The metric is computed on top of an error indicator u, which must be properly selected.
As a general rule, it is important to use an error indicator that contains as much infor-
mation about the system as possible. For this reason, we normally use some solution
field of the partial differential equation describing the system as an error indicator.
Let us consider a CFD problem. In this context, one possibility is to use velocity
and pressure fields as error indicators, which are the solution of the physical problem.
Different combinations of the fields can be considered as error indicators to build the
Hessian-based metric, and are presented next.

i) Time-averaged velocity field 〈u〉T0,T . 〈·〉T0,T denotes to the time averaging operator
with time window [T0, T ].

ii) Time-averaged pressure field 〈p〉T0,T .

iii) Time-averaged velocity field 〈u〉T0,T and time-averaged pressure field 〈p〉T0,T .

iv) Velocity field u. The metric is updated at each time step of the time window
[T0, T ] and the most restrictive metric is retained on each element.

v) Pressure field p. The metric is updated at each time step of the time window
[T0, T ] and the most restrictive metric is retained on each element.

vi) Velocity field u and pressure field p. The metric is updated at each time step of the
time window [T0, T ] and the most restrictive metric is retained on each element.

The cases i), ii), iv), v) use only one solution field, while iii) and vi) use the two solution
fields. Another difference is that the error indicators i), ii) and iii) are cheaper, since
the metric is computed only once at the end of the simulation, but less accurate, due
to the time averaging process which dumps peaks and oscillations. On the other hand,
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strategies iv), v) and vi) take into account any peak that may appear in the time
history to compute the metric, but present a larger computational cost, since the metric
is updated at each time step.
We comment that we propose a systematic way to choose the best error indicator for
low Re flows around bodies in [14].

Rectangle obstacle problem To generate the mesh for solving the rectangle obstacle
problem of sections 7.1, 8.2.1 and 9.2.1, the AMR strategy is performed starting from a
background mesh generated by GiD [98]. The problem is solved once, for a time window
of 600 s. The relative time required to compute the Hessian-based metric exploiting
the velocity field, the pressure field or the velocity and pressure fields with respect to
the overall simulation cost is approximately of 8.5%. On the other hand, the time
to compute the Hessian-based metric using the time-averaged velocity field, the time-
averaged pressure field or time-averaged velocity and time-averaged pressure fields is
negligible with respect to the overall duration of the simulation.
We can appreciate the difference between the error estimators discussed above in fig-
ure 6.1.

High-rise building problem To generate the mesh for solving the high-rise building
problem of sections 7.2 and 9.2.3, we perform AMR. We start from a mesh generated
from GiD [98], where multiple uniform layers are present. We run the problem once
with such a background mesh, for a time window of 600 s, to compute the Hessian-based
metric, and then we remesh. The relative cost of computing the Hessian-based metric
with the velocity field, the pressure field or the velocity and pressure fields as error
indicator is approximately 7% of the overall computational cost. On the other hand,
the time to compute the Hessian-based metric using the time-averaged velocity field, the
time-averaged pressure field or time-averaged velocity and time-averaged pressure fields
is negligible with respect to the overall duration of the simulation. Using velocity and
pressure fields is a convenient choice as an error indicator, since pressure and velocity
fields represent the solution of the physical problems and updating at each time step the
metric is not too expensive and allows us to consider peaks which may appear during
the simulation. Further details about the mesh and its validation are provided in next
chapters. Similar considerations hold true for the mesh used in sections 8.2.2 and 9.2.2.



Adaptive refinement MLMC methods 77

(a) Time-averaged velocity field error estima-
tor.

(b) Time-averaged pressure field error estima-
tor.

(c) Time-averaged velocity field and time-
averaged pressure field error estimator.

(d) Velocity field error estimator.

(e) Pressure field error estimator. (f) Velocity field and pressure field error esti-
mator.

Figure 6.1: Metric-based remeshing of the rectangle obstacle problem of sections 7.1, 8.2.1
and 9.2.1. The metric is computed using the six different error estimators of sec-
tion 6.2 and the same interpolation error.

6.3 Adaptive refinement MLMC methods

We propose next two different algorithms, that aim at integrating AMR strategies with
the MLMC method. The same approach can be easily applied to other multi-level
methods, as CMLMC and to their asynchronous counterparts.
In the following, the discretization of the first level is fixed and presents an accuracy set
by the user a priori. We consider two different methods for integrating AMR strategies
with the MLMC method: deterministic adaptive refinement and stochastic adaptive re-
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finement. The former generates deterministic adaptive meshes at the beginning of the
algorithm, and the same discretizations are used for all realizations. Therefore, deter-
ministic adaptive meshes are independent of the stochastic parameters of the problem.
The second generates stochastic adaptive meshes for each realization, and therefore each
discretization depends on the random parameters of the system. In both cases, meshes
are controlled by a set of interpolation errors ε associated to each level. Moreover, we
remark that, in the stochastic adaptive refinement case, the AMR procedure is called
more frequently than in the deterministic adaptive refinement case.
The novelty of the two approaches we propose is that they reduce the mesh generation
impact by exploiting persistent storage of the discretizations. This implies storing deter-
ministic meshes once they are generated and making them available whenever needed.
Alternatively, in the case of stochastic adaptive meshes, we generate them simultane-
ously to the running of other events, thus overlapping the two steps of the solver and of
the remesher. We remark that in the case of single-level MC, persistent storage of the
mesh is also applied, and the discretization is made available whenever needed.
Two different versions are currently available to perform persistent storage of domain
discretizations. The former consists of storing a single serialized object when the sim-
ulation is local and all the data belongs to the same process of an HPC system. On
the other hand, when the simulation is run using MPI parallelism, several processes are
typically spawned across multiple computing nodes and the single-process serialization
is no longer possible. Therefore, we perform a distributed serialization, which means
that each MPI process is responsible for the serialization and then for the recovery of
its piece of data.
We report in algorithms 5 and 6 the deterministic adaptive refinement MLMC method
and the stochastic adaptive refinement MLMC method, respectively. To simplify com-
parisons with algorithm 2, h-statistics are used to estimate central moments, and both
non-adaptive and adaptive strategies are considered.
We define Sl,p as the power sum of level l and power p, where p ∈ [1, P ], P is the
maximum order we need and the number of realizations N is omitted. Similarly, the
h-statistic of level l and power p is defined as hl,p. The number of iterations it is updated
each time a convergence check is performed. The number of levels, of samples per level,
the mesh parameters and the interpolation errors are represented by L,N , H and ε,
respectively. The left horizontal arrow denotes the update or the computation of the

left value as a function of the right values. Hl
AMR←−−−− εl denotes the AMR process, and
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LMAX the maximum number of levels.

Algorithm 5 Deterministic adaptive refinement MLMC
L,N, ε initial hierarchy and interpolation errors
for l = 0 : LMAX do

Hl
AMR←−−−− εl

end for
while convergence is not True do
if non-adaptive then
L←− L, it
N ←− N, it

else if adaptive then
L←− L, it, hl,p, l ∈ [0, L], p ∈ [1, P ]
N ←− N, it, hl,p, l ∈ [0, L], p ∈ [1, P ]

end if
for l = 0 : L do
for n = 0 : Nl do

Q(n)
Hl
←− solver(w(n,l))

Q(n)
Hl−1
←− solver(w(n,l))

Y
(n)
Hl

= Q(n)
Hl
−Q(n)

Hl−1

Snl,p ←− Sn−1
l,p , Y

(n)
Hl
, n, p, p ∈ [1, P ]

end for
end for
hl,p ←− Sl,p, Nl, l ∈ [0, L], p ∈ [1, P ]
convergence←− equation (4.9)
it = it+ 1

end while

To compare the two strategies of algorithms 5 and 6, we solve first the compressible
potential flow problem of section 5.3.1, and then the simplified CFD problem of sec-
tion 5.3.2. To compare the two methods, we evaluate the time to solution of computing

Q(n)
Hl
←− solver(w(n,l)) of algorithm 5, and the time to solution of computingHl

AMR←−−−− εl

and Q(n)
Hl
←− solver(w(n,l)) of algorithm 6.

As we see in tables 6.1 and 6.2, the relative difference between the two times to solution
decreases. This implies that, as the computational cost of the problem grows (thus
Q(n)
Hl
←− solver(w(n,l)) computational cost grows), the relative wall clock time difference

between the two methods decreases. It seems therefore more promising to use the
stochastic adaptive refinement MLMC method to solve complex problems, since for each
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Algorithm 6 Stochastic adaptive refinement MLMC
L,N, ε initial hierarchy and interpolation errors
while convergence is not True do
if non-adaptive then
L←− L, it
N ←− N, it

else if adaptive then
L←− L, it, hl,p, l ∈ [0, L], p ∈ [1, P ]
N ←− N, it, hl,p, l ∈ [0, L], p ∈ [1, P ]

end if
for l = 0 : L do
for n = 0 : Nl do

Hl
AMR←−−−− εl

Hl−1
AMR←−−−− εl−1

Q(n)
Hl
←− solver(w(n,l))

Q(n)
Hl−1
←− solver(w(n,l))

Y
(n)
Hl

= Q(n)
Hl
−Q(n)

Hl−1

Snl,p ←− Sn−1
l,p , Y

(n)
Hl
, n, p, p ∈ [1, P ]

end for
end for
hl,p ←− Sl,p, Nl, l ∈ [0, L], p ∈ [1, P ]
convergence←− equation (4.9)
it = it+ 1

end while

time to
solution [s]

Q(n)
Hl
←− solver(w(n,l)) 231

Hl
AMR←−−−− εl and Q(n)

Hl
←− solver(w(n,l)) 353

Table 6.1: Time to solution required to solve Q(n)
Hl
←− solver(w(n,l)) and the joint of Hl

AMR←−−−
εl and Q(n)

Hl
←− solver(w(n,l)). The former is representative of the deterministic

adaptive refinement MLMC method, while the second of the stochastic adaptive
refinement MLMC method. The problem solved is the compressible potential flow
problem of section 5.3.1.

realization the discretization depends on the current random variables of the system and
we can obtain higher accuracy for approximately the same computational cost.
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time to
solution [s]

Q(n)
Hl
←− solver(w(n,l)) 4987

Hl
AMR←−−−− εl and Q(n)

Hl
←− solver(w(n,l)) 6246

Table 6.2: Time to solution required to solve Q(n)
Hl
←− solver(w(n,l)) and the joint of Hl

AMR←−−−
εl and Q(n)

Hl
←− solver(w(n,l)). The former is representative of the deterministic

adaptive refinement MLMC method, while the second of the stochastic adaptive
refinement MLMC method. The problem solved is the simplified CFD flow problem
of section 5.3.2.

6.4 Summary

In this chapter, we have first introduced the Hessian-based metric that we use for per-
forming AMR. Then, we have discussed the possibility of using different error estimators,
such as time-dependent fields or their time-averaged counterparts, to compute the met-
ric. Finally, we have proposed two possibilities for integrating MLMC and AMR. Both
make use of persistent usage to optimize the runtime, and comparisons between the two
methods are shown and discussed. It results that the stochastic adaptive refinement
MLMC method is more promising for complex problems, since it provides higher dis-
cretization accuracy for approximately the same computational cost of the deterministic
adaptive refinement MLMC method.





Chapter 7

Hierarchical Monte Carlo methods for
chaotic systems

In this chapter, we solve two stochastic and chaotic fluid flow problems. The former is
presented in section 7.1 and describes the two-dimensional flow of air around a rectangle
obstacle. The second problem is presented in section 7.2 and solves the flow of air
around the Commonwealth Advisory Aeronautical Council (CAARC) building, that is
a standard benchmark building in wind engineering. Both problems are stochastic, in
the sense that they present random boundary conditions. By solving the first problem,
it is found in section 7.1.3 that the hypotheses for an optimal MLMC run (see section 4.3
or the references [58, complexity theorem 3.1] and [111, section 2.2]) are not satisfied. As
commented in our works [14, 15], the reason is the chaotic nature of the flow. Thus, the
asynchronous single-level MC method is used for solving the two stochastic problems.
For solving the CFD problems, we use Kratos [44, 43] as FE solver software, XMC [13]
as hierarchical MC library and PyCOMPSs [16, 88, 126] as programming model for
distributed computing. The integration of these software has been an important part of
this thesis work, as documented in [127, 10, 11, 5, 4, 22].
The analyses were run on MareNostrum 4. This supercomputer has 11.15 Petaflops
of peak performance, which consists of 3456 compute nodes equipped with two Intel R
Xeon Platinum 8160 (24 cores at 2.1 GHz each) processors.
The content of this chapter is taken from the preprint of our conference proceeding
[131] and from our ExaQUte report [22, section 3] and is adapted wherever needed.
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7.1 Rectangle obstacle problem

We start describing the physical system and illustrating the problem uncertainties in
section 7.1.1. Then, we validate the domain discretization and the solver in section 7.1.2
and we try to verify the MLMC hypotheses in section 7.1.3. Finally, we solve the problem
using the asynchronous MC method in section 7.1.4.
We remark that the rectangle obstacle problem is analyzed and solved with different
configurations. In section 7.1, constant in time stochastic boundary conditions are
considered, and the problem is solved with hierarchical MC methods. In section 8.2.1,
constant in time deterministic boundary conditions are considered, and the problem is
solved with the standard time averaging method and the ensemble averaging method.
In section 9.2.1, constant in time stochastic boundary conditions are considered, and
the problem is solved with the ensemble-based MC method. Therefore, in this section
we use constant in time stochastic boundary conditions.

7.1.1 Problem formulation

The problem consists of describing the flow of air around a 5 m× 1 m rectangle obstacle
[28]. The system is described by the incompressible Navier-Stokes equations, introduced
in chapter 2 and reported here for the sake of simplicity:

∂u

∂t
+ u · ∇u− ν∆u +∇p = f in [0, T ]×D

∇ · u = 0 in [0, T ]×D,
(7.1)

where u is the velocity field, p the pressure field, ν the kinematic viscosity and f the
vector field of body forces. D refers to the problem domain, and [0, T ] is the time
window. The problem domain is shown in figure 7.1. The inlet velocity is uniformly
distributed on the y-axis, and has an average value of 2 m s−1. We assume the wind inlet
velocity magnitude is represented by a normal distribution,

u inlet ∼ N (2.0, 0.02). (7.2)

More consistent wind models are used in the next example in section 7.2 and in chapters 8
and 9. Slip boundary conditions are applied on the external boundaries, and no-slip
boundary conditions are enforced on the rectangle body. The Reynolds number of the
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B = 5D

D

Lx

Λx

Ly

Figure 7.1: Scheme of the computational domain used for the rectangle problem, where D =
1 m, B = 5D, Lx = 55B, Ly = 30B and Λx = 15B. Thus, the dimensions of the
outer domain are 275× 150 m, and the inner rectangle has size 5× 1 m.

problem is 132719. We remark that, even though turbulence cannot be identified in two-
dimensional systems, the rectangle obstacle problem we define is particularly important,
since it provides a cheap yet accurate system for studying features of chaotic flows.
The washout time, which is the time needed for one particle to go from the inlet to the
outlet of the domain, is 137.5 s, considering an average speed of 2 m s−1. The washout
time is computed as

Tw =
275 m

2 m s−1 . (7.3)

Therefore, we consider a burn-in time T0 of 140 s. T0 is the simulation time information
we discard to remove the influence of initial conditions on the problem solutions. More
insights about optimal burn-in time estimations are given in chapter 8.
The QoIs we are interested in are:

1. time-averaged drag force 〈Fd〉T0,T ,

2. time-averaged pitching moment 〈Mp〉T0,T ,

3. time-averaged pressure field 〈p(x)〉T0,T on the body surface,

4. drag force Fd,
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5. pitching moment Mp,

6. pressure field p(x) on the body surface.

By time-averaged, we refer to quantities averaged over the interval [T0, T ], thus some
information is lost due to the averaging process, which damps peaks and oscillations. In
other words, out of a single realization, the quantity of interest is a single scalar value.
On the other hand, other quantities keep all the historical information. International
units are used to measure quantities and we omit the subscript T0, T if there is no risk
of misunderstanding.

7.1.2 Validation

The mesh considered to solve the problem is a solution-oriented AMR discretization. The
mesh is refined with respect to the time-averaged velocity field 〈u(t,x)〉T0,T , averaged
on [T0, T ], where [0, T0] is the burn-in time discarded to avoid dependencies on initial
conditions. The metric computed to perform the refinement is built within Kratos [94],
exploiting the averaged velocity field, and the original mesh is refined using the Mmg
software [45].
The final mesh has around 25000 nodes, and a minimal size, close to the rectangle body,
of 0.002 m. The chosen time step is 0.02 s, which gives a Courant-Friedrichs-Lewy (CFL)
number of

CFL =
∆tu

h
≈ 20. (7.4)

From the drag force of table 7.2, one can estimate the drag coefficient as

Cd =
Fd

1
2
ρu2A

, (7.5)

where ρ is the fluid density, u the speed of the rectangle body relative to the fluid and A
the cross sectional area. The drag coefficient we obtain is Cd = 1.320, which is consistent
with literature results [28].

7.1.3 MLMC validation

Our first attempt to solve the stochastic problem is using MLMC, which provides a better
convergence rate with respect to standard MC. To use MLMC, the three hypotheses
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defined in section 4.3 must be satisfied. The set of meshes we consider are presented
in table 7.1. These meshes are generated performing AMR using a reference inlet wind
velocity of 2 m s−1. The error indicator used for performing AMR is the joint of velocity
and pressure fields.

ε hmin N [·1000]

1.5 · 102 0.054 0.9
1.5 · 101 0.017 1.9
1.5 · 100 0.0054 5.4
1.5 · 10−1 0.0019 25.6
1.5 · 10−2 0.00068 229.4

Table 7.1: List of meshes computed with AMR strategy. ε is the interpolation error, that is
an indicator of the error that is committed by discretizing the domain with respect
to an error indicator. N is the number of thousands of nodes of the mesh and hmin
the minimal size.

10−1100101

ε

0.0

0.1

0.2

0.3

0.4

0.5

〈F
d
l
〉 T
b
t
,T
−
〈F
d
l−

1
〉 T
b
t
,T

ε

〈F
d
l
〉 T

0
,T
−
〈F

d
l−

1
〉 T

0
,T

Figure 7.2: Difference of the drag force between consecutive levels, plotted as function of the
interpolation error. 50 realizations are reported, each with wind inlet randomly
generated.
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Figure 7.3: Expected value of the difference of the drag force, computed on consecutive levels.
The expected value is computed from the 50 realizations of figure 7.2, and is plotted
as function of the interpolation error.

First, we try to check if the expected value of the difference of Fd across consecutive
levels decreases exponentially as the mesh accuracy grows. We generate 50 different
random inlet conditions w, and we observe the behavior of EMC[〈Ql〉T0,T − 〈Ql−1〉T0,T ],
where Ql is the drag force Fd computed on level l. We report in figure 7.2 the difference
between consecutive levels of the drag force, for each wind scenario. We can observe
that there is no correlation. In figure 7.3, we plot the expected value of the difference
of the drag force, from the 50 scenarios of figure 7.2. We can observe that there is no
exponential decay.
Figure 7.4 plots the variance of the difference of the drag force across consecutive levels,
as function of the interpolation error. We observe that there is no exponential decay.
Therefore, MLMC hypotheses are not satisfied by the current problem and we can-
not apply standard MLMC to solve it. This conclusion is in agreement with [14, 15],
which comment on the difficulties of finding time signal correlations between differ-
ent discretization meshes for chaotic flows. Specifically, in [15, section 2] the authors
show that time signal correlations can be achieved by reducing the time horizon as
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Figure 7.4: Variance of the difference of the drag force computed on consecutive levels. The
variance is plotted against the interpolation error. The 50 scenarios of figure 7.2
are considered.

T < O(L−1). L is a constant related to how quickly two very close paths diverge, and it
is large and positive for chaotic systems, thus implying T should be very small to satisfy
MLMC hypotheses for chaotic systems. Since using a very small T is not possible for
the class of problems we aim at solving, the only possibility is making L small enough.
In [122, 54], the authors achieve reducing such a constant in the case of stochastic dif-
ferential equations. However, to the best of the authors’ knowledge, no methods have
been proposed to reduce such a constant L for chaotic NS flows yet.
Therefore, due to the impossibility of using the MLMC method, we apply the asyn-
chronous MC method for solving the stochastic problem.

7.1.4 Results

For solving the stochastic problem, we want to find the time window [0, T ] and the
number of realizations N which satisfy equation (4.9), with confidence 1 − φ = 0.99

and tolerance ε = 0.0085. Even though multiple quantities of interest are computed,
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convergence is checked only for the time-averaged drag force. We remark also that the
tolerance is absolute, and it has a relative value of around 0.2%, with respect to the
time-averaged drag force expected value estimation.
The chosen algorithm is asynchronous MC, therefore we exploit equation (4.14) for
assessing convergence. We remark that the number of computing nodes of the super-
computer is chosen accordingly to the initial MC hierarchy, to make sure a single batch
of the asynchronous MC method can properly fill the HPC machine. Given a time
window [0, 300] seconds, it is found that we satisfy equation (4.9) after running 960

realizations. The overall computational cost for solving the problem is approximately
35000 CPU hours, and is computed as the product between the total number of simula-
tion hours multiplied by the number of cores exploited.
We report in figure 7.5 and figure 7.6 the instantaneous velocity and pressure fields at
t = 200 s for one realization.
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|u(x)|

Figure 7.5: Velocity field snapshot at t = 200 s.

We report in table 7.2 the expected value and standard deviation estimations of the
quantities of interest. As we can readily observe, the mean values are the same, which
is the expected behavior. On the other hand, we see that standard deviations values are
different, much smaller for time-averaged quantities of interest. This happens because
oscillations are damped due to the intermediate averaging process.
The different behavior between scalar quantities and their time-averaged counterparts
can be observed also looking at the pressure field distribution around the rectangle body,
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Figure 7.6: Pressure field snapshot at t = 200 s.

Q EN [Q] σN [Q]

〈Fd〉T0,T 3.23506 0.01242
〈Mp〉T0,T -0.01055 0.01449
Fd 3.23506 0.33241
Mp -0.01055 4.55940

Table 7.2: Statistical analysis of time-averaged drag force 〈Fd〉T0,T , time-averaged pitching mo-
ment 〈Mp〉T0,T , drag force Fd and pitching moment Mp. Results for N = 960 and
T = 300 s are provided.

which is plotted in figure 7.7. We refer to figure 7.1 as a reference for understanding the
plots of figure 7.7.

Q CVaR α

〈Fd〉T0,T 3.26569 0.9
Fd 4.33234 0.9

Table 7.3: CVaR analysis of the time-averaged drag force 〈Fd〉T0,T and the drag force Fd.
Results for N = 960, T = 300 s and α = 0.9 are provided.

Finally, another statistical quantity one may be interested in computing is the CVaR,
defined in chapter 3. Looking at table 7.3, we can observe the CVaR values for the
drag force and its time-average counterpart, with α = 0.9. Similar to what we com-
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Figure 7.7: The upper figure shows the risk measure expected value ± standard deviation of
the time-averaged pressure field (Q = 〈p(x)〉T0,T ), and the lower figure the same
risk measure of the pressure field (Q = p(x)).
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mented before, we can observe that time-averaged values are smaller since oscillations
are damped by the intermediate averaging process.

7.2 High-rise building problem

The second problem considers the flow of wind around the CAARC building [24, 67, 66,
107]. We start presenting the system in section 7.2.1, we validate the mesh discretiza-
tiona and the solver in section 7.2.2 and we present results in section 7.2.3.
We remark that the CAARC building problem is analyzed and solved with different con-
figurations. In section 7.2, turbulent fluctuations around a fixed mean wind field bound-
ary conditions are considered, and the problem is solved with hierarchical MC methods.
In section 8.2.2, constant in time fixed mean wind field boundary conditions are con-
sidered, and the problem is solved with the standard time averaging method and the
ensemble averaging method. In section 9.2.2, constant in time stochastic mean wind field
boundary conditions are considered, and the problem is solved with the ensemble-based
MC method. In section 9.2.3, turbulent fluctuations around a stochastic mean wind field
boundary conditions are considered, and the problem is solved with the ensemble-based
MC method. Therefore, in this section we use turbulent fluctuations around a fixed
mean wind field boundary conditions.

7.2.1 Problem formulation

The flow is modeled with the incompressible NS equations (see chapter 2 or section 7.1).
The problem domain is presented in figure 7.8. The CAARC is a parallelepiped building
with width 45 m, length 30 m and height 180 m. The domain is 1800 m long, 864 m large
and 576 m high. Slip boundary conditions are applied on the walls and the ceiling,
no-slip boundary conditions on the building and on the floor.

ūH H z0 ρ µ Re

40 m s−1 180 m 2 m 1.225 kg/m3 1.846 · 10−5 kg m−1 s−1 119447453

Table 7.4: Physical parameters problem.

We consider a scenario typical of centers of very large cities, and we report in table 7.4
the physical properties of the problem. Therefore, the roughness height z0 is set to
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Figure 7.8: CAARC problem domain. H = 180 m, W = 45 m and L = 30 m. Wind
gusts are omitted for the sake of simplicity, and only the mean wind profile
is represented.

2.0 m [73], which implies the wind velocity mean profile u to be fixed. The wind velocity
is modeled as described in section 2.4. The mean profile u follows the logarithmic profile

ū(z) =
u∗

k
ln(z/z0), (7.6)

where k ≈ 0.4 is von Karman’s constant and u∗ the friction velocity. We fix a reference
velocity of 40 m s−1 at the reference height of 180 m of the building. At the same time,
wind fluctuations u′ are considered and are the uncertain parameter of the system. Wind
gusts are modeled with the Mann model, as commented in section 2.4. The Reynolds
number is of the order of 108, computed with a characteristic length of 45 m and density
and viscosity of air.
Since in section 7.1.3 and in [14, 15] it is shown that satisfying MLMC hypotheses is
challenging for chaotic flows, we decide to solve such a stochastic problem applying the
asynchronous MC method. Convergence of the asynchronous MC algorithm is checked
using the failure probability criterion, defined in equation (4.9). Since we use a single-
level method for solving the stochastic problem, convergence is assessed by computing
equation (4.14).
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The QoI for which we assess convergence is the time-averaged drag force 〈Fd〉T0,T , av-
eraged over the effective time window [T0, T ], where we remark that the burn-in time
T0 is the time history we discard to neglect the effect of initial conditions on the QoI,
and we set it to 32 s. The confidence 1− φ is 99% and the tolerance ε is 65000, whose
corresponding relative tolerance with respect to the time-averaged drag force expected
value is approximately 0.7%. Other observables are computed: the drag force Fd, the
base momentMb and the time-averaged base moment 〈Mb〉T0,T , the pressure field on the
building p(x) and the time-averaged pressure field on the building 〈p(x)〉T0,T . Interna-
tional units are used to measure quantities and we omit the subscript T0, T if there is
no risk of misunderstanding.

7.2.2 Validation

The mesh we use is adaptively refined with respect to pressure and velocity fields. It
presents around 283 thousand nodes and a minimal size of 0.2 m close to the building.
The chosen time step is 0.2375 s, which gives a CFL of 100. We shall remark that the
mesh remains relatively coarse with respect to the resolution that would be needed to
resolve the flow at the Reynolds number of interest. This situation is often encountered
in the field of wind engineering [124]. The VMS stabilization, which is used as basis of
our solver, represents an alternative to classical LES approaches and provides a simple
yet effective turbulence model for the applications of interest [39, 113, 42].
To ensure correctness of the solver and of the mesh, we compute the following normalized
coefficients [24]

CFX = FX
1/2ρW

∫H
0 ū2 dZ

CFY = FY
1/2ρW

∫H
0 ū2 dZ

CMX
= MX

1/2ρū2
HWH2 CMY

= MY

1/2ρū2
HWH2 ,

(7.7)

where ρ is the density of the fluid, ū the velocity of the mean profile, ūH the velocity
at height H = 180 m, W the building width and FX , FY , MX and MY the forces and
moments computed on directions X and Y , respectively. X is the direction parallel
to the ground and orthogonal to the inlet, while Y is parallel to both the ground and
the inlet. We compare the time-averaged normalized coefficients with [107, 67, 24] in
table 7.5.
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References 〈CFX 〉 〈CFY 〉 〈CMX
〉 〈CMY

〉
Current work 1.818 0.001 -0.001 0.694
[107] 1.490 -0.039 0.000 0.640
[67] 1.830 0.006 - -
[24] 1.660 0.008 0.004 0.570

Table 7.5: Normalized force and moment coefficients mean values of current work, compared
with literature. Time averages of our work are estimated for an effective time window
T − T0 = 600 s.

7.2.3 Results

The convergence criterion is satisfied by a number of realizations N = 126 and an
effective time window T − T0 = 300 s. The final error CφSE we obtain is 52755, whose
relative value CφSE

EMC[〈Fd〉T0,T ]
is smaller than 0.6%.

We report in figure 7.9 and figure 7.10 the instantaneous velocity and pressure fields at
t = 50 s for one realization.

0

20

40

60

m/s

|u(x)|

Figure 7.9: Velocity field snapshot at t = 50 s.

In table 7.6 we report the sample expected value and the sample standard deviation
of 〈Fd〉T0,T , 〈Mb〉T0,T , Fd and Mb. We can observe that, as expected, time-averaged
quantities present the same expected value as their corresponding standard values. On
the other hand, standard deviation values are smaller for time-averaged quantities since
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Figure 7.10: Pressure field snapshot at t = 50 s.

the intermediate time-averaging process damps oscillations and peaks.

Q EN [Q] σN [Q]

〈Fd〉T0,T 9417766 254555
〈Mb〉T0,T -36001 720874
Fd 9417766 2365324
Mb -36001 9434439

Table 7.6: Expected value and standard deviation of time-averaged drag force 〈Fd〉T0,T , time-
averaged base moment 〈Mb〉T0,T , drag force Fd and base moment Mb. Results for
N = 126 and T − T0 = 300 s are provided.

Similar conclusions can be drawn for the time-averaged pressure field 〈p(x)〉T0,T and
the pressure field p(x). Observing figures 7.11 and 7.12, we can readily observe that the
mean values are the same, while standard deviations are not.
It is known that a risk measure as E[Q]±σ[Q] is not optimal for many physical variables,
especially when Q presents a non-symmetric PDF [115]. For this reason, it is interesting
to estimate other statistical estimators as the VaR or the CVaR. We report in table 7.7
the CVaR results for the time-averaged drag force and the drag force. Once more, we
observe the difference between standard physical quantities and their time-averaged
counterparts.
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Figure 7.11: Statistical result of the time-averaged pressure field 〈p(x)〉T0,T . From left to right,
E[〈p(x)〉T0,T ]− σ[〈p(x)〉T0,T ], E[〈p(x)〉T0,T ] and E[〈p(x)〉T0,T ] + σ[〈p(x)〉T0,T ].
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Figure 7.12: Statistical result of the pressure field p(x). From left to right, E[p(x)]− σ[p(x)],
E[p(x)] and E[p(x)] + σ[p(x)].
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Q CVaR α

〈Fd〉T0,T 9845804 0.9
Fd 13871810 0.9

Table 7.7: CVaR analysis of time-averaged drag force 〈Fd〉T0,T and drag force Fd. Results for
N = 126, T − T0 = 300 s and α = 0.9.

7.3 Summary

We have applied hierarchical MC methods, introduced in chapters 4 and 5, to solve
two high Re chaotic systems, which are typical benchmarks in the wind engineering
community.
First, we have verified that MLMC hypotheses are not satisfied by the chaotic flows
we are interested in, due to the lack of pathwise correlation of the QoI time signals on
different mesh discretizations. Therefore, we have applied the asynchronous single-level
MC method to solve the stochastic problems.
Solving the problems, multiple statistics of different physical variables have been com-
puted. Specifically, we have estimated the expected value, the standard deviation, and
the CVaR. The expected value is not sensitive to high values and the standard devia-
tion takes into account oscillations, meanwhile, the CVaR measures the weight of the
tail of the probability density function. Moreover, we have observed that time-averaged
quantities damp oscillations and peaks, so they can lose information about wind critical
scenarios.
Since the problems we are interested in are ergodic, time-dependent and they normally
require large human time to be solved, strategies to reduce the time to solution are
explored in chapters 8 and 9.





Chapter 8

Ensemble averaging for chaotic and
ergodic systems

In this chapter, we aim at estimating statistics of QoIs by averaging over numerous
independent simulations, i.e. statistical ensembles. The upshot of this strategy is that
each of the simulations within the ensemble can be launched independently and run in
parallel, thus providing an obvious opportunity for acceleration when abundant compu-
tational resources are available.
Even though ensemble averaging has been investigated previously, the application we
target (wind engineering), as well as the numerical method we employ (implicit LES),
are significantly different from previous investigations, thus leaving the applicability of
ensemble averaging unclear. The goal of this chapter is therefore to develop a technique
to assess the efficacy of ensemble averaging when applied to any given turbulent flow
problem. To this end, we present a statistical analysis of the approach in section 8.1.
Another question we seek to address is how long each realization should be. Increasing
the number of realizations improves concurrency but also increases the aggregated burn-
in time, so there is a trade-off that needs to be considered. The present study evaluates
this trade-off in the case of flows around bodies in section 8.2. We demonstrate that
very short simulations are sufficient, thus making the approach highly efficient for the
class of problems we have targeted.
The content of this chapter is taken from a manuscript in preparation and is adapted
wherever needed.
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8.1 Statistical analysis

In this section, we introduce our statistical framework. In section 8.1.1 we define the
statistical operators and the probability convergence criterion. Different sources of error
are identified and analyzed in section 8.1.2. We discuss the generation of initial velocity
fields, which provides independent ensemble realizations in section 8.1.3. Finally, con-
siderations on how to determine the length of the burn-in time are provided in section
8.1.4.

8.1.1 Problem outline

Let u(t,x, w) denote the solution to equation (2.1), where the initial condition u0(x) =

u0(x;w), w ∈ Ω, is a random field overD. In this setting, u(t,x, w) is a random field over
(0, T ) ×D. From u, we can compute the quantity of interest Q(t, w) := Q(u(t,x, w)),
which is a stochastic process. For ease of notation, we omit the dependency on w in what
follows, except when it is needed to clarify the presentation. In agreement with what
introduced in chapter 3, the expected value of a process X is denoted E[X], its variance
is denoted V[X] and its covariance with a process Y is denoted coV[X, Y ]. These
quantities can be estimated by sample averaging. For instance, for any N independent
samples, X1, . . . , XN , we define the sample mean EN [X] = 1

N

∑N
n=1Xn and the sample

variance VN [X] = 1
N−1

∑N
n=1(Xn − EN [X])2.

Our goal is to compute the long-term expected value of E[Q], that is,

Q = lim
t→∞

E[Q(t)]. (8.1)

Assuming ergodicity, Q can also be computed as the time average, defined as

〈Q〉 = lim
T→∞

1

T

∫ T

0

Q(t) dt. (8.2)

Time averages performed over the effective time [T0, T ] are defined as

〈Q〉T0,T =
1

T − T0

∫ T

T0

Q(t) dt, (8.3)

and the notation in equation (8.3) simplifies to 〈Q〉T when T0 = 0, that is 〈Q〉T :=

〈Q〉0,T .
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Given N realizations of the process Q, Qn := Q(t, w(n)), for n = 1, ..., N , we aim to
approximate Q by

Q ≈ EN [〈Q〉T0,T ] =
1

N

N∑

n=1

〈Qn〉T0,T . (8.4)

Using this notation, the statistical problem we face is to find the optimal values of
N, T0, T (those that minimize the computational cost and/or the time to solution) while
satisfying the probability convergence criterion of equation (4.9). We report it here for
the sake of simplicity:

P
[∣∣EN [〈Q〉T0,T ]−Q

∣∣ > ε
]
≤ φ, ε > 0, φ� 1, (8.5)

where ε is the desired tolerance and 1 − φ the confidence on the sampled statistical
estimator. Such a condition requires that the probability of the error exceeding ε should
not be greater than φ.

8.1.2 Error analysis

There are two sources of error in equation (8.4). First, the choice of the random initial
condition may not be compatible with the long-term statistically stationary, thus trig-
gering a transient perturbation with a nonvanishing contribution to the mean, sometimes
called initialization bias [18]. The use of a finite number of samples of finite duration
is a second source of error. Increasing the number of samples, as well as the length of
their effective time intervals, will also reduce the influence of the initialization bias.

Initialization bias

To analyze the error in approximation (8.4) we decompose each realization Qn into two
components,

Qn = An + Sn, (8.6)

where Sn is the realization of an ergodic and stationary process S, and An is a transient
perturbation. This means to assume limt→∞ E[An(t)] = 0 or, equivalently,

lim
t→∞

E[Qn(t)] = Q = E[S]. (8.7)
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In this setting,

E[EN [〈Q〉T0,T ]] =
1

N

N∑

n=1

E[〈Qn〉T0,T ] =
1

N

N∑

n=1

(E[〈Sn〉T0,T ] + E[〈An〉T0,T ]) . (8.8)

Since S is statistically stationary,

E[〈Sn〉T0,T ] = E

[∫ T
T0
Sn(t) dt

T − T0

]
=

1

T − T0

∫ T

T0

E[Sn] dt = E[Sn] = E[S] = Q. (8.9)

Therefore,
E[EN [〈Q〉T0,T ]] = Q + B, (8.10)

where

B =
1

N

N∑

n=1

E[〈An〉T0,T ] (8.11)

is the bias of the initial condition, which can be mitigated if E[〈An〉T0,T ] decays suffi-
ciently fast. If ∫ ∞

0

|E[An](t)| dt <∞, (8.12)

then we have that

|E[〈An〉T0,T ]| = 1

T − T0

∣∣∣∣
∫ T

T0

E[An](t) dt

∣∣∣∣ ≤
1

T − T0

∫ T

T0

|E[An](t)| dt

≤ 1

T − T0

∫ ∞

0

|E[An](t)| dt −−−−−−→
T−T0→∞

0.

(8.13)

In other words, if equation (8.12) holds, then increasing T −T0 eventually decreases |B|.
An estimation of the decay rate can be made under stronger assumptions on the tran-
sient perturbation. For illustration purposes we consider a fast decay of the form

Afn(t) = Af0,ne−
t
τ , (8.14)

which is an example of exponentially ergodic processes, where τ > 0. For a wide class
of stochastic processes satisfying a dissipativity condition, it can be proved that the
transient perturbation decays exponentially [100, theorem 6.1], i.e. it satisfies

|E[Af ]| = |E[Af0 ]|e− t
τ , (8.15)
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as in [54, equation (3)].
If we now consider its time average we get

E[〈Afn〉T0,T ] = E[Af0,n]〈e− t
τ 〉T0,T = τ E[Af0,n]

(
e−T0/τ − e−T/τ

T − T0

)
, (8.16)

from where we see a decay of the form

E[〈Afn〉T0,T ] = O((T − T0)−1). (8.17)

Therefore, E[〈Afn〉T0,T ] is a decreasing function of T − T0. However, as it can be seen
in equation (8.16), it is also decreasing when T − T0 is kept constant while T and T0

separately increase. In practice, T is fixed so increasing T0 decreases T − T0; this is the
trade-off we analyze in the examples of section 8.2.

Statistical error

The previous analysis makes it clear that bias can be reduced by increasing T−T0 and, for
specific transient perturbations, increasing T0. However, to assess statistical accuracy,
equation (4.9) needs to be evaluated. Given a bound

∣∣EN [〈Q〉T0,T ]− E[EN [〈Q〉T0,T ]]
∣∣ ≤ ε,

the asymptotic normality of the estimator EN [〈Q〉T0,T ], in the limit N → ∞, implies
that [49, chapter 3]

∣∣EN [〈Q〉T0,T ]− E[EN [〈Q〉T0,T ]]
∣∣ ≤ Cφ

√
V[EN [〈Q〉T0,T ]] ≤ ε, (8.18)

with probability 1−φ as the tolerance ε→ 0. Cφ is the confidence coefficient defined as
Cφ = Φ−1(1− φ

2
), there Φ is the CDF of a standard normal distribution. The total error

in equation (4.9) can then be bounded with confidence 1− φ, as follows,
∣∣EN [〈Q〉T0,T ]−Q

∣∣ ≤
∣∣Q− E[EN [〈Q〉T0,T ]]

∣∣+
∣∣EN [〈Q〉T0,T ]− E[EN [〈Q〉T0,T ]]

∣∣

≤
∣∣Q− E[EN [〈Q〉T0,T ]]

∣∣+ Cφ
√
V[EN [〈Q〉T0,T ]].

(8.19)

We define the SE to be SE =
√

V[EN [〈Q〉T0,T ]], consistently with chapter 4. Thus, using
equation (8.10), we get

∣∣EN [〈Q〉T0,T ]−Q
∣∣ ≤ |B|+ CφSE, (8.20)
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where B is the initialization bias defined in equation (8.11). For a given confidence 1−φ,
the probability convergence criteria then reads

|B|+ CφSE ≤ ε. (8.21)

The bias error |B| was analyzed above, let us now focus on the SE term. Assuming
each An and Sn are independent, we have

V[EN [〈Q〉T0,T ]] =
1

N2

N∑

n=1

V[〈Sn〉T0,T ] +
1

N2

N∑

n=1

V[〈An〉T0,T ]

+
1

N2

N∑

n,m=1
n6=m

coV[〈Qn〉T0,T , 〈Qm〉T0,T ].

(8.22)

The first term on the right-hand side of equation (8.22) can be written as

V[〈Sn〉T0,T ] = 2
V[S]

T − T0

∫ T

T0

(
1− t

T − T0

)
ρ(t) dt, (8.23)

where ρ is the autocorrelation function, see [112, problem 3.37]. The long-time limit
of the integral in equation (8.23) is the integral time scale of the process [112, section
3.6], which is a correlation constant associated to the quantity of interest. Therefore,
V[〈Sn〉T0,T ] decays like (T − T0)−1.
The second term on the right-hand side of equation (8.22) cannot be estimated without
making assumptions on the behavior of the transient perturbation A. If we consider the
same fast decay of the previous subsection, equation (8.14), a straightforward compu-
tation shows that V[〈Afn〉T0,T ] = O((T − T0)−2).
The last term in equation (8.22) depends on the correlation between realizations. An
example of the effects of the correlation between realizations of turbulent flow in a
channel is presented in [90]. If these realizations are independent, the final term in
equation (8.22) is negligible and the dominant term in equation (8.21) depends on the
decay rate of the transient perturbations An. To this end, we discuss two initial condition
strategies which help to provide independent realizations in section 8.1.3.
If the decay of the transient perturbation is slower than equation (8.14), the decay of
the statistical error will be dominated by the second term in equation (8.22). Therefore,
both the bias and statistical error will decay at the same rate, and the left-hand side of
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equation (8.21) will decay like (T − T0)−q for some q < 1. If the decay of the transient
perturbation is fast (equation (8.14) holds), the overall error will be dominated by the
first term in equation (8.22), and the left-hand side of equation (8.21) will decay like
N−0.5 and (T −T0)−0.5. In the numerical experiments presented in section 8.2, we verify
the decay rates to assess if the initialization bias can be neglected in computing the
error.
The left-hand side of equation (8.20) is estimated by approximating the variance by the
sample variance. Because we aim at computing the variance of an average, we perform
K repetitions of each experiment, totaling KN independent simulations. In this way,
the right-hand side of equation (8.20) can be approximated as follows,

Cφ
√

V[EN [〈Q〉T0,T ]] ≈ Cφ
√

VK [EN [〈Q〉T0,T ]], (8.24)

with K sufficiently large.

8.1.3 On the generation of initial conditions

Ensemble averaging benefits from independent initial conditions to generate uncorre-
lated flow evolutions. It is known that different turbulent flows will diverge with a rate
determined by the Lyapunov exponent [106, 104], and that this is the case of our tar-
get problems. We decide then to generate perturbed initial conditions, and to let the
system evolve for a defined burn-in time T0 to arrive at uncorrelated solutions. In this
section, we discuss what to assign as a distribution for the initial conditions. To this
end, two different types of Gaussian random vector fields are considered; white noise
perturbations and spatially-correlated solenoidal fields.
The first approach simply consists of adding Gaussian white noise to a precomputed
average velocity field 〈u〉. In this work, this strategy of generating spatially-uncorrelated
fluctuations is referred to as the spatially uncorrelated (SU) approach. We note that it
is similar to the approach used in [90].
The second approach consists of adding nonlocal spatially-correlated and divergence-
free solenoidal noise to the averaged velocity field 〈u〉; we refer to this as the spatially
correlated (SC) approach. Exploiting solenoidal fluctuations in the initial conditions is
not new; we refer for example to [84], where the author used uncorrelated divergence-
free initial conditions to ensure independence of different realizations. Our novelty is
that we propose to generate spatially-correlated fluctuations w(x), which arise from a
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well-established synthetic turbulence model.
Our approach is inspired by the work of Hunt in [71] (see also [72, 105, 79]). The under-
lying assumption is that the inhomogeneous contributions to fully developed turbulence
fluctuations in the inviscid source layer above a solid body have negligible vorticity.
From this assumption, one arrives at the following inhomogeneous turbulent fluctuation
model: w(x) = w(H)(x) −∇φ(x), where w(H)(x) is a homogeneous turbulent velocity
field and φ(x) satisfies

∆φ = ∇ ·w(H) in D, (∇φ−w(H)) · n = 0 on ∂D. (8.25)

In this work, we adopt the classical von Kárman model [135] for the homogeneous
random field w(H)(x). Realizations of this type of nonlocal spatially-correlated field can
be generated using a Fourier transform on a Cartesian grid containing D; see, e.g., [92].
Once a realization w(H)(x) is generated, we may interpolate the boundary conditions so
that the solution to equation (8.25) can be solved with the same finite element spaces
used in equation (2.10). After interpolating the sum w(H)(x) − ∇φ, we arrive at the
nonlocal spatially-correlated perturbation w(x) and, in turn, the SC initial condition
u0(x) = 〈u〉(x) + w(x).

8.1.4 On the optimal choice of the burn-in time

When a single long simulation is performed, the burn-in time is small compared to the
remaining simulation time, which contains the effective dynamics. Unfortunately, this is
not the case when the same amount of simulation time is distributed across an ensemble.
Indeed, the same burn-in time will be paid by all realizations in the ensemble and, as a
consequence, the total effective time will be reduced. The reduction of the burn-in time
is therefore key to making ensemble averaging feasible. Our statistical model provides
the tools to analyze the bias associated with the initial conditions, thus allowing us to
faithfully select a practical burn-in time.
Given the full time interval [0, T ], we split it into a burn-in time interval [0, T0] and an
effective time interval [T0, T ]. In this subsection, we focus on how to optimally choose
T0.
First, a single simulation is executed for a time long enough to reach a statistically
stationary turbulent state, which is saved. Thereafter, N realizations are run with
SU or SC initial conditions to ensure independent flow evolution. Once the required
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transient time T0 is passed, statistical data are collected and updated on the fly, until
the end of the effective time window.
We propose a systematic manner to minimize T0, which makes use of the SE defined
above. Given N realizations and a quantity of interest Q, our idea is to analyze how the
statistical estimates of the QoI change for different burn-in times. We can observe this
plotting the mean EN [〈Q〉T0,T ] as function of T0, together with its confidence intervals.
The time interval T − T0 is kept constant, while varying T0. The confidence intervals
are computed as CφSE, with confidence 1 − φ. By looking at the plot, we can detect a
starting point after which the statistical result is effectively insensitive to T0 variations.
In addition to the statistical checks, we decide to apply a physical constraint, which in
our case is the time the flow needs to go from the inlet to the obstacle. Therefore, T0 will
be the maximum of these two time values. In order to further reduce the computational
cost of the transient phase, we also explore the possibility of using larger time steps in
[0, T0].
Another way to estimate T0 is analyzed in [21], where the authors choose a burn-in time
which minimizes the estimated variance of the sample average estimator of the time
average for a given signal. To do so, we average at each time step over all realizations,
for different numbers of realizations N , and apply the procedure to the resultant time
signal. As we will see in section 8.2, both procedures give similar results.

8.2 Numerical experiments

The practical question we address in this section is: How efficient is the ensemble ap-
proach in the context of under-resolved LES methods, in particular, in wind engineering
applications? Although we have targeted a specific class of engineering problems, our
strategies are general and can be applied to assess the ensemble average approach for
other, unrelated, problems.
The first problem we consider (section 8.2.1) is the incompressible flow around a two-
dimensional rectangle, already introduced in section 7.1. We first check that statistical
results are independent of the initial condition strategies, and we compare ensemble
average against standard time averaging. Then, we check if it is possible to exploit a
larger CFL during the burn-in time phase, and how much the burn-in time window can
be reduced. Finally, a comparison study between different strategies is made.
The second problem is presented in section 8.2.2 and describes wind flowing around a
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three-dimensional building; this problem has been introduced in section 7.2. A com-
parison between ensemble averaging and standard time averaging is presented, together
with the burn-in time study.
For solving the CFD problems, we use Kratos [44, 43] as FE solver software, XMC [13]
as hierarchical MC library and PyCOMPSs [16, 88, 126] as programming model for
distributed computing. The integration of these software has been an important part of
this thesis work, as documented in [127, 10, 11, 5, 4, 22]. We remark that international
units are used to measure physical quantities.
The analyses were run on MareNostrum 4. This supercomputer has 11.15 Petaflops
of peak performance, which consists of 3456 compute nodes equipped with two Intel R
Xeon Platinum 8160 (24 cores at 2.1 GHz each) processors.

8.2.1 Rectangle obstacle problem

We remark that the rectangle obstacle problem is analyzed and solved with different
configurations. In section 7.1, constant in time stochastic boundary conditions are
considered, and the problem is solved with hierarchical MC methods. In section 8.2.1,
constant in time deterministic boundary conditions are considered, and the problem is
solved with the standard time averaging method and the ensemble averaging method.
In section 9.2.1, constant in time stochastic boundary conditions are considered, and
the problem is solved with the ensemble-based MC method. Therefore, in this section
we use constant in time deterministic boundary conditions.

Problem formulation

We consider the two-dimensional flow around a rectangle body [28], introduced in sec-
tion 7.1. The domain is reported in figure 7.1 and the system is described in section 7.1.
The flow is modeled by the incompressible NS equations (see equation (2.1)) and we
recall that slip boundary conditions are applied on the external boundaries and no-
slip boundary conditions on the rectangle body. Standard air density and viscosity are
considered and the Re is 132719.
The mesh considered to solve the problem has around 25000 nodes, and a minimal size,
close to the rectangle body, of 0.002 m. The chosen time step is 0.02 s, which gives a CFL
of 20. Such mesh is adaptive with respect to a solution-oriented metric, namely the time-
averaged velocity field 〈u(t, x)〉T0,T . The metric is computed exploiting Kratos [94], and
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the original mesh is refined using the Mmg software [45]. Further details are presented
in chapter 6. The problem is validated in section 7.1.2.
The quantities of interest are the drag force Fd on the body, the pitching moment Mp

on the body and the pressure field p(x) on all nodes of the body surface. However, even
though we compute all these quantities of interest, we assess statistical convergence only
for the drag force. Therefore we set Q ≡ Fd. For the sake of simplicity, we may use 〈Q〉
instead of 〈Q〉T0,T .

Perturbation of initial conditions

We can observe in figure 8.1 the time evolution of the time-averaged drag force 〈Fd〉40 s,t

for 128 contributions, when using the correlated and divergence-free initial condition
strategy. The burn-in time we select is 40 s, which is the optimal T0 we find below.
Similar plots are obtained for SU initial conditions and for others T0.
Each of these samples runs for 600 s, which, as we can observe by looking at the oscil-
lations we have, is a time horizon not long enough to reach convergence for the time-
averaged drag value. In the case of infinitely large time windows, one would expect each
realization to converge to the same value. Since this is not feasible, figure 8.1 gives us
an estimate of the error that is being committed by considering truncated time win-
dows. The estimations of expected value, standard deviation and statistical error for
both perturbations are reported in table 8.1.

EN [Q] σN [Q] CφSE
SU 3.238648 0.052823 0.010819
SC 3.246658 0.055877 0.011444

Table 8.1: Estimations of expected value, standard deviation and statistical error with 99%
confidence for SU and SC initial conditions. The quantity of interest Q is the time-
averaged drag force 〈Fd〉40 s,600 s. 128 realizations are considered.

Comparison ensemble average and time average

In order to compare ensemble averaging and standard time averaging approaches, we
compute and compare the total error, given by the left-hand side of equation (8.21), for
different computational costs.
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Figure 8.1: Time-averaged drag force 〈Fd〉40 s,t evolution as function of time. Initial conditions
are perturbed following the SC initial conditions.

First, we plot
(
VK [EN [〈Q〉T0,T ]]

)−1 in figure 8.2 to analyze which are the dominant
terms of equation (8.21), where Q = Fd and different K and N are considered. In the
plot, black dots are estimations of the reciprocal of the variance, while the red line is
the linear interpolation of such estimations. We observe that the variance estimation
decays linearly as N and (T − T0) grow. Therefore, the fast decay of section 8.1.2 is
happening and the dominant term of the total error is Cφ

√
VK [EN [〈Q〉T0,T ]]. We can

then simplify equation (8.21) to CφSE ≈ Cφ
√

VK [EN [〈Q〉T0,T ]] ≤ ε.
Tables 8.2 and 8.3 show the SE for both ensemble average and standard time average
approaches. First, we observe SE decreases as expected (proportional to N−0.5 and
(T − T0)−0.5) as more realizations or larger time windows are considered. For example,
let’s focus on the second line of table 8.2 and the sixth of table 8.3. SE values are approx-
imately similar, but ensemble average employs 10 samples that can be run concurrently.
Consequently, the total computational cost corresponds to running 10 simulations, each
with an effective time window of 160 s. Moreover, we point out that the expected value
estimations of the two average strategies are in agreement with each other. As expected,
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Figure 8.2: Computation of VK [EN [〈Q〉T0,T ]] as function of T − T0 for Q = Fd. The left plot

presents (K,N, T0) = (128, 1, 40 s) and the right plot (K,N, T0) = (32, 4, 40 s).

EN [〈Fd〉] SE N T − T0 C
time to
solution

3.2779 0.0403 5 160 136 3.40
3.2684 0.0285 10 160 272 3.40
3.2583 0.0201 20 160 544 3.40
3.2527 0.0142 40 160 1088 3.40
3.2584 0.0100 80 160 2176 3.40
3.2456 0.0071 160 160 4352 3.40

Table 8.2: The table reports the mean estimation and its associated SE computed for ensemble
averaging for the drag force mean estimation. N and T − T0 refer to the number of
realizations and the effective time window of the simulation, respectively. C is the
computational cost and is expressed in CPU hours. Time to solution is the human
time we need to wait for getting results, and is expressed in hours.

the ensemble average approach drastically reduces the time to solution, for the same sta-
tistical error, provided of course that more computing resources are used to enable the
concurrent solution of the ensemble. This means that more working nodes are used as
more realizations are run. If enough resources are allocated, the runtime is shorter, and
this is our case.
The results suggest that the ensemble average approach is more appropriate than stan-
dard time averaging for running on supercomputers since it allows to fully exploit super-
computer capabilities in order to reduce the time to solution. This comes at the price of
a larger combined computational cost, due to the need of going multiple times through
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EN [〈Fd〉] SE N T − T0 C
time to
solution

3.3056 0.1595 1 50 17.2 2.15
3.2171 0.1127 1 100 21.76 2.72
3.2752 0.0797 1 200 30.8 3.85
3.2605 0.0563 1 400 48.96 6.12
3.2472 0.0398 1 800 85.28 10.66
3.2552 0.0281 1 1600 158.02 19.75

Table 8.3: The table reports the mean estimation and its associated SE computed for standard
time averaging for the drag force mean estimation. N and T−T0 refer to the number
of realizations and the effective time window of the simulation, respectively. C is the
computational cost and is expressed in CPU hours. Time to solution is the human
time we need to wait for getting results, and is expressed in hours.

the initial burn-in time.

On the reduction of burn-in time computational cost

We analyze how the statistical results of the time-averaged drag force change when
varying the burn-in time. For each case we consider 128 realizations, and we keep
constant T − T0. We plot in figure 8.3 the expected value estimation as function of
T0, together with its 99% confidence intervals. We observe that the statistical result is
relatively insensitive to T0 for T0 > 20 s.
As mentioned in section 8.1, another way to estimate T0 is following the approach
presented in [21], in which the authors choose a burn-in time which minimizes the
estimated variance of the sample average estimator of the time average for a given
signal. Figure 8.4 reports the estimated variance of the sample average estimator of the
time average as function of the burn-in time, for a different number of realizations and
fixed T − T0. As we can see, we reach the minimum after a few seconds.
Even though both ways of estimating the burn-in time suggest that only a very short
time span is needed, we consider as "physical constraint" the time required by the
information to travel from the inlet to past the object. This means that we wait at least
the physical constraint time before we can start trusting the solver results. The time
needed for this to happen, for an average speed of 2 m/s, is 40 s. Our conclusion is that
we can safely assume T0 = 40 s without changing statistical results. We remark as well
that the same conclusion follows for other effective time windows T − T0.
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Another approach we consider to reduce the time to solution is to exploit larger time
steps during the burn-in time. To do so, we must first verify that a larger time step
does not change the statistical results. Moreover, to improve the consistency of such an
approach, we should ensure that the chosen larger time step, if used during the whole
time window, would give different results.
We report in table 8.4 the expected value estimation and the associated SE for a confi-
dence of 99%. We can see that in the case of time step ∆t = 0.02 used in the averaging
window [T0, T ], we obtain consistent statistical results, independently of ∆t0 values. On
the other hand, for a different ∆t we obtain a different statistical result (see third row
in the table compared to the first two). Therefore, a larger time step can safely be
employed to reduce the time to solution of the burn-in phase.

EN [〈Fd〉T0,T ] CφSE T − T0 ∆t ∆t0

3.237284 0.009183 760 0.02 0.02
3.232869 0.008286 760 0.02 0.05
3.312648 0.008199 760 0.05 0.05

Table 8.4: Expected value estimation and associated SE with 99% confidence for different time
steps during both burn-in and effective phases.
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Results

Combining all of the ideas presented above we obtain the results reported in table 8.5,
which shows the statistical analysis of the time-averaged drag force. The analyses pre-
sented in table 8.5 are driven by constant product between N = 128 and T = 300 s.
Convergence is checked via equation (8.21), which is simplified to CφSE ≤ ε. The abso-
lute tolerance is ε = 0.02 (the relative value is ≈ 0.6%) and the confidence is 1−φ = 0.99.
Different T0, ∆t0 and perturbation of initial conditions are considered. On one hand,
we consider the optimal T0 = 40 s, on the other T0 = 140 s, which is directly related to
the time one particle needs to travel from the inlet to the outlet for an average speed of
2 m s−1. We observe all strategies give the same statistical result since all expected value
estimations fall within the range of confidence 1 − φ = 0.99. Moreover, both the time
to solution and the computational cost are smaller if larger time steps are exploited in
the burn-in time phase. Therefore, we conclude the most promising strategy consists in
exploiting ∆t0

∆t
> 1 and T0 small enough but still ensuring the error decays as N−0.5 and

(T − T0)−0.5.

EN [〈Fd〉T0,T ] CφSE initial
conditions N T − T0 T0

∆t0
∆t

C
time to
solution

3.245649 0.018503 SU 128 160 140 1.0 3655 3.57
3.244356 0.013949 SU 128 260 40 1.0 3655 3.57
3.237846 0.014395 SU 128 260 40 2.5 3389 3.31
3.235604 0.019199 SC 128 160 140 1.0 3727 3.64
3.235677 0.014501 SC 128 260 40 1.0 3727 3.64
3.236612 0.014390 SC 128 260 40 2.5 3420 3.34

Table 8.5: Statistical analyses of time-averaged drag force 〈Fd〉T0,T . The expected value es-
timation and the associated statistical error, with a confidence 1 − φ = 0.99, are
reported. Both uncorrelated and correlated initial condition perturbations are pre-
sented. N refers to the number of ensembles realizations. Effective time window
T −T0 and burn-in time T0 are expressed in seconds, and ∆t0

∆t shows if a larger CFL
is used in the transient phase. The computational cost C and time to solution unit
measures are CPU hours and hours, respectively. The product between number of
realizations and time window is constant among different analyses.

Finally, we recall that the instantaneous velocity and pressure fields at t = 200 s for one
realization can be observed in figure 7.5 and figure 7.6.
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Other observables

In addition to the statistical analysis reported above for the drag force, we present here
results for the expected value and standard deviation estimations of the drag force,
pitching moment and pressure field on the rectangle body. Specifically, we compute
the standard deviation of an observable Q and of its time average, which read σ[Q]

and σ[〈Q〉T0,T ], respectively. σ[Q] can be understood as an indicator of the distribution
around the mean value, while σ[〈Q〉T0,T ] as an error indicator of the expected value
estimation.
Table 8.6 reports results for the drag force and the base moment, while figures 8.5a
and 8.5b for the pressure field.

Q EN [〈Q〉T0,T ] σN [〈Q〉T0,T ] σN [Q]

Fd 3.238950 0.086650 0.575146
Mp -0.014169 0.123063 2.141448

Table 8.6: Statistical analysis of the drag force Fd and of the pitching moment Mp.
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Figure 8.5: Statistical result of the time-averaged pressure field 〈p(x)〉T0,T and the pressure
field p(x).

Finally, we report in table 8.7 the CVaR results for the time-averaged drag force and
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the drag force of the last case of table 8.5. We remark to observe the difference between
standard physical quantities and their time-averaged counterparts.

Q CVaR α

〈Fd〉T0,T 3.34554 0.9
Fd 4.38821 0.9

Table 8.7: CVaR analysis of time-averaged drag force 〈Fd〉T0,T and drag force Fd. Results for
N = 128, T − T0 = 260 s and α = 0.9.

8.2.2 High-rise building problem

We remark that the CAARC building problem is analyzed and solved with different con-
figurations. In section 7.2, turbulent fluctuations around a fixed mean wind field bound-
ary conditions are considered, and the problem is solved with hierarchical MC methods.
In section 8.2.2, constant in time fixed mean wind field boundary conditions are con-
sidered, and the problem is solved with the standard time averaging method and the
ensemble averaging method. In section 9.2.2, constant in time stochastic mean wind field
boundary conditions are considered, and the problem is solved with the ensemble-based
MC method. In section 9.2.3, turbulent fluctuations around a stochastic mean wind field
boundary conditions are considered, and the problem is solved with the ensemble-based
MC method. Therefore, in this section we use constant in time fixed mean wind field
boundary conditions.

Problem formulation

The second problem is the wind flow around the CAARC building [107, 67, 24, 66], that
is introduced in section 7.2. A steady state logarithmic wind profile is considered. The
wind mean profile is described by [73]

ū(z) =
u∗

k
ln(z/z0), (8.26)

where k ≈ 0.4 is von Karman’s constant, u∗ the friction velocity and z0 the roughness
length. The system is described by the NS equations (see equation (2.1)), slip boundary
conditions are applied on the walls and the ceiling, no-slip boundary conditions on the
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building and on the floor. The reference mean wind velocity ū(z) is defined at reference
height H. We refer to section 2.4 for further details.
In table 7.4 we present the physical properties of the problem, and we recall that
z0 = 2 m is typical of centers of large cities [73]. The Re is 119 millions, where a
characteristic length of 45 m is considered. Under such conditions, it is clear that the
problem is badly under-resolved.
The quantities of interest are the drag force Fd on the body, the base moment Mb on
the body and the pressure field p(x) on all nodes of the body surface. The quantity of
interest we choose to analyze is the drag force. Therefore we set Q ≡ Fd. As above, we
omit the subscript T0, T if there is no risk of misunderstanding.
The mesh considered to solve the problem has approximately 312000 nodes, and a
minimal size, close to the body, of 0.2 m. The considered mesh is adaptive with respect
to a metric built on top of velocity and pressure fields.

Validation

We compute and compare the normalized formulas for forces and moments (see equa-
tion (7.7)) against [24]. We recall that CFX and CFY represent the force coefficients in
the direction X and Y, respectively. MFX and MFY denote the moment coefficients in
the same directions, where the moment is computed around the centroid of the plan ge-
ometry of the building at ground location. We remark that, differently to the validation
of section 7.2.2, the problem considered here has null wind gusts and we use a different
domain discretization to solve it. Figure 8.6 shows a good agreement of our solution
with respect to literature.

Comparison ensemble average and time average

We have observed in section 8.2.1 that perturbing initial conditions with SU or SC noise
is equivalent, from both computational and statistical points of view. For this reason,
we prefer to use the latter, since more consistent from a physical point of view.
First, we analyze in figure 8.7 which are the dominant terms of equation (8.21) by
plotting

(
VK [EN [〈Q〉T0,T ]]

)−1 for different K and N and Q = Fd. The linear decay of
the variance estimation with respect to N and (T −T0) suggests that the dominant term
of the total error is Cφ

√
VK [EN [〈Q〉T0,T ]], which implies simplifying equation (8.21) to

CφSE ≈ Cφ
√

VK [EN [〈Q〉T0,T ]] ≤ ε.
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Figure 8.6: Drag and moment coefficients comparison between our work and [24]. The plot is
done using the "web based tool WebPlotDigitizer to extract numerical data from
plot images" [116].

0 50 100 150 200 250

T − Tbt

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V
K

[E
N

[〈F
d
〉]]
−

1

×10−11

original data

fitted line

T − T0

( V
K

[E
N

[〈F
d
〉 T

0
,T

]]
) −

1

0 50 100 150 200 250

T − Tbt

0.2

0.4

0.6

0.8

1.0

1.2

V
K

[E
N

[〈F
d
〉]]
−

1

×10−10

original data

fitted line

T − T0

( V
K

[E
N

[〈F
d
〉 T

0
,T

]]
) −

1

Figure 8.7: Computation of VK [EN [〈Q〉T0,T ]] as function of T − T0 for Q = Fd. The left plot
presents (K,N, T0) = (128, 1, 30 s) and the right plot (K,N, T0) = (32, 4, 30 s).

We compute the SE for ensemble averaging and standard time averaging in tables 8.8
and 8.9. The SE decreases as expected as long as more realizations or larger time
windows are considered. Moreover, the ensemble average approach drastically reduces
the time to solution, for the same statistical error. For example, the case N = 4,
T − T0 = 210 s of the ensemble average approach, compared to N = 1, T − T0 = 840 s

of standard time average, reduces the time to solution by almost a factor 4, to obtain
a similar SE. We remark as well that the expected value estimations for both ensemble
averaging and standard time averaging are consistent within each other.
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EN [〈Fd〉] SE N T − T0 C
time to
solution

8982493 84767 4 210 1666 17.36
8932223 59939 8 210 3333 17.36
8973444 42383 16 210 6666 17.36
8986913 29969 32 210 13332 17.36
8927955 21191 64 210 26664 17.36
8930547 14984 128 210 53329 17.36

Table 8.8: The table reports the mean estimation and its associated SE of ensemble averaging
for the estimation of the drag force mean. N and T − T0 refer to the number
of realizations and the effective time window of the simulation, respectively. C is
the computational cost and is expressed in CPU hours, while time to solution is
expressed in hours.

EN [〈Fd〉] SE N T − T0 C
time to
solution

8658884 324256 1 52.5 215.58 8.98
8879404 229284 1 105 300.19 12.50
9109719 162128 1 210 468.56 19.52
9003445 114642 1 420 853.28 35.55
8950303 93604 1 630 1189.42 49.55
8956216 81064 1 840 1524.88 63.53

Table 8.9: The table reports the mean estimation and its associated SE of standard time aver-
aging for the estimation of the drag force mean. N and T − T0 refer to the number
of realizations and the effective time window of the simulation, respectively. C is
the computational cost and is expressed in CPU hours, while time to solution is
expressed in hours.

On the reduction of burn-in time computational cost

We analyze now if it is statistically consistent to reduce the burn-in time. As before, we
consider 128 realizations and we keep constant T −T0 = 110 s. By looking at figures 8.8
and 8.9, we conclude that the burn-in time can be reduced to any value larger than
30 s. The same conclusion holds also for different effective time windows. To ensure
robustness of our strategy, we apply the physical constraint that T0 should be larger
than the time to travel from the inlet to the body. Since for an average velocity of
40 m s−1 such time is 11.625 s, it is statistically consistent to use T0 = 30 s.
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Figure 8.8: Expected value estimation and as-
sociated SE for a confidence of 99%
as a function of the burn-in time.
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We also check if it is possible to exploit larger time steps during the burn-in time, in
order to reduce its computational cost. Table 8.10 shows that running with a larger
time step during T0 is statistically equivalent to exploit a constant time step, where Cφ
is computed for a 99% confidence.

EN [〈Fd〉T0,T ] CφSE T − T0
∆t0
∆t

8922399 39013 170 1.0
8907406 39534 170 2.5

Table 8.10: Expected value and associated SE with 99% confidence for different time steps
during burn-in time.

Results

Finally, we run the problem exploiting ensemble average, larger time step ∆t0 and
smaller burn-in time T0 = 30 s. Convergence is checked with equation (8.21), which
is simplified to CφSE ≤ ε. The chosen confidence is 99%, and the relative tolerance
with respect to the time-averaged drag force mean estimator is around 0.5%. We run
the problem for different configurations, keeping the overall cost given by the product
between time window and number of realizations TN approximately constant. Results
are shown in table 8.11.
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EN [〈Fd〉T0,T ] CφSE N T − T0 T0
∆t0
∆t

C
time to
solution

8972727 48924 142 110 30 2.5 35749 10.34
8946768 45797 100 170 30 2.5 38041 15.54
8943515 40755 76 230 30 2.5 38566 20.60

Table 8.11: The table reports the expected value and the statistical error values of the time-
averaged drag force 〈Fd〉T0,T , with a 99% confidence. N , T and T0 refer to the
number of ensemble realizations, the time window [0, T ] upper bound of the simu-
lation and the burn-in time, respectively. These last two are measured in seconds.
∆t0
∆t is the ratio between the time steps of T0 and of the effective time window
T −T0. C is the computational cost, expressed in CPU hours, and time to solution
is the real time we need to wait for the solution and is expressed in hours.

We report in figure 8.10 and figure 8.11 the instantaneous velocity and pressure fields
at t = 200 s for one realization.

0

20

40

60

m/s

|u(x)|

Figure 8.10: Velocity field snapshot at t = 200 s.

Other observables

We select the case with minimal statistical error of table 8.11 to show the statistical
results for other quantities of interest. Table 8.12 shows the expected value and the
standard deviation estimators for the drag force and the base moment. Figures 8.12
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Figure 8.11: Pressure field snapshot at t = 200 s.

and 8.13 show the estimations of expected value and standard deviation for the pressure
field.

Q EN [〈Q〉T0,T ] σN [〈Q〉T0T ] σN [Q]

Fd 8943515 152726 662129
Mb -14943 436540 7332992

Table 8.12: Statistical analysis of drag force and base moment.

Finally, we report in table 8.13 the CVaR results for the time-averaged drag force
and the drag force of the case with minimal statistical error of table 8.11. We remark
to observe the difference between standard physical quantities and their time-averaged
counterparts.

Q CVaR α

〈Fd〉T0,T 9208076 0.9
Fd 10291350 0.9

Table 8.13: CVaR analysis of time-averaged drag force 〈Fd〉T0,T and drag force Fd. Results for
N = 76, T − T0 = 230 s and α = 0.9.
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Figure 8.12: Statistical result of the pressure field 〈p(x)〉T0,T . From left to right,
EN [〈p(x)〉T0,T ] − σN [〈p(x)〉T0,T ], EN [〈p(x)〉T0,T ] and EN [〈p(x)〉T0,T ] +
σN [〈p(x)〉T0,T ].
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Figure 8.13: Statistical result of the pressure field p(x). From left to right, EN [〈p(x)〉T0,T ] −
σN [p(x)], EN [〈p(x)〉T0,T ] and EN [〈p(x)〉T0,T ] + σN [p(x)].



126 Ensemble averaging for chaotic and ergodic systems

8.3 Summary

In this chapter, we show that ensemble averaging can be successfully applied to highly
chaotic incompressible flows and we propose strategies to minimize the total error and
the computational cost of the simulation. Two numerical examples are considered to
demonstrate the advantage of using ensemble averaging over standard time averaging
when running on HPC systems and to validate our proposals.
The statistical analysis of ensemble averaging expected value estimator leads to the
identification of two error components: an initialization bias, related to the transient
perturbation of the flow, and a statistical error, related to finite sampling. Convergence
rates of both error contributions are analyzed by considering two scenarios: one with fast
decay of the transient perturbation and one with slow decay. This allows understanding
how the error contributions should decay in order to assume null initialization bias. For
both numerical examples, decay rates are estimated to assess if the initialization bias
is negligible. For both problems, the burn-in phase computational cost is minimized
by following a statistical-based approach and a less accurate and less expensive time
integration procedure during the burn-in phase.
Multiple observables (drag force, base and pitching moment and pressure field) are com-
puted. By applying the proposed statistical ensemble averaging framework, statistical
estimators are efficiently and accurately estimated, and decisions based on top of such
statistics can therefore be taken faster.



Chapter 9

Ensemble-based hierarchical Monte
Carlo methods for chaotic systems

In this chapter, we propose a non-intrusive approach that integrates ensemble averag-
ing and hierarchical MC methods for reducing the time to solution required to solve
stochastic turbulent flow problems. Our idea consists of running hierarchical MC meth-
ods to quantify uncertainties and applying ensemble averaging to each MC realization
to reduce the overall runtime of the single instance. The advantage of this strategy is
that all simulations can be launched independently and run in parallel, thus providing
an obvious opportunity for acceleration when abundant computational resources are
available.
We are interested in solving turbulent flow problems which present stochastic boundary
conditions. We recall that in section 8.1 we propose a statistical framework for ensemble
averaging for solving problems with known boundary conditions, and random initial
conditions. In this chapter, we propose an extension of such a statistical framework
in section 9.1. Our analysis permits to assess the efficacy of ensemble averaging for
solving stochastic CFD problems of engineering interest, and is validated in section 9.2
by solving two challenging wind engineering problems.
The content of this chapter is taken from a manuscript in preparation and is adapted
wherever needed.
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9.1 Statistical analysis

In this section, we extend our statistical framework of section 8.1 to the case of stochastic
turbulent flows. In section 9.1.1 we recall some preliminary notation and we define the
problem we aim at solving. The sources of error of section 8.1.2 are generalized in
section 9.1.2.
In agreement with what introduced in chapter 3, the expected value of a process X is
denoted E[X], its variance is denoted V[X] and its covariance with a process Y is denoted
coV[X, Y ]. These quantities can be estimated by sample averaging. For instance, for any
N independent samples, X1, . . . , XN , we define the sample mean EN [X] = 1

N

∑N
n=1 Xn

and the sample variance VN [X] = 1
N−1

∑N
n=1(Xn − EN [X])2.

Let us consider the NS problem of equation (2.1), integrated with initial conditions and
wind inlet boundary conditions. The problem then reads

∂u

∂t
+ u · ∇u− ν∆u +∇p = f in [0, T ]×D

∇ · u = 0 in [0, T ]×D
u = u0(x) in t = 0×D
u = f(z, z0) on [0, T ]× Γin,

(9.1)

where D is the domain, Γin refers to the inlet boundary of the domain and [0, T ] is the
time window. We recall that the incoming velocity field u = u + u′ is decomposed into
its stationary mean profile u and its unsteady turbulent fluctuations u′. Moreover, z0 is
the roughness height and we refer to section 2.4 for more details about wind modeling.
z is the vertical coordinate and f(·) is a generic function useful to express dependencies.

9.1.1 Problem outline

From the definition of equation (9.1), we have u0(x, w1) that is a random field, but also
z0(w2) is a random variable.

Remark 1. If u′ 6= 0, wind gusts dominate over initial conditions u0(x, w1) and we
can therefore consider u′(w1) as random variable.

We describe this situation with Ω = Ω1 × Ω2, where w1 ∈ Ω1 and w2 ∈ Ω2 are inde-
pendent uncertainties and Ω1 and Ω2 are their sample spaces [117, chapter 6]. Then,
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P = P1×P2 and the expected value of a generic joint random variable X(w1, w2) is

E[X] =

∫

Ω1×Ω2

X(w1, w2) dΩ1 × Ω2(w1, w2) =

∫

Ω1

∫

Ω2

X(w1, w2) dΩ2(w2) dΩ1(w1),

(9.2)
where dΩi(wi) := %i dwi and %i is the probability density function of wi, with i = {1, 2}.
We can introduce the operators E1 and E2 as

Ei[X] =

∫

Ωi

X(w1, w2) dΩi(wi), (9.3)

where i = {1, 2}. We remark that Ei is a random variable in Ωj, where i 6= j. Moreover,

E[X] = E1[E2[X]] = E2[E1[X]] = E1 ◦E2[X]. (9.4)

Let u(t,x, w1, w2) := (u(t,x, w1, w2), p(t,x, w1, w2)) denote the solution of the NS
problem. From the solution field we compute the QoI, that is a process, and reads
Q(t, w1, w2) := Q(u(t,x, w1, w2)). The estimator we aim at computing is the long-term
expected value of Q(t, w1, w2), which reads

Q = lim
t→∞

E[Q](t). (9.5)

Let us now consider to have ergodicity in Ω1, and not in Ω2. If we think, for example,
about z0(w2), it is easy to see that different realizations will not converge to the same
value, no matter how long the simulation is.
Now, E1 can be approximated in two ways, since

E1[Q] = 〈Q(t, w1, w2)〉 = lim
T→∞

1

T

∫ T

0

Q(t, w1, w2) dt. (9.6)

We can take a finite time interval

E1[Q] ≈ 〈Q(t, w1, w2)〉T0,T =
1

T − T0

∫ T

T0

Q(t, w1, w2) dt (9.7)

or, as in chapter 8, an ensemble of them

E1[Q] ≈
M∑

m=1

〈Qm〉T0,T =
1

M

M∑

m=1

1

T − T0

∫ T

T0

Qm dt, (9.8)
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where Qm := Q(t, w
(m)
1 , w2) are different realizations in w1 and T0 is the burn-in time.

The expected value operator without ergodicity can be approximated using the MC
expected value estimator, and reads

E2[Q] ≈ 1

N

N∑

n=1

Qn, (9.9)

where Qn are different realizations in w2, i.e. Qn := Q
(
t, w1, w

(n)
2

)
. Even though we

restrict ourselves to using the MC method for approximating the expected value E2,
other hierarchical MC methods can be used. However, we do not go deep into this topic
in this thesis.
Finally, the long term expected value can be estimated as

Q ≈ EN,M [〈Qn,m〉T0,T ] =
1

NM

N∑

n=1

M∑

m=1

〈Qn,m〉T0,T , (9.10)

where Qn,m := Q
(
t, w

(m)
1 , w

(n)
2

)
.

Remark 2. The estimation provided by equation (9.10) comes from considering u0(x, w1)

(or u′(w1)) and z0(w2), but it is not limited to such random variables. It can be gener-
alized to any random variable satisfying ergodicity in Ω1 and any random variable not
satisfying ergodicity in Ω2.

Using this notation, the statistical problem we face is to find the optimal values of
N,M, T0, T (those that minimize the computational cost and/or the time to solution)
while satisfying the failure probability convergence criterion (see equation (4.9))

P
[∣∣EN,M [〈Qn,m〉T0,T ]−Q

∣∣ > ε
]
≤ φ, ε > 0, φ� 1, (9.11)

where ε and 1−φ are the absolute tolerance and the confidence on the final estimation,
respectively.

9.1.2 Error analysis

We analyze now how to estimate equation (9.11), similarly to what we do in section 8.1.2.
We assume each realization Qn,m can be described as the sum of a transient perturbation
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An,m and of a statistical steady-state process Sn,m. Then,

Qn,m = An,m + Sn,m. (9.12)

Assuming equation (9.12) implies that E1[An,m](t) −−−→
t→∞

0, from which it follows that

E1[Qn,m](t) −−−→
t→∞

E1[Sn,m]. (9.13)

By applying the E2 operator, we obtain

E[Qn,m](t) −−−→
t→∞

E[Sn,m] = Q. (9.14)

We remark that E[An,m](t) and E[Qn,m](t) are the expected values of the transient
perturbation An,m and of the QoI Qn,m at time t.

Initialization bias

First, we evaluate the initialization bias. We can write

E
[
EN,M [〈Qn,m〉T0,T ]

]
=

1

NM

N∑

n=1

M∑

m=1

E
[
〈Qn,m〉T0,T

]

=
1

NM

N∑

n=1

M∑

m=1

(E [〈An,m〉T0,T ] + E [〈Sn,m〉T0,T ]) .

(9.15)

Since Sn,m is statistically steady-state,

E[〈Sn,m〉T0,T ] = E

[∫ T
T0
Sn,m(t) dt

T − T0

]
=

1

T − T0

∫ T

T0

E[Sn,m] dt = E[Sn,m] = Q. (9.16)

Equation (9.15) then becomes

E
[
EN,M [〈Qn,m〉T0,T ]

]
= B + Q, (9.17)

where the initialization is

B =

∣∣∣∣∣
1

NM

N∑

n=1

M∑

m=1

E [〈An,m〉T0,T ]

∣∣∣∣∣ . (9.18)
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The initialization bias can be neglected if 〈An,m〉T0,T decays sufficiently fast. In fact, if

∫ ∞

0

|E[An,m](t)| dt <∞, (9.19)

then we have that

|E[〈An,m〉T0,T ]| = 1

T − T0

∣∣∣∣
∫ T

T0

E[An,m](t) dt

∣∣∣∣ ≤
1

T − T0

∫ T

T0

|E[An,m](t)| dt

≤ 1

T − T0

∫ ∞

0

|E[An,m](t)| dt −−−−−−→
T−T0→∞

0.

(9.20)

In other words, if equation (9.19) holds, then increasing T −T0 eventually decreases |B|.
As in chapter 8, we provide an estimation of the decay rate under stronger assumptions
on the transient perturbation. Let us consider the same fast decay of equation (8.14),
that we report here for the sake of simplicity

Afn,m(t) = Af0,n,me−
t
τ . (9.21)

We recall that its time average is

E[〈Afn,m〉T0,T ] = E[Af0,n,m]〈e− t
τ 〉T0,T = τ E[Af0,n,m]

(
e−T0/τ − e−T/τ

T − T0

)
, (9.22)

and therefore the decay behaves as

E[〈Afn,m〉T0,T ] = O((T − T0)−1). (9.23)

Therefore, E[〈Afn,m〉T0,T ] is a decreasing function of T−T0. We also recall that E[〈Afn,m〉T0,T ]

decreases when T − T0 is kept constant while T and T0 separately increase.

Statistical error

Following the same approach of chapter 8, we bound the total error of equation (9.11)
with confidence 1− φ as

∣∣EN,M [〈Qn,m〉T0,T ]−Q
∣∣ ≤

∣∣E
[
EN,M [〈Qn,m〉T0,T ]

]
−Q

∣∣

+
∣∣E
[
EN,M [〈Qn,m〉T0,T ]

]
− EN,M [〈Qn,m〉T0,T ]

∣∣ ,
(9.24)
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which implies

∣∣EN,M [〈Qn,m〉T0,T ]−Q
∣∣ ≤ |B|+ Cφ

√
V
[
EN,M [〈Qn,m〉T0,T ]

]
. (9.25)

In equation (9.25), Cφ = Φ−1(1 − φ
2
) and Φ is the cumulative distribution function of

a standard normal random variable. The total error presents two components: a bias
term and a SE term, where

SE :=

√√√√V

[
1

NM

N∑

n=1

M∑

m=1

〈Qn,m〉T0,T
]
. (9.26)

Therefore, for a given confidence 1− φ and tolerance ε, the failure probability criterion
of equation (9.11) simplifies to

|B|+ CφSE ≤ ε. (9.27)

We focus now on the SE term. Assuming An,m and Sn,m to be independent, we can
write

V

[
1

NM

N∑

n=1

M∑

m=1

〈Qn,m〉T0,T
]

=
1

N2

N∑

n=1

V

[∑M
m=1〈An,m〉T0,T

M

]
+

1

N2

N∑

n=1

V

[∑M
m=1〈Sn,m〉T0,T

M

]

+
1

N2

N∑

n,k=1
n6=k

coV

[∑M
m=1〈Qn,m〉T0,T

M
,

∑M
m=1〈Qk,m〉T0,T

M

]
.

(9.28)

For the second term of the right hand side of equation (9.28), we have

V

[∑M
m=1〈Sn,m〉T0,T

M

]
=

1

M2

M∑

m=1

V [〈Sn,m〉T0,T ] +
1

M2

M∑

m,k=1
m6=k

coV [〈Sn,m〉T0,T , 〈Sn,k〉T0,T ]

=
V [Sn,m]

M(T − T0)2

∫ T

T0

∫ T

T0

ρ(s− t) ds dt+
1

M2

M∑

m,k=1
m6=k

coV [〈Sn,m〉T0,T , 〈Sn,k〉T0,T ] ,

(9.29)
where ρ is the autocorrelation function, see [112, section 3.6]. As demonstrated in
[112, problem 3.37], the long-time limit of the first term of the right hand side of equa-
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tion (9.29) is 2 V[Sn,m]τ

M(T−T0)
, where τ is the integral timescale of the process [112, section 3.6],

which is a correlation constant associated to the QoI.
The last term in equation (9.29) depends on the correlation between realizations with
the same w(n)

2 . If these realizations are independent, the final term in equation (9.29)
is negligible. To this end, we exploit the two initial condition strategies introduced in
section 8.1.3.
The first term on the right-hand side of equation (9.28) cannot be estimated without
making assumptions on the behavior of the transient perturbation A. If we consider the
fast decay of equation (9.21), a straightforward computation shows that V[〈Afn,m〉T0,T ] =

O((T − T0)−2).
If the decay of the transient perturbation is slower than equation (9.21), the decay of
the statistical error will be dominated by the first and third terms in equation (9.28).
On the other hand, if the decay of the transient perturbation is fast (equation (9.21)
holds), the overall error is dominated by the second and third terms in equation (9.28),
and such an equation becomes

V

[
1

NM

N∑

n=1

M∑

m=1

〈Qn,m〉T0,T
]

=
1

N2

N∑

n=1

2
V[Sn,m]τ

M(T − T0)
+

1

N2

N∑

n,k=1
n6=k

coV

[[
M∑

m=1

〈Qn,m〉T0,T
M

]
,

[
M∑

m=1

〈Qk,m〉T0,T
M

]]
.

(9.30)
The first term of the right hand side of equation (9.30) decays as c20

NM(T−T0)
, for some

constant c0. The covariance term of the right hand side of equation (9.30) behaves as
c2

N
, for some constant c. In this fast decay scenario, the SE decays as

√
c20

NM(T−T0)
+ c2

N
,

that is bounded by
c0

M0.5(T−T0)0.5
+ c

N0.5
. (9.31)

Such a result suggests that we cannot exactly estimate Q by only increasingM or T−T0,
but we need N →∞ to have null SE. This is intuitively true, since we cannot describe
all possible scenarios by only increasing M or T − T0 (that is related with Ω1), but we
need to explore different stochastic (and non-ergodic) scenarios by sampling on Ω2, that
is increasing N .
The dominant term of equation (9.27) depends on the decay rate of the transient pertur-
bations An,m. If the transient perturbation decays fast enough, equation (9.27) simplifies
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to
CφSE ≤ ε, (9.32)

which can be estimated as

Cφ

√√√√VK

[
1

NM

N∑

n=1

M∑

m=1

〈Qn,m〉T0,T
]
≤ ε, (9.33)

with K sufficiently large. On the other hand, if the decay of the transient perturbation
is slower than equation (9.21), the left-hand side of equation (9.27) will decay like
(T − T0)−q for some q < 1.
In the numerical experiments of section 9.2, we verify that the initialization bias decays
fast enough with respect to the burn-in time T0, and therefore that equations (9.31)
and (9.32) hold.

9.1.3 Algorithm

We report in algorithm 7 the ensemble-based synchronous MC method and in algo-
rithm 8 the ensemble-based asynchronous MC method. To simplify comparisons with
the synchronous and asynchronous MC algorithms (see algorithms 1 and 3), h-statistics
are used to estimate central moments and we omit to specify level l = 0.
As commented in sections 4.7 and 5.2, the update of the number of batches B, of the
number of levels L and of the number of samples per level N can be adaptive or can be
only function of the iteration counter it and of their previous values. We define Sl,p as
the power sum of level l and power p, where p ∈ [1, P ], P is the maximum order we need
and the number of realizations N is omitted when there is no risk of misunderstanding.
Concerning the asynchronous algorithm, we define Sb,l,p as the local power sum of batch
b, level l and power p, where p ∈ [1, P ], P is the maximum order we need and the
number of realizations N is again omitted wherever not necessary. The global power
sum of level l and order p is defined as SG,l,p. The h-statistic of level l and power p
is defined as hl,p. We recall that Qn,m = Q

(
t, w

(m)
1 , w

(n)
2

)
. The left horizontal arrow

denotes the update or the computation of the left value as a function of the right values.
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Algorithm 7 Ensemble-based synchronous MC
N,H initial hierarchy
while convergence is not True do
if non-adaptive then
N ←− N, it

else if adaptive then
N ←− N, it, hp, p ∈ [1, P ]

end if
for n = 0 : N do
for m = 0 : M do

Qn,m ←− solver
(
w

(m)
1 , w

(n)
2

)

end for
Qn ←− Qn,mM, m ∈ [1,M ]
Snp ←− Sn−1

p ,Qn, n, p, p ∈ [1, P ]
end for
hp ←− Sp, N, p ∈ [1, P ]
convergence←− equation (4.9)
it = it+ 1

end while

Algorithm 8 Ensemble-based asynchronous MC
B,N,H initial hierarchy
while convergence is not True do
B ←− B, it
N ←− N, it
for b = 0 : B do
for n = 0 : Nb do
for m = 0 : M do

Qn,m ←− solver
(
w

(m)
1 , w

(n)
2

)

end for
Qn ←− Qn,mM, m ∈ [1,M ]

Snb,p ←− Sn−1
b,p ,Qn, n, p, p ∈ [1, P ]

end for
N = N +Nb

SG,p = SG,p + Sb,p, p ∈ [1, P ]
end for
hp ←− SG,p, N, p ∈ [1, P ]
convergence←− equation (4.9)
it = it+ 1

end while
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9.2 Numerical experiments

In this section, we verify the statistical framework introduced in section 9.1 by solving
three problems of engineering interest, where all systems consider stochastic wind mean
profiles u. First, the problem of wind flowing around a rectangle obstacle is presented
in section 9.2.1. Then, wind flowing around the CAARC building is considered under
two different scenarios: one with constant in time boundary conditions (section 9.2.2)
and one with realistic conditions, where wind fluctuations u′ are not null (section 9.2.3).
It is known that strong winds in a storm usually last one hour or ten minutes1 [121].
Therefore, in this section, we consider a time span of ten minutes is enough to describe
wind fluctuations and peaks. Such a time window must be considered for all wind
profiles u.
For solving the CFD problems, we use Kratos [44, 43] as FE solver software, XMC [13]
as hierarchical MC library and PyCOMPSs [16, 88, 126] as programming model for
distributed computing. The integration of these software has been an important part of
this thesis work, as documented in [127, 10, 11, 5, 4, 22].
The analyses are run on Salomon. This cluster presents 2 Petaflops of peak performance
and is made by 1008 compute nodes. Each node is a powerful x86-64 computer equipped
with 24 cores (two 2.5 GHz twelve-core Intel Xeon processors) and 128 GB RAM.
We remark that, when there is no risk of misunderstanding, we replace 〈Q〉T0,T with
〈Q〉. Moreover, international units are used to measure physical quantities.

9.2.1 Rectangle obstacle problem

We remark that the rectangle obstacle problem is analyzed and solved with different
configurations. In section 7.1, constant in time stochastic boundary conditions are
considered, and the problem is solved with hierarchical MC methods. In section 8.2.1,
constant in time deterministic boundary conditions are considered, and the problem is
solved with the standard time averaging method and the ensemble averaging method.
In section 9.2.1, constant in time stochastic boundary conditions are considered, and
the problem is solved with the ensemble-based MC method. Therefore, in this section
we use constant in time stochastic boundary conditions.

1For example, in [121, section 2.4.1] the authors comment that "the averaging time . . . should be
equal to the duration of strong winds in a storm. Typical durations being considered are 1 hour, and
10 minutes" or in [121, section 2.1] they comment "wind speeds averaged over 10 minutes . . . are used
in World Meteorological Organization (WMO) practice as well as in some standards and codes".
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Problem formulation

We consider the two-dimensional flow around a rectangle body [28], introduced in sec-
tion 7.1. The domain is reported in figure 7.1 and the system is described in section 7.1.
The flow is modeled by the incompressible NS equations (see equation (2.1)) and we
recall that slip boundary conditions are applied on the external boundaries and no-slip
boundary conditions on the rectangle body. Standard air density and viscosity are con-
sidered and the Re is 132719. The wind inlet is uniform and steady-state on the whole
inlet and is modeled as u ∼ N (2, 0.02).
Even though more observables are computed, the QoI for which we assess convergence
is the drag force Fd. Therefore, we set Q ≡ Fd. The confidence 1− φ and the tolerance
ε of equation (4.9) are 99% and 0.04, respectively. The relative value of the tolerance
with respect to sample mean, that is CφSE

EN,M [〈Fd〉] , is below 1.2%.
An adaptive mesh refined with respect to the time-averaged velocity field 〈u(t, x)〉T0,T
is used. The mesh has approximately 25 thousand nodes and a minimal size, close to the
rectangle body, of 0.002 m. The chosen time step is 0.02 s, which gives a CFL number
of 20. The mesh and the solver are validated in section 7.1.2.

Results

In this subsection, we present the rectangle obstacle problem results. We recall that the
instantaneous velocity and pressure fields at t = 200 s for one realization can be observed
in figure 7.5 and figure 7.6. The three key parameters we play with are the number of
wind scenarios N , the ensemble size per wind realization M and the time length T of
each simulation. We shall remark that the computational cost of a simulation is governed
by the total simulation time T , rather than by the effective time T −T0. For this reason,
the overall computational cost NMT is kept constant across all different configurations.
We recall that a time span of 10 minutes is considered for all wind scenarios, that is
M(T − T0) ≈ 600 s.
First, we try to make some estimations on the initialization bias for different N , T −T0

andM values. We know from equation (9.31) that the SE decays asN−0.5 if the transient
perturbation decays fast. We consider a burn-in time T0 = 40 s, that is estimated in
section 8.2.1. We remark that such a T0 is the time the flow needs to go from the
inlet to the body for an average velocity of 2 m s−1. We can observe in figures 9.1–9.3
that the SE fits well equation (9.31). Therefore, the initialization bias is negligible and
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equation (9.32) can be used to assess the failure probability convergence criterion.
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Figure 9.1: Computation of SE as function of N for the drag force Q ≡ Fd. M = 10 and
T − T0 = 256 s. The fitted curve is equation (9.31).

In table 9.1 we report the solution of the stochastic problem. All the simulations present
the same total time, which is given by considering NMT constant, and run a total of 2

iterations, that means the convergence criterion is checked twice and is verified only the
second time. We can conclude that using M > 1 provides important time to solution
reductions, at the price of a slightly larger SE, for the same computational cost. It is
worth remarking that, for the same computational cost, the SE increases as M does,
since the number of transient perturbations to discard grows and therefore the overall
effective time decreases. On the other hand, one could keep the SE constant by keeping
M(T − T0) = 600 s and therefore increasing the computational cost as M grows.
For the sake of completeness, we consider as well the case in which the constraint
M(T − T0) ≈ 600 s can be relaxed. We present in table 9.2 results for the case in which
no constraints onM(T−T0) are considered and only the product NMT is kept constant.
As expected from equation (9.31), increasing N drastically reduces SE.
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Figure 9.2: Computation of SE as function of T − T0 for the drag force Q ≡ Fd. K = 96,
N = 1 and M = 10. The fitted curve is equation (9.31).

EN,M [〈Fd〉] CφSE
EN,M [〈Fd〉] N M T − T0 T0 C

time to
solution

3.234250 0.84% 48 1 600 40 7171 33.20
3.250853 0.95% 48 2 280 40 6844 16.77
3.243490 1.02% 48 5 88 40 6708 6.82
3.207608 1.11% 48 10 24 40 6732 3.46

Table 9.1: The table reports the drag force Fd expected value estimation and its associated SE,
with a 99% confidence. N ,M , T−T0 and T0 refer to the number of wind realizations,
the number of ensembles per wind scenario, the effective time window and the burn-
in time, respectively. C is the computational cost, expressed in CPU hours. Time to
solution is the real time we need to wait for solving the problem, and it is expressed
in hours. Results are sorted for decreasing time to solution.

Other observables

We select the case with N = 48, M = 1, T −T0 = 600 s to show statistical estimators of
all the observables we compute, that are the drag force, the pitching moment (computed
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Figure 9.3: Computation of SE as function of M for the drag force Q ≡ Fd. K = 96, N = 1
and T − T0 = 256 s. The fitted curve is equation (9.31).

EN,M [〈Fd〉] CφSE
EN,M [〈Fd〉] N M T − T0 T0 C

time to
solution

3.234250 0.84% 48 1 600 40 7171 33.20
3.225962 0.73% 480 1 24 40 3173 1.63

Table 9.2: The table reports the drag force Fd expected value estimation and its associated SE,
with a 99% confidence. N ,M , T−T0 and T0 refer to the number of wind realizations,
the number of ensembles per wind scenario, the effective time window and the burn-
in time, respectively. C is the computational cost, expressed in CPU hours. Time to
solution is the real time we need to wait for solving the problem, and it is expressed
in hours. Results are sorted for decreasing time to solution.

around the center of the rectangle body) and the pressure field around the rectangle
body. Apart from the expected value, we estimate the standard deviation and its time
average, which are denoted as σ[Q] and σ[〈Q〉T0,T ], respectively. σ[Q] is an indicator
of the distribution around the expected value, while σ[〈Q〉T0,T ] is an error indicator
of the mean estimation. We also point out that expected value ± standard deviation
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is a common risk measure often used in engineering decision processes (see [115] and
section 3.7).
Table 9.3 shows expected value and standard deviation estimations of the drag force
and the pitching moment. Figures 9.4a and 9.4b show expected value and standard
deviation estimations of the pressure field.

Q EN [〈Q〉T0,T ] σN [〈Q〉T0,T ] σN [Q]

Fd 3.234250 0.0807 0.5780
Mp -0.023559 0.0545 2.1309

Table 9.3: Statistical analysis of the drag force Fd and of the pitching moment Mp around the
rectangle center.
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0 2 4 6 8 10 12

−6

−4

−2

0

2

x

E
N

[〈p
〉]
±
σ
N

[p
(t

)]

(b) Mean of the time-averaged pressure field
〈p(x)〉T0,T and standard deviation of the
pressure field p(x). Each color represents
one side of the rectangle and they are de-
fined in figure 7.1.

Figure 9.4

Finally, we report in table 9.4 the CVaR results for the time-averaged drag force and
the drag force.

9.2.2 High-rise building problem with constant in time wind

We remark that the CAARC building problem is analyzed and solved with different con-
figurations. In section 7.2, turbulent fluctuations around a fixed mean wind field bound-
ary conditions are considered, and the problem is solved with hierarchical MC methods.
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Q CVaR α

〈Fd〉T0,T 3.36661 0.9
Fd 4.37460 0.9

Table 9.4: CVaR analysis of time-averaged drag force 〈Fd〉T0,T and drag force Fd. Results for
N = 48, M = 1, T − T0 = 600 s and α = 0.9.

In section 8.2.2, constant in time fixed mean wind field boundary conditions are con-
sidered, and the problem is solved with the standard time averaging method and the
ensemble averaging method. In section 9.2.2, constant in time stochastic mean wind field
boundary conditions are considered, and the problem is solved with the ensemble-based
MC method. In section 9.2.3, turbulent fluctuations around a stochastic mean wind field
boundary conditions are considered, and the problem is solved with the ensemble-based
MC method. Therefore, in this section we use constant in time stochastic mean wind
field boundary conditions.

Problem formulation

We solve the wind flow past the CAARC building, that is introduced in section 7.2. The
system is described by the NS equations (see equation (2.1)), slip boundary conditions
are applied on the walls and the ceiling, no-slip boundary conditions on the building
and on the floor.
We consider null fluctuations u′ ≡ 0 and a stochastic roughness height, modeled as
z0 ∼ Unif(0.1, 0.7), where Unif(a, b) denotes a uniform distribution with lower bound a
and upper bound b. This scenario is typical of sparsely built-up urban areas, suburbs
and wooded areas [73]. Apart from the roughness height, other physical properties
are reported in table 7.4. This gives a Re of around 119 millions, computed with a
characteristic length of 45 m.
The observables we compute are the drag force Fd on the body, the base moment Mb

around the center of the base on the body and the pressure field p on the body surface.
The QoI for which we assess the failure probability criterion of equation (9.11) is the
drag force Fd. Therefore, we set Q ≡ Fd. The selected tolerance and confidence for
solving the stochastic problem are ε = 110000 and 1 − φ = 99%. The relative value of
the tolerance, with respect to the drag force mean value, is 1.15%.
The mesh we use is adaptive with respect to a metric built on top of velocity and
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pressure fields and has approximately 312000 nodes. The minimal size, close to the
body, is 0.2 m and the CFL is 100. We refer to section 8.2.2 for the validation.

Results

First, we verify that for T0 = 30 s the initialization bias is negligible, where T0 = 30 s

is the optimal burn-in time we obtain in section 8.2.2. Since figures 9.5–9.7 show that
equation (9.31) holds, equation (9.27) simplifies to equation (9.32).
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Figure 9.5: Computation of SE as function of N for the drag force Q ≡ Fd. M = 1 and
T − T0 = 48.75 s. The fitted curve is equation (9.31).

Then, we solve the problem for a fixed total time NMT and we report results in
table 9.5. We remark that the product M(T − T0) is approximately equal to 600 s for
each wind scenario. We observe that exploiting multiple ensembles (M > 1) reduces the
wall clock time, at the price of a slightly larger SE, for the same computational cost.
Larger SE values appear due to the fact that the effective time is smaller as M grows.
We present as well results where only the product NMT is kept constant and the
constraint M(T − T0) ≈ 600 s is relaxed in table 9.6.
We report in figure 9.8 and figure 9.9 the instantaneous velocity and pressure fields at
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Figure 9.6: Computation of SE as function of T − T0 for the drag force Q ≡ Fd. K = 20,
N = 1 and M = 1. The fitted curve is equation (9.31).

EN,M [〈Fd〉] CφSE
EN,M [〈Fd〉] N M T − T0 T0 C

time to
solution

9632478 0.97% 20 1 600 30 10468 20.77
9748082 1.26% 20 2 285 30 10087 10.25
9652424 1.00% 20 4 127.5 30 10263 5.27
9598793 1.12% 20 8 48.75 30 10364 2.68

Table 9.5: The table reports the drag force Fd expected value estimation and its associated SE,
with a 99% confidence. N ,M , T−T0 and T0 refer to the number of wind realizations,
the number of ensembles per wind scenario, the effective time window and the burn-
in time, respectively. C is the computational cost, expressed in CPU hours. Time to
solution is the real time we need to wait for solving the problem, and it is expressed
in hours. Results are sorted for decreasing time to solution.

t = 200 s for one realization. We point out that the main difference with respect to
figures 8.10 and 8.11 is the roughness height, that here is equal to 0.3 m.
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Figure 9.7: Computation of SE as function of M for the drag force Q ≡ Fd. K = 40, N = 1
and T − T0 = 75 s. The fitted curve is equation (9.31).

EN,M [〈Fd〉] CφSE
EN,M [〈Fd〉] N M T − T0 T0 C

time to
solution

9632478 0.97% 20 1 600 30 10468 20.77
9576676 0.82% 160 1 48.75 30 10319 2.67

Table 9.6: The table reports the drag force Fd expected value estimation and its associated SE,
with a 99% confidence. N ,M , T−T0 and T0 refer to the number of wind realizations,
the number of ensembles per wind scenario, the effective time window and the burn-
in time, respectively. C is the computational cost, expressed in CPU hours. Time to
solution is the real time we need to wait for solving the problem, and it is expressed
in hours. Results are sorted for decreasing time to solution.

Other observables

We select the case with N = 20, M = 1, T − T0 = 600 s to compute drag force, base
moment (computed around the center of the bottom of the building) and pressure field
around the building statistical estimators. Table 9.7 shows expected value and standard
deviation estimations of the drag force and of the base moment. Figures 9.10 and 9.11
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Figure 9.8: Velocity field snapshot at t = 200 s.
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Figure 9.9: Pressure field snapshot at t = 200 s.

show expected value and standard deviation estimations of the pressure field.

Q EN [〈Q〉T0,T ] σN [〈Q〉T0,T ] σN [Q]

Fd 9632478 180333 783596
Mb -3603 293732 7990526

Table 9.7: Statistical analysis of the drag force Fd and of the base moment Mb, computed
around the center of the CAARC building base.
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Figure 9.10: Statistical analysis of the pressure field 〈p(x)〉T0,T . From left to
right, EN [〈p(x)〉T0,T ] − σN [〈p(x)〉T0,T ], EN [〈p(x)〉T0,T ] and EN [〈p(x)〉T0,T ] +
σN [〈p(x)〉T0,T ].

We report in table 9.8 the CVaR results for the time-averaged drag force and the drag
force.

Q CVaR α

〈Fd〉T0,T 9942443 0.9
Fd 11260707 0.9

Table 9.8: CVaR analysis of time-averaged drag force 〈Fd〉T0,T and drag force Fd. Results for
N = 20, M = 1, T − T0 = 600 s and α = 0.9.

9.2.3 High-rise building problem with realistic wind

We remark that the CAARC building problem is analyzed and solved with different con-
figurations. In section 7.2, turbulent fluctuations around a fixed mean wind field bound-
ary conditions are considered, and the problem is solved with hierarchical MC methods.
In section 8.2.2, constant in time fixed mean wind field boundary conditions are con-
sidered, and the problem is solved with the standard time averaging method and the
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Figure 9.11: Statistical analysis of the pressure field p(x). From left to right, EN [〈p(x)〉T0,T ]−
σN [p(x)], EN [〈p(x)〉T0,T ] and EN [〈p(x)〉T0,T ] + σN [p(x)].

ensemble averaging method. In section 9.2.2, constant in time stochastic mean wind field
boundary conditions are considered, and the problem is solved with the ensemble-based
MC method. In section 9.2.3, turbulent fluctuations around a stochastic mean wind field
boundary conditions are considered, and the problem is solved with the ensemble-based
MC method. Therefore, in this section we use turbulent fluctuations around a stochastic
mean wind field boundary conditions.

Problem formulation

We solve the wind flow past the CAARC building, that is introduced in section 7.2
and whose domain can be observed in figure 7.8. The system is described by the NS
equations (see equation (2.1)), slip boundary conditions are applied on the walls and
the ceiling, no-slip boundary conditions on the building and on the floor.
We consider both fluctuations u′, described by the Mann model (see section 2.4), and
a stochastic roughness height, model as z0 ∼ Unif(0.1, 0.7). This scenario is typical of
sparsely built-up urban areas, suburbs and wooded areas [73]. Apart from the roughness
height, other physical properties are reported in table 7.4. This gives a Re of around
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119 millions, computed with a characteristic length of 45 m.
The QoI for which we assess the failure probability criterion is the drag force, therefore
we set Q ≡ Fd. The tolerance and confidence of the convergence criterion are ε = 110000

and 1− φ = 99%, respectively. The relative value of the tolerance, with respect to the
drag force mean value, is around 1.10%.
The mesh we use is adaptively refined with respect to pressure and velocity fields. It
presents around 283 thousand nodes and a minimal size of 0.2 m close to the building.
The chosen time step is 0.2375 s, which gives a CFL of 100. Such a configuration is
validated in section 7.2.2.

Results
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Figure 9.12: Expected value estimation and associated SE with 99% confidence plotted as
function of the burn-in time, with M = 128. The effective time T − T0 = 60 s is
fixed among all realizations and all burn-in times.

We estimate the burn-in time following the approach presented in chapter 8, which
estimates T0 on top of statistical and physical constraints. Figure 9.12 shows that
statistical results of the QoI are insensitive for T0 > 30 s, that is larger than the time
required by the wind to go from the inlet to the building.
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We verify now that for T0 = 30 s equation (9.31) is valid in figures 9.13–9.15. Conse-
quently, equation (9.11) can be estimated via equation (9.32) and the initialization bias
is negligible.
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Figure 9.13: Computation of SE as function of N for the drag force Q ≡ Fd. M = 1 and
T − T0 = 75 s. The fitted curve is equation (9.31).

Results for a constant total time NMT and M ≈ (T − T0) ≈ 600 s are presented
in table 9.9. We observe that the last case of the table drastically reduces the time to
solution, at the price of a slightly larger SE, for the same computational cost. Therefore,
M > 1 is the most promising configuration.
We consider also the scenario where the constraint M(T − T0) ≈ 600 s is relaxed and
only NMT is kept constant. Results are reported in table 9.10. We observe that both
SE and time to solution are drastically reduced by increasing N and reducing M and
T − T0.
We report in figure 9.16 and figure 9.17 the instantaneous velocity and pressure fields
at t = 200 s for one realization. We point out that the main difference with respect to
figures 7.9 and 7.10 is the roughness height, that here is equal to 0.3 m.
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Figure 9.14: Computation of SE as function of T − T0 for the drag force Q ≡ Fd. K = 40,
N = 1 and M = 1. The fitted curve is equation (9.31).

EN,M [〈Fd〉] CφSE
EN,M [〈Fd〉] N M T − T0 T0 C

time to
solution

10219325 0.80% 40 1 600 30 19114 37.27
9987287 0.81% 40 2 285 30 18607 18.91
10266800 0.75% 40 4 127.5 30 18625 9.58
10115719 1.07% 40 8 48.75 30 18743 4.85

Table 9.9: The table reports the drag force Fd expected value estimation and its associated SE,
with a 99% confidence. N ,M , T−T0 and T0 refer to the number of wind realizations,
the number of ensembles per wind scenario, the effective time window and the burn-
in time, respectively. C is the computational cost, expressed in CPU hours. Time
to solution is the wall clock time we need to wait for solving the problem, and it is
expressed in hours. Results are sorted for decreasing time to solution.

Other observables

We select the case with N = 40, M = 1, T −T0 = 600 s to show statistical results of the
physical quantities we compute, that are the drag force, the base moment (computed
around the base of the building) and the pressure field around the building. Table 9.11
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Figure 9.15: Computation of SE as function of M for the drag force Q ≡ Fd. K = 40, N = 1
and T − T0 = 75 s. The fitted curve is equation (9.31).

EN,M [〈Fd〉] CφSE
EN,M [〈Fd〉] N M T − T0 T0 C

time to
solution

10219325 0.80% 40 1 600 30 19114 37.27
10131701 0.45% 320 1 48.75 30 19133 4.95

Table 9.10: The table reports the drag force Fd expected value estimation and its associated
SE, with a 99% confidence. N , M , T − T0 and T0 refer to the number of wind
realizations, the number of ensembles per wind scenario, the effective time window
and the burn-in time, respectively. C is the computational cost, expressed in
CPU hours. Time to solution is the wall clock time we need to wait for solving the
problem, and it is expressed in hours. Results are sorted for decreasing time to
solution.

shows expected value and standard deviation estimations of the drag force and the base
moment. Figures 9.18 and 9.19 show expected value and standard deviation estimations
of the pressure field around the building.
We report in table 9.12 the CVaR results for the time-averaged drag force and the drag
force.
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Figure 9.16: Velocity field snapshot at t = 200 s.
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Figure 9.17: Pressure field snapshot at t = 200 s.

Q EN [〈Q〉T0,T ] σN [〈Q〉T0,T ] σN [Q]

Fd 10219325 222721 1742534
Mb 41210 321223 9397070

Table 9.11: Statistical analysis of the drag force Fd and of the base moment Mb.
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Figure 9.18: Statistical analysis of the pressure field 〈p(x)〉T0,T . From left to
right, EN [〈p(x)〉T0,T ] − σN [〈p(x)〉T0,T ], EN [〈p(x)〉T0,T ] and EN [〈p(x)〉T0,T ] +
σN [〈p(x)〉T0,T ].
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Figure 9.19: Statistical analysis of the pressure field p(x). From left to right, EN [〈p(x)〉T0,T ]−
σN [p(x)], EN [〈p(x)〉T0,T ] and EN [〈p(x)〉T0,T ] + σN [p(x)].
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Q CVaR α

〈Fd〉T0,T 10652026 0.9
Fd 13535051 0.9

Table 9.12: CVaR analysis of time-averaged drag force 〈Fd〉T0,T and drag force Fd. Results for
N = 40, M = 1, T − T0 = 600 s and α = 0.9.

9.3 Summary

This chapter introduces a framework that integrates the Monte Carlo method and the
ensemble averaging technique for solving chaotic problems characterized by both ergodic
and non ergodic random variables. Our objective is to find the optimal configuration
of the framework that minimizes the computational cost and/or the time to solution
of the simulation, while satisfying a failure probability convergence criterion. An error
analysis, inspired by our work in chapter 8, is conducted, and two sources of error are
identified: an initialization bias and a statistical error. The convergence rate of the SE
in the optimal case of fast decay of the transient perturbation is derived.
The framework is validated by solving chaotic flow systems with stochastic boundary
conditions and with time horizon constraints typical of wind engineering problems. For
all numerical examples, decay rates are estimated to assess if the initialization bias is
negligible. We achieve speedups up to a factor 10 by using the ensemble-based MC
method, for the same computational cost.
Statistics of multiple observables (drag force, base and pitching moment and pressure
field) are efficiently and accurately computed by applying the proposed ensemble-based
MC framework. Therefore, decisions based on top of such statistics can be taken faster.
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Conclusion

In this chapter we present the achievements, the new contributions and future research
lines of this thesis work. First, we report the thesis objectives set in chapter 1 and we
comment if they have been fulfilled or not.

• Extend hierarchical MC methods to efficiently run on HPC environments and a
new class of asynchronous hierarchical MC algorithms is introduced. This objec-
tive is completed, as shown in chapters 4 and 5. The framework is implemented
within the Kratos open source software [44, 43] and the XMC open source soft-
ware [13] and is tested on different supercomputers. The implemented methods
are applied in chapters 7–9 to solve the problems of interest on HPC systems.

• Integrate hierarchical MC methods with AMR strategies for performing UQ. This
objective is completed. The software development is concluded, and a preliminary
study about the different strategies we propose is conducted in chapter 6. However,
due to the difficulties of validating standard MLMC hypotheses for our target
systems, we do not apply such strategies for solving the problems of interest, but
we limit to using single-level methods and AMR.

• Introduce different strategies for minimizing the overall computational cost and
the time to solution of ensemble-based methods. This objective is completed, and
results are reported in chapter 8. Exhaustive comparisons are conducted and show
the consistency and the efficacy of our proposals.

• Integrate ensemble-based and hierarchical MC methods for solving time-dependent
stochastic problems. This objective is completed, as shown in chapter 9. Ex-
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haustive comparisons between hierarchical MC methods and the joint of ensem-
ble averaging and hierarchical MC are conducted, and the advantage of using
the ensemble-based MC method for the class of problems we are interested in is
demonstrated.

The achievements discussed in previous chapters are summarized in section 10.1. Generic
conclusions of this manuscript follow in section 10.2. Finally, future research lines con-
clude this work in section 10.3.

10.1 Achievements

The first remarkable scientific contribution of this thesis is the development of the asyn-
chronous hierarchical MC methods, presented in chapter 5. The main difference with
respect to state of the art hierarchical MC methods is the new level of parallelism, be-
tween batches, that permits to maximize the CPU usage during the simulation runtime.
We show the superiority of the asynchronous methods over their synchronous counter-
parts when running on HPC systems, since they require a smaller wall clock time to
solve the problem, for the same accuracy. Moreover, a strong scalability test shows the
optimal performance of our implementation.
After assessing the correct implementation and the efficiency of our framework, we en-
hance it by proposing an integration of AMR strategies and hierarchical MC methods in
chapter 6. To this end, we first discuss different error estimator strategies for performing
AMR and then present the integration of AMR strategies and hierarchical MC methods,
which makes use of persistent storage to increase parallelism between solver tasks. Two
proposals are discussed, and we show that the stochastic adaptive refinement MLMC
method is more promising for complex problems.
In order for our work to be relevant for industrial applications, in chapters 7–9 we focus
on complex problems of engineering interest. Specifically, we solve chaotic flows around
obstacles and buildings. Different combinations of settings are considered, and therefore
these problems are solved with different methods.
With the aim of reducing the overall wall clock time of the simulation, we introduce in
chapter 8 the ensemble averaging method, which makes use of concurrency capabilities of
HPC systems for solving chaotic and ergodic problems. We first verify that the ensemble
averaging method works for high Re flows. Then, we present different strategies for
reducing the time duration and the computational cost of the initial burn-in phase.



Closure 159

We verify that the ensemble averaging method outperforms standard time averaging,
drastically reducing the overall time to solution.
Finally, we combine ensemble averaging and the MC method in chapter 9, in order to
solve wind engineering problems with stochastic boundary conditions. We observe that
important time to solution reduction can be achieved by using the ensemble-based MC
method.

10.2 Closure

We can say that our developments go in the direction of making accessible to the industry
solving problems of science and engineering interest with state of the art techniques in
computational mechanics, uncertainty quantification, and high performance computing.
In fact, we present strategies that are non-intrusive and can easily be integrated with
existing software.
It is known that the energy consumption of a modern supercomputer is very demand-
ing1. Within this thesis work, we mention two points that are crucial and that try to
address this problem: make efficient usage of modern supercomputers and minimize the
wall clock time the user has to wait for solving the simulation. We demonstrate that
our proposals achieve optimal strong scalability and maximize the CPU usage of su-
percomputers. Moreover, we observe that important time to solution reductions can be
achieved by applying ensemble-based methods, thus making it possible to take decisions
faster.
In addition, we never forget about accuracy and reliability, which are the pillars of
modern computational science. The asynchronous hierarchical MC methods present the
same accuracy as state of the art methods. Moreover, we demonstrate that the statistical
ensemble averaging framework and the statistical ensemble-based MC framework allow
for accurate and reliable statistical estimator computations.
In this manuscript, the complex engineering problems we solve are mainly chaotic fluid
flows around obstacles and buildings. As commented in chapter 1, the choice of such
systems is motivated by the ExaQUte project. However, as remarked in previous chap-
ters, all of our developments can be easily applied to other systems, as for example is
done in this master’s degree thesis [99], where the author applies our framework to solve
stochastic structural stability analysis problems.

1The energy consumption of the MareNostrum 4 supercomputer is 1.3 MWatt/year [19].
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Recalling the objectives presented in chapter 1, we can say that all of them are ac-
complished. The hierarchical MC methods, the ensemble averaging method and the
ensemble-based MC method are developed and available within the Kratos open source
software [95] and the XMC open source software [13]. All of the examples presented in
this thesis work are open source and available at [96].
Last but not least, we would like to comment that our framework has been successfully
used by an engineering company. The company applied the framework developed within
this thesis work to solve the problem of wind flowing past a high-rise building with a
parametrically triangulated facade [22, sections 4 and 5].

10.3 Future research lines

We try to give an overview of the remaining improvements and future research lines
that may follow from this thesis work.
As commented in chapter 5, the update on the fly of the hierarchy of asynchronous
methods is non-adaptive. This implies that no screening phase is required, and there-
fore all of the computational resources are exploited from the very beginning. A natural
extension is considering adaptive hierarchy updates. This implies that an initial screen-
ing phase is run, where, probably, not all of the computational resources are exploited.
Then, once the hierarchy is adaptively estimated, the required number of simulations
are launched and the machine is fully utilized, as for the asynchronous non-adaptive
MC methods. We mention that a possible challenge we may face when implementing
the asynchronous adaptive methods is the modification on the fly of the hierarchy of
batches which have already been launched, since this is managed by the programming
model for distributed computing.
As mentioned in chapter 1, the framework we develop is compatible with both OpenMP
and MPI parallelisms. In section 5.4 we demonstrate that the single-level asynchronous
MC method achieves optimal scalability and efficiency when integrated with the MPI
parallel solver Kratos. We comment that it would be interesting to conduct a scalability
test exploiting MPI parallelism and multi-level methods, similar to what we do for the
OpenMP parallel case of section 5.4. In [12] we solve the stochastic wind flow around
a modern high-rise building system (see figure 10.1) using multifidelity Monte Carlo
methods and the MPI parallel solver Kratos. The multifidelity Monte Carlo method
uses multiple levels, and an idea can be to conduct the scalability test on top of this
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numerical experiment.

0

20

40

60

m/s

|u(x)|

Figure 10.1: Velocity field snapshot at t = 400 s of wind flowing past a modern high-rise build-
ing.

Concerning the application of the MLMC method to fluid dynamics problems, it would
be important to explore up to which Reynolds number we can benefit from the use of
multi-level methods to accelerate the solution of stochastic fluid flow problems. More-
over, it would be interesting to apply the deterministic adaptive refinement MLMC
method and the stochastic adaptive refinement MLMC method to solve complex sys-
tems satisfying the MLMC hypotheses.
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