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Abstract. With the recent advances in Machine Learning, strategies
based on data could be used to augment wall modeling in Large Eddy
Simulation(LES). In this work, a wall model based on gradient boosted
decision trees is presented. The model is trained to learn the boundary
layer of a turbulent channel flow so that it can be used to make predic-
tions for significantly different flows where the equilibrium assumptions
are valid.The methodology of building the model is presented in detail.
The experiments conducted to choose the data for training the model,
as well as to choose the model input features are described. The trained
model is tested a posteriori on a Turbulent channel flow and the flow over
a wall mounted hump. The results from the tests are compared with that
of an algebraic equilibrium wall model and the performance is evaluated.
The results show that the model has succeeded in learning the boundary
layer and performs as good as an algebraic wall stress model.
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1 Introduction

As a consequence of the recent developments in High-Performance Comput-
ing(HPC), Large Eddy Simulation (LES) is getting increased attention as a pre-
dictive tool in turbulence research. LES essentially resolves the dynamically sig-
nificant, flow-dependent, energy-containing larger scales and models the smaller
ones. For LES to give accurate results these integral scales of motion need to
be completely resolved. This becomes prohibitively expensive at high Reynolds
Number(Re). When it comes to wall-bounded flows, LES may become compu-
tationally unaffordable even at moderate Reynolds numbers, given the complex
flow structure at the boundary layer.The estimated cost of calculation is of the
order of Re
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7 for Wall-Resolved LES (WRLES) [1] and it can be even more ex-

pensive when the temporal integration cost is considered [2]. Interestingly, over
50% of the computational resources are used to resolve only 10% of the flow [3]
even at moderate Re. Therefore, the only economical way to perform LES of
wall-bounded high Re flows is by resolving the outer layer alone. Since the grid
sizes to resolve the outer layer are too coarse to resolve the viscous sub-layer,
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this needs to be modeled. The cost of Wall Modeled LES (WMLES) depends
loosely on the Re and the type of the model. Wall models can be classified into
two categories: zonal models and equilibrium law based models. In zonal ap-
proach, a different set of equations are solved closer to the wall to determine the
boundary condition. Equilibrium law based models assume that the inner layer
dynamics are universal hence they can be represented by a general law, at least
in an average sense. A detailed review of different wall modeling strategies is
presented in [3–6].

Conventional wall modeling strategies perform reasonably well in both low
and high speed flows [7–11]. However, their industrial utility is still limited be-
cause of their poor performance on flows involving separation and/or heat trans-
fer [12]. With the advances in Machine Learning, strategies based on data could
be used to augment wall modeling in LES. Data-based approaches have already
been used in Computational Fluid Dynamics(CFD) for turbulence modeling [13–
25] and for the simulation of multi-phase flows [26, 27]. These approaches are
reviewed in detail by [28] and [29]. However, wall-modeling using data-based
approaches has just started getting attention from the CFD community. The
previous works [30, 31] have used neural networks for modeling. In this study,
a wall model with XGBoost [32] is presented. The performance of the model is
evaluated on two cases, one of which is significantly different from the trained
data and the results are compared with that of an algebraic equilibrium wall
model(EQWM [33]).

The paper is organised as follows: Section 2 provides the background infor-
mation. In section 3 results are presented. Concluding remarks are in section 4.

2 Background

XGBoost is a non-parametric method built using several “base learners” based
on the statistical principle of boosting [34]. The base learners used by XGBoost
are decision trees. Methods using decision trees have already been used in the
context of turbulence modeling [19, 20]. Being a non-parametric model, XGBoost
does not assume anything about the data and the distribution of the data. The
number of parameters for such a model are not limited. This also increases
the chance of over-fitting to the trained data. However, XGBoost also provides
hyper-parameters to tune such that over-fitting can be effectively controlled. The
complete methodology followed for generating the model is discussed below:

2.1 Data-sets

The data-sets for the model development are used from WRLES of turbulent
channel flows. A turbulent channel flow is a typical case where Law of the Wall
(LoW), given by Equation(1) holds. u in Equation(1) is the free-stream velocity
and y the normal distance from the wall. κ ≈ 0.4, is the Von Kármán constant,
and ν is the dynamic viscosity of the fluid. B is a constant that has a value
approximately equal to 5. uτ is the characteristic velocity of the flow called
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friction velocity. Most of the turbulent flows exhibit this velocity distribution
inside the thin wall layer and so it is considered universal [35]. We intend to
train the model to learn the Boundary Layer(BL) of the channel flow so that it
can be used for turbulent flows that are significantly different from the channel
flow.

u

uτ
=

1

κ
log(

yuτ
ν

) +B (1)

WRLES is performed using the in-house multi-physics code Alya [36]. Alya is
a low-dissipation finite-element code which solves the incompressible Navier-
Stokes equation. Two simulations were run using Alya to generate the datasets,
viz., Reτ = 1000 and Reτ = 180. Reτ is the friction Reynolds number given by,

Reτ =
uτδ

ν

where δ is the half-channel height. Given below are the details of the simulation:

Reτ = 180: The computational domain for this case is 4πδ × 2δ × 4
3πδ in the

stream-wise, wall-normal and span-wise directions respectively. A mesh of 643

elements is used to discretize the domain. The mesh is uniform in the stream-
wise and span-wise directions, corresponding to ∆x+ ≈ 35 and ∆z+ ≈ 12 in
wall-units respectively. The mesh is stretched in the wall normal direction using
a hyperbolic tangent function given by,

y(i) =
tanh(γ( 2(i−1)

Ny
− 1)

tanh(γ)
(2)

where Ny is the number of elements in the wall normal direction, with i ranging
from 1 to Ny. γ is the factor which controls the stretching. The value of γ is
chosen such that the ∆y+ = 1. Periodic boundary conditions are applied on the
stream-wise and span-wise directions, while a no-slip boundary condition is im-
posed on the wall boundaries. Flow is driven by a stream-wise constant pressure
gradient and Vreman [37] Sub-Grid Scale(SGS) model is used for turbulence
closure.

Reτ = 1000: The computational domain for this case is 6πδ × 2δ × 3πδ in
the stream-wise, wall-normal and span-wise directions respectively. A mesh of
1283 elements is used here. Just as before, The mesh is uniform in the stream-
wise and span-wise directions, corresponding to ∆x+ ≈ 140 and ∆z+ ≈ 70 in
wall-units respectively . The hyperbolic tangent function of Equation(2) is used
to stretch the mesh in the wall normal direction. The ∆y+ = 1 in this simula-
tion as well. Identical boundary conditions are applied with periodic stream-wise
and span-wise boundaries and a no-slip boundary on the walls. A stream-wise
constant pressure gradient drives the flow and an Integral Length-scale Approx-
imation(ILSA) [38] SGS model used for turbulence closure.
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Table 1: Distribution of data for Training, Validation and Testing of the model
Training Data Validation Data Testing Data

sample size simulation sample size simulation sample size simulation

Case Study 1
70% Reτ = 180 30% Reτ = 1000 90% Reτ = 180

10% Reτ = 180

Case Study 2
70% Reτ = 1000 30% Reτ = 180 90% Reτ = 1000

10% Reτ = 1000

Data from these two simulations are distributed for training, validation and
testing as given in Table 1. Details of the case studies mentioned in the table
are explained later in section 2.3. Choosing the validation data from two distri-
butions is to prevent over-fitting of the model to the training data so that the
generality is preserved.

It is made sure that the data chosen for training are statistically not corre-
lated in time. In addition to these data-sets, a third set of data is synthetically
generated from the above data-sets by varying the viscosity(ν) of the flow and
the half-height of the channel (δ) and correspondingly scaling the velocity (u)
and friction velocities (uτ ). This data-set is an augmentation to the Testing data
to assess how well the model is able to generalize to new flow cases that are not
included in the training. Below are the relations used for the scaling viscosity and
the channel heights. The scaling ratios are computed such that the bulk and the
friction Reynolds numbers of the flow are unaltered. Four sets of synthetic data
are generated, two of which, by modifying ν and the other two by modifying δ.
For viscosity modification from νold to νnew, instantaneous velocity (unew) and
frictional velocity (uτnew) are calculated as:

unew = uold
νnew
νold

uτnew = uτold
νnew
νold

For the channel height modification from δold to δnew, scaled instantaneous ve-
locities (unew) and friction velocity (uτnew) are calculated as:

unew = uold
δold
δnew

uτnew = uτold
δold
δnew

The synthetic data is with ν = {10−5, 10} and δ = {2, 10}.

2.2 Model Inputs and output

The output from the model is u+, i.e., u/uτ , from which τω can be easily com-
puted. τω is the output from a typical EQWM, which acts as a boundary con-
dition in WMLES [33]. However, choosing an input is not straight-forward. The
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choice of inputs should be such that, the model generated based on these inputs
should be extrapolatable to higher Re flows. So the best set of inputs for the
model is derived from a series of trial and error experiments. From the analysis of
the results after each experiment, more knowledge w.r.t the physics and/or the
domain of the flow field is supplemented as inputs. In this section we discuss the
three set of inputs considered for training the model. For each of the three ex-
periments detailed below, a separate XGBoost model is built. The comparison of
their performance w.r.t each other is in section2.3. Based on their performance,
a set of inputs is chosen for training a new model for a posteriori testing.

Primitive features (xgb 1 model): For the first experiment, the features
selected as inputs to the model xgb 1 are the raw outputs (primitives) from
WRLES. The relevant parameters chosen are the stream-wise flow velocity (u)
and the height (y) at each grid point in the discretized domain. Preliminary
tests had shown that the span-wise and wall-normal velocities (v, w) did not
impact significantly the performance of the models. These velocities as well as
the pressure are not included in the training process of xgb 1. Since the model
inputs are not normalized, generality is not expected from this model.

Scale-invariant features (xgb 2 model): For the second experiment, the
inadequacy of xgb 1 is improved by selecting features which carry some informa-
tion regarding the physics of the flow. These are primarily the ‘Local Reynolds
Number (Re∗)’ and its natural logarithm. Re∗ is computed based on the formu-
lae Re∗ = uL

ν where, L is the wall distance, and u is the free-stream velocity at
each grid point. In addition to that, a local u+ variable was included, defined as
u+∗ = u

u∗
τ

, where u∗τ =
√
τ . τ is the shear stress at each of the grid points. The

model trained with these features is named as xgb 2. Since the inputs to the
model includes normalized features, we expect the model to learn the generality
of the flow.

Dimensionless features (xgb 3 model): The third and final model, xgb 3,
was built considering the features which can give some information regarding
the flow domain. These new features are the non-dimensional velocity (u∗) and
height (h∗). The scalar used for scaling the height is called off-wall grid height
(how), which is the height of a chosen grid point. In this experiment we choose
the first off-wall grid point. The scalar used for scaling the velocity is the velocity
value at how. u∗ and h∗ are calculated at each grid point as follows:

h∗ =
h

how

u∗ =
u

uow

The Local Reynolds number from xbg 2 is retained in this model. Table 2 shows
the input variables used in each category of experiments as discussed above.
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Table 2: Inputs and Outputs for the three experimental models.
Model name Input Type Inputs Output

xgb 1 Flow Primitives u, h u+

xgb 2 Scale-invariant u, h,Re∗, ln(Re∗), u+
∗ u+

xgb 3 Dimensionless u∗, h∗, Re∗ u+

2.3 Model Training and Testing

We use the XGBoost package from scikit-learn [39] for generating the model.
Each of the model described in the previous section is subjected to different
data-sets for testing and training. Table. 3 shows the summary of the model
training and testing. Case studies 1 and 2 decides which is the better data out
of the two for training the models. Case studies 3 to 6 are done to evaluate
the performance of the models on synthesized general flows. The distribution
of the data for training validation and testing are as detailed in the Table 1 in
section 2.1 The following sections describe the results of the above mentioned

Table 3: Case studies done for each of the model.
Case Study 1 2 3-6

Training data Reτ = 180 Reτ = 1000 Reτ = 1000
Testing data Reτ = 1000 Reτ = 180 Synthesized data from Reτ = 1000

case studies and the performance of each of the models.

Case study 1: Training data from Reτ = 180, Testing data from
Reτ1000 The different models were trained on the data from the WRLES
of Reτ = 180 and their performance tested on the data from WRLES of Reτ =
1000.

Fig. 1a shows the mean of the u+ predicted by each of the models compared
with the results of the WRLES simulations. The velocity profiles are underesti-
mated all the way from the inner region (close to the wall) to the outer region
of the boundary layer. The mean of the predictions of the model built on the
non-dimensional values tends to be the closest to the results of the LES, but it
is still not as accurate.

Case study 2: Training data from Reτ = 1000, Testing data from
Reτ = 180 For this test case, the models were trained on the data from the
flow case of Reτ = 1000 and their performance is evaluated data from Reτ = 180.
The results of the test are shown in Figs. 1b. It is observed that the mean u+

from the predictions of all the models follow quite well with the results of the
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(a) (b)

Fig. 1: Model performance: (a) Training data from Reτ = 180 and Testing data
from Reτ = 1000. (b) Training data from Reτ = 1000 and Testing data from
Reτ = 180.

LES simulations in the outer region of the boundary layer. The results from the
model of dimensionless inputs gives the closest predictions. Closer to the wall, in
the inner region of the boundary layer, the model built on primitive flow values
tends to deviate from the LES results.

Case studies 3 to 6: Tests on scaled data The performance of the models
are further evaluated on the synthetic data. Fig. 2 shows the mean u+ generated
by the predictions of the models when tested on the modified and scaled data
sets. The results are compared to the mean velocity profiles of the corresponding
data sets. When the height of the channel is increased (assuming the Reynolds
number of the flow remains unchanged), the models trained on primitive and
scale-invariant variables tend to underestimate the u+, due to the corresponding
decrease in the velocity. However when dimensionless variables are used, the
model predictions follow the mean velocity profile of the LES simulations as
shown in Fig. 2a and 2b.

Similar observations are made when the viscosity is modified and the data
set scaled accordingly. The mean profile is underestimated by the models built
on primitive and scale-invariant variables, when a lower viscosity is imposed.
Using dimensionless inputs helps the model to identify the physics of the flow
data irrespective of the modification or scaling that is applied. The model built
on these inputs consistently predicts u+ values that follow the mean velocity
profile of the LES simulations throughout the boundary layer (inner and outer
regions). This highlights the importance of including some domain information.
The model built only on scale-invariant inputs, though includes some normalized
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(a) (b)

(c) (d)

Fig. 2: Test of models on the synthetic data. (a) δ = 2 (b) δ = 10 (c) ν = 10−5

(d) ν = 10

input variables such as Re∗ and u+∗ , it seems to be inadequate when modified
data is used for prediction.

Although xgb 3 performs better overall, it is not tested for its capability
to extrapolate to a higher Reτ flow. This will be comprehensively done in the a
posteriori tests in the next section. In the sections to follow xgb 3 will be referred
as Machine Learning Wall-Model(MLWM).

3 Results and discussion

The performance of MLWM is evaluated a posteriori on two cases: a) Turbulent
channel flow of Reτ = 2005 and b) Flow over a wall mounted hump. The first
case will test the model’s capability to extrapolate to higher Reτ flows. The
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second case will test the model’s performance on complex geometries. Details of
the cases are discussed below:

3.1 Turbulent channel flow

The model is tested on a channel flow of Reτ = 2005 to show that it can make the
right predictions when coupled with an LES solver. The computational domain
for the case is 6πδ × 2δ × ×2πδ in the stream-wise, wall normal and span-wise
directions respectively. Three different meshes were used to produce converged
results. All the meshes are uniform in the stream-wise, wall-normal and span-
wise directions. Details of the meshes are given in Table. 4. Periodic boundary

Table 4: Details of the meshes used for the simulation of the Turbulent channel
flow, Reτ = 2005. Nx, Ny and Nz represent the number of elements in the
stream-wise, wall-normal and span-wise directions respectively.

size(Nx ×Ny ×Nz) ∆x+ ∆y+ ∆z+

M1 64× 64× 64 ≈ 591 ≈ 63 ≈ 196
M2 128× 96× 96 ≈ 295 ≈ 42 ≈ 131
M3 256× 128× 128 ≈ 147 ≈ 31 ≈ 98

conditions are applied on the stream-wise and span-wise directions, while a no-
penetration condition is imposed on the boundaries. Flow is driven by a stream-
wise constant pressure gradient and the Vreman [37] SGS model is used for
turbulence closure. LES velocity from the third-grid point and the corresponding
wall-distance is used to compute Re∗. This is consistent with the direction of
LES inputs for wall-models as explained in [40]. For computing u∗ and h∗,
velocity from the lower grid point and the corresponding wall-distance are used
respectively. The case is run long enough to make sure it is statistically steady.
The results are averaged for 20 flow-through times, where one flow-through time
is the time taken by the center-line stream-wise velocity to cover the domain
length. Subsequently, spatial averaging is also done and normalised with the
friction velocity of the flow.

Numerical results Fig. 3 shows the mean-stream velocity for M1, M2 and
M3 compared with the results from Direct Numeric Simulation(DNS) [41]. The
mean-stream velocity profile tend to approach the DNS as the mesh density
increases. For all the simulations, the error in uτ predicted by the model is
less than 0.5%. This ability of the model to extrapolate to higher Reτ channel
flows shows that the model has learnt the LoW without explicitly giving any
information about LoW as input features. Now the performance of the model is
compared with that of the algebraic wall-model, EQWM. The mesh used for the
simulations is M3. The results are shown in figure 4. The mean-stream velocity
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Fig. 3: Mean stream-wise velocity profiles for M1, M2 and M3 compare with
DNS.

profiles as well as the mean fluctuations for both the models are very close to
each other. This is an indication that our non-parametric model trained with
the data predicts as good as a typical EQWM.

3.2 Wall-mounted hump

In this section, the model is used in the simulation of the flow over a wall-mounted
hump. This is considered as a benchmark case to test turbulence models as it
involves separation, re-attachment, and recovery of the boundary layer which are
the hallmarks of many industrial flows. The geometry is defined following the
guidelines of the NASA CFDVAL2004 workshop [42] and the inflow configuration
is based on the work done by Park [43]. The results are compared with the
experimental data of Greenblatt et.al. [44]. The performance of the model is
also evaluated by comparing the results with that of the EQWM [33].

The computational domain is 4.64c, 0.909c and 0.3c in the stream-wise, nor-
mal and span-wise directions respectively, where c is the chord-length of the
hump. The hump leading edge is set at x/c = 0 so that inlet and outlet planes
are at x/c = −2.14 and x/c = 2.5 respectively. In order to account for the ef-
fects of the end-plates used in the experiment, the top wall of the domain has a
contour from x/c = −0.5 to x/c = 1.5 as shown in Fig 5.

The simulations were conducted on two different grids. The coarse mesh(G1)
consists of approximately 3.1 million linear elements, with 742 × 70 × 60 ele-
ments in the stream-wise, normal and span-wise directions respectively. The fine
mesh(G2) consists of approximately 8 million linear elements with 900×110×80
elements in the stream-wise, wall-normal and span-wise directions respectively.
Fig 6 shows the grid spacing in wall units between x/c = −0.5 x/c = 2.0. G2
has more refinement in the tangential directions compared to G1. In the normal
direction, the mesh growth-rate is changed from 1.06 in G1 to 1.03. However, the

10



(a) y+ vs U+ (b) y+ vs u rms

(c) y+ vs v rms (d) y+ vs w rms

Fig. 4: Comparison of the model with an algebraic equilibrium law based wall
model: (a) shows the Mean stream-wise velocity and (b), (c), (d) show the
mean fluctuations.

∆y+ is maintained the same. The Reynolds number of the flow is Re = 936000,
based on the hump cord length, c, and the free stream velocity, U∞ at the inlet.
Periodic boundary conditions are imposed on the span-wise direction, while a slip
boundary condition is applied at the top boundary. At the bottom wall where
the wall stress is predicted, a no-penetration condition is imposed.Vreman [37]
SGS model is used for turbulence closure and synthetic turbulence as described
in [45] generated as inflow data such that realistic turbulence evolves before the
flow reaches the hump. The MLWM is fed using instantaneous LES data at the
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Fig. 5: Computational mesh around the hump. The contour between x/c = -0.5
and x/c = 1.5 is visible.

12.5% of the boundary layer thickness and is normalised using the first off-grid
wall distance data.

(a) Coarse mesh(G1) (b) Fine mesh(G2)

Fig. 6: Grid spacing in wall units for (a) G1 and (b) G2 between x/c = -0.5
and x=̧ 2.0.

Numerical Results Fig. 7 shows the Skin friction(Cf ) and Pressure coefficients
(Cp) for the meshes G1 and G2. The results from both simulations are close to
each other except at the re-circulation region. The effect of mesh refinement is
reflected in the prediction of Cp. Both simulation fail to capture the primary
suction peak before the re-circulation bubble and the secondary suction peak
within the bubble, G2 is qualitatively better. Table 5 shows the details about
the re-circulation bubble from the simulations. The length of the bubble as well
as the re-attachment region are significantly better for G2.
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(a) Skin Friction Coefficient (b) Pressure Coefficient

Fig. 7: Skin friction and Pressure Coefficients for G1 and G2 compared with
experimental results.

Next, we compare the results of the simulation done on mesh G2 with that
of the EQWM performed on the same mesh. Figures 8a and 8b show the Skin
friction and Pressure coefficients respectively. There are only minor differences
in the prediction of Cf by both the models. Both models fail at the re-circulation
region. Table 5 shows that both models predict the re-attachment location within
1% error, with EQWM predicting 0.01 units behind the actual location from the
experiments and MLWM predicting 0.01 units ahead. This is due to the slightly
lower wall-friction predicted by the MLWM(cf. Fig 7b) compared to EQWM.
As a result the boundary layer carries more momentum in the case of MLWM.
Due to the higher momentum, the point of separation as well as the point of
re-attachment are slightly ahead of what is expected(cf. Table 5). The effect of
the higher momentum is also visible in the mean-stream velocity profiles(u/U∞)
shown in 9. The mean-stream velocity profiles of MLWM are slightly ahead of the
ones from EQWM with a decrease in the longitudinal curvature throughout the
re-circulation bubble. Fig 9 also shows that the Reynolds stresses are also higher
for MLWM compared to EQWM. However, when compared to experimental data
both models fail to capture the stream-wise velocity and stress profiles.

4 Conclusions

In this study, a wall model based on machine learning is presented. The model is
based on the non-parametric method XGBoost. The model is trained to learn the
boundary layer of a channel flow. For training, the data from a Wall resolved
LES of channel flow Reτ = 1000 is used. The performance of the model is
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(a) Skin Friction Coefficient (b) Pressure Coefficient

Fig. 8: Skin friction and Pressure Coefficients using the machine learning wall
model(MLWM) and algebraic wall model(EQWM) compared with experimental
results.

evaluated by testing the Turbulent channel flow Reτ = 2005 and on the flow
over a wall mounted hump. On the channel flow, the model performs as good
as an algebraic equilibrium wall stress model, by predicting a wall stress within
0.5% error. On the wall mounted hump, the model predicts the coefficient of
pressure as good as an EQWM. The skin-friction coefficient is very close to the
values predicted by the EQWM. The mean-stream velocity profiles predicted by
the MLWM is very close to the experimental data. The Reynolds stress profiles
predicted by the model is slightly different EQWM. from the experimental data.
However, as the predictions of the stress profiles by both models are significantly
different compared to the experimental data we summarize that the MLWM is on
par with EQWM and has succeeded in learning an equilibrium boundary layer.

Table 5: Details of the re-circulation bubble for MLWM and EQWM on both
G1 and G2. x/c|sep is the location of separtion and x/c|reatt is the location of
reattachment. error|xreatt is the error in the location of reattachment.

mesh /x/c|sep x/c|reatt bubble length error|xreatt
Experiment [44] - ∼ 0.665 ∼ 1.1 ∼ 0.435 -

EQWM G1 0.67 1.05 0.38 4.5%
MLWM G1 0.68 1.05 0.37 4.5%
EQWM G2 0.67 1.09 0.42 0.9%
MLWM G2 0.686 1.11 0.425 -0.9%
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Fig. 9: Mean stream-wise velocity and Reynolds Stress at stream-wise positions:
x/c = {0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}. The profiles are respectively shifted by
∆ = 1.5, ∆ = 0.15, ∆ = 0.075 and ∆ = 0.075 units.

Future works will be in the direction of teaching the model Non-Equilibrium
phenomena.

5 Acknowledgment

Sarath Radhakrishnan acknowledges the financial support by the Ministerio de
Ciencia y Innovación y Universidades, for the grant, Ayudas para contratos pre-
doctorales para la formación de doctores(Ref: BES-2017-081982). Oriol Lehmkuhl
has been partially supported by a Ramon y Cajal postdoctoral contract (Ref:
RYC2018-025949-I).We also acknowledge the Barcelona Supercomputing Cen-
ter for awarding us access to the MareNostrum IV machine based in Barcelona,
Spain.

15



Bibliography

[1] Haecheon Choi and Parviz Moin. Grid-point requirements for large eddy
simulation: Chapman’s estimates revisited. Physics of fluids, 24(1):011702,
2012.

[2] J Calafell, FX Trias, O Lehmkuhl, and A Oliva. A time-average filtering
technique to improve the efficiency of two-layer wall models for large eddy
simulation in complex geometries. Computers & Fluids, 188:44–59, 2019.

[3] Ugo Piomelli. Wall-layer models for large-eddy simulations. Progress
in Aerospace Sciences, 44(6):437 – 446, 2008. ISSN 0376-0421.
https://doi.org/https://doi.org/10.1016/j.paerosci.2008.06.001. URL
http://www.sciencedirect.com/science/article/pii/S037604210800047X.
Large Eddy Simulation - Current Capabilities and Areas of Needed
Research.

[4] Ugo Piomelli and Elias Balaras. Wall-layer models for large-eddy simula-
tions. Annual review of fluid mechanics, 34(1):349–374, 2002.

[5] Johan LARSSON, Soshi KAWAI, Julien BODART, and Ivan BERMEJO-
MORENO. Large eddy simulation with modeled wall-stress: recent progress
and future directions. Mechanical Engineering Reviews, 3(1):15–00418–15–
00418, 2016. https://doi.org/10.1299/mer.15-00418.

[6] Sanjeeb T. Bose and George Ilhwan Park. Wall-modeled large-eddy simula-
tion for complex turbulent flows. Annual Review of Fluid Mechanics, 50(1):
535–561, 2018. https://doi.org/10.1146/annurev-fluid-122316-045241. URL
https://doi.org/10.1146/annurev-fluid-122316-045241.

[7] W. Cheng, D. I. Pullin, R. Samtaney, W. Zhang, and W. Gao. Large-eddy
simulation of flow over a cylinder with reD from 3.9 × 103 to 8.5 × 105 :
a skin-friction perspective. Journal of Fluid Mechanics, 820:121–158, 2017.
https://doi.org/10.1017/jfm.2017.172.

[8] J. Larsson, S. Laurence, I. Bermejo-Moreno, J. Bodart, S. Karl, and R. Vic-
quelin. Incipient thermal choking and stable shock-train formation in the
heat-release region of a scramjet combustor. part ii: Large eddy simulations.
Combustion and Flame, 162:907–920, 2015.

[9] Prahladh S. Iyer, George I. Park, and Mujeeb R. Malik. Application of
Wall-modeled LES to Turbulent Separated Flows. In APS Division of
Fluid Dynamics Meeting Abstracts, APS Meeting Abstracts, page G33.004,
November 2016.

[10] X. I. A. Yang, J. Urzay, S. Bose, and P. Moin. Aerodynamic heat-
ing in wall-modeled large-eddy simulation of high-speed flows. AIAA
Journal, 56(2):731–742, 2018. https://doi.org/10.2514/1.J056240. URL
https://doi.org/10.2514/1.J056240.

[11] XIA Yang, J Urzay, and P Moin. Heat-transfer rates in equilibrium-wall-
modeled les of supersonic turbulent flows. Annual Research Briefs, Center
for Turbulence Research, Stanford University, pages 3–15, 2016.



[12] Jeffrey Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal,
William Gropp, Elizabeth Lurie, and Dimitri Mavriplis. Cfd vision 2030
study: a path to revolutionary computational aerosciences, 2014.

[13] Michele Milano and Petros Koumoutsakos. Neural network modeling for
near wall turbulent flow. Journal of Computational Physics, 182(1):1–26,
2002.

[14] Brendan Tracey, Karthik Duraisamy, and Juan Alonso. Applica-
tion of Supervised Learning to Quantify Uncertainties in Turbulence
and Combustion Modeling. https://doi.org/10.2514/6.2013-259. URL
https://arc.aiaa.org/doi/abs/10.2514/6.2013-259.

[15] Brendan D Tracey, Karthikeyan Duraisamy, and Juan J Alonso. A machine
learning strategy to assist turbulence model development. In 53rd AIAA
aerospace sciences meeting, page 1287, 2015.

[16] Karthikeyan Duraisamy, Ze J Zhang, and Anand Pratap Singh. New ap-
proaches in turbulence and transition modeling using data-driven tech-
niques. In 53rd AIAA Aerospace Sciences Meeting, page 1284, 2015.

[17] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds
averaged turbulence modelling using deep neural networks with em-
bedded invariance. Journal of Fluid Mechanics, 807:155–166, 2016.
https://doi.org/10.1017/jfm.2016.615.

[18] Jin-Long Wu, Jian-Xun Wang, and Heng Xiao. A bayesian calibration–
prediction method for reducing model-form uncertainties with application
in rans simulations. Flow, Turbulence and Combustion, 97(3):761–786, 2016.

[19] Jian-Xun Wang, Jin-Long Wu, and Heng Xiao. Physics-informed machine
learning approach for reconstructing reynolds stress modeling discrepancies
based on dns data. Physical Review Fluids, 2(3):034603, 2017.

[20] Jin-Long Wu, Heng Xiao, and Eric Paterson. Physics-informed machine
learning approach for augmenting turbulence models: A comprehensive
framework. Physical Review Fluids, 3(7):074602, 2018.

[21] Ryan N King, Peter E Hamlington, and Werner JA Dahm. Autonomic
closure for turbulence simulations. Physical Review E, 93(3):031301, 2016.

[22] Masataka Gamahara and Yuji Hattori. Searching for turbulence models by
artificial neural network. Physical Review Fluids, 2(5):054604, 2017.

[23] Romit Maulik and Omer San. A neural network approach for the blind
deconvolution of turbulent flows. arXiv preprint arXiv:1706.00912, 2017.

[24] Antoine Vollant, Guillaume Balarac, and C Corre. Subgrid-scale scalar
flux modelling based on optimal estimation theory and machine-learning
procedures. Journal of Turbulence, 18(9):854–878, 2017.

[25] Ze Jia Zhang and Karthikeyan Duraisamy. Machine learning methods for
data-driven turbulence modeling. In 22nd AIAA Computational Fluid Dy-
namics Conference, page 2460, 2015.

[26] Ming Ma, Jiacai Lu, and Gretar Tryggvason. Using statistical learning
to close two-fluid multiphase flow equations for a simple bubbly system.
Physics of Fluids, 27(9):092101, 2015.

[27] Ming Ma, Jiacai Lu, and Gretar Tryggvason. Using statistical learning
to close two-fluid multiphase flow equations for bubbly flows in vertical
channels. International Journal of Multiphase Flow, 85:336–347, 2016.

17



[28] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence mod-
eling in the age of data. Annual Review of Fluid Mechanics, 51:357–377,
2019.

[29] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. Machine
learning for fluid mechanics. Annual Review of Fluid Mechanics, 52(1):
477–508, 2020. https://doi.org/10.1146/annurev-fluid-010719-060214. URL
https://doi.org/10.1146/annurev-fluid-010719-060214.

[30] X. I. A. Yang, S. Zafar, J.-X. Wang, and H. Xiao. Pre-
dictive large-eddy-simulation wall modeling via physics-
informed neural networks. Phys. Rev. Fluids, 4:034602, Mar
2019. https://doi.org/10.1103/PhysRevFluids.4.034602. URL
https://link.aps.org/doi/10.1103/PhysRevFluids.4.034602.

[31] Adrián Lozano-Durán and Hyunji Jane Bae. Self-critical machine-
learning wall-modeled les for external aerodynamics. arXiv preprint
arXiv:2012.10005, 2020.

[32] Tianqi Chen and Carlos Guestrin. Xgboost. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Aug 2016. https://doi.org/10.1145/2939672.2939785. URL
http://dx.doi.org/10.1145/2939672.2939785.

[33] Herbert Owen, Georgios Chrysokentis, Matias Avila, Daniel Mira,
Guillaume Houzeaux, Ricard Borrell, Juan Carlos Cajas, and
Oriol Lehmkuhl. Wall-modeled large-eddy simulation in a fi-
nite element framework. International Journal for Numerical
Methods in Fluids, 2019. https://doi.org/10.1002/fld.4770. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4770.

[34] Jerome H Friedman. Stochastic gradient boosting. Computational statistics
& data analysis, 38(4):367–378, 2002.

[35] Hermann Schlichting and Klaus Gersten. Boundary-layer theory. Springer,
2016.

[36] Mariano Vazquez, Guillaume Houzeaux, Seid Koric, Antoni Artigues,
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