

Didactic tool for the development of

shaders

Joan Bellavista Bartroli

Bachelor Thesis

Specialization in Computing

Thesis advisor: Marta Fairén

Thesis coadvisor: Àlvar Vinacua

January 18, 2021

Contents

Contents

Contents .. 4

List of tables .. 7

List of figures ... 8

1 Introduction .. 8

1.1 Introduction and contextualization .. 8

1.1.1 Context .. 8

1.1.2 Concepts .. 8

1.1.3 Problem to be solved .. 9

1.2 Justification ... 10

1.2.1 Existing tools ... 10

1.2.2 Justification ... 10

1.3 Objectives.. 11

1.4 Methodology and rigor ... 11

1.4.1 Methodology ... 11

1.4.2 Monitoring tools and testing .. 11

2 Development plan ... 13

2.1 Description of tasks ... 13

2.1.1 Task definition ... 13

2.1.2 Summary of the tasks.. 14

2.1.3 Changes to the plan .. 17

2.1.4 Resources .. 17

2.2 Gantt ... 17

3 Budget ... 19

3.1 Staff costs .. 19

3.2 Generic costs (GC) ... 20

3.3 Deviations of the budget... 22

3.4 Management control .. 23

4 Sustainability ... 24

4.1 Self-assessment ... 24

4.2 Environmental impact ... 24

4.2.1 PPP (project put into production) ... 24

4.2.2 Exploitation (Life expectancy) ... 24

4.3 Economic impact ... 25

4.3.1 PPP (project put into production) ... 25

4.3.2 Exploitation (Life expectancy) ... 25

4.4 Social Impact ... 25

4.4.1 PPP (project put into production) ... 25

4.4.2 Exploitation (Life expectancy) ... 25

5 Knowledge integration .. 27

6 Laws and regulations .. 27

7 Project Implementation .. 28

7.1 On the choice of frameworks.. 28

7.1.1 Decision discussion ... 28

7.1.2 React ... 29

7.2 Overview ... 29

7.2.1 Web routing design ... 29

7.2.2 Classes ... 30

7.3 Tasks .. 38

7.3.1 Implementation of Examples Page ... 38

7.3.2 Implementation of the Text Editor ... 39

7.3.3 Implementation of widget insertion ... 40

7.3.4 Implementation of syntax highlighting ... 41

7.3.5 Implementation of error highlighting ... 41

7.3.6 Implementation of interactive canvas .. 43

7.3.7 Implementation of Mesh and Texture manager ... 44

7.3.8 Parametrization... 45

8 Conclusion ... 48

8.1 Achievement of objectives .. 48

8.1.1 Designing the graphical interface ... 48

8.1.2 Programming the text editor .. 48

8.2 Achievement of competencies ... 48

8.3 Next steps ... 49

8.3.1 Allow other versions of GLSL .. 49

8.3.2 Implementing Backend ... 49

8.3.3 Optimizing the parser ... 49

8.3.4 Extra widgets ... 50

8.4 Final conclusions ... 50

9 Bibliography .. 52

List of tables

Table 1 ... 16
Table 2: Cost per hour of each role... 19
Table 3: Distribution of tasks .. 20
Table 4: Total cost of the staff (without social charges) ... 20
Table 5: Amortization costs .. 21
Table 6: Generic cost ... 22
Table 7: Incidental costs.. 23
Table 8: Final Budget ... 23

List of figures

Figure 13 .. 9
Figure 2 ... 18
Figure 3. Examples .. 29
Figure 4. Text Editor .. 30
Figure 5. Text Editor page ... 33
Figure 6. Texture tab ... 33
Figure 7. Uniforms tab .. 33
Figure 8. Code Highlighting ... 34
Figure 9. Example sliders .. 35
Figure 10. Sliders Disabled .. 35
Figure 11. Sliders enabled ... 35
Figure 12 Syntax error highlighting ... 36
Figure 13. InteractiveCanvas ... 37
Figure 14. Mesh Selector .. 37
Figure 15. Slider .. 41
Figure 16. Text editor text versus Compiled shader text .. 43
Figure 17. Same shader different meshes .. 44
Figure 18. Using textures .. 44
Figure 19. Textures Earth .. 45
Figure 20. examples.json .. 46
Figure 21. Examples page examples.json ... 46
Figure 22. mesh_metadata.json ... 47
Figure 23. textures_metadata.json ... 47

file:///D:/Things/Uni/TFG/Word%20TFG/EntregaFinal.docx%23_Toc89948266
file:///D:/Things/Uni/TFG/Word%20TFG/EntregaFinal.docx%23_Toc89948271
file:///D:/Things/Uni/TFG/Word%20TFG/EntregaFinal.docx%23_Toc89948272
file:///D:/Things/Uni/TFG/Word%20TFG/EntregaFinal.docx%23_Toc89948275
file:///D:/Things/Uni/TFG/Word%20TFG/EntregaFinal.docx%23_Toc89948276
file:///D:/Things/Uni/TFG/Word%20TFG/EntregaFinal.docx%23_Toc89948284

8

1 Introduction

1.1 Introduction and contextualization

Computer graphics is one of the fastest growing fields in computer science. That is, in part, thanks to the

increasing attention that videogames are receiving these days. It is also a really difficult subject to master,

and one of the hardest parts is programming shaders, since it is radically different from programming

anything else. It requires knowledge of the graphics pipeline and imagination to be able to use shaders at

their maximum potential. Shader programming requires a depth knowledge of the graphics pipeline

because they work mainly in parallel for each primitive of the graphical model. In order to take maximum

potential of this programming it is also desirable to have a broad knowledge of vector calculation.

This thesis is the development of a web application which has two main objectives. It would aid students

in the development of shaders and it would help professors to teach shader programming in a dynamic

and practical way. Since the application will have to display 3D scenes, we will use WebGL (1).

This web application is meant to be used as a text editor where the user can experiment with shaders,

writing shaders and seeing the results in real time.

1.1.1 Context

This is a Bachelor Thesis of the Computer Engineering Degree, specialization in Computing, done in the

Facultat d’Informàtica de Barcelona of the Universitat Politècnica de Catalunya, directed by Marta Fairén

and Àlvar Vinacua.

1.1.2 Concepts

WebGL

WebGL (1) is an API (2) that most browsers natively offer. It lets you use the OpenGL graphical pipeline

(latter explained). Ultimately it offers the programmer a way to display 3D graphics in real time.

9

Graphical Pipeline

The graphical pipeline includes the steps that a graphical system performs to render a

2D / 3D scene.

To aid the understanding of the concept, Figure 1 (3) shows all the steps. It is not

necessary to know every step to understand this thesis, so there will only be description

of the relevant stages.

Vertex specification is the necessary information to describe a concrete 2D / 3D object

(Vertex Array Object1). The next rendering step is the vertex shader, which is executed

for each vertex and is responsible for modifying the vertex position and / or calculate

values for the next rendering steps. The last relevant step is the fragment shader, which

is executed for each fragment (43) of the screen. From the fragment shader we can

change the final color of each fragment. This is incredibly useful for simulating light, or

creating complicated procedural textures.

1.1.3 Problem to be solved

The problem is the high difficulty to deeply understand how shaders work and how to program them

properly. It is a problem for students but also for teachers.

Programming shaders require not only to understand the theory and syntax of the language, but also to be

creative and imaginative. Some of the intuition that the students have gathered programming with

ordinary languages, doesn’t apply with shaders. That is because what you program in, for example, a

fragment shader is not executed only once, but once for each fragment of the screen. This unique way of

programming is difficult, and the best way to deeply understand it, is practicing and seeing examples.

1 VAO is an OpenGL Object that stores all of the state needed to supply vertex data (38)

Figure 1

10

1.2 Justification

1.2.1 Existing tools

• Any IDE or text editor which can be used to implement shaders.

• Custom software that currently is being used in “Gràfics” to develop shaders (named “GLarena”).

• Visual scripting (like the node-based programming of shaders in Blender or Unity (4))

• Online text editor The Book of Shaders (5).

1.2.2 Justification

The bast majority of text editors don’t offer that many shader specific features. And the ones that do, the

features are not that impressive. For example, visual studio has an extension (6) that enables syntax

highlighting and code completion. Which is helpful, but doesn’t make the coding any more dynamic.

In the other end we have visual scripting, which is the most dynamic way to program shaders. Usually the

visual scripting is node-based, and this enables the opportunity to add a lot of really interesting features

like changing variable values through sliders instead of rewriting the number, or displaying a preview of

the partial render of each node.

Even though visual scripting looks like the best way to implement shaders, it has its drawbacks. When

making complicated shaders, the node system may get out of hand, so it doesn’t really scale that well.

Furthermore, visual scripting is a high-level approach to programming. So, it has the drawbacks of high-

level languages like losing the ability to communicate with hardware or low-level system libraries.

After researching the tools that are available for shader programming, I found that there aren’t many

applications that are a middle ground between those two options. This work is meant to occupy this gap.

To sum up, the tool developed in this work is a text editor but with shader specific utilities. This will

make the workflow of implementing shaders much more dynamic, without losing touch with the low-

level utilities. It’s also aiming to be educational, since it’s the main objective of this tool.

11

1.3 Objectives

As explained in the previous section, the tool is a more dynamic text editor specialized in shaders. This

dynamism is achieved with features such as a display showing in real time the scene, or the automatic

widget insertion into the text (explained in section 7.2.2.5).

Theoretical part

• Study of possible frameworks and comparison between them (React, Angular…).

• Study of WebGL library and GLSL ES 2.0 (shading language).

Practical part

• Design of the graphic interface.

• Program the text editor

o Implement a display of the scene

o Implement automatic widget insertion into the text.

o Implement syntax highlighting.

o Extra features

1.4 Methodology and rigor

1.4.1 Methodology

Software development methodologies are a really important part of a project. The larger the project, the

more important the methodology becomes.

I have opted to use an agile methodology since it’s versatile and dynamic. Most specifically, scrum

methodology, which is an agile methodology that works around sprints (7) which are a time-boxed period

when a team works to complete an amount of work.

1.4.2 Monitoring tools and testing

The monitoring is done with GitHub (8) repository. Git (9) is a great tool for version control, and GitHub

provides us with free cloud repository. This ensures that changes can be rolled back.

12

In the other hand, web testing is also really important. It is a software practice that ensures the correct

functionality of the app and ensures that changes don’t break the application.

13

2 Development plan

2.1 Description of tasks

2.1.1 Task definition

2.1.1.1 Project planning

The first task is planning the project. Given that this is a large task, it’s easy to divide it in various

subtasks:

• Contextualization and project scope: Describe the project scope, justification and

contextualization.

• Temporal planning: Describe the tasks and show time dependencies between them.

• Economic management and sustainability: Analysis of the costs and sustainability of the

project.

• Integration in final document: All the previous planning tasks will be integrated into the final

document.

• Meetings: There have been meetings with the directors of the thesis to receive feedback.

2.1.1.2 Theorical Part

Before starting to develop the web application, it has been necessary to choose the right tools and

understand them. The subtasks are as follow

• Study of possible frameworks and comparison

• Study of WebGL library and GLSL ES 1.0

2.1.1.3 Practical part

After the study, the development of the web application can start. Given that the goal of this thesis is to

develop an application, the practical part is the one where most of the efforts have been directed to.

Design of the graphic interface: Designing the UI to have high usability, so it’s easy to navigate

through.

14

Program the text editor: This task will be divided into

• Display of the scene: Implementing a display which will show the 3D / 2D scene. The scene will

be rendered using the shaders that the user is coding. It will also update every time the user

modifies the code.

o Scene manipulation: Implementing rotate, zoom and pan to manipulate the 3D scene.

o Importing 3D models (.obj): Implement the importing of 3D models into the scene.

• Text area: Implementing an area where the user can type the code. There are some added

features, which are the following tasks:

o Automatic widget insertion into the text: Implementing a system which in some

situations will replace the text written by the user with useful widgets. For instance, when

typing a “float” the number is replaced with a slider, so you can change the value of the

variable without typing.2

o Syntax highlighting

o Extra features

General features

• Examples ready to use: Create examples for the students to play around.

2.1.1.4 Documentation and conclusion

Write the documentation of the web application. Explaining all the features and how to use them. It also

contains the justification of technical decisions. The conclusion of the thesis is also important,

commenting whether the thesis has achieved its goals.

2.1.2 Summary of the tasks

The following table (Table 1) shows the summary of the tasks. For each task it presents the number of

hours and the dependencies it has.

The dependencies that exist between tasks are rather logical.

2 The way the widget insertion is explained, is not the way it will be implemented. It will be implemented parsing
the users code, there will be no insertions. But I believe it’s easier to understand the way is written.

15

We can’t start the theorical part until the project is planned, and we can’t start the practical part until I

have a grasp on the tools I will be using to develop the product (theorical part).

 It’s also worth noting that the creation of examples ready to use, shouldn’t be started until everything else

of the practical part is done, since the examples will be built upon the web application.

The preparation of the oral exposition shouldn’t start until the rest of tasks are done.

In the Table 1 there is a hierarchy of tasks. For example, T10 (Practical Part) is the more generic task, but

inside this task which has an estimated time of 420 hours we have various tasks that distribute these 420

hours. The same happens with for example T16 (Text Area) which contains T17, T18 and T19.

16

Id Task Time(h) Dependencies

T1 Project planning 40

T2 - Contextualization and project scope 10

T3 - Temporal planning 10

T4 - Economic management and sustainability 10

T5 - Integration in final document 5

T6 - Meetings 5

T7 Theorical Part 30 T1

T8 - Study of possible frameworks and comparison 15

T9 - Study of WebGL library and GLSL ES 1.0 15

T10 Practical part 420 T7

T11 - Design of the graphic interface 20

T12 - Program the text editor 300 T10

T13 - Display of the scene 100

T14 - Scene manipulation 70

T15 - Importing 3D models 30

T16 - Text area 200

T17 - Automatic widget insertion into the text 150

T18 - Syntax highlighting 20

T19 - Extra features 30

T20 - General features 100 T11, T12

T21 - Examples ready to use 100

T22 Documentation and conclusion 40

T23 - Documentation 30

T24 - Conclusion 10

T25 Oral Exposition 10 T10

Table 1

17

2.1.3 Changes to the plan

While working on the thesis, the planning was followed. The time spent on each task was approximately

what was estimated. However, there were some added tasks:

2.1.4 Resources

2.1.4.1 Human resources

The resources that have been needed in this thesis are the following.

The most obvious are the developers: The UI designer has designed the appearance of the web page.

Front end developers have implemented the web page. The developer specialized in OpenGL / WebGL,

has helped in the implementation of the web page.

Marta Fairén and Àlvar Vinacua have mentored the developers.

The GEP tutor, Joan Sardà, also helped in the planning of the project.

2.1.4.2 Material resources

The software and hardware used to develop the application:

• Atenea: Used to communicate with the professor in charge of GEP.

• Github: Software used for the control of version of the code written, ensuring to not lose any

progress.

• IDE: More specifically Webstorm (10), since I have some experience with it and works really

well for web projects.

• Computer: The development and testing of the web application has been done with a computer

with 16 Gb of RAM, Intel Core i7-9700K CPU, GeForce RTX 2070 SUPER GPU.

2.2 Gantt

The Gantt chart is attached below (Figure 2). Since the tasks are organized in a hierarchy, I used colors to

represent which level of the hierarchy the tasks are from.

18

Figure 2

G
a

n
tt C

h
a

rt

P
ro

je
ct p

la
n
n
in

g
21/09/2021

29/09/2021

T
h
e
o

rica
l P

a
rt

29/09/2021
5/10/2021

P
ra

ctica
l p

a
rt

5/10/2021
13/12/2021

-
 D

esign o
f the grap

hic interface
5/10/2021

9/10/2021

-
 P

ro
gram

 the text ed
ito

r
9/10/2021

28/10/2021

-
 D

isp
lay o

f the scene
9/10/2021

28/10/2021

-
 S

cene m
anip

ulatio
n

9/10/2021
20/10/2021

-
 Im

p
o
rting 3

D
 m

o
d
els

20/10/2021
28/10/2021

-
 T

ext area
28/10/2021

6/12/2021

-
 A

uto
m

atic w
id

get insertio
n into

 the text
28/10/2021

1/12/2021

-
 S

yntax highlighting
1/12/2021

3/12/2021

-
 E

xtra features
3/12/2021

6/12/2021

-
 G

eneral features
6/12/2021

13/12/2021

-
 E

xam
p

les read
y to

 use
6/12/2021

13/12/2021

D
o

cu
m

e
n
ta

tio
n
 a

n
d
 co

n
clu

sio
n

21/09/2021
15/12/2021

-
 D

o
cum

entatio
n

21/09/2021
13/12/2021

-
 C

o
nclusio

n
13/12/2021

16/12/2021

O
ra

l E
x

p
o

sitio
n

15/12/2021
16/12/2021

15/10
/20

21
1/12/20

21
16

/12/20
21

28
/10

/20
21

A
C

TIV
ITY

P
LA

N
 STA

R
T

P
LA

N
 EN

D
P

ER
IO

D

21/0
9

/20
21

19

3 Budget

3.1 Staff costs

When talking about costs in a project about software development, the first that comes to mind are the

personnel costs. Since it will be where most of the budget will go to.

To make a good approximation of the staff costs, we first need to define all the activity profiles, the cost

per hour of each professional hired3, the distribution of the tasks4 and the cost of all the staff5.

Although this project has been completed by myself and the tutors, I will explain the distribution of the

tasks as if I had a team of professionals.

There are three main roles. First, we need a project manager to organize and plan the project. Then we

need the UI designer, which will create mock-ups of the application for the developers to implement. It’s

important the work of the designer so the interface is easy to use and intuitive.

We also need the developers, which are responsible for the web application. The front-end developer will

implement according to the designs. The software engineer will implement the more technical tasks

(WebGL related). Most of the tasks have a little bit of front-end and WebGL so the professionals will

have to work together.

Titles Cost (€/h)

Project Manager 356

Junior Front-End Developer 307

Junior Software Engineer 21.658

UI Designer 32.509

Table 2: Cost per hour of each role

3 Table 2: Cost per hour of each role
4 Table 3: Distribution of tasks
5 Table 4: Total cost of the staff
6 (40)
7 (42)
8 (39)
9 (41)

20

Task Time(h) Project

Manager

Front-end Software

Engineer

UI

Designer

Project planning 40 40 0 0 0

Theorical Part 30 0 15 15 0

Study of possible frameworks and

comparison

15

0 15 0 0

Study of WebGL library and GLSL ES

1.0

15

0 0 15 0

Practical part 420 0 200 200 20

Design of the graphic interface 20 0 0 0 20

Program the text editor 300 0 100 100 0

General features 100 0 100 100 0

Documentation and conclusion 40 0 20 20 0

Documentation 30 0 15 15 0

Conclusion 10 0 5 5 0

Table 3: Distribution of tasks

Role Hours Cost (€)

Project Manager 40 1400

Junior Front-End Developer 235 7050

Junior Software Engineer 235 5087

UI Designer 20 650

Total 530 14187

Table 4: Total cost of the staff (without social charges)

3.2 Generic costs (GC)

A part from the mentioned staff costs, there are other costs that are not as relevant but that have to be

taken into account.

Amortization of the resources

In this thesis most of the software used is open source, so the costs are mostly on hardware. Here we will

calculate the hardware amortization.

21

As said in previous sections, the number of hours dedicated to the thesis has been roughly 530. I have

been working with the same desktop computer the totality of the hours. To compute the amortization, we

use the following formula (Equation 1):

𝐴𝑚𝑜𝑟𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑟𝑖𝑐𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑈𝑠𝑒𝑑

𝐿𝑖𝑓𝑒𝑆𝑝𝑎𝑛

Equation 1

Note that LifeSpan must be in hours.

In the following table (Table 5) we have the amortization costs.

Hardware Cost (€) Life span (hours) Amortization (€)

Desktop Computer 1600 1460010 58

Table 5: Amortization costs

Indirect costs

We also should take into account costs not directly related to the project like the internet connection.

Since we are in pandemic, we have been working from home. So, I will describe the costs related with

tele-working.

Internet cost: Without internet the project cannot be done so it’s important to mention it. The average

internet monthly fees are around 90€. Since the thesis has been done throughout 3 months, the final cost

would be (Equation 2)

90€

1 𝑚𝑜𝑛𝑡ℎ
∗ 3 𝑚𝑜𝑛𝑡ℎ𝑠 = 270€

Equation 2

Electricity cost: As happens with internet, electricity is also necessary. In this case we will not look at the

monthly fees but the price of kWh. The average price is 0.1479 €/kWh11. The power of the computer used

in this thesis is 650 W. The final cost is calculated in (Equation 3).

10 The life span of a desktop computer using it every day 8 hours a day is 5 years (14600 hours)
11 Extracted from: (46)

22

0.650𝑘𝑊 ∗
0.1479€

1𝑘𝑊ℎ
∗ 530 ℎ𝑜𝑢𝑟𝑠 = 50.95€

Equation 3

Generic cost of the project

To summarize the generic cost (Table 6: Generic cost)

Description Cost (€)

Amortization 58

Internet 270

Electricity 50.95

Table 6: Generic cost

3.3 Deviations of the budget

Contingency

All the cost calculated are without taking into account possible setbacks. It could have been some form of

misestimation of the duration of some tasks, which means more spending on salary. Another example

could be the increase on electrical bills pricing, which would increase the GC. That’s why, due to the

nature of the generic costs, which don’t vary that much, I define the contingency margin to 5%. On the

other hand, the staff cost is more likely to diverge from the predicted, so a 10% contingency margin

seems adequate.

Incidental costs

In the following table (Table 7) we will estimate the incidental costs, which will be computed from the

possible risks mentioned in previous sections.

Incident Estimated cost (€) Risk (%) Cost (€)

Deadline of the project

and inexperience in the

field

500 20 100

Coronavirus 0 80 0

23

Total 500 - 100

Table 7: Incidental costs

Final budget

Next, we will summer all the previous sections (Table 8)

Activity Cost (€)

Staff cost 1957812

CG 378.95

Contingency margin 1437.6513

Incidental costs 100

Total 16103.6

Table 8: Final Budget

3.4 Management control

We’ve analyzed the part of the budget dedicated to incidences (previous section), the defined a

methodology used to detect when we are deviating from the budget has been the following.

For each task, we will calculate the deviation (Equation 4). We will then use the deviation to see whether

we are over the budget or not. If the deviation is positive, it means that we’ve spent less than predicted.

But if the deviation is negative, we’ve gone over the budget, hence will have to use part of the incidental

and contingency budget.

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡 − 𝑟𝑒𝑎𝑙𝐶𝑜𝑠𝑡

Equation 4

12 Staff cost added the 38% of social charges in Spain
13 14187 * 0.1 + 378.95 * 0.05 = 1437.65

24

4 Sustainability

4.1 Self-assessment

There’s no denying that technology has helped human kind in every area. It’s also true that some

technology improvements have done more harm than good. In a world where there are more than 7.7

billion people, it’s important that all projects, even the small ones, take into account the sustainability.

Making sure that the Bachelor Final Project is sustainable, makes the students more responsible about the

economic, social and environmental footprint that the thesis may have.

In all honesty, I probably wouldn’t have questioned myself the questions presented in the poll, and it

helped me understand the importance of trying to make a sustainable product and not mindlessly do

projects which may harm the society.

4.2 Environmental impact

4.2.1 PPP (project put into production)

Since the project is the development of a web application, it barely has any environmental impact. The

only impact is with the light consumption of the computers that will be used for the implementation. To

reduce that, the best option is to improve the development speed. This can be done in numerous ways.

The principal idea is trying not to “reinvent the wheel”. For this exact philosophy, this project will use

existing frameworks and libraries which will aid the implementation of the product.

4.2.2 Exploitation (Life expectancy)

Since the environmental impact of text editors is in general negligible, it’s difficult to say if my solution

improves or worsens the existing competition. Either way the environmental impact of using a text editor

is so low that the answer loses relevance.

Also, since the final product is meant to be a web application, which will be downloaded and locally

served, the server and the client will be the same computer. This means that there won’t be any servers

that need to be maintained.

25

To sum up, there won’t be any type of maintenance, so there will be no costs once the application is in

production.

4.3 Economic impact

4.3.1 PPP (project put into production)

The material costs have been 52€ of amortization for the computer used to develop the application. The

cost of the staff, would have been the estimated (19578€), if the project had been done by a professional

team.

Since there hasn’t been any changes on the planning, and the approximation of hours per task has been

accurate, the expected cost is similar to the final one.

4.3.2 Exploitation (Life expectancy)

The final product is meant to aid students, so it’s aimed at being didactic. This means that it won’t affect

the market, hence economically will not improve current solutions.

Since this project won’t have any maintenance during its lifetime, it won’t have maintenance cost.

However, there may need to be repairs or adaptations during the project. Since users may find bugs or

may offer feedback to improve the application.

4.4 Social Impact

4.4.1 PPP (project put into production)

The project brought me the opportunity to learn a lot of really interesting subjects. Starting with the

framework which I will develop the web application with. I will also learn WebGL, which is an API that

browsers offer natively to render 3D graphics.

The project brought me the opportunity to learn a lot of interesting subjects. Studying the frameworks I

used to develop the application, WebGL, and graphics computing in general.

4.4.2 Exploitation (Life expectancy)

The social impact of this web application is one of the main reasons I started it. The tool is meant to help

computer science students learn the hard subject of graphics, and simultaneously aid the teachers to

26

explain difficult concepts with ease. In previous sections, I discuss current alternatives to my product.

And to sum up, I believe that what my product has to offer goes beyond what you can find in other

applications, and furthermore, it’s improvements regarding the competition are relevant in didactic

environments.

The requirements that had been planned for this web application have all been successfully met, so the

tool works as intended. Thus, the students can understand shaders in a very dynamic way, which helps

them figure out the hardest concepts to learn.

27

5 Knowledge integration
In the development of this thesis, has been applied knowledge of some subjects of the degree:

Introducció a l'Enginyeria del Software (IES) (11): How to properly design a big application using

object-oriented designs.

Compiladors (C) (12): Understanding parsers and how to optimally use the resulting structures of the

parsing.

Gràfics (G) and Introducció a disseny d’interfícies (IDI) (13): Has been applied some user interface

good practices. Has been used knowledge about shaders and the OpenGL pipeline from G.

Projecte Aplicat d'Enginyeria (PAE) (14) i Projecte de Programació (PROP): The experience of

developing a large project: organization, version controls, testing…

Teoria de la Computació (TC) (15): The understanding of the limitations of some languages (like

regular expressions and free context grammars), to make conscious decisions about which technique to

use in different contexts.

Also, to develop such a large application, the understanding and correct use of the design patterns from

the book “Design patterns elements of reusable object-oriented software” (16) has been useful.

6 Laws and regulations
Many applications have to take into account data protection and privacy laws. Like “Llei Orgànica de

Protecció de Dades de Caràcter Personal” (LOPD), or “Reglament General de Protecció de Dades”

(GDPR). However, this application doesn’t manage any type of user data, so there is no need to take into

account this law.

Furthermore, all libraries used use free software licenses. React uses a MIT License and the third part

library used for the parsing of GLSL is also MIT License.

28

7 Project Implementation

7.1 On the choice of frameworks

7.1.1 Decision discussion

The very first important decision is whether to use any type of framework (17). The options studied are

the following:

Web frameworks I considered: angular (18), react (19), jQuery (20) and vanilla-js (21).

Angular and react are the two that stand out the most since both are object-oriented (22) frameworks. This

is precisely what would work best for this web application, since one of the virtues of object-oriented

programming is the high reusability of code, convenient for large applications.

The choice between angular and react is mostly one of preference, since neither of them is better than the

other. However, for this project in particular, react may be slightly better since angular is slower. In

conclusion, React is the most adequate framework, and the one that will be used for this thesis.

WebGL frameworks: Few frameworks were considered, since for the features that this thesis is meant to

implement, we need full control of Webgl, and frameworks usually make things easier but take away low-

level control. The only framework that I considered was Three.js (23), which is a framework that gives

you a friendlier API than Webgl. This API allows the drawing of simple 3D scenes with few lines of

code. But as mentioned earlier, this comes at a cost, and since some of the features that the web

application will have require low-level control, the framework was discarded.

29

7.1.2 React

React is a declarative, component-based javascript framework. As mentioned earlier it is object-oriented,

more specifically component-based. This means that the developer builds components, which are

encapsulations of UI (user interface) and state. The components should be simple, but they can be

composed to create complex UIs.

7.2 Overview

This section will give a general idea of the code design of the application. The implementation decisions

will be discussed in section 7.3.

7.2.1 Web routing design

In web applications, the routing are all the pages that the web site contains and how they link each other.

This application in particular consists of two different pages. The first one is the examples page (Figure 3.

Examples), which is completely parametrizable with the shaders and models that the professors want to

display. And when the students want to explore a concrete example, a simple click will send them to the

text editor page (Figure 4. Text Editor), which is the page where the student can modify the code and

dynamically see the changes being made.

The features and functionality of each page will be explained in the next sections.

Figure 3. Examples

30

Figure 4. Text Editor

7.2.2 Classes

In this section we will explain the purpose of some classes. Some of the classes have been left out since in

one hand, the implementation of those is trivial, and in the other hand, those are utility classes that don’t

aid in the understanding of the broad application.

7.2.2.1 Material and Mesh

To understand the Mesh and Material classes, we first have to understand how OpenGL draws 3D

models into the screen. To summarize, the information that OpenGL needs is:

Information per vertex: It must have the position of each vertex and some extra information like the

normal or color. I have encapsulated this information into the Mesh class, which contains a friendly and

easy to use API to ease the process of managing vertices information.

Vertex and fragment shader: which are part of the OpenGL pipeline (see the Concepts section).

Material contains a reference to a Mesh, which has the geometric information necessary to draw the

scene. The Material interface has methods to draw the Mesh, compile the fragment or vertex shader, or

change the mesh.

31

7.2.2.2 CanvasVirtual

To understand what is a CanvasVirtual, we first have to understand what a canvas is. Canvas (24) is an

html element which can be drawn to. For each canvas element we have to initialize an OpenGL context,

which offers the methods that we will use to draw our scenes (methods like DrawElements). The problem

with that, is that if we want to draw in the same page various scenes (like the examples page), we will

have to create multiple canvases, and consequently, initialize multiples contexts. Also, since every canvas

element has different contexts, sharing textures or 3Dmodels between them is an added difficulty.

To work around this issue, I have opted to create this class, which represents a portion of one unique

canvas element. This means that with one canvas element, we can instantiate multiple CanvasVirtual,

and each one will be responsible for drawing their portion of the canvas element (see section 7.3.1).

This allows for multiple scenes to be drawn in the same canvas. As seen in the previous figure (Figure 3.

Examples) we can see multiple scenes drawn and there is actually only one canvas element, so only one

WebGL context.

7.2.2.3 Examples

Now that we have the more low-level classes out of the way, we start with React components (25). Those

are encapsulations of UI and state. This component in particular, is where all the examples are displayed

(Figure 3. Examples).

In this page, there are some important UI design decisions taken. First of all, each shader is drawn into the

screen. The alternative would be to have a list with the name of the shaders linking to the text editor page,

but it wouldn’t be as interactive. It’s also worth noting that the 3D scenes are all spinning, to make the

experience more dynamic. Another decision is the use of a grid to use as much space of the screen as

possible. Having only one column would make the user scroll more than necessary to browser over the

shaders. Also, to make the experience more interactive, when hovering over a scene, it becomes larger, so

the user understands he is selecting it.

7.2.2.4 Text Editor page

The Text editor page (Figure 5. Text Editor page) is composed by two main components. The

TextEditor (number 4), which is where the user would type the code, and the InteractiveCanvas

(number 1), which is the canvas where the scene is displayed. We can also toggle the text editor between

the fragment shader and the vertex shader (number 2). The Textures and Uniforms tabs (number 3) let

32

you toggle between seeing the uniforms and textures that this concrete example has access to (Figure 7.

Uniforms tab and Figure 6. Texture tab). Lastly, when there are compilation errors, those are displayed on

the bottom of the page.

On the text editor page, there have been UI design decisions taken:

First of all, the screen is divided almost evenely between the TextEditor and the

InteractiveCanvas. That’s because having a large display is important, but as long as the user can

type comfortably on the text editor.

Another decision is the use of tabs for the different shader types (vertex and fragment). The alternative

would be to have both shaders on the screen, but this would half the space of each one. When writing

shaders, there is no need to see both at the same time, since each one has different utilities. That’s the

reason tabs where implemented.

The textures and uniforms tabs work differently from the fragment and vertex ones. The idea is that the

user can see what textures and uniforms are available, at a cost of text editor space. But, once the user has

the information that needs, he can retract the tabs to have full space for the text editor.

Lastly, the text errors appear on the bottom of the page, since this way, when there are no errors there is

no space wasted.

Everything the user wants to do is always one click away, which makes the user experience fast and

dynamic.

33

Figure 5. Text Editor page. 1) Interactive Canvas. 2) Shaders tab. 3) Textures and Uniforms Tabs. 4) Text Editor.

Figure 6. Texture tab Figure 7. Uniforms tab

34

7.2.2.5 Text Editor

The TextEditor component is where the user types the code. It’s slightly more complicated than this

since there are some added features on this text editor a part from displaying the written code. The first

one is the syntax highlighting (26). As we can see the code is colored to improve the readability (Figure

8. Code Highlighting).

Figure 8. Code Highlighting

The text is displayed in different colors according to the category of terms. More information about the

implementation of the syntax highlighter section 7.3.4.

Another important feature are the sliders. Which are widgets that get inserted automatically when the user

is writing a number literal. It’s important to understand that not all numbers written in the code will be

replaced by this widget, it wouldn’t make any sense to write a variable as _uniform0 and get the 0

replaced by the slider. It’s only going to appear when the user writes a number literal. To better

understand where the sliders should be inserted, see the following figure (Figure 9. Example sliders).

35

Figure 9. Example sliders

For performance reasons (discussed in section 8.3.3), in the top right corner there is a button that disables

the sliders (Figure 11. Sliders enabled and Figure 10. Sliders Disabled).

Another relevant feature is the compilation syntax error highlighting. When the code written is

compiled, if there are any errors, the text editor highlights it (Figure 12 Syntax error highlighting).

Figure 11. Sliders enabled Figure 10. Sliders Disabled

36

Figure 12 Syntax error highlighting

7.2.2.6 InteractiveCanvas

As seen earlier, InteractiveCanvas is the component that displays the scene. It uses the fragment

shader and vertex shader from the text editor. Thus, every change in the text editor, gets directly reflected

in the canvas in real time. Apart from the drawing, it also has some extra features that enhance the user

experience.

The first feature is the rotation of the camera with the mouse. Dragging on the canvas rotates the camera

if the model is 3D. If the model is 2D (like a plane), it wouldn’t make much sense to allow the rotation.

Then we have the different UI elements in the canvas itself (Figure 13. InteractiveCanvas).

On the top left corner (number 1), we have a green tick if the shaders are correctly compiled, and a cross

if there are errors. On the right bottom corner, we have the save button, which downloads the shaders

written on the text editor (number 2), and the rabbit button, which opens a tab where the mesh of the

current example can be changed (Figure 14. Mesh Selector). This tab allows the user to browse over the

models that are available and allows the selection by clicking on them.

The mesh selector uses the same UI design ideas than the examples page. The difference is that it doesn’t

occupy as much space. This way the user can still, type new code, or rotate the scene while changing the

mesh.

37

Figure 13. InteractiveCanvas

Figure 14. Mesh Selector

38

7.3 Tasks

In this section we will go through some of the tasks planned, explaining the problems and solutions that

arose in them, and the justification of important implementation decisions.

7.3.1 Implementation of Examples Page

The examples page are multiple independent scenes drawn into the same canvas using a grid pattern. The

way this is implemented is using the utility viewport (27) and scissor (28) that webgl offers. Viewport is

used to tell WebGL where in the canvas the scene will be drawn. Thus, we can easily instantiate multiple

VirtualCanvas, and before drawing each one, set the viewport to the portion that each one is

responsible for. An issue still remains. Since most of the scenes are animated, before each scene is drawn

the canvas is cleared using the command glClear (29). If the canvas were not to be cleared, then the

drawings of the same scene would stack one above the other. To exemplify it, on Figure 15., we can see

this effect after the sphere spins. The problem is that glClear clears all the canvas, not only the part

delimited by the viewport. Thus, each VirtualCanvas would clear all the previous ones, which is not what

we intend. That’s where the scissors test (30) comes in. After setting the scissors box, and enabling the

scissors test, we ensure that the next drawing commands (including glClear) will only modify the pixels

inside the scissors box.

To sum up, first we define a viewport, then we enable the scissors test, setting the scissors box to be the

size of the viewport, so all drawing commands only modify pixels in the current viewport, and finally we

draw the scene.

39

7.3.2 Implementation of the Text Editor

There are a lot of implementation decisions that went into the design of the text editor. It’s important to

note that HTML has elements that natively allow for the user to type (like textarea (31)), and it offers

features like undo, copy, paste… Unfortunately, the default implementation couldn’t be used since there

are some actions that in our particular project wouldn’t work as intended. For example, undoing when

there are actions like moving the slider that the default implementation does not account for. Copying

when there are custom widgets in-between text does not work as expected either. For this reason, an

implementation from scratch was more convenient, providing total control over the editor.

So, the first implementation decision is how to make a basic text editor which lets the user type, and

perform basic operations like undo, copy, paste... We won’t go into detail of the JavaScript

implementation but we will discuss the programming design that was chosen. In this particular case, there

was a design pattern14 perfectly suited for this problem: the command pattern15. The idea of this pattern, is

to encapsulate an action in an object. It’s useful in this case, because every action we want to make (type

a character, remove a character…), gets encapsulated in an object, and pushed onto a stack. Each object

implements an execute function (which is the code that executes the action), and unexecute (which is the

code that executes the inverse of the action). This makes the implementation of undo trivial, since we

only need to call unexecute of the last element of the stack and remove it from the stack. For example, if

14 Design pattern is a general repeatable solution to a commonly occurring problem in software design
15 All design patterns mentioned are from the following book (16)

Figure 15. Earth without clearing the scene.

40

we write a character, we would instantiate the object, we would call execute and we would push it to the

stack. If we wanted to undo it, we would call unexecute and then remove the object of the stack.

Keeping track of the caret adds one extra layer of difficulty to the implementation of all the actions.

7.3.3 Implementation of widget insertion

The next text editor feature is the widget insertion. As explained in previous sections (see section 7.2.2.5),

what we want to accomplish is the insertion of sliders where there are number literals in the code. Here

we will comment on the implementation decisions. First of all, we need to understand what are the

difficulties. The first one is how do we find where are the number literals. The first idea could be using

regular expressions to find numbers on the text. This maybe16 could be done, since GLSL (which is the

language that we are trying to find literals in), is a simple language, but it would be really hard to

program. There are a lot of cases to consider. Sometimes the number is part of a variable name,

sometimes it is commented…

The other option is parsing (32) the input text with a GLSL parser, which will transform the input text

into an AST (33). This AST has all the information we need: for each word17 in the text, we have its

position on the input text, and information in relation of its type (if it’s a functions name, a keyword, a

number literal…).

One of the problem is that making a parser is really difficult. That’s why I decided to use a 3rd party

parser (34).

Now we have all the necessary pieces to insert sliders. The way it would work all together would be the

following: First the user changes the text (with a key-stroke in the text editor for example). Then the

modified text gets parsed and we extract from the resulting AST the position of the number literals.

Finally, we render the modified text with the sliders inserted in the position of the number literals.

The sliders are actually just an image with two arrows and a box displaying the current value of the

number (Figure 16. Slider). You can click the arrows and drag to modify the value in the box.

16 Regular expressions are not expressive (50) enough to analyze a complex programming language correctly.
17 The correct terminology in lexical analysis (49) would be token instead of word.

41

Figure 16. Slider

7.3.4 Implementation of syntax highlighting

The next feature is the syntax highlighting. We want to display with different colors the preprocessor

lines (start with ‘#’), keywords (like void, float…), comments (start with ‘//’), function names and

uniform names (special type of variable). Knowing that, we have the same problem that appeared in the

implementation of widget insertion: we need to analyze the text to find the position of comments,

keywords… So, we have to decide again if we should use the AST (result of parsing the text) or regular

expressions.

Even though it looks counter intuitive, here the better option is to use regular expressions. That is because

the AST is not always available, since it is only constructed when the input of the parser is valid GLSL

code. This means that while the user is writing, there will be moments where the AST will not be

available. However, regular expressions always work since ultimately are searching into a string, and do

not depend on the syntaxis being correct.

This has some drawbacks, since the AST has information really useful, like the name of the functions or

variables declared in the code. The best solution seems to be an hybrid of using the AST and regular

expressions. Each time we have available the AST, we save the information that we need, like the names

of functions or variables. And we use this information to find with regular expressions these names into

the text. We also use regular expressions to find the comments and preprocessors lines. To find all the

keywords and built-in functions (35) we search in the text for each keyword and built-in function

available in GLSL.

After all that, we have all the positions and we can color every word.

7.3.5 Implementation of error highlighting

Next step is the highlighting of errors. The basic idea is to compile the shader each time the user modifies

it, and, if any, parse the compilation errors to know which lines of code have errors.

42

It’s important to note that the text that will be compiled is exactly what the user has typed. So, there will

be no uniforms inserted in the text. If we compiled the version of the shader with uniforms inserted (see

5.4.5 Interactive canvas), the error messages would be hard to interpret by the user.

43

7.3.6 Implementation of interactive canvas

Now, we have a text editor which has, apart from the basic features, code highlighting, widget insertion

and error highlighting. Now it’s time to use the code that the user is writing to draw the canvas. The more

direct approach would be to obtain the text from the text editor, compile it and draw on the canvas the

scene. But this approach is slow. Since this would mean that every time the user changes a number with

the slider, the code has to be recompiled, which would result in the canvas jittering, and the experience

would be ruined. This is why we have to come up with a way to not recompile the code even though the

numbers change. This is where uniform variables come in.

Uniforms are variables that are passed to the fragment or vertex shader. The thing that characterizes them

is that their values are constant among all vertices and fragments. So, where we would insert sliders in the

text editor, we insert uniform variables on the shader that we want to compile. To better understand this

concept, see next figure (Figure 17. Text editor text versus Compiled shader text). The left one is what is

displayed in the text editor. The right one is what we sent to WebGL to compile it and draw it to the

canvas. Note that the slider is replaced by a string “fs_uniform0”, and this uniform is declared on top of

the file. The names of the uniform values may be anything, but they have to be unique.

Figure 17. Text editor text versus Compiled shader text

So, we insert sliders on the text editor, and we insert strings (fs_uniform0) on the code we compile. The

last step is to store the value of each slider, and sent it to the shaders through its corresponding uniform

variable. If we don’t do this last step, WebGL doesn’t know which value holds the variable fs_uniform0.

Now we can modify the values of the uniforms with the slider, send them to the shaders through the

uniform variables, and see the changes in the canvas without having to recompile every time.

Other features that are implemented in the InteractiveCanvas like rotating or changing the mesh in the

scene are explained in section 7.2.2.6 and haven’t posed any implementation complications.

44

7.3.7 Implementation of Mesh and Texture manager

Something very instructive is to see the same shader applied in various meshes (Figure 18. Same shader

different meshes). Also, having access to textures in the shaders is a very important feature that allows for

very impressive scenes (Figure 19. Using textures).

Figure 18. Same shader different meshes

Figure 19. Using textures

To create the scene in Figure 19. Using textures, we use the following two textures (Figure 20. Textures

Earth). The one on the right we use it to color the sphere, and the one in the left is a height map. It’s used

45

to give relief to the sphere. The whiter the color is, the more accentuated the relief will be. This effect is

created on the vertex shader, where we displace the vertices according to the height map.

Understanding the utility of the textures and meshes, we create mesh managers and texture managers.

Those are classes that store the meshes and textures, so when any scene (VirtualCanvas) wants to use

them, they don’t have to load duplicated information. For example, if there are two scenes with the same

texture, the first scene will load the texture, but the second one will only access it (because it’s already

loaded).

7.3.8 Parametrization

It’s important to note that this project is not aiming to develop a learning course for students. The project

is about the development of a tool that can be used to teach students. This means that the examples that

are displayed on the examples page can’t be hard coded. The admin of the tool, should be able to

parametrize the examples so they can prepare convenient examples for what they are trying to teach.

The way this project accomplishes that is with the use of json (36) files. JSON is a format used to store

information. It’s easy to read / write for humans and it’s easy to parse for machines. The way this project

uses it, is with the following three files that are on the web project source files:

Figure 20. Textures Earth

46

7.3.8.1 examples.json

This file will contain a list of parametrized scenes.

{

 "Elems": [

 {

 "NameShader": "Plain Color Bunny",

 "pathFS": "path/to/plain_color.frag",

 "pathVS": "path/to/simple.vert",

 "NameMesh": "bunny",

 "uniformDisplay": "uniform vec3 u_color = vec3(0, 1, 0);"

 },{

 "NameShader": "Plain Color Cube",

 "pathFS": " path/to/plain_color.frag",

 "pathVS": " path/to/simple.vert",

 "NameMesh": "cube",

 "uniformDisplay": "uniform vec3 u_color = vec3(1, 0, 0);"

 }

]

}

Figure 21. examples.json

Figure 22. Examples page examples.json

As we can see, the examples.json file, lets us use different meshes, different shaders and it also lets us

define constant uniform variables. In this case I created a simple u_color variable which the fragment

shader uses to color the scene.

47

7.3.8.2 mesh_metadata.json

This file allows for the parametrization of available meshes in the program (see Figure 23.

mesh_metadata.json). For each mesh we have the name, which is actually the path where the .obj file is.

And the geometry, which is used to know if the mesh can be rotated or not (if the mesh is 2D, the user

won’t be allowed to rotate it).

{

 "Elems": [

 {"name": "path_to_plane", "geometry": "2D"},

 {"name": "path_to_bunny", "geometry": "3D"},

 {"name": "path_to_sphere", "geometry": "3D"},

 {"name": "path_to_cube", "geometry": "3D"}

]

}

Figure 23. mesh_metadata.json

7.3.8.3 textures_metadata.json

This file allows for the parametrization of available textures in the shaders (see Figure 24.

textures_metadata.json). For each texture we have the path and the index. The index is used to name the

texture. (if index = 0, then the name of the texture is u_sample0).

{

 "Elems": [

 {

 "path": "/Assets/Textures/world_high_res.jpg",

 "index": 0

 },

 {

 "path": "/Assets/Textures/brick.jpg",

 "index": 1

 }

]

}

Figure 24. textures_metadata.json

48

8 Conclusion

8.1 Achievement of objectives

At the planning of the thesis, we proposed some objectives:

8.1.1 Designing the graphical interface

As seen in section 7.2, the graphical interface is usable and easy to navigate, which are the objectives that

we pursued. The user also receives feedback when performing every action, which improves the user

experience.

8.1.2 Programming the text editor

The text editor was probably the hardest part of the project, since it is where most of the difficulties

appeared. However, we implemented all the features that we planned and more. The user can modify the

code of the shader and see the changes in real time. Also, he can change the 3D object where the shaders

are applied to in real time. Furthermore, he may also manipulate the 3D scene with the mouse. The text

editor also has other features like syntax highlighting, error highlighting and widget insertion which also

improve the experience. In conclusion, the objectives where satisfactorily met.

8.2 Achievement of competencies

CCO1.2: Demonstrate knowledge of the theoretical foundations of programming languages and the

associated lexical, syntactic and semantic processing techniques, and know how to apply them to

the creation, design and processing of languages.

To implement part of the syntax highlighting and widget insertion, the code written on the text had to be

parsed. Also, to extract relevant information from the resulting AST, visitors were.

CCO1.3: Define, evaluate and select hardware and software development and production platforms

for the development of computer applications and services of varying complexity.

A decision had to be made about which frameworks and libraries to use in the implementation of the web

application.

CCO2.3: Develop and evaluate interactive and complex information presentation systems, and

their application to problem solving person-computer interaction design.

49

The design of the user interface aims at being intuitive, to be used as comfortable as possible.

CCO2.6: Design and implement graphical, virtual reality, augmented reality and video game

applications.

The application is a text editor for the implementation of shaders, and the scenes are being rendered

through WebGL.

8.3 Next steps

As mentioned in section 8.4, the project is considered a success. However, there are some features that are

not in the scope of this thesis (for deadline reasons) but would improve the final tool if implemented

correctly.

8.3.1 Allow other versions of GLSL

In this thesis we talked about WebGL as the OpenGL API of the browser. And that’s correct, but there are

some things to keep in mind. Firstly, WebGL only allows till GLSL 2.0. (which is the shader

programming language). And the latest version of GLSL is the 4.60. This project for simplicity reasons,

lets the user program the shaders with GLSL 2.0. But, since this thesis is about the development of a

didactic tool, allowing for newer versions would make the tool more useful.

8.3.2 Implementing Backend

As mentioned across the thesis, the objective of the developed tool is to let the students experience with

shaders. That is the reason making a backend didn’t look necessary. Because to make a web application

that lets the user temporarily modify things doesn’t require backend. But now that the project is done, the

idea of being able to persist in a comfortable manner all the changes that are made in the shader, or even

create shaders from scratch to test new ideas looks appealing. Implementing a backend would bring the

project persistence in a user-based authorization model. Logging into the platform would allow the user to

access all the shaders that he has modified or made from scratch.

8.3.3 Optimizing the parser

It’s important to mention that parsers are really robust but have a high asymptotic computational

complexity (37). This means that when the shaders have a lot of lines of code, it’s slow. That is why the

Interactive Canvas has a button to disable the widget insertion, to improve performance on large shader

files. But that’s not an ideal solution, there are ways to optimize the parser so every time a change is made

in the text editor, it only parses a small part of the shader, reusing the rest of the previous parsing results.

50

This would make the widget insertion usable for all shader sizes.

8.3.4 Extra widgets

In the same way that the sliders are useful for the students to have a more dynamic learning experience,

there are also other possible widgets that would help ease the process. For example, giving the option to

use a color picker to set variables of type vec3 (vectors of three values).

8.4 Final conclusions

On a personal level, working in a large project alone, finding ways to implement my own ideas, has made

me a better developer. I learned new web frameworks, I also learned WebGL and I improved my web

developer skills (html, js, css).

It’s important to mention that while working on the application, there have been some changes in the

planning. For instance, there are some features like changing the mesh in real time that weren’t

contemplated in the planning but ended up being on the final product. Equally important, there has been

some features that were on the original planning and ended up being modified, like importing 3D object

models. At the time, the idea was to be able to load a .obj file from the web application. We decided

against it to only give the privileges of choosing which specific meshes are available to the admins,

through the parametrization with the json files. Thus, the web application does what was meant to, which

is to let the students experiment with shaders. Even though there are some optimizations that couldn’t be

implemented (see section 8.3), there are many that are, and over all, the performance of the tool is

adequate.

We would also like to mention that a part from the design decisions and problems that are contemplated

in section 7.3, there have been problems and complications language related that are not discussed in the

thesis, but have taken time to fix. For example, understanding good practices with React, or using WebGL

efficiently. Most of these problems are due to inexperience in these frameworks, which was predicted in

the planning.

Also, there have been some early design decisions that haven’t made it to the final application in favor of

more adequate ones. For instance, the web UI design have been changing as more features were added.

But the figures in this thesis are all from the final version.

In conclusion, the thesis has met all the requirements and objectives planned, and even more. The

administrators can parametrize the application so it adjusts to the contents they are teaching. And the

51

students have an easy-to-use text editor with multiple features that aid the understanding of shaders. Thus,

we could say that this thesis has been a success.

52

9 Bibliography

Bibliography
1. WebGL. Khronos. [Online] September 20, 2021.

https://www.khronos.org/webgl/wiki/Getting_Started.

2. API. Wikipedia. [Online] September 22, 2021. https://en.wikipedia.org/wiki/API.

3. OpenGL ES 2.0 Rendering Pipeline. WikiBooks. [Online] 12 16, 2021.

https://en.wikibooks.org/wiki/GLSL_Programming/OpenGL_ES_2.0_Pipeline.

4. Node. Unity3D. [Online] September 27, 2021.

https://docs.unity3d.com/Packages/com.unity.shadergraph@6.9/manual/Node.html.

5. The Book of Shaders. The Book of Shaders. [Online] 12 13, 2021.

https://thebookofshaders.com/edit.php.

6. GLSL language integration. MarketPlace Visual Studio. [Online] September 25, 2021.

https://marketplace.visualstudio.com/items?itemName=DanielScherzer.GLSL.

7. Sprints. Atlassian. [Online] September 28, 2021. https://www.atlassian.com/agile/scrum/sprints.

8. Github. Github. [Online] October 5, 2021. https://github.com/.

9. Git. Git. [Online] October 3, 2021. https://git-scm.com/.

10. Webstorm. Jetbrains. [Online] September 29, 2021. https://www.jetbrains.com/webstorm/.

11. IES. FIB. [Online] 12 11, 2021. https://www.fib.upc.edu/ca/estudis/graus/grau-en-enginyeria-

informatica/pla-destudis/assignatures/IES.

12. Compiladors. FIB. [Online] 12 11, 2021. https://www.fib.upc.edu/ca/estudis/graus/grau-en-

enginyeria-informatica/pla-destudis/assignatures/CL.

13. Introducció a disseny d'interfícies. IDI. [Online] 12 11, 2021.

https://www.fib.upc.edu/ca/estudis/graus/grau-en-enginyeria-informatica/pla-

destudis/assignatures/IDI.

14. Projecte Aplicat d'Enginyeria. FIB. [Online] 12 11, 2021.

https://www.fib.upc.edu/ca/estudis/graus/grau-en-enginyeria-informatica/pla-

destudis/assignatures/PAE.

15. Teoria de la Computació . FIB. [Online] 12 11, 2021.

https://www.fib.upc.edu/ca/estudis/graus/grau-en-enginyeria-informatica/pla-

destudis/assignatures/TC.

53

16. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Massachusetts : Addison-Wesley, 1995.

17. Software framework. Wikipedia. [Online] 11 25, 2021.

https://en.wikipedia.org/wiki/Software_framework.

18. Angular. Angular. [Online] 11 25, 2021. https://angular.io/.

19. React. React. [Online] 11 25, 2021. https://reactjs.org/.

20. Jquery. Jquery. [Online] 25 11, 2021. https://jquery.com/.

21. JavaScript. JavaScript. [Online] 25 11, 2021.

https://developer.mozilla.org/es/docs/Web/JavaScript.

22. Object oriented programming. Wikipedia. [Online] 25 11, 2021.

https://en.wikipedia.org/wiki/Object-oriented_programming.

23. Threejs. Threejs. [Online] 11 25, 2021. https://threejs.org/.

24. Html Canvas. w3schools. [Online] 11 25, 2021.

https://www.w3schools.com/html/html5_canvas.asp.

25. React Component. React. [Online] 11 26, 2021. https://reactjs.org/docs/react-component.html.

26. Syntax Highlighting. Wikipedia. [Online] 11 26, 2021.

https://en.wikipedia.org/wiki/Syntax_highlighting.

27. glViewport. Khronos. [Online] 12 9, 2021. https://www.khronos.org/registry/OpenGL-

Refpages/es2.0/xhtml/glViewport.xml.

28. glScissor. Khronos. [Online] 12 9, 2021. https://www.khronos.org/registry/OpenGL-

Refpages/es2.0/xhtml/glScissor.xml.

29. glClear. Khronos. [Online] 12 9, 2021. https://www.khronos.org/registry/OpenGL-

Refpages/gl4/html/glClear.xhtml.

30. Scissor test. Khronos. [Online] 12 9, 2021. https://www.khronos.org/opengl/wiki/Scissor_Test.

31. Textarea. Developer mozilla. [Online] 11 28, 2021. https://developer.mozilla.org/en-

US/docs/Web/HTML/Element/textarea?retiredLocale=ca.

32. Parsing. Wikipedia. [Online] 11 29, 2021. https://en.wikipedia.org/wiki/Parsing#Parser.

33. Abstract Syntax Tree. Wikipedia. [Online] 11 29, 2021.

https://en.wikipedia.org/wiki/Abstract_syntax_tree.

34. glsl-parser. Npmjs. [Online] 29 11, 2021. https://www.npmjs.com/package/glsl-parser.

35. GLSL Functions. Shaderific. [Online] 11 29, 2021. https://www.shaderific.com/glsl-functions.

54

36. Introducing JSON. JSON. [Online] 12 1, 2021. https://www.json.org/json-en.html.

37. Asymptotic computation complexity. Wikipedia. [Online] 12 1, 2021.

https://en.wikipedia.org/wiki/Asymptotic_computational_complexity.

38. Vertex_Specification. khronos. [Online]

https://www.khronos.org/opengl/wiki/Vertex_Specification#Vertex_Array_Object.

39. Average Junior Software Engineer Salary in Spain. Payscale. [Online] September 20, 2021.

https://www.payscale.com/research/ES/Job=Junior_Software_Engineer/Salary.

40. Average Project Manager, Information Technology (IT) Salary in Spain. Payscale. [Online]

September 25, 2021.

https://www.payscale.com/research/ES/Job=Project_Manager%2C_Information_Technology_(IT)/Sal

ary.

41. Average User Interface Designer Salary in Spain. Payscale. [Online] September 26, 2021.

https://www.payscale.com/research/ES/Job=User_Interface_Designer/Salary.

42. Average Web Developer Salary in Spain. Payscale. [Online] October 1, 2021.

https://www.payscale.com/research/ES/Job=Web_Developer/Salary.

43. Fragment (Computer Graphics). Wikipedia. [Online] October 2, 2021.

https://en.wikipedia.org/wiki/Fragment_(computer_graphics).

44. Introduction to Nodes. Blender. [Online] September 27, 2021.

https://docs.blender.org/manual/en/2.79/render/blender_render/materials/nodes/introduction.ht

ml.

45. Rendering Pipeline Overview. khronos. [Online] September 28, 2021.

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview.

46. Tarifas de luz. comparadorluz. [Online] October 7, 2021.

https://comparadorluz.com/pymes/tarifas.

47. What is Scrum? Atlassian. [Online] October 10, 2021. https://www.atlassian.com/agile/scrum.

48. Uniform. Khronos. [Online] 11 26, 2021. https://www.khronos.org/opengl/wiki/Uniform_(GLSL).

49. Lexical analysis. Wikipedia. [Online] 11 29, 2021.

https://en.wikipedia.org/wiki/Lexical_analysis#Token.

50. Expresive Power. Wikipedia. [Online] 11 29, 2021.

https://en.wikipedia.org/wiki/Expressive_power_(computer_science).

