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Abstract

Because of their characteristics, landslides represent one of the most significant
hazards in mountainous regions and are an important source of risk for people and
infrastructure. To diminish their impacts, a landslide susceptibility assessment aims
to identify areas where landslides can initiate and propagate.

In this research project, a physically-based (FSLAM) and four data-driven models
(logistic regression, SVC, classification tree and random forest) were used to map
landslide susceptibility for a case study area located in the Catalan Pyrenees. The
results for all models were then compared in order to determine which performed
best and under which conditions. The advantages and disadvantages of each model
were also discussed as well as the limitations of their end products. Two cases for
each of the models were proposed: the first one calculates landslide susceptibility
in so-called “dry” conditions where no rainfall input is being considered, the second
case considers two rainfall conditions registered during a 2013 event that triggered
several landslides in the study area. From said event, a landslide inventory was
collected and in this research project it was used to assess the performance of all
models.

In terms of pure performance, data-driven models did better than the physically-
based model. Using ROC AUC as the single metric to evaluate model performance,
the logistic regression (0.806) and the random forest (0.853) scored higher than
FSLAM (0.762). Nevertheless, the results of data-driven models are accompanied
with a deal of uncertainty that make them less suitable for landslide susceptibility
mapping. In terms of applicability, the decision tree (accuracy = 0.735) provided a
simple tool that is easy to understand and apply which would make it very powerful
in a decision-making process where stake-holders with many different backgrounds
are involved.

After the main objectives of the project were achieved, several other tests using
data-driven models were performed. These tests included testing the applicability
of the logistic regression models to another area with similar characteristics to that
area in which the models were trained, and using additional explanatory variables
to obtain improvements in model performance. These tests offer insights which may
guide future research objectives.

Keywords: landslide assessment, susceptibility mapping, physically-based models,
FSLAM, data-driven models, logistic regression, support-vector classifier, classifica-
tion tree, random forest
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Chapter 1

Introduction

1.1 Background

Landslides are a general term used to describe the downslope movement of soil, rock,
and organic materials under the effects of gravity. In more specific terms, a landslide
in which the sliding surface is located within the upper layers of the terrain (typically
at depths ranging from centimetres to a few meters) is called a shallow landslide.
The triggering mechanism of this phenomena is often intense rainfall where water
causes slope instability. Landslides and flooding are closely linked because both
are related to precipitation, runoff, and the saturation of ground by water and it’s
cascading effects (Highland & Bobrowsky, 2008).

Because of their characteristics, landslides represent one of the most significant
hazards in mountainous regions and are an important source of risk for people
and infrastructure (Froude & Petley, 2018). To perform a proper risk assessment
for shallow landslides, one must start with the susceptibility analysis. This study
identifies prone areas where landslides can initiate and propagate (Fell et al., 2008).
As an initial step, this study also provides results which are useful in land use
planning and early warning systems.

Figure 1.1: Aprroaches to landslide suscetibility assessment
Shano et al. (2020)
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Figure 1.1 shows a summary of the different methods and techniques used for land-
slide susceptibility assessment and hazard zonation techniques. In recent times there
has been a preference to use quantitative approaches such as numerical models based
on physics, statistical models or data-driven models.

Recently Medina et al. (2021) have proposed an innovative physically-based model
called FSLAM (Fast Shallow Landslide Assessment Model) where the factor of safety
of a particular cell in a raster map is calculated through a geotechnical model based
in the infinite slope analysis and the Mohr-Coulomb theory, as well as a hydrological
model based on different contributions to the position of the water table. In their
model a stochastic approach has been used to include the main input parameters
of the model. Successful case studies on the application of the model have been
concluded in the Principality of Andorra, and more recently in the Val d’Aran
region located near the Pyrenees mountains in the north-east of Catalonia, Spain.

Data-driven models have been criticised for landslide susceptibility analysis because
they ignore the complex physical processes involved in landslide initiation, but they
have been proven accurate in several studies not only for landslides but also for
the initiation of debris flows (Goetz et al., 2015; Zêzere et al., 2017; Zhang et al.,
2019). In addition, recent developments have shown that integrating the results
of physically-based and data-driven models rather than only using one of these
approaches, can generate higher quality susceptibility maps (Sun et al., 2021).

1.2 Problem Definition

As mentioned previously, FSLAM is a new model based on the physical process
that leads to the failure of a slope unit. As such, the model is reliant on the
parameters used to describe the physical properties of the materials involved in the
failure process. The model also operates at a regional scale and, at this scale, the
determination of specific properties is a challenge in most cases (Cho, 2007). To
overcome this challenge, FSLAM uses a stochastic approach where the values of
said physical properties are included as ranges.

By contrast, data-driven models find relationships between the system state vari-
ables (input and output) without explicit knowledge of the physical behaviour of
the system (Solomatine & Ostfeld, 2008). In this case, the explanatory or input
variables can be of any type, be it numerical, categorical, etc. This presents an
advantage when compared with a physically based model when, as an example, the
type of soil is known to be colluvium but specific parameters, such as cohesion,
internal friction angle or layer depth are much more difficult to determine.

1.3 Research Questions

The basis for the present study are the following research questions:

• Which data-driven model is best suited to determine the susceptibility of a
raster land-unit to generate a shallow-landslide?

• Based on the insights offered by the data-driven model, which explanatory
variables for landslides are the most important?
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• Which are the advantages of a data-driven model over the physically-based
model to determine landslide susceptibility? Which are its disadvantages?

• Can the input parameters used in FSLAM also serve as explanatory variables
or predictors in a data-driven model?

• Can the data set used to train the data-driven model be extended using pa-
rameters derived from the basic data?

• How does the data-driven model perform when using different subsets of the
available training data?

• When doing a performance comparison between the physically-based model
FSLAM and a data-driven model, which one proves to be better and under
which conditions?

• How does including the results or outputs of a physically-based model in the
training data affect the results of the data-driven model?

1.4 Research Objectives

Main Objective

Compare the performance and insights of a a data-driven model with the physically-
based model FSLAM in determining the susceptibility of each cell in a raster map
regarding rainfall-induced shallow landslides.

Specific Objectives

1. Test different statistical and machine learning methods to determine which are
most fit to describe the relationship between shallow landslide predisposition
factors and their occurrence.

2. Analyse the process by which each specific data-driven models determines
susceptibility.

3. Compare the results obtained by the data-driven model that proved best with
the ones computed by FSLAM for the susceptibility assessment of a specific
region located in the Catalan Pyrenees.

4. Evaluate improvements in performance obtained when using the outputs of
FSLAM as explanatory variables for the data-driven model.

5. Explore the usage of a data-driven model in a different region with similar
characteristics from where it was trained.

1.5 Innovation and Practical Value

Although both, physically-based models and data-driven models for landslide sus-
ceptibility assessment have been thoroughly explored in the literature, a direct com-
parison of both types within the same study area could not be found. Specifically
in regards to data-driven models, the literature shows that there is still discussion
to be had on which methods are best suited for this type of approach (Reichenbach
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et al., 2018). This research project will add to this discussion by testing different
methods in a new case study area to determine which are best, and determine if they
follow or deviate from the current trends. In addition, exploring the application of
these methods in the Pyrenees is completely new.

The research project will also directly benefits the overall FSLAM project. As men-
tioned previously, FSLAM is a new shallow-landslide susceptibility analysis model
which is particularly attractive because of its simplicity, ease of use and short com-
putational time. In particular, one of the key advantages of FSLAM is the stochastic
approach applied to soil properties in order to consider their uncertainty. The deter-
mination of the soil properties at a regional scale is in many cases a challenge, and
this approach makes it so the uncertainty of these parameters is properly considered
in the assessment. A data-driven model might be friendlier in this case because in
FSLAM, even though the user inputs one of the soil categories of the study area,
the user still needs to input a range of values for the specific parameters of the
geotechnical model. By contrast, for the data-driven model, the category would be
sufficient.

1.6 Thesis Outline

This thesis contains a total of six chapters. The next chapters are laid out as follows:

Chapter 2 is an overview of the available literature on previous research publica-
tions that have used the FSLAM model as well as some of the relevant research
publications related to the usage of statistical and data-driven models for landslide
susceptibility.

Chapter 3 presents the case study area of Val d’Aran located in the Catalan Pyrenees
as well as Berguedà, a county in Catalonia that will be used for a specific case
application.

Chapter 4 lays out the methodology to train and test a data-driven model for land-
slide susceptibility. This chapter also presents the theoretical framework which
FSLAM and the data-driven models use.

Chapter 5 presents the results obtained for both FSLAM and the different data-
driven models.

Chapter 6 finally summarizes some of the main findings and answers the research
questions. Further, this chapter also gives recommendations for future studies on
this same line of research.

4



Chapter 2

Literature Review

2.1 The FSLAM model

Medina et al. (2021) - Fast physically-based model for rainfall-induced
landslide susceptibility assessment at regional scale

The paper serves as various purposes. First: it introduces the Fast Landslide Suscep-
tibility Assessment Model (FSLAM) and gives insight into how the model computes
susceptibility. This procedure will be described in detail in following sections of this
research project. Second: in the paper, all the input parameters are subjected to
a sensitivity analysis in order to determine which ones have the most impact on
the output. And third: the application of the model at a regional scale where the
country of Andorra was used. The regional scales is defined as: “in the order of
magnitude of 100 km2”, and Andorra comprises about 470 km2 making it a good
candidate for this kind of assessment.

One of the main advantages of FSLAM is the usage of a stochastic approach to
define the key input parameters of cohesion (soil and root) and friction angle. It is
notorously difficult to find accurate information about these parameters unless field
work is performed and, at the regional scale, this is just not feasible. FSLAM takes
a range of values for these three parameters and is able to compute not only a factor
of safety (FS) but also a probability of failure (PoF). The PoF result is later used
to determine whether a cell is unstable or stable where several thresholds are tested
but the authors reach the conclusion that the threshold could be adjusted depending
on the usage for the model. As an example, a low threshold would generate a lot
of false positives but this result would be adequate for the usage within an early
warning system. For the case of Andorra, a PoF of 50% threshold provided a good
accuracy score of 0.70.

Hürlimann et al. (2021) - Impacts of future climate and land cover
changes on landslide susceptibility: regional scale modelling of the Val d’Aran
region (Pyrenees, Spain) ← (under review)

This is the second of the two papers on the application of the FSLAM model. This
is a more applied research where the model was first calibrated using information of
a landslide event that was triggered during 2013, and then used to analyse landslide
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susceptibility in the near, mid and far-future. It is important to note that a landslide
inventory of 392 entries was used in this study to calibrate the FSLAM model.

For the calibration process of the rainfall and CN related inputs, an additional
module was added to FSLAM in order to compute runoff and compare the results
with two discharge measuring stations within the study area. The geotechnical
parameters were interpreted from geological maps because, as mentioned previously,
the stochastic approach used for this inputs permits a more coarse assignment of
these parameters. The accuracy of the simulation of the 2013 was assessed through
a comparison between the inventory points and a sample of 5000 random points in
the study area. The authors found that, for the calibrated model, the PoF increased
around 60% for points in the landslide inventory, and a significant increase was not
observed for the random sampled points. The final AUC score for the ROC curve
of this model was 0.78.

As the overall result, the researchers found that for the future scenarios the daily
rainfall expected for the 100 year return period will increase while a significant
percentage of the land cover composed by grassland will change into forest area.
This makes it so the destabilization effects generated by the increase in rainfall are
compensated by the greater soil root cohesion by the forest trees. When the two
impacts are assessed in the future scenarios, the overall stability conditions of region
improve.

2.2 Data-driven models for landslides

Reichenbach et al. (2018) - A review of statistically-based landslide sus-
ceptibility models

A critical review of statistical methods for landslide susceptibility modelling and
zoning is performed. The assessment is based on 565 peer-reviewed publications
from 1983 to 2016. The authors find that there is significant heterogeneity in the
data types and scales, modelling approaches and criteria for evaluating the models.

The authors use the susceptibility quality level (SQL) index introduced by Guzzetti
et al. (2006) to rank the quality of publications. SQL is an index based on the
information provided in the publication in regards to the degree of model fit, model
prediction performance and error associated with the predicted susceptibility. Some
of the key insights revealed in the study is that a significant amount (4.5%) of the
published landslide susceptibility assessments are poor (SQL = 0) and that only
a few (1.1%) reach the highest quality level (SQL = 7). Then, recommendations
on the criteria to reach an adequate SQL index are given by the authors. These
criteria emphasize the importance of evaluating the model fit and its prediction
performance. The authors cite Peng et al. (2014) as a study reaching SQL = 7.

Another important insight revealed by the authors is that no single statistical
method proves to be superior in all the research studies, although there are some
common ones that appear in a significant proportion of the articles, such as the lo-
gistic regression. And finally, the authors point out that comparing and combining
different modelling approaches seems to give the best susceptibility assessments.
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Guzzetti et al. (2006) - Landslide hazard assessment in the Collazzone
area, Umbria, Italy

For this particular study area an impressive inventory of 2787 landslides was pre-
pared by analysing aerial photographs taken between 1941 and 1997, and field sur-
veys from 1998 to 2004. The region that served as study area measures 79 km2.

Because of the amount of information in the inventory, including dates and sizes of
the landslides, the authors are also able to assess the probability of occurrence in
a determined period and size of the landslides in order to finally compute hazard.
Specifically for spatial occurrence, they use the statistical method of the discriminant
analysis of 46 thematic variables.

The authors perform a very interesting assessment of the uncertainty of their chosen
model. The final output of the model is a probability between unstable (P = 1) and
stable (P = 0). They find that for units having intermediate values of probability
(P = 0.5), the model is incapable of satisfactorily classifying the terrain and the
obtained estimate is highly variable and depends on the sample. Further, they
comment that for this particular probability, the results are unreliable.

Peng et al. (2014) - Landslide susceptibility mapping based on rough set
theory and support vector machines: A case of the Three Gorges area,
China

The most notable advancement in this research paper is the usage of a reduction
algorithm to reduce the number of attributes used to estimate landslide suscepti-
bility. From an initial list of 20 environmental parameters, the authors are able
to identify 13 that are the most important to predict landslide susceptibility. This
procedure was done using a rough set (RS) theory based algorithm as implemented
in the RSES2 software (Bazan & Szczuka, 2005).

The authors then go ahead and train two different models using support vector
machines (SVMs). For the testing set, the model trained using the reduced set of
environmental predictors showed better performance than the model trained using
all environmental predictors. In addition, the authors perform an uncertainty anal-
ysis modelled by the one done by Guzzetti et al. (2006) arriving at similar results.

Zêzere et al. (2017) - Mapping landslide susceptibility using data-driven
methods

Different landslide susceptibility maps are created for the Silveira basin of 18.2 km2

in the region of Lisbon, Portugal. The maps are created by varying the statistical
method used to compute them, the basic terrain mapping unit used in the assessment
and the selection of feature type to represent the actual landslides in the model. The
statistical methods used by the authors were: the logistic regression, discriminant
analysis and information value.

The authors found the the best model, based on AUC of the ROC curve, was one
using the logistic regression statistical method and the census terrain units. This
gives space to the claim by the authors that: “the model with the highest AUC
ROC is not necessarily the best landslide susceptibility model”. The model with
the second highest ROC AUC based on the logistic regression and grid cell terrain
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units, is then established as the best for the region and the authors explain that this
particular model better considers the spatial component of landslide susceptibility.

Sun et al. (2021) - Exploring the impact of introducing a physical model
into statistical methods on the evaluation of regional scale debris flow
susceptibility

In this paper, the authors evaluate debris flow susceptibility at a regional scale
for an area in north-east China comprising of 2625 km2. The authors use several
statistical methods to compute susceptibility, including the support vector machine
(SVM), analytic hierarchy process (AHP) and Shannon entropy, with the SVM
proving must successful in terms of perfomance based on the ROC AUC metric.
Additionally, the authors establish a new approach by introducing a physical model
into statistical methods. The combined model consists of two parts, the statistical
model and TRIGRS which is a physically-based model.

The results obtained by integrating the models consider both the prediction result
of the statistical method for debris flow susceptibility and the mechanism of debris
flow initiation. The authors state that the performance of the integrated models
is significantly better than that of the single statistical model and these integrated
models are able to generate higher quality debris flow susceptibility maps.

As a measure of the improvement by the models, the simple SVM model obtained
a ROC AUC score of 0.889 while the integrated model that uses the SVM and
TRIGRS obtained a ROC AUC score of 0.922. An increase of 0.033 or 3.7% relative
percent.
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Chapter 3

Study Area

3.1 Val d’Aran

3.1.1 Location

Figure 3.1: General location map

Located in the northern side of the Pyrenees, the valley of Aran or Val d’Aran is
an administrative entity in Lleida, Catalonia, Spain. The study area was chosen
mainly because of the amount of available information collected from previous stud-
ies (Hürlimann et al., 2021; Shu et al., 2019), as well as the fact that the application
of data-driven modelling for the region is new.

Figure 3.1 shows the general location of Val d’Aran. As mentioned previously, the
valley is located on the northern side of the Pyrenees which means that it is also the
only region within Catalonia with a drainage network that flows into the Atlantic
Ocean. Traditionally, it is also part of the Occitania historical and cultural region
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which encompasses part of southern France, Monaco and some smaller regions in
Italy.

3.1.2 The 2013 landslide episode

In this section, events that can be categorized as Multiple-Occurrence Regional
Landslide Events or MORLE are described. The events happened in the Central
Pyrenees during the 17th and 18th of June 2013. The causes of the events are a
combination of i) extreme rainfall and ii) high meltwater volumes due to unusually
heavy snowfall during the winter. The extreme weather also caused flooding in
certain parts of the Pyrenees.

The total economic losses were estimated to be more than 100 million Euro and the
Val d’Aran region was significantly affected. People had to be evacuated from certain
villages. Several bridges and roads as well as individual houses were destroyed. The
situation was described as “extremely severe and complicated” by a spokesperson of
the County of Val d’Aran and, although economic losses were heavy, no human lives
were lost (CatalanNews, 2013). The flood and landslide events led to a review of the
scenarios being used as a measure to improve the existing disaster plans (Victoriano
et al., 2016).

After the episode, an inventory of 392 landslides was created through the interpre-
tation of aerial photography, helicopter flights and field surveying. The inventory
can be seen in Figure 3.2 on top of a cartographic map of the Val d’Aran region.

Figure 3.2: Landslide inventory map

High-quality landslide inventories are important to calibrate and validate models of
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landslide susceptibility and to evaluate the performance of physical slope stability
models (Shu et al., 2019). The inventory is even more relevant when preparing data-
driven models because, in this particular case, this is an exercise in “supervised
learning” where a function is calibrated in order to map an input to an output
based on example input-output pairs. The inventory serves as the examples for the
data-driven models to learn from.
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3.1.3 2013 rainfall event

Figure 3.3: Antecedent rainfal (left) and event rainfall (right) maps

Even though the main triggering factor for the landslides was rainfall, the event was
actually triggered by a combination of two exceptional factors:

1. Extreme rainfall: 124.7 mm in between the two days of which 101.2 mm fell
on the 18th of June.

2. High meltwater due to the accumulation of snow (>300 cm measured at one
station within the region).

The map shown in Figure 3.3 shows an approximation to the rainfall and snowmelt
conditions that led to the landslide episode. These conditions were calibrated by
Hürlimann et al. (2021) using FSLAM and the landslide inventory.

As it will be explained in the next chapters, FSLAM uses rainfall as a means to
calculate the position of the water table. In order to account for the snow, the
recorded rainfall map was modified into the maps shown in Figure 3.3. Antecedent
rainfall (Pa) considers rainfall and snow, and shows a clear divide between areas that
experienced snowmelt and areas that did not. The event rainfall (Pe) was estimated
combining the observed rainfall at different weather stations within the study area
and 60 mm are added in some parts to account for snowmelt.
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3.1.4 Digital elevation model (DEM)

Figure 3.4: Digital elevation model (DEM) map

The DEM, shown in Figure 3.4, was obtained from the Institut Cartogràfic i Geològic
de Catalunya (ICGC) and covers an extent 337.2 km2 of the 620.5 km2 that comprise
the whole administrative area of Val d’Aran (54%). The DEM has a resolution of
5 m by 5 m and contains values for 13 486 326 cells, of these cells, 489 384 cells
contain “no data” values which reduces the total area analyzed to 324.9 km2.
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3.1.5 Land use/land cover (LULC)

Figure 3.5: Land use/land cover (LULC) map

The LULC map, shown in Figure 3.5, was obtained from The Centre for Research
on Ecology and Forestry Applications (CREAF) and dates from 2009. Although
the original map contains more classes, it was reclassified to only show 10 different
classes where forest (43.1%), grassland (30.8%) and shrubs (16.7%) are the most
dominant.

Shu et al. (2019) previously used the landslide inventory to perform an analysis on
how land use changes starting from 1946 may have affected landslide susceptibility of
the region. Particularly, they highlight that a significant increase of forest and shrubs
in the period mentioned might have reduced the overall landslide susceptibility of
the region.

3.1.6 Soil type

The soil map, shown in Figure 3.6, was obtained from the ICGC and dates from
2017. Originally it was a geological map that was reclassified into 11 lithological
categories in order to use their corresponding mechanical soil properties. In this
map, the most dominant classes are phyllite-slate (28.5%), mudstone (18.1%) and
colluvium (12.6%) but most landslides tend to occur on mudstone, limestone (8.9%)
and colluvium (Hürlimann et al., 2021).
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Figure 3.6: Soil type map

3.2 Berguedà

Due to their significant impact in the region, all throughout the Pyrenees there have
been several counties that have served as study cases for landslide assessments. In
the previous sections Val d’Aran was described but another of such regions is the
county of Berguedà. Located 100 km southeast of Val d’Aran, Berguedà consists of
the upper Llobregat river valley and the mountainous areas that surround it.

Through time, a chronology of landslides in the Berguedà region has been recon-
structed from technical reports, field surveying and geomorphological analysis. Cur-
rently, a landslide inventory of 998 landslides has been collected from several sources
(Baeza & Corominas, 2001; Corominas & Moya, 1999). The points identifying each
landslide are shown in Figure 3.7.

In a similar fashion to the thematic maps presented for Val d’Aran, a DEM, LULC
map and soil type map are also available for the Berguedà region. These are shown
in Figures 3.8 and 3.9.
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Figure 3.7: Landslide inventory for the Berguedà region

Figure 3.8: DEM for the Berguedà region
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Figure 3.9: LULC (top) and Soil type (bottom) maps for the Berguedà region
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Chapter 4

Tools and Methods

4.1 Theoretical framework

4.1.1 FSLAM

Developed at the Universitat Politècnica de Catalunya (UPC), FSLAM is a physi-
cally based model used to analyze landslide susceptibility at a regional scale. FSLAM
works through the combination of a geotechnical model and a hydrological model.

Geotechnical model

The geotechnical model used by FSLAM is based on the infinite slope analysis and
the Mohr-Coulomb theory for failure. The model calculates a factor of safety based
on the following equation:

FS =
cs + cr

gρsz cos θ sin θ
+

(

1−
h

z

(

ρw
ρs

))(

tanφ

tan θ

)

(4.1)

Where:

cs = soil cohesion in kPa
cr = root cohesion depending on the land use in kPa
g = gravitational constant in m

s2

ρs = soil density in kg

m3

θ = slope angle in degrees
h = position of the water table in m
z = total soil depth in m

ρw = water density in kg

m3

φ = soil friction angle in degrees

As mentioned previously, some of these parameters can be introduced into the model
as ranges in order to perform a stochastic calculation of the FS and finally the
PoF. Specifically the parameters that are introduced stochastically are cohesion
and internal friction angle because they belong to separate terms in Equation 4.1
and therefore a Gaussian distribution can be obtained for FS if the distribution of
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Figure 4.1: Schematic of the geotechnical model
Medina et al. (2021)

those two parameters is also supposed to be Gaussian (Medina et al., 2021). The
probability distribution function is as follows:

χ
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2

FS

)

=
χ (µc, σ

2
c )

γsz cos θ sin θ
+
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µtanφ, σ
2
φ

)

tan θ



 (4.2)

Where:

µFS =
µtanφ

D
+

µc

A
(4.3)

σ2

FS =
σ2
tanφ

D2
+

σ2
c

A2
(4.4)

A =
zγs sin (2θ)

2
(4.5)

D =
tan θ

1−
(

h
z

) (

γw
γs

) (4.6)

In these equations, χ represents the probability density function of the computed
FS, µ the mean of a parameter and σ2 the variance of a parameter. In addition, in
the previous set of equations, the densities (ρ) have been substituted by the bulk
weight (γ) of the materials in N

m3 .
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Having obtained a distribution for FS as shown in Equation 4.2 allows for the cal-
culation of PoF as the area under the curve that is below FS = 1. Depending on
the uncertainty of the stochastic parameters, when comparing the results for two
cells, one of them can have a higher FS while also having a bigger PoF as shown in
Figure 4.2.

Figure 4.2: Probability distribution for the computed FS
Medina et al. (2021)

Hydrological model

As it can be seen in Figure 4.1, the position of the water table depends on the
addition of two parameters.

h = ha + he (4.7)

These parameters are understood to be the contributions by lateral (ha) and vertical
(he) flows as shown in Figure 4.3. Lateral flow refers to the long term steady state
contribution of groundwater to a specific cell during a previous time window, while
vertical flow refers to the contribution by an event that occurs during a single day.

The contribution by lateral flow uses the following equation:

ha =
(

a

b

)

qa
K sin θ cos θ

(

ρw
ρs

)

(4.8)

Where:

a = drainage area in m2

b = width of the cell in m
qa = effective antecedent recharge in mm/day
K = horizontal hydraulic conductivity in m/s

The contribution by vertical flow uses the following equations:

20



Figure 4.3: Schematic of the hydrological model
Medina et al. (2021)

qe = Pe −

(

Pe −
(

5080

CN
− 51

))2

Pe + 4
(

5080

CN
− 51

) (4.9)

he =
qe
η

(4.10)

Where:

qe = efective event recharge in mm
Pe = event rainfall in mm
CN = curve number1

η = soil porosity in m3

m3

4.1.2 Data-driven classification methods

Classification

Classification is the process of predicting a qualitative response (Y) from a single
or multiple observations (X). In the case of landslide susceptibility, this is a special
type of classification where the outcome is binary, therefore the response value is
always either 0 (False) or 1 (True), either the analyzed unit is susceptible (1) or not
susceptible (0) to generate a landslide.

In general, the relationship that is being modeled is shown in Equation 4.11 and
can be read as the probability of Y equals 1 given X. Because what is modeled is a

1as described in the rainfall-runoff model by the Soil Conservation Service (SCS) of the United
States
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probability, a threshold must be set in order for the model to decide to which class
an observation belongs, usually this threshold is set at 0.5.

p = Pr(Y = 1|X) (4.11)

Logistic regression

In logistic regression, p is modeled using the logistic function which has the follow-
ing equation when the outcome variable has k predictors, x being the explanatory
variable or variables.

p =
eβ0+β1x1+···+βkxk

1 + eβ0+β1x1+···+βkxk
(4.12)

Where each β is a regression coefficient for each of the explanatory variables. With
a little bit of manipulation, one can arrive to the following expression:

log

(

p

1− p

)

= β0 + β1x1 + · · ·+ βkxk (4.13)

Equation 4.13 shows that the logistic function is a form of a linear function in logistic
space. In addition, on the left side of the equation are the logarithm of the odds, or
the ratio of the number of events that produce a True response to the number that
do not.

Figure 4.4: General form of the logistic curve for one observation

Support vector machines

A support vector machine (SVM) constructs a hyper-plane or set of hyper-planes
in high-dimensional space, which can be used for regression or classification. This
method is a generalization of the maximal margin classifier. In Figure 4.5 a data
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set is being divided by the maximal margin classifier where the black line represents
the plane that maximally separates each subset and the distance between the black
line and dotted lines represents the maximal margin.

Figure 4.5: Example of the maximal margin classifier in two dimensional space
Pedregosa et al. (2011)

The main issue with the maximal margin classifier is that the method doesn’t work
if there is no hyperplane which perfectly separates the observations. To allow for
the misclassification of observations, the support vector classifier (SVC) is used, this
method is also known as the soft margin classifier.

The SVC allows for some observations to be on the wrong side of the hyperplane.
The optimal hyperplane can be found by solving the following optimization problem.
In this case x1, ..., xn are the observation variables and y1, ..., yn are the class labels.

MAXβ0,β1,...,βp,ǫ1,...,ǫn,MM (4.14)

p
∑

n=1

β2

j = 1 (4.15)

yi (β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M(1− ǫi) (4.16)

ǫi ≥ 0,
n
∑

i=1

ǫi ≤ C (4.17)

Where M is the margin space that separates the observations (space between dotted
lines in Figure 4.5, β are the coefficients that define the hyperplane, ǫ are slack
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variables that allow for observations to be on the wrong side of the hyperplane,
and C is a nonnegative tuning parameter. In general Equation 4.16 is the most
important equation because it defines the hyperplane that separates the data.

Classification trees

Tree based methods involve segmenting the observation space into a number of
simple regions or nodes. Each region is associated with a statistical descriptor of
the observations that fall within, typically the mean is used. The set of rules used
to describe the segmented observation space can be summarized in what is called a
decision tree. Regression and classification trees are types of decision trees where
the predicted value for the former is a number while the latter is a class. Tree-
based methods are simple and useful for interpretation, however they are typically
not competitive with other methods for supervised learning such as those described
earlier in this chapter (James et al., 2013).

In order to grow a classification tree, the process of recursive binary splitting is
applied. In this approach, observations are divided into two subsets or branches.
Selecting the value (s) that divides both branches is done by minimizing a measure
of the observations within each branch. Such measures can be the classification error
rate, entropy or the Gini index. The Gini index (G) is defined as a measure of total
variance across all classes (K) and can be calculated using the following equation:

G =
K
∑

k=1

p̂mk (1− p̂mk) (4.18)

Where ˆpmk represents the proportion of observations in the mth subset that belong
to the kth class. The Gini index can also be seen as a measure of “purity” where
small values indicate that a node contains mainly observations belonging to the same
class.

From the previous description, one can assume that, as more branches are intro-
duced, the Gini index of every terminal node in the decision tree will become smaller.
This is an issue because trees with more terminal nodes are biased towards the ob-
served data used to create them and perform poorly when used in other data sets.
Because of this, the process of minimal cost-complexity pruning is introduced in
order to reduce the number of branches and terminal nodes.

Cost-complexity pruning adds a weight (α) to the measure used to evaluate the tree
depending on the number of terminal nodes that the tree has. For this process the
misclassification rate (E) is used instead of the Gini index.

E = 1−max
k

(p̂mk) (4.19)

So the optimization function in order to find the appropriate weight can be written
as:

MIN Eα = E + α |T | (4.20)
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Where Eα is the adjusted misclassification rate, E is the misclassification rate of the
complete tree and T is the number of terminal nodes in the tree.

Figure 4.6: General form of the decision tree

Random forests

A process called bootstrapping consists of the creation of multiple copies of the
original data set by sampling with replacement. Random forests are made up of a
committee of multiple decision trees that have been prepared using bootstrapped
data sets (Hastie et al., 2009). The process of splitting is also different than with
regular decision trees. When building a decision tree for a random forest, each time
a split or branch is considered, a random sample of observations is chosen as split
candidates from the full set of observations. This random sample is also a subset
of the total observations where typically the square root of the total observations is
used (taken as the smallest integer value that is bigger than or equal to the square
root).

Because random forests operate as a committee, detailed analysis of each of the
members of the committee can lead to deeper insights about the observations or
predictor variables. In these applications, seldom are predictor variables equally
important. In most cases, only a small group of them are relevant and the others can
be excluded without significantly affecting the performance of a model. In random
forests, feature importance can be analysed by counting the number of times (and
depth within a tree) that a particular feature is used to split the observations and
create new branches.

4.2 Methodology

4.2.1 Overview

The analysis, preparation and evaluation of the data-driven models was done us-
ing the Python programming language (Van Rossum & Drake, 2009) through the
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JupyterLab platform which is an extension of Jupyter Notebooks (Thomas et al.,
2016). Specifically, the models were built using the scikit-learn package (Pedregosa
et al., 2011). To prepare the data for scikit-learn, the DataFrame object in the pan-
das package was used (Reback et al., 2021). For the computation of the explanatory
variables derived from the DEM, geo-processes from the SAGA-GIS software were
used (Conrad et al., 2015).

Figure 4.7: Workflow for the preparation and evaluation of data-driven models

Figure 4.7 shows a general overview of the workflow for preparing and evaluating
the data-driven models used in the project. Inputs are shown in blue, intermediary
steps are shown in green and final outputs are shown in red.

From the DEM, six explanatory variables were computed. These new variables as
well as the antecedent and event rainfall of a sampled raster cell are collected within
a DataFrame object as numerical variables. Soil and LULC are collected as cate-
gorical variables and “one-hot” or dummy encoded within the DataFrame. Dummy
encoding refers to the process of coding a categorical variable into dichotomous vari-
ables, or variables stored in multiple fields as True or False. In addition, if a cell is
marked by a point in the landslide inventory, an attribute of True for susceptibility
is collected in the DataFrame, otherwise, the cell is marked as False.

The DataFrame was used by scikit-learn to separate the data into training and
testing sets, train and validate the model using the training data, and finally test
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the model with the testing data. The final outputs are performance metrics of each
of the models and specific results depending on the features that each model has.

4.2.2 Explanatory variables

As mentioned previously, six explanatory variables are calculated from the DEM
using the geoprocessing toolbox available within SAGA GIS. These six variables
are:

1. Slope: the angle between the surface of the terrain and a horizontal plane
measured in degrees.

2. Aspect: the direction to which the surface of the terrain faces measured in
degrees.

3. Profile curvature: curvature parallel to the slope. Is a dimensionless ratio that
indicates if the terrain surface is convex (positive) or concave (negative).

4. Planform curvature:curvature perpendicular to the slope. Is a dimensionless
ratio that indicates if the terrain surface is laterally convex (positive) or lat-
erally concave (negative).

A graphic representation of the curvature variables can be seen in Figure 4.8. The
specific algorithm used to calculate these first four variables was described by Zeven-
bergen and Thorne (1987).

5. Flow accumulation: the total area that drains to a particular cell measured in
square meters calculated using a D8 flow direction algorithm as described by
Tarboton (1997).

6. Topographic wetness index (TWI): dimensionless ratio that serves to quantify
topographic control of hydrological processes. Can be calculated using Equa-
tion 4.21 where: a is the drainage area of the specific cell (flow accumulation)
and b is the local slope.

TWI = ln

(

a

tan(b)

)

(4.21)

Apart from these six, seven additional explanatory variables were also used. In total,
thirteen explanatory variables were collected.

7. LULC class: the LULC map shown in 3.5 contains 10 distinct classes which
represent different types of land use or land cover. An index has been assigned
to each of the classes.

8. Soil class: the soil map shown in Figure 3.6 contains 11 distinct classes which
represent different types of soil. An index has been assigned to each of the
classes.

9. Antecedent rainfall: average daily precipitation during the previous 30 days
before the analyzed condition. Measured in mm/day.

10. Event rainfall: total daily rainfall associated with the landslide event. Mea-
sured in mm.
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Table 4.1: LULC classes

Index Class

1 forest

2 shrubs

3 grassland

4 bare soil

5 scree

6 weathered rock

7 intact bedrock

8 urban area

9 water

10 glacier-snow

Table 4.2: Reclassified soil classes

Index Class

1 alluvial

2 colluvium

3 conglomerate

4 granitic rock + quartzite

5 hornfels-marble

6 limestone

7 mudstone

8 phyllite-slate

9 sandstone

10 scree

11 till
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Figure 4.8: Profile curvature (top row) and planform curvature (bottom row)
ESRI (2014)

11. Event probability of failure: PoF of cells as the result of the combined effects
of antecedent and event rainfall.

12. Dry probability of failure: PoF of cells where the water table has been set at
its lowest possible position (the soil column is dry).

13. Saturated probability of failure: PoF of cells where the water table has been
set at its highest possible position (the soil column is completely saturated).

The last three explanatory variables had been previously computed by FSLAM
(Hürlimann et al., 2021).

Different explanatory variables were used in different models as is shown in Table
4.3. For all cases, explanatory variables 1 through 8 were used. Because rainfall is
sometimes difficult to obtain, variables 9 and 10 were used as a particular case for all
models. This last point allows two cases to be evaluated: the first which is a static
or “dry” case, and the second which considers the effects of antecedent and event
rainfall as failure conditions. Lastly, variables 11 through 13 were used to evaluate
how outputs from FSLAM affect the performance of the best model when they are
added as inputs.

4.2.3 Sampling

As mentioned in Section 3.1.2, for the 2013 landslide episode 392 landslides where
identified and collected to form an inventory, the spatial distribution of the inventory
is also shown in Figure 3.2. Figure 4.9 shows the output of the code written to collect
the sample. It is to be noted that even though the identified landslides were 392,
only 391 are collected in the sample. This is because two of the landslides in the
inventory were separated at a distance of less than five meters. Because five meters is
the resolution of the DEM, these two landslides are collected as just one observation.
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Table 4.3: Explanatory variables used in different models

Cases

Dry 2013 Event Model coupling

Morphometric variables Morphometric variables Morphometric variables

LULC class LULC class LULC class

Soil class Soil class Soil class

Antecedent rainfall Event PoF

Event rainfall Dry PoF

Saturated PoF

Additionally, this is a balanced sample, that is to say, an equal amount observations
for susceptible and non-susceptible cells was used. The final DataFrame for the
data-driven models had 782 observations.

Figure 4.9: First five rows of the collected sample DataFrame

In addition to the explanatory variables presented in Section 4.2.2, the properties of
latitude and longitude in the UTM zone 31N coordinate system were also collected,
allowing for the sample to be presented in a map as shown in Figure 4.10

4.2.4 Train-test split

The training dataset contains examples used to fit the parameters of a specific
classifier. Because this is an exercise in supervised learning, each observation is
paired with its corresponding output. During the learning process, the parameters
of the classifiers are adjusted in order to best match the observations with their
corresponding output. The performance of the classifier is evaluated by comparing
the predicted outputs with the actual values for all observations.

The code used to split the sample into the training and testing sets is as follows:

# Split X and y into training and testing sets

from sklearn.model_selection import train_test_split

X_train , X_test ,

y_train , y_test

= train_test_split(X, y, test_size=0.25, random_state=0)
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Figure 4.10: Training data or landslide sample map

Here scikit-learn (sklearn) is being used to perform the task of randomly splitting
the sample. As is shown in Figure 4.11, a split of 75% of the data is being used to
train the models while 25% of the data is used to test the models. The testing data
can also be seen as “out of sample” data and is used to evaluate the performance of
the model.

4.2.5 Cross-validation

In order to accurately assess the performance of the model during training, the
process of 5-fold cross-validation is used. In general for k-fold cross-validation, the
original sample is randomly partitioned into k equal sized subsamples. Of the k
subsamples, a single subsample is left out of the training process and used to test
the model. This process is repeated k times, always leaving out one of the samples.
The final performance metric during training is reported as the average of the per-
formance across all the folds. As an example, the subsamples are shown in Figure
4.11 for k = 5.

Hyper parameter tuning

In addition to being used to evaluate the performance of the model during training,
the validation dataset is also used for hyper-parameter tuning. As implemented in
scikit-learn, each model has a specific set of parameters that affect it’s performance.
Adjustment of these parameters will lead to better or worse performance of the
model during training. One must also not forget that perfect performance during
training is undesirable because it means that the model is overfitting.
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Figure 4.11: Partitions of the sample data

As an example, the following codes performs 5-fold cross-validation and hyper-
parameter tuning for the logistic regression:

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

logreg = LogisticRegression ()

param_grid = {’penalty ’ : [’l1’, ’l2’],

’C’ : np.logspace(-4, 4, 20)}

clf = GridSearchCV(logreg , param_grid = param_grid ,

scoring = ’roc_auc ’, cv = 5)

best_logreg = clf.fit(X_train , y_train)

The third and fourth lines create an instance of the logistic models and the ranges of
hyperparameters that have been chosen to tune the model. In the case of the logistic
regression, two types of penalty functions are being evaluated as well as 20 values
for “C” the regularization parameter. In this case, the regularization term is added
to the optimization function that finds the coefficients of the logistic regression in
order for discourage the model if it finds a very good but complex solution. More
complex solutions lead to overfitting so simpler solutions are preferred because they
lead to models that are better at generalizing.

The fifth line create an instance of a GridSearch object. This object creates a cross-
validated model for each of the possible combinations of hyperparameters given in
the parameter grid. Because the hyperparameter grid contains 20 parameters and
5-fold cross-validation is being used, in total, 200 models are trained. The model
with the highest performance in the “ROC AUC” metric is then saved, along with
its performance metrics, as the best model.

4.2.6 Testing

In this last process, the trained and tuned data-driven model is used to predict
probabilities and classes for the testing data set. The predicted classes are computed
from the predicted probabilities by setting a threshold in order to decide to which
of classes a cell belongs. Usually this threshold is set at 0.5 where raster cells with a
predicted probability below or equal to 0.5 are classified as False (or not susceptible
to generate a shallow landslide in our specific case) or True when the predicted
probability is more than 0.5.
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From these results, specific performance metrics can be computed for each of the
models. These metrics are then used to compare data-driven models between them-
selves and also to choose the best data-driven model and compare it with FSLAM.

4.3 Evaluation metrics

In order to evaluate the models, the confusion matrix, metrics derived from the
confusion matrix and the receiver operator charactersitic (ROC) curve are used.

4.3.1 Confusion matrix

The confusion matrix is a specific contingency table that allows for the visualization
of the performance of a model. The rows of the matrix account for the actual values
the model tried to predict while the columns account for the predictions made by
the model. Figure 4.12 shows the typical layout of a confusion matrix.

Figure 4.12: Generic layout of a confusion matrix

The confusion matrix is a very powerful tool because it allows for the computation
of different performance metrics depending on the model evaluated. The terms and
metrics derived from the confusion matrix are described below.

P = number of real positive cases
N = number of real negative cases
TP = number of true positives or hits
TN = number of true negatives or correct rejections
FP = number of false positives or false alarms (Type I error)
FN = number of false positives or misses (Type II error)

Type I and II errors are very important in landslide assessment. A Type I error or
a false alarm means that a cell an area is declared landslide susceptible, limiting its
possibilities for development. While a Type II error or miss would mean that an
area is declared non-susceptible, allowing for its development but a landslide and its
ensuing disaster still occur.
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Typically, classification models metrics focus on the capacity of the model to cor-
rectly predict positives and negatives, so the accuracy (ACC) of the model is re-
ported. Accuracy is the ratio between correctly predicted cases and the total number
of cases. This is a number between 0 and 1, and values closer to 1 indicate better
performance.

Because of the importance of the two types of error for landslide assessment, the
false positive rate (FPR) and the false negative rate (FNR) are also reported. FPR
is the ratio between false positives and total number of negative cases. FNR is
the ratio between false negatives and the total number of positive cases. Both are
number between 0 and 1 where values closer to 0 indicate better performance.

Finally, as a measure of overall performance from the confusion matrix, the Matthews
correlation coefficient (MCC) is used (Matthews, 1975). MCC takes into account
true and false positives and negatives and is considered a balanced measure of perfor-
mance. MCC is a number between -1 and 1 where 1 represents perfect classification,
0 indicates performance no better than a random predictor and -1 indicates total
disagreement between the actual and predicted responses.

ACC =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(4.22)

FPR =
FP

N
=

FP

FP + TN
(4.23)

FNR =
FN

P
=

FN

FN + TP
(4.24)

MCC =
TP × TN − FP × FN

√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)
(4.25)

4.3.2 ROC curve

The ROC curve is a plot that illustrates performance metrics of a binary classifier
as the discrimination threshold is varied (Fawcett, 2006). As mentioned previously,
the weakness of the performance metrics described in Section 4.3.1 is that the con-
fusion matrix depends on a threshold that is set. Performance of a model will vary
depending on the discrimination threshold; the ROC curve permits an assessment
of the performance of the model across all possible discrimination thresholds.

In order to plot the ROC curve, an additional metric in the form of the true positive
rate (TPR) has to be computed. TPR is the ratio between true positives and
the total number of positive cases. It can also be computed using the previously
established FNR. As a performance metric, it takes values between 0 and 1 where
being closer to 1 is better.

TPR =
TP

P
=

TP

TP + FN
= 1− FNR (4.26)
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In a way, the ROC curve is simultaneously displaying the two types of errors for all
possible thresholds. Type I error in the x-axis with the FPR and Type II error in
the y-axis through the TPR.

Figure 4.13: Generic ROC curve

The overall performance of a classifier, summarized over all possible thresholds is
given by the area under the curve (AUC). An ideal ROC curve will have a single
point where FPR = 0 and TPR = 1, thus the AUC is equal to 1. Further, for any
random classifier FPR will be equal to TPR across all thresholds and thus AUC is
equal 0.5.
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Chapter 5

Results and Discussion

In this chapter the results obtained by the physically based model FSLAM and
the different data-driven models are presented. The results are presented in two
cases: the first case doesn’t consider neither antecedent rainfall nor event rainfall as
explanatory variables and the second case does. The results are presented in these
two cases due to the fact that, in literature, data-driven models are used to compute
landslide susceptibility mainly in a static condition; that is to say, the explanatory
variables used are commonly static in time (Reichenbach et al., 2018). Another
important consideration is that data-driven models typically use historical landslide
inventories that have been collected throughout the years while, in the case of Val
d’Aran, an inventory for a single landslide episode is being used.

5.1 FSLAM

FSLAM serves as a starting point and baseline to assess the performance of all
data-driven models. For this model, the case that doesn’t consider rainfall can be
seen as the condition in which the soil column is completely devoid of water or dry.
This condition is computed by FSLAM through Equations 4.1 and 4.2 by setting
h
z
= 0. This condition is also able to detect Unconditionally Unstable cells or cells

that have a high PoF and will fail regardless of the height of the water table. The
second case which considers rainfall is taken as the calibrated model as prepared by
Hürlimann et al. (2021) and PoF after considering the increases in the water table
by the antecedent and event rainfalls is taken as the final result for this case.

The ROC curves in Figure 5.1 show clear dissimilar performance between the two
conditions. The 2013 event ROC AUC is equal to 0.762 which should be taken as the
final performance metric for FSLAM in this region. The dry condition shows a lower
performance mainly due to the fact that the inventory being used to calibrate is the
result of a landslide episode triggered mainly by snowmelt and rainfall. As a general
statement, for a region like Val d’Aran the condition in which there is no water in
the soil column is unrealistic so this result should be taken only as reference. The
ROC curve of the POF Dry case also shows significant variation across thresholds
making the results of any possible confusion matrix very sensible to the threshold set
to distinguish non-susceptible and susceptible cells. This also shown in Figure 5.2
where both cases show significantly different performance metrics mainly because of
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Figure 5.1: ROC curves for FSLAM

the sensitivity of the POF Dry case to a discrimination threshold.
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Figure 5.2: Confusion matrices for FSLAM

5.2 Logistic regression

The first statistical method to be tested is the logistic regression. As explained in
Section 4.1.2, the logistic regression is similar to linear regression in the logarithmic
space. An optimization problem will find adequate coefficients for the explanatory
variables in order to obtain the best performance during the training phase.

As discussed in Section 4.2.5, the optimization problem implemented in scikit-learn
to find adequate parameters for the logistic regression has a series of hyperparam-
eters that need to be adjusted mainly to improve performance while also taking
into account that overfitting the model during training must be avoided. The main
hyperparameter of the logistic regression is C which serves as a regularization pa-
rameter. For the case of no rainfall C = 0.61585, while for the case that considers
rainfall C = 29.76351. This means that the case which uses rainfall is a more com-
plex model that requires heavier penalties to avoid overfitting. This is also shown
in Table 5.1 and Table 5.2 where the latter uses more of the explanatory variables
to make a prediction, therefore it is a more complex model. The final performance
scores are shown in Figure 5.3 where the model that considers rainfall performed
better overall by a slight margin. Figure 5.3 also shows the increase of performance
as the hyperparameters are adjusted to find better coefficients that more suitably
match the training data and the spread in performance across all five validation
folds (shaded area).

In the testing set, performance is increased for both cases of the logistic regression,
this is shown in Figure 5.4. This means that both models have avoided the pitfalls of
overfitting. An even better result, is that the model which considers no rainfal shows
better performance in the testing dataset. This is important because it confirms
that simpler models tend to be better a generalizing than more complex models.
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Figure 5.3: Ranking and performance of logistic models during the training phase

Although adding rainfall as an explanatory variable increased the performance of
the model during training, when making predictions in “out of sample” data the
more complex model performed slightly worse. This is also shown in Figure 5.5,
where the model that considers rainfall predicted a higher number of false negatives
and there FNR increased. This is worrying because, as mentioned in Section 4.3.1,
FNR is associated with Type II error which in the case of landslides means that
an area was predicted as not susceptible when in reality it might be capable of
generating a landslide.
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Figure 5.4: ROC curves for the logistic models

Figure 5.5: Confusion matrices for the logistic models
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As a final, more in-depth, analysis, the coefficients for both cases of the logistic
models as well as p-values for each coefficient are shown in Table 5.1 and Table
5.2. The tables are ranked in descending order using the absolute z -score of each
explanatory variable. z -score was computed as the ratio between the estimator’s
mean coefficient and its standard error, and p-values are the probability to obtain
a result that satisfies the null-hypothesis, with the null-hypothesis being that that
a certain explanatory variable is not relevant in explaining landslide susceptibility.
An explanatory variable is considered relevant only when it can be used to predict
landslide susceptibility with 95% confidence (p < 0.05). To estimate these coeffi-
cients and their corresponding mean, standard error, z -scores and p-values, cross-
validation across 100-folds of the training data was used considering the already
adjusted hyperparameters for best performance.

When comparing the rankings of explanatory variables one must notice the switch
that happens to the land uses of urban area and bare soil when the 2013 rainfall is
considered. When rainfall is not considered, these two land uses are not statistically
significant when making a prediction. In contrast, when rainfall is considered, urban
area becomes the most important variable when predicting landslide susceptibility.
Intuitively, this makes sense. When rainfall is considered as the triggering mecha-
nism, one would not expect areas that have been covered in roofs, pavement and
concrete to generate landslide and this is proven by the coefficient having a negative
sign, meaning that it reduces the computed probability. A similar analysis can be
done for bare soil where the coefficient is positive, therefore areas with this type
of land use will be more susceptible to landslides when rainfall is considered. The
same happens for the soil categories of conglomerate and till but their explanation
is less intuitive and visual.

From the variables derived from the DEM, slope is really the only one that is relevant
when making a prediction even though aspect is considered by the model that doesn’t
take into account rainfall and, profile curvature and flow accumulation are used by
the model that takes into account rainfall.

Both models agree that five categories of soil, mudstone sandstone, granitic rock +
quartzite, colluvium and limestone, and two categories of land use, forest and grass-
land, are statistically significant. Both models also agree that TWI and planform
curvature have no statistical relevance when making predictions, as well as the five
land uses of scree, weathered rock, intact bedrock, water and glacier-snow ; and the
soil category of phyllite-slate.
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Table 5.1: Coefficients of the logistic regression model for the Dry case

Explanatory Coefficient Coefficient Z-Score P-Value
Variable Mean Std. Error
soil 7.0: mudstone 1.067385 0.023105 46.196907 0.00000
slope 0.048418 0.001102 43.953031 0.00000
lulc 1.0: forest -1.001251 0.027576 36.308878 0.00000
soil 9.0: sandstone -1.504874 0.045763 32.883967 0.00000
lulc 3.0: grassland 0.518134 0.022576 22.950719 0.00000
soil 4.0: granitic rock + quartzite -1.092249 0.059073 18.489752 0.00000
soil 2.0: colluvium 0.430253 0.031423 13.692295 0.00000
soil 6.0: limestone 0.225259 0.033071 6.811482 0.00000
soil 5.0: hornfels-marble -0.285079 0.082732 3.445813 0.00028
aspect -0.000239 0.000096 2.488322 0.00642
facc -0.035788 0.017726 2.019032 0.02174
soil 1.0: alluvial -0.044902 0.056739 0.791375 0.21436
twi 0.001732 0.002821 0.614132 0.26956
soil 10.0: scree -0.001465 0.011652 0.125763 0.44996
curv plan 0.000000 0.000000 NaN NaN
curv prof 0.000000 0.000000 NaN NaN
lulc 2.0: shrubs 0.000000 0.000000 NaN NaN
lulc 4.0: bare soil 0.000000 0.000000 NaN NaN
lulc 5.0: scree 0.000000 0.000000 NaN NaN
lulc 6.0: weathered rock 0.000000 0.000000 NaN NaN
lulc 7.0: intact bedrock 0.000000 0.000000 NaN NaN
lulc 8.0: urban area 0.000000 0.000000 NaN NaN
lulc 9.0: water 0.000000 0.000000 NaN NaN
lulc 10.0: glacier-snow 0.000000 0.000000 NaN NaN
soil 3.0: conglomerate 0.000000 0.000000 NaN NaN
soil 8.0: phyllite-slate 0.000000 0.000000 NaN NaN
soil 11.0: till 0.000000 0.000000 NaN NaN
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Table 5.2: Coefficients of the logistic regression model for 2013 Event case

Explanatory Coefficient Coefficient Z-Score P-Value
Variable Mean Std. Error
lulc 8.0: urban area -4.54649 0.10627 42.78244 0.00000
slope 0.04916 0.00116 42.37931 0.00000
lulc 4.0: bare soil 3.35507 0.09936 33.76681 0.00000
soil 7.0: mudstone 0.93828 0.02782 33.72682 0.00000
rain ant -3.73607 0.11577 32.27149 0.00000
soil 9.0: sandstone -1.91055 0.06026 31.70511 0.00000
lulc 1.0: forest -1.45692 0.04600 31.67217 0.00000
rain event 0.01608 0.00080 20.10000 0.00000
soil 4.0: granitic rock + quartzite -1.43823 0.07324 19.63722 0.00000
lulc 3.0: grassland 0.58758 0.04319 13.60454 0.00000
soil 2.0: colluvium 0.47128 0.03522 13.38103 0.00000
soil 6.0: limestone 0.41346 0.03763 10.98751 0.00000
soil 10.0: scree -1.01183 0.09313 10.86471 0.00000
soil 11.0: till 0.58232 0.06004 9.69887 0.00000
soil 3.0: conglomerate -1.88070 0.19942 9.43085 0.00000
soil 5.0: hornfels-marble -1.11465 0.13363 8.34132 0.00000
soil 1.0: alluvial -0.77378 0.09439 8.19769 0.00000
curv prof 5.23727 0.66975 7.81974 0.00000
lulc 2.0: shrubs -0.13790 0.04653 2.96368 0.00152
facc -0.05409 0.02613 2.07003 0.01922
aspect -0.00013 0.00010 1.30000 0.09680
curv plan -0.20523 0.18122 1.13249 0.12871
twi 0.00502 0.00471 1.06582 0.14325
lulc 6.0: weathered bedrock 0.01563 0.03761 0.41558 0.33886
lulc 5.0: scree 0.00463 0.04819 0.09608 0.46173
lulc 7.0: intact bedrock 0.00000 0.00000 NaN NaN
lulc 9.0: water 0.00000 0.00000 NaN NaN
lulc 10.0: glacier-snow 0.00000 0.00000 NaN NaN
soil 8.0: phyllite-slate 0.00000 0.00000 NaN NaN
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5.3 Support vector classifier

The support vector classifier is the second method tested. As explained in Section
4.1.2, the SVC tries to find the widest possible separating margin between the output
categories. This is different than the logistic regression in which a likelihood function
is being optimized to best fit the data. SVC is a more complex method than the
logistic regression but it was chosen to be tested because it is known to be a very
good “out of the box” classifier, so hyperparameter tuning is not as crucial and this
method offers an alternative to the logistic regression.

Even though hyperparameter tuning is not as important, the same process for train-
ing the logistic regression was followed to train the SVC. The kernel function is the
most important hyperparameter used by the SVC.

param_grid = [{’kernel ’: [’rbf’], ’gamma ’: [0.1,0.5,1,2,5,10], ’C’:

[0.1, 1, 10, 100 , 1000]},

{’kernel ’: [’linear ’], ’C’: [0.1, 1, 10, 100 , 1000]},

{’kernel ’: [’poly’], ’degree ’ : [2,3,4,5], ’C’: [0.1,

1, 10 , 100 , 1000]}]

For the SVC, three different kernel functions were tested. The purpose of the kernel
function is to transform the data. This new form increases the dimensionality of
the problem but in these higher dimension, finding the hyperplane that separates
the different categories of data is easier. In a sense, it is adding information to the
problem.

As with the logistic regression C serves as the regularization parameter. For the case
with no rainfall considered, a linear kernel function with a regularization parameter
of C = 0.1 was found to be best. For the case that uses rainfall, a a polynomial
kernel function of the 2nd degree with a regularization parameter of C = 1000 was
best.

Figure 5.6: Ranking and performance of the SVC models during the training phase

As with the logistic regression, in training the more complex model that uses rain
shows better performance. Also similarly to the logistic regression, the model with
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no rainfall uses a linear kernel function with a low regularization parameter, while the
model that uses rainfall uses a polynomial kernel function with a high regularization
parameter.

Figure 5.7: ROC curves for the SVC models

In testing, results are again very similar to the logistic regression. As shown in
Figure 5.7, the less complex model which doesn’t use rainfall in its inputs is better
at generalizing and thus it obtains a better score in testing. The confusion matrix in
Figure 5.8 shows that the model that uses rainfall improved a little bit by reducing
the number of false positives but there is a more significant increase in false negatives.

In the end, because of the similar results between the logistic and SVC models, the
former would be preferred because they are more approachable and permit deeper
insight into the decision-making process as shown with the analysis of Table 5.1
and Table 5.2. Finally, in terms of pure performance, both methods outperform the
physically-based model.
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Figure 5.8: Confusion matrices for the SVC models

5.4 Classification tree

To prepare Tree based models, a similar process to the one followed for the logistic
regression and the SVC is used. 5-fold cross-validation is again used in order for
the results to not be highly sample dependant. To select an adequate CCP α that
maximizes performance in terms of accuracy, cross-validation is run through a range
of values for α. This process is plotted in Figure 5.9 and α is selected as the value
which achieves the highest accuracy.

Figure 5.9: Performance of the Tree models during the training phase

During the training process, the best α for the decision tree that doesn’t use rainfall
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is 0.01 for an accuracy of 0.688. For the decision tree that uses rainfall, α is selected
as 0.006 for an accuracy of 0.737. This is a similar result as the one obtained
for regularization in the logistic regression and SVC models. A higher α leads to
more pruning and smaller, less complex, decision trees. In this case, the addition of
rainfall creates a more complex model that requires less pruning in order to achieve
its highest performance.

Figure 5.10: Classification Tree for the Dry case

Figure 5.11: Simplified Classification Tree for the Dry case

Figure 5.10 and Figure 5.11 show the decision tree for the no rainfall considered
case. The first one shows the decision tree as an output of scikit-learn where the
decision rule, Gini purity, samples in this branch, number of data points belonging
to each class and the class that comprises the majority of the samples in the branch
are shown in each of the tree nodes. The second one shows only the decision rules
and the final classes in order to make the decision tree. The motivation to simplify
the decision tree is that decision-makers are not necessarily trained to understand
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the specifics of these models and a decision tree as shown in Figure 5.10 might
seem intimidating and therefore not very useful in the decision-making process. By
contrast, the tree in Figure 5.11 is simple, easy to understand and to follow, which
makes it more likely to be used.

Figure 5.12: Classification Tree for the 2013 Event case

Figure 5.12 shows the decision tree for the case that uses rainfall. As more explana-
tory variables are added, the size of trees tends to grow because they will consider
more inputs in order to achieve a higher performance. This tree tends to be unwieldy
especially for decisions which involve the value of event rainfall. In the lower left
portion of the tree a series of branches consider different thresholds for event rainfall.
Intuitively, one would suppose that higher event rainfall would lead a decision path
that classifies an area as Susceptible but this is not the case. If the value for event
rainfall is above 159.5 mm, the area is classified as Not Susceptible. This serves as
a reminder that these methods mostly focus on performance, and are not the best
when used to give insights to the underlying physical process.
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Figure 5.13: Confusion matrices for the Tree models

5.5 Random forest

As with the previous models, a similar approach was used to train the random forest
models. This process is more similar to the logistic regression and the SVC because
to define the maximum depth for the ensemble of trees, a single hyperparameter has
to be adjusted instead of testing different values of α for cost-complexity pruning.
The list of hyperparameters tested is shown in the following block of code.

param_grid = {’n_estimators ’: [400 , 450 , 500 , 550],

’criterion ’:[’gini’,’entropy ’],

’max_depth ’: [15 , 20 , 25],

’max_features ’: [’auto’,’sqrt’, 10],

’min_samples_leaf ’: [2,3],

’min_samples_split ’: [2,3]}

The parameter that defines the depth of the trees is max depth and because of the
random sampling that is used to train the random forest, each tree is allowed to
have much higher depths than those presented in Section 5.4 for single classification
trees. Other important hyperparameters are: n estimators which defines the number
of trees in the ensemble, criterion which defines which type of impurity measure
will be used to create the splits within the trees, max features which us number
of features to consider when looking for the best split (auto meaning the squared
root of the total amount of features), min samples leaf and min samples split which
define the minimum number of samples required to define a leaf or a split within
each tree.

Although the list of hyperparameters is larger than in other cases, Figure 5.14 shows
that overall performance is very similar all across the board. Random forests appear
to be not very sensitive to the ranges of hyperparameters defined. The hyperpa-
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Figure 5.14: Performance of the Random Forest models during the training phase

rameters used for the model that doesn’t consider rainfall are: criterion = gini,
max depth = 20, max features = auto, min samples leaf = 3, min samples split =
2, n estimators = 500 for a final ROC AUC of 0.816. The hyperparameters used
for the model that considers rainfall are: criterion = entropy, max depth = 25,
max features = 10, min samples leaf = 2, min samples split = 2, n estimators =
450 for a final ROC AUC of 0.847.

In testing, across all thresholds random forests outperform the logistic regression
and the SVC as shown inf Figure 5.15. Final AUC ROC scores for the models
are 0.837 for the model that doesn’t consider rainfall and 0.853 for the model that
considers rainfall. It is interesting to note also that for these particular models, the
model that uses rainfall again is the more complex one by having a larger max depth
hyperparameter but is performing better when generalizing than the simpler model.

As stated in Section 4.1.2, random forests permit an analysis of “feature importance”
by counting the number of times that features appear in each of trees in the ensemble
and their position within the tree. Figure 5.16 shows the 10 most important features
for both cases of the models. This analysis is similar to the one performed for the
logistic regression in Table 5.1 and Table 5.2. As with the previous analysis, the land
use classes of forest and grassland, as well as the soil class of mudstone prove to be of
high relevance to make predictions. Another interesting point is that class variables
are found to be of more relevance in the model that doesn’t consider rainfall while
continuous features such as the variables derived from the DEM are more relevant
to the model that considers rainfall. This is important especially for regions where
the classification of soil categories is difficult. In these cases, a random forest that
only uses features derived from a DEM and rainfall data might prove to be a good
compromise. Finally the confusion matrices for each model is shown in Figure 5.17.
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Figure 5.15: ROC curves for the Random Forest models

Figure 5.16: Feature importance for the Random Forest models
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Figure 5.17: Confusion matrices for the Random Forest models
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5.6 Performance Summary

In the previous sections, four different types of data-driven models were shown to
have been tested in order to assess their performance at predicting landslide sus-
ceptible areas in the Val d’Aran region. Every model showed and overall measure
of good performance and most of them, the exception being the simple classifica-
tion tree that doesn’t consider rainfall, outperformed FSLAM, the physically-based
model.

For the logistic regression and the SVC, a simpler model that didn’t take into account
rainfall, performed better when generalizing to “out of sample” data. The addition
of more information decreased the FPR or the number of false alarms (Type I error)
while at the same time increasing the FNR or the number of misses (Type II error).
In a real-life application, a miss would have grave consequences such as the approval
of a development project in land that is landslide susceptible and thus should be
avoided, which means that simpler data-driven models, such as the logistic regression
or the classification tree, would be preferred.

Rule-based models, such as the decision tree and random forest showed improve-
ments when the amount of data used to train them was increased. In the case of
the simple decision tree, better performance comes at the cost of interpretability
and simplicity. The example used shows that the less complex model uses only one
category of soil, one category of land use and the value of the slope to determine
whether an area is susceptible to landslides or not. This simplicity and interpretabil-
ity would be useful for a decision-maker who would value a simpler model that can
be use as a “rule of thumb”. Although the more complex model is harder to read
and interpret, it still uses only the slope, aspect, one category of land use and the
total event rainfall which makes it highly useful in a real-life situation for a quick
or preliminary assessment. The explanatory variables highlighted in these section
as well as properties such as the “feature importance” of the random forest also can
serve focus the efforts when collecting data by showing which explanatory variables
are more important for the models to make a prediction.

In the end, even though the random forest showed the best performance when com-
paring metrics for all data-driven models, the logistic regression is chosen to do a
more in-depth comparison with FSLAM. This choice was made mainly because the
logistic regression is the model that is more typically used in the literature to per-
form landslide assessment when data-driven models are used (Reichenbach et al.,
2018). In addition, with the information provided in Table 5.1 and Table 5.2, the
model is highly interpretable and easy to understand.
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Table 5.3: Performance summary for all models

Model
Case

Dry 2013 Event

FSLAM

ROC AUC = 0.708 ROC AUC = 0.762

Accuracy = 0.531 Accuracy = 0.704

FPR = 0.115 FPR = 0.354

FNR = 0.810 FNR = 0.240

MCC = 0.105 MCC = 0.409

Logistic regression

ROC AUC = 0.806 ROC AUC = 0.800

Accuracy = 0.770 Accuracy = 0.740

FPR = 0.292 FPR = 0.292

FNR = 0.170 FNR = 0.230

MCC = 0.543 MCC =0.479

SVC

ROC AUC = 0.813 ROC AUC = 0.772

Accuracy = 0.755 Accuracy = 0.714

FPR = 0.323 FPR = 0.302

FNR = 0.170 FNR = 0.270

MCC = 0.514 MCC = 0.428

Classification tree

ROC AUC = - ROC AUC = -

Accuracy = 0.689 Accuracy = 0.735

FPR = 0.458 FPR = 0.292

FNR = 0.170 FNR = 0.240

MCC = 0.389 MCC = 0.469

Random forest

ROC AUC = 0.837 ROC AUC = 0.853

Accuracy = 0.770 Accuracy = 0.781

FPR = 0.208 FPR = 0.219

FNR = 0.250 FNR = 0.220

MCC = 0.542 MCC = 0.561

54



5.7 Comparison of Methods

As previously stated, a more in-depth comparison between the physically-based
and data-driven approach to landslide susceptibility was performed using FSLAM
and the logistic regression models presented in Section 5.2. In order to do the
analysis, a new sample was collected from the data of Val d’Aran. This new sample
contains the same 391 positive values that belong to the landslide inventory but
the negative values have been increased from 391 (balanced sample) to 5000. This
means that any further analysis performed might be skewed towards the ability of
the models to predict negatives, but the ROC curve shown in Figure 5.18 shows
similar performance to those obtained by the models in Section 5.1 and Section 5.2.

Figure 5.18: ROC curves for FSLAM and the logistic models

Figure 5.19 shows the different accuracy and MCC performance metrics obtained by
the models for a range of decision thresholds form 0 to 1. It can be noted how highly
dependant the performance of the data-driven model is in regards to the set decision
threshold. Decision thresholds at both extremes show very poor performance while
being highest when the middle point is selected. By contrast, FSLAM shows an
almost horizontal curve meaning that performance is very similar independently
of the threshold selected. A similar analysis describe Figure 5.20. If the decision
threshold is set too high, the data-driven model will mostly report negatives which
leads to an increased FNR and therefore more misses (Type II error). Similarly,
when the threshold is set too low, the model will report more positives, increasing
FPR and therefore the number of false-alarms (Type I error). By contrast FSLAM
only tends to increase the number of misses as higher thresholds are set.
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Why is this? Figure 5.19 and Figure 5.20 show the inherently different approach
that both types of models use to determine stability or susceptibility. In Figure 5.19,
balanced accuracy is presented instead of accuracy because the number of negative
observations in the sample has been increased. Balanced accuracy accounts for the
disparity between positive and negative observations in the sample.

FSLAM computes probability of failure as the area under the FS distribution that
is below 1 as shown in Figure 4.2. Depending on the physical characteristics of the
material present in a cell, FSLAM might calculate and FS distribution that is way
higher than 1 and for which the lower tail of the probability density function (PDF)
of FS never reaches values below 1. On the contrary, certain cell might have very
poor physical characteristics that makes it impossible to obtain a PoF of less than
1. This is why performance for FSLAM is consistent across the range of thresholds.
FSLAM is very good at determining which cells are generally unstable and stable
and is able to discriminate these families.

By contrast, data-driven models are much more limited in the space given to decide
if a cell is susceptible to landslides or not. As an example, say that a cell starts with
a probability to be landslide susceptible of 0.5 and the data-driven model uses the
information in the explanatory variables to push it, little by little, towards it being
landslide susceptible or not. It is much more difficult for a data-driven model to
obtain the same separation in families as FSLAM is able to determine. This claim
is also supported by Figure 5.21.

Figure 5.19: Comparison of balanced accuracy and MCC across all thresholds

Table 5.4 and Figure 5.21 give an idea on the distribution of predicted probabilities
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Figure 5.20: Comparison of FPR and FNR across all thresholds

as computed by FSLAM and the logistic regression models. Probabilities computed
by FSLAM tend to accumulate in the extremes of the distribution, with a higher
amount close to 0. Intuitively this makes sense because the amount of cells that are
susceptible to landslides tend to be but a small fraction of the terrain as a whole.
Meanwhile, probabilities computed by the logistic models are distributed all across
the range of values between 0 and 1, with probabilities being skewed to the right
(positive) for points inside the landslide inventory and skewed to the left (negative)
for random points. Although the skewness of the computed values by the logistic
regression model is the desired outcome, a more clear separation would be a more
useful result. Additionaly, in FSLAM, it can be seen that the predicted probability
for points in the landslide inventory change drastically when rainfall is considered,
while for random points there is also an increase in predicted probability but it is
less drastic than that shown by the inventory points. This sensitivity to the rainfall
inputs also distinguishes FSLAM from the logistic regression models when analysing
rainfall induced shallow landslides.
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Table 5.4: Summary statistics for predicted probabilities

Model
Predicted Probablities

Min Max Average Median Std. Dev.

LR - Dry 0.02 0.92 0.40 0.38 0.05

LR - 2013 Event 0 1 0.39 0.35 0.06

FSLAM - Dry 0 1 0.13 0 0.08

FSLAM - 2013 Event 0 1 0.34 0.11 0.16

Figure 5.21: Curves on the predicted probabilities for all models
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Figure 5.22: Predicted probability maps for FSLAM (left) and the logistic regression
model (right) in the Dry case

As it has been shown in previous sections, data-driven models in general tend to be
better than FSLAM when only performance metrics are considered. If performance
is the main goal and requirement of a model, one might opt for a data-driven model,
but in most cases pure performance is not the goal. Instead, landslide assessment
techniques aim to map a probability of failure or susceptibility as spatial information.
The maps produced by both types of models, shown in Figure 5.22 and Figure 5.23
show the biggest difference in both approaches. The maps produced by FSLAM give
greater confidence in the areas that have been determined to be stable and unstable
while the maps produced by the logistic regression models show many areas that
are close to the defined threshold of 0.5, therefore are much more uncertain.

The difference is less drastic when class maps are shown, see Figure 5.24 and Figure
5.25. The results for the maps the consider the rainfall event in the case of FSLAM
and rain for the logistic model are very similar and a user might consider them
as equal. This is an issue because these maps are not able to communicate the
underlying uncertainty associated to each of the models.

A final comparison is shown in Figure 5.26 where the predicted probabilities for
the maps shown in Figure 5.22 and Figure 5.23 are shown as curve for cumulative
density functions (CDFs). This result is similar to Figure 5.21. FSLAM is better
at determining which cells have a PoF of 0 or 1, so for the PoF of 0 the CDF for
FSLAM starts at 70% for the Dry case and 45% for the 2013 Event case. Also
both curves for FSLAM have a big jump in the final transition between predicted
probabilities of 0.9 and 1. In contrast, the CDFs for the logistic regression show a
wider range in the percentage of cells calculated for each predicted probability.
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Figure 5.23: Predicted probability maps for FSLAM (left) and the logistic regression
model (right) in the 2013 Event case

Figure 5.24: Predicted classes maps for FSLAM Dry (left) and the logistic regression
model with no rainfaill (right)
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Figure 5.25: Predicted classes maps for FSLAM Event (left) and the logistic regres-
sion model with rainfaill (right)

Figure 5.26: Cumulative density curves of the predicted probability maps
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5.8 Model coupling

The final task with the logistic regression models is to assess their improvement when
the outputs of FSLAM are used as explanatory variables. As explained in Section
4.1.1, FSLAM provides outputs of PoF when the soil column is completely dry
and completely saturated for each cell in the model. These outputs can be used to
determine which cells are “Unconditionally Unstable” and “Unconditionally Stable”
respectively. Additionally, the output of PoF for the event for which FSLAM was
calibrated using the landslide inventory can also be used as an explanatory variable.

Table 5.5 and Table 5.6 show how each of the new inputs affects the performance
in comparison to the basic logistic regression models. In terms of AUC, PoF when
the soil columns of every cell in the model are completely saturated seems to be the
only output that significantly increases the performance of the models.

As in the previous section, if the objective of the model is to obtain the highest
performance possible, it would seem worth it to first use FSLAM to compute PoF
under fully saturated conditions and then use this output as an input parameter
for a data-driven model. Otherwise, this would not be ideal because the increase
in performance is slight at most and when using the data-driven models you would
lose the nice separation between stability families that FSLAM is able to obtain.

Table 5.5: Improvements in model performance for the Dry case

Model AUC ROC ACC FPR FNR MCC

No Rain 0.806 0.770 0.292 0.17 0.543

No Rain + PoF Dry 0.806 0.770 0.292 0.17 0.543

No Rain + PoF Event 0.818 0.750 0.271 0.23 0.500

No Rain + PoF Sat 0.824 0.735 0.312 0.22 0.470

No Rain + PoF Dry + PoF Event 0.819 0.750 0.271 0.23 0.500

No Rain + PoF Dry + PoF Sat 0.824 0.735 0.312 0.22 0.470

No Rain + PoF Event + PoF Sat 0.820 0.719 0.302 0.26 0.438

No Rain + PoF Dry + PoF Event 0.823 0.730 0.302 0.24 0.459

+ PoF Sat
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Table 5.6: Improvements in model performance for 2013 Event case

Model AUC ROC ACC FPR FNR MCC

Rain 0.800 0.740 0.292 0.23 0.479

Rain + PoF Dry 0.807 0.730 0.312 0.23 0.459

Rain + PoF Event 0.807 0.724 0.260 0.29 0.450

Rain + PoF Sat 0.823 0.740 0.302 0.22 0.480

Rain + PoF Dry + PoF Event 0.810 0.709 0.292 0.29 0.418

Rain + PoF Dry + PoF Sat 0.826 0.745 0.292 0.22 0.490

Rain + PoF Event + PoF Sat 0.822 0.724 0.281 0.27 0.449

Rain + PoF Dry + PoF Event 0.824 0.745 0.271 0.24 0.489

+ PoF Sat

5.9 Extrapolation

Usually, extrapolation of data-driven models is not recommended because of their
reliance on the sample used as training data. Nonetheless, the capabilities of the
logistic model of Val d’Aran to determine landslide susceptibility in the Pyrenees was
tested by using the region of Berguedà as another study area. In this case, Berguedà
is truly “out of sample” data for the data-driven model to make predictions on.

As it can be seen in Figure 3.5, Figure 3.6 and Figure 3.9, the classes in the thematic
maps of Soil and LULC are different for both regions. This is mainly due to the
fact that both data sets were reclassified by different users from the same original
source. In order to test the data-driven models, classes in Figure 3.9 were reclassified
as shown in Tables 5.7 and 5.8.

Because no input of rainfall was considered, only the Dry case models were applied.
Taking advantage of the reclassification previously described, the logistic model and
the decision tree were tested.

In the ROC analysis shown in Figure 5.27, the logistic model had a reduction in
performance of 0.10 when compared with the performance obtained in Val d’Aran
for the testing phase as shown in Figure 5.4. Still, the AUC metric that the model
performs better than a random classifier. The performance of the model degrades
when the specific threshold of 0.5 is set as decision criteria. According to the confu-
sion matrix shown in Figure 5.28, the model has an accuracy just a little bit better
than a random classifier. More worryingly, the computed FNR for the model is
0.801 which means four out of five cells classified as not susceptible would be misses
and therefore susceptible to landslides. Because of the effects of Type-II error in
landslide susceptibility assessment, this would be absolutely unacceptable. For other
thresholds, FNR decreases while accuracy increases, meaning that in this specific
application, the threshold of 0.5 does not lead to the best performance of the model.

The decision tree 5.11 was also applied in Berguedà to a much higher performance
when compared to the logistic model as shown in Figure 5.29. This is a case where
a more complex model, such as the logistic regression, is worse than a simple model
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Table 5.7: Reclassification of the Berguedà soil types

Class Berguedà Class Val d’Aran

alluvium alluvial

colluvium colluvium

conglomerate

coglomerateconglomerate and sandstone

conglomerate, sandstone and shale

limestone and mudstone

limestonelimestone

travertine

mudstone gaumnian

mudstone
mudstone eocene

mudstone keuper

paleozoic rocks

till till

when generalizing to new data. Heavier regularization of the logistic regression
model might lead to improved performance across the Pyreness region. Ideally, a
third landslide inventory from a different region in the Pyrenees could be introduced
in order to assess the performance of models based on training sets coming from
different areas within the same region (the Pyrenees). Although this application
shows promise, more data and testing is required before deeper insight can be found.

64



Table 5.8: Reclassification of the Berguedà LULC classes

Class Berguedà Class Val d’Aran

forest forest

shrubs and grassland
shrubs

agriculture

supraforestal grassland grassland

no or sparse vegetation bare soil

bedrock intact bedrock

urban area urban area

water water

Figure 5.27: ROC curve for the application of the logistic model in Berguedà
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Figure 5.28: Confusion matrix for application of the logistic model in Berguedà

Figure 5.29: Confusion matrix for application of the decision tree in Berguedà
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

The main goal of this research project was to develop a data-driven model to deter-
mine the susceptibility of a cell in a raster map regarding rainfall-induced shallow
landslides. It can be said that this objective was achieved successfully mainly by two
models based on the logistic regression for two different application cases. Measuring
performance in terms of AUC-ROC, the logistic regression models scored at 0.806
when so-called “dry” explanatory variables were considered, and 0.800 when rainfall
for a single landslide-inducing event was also considered as part of the explanatory
variables.

Although the objective was achieved with the previously stated models, several other
statistical and machine learning methods were tested to evaluate their performance
at predicting landslide susceptibility. Considering the two cases established: “dry”
and “2013 event”, the SVC scored 0.813 and 0.772 respectively and the random forest
scored 0.837 and 0.853 respectively. A single cost-complexity pruned classification
tree was also evaluated and scoring 0.689 and 0.0735 in terms of overall model
accuracy, but due to its simplicity, it was also discussed how useful this model
would be in a decision-making process that involved stakeholders without a technical
background.

Each of the discussed models gave insights into their inner workings and how data-
driven models use explanatory variables to make decisions. In particular, the use and
importance of different explanatory variables was found to be highly dependant on
the model used, with some models like the logistic regression giving more importance
to categorical variables and other models, such as those based on a random forest,
focusing on continuous variables derived from the DEM and more related to terrain
characteristics.

When comparing a data-driven model with a physically-based model, it was con-
cluded that the approach of each model to determine landslide susceptibility was in-
herently different. FSLAM determines landslide susceptibility by determining which
cells are stable or unstable based on their mechanical properties. This makes FS-
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LAM much better at distinguishing with much more certainty cells that are stable or
unstable. By the contrary, the logistic regression models take and approach in which
landslide susceptibility is computed more directly base on a recorded inventory of
landslides for a single event. This makes the approach more uncertain although it is
able to achieve better overall performance. In the end, in regards to landslide sus-
ceptibility mapping, the uncertainty associated to data-driven models makes them
less useful than the susceptibility maps as computed by a physically-based model.
Even though setting up a physically-based model such as FSLAM is more time
consuming, the time invested would be worth it if the aim of the model is to be
used for mapping. Data-driven models can be more suitable if a quick preliminary
assessment is required.

The use of outputs from the physically-based model to improve the performance
of the data-driven model proved to be successful. The main issue found was that
performance was increased at the cost of losing the insights provided by the outputs
of the physically based model. Additionally, improvements in performance were
very small (around 2%), which matches the current literature available. Such small
increases of performance give rise to the question if is it really of worth to setup
another model in order to achieve a slight increase in performance.

A test case for the use of data-driven models in regions within the Pyrenees trained
by using data from only one particular area showed promise. Models trained using
data from Val d’Aran provided adequate results when computing susceptibility in
a different region within the Pyrenees. The results in terms of performance were
mixed, more testing and data is required before saying with certainty if these types
of model can be used successfully in the domain of the Pyrenees while only being
trained using data from a single region.

6.2 Recommendations for further research

A number of aspects that were touched upon on this project can be explored further
in a number of ways. In this section, some ideas and recommendations for future
research are discussed.

Investigate the performance of a global model. During this research project, several
attempts were made to propose a data-driven model for landslide susceptibility based
mainly on freely available global data sets. These data-sets included topographic
information from the Shuttle Radar Topography Mission (SRTM) (Farr & Kobrick,
2000), land cover data from the European Spatial Agency (ESA) (ESA, 2017) and
soil texture classes by FutureWater (Simons et al., 2020). These models showed
promise but there was a limitation in the number of inventories available to test
their performance. The case for extrapolation within the Catalan Pyrenees was an
attempt of preparing a model for a regional analysis but increasing the scope of
data-driven models to a global scope should be explored further.

On the topic of landslide inventories, for this research project a single high-quality
landslide inventory was used but it is limited to one single snowmelt-rainfall episode
that occurred in 2013. If available, a multi-temporal database including the collected
records of landslides for a particular region would prove to be richer and offer more
insights that could be explored using data-driven models.
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Rainfall was also only explored in a limited capacity in this work mainly due to
the established framework which FSLAM uses and the landslide inventory related
to a single episode. If rainfall is considered as the main triggering mechanism for
landslides, an inventory that collects data for different time periods would permit
further analysis of rainfall and how its interaction with the land cover and soil
generates landslides. In addition, this analysis could serve as the starting point for
an early warning system (EWS) based on a data-driven model using predictions for
future rainfall.

Finally, the threshold set in order for a model to classify a cell as susceptible or
not should be analysed further. In this work, the threshold was set always at 0.5
because it provided the best performance and is the typical value used in literature.
Nonetheless, some authors have suggested that for mapping, the threshold should
be set as the value that obtains the best TPR while at the same time maintaining
a FPR of 10% (Goetz et al., 2015). This approach is interesting but the literature
is limited in the consequences that this decision would have in real-life scenarios.

69



Bibliography

Baeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility
by means of multivariate statistical techniques. Earth Surface Processes and
Landforms, 26 (12), 1251–1263. https://doi.org/10.1002/esp.263

Bazan, J. G., & Szczuka, M. (2005). The Rough Set Exploration System [Series
Title: Lecture Notes in Computer Science]. In D. Hutchison, T. Kanade, J.
Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, J. F. Peters, & A. Skowron (Eds.), Transactions on Rough
Sets III (pp. 37–56). Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg, Springer Berlin Heidelberg. https://doi.org/10.1007/11427834 2

CatalanNews. (2013). Severe floods in the north-western Catalan Pyrenees. Re-
trieved July 31, 2021, from http://www.catalannews.com/society-science/
item/severe-floods-in-the-north-western-catalan-pyrenees

Cho, S. E. (2007). Effects of spatial variability of soil properties on slope stability.
Engineering Geology, 92 (3-4), 97–109. https://doi.org/10.1016/j.enggeo.
2007.03.006

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg,
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Victoriano, A., Garćıa-Silvestre, M., Furdada, G., & Bordonau, J. (2016). Long-term
entrenchment and consequences for present flood hazard in theGarona River
(Val d’Aran, Central Pyrenees, Spain). Natural Hazards and Earth System
Sciences, 16 (9), 2055–2070. https://doi.org/10.5194/nhess-16-2055-2016

Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface
topography. Earth Surface Processes and Landforms, 12 (1), 47–56. https :
//doi.org/10.1002/esp.3290120107
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