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Abstract—Static energy meters have shown errors beyond the
standards due to conducted electromagnetic interference of pulsed
currents. This was observed in several case studies and confirmed
by laboratory experiments, which showed errors up to 2675%. The
extent of this interference case is unknown, because there is limited
information about the waveforms occurring in the real on-site
scenarios. This article aims to detect critical waveforms in on-site
surveyed data that have similar characteristics as the pulses that
resulted in metering errors. The time-domain parameters of the
laboratory experiments that show static energy meter interference
are compared to the on-site waveform data using an interpolation
based on an inverse weighting distance function. Using this ap-
proach, the waveform characteristics are compared, and an error
is estimated. This approach was satisfactorily validated using data
from validation experiments that shows a correct estimation of the
actual error according to the permissible limits for energy metering
for all validation indices. The performed on-site surveys show the
existence of nonlinear waveforms. During the survey of three sites
for ten days, 19 531 waveforms were captured, of which 14 487
indicate large nonlinearities and 379 are estimated to produce
metering errors up to 925%.

Index Terms—Electromagnetic interference (EMI), nonlinear
waveforms, on-site survey, static energy meters, time domain.

1. INTRODUCTION

TATIC energy meters measure the energy consumption
S in residential situations for billing purposes. In previous
research, major interference errors of a number of specimens
of static energy meters are shown in diverse test conditions.
The interference was observed due to harmonic disturbances [1],
photovoltaic (PV) installations and power drive systems [2]-[4],
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TABLE I
CRITICAL RANGES OF TIME-DOMAIN PARAMETERS FOUND TO RESULT IN
INTERFERENCE OF STATIC ENERGY METERS [14]

Parameter Critical range
Charge 4-8 mC
Crest factor > 5
Pulse width 0.2-1.2ms
Rising slope > 0.1 A/us

and active in-feed converters [5], which, possibly combined
with a higher number of complaints and failures, resulted in
faster publication of the CLC/TR50579 [6] technical report and
IEC 61000-4-19 standard [7]. In more recent studies, errors
have been found resulting from conducted electromagnetic in-
terference (EMI) of dimmed lighting equipment, light-emitting
diode and compact fluorescent lighting technology [8]-[10], and
a speed-controlled water pump [11], [12]. In [11], maximum
experimental errors of 2675% are found. The corresponding
drawn currents are nonlinear pulsed currents with a high peak
amplitude and a low root mean square (RMS) value. In [13],
static energy meter errors are found due to undershoot and
overshoot effects of the integrated circuit technology when using
pulsed currents.

A parametric model that provides a simplified description of
such drawn complex nonlinear currents is developed in [14].
This model shows that the interference currents are narrow fast
rising pulses, where a higher crest factor, narrower pulsewidth,
less charge, and a higher slope are the factors that contribute
most to an increase in the interference. The critical ranges of
these time-domain parameters are shown in Table I.

The extent of the interference cases involving static energy
meters is unknown because there is limited information about
the waveforms drawn in household situations. Therefore, it is of
interest to indicate the occurrence of similar pulsed waveforms
resulting in interference in real situations. In [15], the existence
of current waveforms with fast inclining slopes that occur in
low-voltage (LV) customer terminals is shown. Moreover, within
the framework of the MeterEMI project [16], surveys are per-
formed in modern LV networks, including networks with electric
vehicle (EV) charging stations [17], and PV installations [18].
It was found that the on-site surveyed waveforms are typically
a superposition of the fundamental frequency, other frequency
components including pulses, and low-amplitude random noise.
This makes it complex to analyze the parameters of the pulses
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included in such signals and to correlate them to static energy
meter interference.

Therefore, this article aims to detect the critical current wave-
forms in relation to interference of metering errors that occur in a
large set of on-site surveyed data. This is achieved by comparing
the on-site waveforms with a reference dataset, including the
parameters that were found to be critical in laboratory experi-
ments. For this purpose, the on-site waveforms with an unknown
metering error are processed to extract their relevant waveform
parameters, and then, the interference is estimated using an
interpolation function. This provides a tool for objectively and
automatically selecting those on-site waveforms with similar
time-domain characteristics as those from the reference dataset.
Considering that similar critical waveforms result in comparable
mean errors, this approach is expected to effectively identify
which of such surveyed waveforms could induce static energy
meter interference.

The rest of this article is organized as follows. Section II
describes the parametric waveform model for the characteri-
zation of pulses in on-site waveforms. Section III describes and
validates the approach to estimate the interference. Section IV
describes the measurement method used to survey on-site current
waveforms. In Section V, the results of the survey are presented,
showing a statistical overview of the parameters encountered at
the on-site and the estimated static energy meter errors of such
waveforms based on the introduced estimator. Then, Section VI
discusses these findings. Finally, Section VII concludes this
article.

II. PARAMETRIC WAVEFORM MODEL FOR THE
CHARACTERIZATION OF PULSES IN ON-SITE WAVEFORMS

The waveforms measured in on-site situations are a super-
position of different signals consisting of a combination of
linear (resistive) and nonlinear loads, and noise. The aim of this
model is to characterize the pulsed part of such waveforms in a
simplified manner, as the pulsed parts are correlated with static
energy meter interference in [14]. Therefore, in postprocessing,
the pulsed and linear parts are separated using a mains frequency
filter, after which the time-domain characteristics are determined
using a parametric waveform model introduced in [14]. The filter
makes the model more robust to noise as well as to the presence
of nonimpulsive current components.

A. Filtering out the Mains Frequency

The mains (fundamental) frequency is removed from the
measured signal, because it does not cause metering errors, and it
simplifies the waveform by retaining the pulsed part that could be
correlated with the interference. The spectrum of the waveform
is calculated using a fast Fourier transform, after which the
frequency contents between 40 and 60 Hz are removed, such
that higher order harmonics remain unchanged. Fig. 1 shows
an example of a test wave that consists of a harmonic-distorted
sine wave superposed with a pulse. After applying the mains
frequency filter, the pulse is separated from the fundamental
frequency.
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Fig. 1. Mains frequency filter separating the pulsed part from the fundamental
frequency of a measured signal.
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Fig. 2. Extracted pulse and modeled waveform resulting from a pulsed time-

domain current.

B. Parametric Waveform Model

The parametric waveform model in [14], which describes
the time-domain characteristics of a pulsed waveform, can now
be applied. It indicates change points at the extreme points of
the waveform where the statistical properties change and fits
linear piecewise segments in between. An optimal number of ten
change points was found in [14] that preserve the shape of the
original waveform while reducing its complexity. Consequently,
noise will not be treated as a statistical change, so the model
is robust against low-amplitude random noise present in the
waveform. The filtered signal in Fig. 1 is modeled using this
approach resulting in Fig. 2, which forms a fair representation
of the original pulse. The use of this model is needed because
conventional tools determine time-domain parameters based
on bilevel pulses, which is not the case for the waveforms
encountered on-site. For example, Fig. 3 shows a pulse with
more than two levels, due to oscillations in realistic waveforms.

Then, a set of scalar parameters is obtained to describe the
pulsed part of the waveform in the time domain. Instead of
using the pulsewidth (#yqn), defined as the time the signal needs
in between its rise to 50% and its fall to 50% of the peak
value [19], another metric is used for the duration of a pulse.
Because waveforms are encountered which are a superposition
of two consecutive pulses where the first pulse has a relatively
large amplitude compared to the second one, as it is exemplified
in Fig. 3. The pulsewidth will only relate to the first part of the
pulse because the amplitude of the second part is lower than the
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Fig. 3. Parametric description of a modeled waveform.

50% reference threshold. Choosing a different threshold level
for measuring the pulsewidth would not work due to the slow
decaying feature of the later part of the waveform. Therefore,
pulse duration is defined as the time between the start and end
instants of the pulse, which could easily be determined using the
modeled pulse, as a change point is provided at the start and end
of the pulse. The modeled pulse is described by the following
set of scalar parameters, which are exemplified in Fig. 3 and
explained in more detail in [14]:
1) charge (Q): the area circumferenced by the pulse and the
zero current line;
2) crest factor (CF): the ratio between the peak value (Ipx)
and the RMS value (I;,s) of the pulse;
3) maximum slope (Al/At): the maximum slope between
two consecutive change points;
4) peak value (Ipx): the peak value of the pulse;
5) pulse duration (Z4yraiion): the time between the start and end
instants of the modeled pulse.

III. ESTIMATION OF THE STATIC ENERGY METER ERRORS

An estimator is created to select critical waveforms from a
large set of waveforms recorded on-site. The estimator is based
on a reference dataset of laboratory experiments, of which the
static energy meter errors are accurately known. The wave-
forms included in the dataset are characterized using the scalar
parameters described in Section II. Then, for on-site recorded
waveforms, of which the static energy meter deviations are un-
known, the scalar parameters are determined and interpolated to
this dataset using an inverse distance weighting (IDW) function
resulting in an estimated error.

A. Description of the Reference Dataset

The dataset contains 138 laboratory experiments, of which
the static energy meter deviations are known. It consists of
60 experiments that were published earlier in [10]-[12] and
24 experiments with slightly varied measurement conditions.
In most of these 84 experiments, static energy meter errors
were observed. Furthermore, the dataset comprises 54 experi-
ments that did not induce metering errors. These mostly include
linear waveforms or pulses with less extreme parameters. All
of these 138 waveforms, p,(¢), have a set of parameters, S,,.
Interparameter dependencies are shown in [14], i.e., different
parameters show similar correlations with static energy meter

errors; therefore, the peak value and charge are not included in
this model to avoid redundancy. The dataset is described by

AT,

S, { P R thaionn } 020) 1)

and a corresponding measured static energy meter error, e,.
Here, the errors are determined using

PSM_Pref

en (%] = P

-100% (2)
where Pgy is the power measured by the static energy meter
under test and Pt is the power of the reference power analyzer,
according to the measurement procedure explained in [10]-[12].
From the ten selected specimens of static energy meters, it was
observed that not all result in the same magnitude of errors.
Therefore, the estimator will be referred to the worst case, as the
maximum error represents the most critical interference case.

B. IDW Function

For the estimation of static energy meter interference of
waveforms, from which the errors are unknown, it is assumed
that similar waveforms will result in similar interference. In this
regard, similar waveforms are those characterized by parameters
that are close to each other in terms of their Euclidean distance.
Therefore, it is reasonable to assume that an unknown waveform,
pu (1), having a set of parameters, S,,,

AL,
Su— {CFU, Tt, tduramon,u} (pu(t)) (3)

will result in a metering error e,, that can be estimated through an
interpolation function, i.e., &, = f(S,,). In this regard, a suitable
alternative for the interpolation method is the IDW function [20].
Because the dataset interpolates the parameters to the static
energy meter errors, {S1,Ss,...,S138} — {e1,€2,...,e138},
according to a deterministic relationship and also because the
points in the dataset are scattered in the study region. And
thus weights the similarities between the parameters of the
interpolated (unknown) waveforms with the reference dataset
indirectly. Accordingly, we have

L oS £ d(Sy,Sp) £ 0V

2= , i ws Sn n

180 =1 s ) @
R if 3n € d(S,,S,) =0

€n,

3

where the weighting function, w,, (S,,), is

1

Wnp, (Su) = d(Su, Su)a

(&)
d is the metric operator (in this case the Euclidean distance) and
« is the power parameter. The above equations indicate that the
weight decreases as the distance increases from the interpolated
points. Moreover, greater values of a assign greater influence
to values closest to the interpolated point. A power parameter
value of 4 is found to provide a good fit between the reference
dataset and the validation experiments provided in Section ITI-C.
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TABLE II
TIME-DOMAIN PARAMETERS, ESTIMATED (Egst), AND REAL ERROR (Egga; ) OF THE VALIDATION MEASUREMENTS

Negative error No error Positive error
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(mC% 33 | 30| 45| 52 | 55 02 | 114 4.6 4.1 26 | 28 | 53 [ 33|71 |64 |41 |62 72|71 3.8
CF 29 29 19 24 21 4 3 3 3 3 7 7 7 6 6 8 6 6 8 11
(AAI//,ﬁg 90 | 84 | 93 | 84 | 87 | 001 | 002 | 0.03 | 0.08 | 001 | 03 | 09 | 1.3 | 1.1 | 09 | 09 | 09 | 06 | 04 0.6
(IX; 18 18 17 20 20 0.2 2 2 2 2 12 15 10 15 15 12 14 15 16 19
td“r(‘;;i]"s‘; 09 | 1.0 | 09 | 1.8 | 18 7.9 53 39 | 183 18 30|08 |26 |09|09]|07]|09]09]|10 0.4
(e;;os; -76 | -74 | -36 | -28 -9 0 0 0 0 0 78 | 143 | 188 | 199 | 203 | 212 | 214 | 229 | 331 | 1608
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Fig. 4. Waveforms of the validation measurements. Fig. 5. Estimated and real errors of the validation experiments.

This translates into an appropriate neighboring region for inter-
polating the unknown waveforms and a reasonable importance
of outliers.

C. Validation of the Error Estimator

Twenty experiments that are not included in the reference
dataset are used to validate the accuracy of the estimator. The
experiments are performed using the same methodology as the
data in the reference dataset. Five cases with negative errors
(index = 1-5), five cases with no error outside the limits for
electricity meters [21] (index = 6-10), and ten cases with
positive errors (index = 11-20) are included. The associated
waveforms for indices 1, 6, 8, 9, and 12 are visualized in Fig. 4,
and Table II shows the parameters. These wave shapes repeat
every mains cycle during the whole measurement period. The
waveforms resulting in a negative error all have a similar shape as
the waveform with index 1; however, there is a slight difference
in the parameters. It is remarkable that all those waveforms have
a sharp transient that contains almost no charge in the positive
part of the fundamental voltage (as the voltage is in phase with
the waveform with index 9). The waveforms resulting in no
error show a chopped sinusoidal waveform (indices 6 and 7), a
relatively wide pulse with a low peak value (indices 8 and 10), or
a clear sinusoidal waveform (index 9). The waveforms resulting
in a positive error all have a similar shape as index 12, but with
slightly different parameters, which affects the magnitude of the
error. The estimated and real errors are presented in Fig. 5 and
Table II. The estimator matches the real errors reasonably well,

as for all indices, it was correctly estimated if the error was neg-
ative, nonexisting, or positive. This is, thus, a valuable tool for
selecting critical waveforms from a large set of on-site captured
data, after which more concise and precise measurements can
be performed effectively.

IV. METHOD FOR ON-SITE SURVEY

To indicate the existence of pulsed currents that could inter-
fere with static energy meters in on-site situations, a survey is
conducted. Three different test sites are surveyed, which consists
of an industrial plant using EV charging stations in Viladecavalls
(Barcelona), Spain (site 1), a consumer residence that includes
PV installation in Gelida (Barcelona), Spain (site 2), and an
apartment in Enschede, The Netherlands (site 3). Site 1 uses
a three-phase system, while sites 2 and 3 use a single-phase
system. Some preliminary results of sites 1 and 2 were already
published in [17] and [18].

A. Measurement Setup

Measurements are performed at the meter connection point, to
measure the complete residential system, and thus the signals to
which installed static energy meters are exposed to. During the
measurement survey, it was not known which appliances were
turned ON. For the three-phase system (site 1), the currents on all
three lines (L1, L2, and L3) were measured; for the single-phase
systems (sites 2 and 3), the current on the line and the neutral
conductor was measured. The current is measured using flexible
current probe model TA325 from Pico Technology and is within
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Fig. 6. Installed measurement setup at the consumers’ meter connection point.
(a) Site 1. (b) Site 2. (c) Site 3.

0.5-dB accuracy in the frequency range up to 20 kHz, calibrated
according to [22], where it was also verified that the probe’s
response time was sufficient to measure fast changing pulsed
currents without major influences on the measured waveform.
The transducers are connected to a 5444B Picoscope digitizer
from the same manufacturer. Time-domain EMI measurement
and processing system software [23] is controlling the digitizer
via a laptop. Fig. 6 shows the installed measurement setup at the
consumers’ meter connection point.

B. Measurement Settings

The current waveforms were monitored during an interval of
ten days. The acquired waveforms were analyzed in order to pre-
select and store meaningful data only. For that purpose, specific
triggering settings were used based upon the pulsed waveforms
of interest following the procedure in [18], which are amplitude
probability distribution (APD) and discrete wavelet transform,
which are strong indicators for pulsed waveforms [24], [25].
Furthermore, snapshots (instantaneous acquisitions) are made
every 10 min. In this way, a representative set of waveforms
(events) in the surveyed sites is gathered. The measurement time
for each triggered acquisition was ten cycles at mains frequency
(50 Hz), which is equivalent to 200 ms. The waveform sampling
rate was set to 1 MS/s.

V. RESULTS OBTAINED FROM ON-SITE SURVEY

The time-domain parameters are extracted from on-site sur-
veyed waveforms and are presented statistically in Fig. 7, using
the Turkey’s boxplot method [26]. Points with a value of 1.5
times the interquartile range from the median are marked as
outliers and are visible with a dot. The value of the median
(Q2), lower (Q1) and upper (Q3) quartile, and the minimum
(min) and maximum (max) are presented in the graph. The
range in which parameters are found to be critical in relation
to static energy meter errors, according to Table I, is indicated
in red. For the peak value, no critical range is included, as this
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Fig. 7.  Statistical overview of the time-domain parameters that occurred in
the three surveyed test sites. (a) Charge. (b) Crest factor. (c) Maximum slope.
(d) Peak value. (e) Pulse duration.
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TABLE III
OVERVIEW OF ON-SITE SURVEY, SHOWING THE CAPTURED EVENTS, EVENTS
CONTAINING CRITICAL PARAMETERS, AND EVENTS HAVING ESTIMATED

ERRORS
Site | Events | Critical parameters | Estimated errors
1 14295 13304 3
2 1230 404 44
3 4006 779 332

parameter on itself does not correlate with meter readings, e.g.,
a large value could relate to a large pulse but also to a linear
waveform with high peak value. However, the charge and peak
value are not included in the estimator; those are provided here
for a complete statistical overview of the waveforms. The graph
shows the typical ranges of the parameters and their variability.
In 74% of the captured events, at least one parameter was inside
the critical area of static energy meter errors. An overview of
the captured events, the events containing at least one critical
parameters, and the events where a static energy meter error is
estimated is provided in Table III. These are explained per test
site hereafter.

A. Test Site 1

For site 1, the APD trigger captured a large number of low-
amplitude noisy waveforms, which explains the considerably
higher number of triggered events compared to the other sites.
Consequently, the crest factor is inside the critical red area and
explains the 13 304 events with a critical parameter. However,
these pulses have a low charge, slope, and peak value; further-
more, the pulse duration is large. Still, for the three events, an
error is estimated, which is 19%, 86%, and 333%, respectively.
The corresponding waveforms are distorted sinusoidal, as shown
in Fig. 8(a). The wave shape repeats for multiple consecutive
cycles as long as the source of interference is turned ON. The
extremity of the waveforms’ rising slope determines the magni-
tude of the error . No pattern was recognized in the occurrence of
these events containing estimated errors, so these peaks occur
seemingly at random. Such pulse indicates an inrush current
from the connected equipment.

B. Test Site 2

In site 2, 1230 events are captured, of which a third of them
(32.8%) contain critical parameters. The pulses contain more
charge and have a higher peak value compared to site 1. For 44
events, an error is estimated, mostly because of fast rising slopes
combined with a high crest factor. Fig. 8(b) shows an example
waveform, for which an error is estimated; it shows a pulse
that is present in a distorted sinusoidal waveform, which repeats
for multiple consecutive cycles. The other waveforms, of which
errors are estimated, contain similar pulses, and the extremity
of the time-domain parameters, such as combination of the
crest factor, maximum slope, and pulse duration, determines the
magnitude of the error. The estimated errors range from —29%
to 464%, where the highest estimated interference corresponds
to the most extreme combination of the time-domain parameters.
Similar to site 1, these pulses occur seemingly at random as there
is no pattern in its occurrence.
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Fig. 8. Waveforms with an estimated static energy meter error surveyed in the
sites. (a) Site 1. (b) Site 2. (c) Site 3.

C. Test Site 3

For site 3, a total of 4006 events were captured, of which 779
contain critical parameters, and for 332, an error was estimated.
This is mostly because of the high crest factor and high rising
slope found in these waveforms. A waveform for which an error
was estimated is exemplified in Fig. 8(c); the interference repeats
during multiple consecutive cycles. It shows a pulsed current
waveform without a clear sinusoidal component present; this
represents a similar situation as the pulses causing static energy
meter interference in laboratory experiments. During the ten-day
survey in site 3, similar pulses were identified five times during
intervals of 1.5-3 h. This indicates that the pulse is resulting from
the equipment that is not running continuously; however, the
pulses occurred during different times of the day. The estimated
errors for site 3 range from —35% to 925%. The variation of the
estimated error mainly occurs due to a difference in the crest
factor and the rising slope between different occurrences of the
event.
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VI. DISCUSSION

In this article, waveforms likely to be critical in relation with
static energy meter interference are detected in on-site surveyed
waveforms. This is done using a parametric waveform model
for the characterization of pulses in on-site scenarios. Then,
a dataset of laboratory experiments, of which static energy
meter errors are known, is interpolated to the unknown surveyed
waveforms using an IDW function to estimate the interference.
As aresult, surveyed waveform data with similar characteristics
are detected. These detected waveforms show the existence of
several waveforms in on-site situations that have similar charac-
teristics as the waveforms proven to result in static energy meter
interference. In 74% of the surveyed waveforms, parameters in
the critical range were found. The estimated errors range from
—35% to 925% depending on the extremity of the time-domain
parameters of the pulse. Furthermore, the presented parameters
in the on-site data show that, in general, a variety of nonlinear
waveforms are present in LV networks and are thus encountered
by the static energy meters. These nonlinearities are outside
the requirements as included in immunity standards such as the
IEC 61000-4-19 [7]. This can become problematic as equipment
inside such systems, e.g., the static energy meter, is characterized
using frequency-domain tests. These tests are only valid if the
system can be considered as linear time invariant; however, this
is clearly not the case, as was already pointed out in [27].

VII. CONCLUSION

Several waveforms that are nonlinear and have a highly pulsed
character are found to exist in on-site surveyed data. These have
similar time-domain parameters to waveforms that are proven
to result in static energy meter interference and are thus likely
to cause similar errors. This was verified using an estimator that
interpolates the on-site data with respect to a reference dataset
containing waveforms that induced meter errors, based on an
IDW function, such that pulses with similar characteristics are
detected. For 74% of the surveyed waveforms, parameters inside
the critical range related to static energy meter interference were
found. The existence of these nonlinearities in on-site waveforms
shows that on-site systems contain more nonlinearities than
immunity standards as the IEC 61000-4-19 envision. As a result,
problems in LV systems may arise, for example, EMI of static
energy meters.
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