
Towards Zero-Waste Recovery and Zero-Overhead
Checkpointing in Ensemble Data Assimilation

Kai Keller∗, Adrian Cristal Kestelman†, Leonardo Bautista-Gomez‡
Barcelona Supercomputing Center (BSC-CNS)

Barcelona, Spain
Email: ∗kai.keller@bsc.es, †adrian.cristal@bsc.es, ‡leonardo.bautista@bsc.es

Abstract—Ensemble data assimilation is a powerful tool for
increasing the accuracy of climatological states. It is based on
combining observations with the results from numerical model
simulations. The method comprises two steps, (1) the propaga-
tion, where the ensemble states are advanced by the numerical
model and (2) the analysis, where the model states are corrected
with observations. One bottleneck in ensemble data assimilation
is circulating the ensemble states between the two steps. Often, the
states are circulated using files. This article presents an extended
implementation of Melissa-DA, an in-memory ensemble data
assimilation framework, allowing zero-overhead checkpointing
and recovery with few or zero recomputation. We hide the
checkpoint creation using dedicated threads and MPI processes.
We benchmark our implementation with up to 512 members
simulating the Lorenz96 model using 109 gridpoints. We utilize
up to 8 K processes and 8 TB of checkpoint data per cycle and
reach a peak performance of 52 teraFLOPS.

I. INTRODUCTION

In High-Performance Computing (HPC), numerical weather
and climate simulations belong to the applications with the
highest demand for computing resources. Those applications
run at full scale on the world’s largest supercomputers. Yet,
the degree of resolution is nowhere near saturation. Terasaki,
Miyoshi et al. have performed studies in 2015, using about
5,700 nodes of the K-Computer at RIKEN reaching 720
teraFLOPS [20], and in 2020 on the Fugaki supercomputer
on more than 130,000 nodes reaching 79 petaFLOPS [28].
The amount of memory needed for such simulations already
is in the Petabyte regime. High resolution weather and climate
prediction towards less than 10km is expected to run at full
scale on exascale systems [21].

An important part of numerical weather prediction (NWP)
is Data Assimilation (DA) [25]. Some popular models using
ensemble based DA are TOPAZ [8], NICAM-LETKF [25],
CESM-DART [14], EC-EARTH [12] and IFS (ECMWF) [7].
DA combines numerical models and real world observations
to achieve the most accurate description of the current sys-
tem state. One cycle in ensemble data assimilation involves
two steps: (1) propagation and (2) analysis. During the
propagation, the current estimate of the state and the flow-
dependent error covariance is propagated from ti to ti+1. The
resulting state is called the background state (a.k.a. model
or forecast state). The propagation is performed with the
numerical climate model. During the analysis, the background
state is improved by assimilating real world observations.
The resulting state is called analysis state and represents the

new best estimate of the true state. Propagation and analysis
are repeated until the desired accuracy is reached or all the
available observations are consumed.

DA is used for a number of reasons, an important one is
operational NWP. This refers to continuous operated prediction
systems (e.g., short-term weather forecasting or the prediction
of extreme weather events). A key aspect of operational
forecasting frameworks is the timely availability of the results,
which becomes ever more challenging due to the increased
resolution and grid size.

Melissa-DA [11] is a novel in-memory ensemble DA frame-
work providing a simple interface for connecting numerical
climate models. Traditionally, in-memory ensemble DA im-
plements the state circulation with MPI. In Melissa-DA, the
states are circulated via TCP leveraging the ZMQ [2] library.
The framework is based on a server-runner architecture. Each
runner and the server are executed on different resources
(i.e., different cluster jobs). The server distributes the analysis
states to the runners; the runners propagate the states until the
next timestep and return the background states to the server.
The server then performs the analysis and redistributes the
analysis states for the next cycle. The ZMQ layer introduces
elasticity into the framework: Runners can be dynamically
added and removed, and each component of the framework
can fail without affecting the others.

In this work, we present an effortless framework protec-
tion leveraging checkpoint/restart. The checkpoints fulfill the
purpose of resiliency and hold the climate model results in
form of shared HDF5 checkpoint files. The files contain both
the background and analysis states. We use dedicated threads
and MPI processes to overlap the checkpoint creation with
the framework execution. We demonstrate that the overhead
is effectively hidden behind the framework’s normal operation
(zero-overhead checkpoint). Our implementation manages fur-
ther to recover from failures with none or few recomputations
(zero-waste recovery). In addition, we derive a model that pre-
dicts the average cost of failures during continuous operation.

In the following sections, we provide a short introduction
to the most important concepts necessary to understand this
article II, present our implementation III, acknowledge related
work to better understand the topic and introduce different
concepts IV, present our experimental methods and goals V,
the results of our experiments VI, discuss the results VII, and
eventually conclude the article VIII.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/HiPC53243.2021.00027

II. BACKGROUND

A. Data Assimilation and the Ensemble Kalman Filter

An essential part of climate research is making predictions
and reanalyses of environmental systems using numerical
models. The governing equations of the systems are typically
nonlinear and behave chaotically (i.e., are very sensitive to ini-
tial conditions). Therefore, to make accurate predictions, initial
states near to the true state are necessary. The observational
data, however, is sparse and afflicted with uncertainties. Con-
sequently, observational data alone is insufficient for reliable
predictions. A mean to reduce uncertainty is data assimilation.
DA combines the error probability distributions for observation
and model states to decrease the uncertainty. Kalman Filtering
(KF) is among the most common techniques for DA. The
foundation of the formalism is represented by the state space
equations:

xt =Mxt−1 + qt, qt ∼ N (0, Qt) (1)
yt = Hxt + rt, rt ∼ N (0, Rt) (2)

Here, xt represents the true state, M the model operator, yt
the observed state and H the observation operator. qt and rt
are the respective errors, which are assumed to be unbiased
and Gaussian. Hence, they follow a normal distribution with
zero mean and covariance matrices Qt and Rt.

The Ensemble Kalman Filter (EnKF), approximates the co-
variance matrices with the statistical moments of an ensemble
of states, thus, the error covariance information is contained
in the ensemble. This reduces the effective dimension of the
covariance matrix from N ×N to N ×M , with N being the
state dimension and M the number of ensemble members.
The method has been established in climate science over
the past decades and has shown good results, despite the
gaussian assumption. Besides the EnKF, there are various
other techniques for DA. For instance, 4D-Var, particle filters
or hybrids of EnKF and 4D-Var. Detailed introductions to
the individual methods can be found in many textbooks and
articles (for instance, [15], [27], [10], [9]).

B. Melissa-DA

Melissa-DA (DA for data assimilation) is a spin-off from
Melissa, initially used for sensitivity analysis (SA) [26]. SA
and ensemble based DA share some similarities. Both are
based on sampling outcomes from model simulations and
extract information about the system by statistical means;
however, the goals and the underlying formalisms are very
different. In both cases, though, the law of large numbers
dictates a sufficient ensemble size to achieve accurate results.
For DA, a 1K member ensemble, operating on a state with
109 variables, comprises at least 7.5 TB of memory (double
precision), just for representing the ensemble states. In fact, for
the whole ensemble, represented by background and analysis
states, we need at least 15 TB. As mentioned earlier, the
ensemble needs to be circulated between the propagation and
analysis steps. In most cases, this takes place through the IO
layer (a.k.a. offline mode). In that case, the propagation and

analysis are performed on separate binaries and the ensemble
is circulated through files. Another possibility is using the
same binary for propagation and analysis while circulating the
states through MPI (a.k.a. online mode). Both methods have
certain advantages and drawbacks. The first method is intrin-
sically fault tolerant, since the last state ensemble is available
on the files. However, the IO layer introduces a bottleneck.
The second method provides better performance but misses
the intrinsic fault tolerance, and introducing resiliency might
again add considerable overheads.

Fig. 1: Server-runner concept of Melissa-DA. Each iteration, the server
distributes the analysis ensemble to the runners, which in turn compute the
background state as input for the next analysis step.

Melissa-DA takes an intermediate approach. As in the first
method, the propagation and analysis steps run in separate
binaries, however, are executed simultaneously. The ensemble
is circulated through the network using ZMQ instead of
MPI. Melissa-DA is based on a server-client architecture.
The clients (called runners) compute the background states
and the server gathers the states and performs the analysis
step. Leveraging ZMQ mitigates the effort of protecting the
framework since each module can fail without affecting the
others. Furthermore, it provides a high level of elasticity, as
runners can be added and removed during the runtime. The
state ensemble is exchanged between the server and runners
directly, without depending on the file system. The server acts
as a task scheduler during the propagation step, distributing the
analysis state ensemble to the runners. The runners compute
the background state and send it back to the server. Once the
background state ensemble is complete, the server performs
the data assimilation and thereupon distributes the analysis
state ensemble back to the runners for the next iteration. The
number of runners is adjustable and is typically chosen to be
smaller than the ensemble size, thus, each runner will receive
several states from the server during one epoch. Figure 1
visualizes the concept.

C. Asynchronous Checkpointing and Elastic Recovery

With asynchronous checkpointing, we refer to the check-
point creation in two stages, while the second stage is per-
formed asynchronously to the application. We refer to the
first stage as pre-processing and to the second stage as
post-processing. Asynchronous checkpointing can be applied
to checkpoint techniques that involve further actions besides

storing the data to the file system. For instance, in partner-
checkpointing, the checkpoint is stored locally on node storage
and a copy is send to the partner node. Our extensions rely
on the Fault Tolerance Interface (FTI) [5] checkpoint library.
FTI provides several checkpoint types with different tradeoffs
between speed and reliability. All the levels can be performed
asynchronously, most importantly here, the creation of shared
HDF5 files. During the pre-processing, the checkpoint data
is stored on local node storage. During post-processing, FTI
worker-processes consolidate the data to a shared HDF5 file on
the parallel file system (PFS) in the background. The recovery
from the shared file can be performed with a different number
of processes [16] (a.k.a., elastic recovery). We will need this
feature to recover the background states on the server side, as
we will explain in the next Section (Section III-B).

III. IMPLEMENTATION

Our implementation involves modifications in all modules
of the Melissa framework, the Launcher, Server and Runner.
In the following paragraphs, we will gradually introduce the
three modules along with our modifications.

A. Launcher

Fig. 2: Launcher workflow. Upon a runner failure, the launcher starts a new
runner instance. Upon server failures, the launcher waits until the runners
completed their computations and checkpoints and restarts the framework.

The launcher is the monitoring unit of the Melissa-DA
framework. It starts the server and runner instances and
monitors their operation. The launcher takes an essential role
in our protection mechanism. The server and the runners
are monitored using (1) the cluster scheduler (checking the
job status) and (2) through timeouts or heartbeats. When
the launcher notices the failure of runners, it manages their
restart, and in case of a server failure, the restart of both the
server and runner instances. Initially, upon server failures, the
runners were immediately terminated, independently of the
point of their execution. We intercepted this mechanism to
allow a gradual shutting down of the runner instances. With
our additions, the runners can finish computing the current
background state and are gracefully shut down after storing
the state to the PFS. With this, unless the server fails during
the assimilation step or the checkpoint creation, the framework
can resume execution where it has been left off. This leads to
a smooth transition from failure to recovery with none or a

minimum of recomputations (zero-waste recovery). Figure 2
shows the restart mechanism in detail.

B. Server

Fig. 3: Server mainloop showing the mechanism to register new runners, the
scheduling and checkpointing.

The server workflow is divided into a propagation step
followed by an analysis step. During the propagation step, the
runners generate the background state ensemble, which serves
as input for the next analysis step. This involves state transfers
between server and runners, as the analysis is performed by
the server. The server schedules and sends the analysis states
as propagation tasks to the runners and the runners return the
propagated analysis states (i.e., background states). When the
whole ensemble has been propagated, the server performs the
data assimilation, generating the analysis ensemble for the
next iteration. Melissa-DA intrinsically provides basic fault
tolerance to the framework, as the launcher detects and restarts
failed runners (see Figures 2 and 3 for details). The server,
however, still needs protection against failures. To provide
server FT, we checkpoint the analysis states on the server.
The checkpoints are created after each analysis step. In Sec-
tion II-C we introduced the asynchronous HDF5 checkpoint
creation in FTI. We leverage this feature to protect the analysis
state ensemble asynchronously. We dedicate several of the
server’s MPI processes to FTI (further on called heads) to
perform the post-processing in the background. Moreover, we
added thread support to the remaining server processes to
perform the pre-processing stage asynchronously as well. In
that way, we can move the entire checkpoint creation into the
background.

C. Runner

The runners apply the numerical climate model to propagate
the analysis states to the next observation timestep. Each run-
ner may need very large allocations comprising several nodes,
depending on the complexity of the model (for instance 512
nodes for the NICAM atmospheric model [28]). In order to in-
terface with the Melissa-DA framework, the simulation model
needs to implement two API functions: (1) melissa_init
and (2) melissa_expose. The state exchange between
runner and server takes place during melissa_expose. The

Fig. 4: Flowchart of the Melissa-DA runner workflow.

function essentially involves a send and receive operation.
Runners receive analysis states from the server and return
background states. Besides the checkpoint of the analysis
states on the server, we perform checkpoints of the background
states on the runners. Each runner operates on only one state
at a time and thus, checkpoints only one state at a time.
Since all runners execute simultaneously, the background state
ensemble can, in a way, be checkpointed in parallel. To further
improve the checkpoint performance on the runners, the when
of the checkpoint creation is essential. The runners are idle
between the send and the receive operation for some time,
waiting for the next analysis state to arrive. This is where we
place the checkpoint creation. We will see in the evaluation
section that we can hide the cost for checkpointing entirely
in that way. However, depending on the size of the states,
the synchronous checkpoint creation may still exceed the
idle time of the runners. Therefore, we apply asynchronous
checkpointing for the runners as well. However, only for
the post-processing, recall that we leverage threads for the
asynchronous pre-processing on the server side. Our evaluation
shows that the time for the inline pre-processing is much less
than the runner’s idle time, hence, it is not necessary to move
the pre-processing to the background using threads. Figure 4
shows a diagram of the runner workflow. As we can see there,
the runner-server interaction is performed within try blocks. If
the runners detect uncommonly long send or receive calls, a
server failure is assumed and the runners shut down gracefully
after completing the checkpoint.

D. Recovery

With the presented checkpointing scheme, we hide the
checkpoint overhead behind the framework’s execution and
we recover, in most cases, back to the point where the failure
has occurred. The server typically uses a different domain
decomposition than the runners. Since the recovery of both
the analysis and the background state ensemble takes place
on the server, we need to recover from the background states
elastically, as the runners created them. We leverage the
elastic recovery API for shared HDF5 files from FTI for this
(see Section II-C).

IV. RELATED WORK

In this section, we present research connected to our work.
We focus on works in numerical climate modelling, selecting
works that are similar to ours, or involve ideas that could
be used for improvements. The first research we present is
a fault-tolerant scheduler for the MITgcm-DART ensemble
system [3]. The second work comprises a comprehensive
overview of available FT mechanisms to protect numerical
climate models [6].

A. Fault Tolerance for DART-MITgcm with Decimate

Decimate [18] is a Slurm extension aiming to facilitate the
handling of HPC applications that include submission of mul-
tiple jobs. It provides mechanisms to include prolog and epilog
to groups of jobs and allows inspecting the output by so-called
checker functions at the end of the job execution. Toye et al.
used Decimate to implement a scheduler providing automatic
recovery and rescheduling of failed jobs for DART/MITgcm,
the Massachusetts Institute of Technology ocean general cir-
culation model (MITgcm) on the Data Assimilation Research
Testbed (DART) [13]. Besides failures that occur either upon
random soft errors or hardware failures, Toye et al. also include
the handling of failures due to filter errors (e.g., collapsed
ensemble states). According to Toye et al. about 3% of failures
can be related to filter or other numerical errors. The failure
detection in the presented scheduler extension is based on
two scenarios. The first scenario includes hard failures. The
second scenario includes filter errors, unphysical outcomes or
numerical errors. The checker function takes the decision on
which scenario has occurred based on the model-simulation
output. If no output is found or incomplete, the framework
decides for the first scenario. If an output was generated
and contains unexpected or unphysical results, the framework
chooses the second scenario. Depending on the scenario, the
framework triggers the user defined failure handling.

B. Fault Tolerance Methods for Numerical Climate Models

Benacchio et al. [6] represents a comprehensive collection
of FT methods in NWP on software and hardware level. We
are more interested in the software level here, as it has a
connection to our work. An engaging method presented is
interpolation-restart. It describes the restart on a subset of
the simulation data by interpolating the missing data from
the available. This can be applied to models with data de-
pendencies to reduce the amount of data in the checkpoint
files. The authors also mention lossy compression for the
checkpoint creation. Three methods are discussed in some
detail zero backup, lost data is initialized with zeros, multigrid
backup, where essentially only grid-points are stored that
can be used to interpolate the missing points upon recovery,
and SZ compression. Other methods discussed in the article
(referred to as system resiliency) rely on fault-tolerant MPI
implementations such as ULFM [4] and Fenix [24]. Again
other rely on replication or message logging.

Fig. 5: On the top, we see the characteristic failure regimes when checkpointing only the analysis ensemble. Below the regimes, when checkpointing both
background and analysis ensembles. (ii) Failures in region A result in a rollback to the end of the previous propagation. For failures in B we recover to the
point where the failure occurred (zero-waste recovery), failures in C result in a rollback to the end of the propagation from the current iteration. The graphic
illustrates, that failures in (ii) lead to significantly fewer recomputations than failures in (i).

V. METHODOLOGY

This section discusses the dependency between recovery
time and point of failure, describes the experiments we have
performed and presents the methodology.

A. Failure Regions

The performance of a checkpoint/restart based protection
is characterized by (a) the time for the checkpoint creation,
Tcp, and (b) the revival time, Trev . Here, Trev comprises the
time to recover, Trec, and the time for recomputations, Tcom.
The total cost for a failure additionally includes the downtime
and initialization. However, since those are subject to cluster
and application type and independent of the type of recovery
method, we do not consider them in our model. The revival
time varies, depending on if the failure happens during the

A propagation step, before checkpoint completion,
B propagation step, after checkpoint completion,
C analysis step.

The zero-waste scenario is B. In this case, we restart where
we have left off, recovering from the analysis and part of
the background ensemble checkpoint. The worst case scenario
is A, where we need to rollback to the end of the propagation
step from the previous iteration, repeating the analysis step
and part of the current propagation. We need to roll back
to the end of the current propagation step for scenario C,
merely repeating part of the analysis. Figure 5 summarizes
the scenarios graphically. The figure also compares to the case
when we checkpoint only the analysis ensemble. The revival
times for the three regions can be expressed by:

Trev,A = 2Trec + Tcom,A , Tcom,A = Tana + αATcp (3)
Trev,B = (1 + αB)Trec , Tcom,B = 0 (4)
Trev,C = 2Trec + Tcom,C , Tcom,C = αCTana (5)

αA, αB and αC have values between 0 and 1, indicating
that for regions A and C the failure can happen at any point
during the checkpoint or analysis step and for region B that we

recover from only a fraction of the background state ensemble.
Since the dimensions of analysis and background states are the
same, we assume that their recovery per state takes the same
amount of time 1. we will see later in Section VI that this
assumption is violated in our case, however, to take this into
account, we just need to express Trec = Trec,for + Trec,ana
explicitly 2. The probability of failures inside the three regions
is given by:

pA = Tcp × T−1iter (6)

pB = (Tfor − Tcp)× T−1iter (7)

pC = Tana × T−1iter (8)

Where Titer = Tfor + Tana. Note that we perform the
checkpoint completely in the background using threads and
dedicated MPI processes. That is why the iteration time
only consists of the time for propagation and analysis steps.
In Section VI we develop a model, using Equations (6) to (8),
to predict the average revival time, 〈Trev〉, for the continuous
operation of the framework.

B. Experiments

We performed experiments where the
(T1) Server uses checkpoint threads and the
(T0) Server does not use checkpoint threads
The server always uses dedicated FTI processes for the asyn-
chronous creation of the shared HDF5 file on the PFS. The
modes from above are combined with

(H1) Runners using dedicated FTI processes and
(H0) Runners not using dedicated FTI processes

1The factor 2 in front of the recovery times in Equations (3) and (5) enters
due to our implementation. Upon the server restart, we first recover the latest
analysis ensemble and than check for available background state checkpoints.
In future implementation this can be improved, avoiding the recovery of the
previous analysis ensemble for cases A and C

2for and ana correspond to propagation (a.k.a., forecast) and analysis step
respectively

We use the FTI terminology, heads, for the dedicated processes
to label the experiments (heads → H). To provide a baseline,
we also performed experiments without FTI (NOFTI). To
identify the experiments that we refer to, we simply con-
catenate the labels. For instance, experiments with checkpoint
threads on the server and head processes on the runners are
labelled H1T1. We scaled the framework to ensembles with
64, 128, 256, and 512 members. The most relevant parameters
of the experiments are listed in Table I.

C. Data Collection
We instrumented the code with timing events marking the

beginning and the end of regions that we want to trace.
Leveraging the UNIX system clock allows comparing events
from different runners and the server. For the server side we
instrumented: initialization, propagation step, analysis step,
checkpoint pre-processing, checkpoint post-processing, to-
tal execution time, recovery analysis, recovery background
and total recovery time. For the runners: send state, receive
state, model propagation, effective checkpoint time and
idle time (complement to model propagation). The effective
checkpoint time comprises checkpoint pre and post-processing
for H0 (synchronous) and only the pre-processing for H1
(asynchronous).

D. Failure Injection
To measure the recovery cost for regions A, B and C, we

injected failures at the corresponding points into the server. To
resemble a realistic situation, we injected the failures from the
launcher using signals. In addition to the launcher’s knowledge
of the framework’s status, we added a mechanism into FTI
that enables the forwarding of the current checkpoint stage
(i.e., idle, pre, or post-processing) to the launcher.

VI. EVALUATION

In this section we discuss the benefits of checkpointing both
ensembles towards only the analysis ensemble and afterward
evaluate the checkpoint and recovery performance of our
implementation.

A. Checkpointing Background and Analysis Vs. Only Analysis
This section opposes checkpointing background and anal-

ysis to only analysis ensemble, to justify the implementation
effort and additional resource utilization. We start applying
the considerations from Section V-A to the simpler case,
protecting only the analysis ensemble. Note that we always
need to roll back to the last available analysis ensemble. The
formerly three regions become only two since Regions B
and C are now identical (see also Figure 5):
A′ propagation step, before checkpoint completion and
B′ propagation or analysis step, after checkpoint completion.

The recovery for A′ takes place at the end of the analysis step
from two iterations before, and for B′ at the beginning of the
current propagation step. The respective revival times are:

Trev,A′ = Trec + T ′for + Tana + αA′Tcp (9)

Trev,B′ = Trec + Tcp + αB′
(
T ′for − Tcp + Tana

)
(10)

The times for the analysis step (Tana), checkpoint (Tcp), and
recovery (Trec) are identical to the other case. However, the
time for the propagation step (T ′for) might be shorter as we do
not checkpoint on the runner side. We account for this by 3:

T ′for
Tfor

= δ , with 0 ≤ δ ≤ 1. (11)

For a continuous operation of the framework, for instance
in operational NWP, we can compute average values for the
revival times using the probabilities from Equations (6) to (8):

〈Trev〉 = pA 〈Trev,A〉+ pB 〈Trev,B〉+ pC 〈Trev,C〉 (12)
〈T ′rev〉 = pA′〈Trev,A′〉+ pB′〈Trev,B′〉 (13)

The derivation of probabilities pA′ and pB′ is similar to pA,
pB and pC and omitted for brevity. With the following set of
dimensionless parameters:

AF =
〈Tana〉
〈Tfor〉

, RC =
〈Trec〉
〈Tcp〉

, CF =
〈Tcp〉
〈Tfor〉

(14)

the dimensionless forms of Equations (12) and (13) become:

τrev =
AF2 + 2(2RC + 1)AF CF + (RC + 1)CF2 + 3RC CF

2(AF + 1)
(15)

τ ′rev = (RC + 1)CF +
1

2
(AF + δ) (16)

Where τrev = 〈Trev〉/〈Tfor〉 and τ ′rev = 〈T ′
rev〉/〈Tfor〉 4. We

chose αA = αB = αC = αA′ = αB′ = 0.5, assuming an
unbiased point of failure. We can now compare the revival
times using relations between the characteristic quantities
(Equation (14)) rather than absolute values. The plots in Fig-
ure 6 show the relative reduction of the revival time for the
three dimensionless parameters, depending on δ. We observe
a reduction between 0% - 300% and a strong dependency on
the parameter CF. This parameter determines the width of the
zero waste region. In the limit, when the checkpoint takes as
long as the propagation step (i.e., CF = 1), the zero-waste
region vanishes.

B. Climate Model

We adapted a parallel version of the Lorenz-96 model [19]
for our experiments. The Lorenz models represent toy models
to test the efficiency of data assimilation techniques. We use
a 4-th order Runge-Kutta numerical solver for the systems
evolution. The model differential equation reads:

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F (17)

The linear term describes internal dissipation, the quadratic
terms advection and the constant term an external forcing as
parts of an atmospheric model.

3We will see later that the checkpoint creation for most cases can be hidden,
yet, for very large state sizes overhead might still be imposed.

4 Note that this model breaks down when the analysis state’s checkpoint
or the background state’s recovery takes longer than the propagation step.

Parameter Value Members /
Runners

Checkpoint
(For+Ana)

Server
Nodes

Server (FTI)
Processes

Runner (FTI)
Processes

Total
Nodes

Total (FTI)
Processes

State dimension 1024*1024*1024 64 / 16 1 TB 32 256 (128) 752 (16) 48 1008 (144)
Number of observations 21474 (0.002%) 128 / 32 2 TB 64 512 (256) 1504 (32) 96 2016 (288)
State size 8 GB 256 / 64 4 TB 128 1024 (512) 3008 (64) 192 4032 (576)
Observation size (Kb) 168 Kb 512 / 128 8 TB 256 2048 (1024) 6016 (128) 384 8064 (1152)

TABLE I: Parameters for the experiments (left) and scale of the experiments (right). The number of processes dedicated to FTI, in parenthesis, are a subset
of the processes preceding the parenthesis.

(a) (b) (c)

Fig. 6: Speedup for the relative revival time ((τrev−τ ′rev)/τrev) protecting both analysis and background, towards only protecting the analysis ensemble.

C. Experimental Setup

All experiments are performed on Marenostrum4 [1], the su-
percomputer at the Barcelona Supercomputing Center (BSC).
The compute nodes are equipped with 48 cores/node (2 ×
Intel Xeon Platinum 8160), 96 GB of main memory and a
200 GB SSD.

The server uses at all scales 4 application and 4 FTI
processes (i.e. heads) per node. Each MPI process is assigned
2 cores. In that way, the checkpoint thread can be executed on
a separate core. The pre-processing on the server side takes
place on the local SSDs. The server is memory bound and we
cannot afford to perform the first checkpoint stage on the RAM
disk. The checkpoints on the runner side never use checkpoint
threads. The model is CPU bound and we can perform the
checkpoint pre-processing in-memory. We use 1 FTI head per
runner node.

D. Performance Evaluation during Runtime

Figure 7 gives a high-level view on the performance of
the different setups, showing the execution times for five
iterations. The execution times for the experiments are very
similar at all scales, except for executions without server
threads (H0T0 and H1T0), where a considerable amount of
overhead is imposed. Note that this is a weak scaling scenario,
i.e., the problem size per node remains the same, hence, the
workload for the checkpoint pre-processing remains the same.
The overhead for the cases without server threads, is consistent
with the results shown in Figure 8. The time for the checkpoint
pre-processing is at all scales about 45 seconds (i.e., 225
seconds for 5 iterations). Thus, utilizing checkpoint threads
successfully hides this overhead.

The checkpoint of the background states on the runner, is
placed after the send of background and before receiving the

Fig. 7: Time for 5 epochs (from epoch 4 to 9). Bars in green show experiments
with dedicated checkpoint threads and in bars in blue, without. Bars in gray
show times for the experiments without protection (i.e., baseline).

analysis state. This allows overlapping the checkpoint with
the runner’s idle period. At the time the runner sends the
background state, the server might be busy with other runner
requests and, in any case, the state needs to arrive on the server
nodes before the server can react. Figure 9 visualizes this
concept. Figure 10 shows histograms comparing the effective
checkpoint time towards the runner’s idle time. The upper
plots show experiments with asynchronous checkpointing (H1)
and the lower plots with checkpointing inline (H0). The lower
plots show that some of the longer checkpoint times widen the
runners idle period. We expect that for executions at very large
scale this leads to a significant overhead. On the other hand,
the pre-processing time in the asynchronous case is expected
to be independent of the scale (compare Figure 8).

Fig. 8: Time for the pre (i.e., node SSD) and post-processing (i.e., asyn-
chronous shared HDF5 file creation) for checkpoints on the server.

Fig. 9: Communication graph for state circulation between runner and server.
The right showing the case with dedicated FTI processes (i.e., asynchronous
checkpointing) and the left, without (i.e., synchronous checkpointing).

E. Performance Evaluation Recovery

The results of our experiments show that we successfully
overlap checkpointing with the propagation (server) and the
state exchange (runner). Hence, the framework is protected
without a palpable penalty on execution time. However, the
checkpoint duration affects the average cost for failures.
In Section V-A we derived revival times for failures, depending
on the region they take place in. Equations (6) to (8) give the
associated probabilities for failures happening in those regions.
Failures in region A are the most costly ones, followed by
region C and B (zero-waste region). pA and pB both depend
on the checkpoint duration (i.e., the full checkpoint duration,
including pre and post-processing), pC only depends on the
assimilation and propagation time and is independent of the
fault tolerance implementation.

It is easy to see that by minimizing the checkpoint time, we
minimize pA and maximize pB and therefore, minimizing the
probability for failures in the most costly region and maximiz-
ing the probability in the zero-waste region. Hence, to provide
minimal revival times, it is important to ensure both good
checkpoint and recovery performance. Figure 11 shows traces
of six executions including a failure and the recovery. The first
row shows executions with checkpointing both the background
and analysis state ensemble. The second row shows executions
with checkpointing only the analysis ensemble. The server

(a) (b)

(c) (d)

Fig. 10: Histograms of the runner idle and checkpoint times. The runner idle
period is the time between two model propagations. The checkpoint time is
part of the idle time. The upper plots show executions with FTI heads and
the lower, without. We observe that synchronous checkpointing broadens the
runners idle time.

and runner traces are separated by a dotted blue line. The
vertical dotted lines indicate the failure and revival points. We
also marked the passive recovery time (i.e., the time from
the crash until the restart of the framework) and the active
recovery time (i.e., the time from server initialization until
the revival point). The passive recovery time consists mostly
of the time the runners wait for the server reply, i.e., the
time until the runners notice the server crash. Note that this
time can be reduced by adjusting the timeout. With a little
more effort the waiting time can be eliminated entirely by
implementing a server polling and by relying on the launcher
to notify the runners of the server crash. Hence, to make a
fair comparison, we compare the active recovery time. We can
see that indeed the revival times are faster when checkpointing
both ensembles. The trace showing the failure in region B (top
row, second trace) demonstrates that indeed the propagation is
resumed from the point of failure. We can see that especially
for region A and C, the revival times without protecting the
background are much longer, as they include the repetition of
the entire or most of the propagation step.

We can determine the probabilities for failures in the various
regions using Equations (6) to (8) (recall, the regions are
shown in Figure 5). Using Equations (15) and (16), we
can also compute the average revival times for both cases
(i.e., checkpointing both ensembles and only the analysis
ensemble). Table II lists the values for 64, 128, 256 and 512
members. As the recovery times for 256 members already have
been rather long, we measured 390 seconds for the recovery
of one ensemble to only 190 seconds for the checkpoint, we
projected the times for executions with 512, to save computing

Fig. 11: Gantt charts showing the server and runner execution (i.e., one runner instance). The charts show execution, failures in region A, B and C, and the
recovery. The upper row showing the cases when protecting both background and analysis ensembles and the lower, only protecting the analysis ensemble.

64 (H1T1) 128 (H1T1) 256 (H1T1) 512 (H1T1)

PA [%] 19.47 24.35 36.48 48.17
PB [%] 66.93 61.80 49.53 37.21
PC [%] 13.60 13.85 13.99 14.62
PB′ [%] 80.53 75.65 63.52 51.83
AF 0.16 0.16 0.16 0.17
RC 1.01 1.20 2.05 2.89
CF 0.23 0.28 0.42 0.56
〈Trev〉 [sec] 192.15 287.02 747.98 1514.98
〈T ′rev〉 [sec] 449.16 525.00 838.56 1320.12
speedup [%] 133.76 82.91 12.11 -12.86

TABLE II: Probabilities (Equations (6) to (8)), revival times (avg.), Tforτrev
(Equations (12) and (13)), and speedup ((τrev−τ ′rev)/τrev). The text in blue
color indicates that we estimated the recovery time for 512 members.

resources. However, even for the measured recovery times we
observe a speedup for executions below 512 members, when
checkpointing both ensembles.

VII. DISCUSSION

Our results show that we protect the Melissa-DA framework
from failures with a minimum in recomputations at large scale.
Moreover, our protections do not affect the runtime, as they are
performed completely hidden behind the framework’s normal
execution. As we stated in the introduction, Melissa-DA takes
an intermediate approach between an online and offline setup.
The offline setup uses different binaries for propagation and
analysis and circulates the states through the PFS using restart
files. In an online setup, propagation and analysis run inside
the same binary and circulate the states through MPI. Melissa-
DA performs propagation and analysis on different binaries,
hence, reduces the size of dependent failure domains, however,
circulates the states directly between propagation and analysis
through the network, avoiding the staging through the PFS.
We added fault tolerance to the framework in form of global
checkpoint files using HDF5 to make the data available for

reanalyses and data-processing. With our additions, Melissa-
DA possesses the best from both setups. Fast state circulation
as in the online setup and global checkpoint files as in the
offline setup, without additional overhead.

We also identified starting points for further improvements.
For instance, the ensemble states are decomposed among all
server ranks. Consequently, the parts of the states that reside
on the ranks become smaller with increasing server size.
This leads to a high level of fragmentation inside the global
checkpoint files, which results into an unfavorable scaling
behavior of the checkpoint post-processing (see Figure 8).
This also affects the recovery. In Figure 5, we can see that
by minimizing the total checkpoint cost, we maximize the
zero-waste region and minimize the worst-case region. Thus,
by solving this and other issues, we further improve the
operational performance of the framework, minimizing the
average revival time.

Shorter checkpoint times can already be achieved in the
current implementation, by changing to a faster checkpoint
method. For instance, the standard FTI checkpoint format
(i.e., POSIX IO and one file per process), or differential
checkpointing, both will reduce the total time for the check-
point completion. This becomes especially interesting for cases
when the checkpoint data is not needed for analyses. To
improve the total checkpoint performance, without changing
to a faster checkpoint method, one could leverage burst buffer
storage [17], [23], [22], if available on the cluster.

VIII. CONCLUSION

We presented a novel checkpoint-restart implementation for
Melissa-DA, a distributed framework for ensemble based data
assimilation. Melissa-DA keeps the ensemble states in memory
and upon failures the simulation state is lost. Our implemen-
tation protects the framework from this. We showed that our
implementation manages checkpointing the full ensembles of

background and analysis states, without imposing palpable
overhead. Moreover, we showed that by checkpointing both
ensembles, we manage to recover without recomputations
when the failure takes place in the zero-waste region. Since we
checkpoint every epoch, the recomputation will be always less
then one epoch. In fact, the maximum recomputation results
from failures in region A (compare Figure 5) and is bound by
the time for one assimilation step plus the time to complete the
checkpoint. The checkpoints are stored leveraging the HDF5
IO interface of FTI. The checkpoint cost is hidden behind the
frameworks execution, although, there is still some work to be
done to improve both checkpoint and recovery performance
(see Section VII). We performed experiments with a state
dimension of 109 and 2 × 104 observations. We scaled the
experiments to 512 ensemble members with a total checkpoint
size of 8 TB. Runners and server together executed on 8064
processes and the assimilation step reached 52 teraFLOPS.
We estimated the average revival time (including recompu-
tation and recovery) per failure for 512 member executions
to be 1514 seconds. Considering a MTBF of 24 hours, this
corresponds to less than 2% additional time, compared to a
failure free execution.

IX. ACKNOWLEDGEMENTS

Part of the research presented here has received funding
from the Horizon 2020 (H2020) funding framework under
grant/award number: 824158; Energy oriented Centre of Ex-
cellence II (EoCoE-II). The present publication reflects only
the authors views. The European Commission is not liable
for any use that might be made of the information contained
therein.

REFERENCES

[1] Support Knowledge Center @ BSC-CNS - https://www.bsc.es/
user-support/mn4.php.

[2] ZeroMQ - https://zeromq.org/.
[3] A fault-tolerant HPC scheduler extension for large and operational

ensemble data assimilation: Application to the Red Sea. Journal of
Computational Science, 27:46–56, July 2018.

[4] Ulfm 2.0, fault tolerance research hub, 2019.
[5] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,

N. Maruyama, and S. Matsuoka. Fti: High performance fault
tolerance interface for hybrid systems. In SC ’11: Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, Nov 2011.

[6] Tommaso Benacchio, Luca Bonaventura, Mirco Altenbernd, Chris D
Cantwell, Peter D Düben, Mike Gillard, Luc Giraud, Dominik Göddeke,
Erwan Raffin, Keita Teranishi, et al. Resilience and fault-tolerance
in high-performance computing for numerical weather and climate
prediction. International Journal of High Performance Computing
Applications, 2020.

[7] A Benedetti, J Morcrette, O Boucher, A Dethof, R Engelen, M Fisher,
H Flentjes, N Huneeus, L Jones, J Kaiser, et al. Aerosol analysis and
forecast in the ECMWF integrated forecast system: Data assimilation.
ECMWF, 2008.

[8] L Bertino and K A Lister. The topaz monitoring and prediction system
for the atlantic and arctic oceans. Journal of Operational Oceanography,
1(2):15–18, 2008.

[9] Geir Evensen. Sequential data assimilation with a nonlinear quasi-
geostrophic model using monte carlo methods to forecast error statistics.
Journal of Geophysical Research: Oceans, 99(C5):10143–10162, 1994.

[10] Geir Evensen. Data Assimilation: The Ensemble Kalman Filter.
Springer-Verlag, Berlin, Heidelberg, 2006.

[11] Sebastian Friedemann and Bruno Raffin. An elastic framework for
ensemble-based large-scale data assimilation, 2020.

[12] Wilco Hazeleger, Camiel Severijns, Tido Semmler, Simona Ştefănescu,
Shuting Yang, Xueli Wang, Klaus Wyser, Emanuel Dutra, José M
Baldasano, Richard Bintanja, et al. Ec-earth: a seamless earth-system
prediction approach in action. Bulletin of the American Meteorological
Society, 91(10):1357–1364, 2010.

[13] Ibrahim Hoteit, Tim Hoar, Ganesh Gopalakrishnan, Nancy Collins,
Jeffrey Anderson, Bruce Cornuelle, Armin Khl, and Patrick Heimbach.
A MITgcm/DART ensemble analysis and prediction system with appli-
cation to the Gulf of Mexico. Dynamics of Atmospheres and Oceans,
63:1–23, September 2013.

[14] Alicia R. Karspeck, Gokhan Danabasoglu, Jeffrey Anderson, Svetlana
Karol, Nancy Collins, Mariana Vertenstein, Kevin Raeder, Tim Hoar,
Richard Neale, Jim Edwards, and Anthony Craig. A global coupled
ensemble data assimilation system using the Community Earth System
Model and the Data Assimilation Research Testbed. Quarterly Journal of
the Royal Meteorological Society, 144(717):2404–2430, 2018. eprint:
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3308.

[15] Matthias Katzfuss, Jonathan R. Stroud, and Christopher K. Wikle.
Understanding the ensemble kalman filter. The American Statistician,
70(4):350–357, 2016.

[16] Kai Keller, Konstantinos Parasyris, and Leonardo Bautista-Gomez. De-
sign and Study of Elastic Recovery in HPC Applications, 2020.

[17] Donghun Koo, Jaehwan Lee, Jialin Liu, Eun-Kyu Byun, Jae-Hyuck
Kwak, Glenn K. Lockwood, Soonwook Hwang, Katie Antypas, Kesheng
Wu, and Hyeonsang Eom. An empirical study of I/O separation for burst
buffers in HPC systems. Journal of Parallel and Distributed Computing,
148:96–108, February 2021.

[18] Samuel Kortas. Welcome to decimate’s documentation!, 2018.
[19] Edward N Lorenz. Predictability: A problem partly solved. In Proc.

Seminar on predictability, volume 1, 1996.
[20] Takemasa Miyoshi, Keiichi Kondo, and Koji Terasaki. Big Ensem-

ble Data Assimilation in Numerical Weather Prediction. Computer,
48(11):15–21, November 2015. Conference Name: Computer.

[21] Philipp Neumann, Peter Dben, Panagiotis Adamidis, Peter Bauer,
Matthias Brck, Luis Kornblueh, Daniel Klocke, Bjorn Stevens, Nils
Wedi, and Joachim Biercamp. Assessing the scales in numerical weather
and climate predictions: will exascale be the rescue? Philosophical
Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 377(2142):20180148, April 2019. Publisher: Royal
Society.

[22] L. Pottier, R. F. da Silva, H. Casanova, and E. Deelman. Modeling
the Performance of Scientific Workflow Executions on HPC Platforms
with Burst Buffers. In 2020 IEEE International Conference on Cluster
Computing (CLUSTER), pages 92–103, September 2020. ISSN: 2168-
9253.

[23] Wolfram Schenck, Salem El Sayed, Maciej Foszczynski, Wilhelm
Homberg, and Dirk Pleiter. Evaluation and Performance Modeling of
a Burst Buffer Solution. ACM SIGOPS Operating Systems Review,
50(2):12–26, January 2017.

[24] Keita Teranishi, Marc Gamell, Rob Van der Wijingarrt, and Manish
Parashar. Fenix a portable flexible fault tolerance programming frame-
work for mpi applications. 3 2018.

[25] Koji Terasaki, Masahiro Sawada, and Takemasa Miyoshi. Local En-
semble Transform Kalman Filter Experiments with the Nonhydrostatic
Icosahedral Atmospheric Model NICAM. Sola, 11:23–26, 2015.

[26] Théophile Terraz, Alejandro Ribes, Yvan Fournier, Bertrand Iooss, and
Bruno Raffin. Melissa: Large Scale In Transit Sensitivity Analysis
Avoiding Intermediate Files. In The International Conference for High
Performance Computing, Networking, Storage and Analysis (Supercom-
puting), pages 1 – 14, Denver, United States, November 2017.

[27] Habib Toye, Samuel Kortas, Peng Zhan, and Ibrahim Hoteit. A fault-
tolerant hpc scheduler extension for large and operational ensemble
data assimilation: Application to the red sea. Journal of Computational
Science, 27:46 – 56, 2018.

[28] H. Yashiro, K. Terasaki, Y. Kawai, S. Kudo, T. Miyoshi, T. Imamura,
K. Minami, H. Inoue, T. Nishiki, T. Saji, M. Satoh, and H. Tomita.
A 1024-member ensemble data assimilation with 3.5-km mesh global
weather simulations. In 2020 SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages
1–10, Los Alamitos, CA, USA, nov 2020. IEEE Computer Society.

